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Introduction

The book Modern Cryptography: Applied Mathematics for Encryption and 
Information Security was first published with McGraw Hill, then later revised and 
published with Springer. This is the second edition with Springer. What has changed 
you might wonder? Some chapters have had only very minor changes, for example, 
Chap. 12 has had only a few updates. Other chapters have had not only revisions but 
also new algorithms added. Chapter 10 now provides details on the YAK cipher. The 
mathematics of Chap. 5 has been expanded. Chapters 20 and 21 are entirely new 
and cover quantum-resistant cryptography algorithms. Along with that addition, 
Chap. 19 that provides a general overview of quantum computing has also been 
expanded. Chapter 13 now covers additional digital certificate types. Chapter 8 has 
also been substantially expanded. Most importantly, all chapters have been reviewed 
to make concepts clearer for the reader.

As with the previous editions, this book is not meant for the mathematician or 
cryptographer to deep dive into the topic. It is meant for the programmer, cyber 
security professional, network administrator, or others who need to have a deeper 
understanding of cryptography. For that reason, mathematical proofs are not 
included in this book. Sufficient mathematics to generally understand the concepts 
is provided, but no more than is absolutely needed.

Beginning with the first version of this book in 2015, the intent has been the 
same: to fill a gap in cryptography literature. There are some excellent books written 
for the mathematically sophisticated. These books provide so much rich detail on 
the algorithms and the “why” behind the math. However, these are largely inacces-
sible to those with less rigorous mathematical backgrounds. Then there are cyberse-
curity books which provide very little detail on cryptography, books that prepare 
one for cybersecurity certifications such as CompTIA Security+ and ISC2 
CISSP. However, those books provide only the most cursory review of cryptogra-
phy. This book is meant to be a bridge between those two worlds. When you finish 
this book, you will know far more than you do now, even assuming you hold several 
cybersecurity certifications. However, there is much more to learn. There are a few 
specific books I recommend after you have completed this one. Any of the follow-
ing will take you deeper into the math behind the cryptography:
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Understanding Cryptography: A Textbook for Students and Practitioners by Christof 
Paar and Jan Pelzl.

An Introduction to Mathematical Cryptography (Undergraduate Texts in 
Mathematics) Second Edition, 2014, by Hoffstien, Pipher, and Silverman.

Introduction to Modern Cryptography (Chapman & Hall/CRC Cryptography and 
Network Security Series) Second Edition by Katz and Lindell.

Now those books will skip over things like s-box design, quantum-resistant cryp-
tography, and a few other issues. But they will dive much deeper into current sym-
metric and asymmetric algorithms as well as cryptographic hashes. So, if you 
complete this current book, and wish to dive deeper, I recommend one or more 
of these.
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Chapter 1
History of Cryptography to the 1800s

 Introduction

Cryptography is not a new endeavor. Certainly, the way in which we accomplish 
cryptography is different in the computer age than it was in the past. However, the 
essential goal of cryptography is the same. The desire to send and receive secure 
communications is almost as old as written communication itself. For centuries, it 
almost exclusively involved military secrets or political intrigue. Generals needed to 
communicate about troop movements to ensure that if a message was intercepted it 
wouldn’t be intelligible to the enemy. Political intrigue, such as a palace coup, 
required clandestine communications. Prior to the advent of the computer age, there 
was little need for cryptography outside of military and political applications. There 
were, of course, hobbyists who used cryptography for their own intellectual edifica-
tion. We will encounter some of those hobbyists in this and the next chapter.

Modern cryptography certainly still includes military communications as well as 
political communications, but it has expanded into more mundane areas as well. 
Online banking and shopping, for example, have made cryptography a part of most 
people’s daily lives, whether they are aware of it or not. Many people also choose to 
encrypt their computer hard drives or files. Others encrypt their email transmissions. 
Today, cryptography permeates our lives. Most people use cryptography with little 
or no awareness of how it works. And for many people that lack of detailed knowl-
edge is sufficient. But many professionals require a deeper understanding of cryp-
tography. Cybersecurity professionals, network administrators, and cybersecurity 
personnel would benefit from a better understanding. For these professionals, know-
ing more about cryptography will at least allow them to make better decisions 
regarding the implementation of cryptography. Deciding which symmetric algo-
rithm to utilize for encrypting sensitive information, or which key exchange algo-
rithm is most resistant to man-in-the middle attacks, requires a bit more knowledge 
of cryptography.
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 In This Chapter We Will Cover the Following

• Single-substitution ciphers
• Multi-alphabet substitution
• Devices
• Transposition ciphers

 Why Study Cryptography?

It is an unfortunate fact that most people have almost no knowledge of cryptogra-
phy. Even within the discipline of computer science, and more specifically the pro-
fession of cybersecurity, a lack of cryptographic understanding plagues the industry. 
Most cybersecurity professionals have only the most basic understanding of cryp-
tography. For many in cybersecurity, their knowledge of cryptography does not 
extend beyond the few basic concepts that appear on common cybersecurity certifi-
cation tests such as CompTIA Security+ or ISC2 CISSP. Many feel that this level of 
knowledge makes them well informed about cryptography and are not even aware 
of how much they do not know. Some would even argue that a deeper knowledge of 
cryptography is unnecessary. It can be assumed that since you are reading this book, 
you feel a need to deepen and broaden your knowledge of cryptography, and there 
are clearly practical reasons to do so, particularly for those in the cybersecurity 
profession.

By understanding cryptology, you can select the most appropriate cryptographic 
implementations to suit your needs. Even if you have no desire to be a cryptogra-
pher, you still have to choose which tool to use to encrypt a hard drive, for example. 
Should you use the Data Encryption Standard (DES)? Triple DES (3DES)? 
Blowfish? The Advanced Encryption Standard (AES)? If you use AES, then what 
key size do you use, and why? Why is CBC mode preferable to ECB mode? If you 
are interested in message integrity for email, should you use the Secure Hash 
Algorithm (SHA-2)? Perhaps a message authentication code (MAC) or hash mes-
sage authentication code (HMAC)? Which will provide the most appropriate solu-
tion to your particular problem, and why? Many people are not even aware of the 
differences in algorithms.

In addition, knowing about cryptology helps you understand issues that occur 
when cryptographic incidents broadly impact cybersecurity. A good example 
occurred in 2013, when The New York Times reported that among the documents 
released by the National Security Agency, subcontractor Edward Snowden was evi-
dence that the NSA had placed a cryptographic backdoor in the random number 
generator known as Dual_EC_DRBG (Dual Elliptic Curve Deterministic Random 
Bit Generator). This news story generated a flood of activity in the cybersecurity 
community. But what is a cryptographic backdoor? What does this mean for privacy 
and security? Does this mean that the NSA could read anyone’s email as if it were 
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published on a billboard? And more importantly, why did this surprise the cyberse-
curity community, when the cryptography community had been speculating about 
this possibility since 2005? This story illustrates a substantial gap between the cryp-
tography community and the cybersecurity community.

We will be exploring all of these issues as well as random number generators and 
even quantum computing later in this book. For the time being, it is sufficient for 
you to realize that you cannot answer any questions about this particular news story 
without having some knowledge of cryptography. This story, in fact, was not news 
to the cryptographic community. As early as 2005, papers had been published that 
suggested the possibility of a backdoor in this random number generator. Well- 
known and respected cryptographer Bruce Schneier, for example, blogged about 
this issue in 2006. Had the security community possessed a deeper knowledge of 
cryptography, this backdoor would have been a non-story.

Another example comes from the aforementioned cybersecurity certifications. 
Many such certification exams ask about wireless security. Particularly about 
WPA2, and now WPA3. Many of you reading this text have undoubtedly passed 
such certifications. Based on that you may well be able to assert that WPA2 utilizes 
the Advanced Encryption Standard (AES) using the Counter Mode Cipher Block 
Chaining (CBC) Message Authentication Code (MAC) Protocol (CCMP). But do 
you know what CBC is, or why it is so useful. In this book, you will learn about 
these issues and many more.

I could continue with other reasons—very practical reasons—why learning cryp-
tography is essential, and you will see some of those reasons in later chapters. 
Cryptography is not merely a mathematical endeavor to be engaged in by a select 
few mathematicians and cryptologists. In this chapter, you will begin your journey 
into the world of cryptography by learning some essential terms and then exploring 
some historical ciphers. It must be clear, however, that this book will not make you 
a cryptographer. That does require much more extensive mathematical knowledge. 
However, it will provide you with sufficient understanding to make good crypto-
graphic choices and to ask effective questions about cryptographic solutions.

 What Is Cryptography?

Before you can begin studying cryptography, you need to know what exactly cryp-
tography is. A number of people seem to have some misconceptions about what 
cryptography and related terms actually mean. The Merriam-Webster online dic-
tionary defines cryptography as follows: “(1) secret writing (2) the enciphering and 
deciphering of messages in secret code or cipher; also: the computerized encoding 
and decoding of information.” This definition does not seem overly helpful and may 
not provide you with much insight into the topic. Columbia University provides a 
slightly better definition in its “Introduction to Cryptography” course: to “process 
data into unintelligible form, reversibly, without data loss—typically digitally.”

What Is Cryptography?
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The Columbia University definition adds the important element of not losing 
information, certainly a critical component in secure communications. However, I 
cannot help but think that the definition could be a bit clearer on the issue of exactly 
what cryptography is. So, allow me to try my hand at defining cryptography:

Cryptography is the study of how to alter a message so that someone intercepting it cannot 
read it without the appropriate algorithm and key.

This definition is certainly not radically different from that of either Merriam- 
Webster or Columbia University. However, I think it is a good, concise definition, 
and one we will use throughout this book.

Note that cryptography and cryptology are not synonyms, though many people 
mistakenly use the terms as if they were. In fact, many textbooks utilize the terms 
interchangeably. However, I will define and differentiate these two terms, as well as 
some other common terms you will need throughout your study of cryptography. 
These terms are used in both ancient and modern cryptography.

• Cipher A synonym for the algorithm used in transforming plain text to 
cipher text.

• Cipher text The coded or encrypted message. If your encryption is sufficiently 
strong, your cipher text should be secure.

• Cryptanalysis Also known as code breaking; the study of principles and meth-
ods of deciphering cipher text without knowing the key. This is more difficult 
than movies or television would indicate, as you will see in Chap. 17.

• Cryptography The study of how to alter a message so that someone intercept-
ing it cannot read it without the appropriate algorithm and key.

• Cryptology Although some people, including more than a few cybersecurity 
books, use the terms cryptography and cryptology interchangeably, that is inac-
curate. Cryptology is more comprehensive and includes both cryptography and 
cryptanalysis.

• Decipher (decrypt) Decipher and decrypt are synonyms. Both terms mean to 
convert the cipher text to plain text.

• Encipher (encrypt) Encipher and encrypt are synonyms. Both words mean to 
convert the plain text into cipher text.

• Key The information, usually some sort of number, used with the algorithm to 
encrypt or decrypt the message. Think of the key as the fuel the algorithm 
requires in order to function.

• Key space The total number of possible keys that could be used. For example, 
DES uses a 56-bit key; thus, the total number of possible keys, or the key 
space, is 256.

• Plain text The original message—the information you want to secure.

These are some of the most basic terms that permeate the study of cryptology and 
cryptography. In any discipline, it is important that you know, understand, and use 
the correct vocabulary of that field of study. These terms are essential for your 
understanding.

1 History of Cryptography to the 1800s
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If you suppose that you cannot study cryptography without a good understanding 
of mathematics, to some extent you are correct. Modern methods of cryptography, 
particularly asymmetric cryptography, depend on mathematics. We will examine 
those algorithms later in this book, along with the mathematics you need to under-
stand modern cryptography. It is often easier for students first to grasp the concepts 
of cryptography within the context of simpler historical ciphers, however. These 
ciphers don’t require any substantive mathematics at all, but they do use the same 
concepts you will encounter later in this book. It is also good to have an historical 
perspective on any topic before you delve deeper into it. In this chapter we will 
examine a history of cryptography, looking at specific ciphers that have been used 
from the earliest days of cryptography to the 1800s.

Let us begin our study of historical cryptography by examining the most com-
mon historical ciphers. These are fascinating to study and illustrate the fundamental 
concepts you need in order to understand cryptography. Each one will demonstrate 
an algorithm, plain text, cipher text, and a key. The implementations, however, are 
far simpler than those of modern methods and make it relatively easy for you to 
master these ancient methods. Keep in mind that these ciphers are totally inadequate 
for modern security methods. They would be cracked extremely quickly with a 
modern computer, and many can be analyzed and cracked with a pen, paper, and the 
application of relatively simple cryptanalysis legerdemain.

 Substitution Ciphers

The first ciphers in recorded history are substitution ciphers. With this method, each 
letter of plain text is substituted for some letter of cipher text according to some 
algorithm. There are two types of substitution ciphers: single-alphabet (or mono- 
alphabet) and multi-alphabet (or poly-alphabet). In a single-alphabet substitution 
cipher, a given letter of plain text is always substituted for the corresponding letter 
of cipher text. For example, an a in the plain text would always be a k in the cipher 
text. Multi-alphabet substitution uses multiple substitutions, so that, for example, an 
a in the plain text is sometimes a k and sometimes a j in the cipher text. You will see 
examples of both in this section.

 The Caesar Cipher

One of the most widely known historical encryption methods is the Caesar cipher. 
According to the Roman historian Gaius Suetonius Tranquillus (c. 70–130 CE), 
Julius Caesar used this cipher to encrypt military messages, shifting all letters of the 
plain text three places to the right (d’Agapeyeff 2016). So, for example, the message
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Attack at dawn 
 

becomes

Dwwdfn dw gdzq 
 

As you can see, the a in the plain text is shifted to the right three letters to become 
a d in the cipher text. Then the t in the plain text is shifted three letters to the right 
to become a w in the cipher text. This process continues for all the letters in the plain 
text. In our example, none of the shifts went beyond the letter z. What would happen 
if we shifted the letter y to the right three? The process would wrap around the 
alphabet, starting back at letter a. Thus, the letter y would be shifted to a letter b in 
the cipher text.

Although Caesar was reputed to have used a shift of three to the right, any shift-
ing pattern will work with this method, shifting either to the right or to the left by 
any number of spaces. Because this is a quite simple method to understand, it is an 
appropriate place to begin our study of encryption. It is, however, extremely easy to 
crack. You see, any language has a certain letter and word frequency, meaning that 
some letters are used more frequently than others. In the English language, the most 
common single-letter word is a, followed closely by the word I. The most common 
three-letter word is the, followed closely by the word and. Those two facts alone 
could help you decrypt a Caesar cipher. However, you can apply additional rules. 
For example, in the English language, the most common two letter sequences are oo 
and ee. Examining the frequency of letter and letter combination occurrences is 
called frequency analysis.

It is claimed that other Caesars, such as Augustus, used variations of the Caesar 
cipher, such as 1 shift to the right. It should be obvious that any shift, left or right, 
of more than 26 (at least in English) would simply loop around the alphabet. So, a 
shift to the right of 27 is really just a shift of 1.

Although the Caesar cipher is certainly not appropriate for modern cryptographic 
needs, it does contain all the fundamental concepts needed for a cryptography algo-
rithm. First, we have the plain text message—in our current example, Attack at 
dawn. Then we have an algorithm—shift every letter. And then a key, in this case 
+3, or three to the right (–3 would be three to the left). And finally, we have cipher 
text, Dwwdfn dw gdzq. This is, essentially, the same structure used by all modern 
symmetric algorithms. The only differences between the Caesar cipher and modern 
symmetric ciphers are the complexity of the algorithm and the size of the key.

The size of the key brings us to one significant problem with the Caesar cipher—
its small key space. Recall that key space is the total number of possible keys. 
Because there are only 26 letters in the English alphabet, the key space is 26 (i.e., 
+–26). It would be relatively easy for a person working with pen and paper to check 
all possible keys, and it would be ridiculously trivial for a computer to do so. In the 
cybersecurity world, a malicious person who checks all possible keys to decipher an 
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encrypted message is conducting what it called a brute-force attack. The smaller the 
key space, the easier a brute-force attack will be. Compare the Caesar cipher, with a 
key space of 26, to AES 128-bit, with a key space of 2128, or about 3.4 × 1038. 
Clearly, the larger key space makes a cipher more resistant to brute-force attacks. 
Note, however, that simply having a long key is not sufficient for security. You will 
learn more about this when we discuss cryptanalysis in Chap. 17.

 Mathematical Notation of the Caesar Cipher

With the various ancient ciphers, we will be using, the math is trivial. However, it is 
a good idea for you to become accustomed to mathematical notation, at least with 
those algorithms where such notation is appropriate. It is common to use a capital 
letter P to represent plain text and a capital letter C to represent cipher text. We can 
also use a capital letter K to represent the key. This gives us the following mathemat-
ical description of a Caesar cipher:

 
C P K� � � �mod26

 

Here we see a symbol some readers may not be acquainted with, the ≡. This is 
not a misprint of the = sign; rather, it is the symbol for congruence. Do not be overly 
concerned about the ≡ 26. We will explore modulus operations and congruence in 
detail in Chap. 4. For now, I just use the modulus operation to denote dividing by a 
given number (in this case, 26, because there are 26 letters in the alphabet) and list-
ing only the remainder. That is not a rigorous mathematical explanation, but it will 
suffice for now.

Decryption can also be represented via mathematical symbols:

 
P C K� � �– mod26

 

The mathematical representation of Caesar’s method of shifting three to the 
right is

 
C P� � � �3 26mod

 

According to the book The Lives of the Caesars, written by Suetonius, Julius 
Caesar used this cipher extensively:

There are also the letters of his to Cicero, as well as to his intimates on private affairs, and 
in the latter, if he had anything confidential to say, he wrote it in cipher, that is by so chang-
ing the order of the letters of the alphabet, that not a word could be made out. If anyone 
wishes to decipher these, and get at their meaning, he must substitute the fourth letter of the 
alphabet, namely D, for A, and so with the others.

If the plain text is the 24th letter of the alphabet (which is the letter X), then the 
cipher text is (24 + 3)/26, listing only the remainder. Thus, 27/26 = 1, or the letter A.

Substitution Ciphers
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We cannot know how effective the Caesar cipher was at concealing messages. 
However, at the time of Julius Caesar, illiteracy was common, and cryptography 
was not widely known. So, what may seem a trivial, even frivolous, cipher today 
may well have been effective enough more than 2000 years ago.

The Caesar cipher is probably the most widely known substitution cipher, but it 
is not the only one. All substitution ciphers operate in a similar fashion: by substitut-
ing each letter in the plain text for some letter in the cipher text, with a one-to-one 
relationship between the plain text and cipher text. Let’s look at a few other substitu-
tion ciphers.

 Atbash Cipher

Hebrew scribes copying the biblical book of Jeremiah used the Atbash substitution 
cipher. Applying the Atbash cipher is fairly simple: just reverse the order of the let-
ters of the alphabet. This is, by modern standards, a very primitive cipher that is 
easy to break. For example, in English, a becomes z, b becomes y, c becomes x, and 
so on. Of course, the Hebrews used the Hebrew alphabet, with aleph being the first 
letter and tav the last letter. However, I will use English examples to demonstrate 
the cipher:

Attack at dawn 
 

becomes

Zggzxp zg wzdm 
 

As you can see, the A (the first letter in the alphabet) is switched with Z (the last 
letter), and the t is the 19th letter (or 7th from the end) and gets swapped with g, the 
7th letter from the beginning. This process is continued until the entire message is 
enciphered.

To decrypt the message, you simply reverse the process so that z becomes a, b 
becomes y, and so on. This is obviously a simple cipher and is not used in modern 
times. However, like the Caesar cipher example, it illustrates the basic concept of 
cryptography—to perform some permutation on the plain text to render it difficult 
to read by those who don’t have the key to “unscramble” the cipher text. The Atbash 
cipher, like the Caesar cipher, is a single-substitution cipher (each letter in the plain 
text has a direct, one-to-one relationship with each letter in the cipher text). The 
same letter and word frequency issues that can be used to crack the Caesar cipher 
can be used to crack the Atbash cipher.
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 Affine Ciphers

Affine ciphers are any single-substitution alphabet ciphers (also called mono- 
alphabet substitution) in which each letter in the alphabet is mapped to some 
numeric value, permuted with some relatively simple mathematical function, and 
then converted back to a letter. For example, using the Caesar cipher, each letter is 
converted to a number, shifted by some amount, and then converted back to a letter.

The basic formula for any affine cipher is

 
ax b m� � �mod

 

M is the size of the alphabet—so in English that would be 26. The x represents the 
plain text letter’s numeric equivalent, and the b is the amount to shift. The letter a is 
some multiple—in the case of the Caesar cipher, a is 1. So, the Caesar cipher 
would be

 
1 3 26x � � �mod

 

What has been presented thus far is rather simplified. To use an affine cipher, you 
need to pick the value a so that it is coprime with m. We will explore coprime in 
more detail later in this book. However, for now simply understand that two num-
bers are coprime if they have no common factors. For example, the number 8 has the 
factors 2 and 4. The number 9 has the factor 3. Thus, 8 and 9 have no common fac-
tors and are coprime. If you don’t select a and m that are coprime, it may not be 
possible to decrypt the message.

Continuing with a simplified example (ignoring the need for coprime a and m), 
you could obviously use any shift amount you want, as well as any multiplier. The 
ax value could be 1x, as with Caesar, or it could be 2x, 3x, or any other value. For 
example, let’s create a simple Affine cipher:

 
2 4 26x � � �mod

 

To encrypt the phrase Attack at dawn, we first convert each letter to a number and 
then multiply that number by 2 and calculate that result ≡ 6. So, A is 1, 2 multiplied 
by 1 is still 2, add 54, gives us 6 mod 26 yielding 6, or F.

Then we have t, which is 20, and 2 multiplied by 20 is 40, add 4, which gives us 
44, and 44 mod 26 yields 18, or r. Ultimately, we get this:

Attack at dawn 
Frrfj0 fr lfxf 
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Notice that the letter k did not convert to a letter; instead, a 0 (zero) appears. K is 
the 11th letter of the alphabet, and 2x + 4, where x = 11, equals 26. And 26 mod 
26 is 0.

This is one example of an affine cipher, and there are quite a few others. As you 
have just seen, you can easily create one of your own. You would want to limit your 
selection of a to values that produce only integer results, rather than decimals. A 
value of 1.3x, for example, would lead to decimal values, which could not easily be 
converted to letters. We know that 1 is a and 2 is b, but what letter is 1.3?

All affine ciphers have the same weaknesses as any single-substitution cipher. 
They all preserve the letter and word frequencies found in the underlying language 
and are thus susceptible to frequency analysis. In fact, no matter how complex you 
make the permutation, any single-substitution cipher is going to be vulnerable to 
frequency analysis.

 ROT 13

ROT 13 is a trivial single-substitution cipher that also happens to be an affine cipher. 
ROT is short for rotate: each letter is rotated to the right by 13. So, the affine repre-
sentation of the ROT 13 (in English) is

 
1 13 26x � � �mod

 

Since the Latin alphabet has 26 letters, simply applying ROT 13 a second time 
will decrypt the message. As you can probably guess, this is not at all secure by 
modern standards. However, it is actually used in some situations. For example, 
some of the keys in the Microsoft Windows Registry are encrypted using ROT 13. 
In this case, the reasoning is likely to be that first and foremost, you need access to 
the system before you can explore the Windows Registry, and second, most people 
are not well versed in the Windows Registry and would have difficulty finding spe-
cific items there even if they were not encrypted at all, so ROT 13 may be secure 
enough for this scenario. I am not necessarily in agreement with that outlook, but it 
is a fact that the Windows Registry uses ROT 13.

It has also been reported that in the late 1990s Netscape Communicator used 
ROT 13 to store email passwords. ROT 13 has actually become somewhat of a joke 
in the cryptology community. For example, cryptologists will jokingly refer to 
“ROT 26,” which would effectively be no encryption at all. Another common joke 
is to refer to “triple ROT 13.” Just a brief reflection should demonstrate to you that 
the second application of ROT 13 returns to the original plain text, and the third 
application of ROT 13 is just the same as the first.
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 Homophonic Substitution

Over time, the flaws in single-substitution ciphers became more apparent. 
Homophonic substitution was one of the earlier attempts to make substitution 
ciphers more robust by masking the letter frequencies, as plain text letters were 
mapped to more than one cipher text symbol, and usually the higher frequency plain 
text letters were given more cipher text equivalents. For example, a might map 
either to x or y. This had the effect of disrupting frequencies, making analysis more 
difficult. It was also possible to use invented symbols in the cipher text and to have 
a variety of mappings. For example, a maps to x, but z maps to ¥. The symbol ¥ is 
one I simply created for this example.

There are variations of this cipher, and one of the most notable versions is called 
the nomenclator cipher, which used a codebook with a table of homophonic substi-
tutions. Originally the codebook used only the names of people, thus the term 
nomenclator. So, for example, Mr. Smith might be XX and Mr. Jones would be 
XYZ. Eventually, nomenclators were created that used a variety of words rather than 
just names. The codes could be random letters, such as those already described, or 
code words. Thus, Mr. Jones might be enciphered as poodle and Mr. Smith enci-
phered as catfish. Such codebooks with nomenclator substitutions were quite popu-
lar in espionage for a number of years. The advantage of a nomenclator is that it 
does not provide any frequencies to analyze. However, should the codebook become 
compromised, all messages encoded with it will also be compromised.

 The Great Cipher

The Great Cipher is one famous nomenclator used by the French government until 
the early 1800s. This cipher was invented by the Rossignol family, a French family 
with several generations of cryptographers, all of whom served the French court. 
The first, a 26-year-old Rossignol mathematician, served under Louis XIII, creating 
secure codes.

The Great Cipher used 587 different numbers that stood for syllables (note that 
there where variations on this theme, some with a different number of codes). To 
help prevent frequency analysis, the cipher text would include nulls, or numbers that 
meant nothing. There were also traps, or codes that indicated the recipient should 
ignore the previous coded message.

 Copiale Cipher

This is an interesting homophonic cipher. It was a 105-page, 75,000-character, 
handwritten manuscript that went unbroken for many years. The Copiale cipher 
used a complex substitution code that used symbols and letters for both texts and 
spaces. The document is believed to date from the 1700s from a secret society 
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named the “high enlightened occultist order of Wolfenbüttel.” The cipher included 
abstract symbols, Greek letters, and Roman letters. It was finally cracked in 2011 
with the help of computers.

 Polybius Cipher

The Polybius cipher (also known as the Polybius square) was invented by the Greek 
historian Polybius (c. 200–118 BCE). Obviously, his work used the Greek alphabet, 
but we will use it with English here. As shown in the following grid, in the Polybius 
cipher, each letter is represented by two numbers (Mollin 2000). Those two num-
bers being the x and y coordinates of that letter on the grid. For example, A is 1 1, T 
is 4 4, C is 1 3, and K is 2 5. Thus, to encrypt the word attack, you would use 
114444111325. You can see this in Fig. 1.1.

Despite the use of two numbers to represent a single letter, this is a substitution 
cipher and still maintains the letter and word frequencies found in the underlying 
language of the plain text. If you used the standard Polybius square, which is a 
widely known cipher, it would be easily cracked, even without any frequency analy-
sis. If you wanted to use a different encoding for letters in the square, that would 
require that the sending and receiving parties share the particular Polybius square in 
advance, so that they could send and read messages.

It is interesting to note that the historian Polybius actually established this cipher 
as a means of sending codes via torches. Messengers standing on hilltops could hold 
up torches to represent letters and thus send messages. Establishing a series of such 
messengers on hilltops, each relaying the message to the next, allowed communica-
tions over a significant distance, much faster than any messenger on foot or horse-
back could travel.

1 2 3 4 5

1 A B C

2 F G H I/

3 L M N

4 Q R S

5 V W X

D E

J K

O P

T U

Y Z

Fig. 1.1 Polybius square

1 History of Cryptography to the 1800s



13

 Ancient Cryptography in Modern Wars

Here is a very interesting story that does not necessarily fit with the timeline of this 
chapter (pre-twentieth century), but it does concern the Polybius square. The 
Polybius square was used by prisoners of war in Vietnam, who communicated via 
tapping on a wall to signal letters. Therefore, for example, four taps, a pause, and 
then two taps would be the letter R. When used in this fashion, it is referred to as a 
tap code. This cipher was introduced into the POW camps in 1965 by Captain 
Carlyle Harris, Lieutenant Phillip Butler, Lieutenant Robert Peel, and Lieutenant 
Commander Robert Shumaker, all imprisoned at the Hoa Lo prisoner of war camp. 
It is reported that Harris recalled being introduced to the Polybius square by an 
instructor during his training. He then applied the Polybius square to a tap code so 
that he and his fellow prisoners could communicate. This technique was taught to 
new prisoners and became widespread in the POW camp. Vice Admiral James 
Stockdale wrote about using the tap code, stating, “Our tapping ceased to be just an 
exchange of letters and words; it became conversation. Elation, sadness, humor, 
sarcasm, excitement, depression—all came through.” This is a poignant example of 
cryptography being applied to very practical purposes.

 Null Cipher

The null cipher is a very old cipher—in fact, by today’s standards, it might be con-
sidered more steganography than cipher (you’ll read about steganography in Chap. 
16). Essentially, the message is hidden in unrelated text. So, in a message such as

We are having breakfast at noon at the cafe, would that be okay?

the sender and recipient have prearranged to use some pattern, taking certain letters 
from the message. So, for example, the numbers

3 20 22 27 32 48 
 

would signify the letters in the sentence and provide the message

attack 
 

The pattern can be complex or simple—such as always using the second letter of 
each word or any other pattern. In addition, punctuation and spaces could be counted 
as characters (our example ignored punctuation and spaces).

Substitution Ciphers
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 Multi-alphabet Substitution

As you know, any single-alphabet substitution cipher is susceptible to frequency 
analysis. The most obvious way to improve such ciphers would be to find some 
mechanism whereby the frequency of letters and words could be disrupted. 
Eventually, a slight improvement on the single-substitution cipher was developed, 
called multi alphabet substitution. In this scheme, you select multiple numbers by 
which to shift letters (i.e., multiple substitution alphabets). For example, if you 
select three substitution alphabets (+1, +2, and +3), then

Attack at dawn 
 

becomes

Bvwben bv gbxo 
 

In this example, the first letter was shifted forward by one, so A became B; the 
second letter was shifted forward by two, so t became v; and the third letter was 
shifted forward by three, so in this case t became w. Then you start over with one 
shift forward. It should be abundantly clear that the use of multiple alphabets 
changes letter and word frequency. The first letter t became v, but the second letter 
t became w. This disrupts the letter and word frequency of the underlying plain text. 
The more substitution alphabets that are utilized, the more disruption there will be 
to the letter and word frequency of the plain text. This disruption of the letter and 
word frequency overcomes the weaknesses of traditional single-substitution ciphers. 
There are a variety of methods for making a multi-alphabet substitution cipher. We 
will examine a few of the most common multi-alphabet ciphers in the following 
sections.

 Tabula Recta

Tabula recta is one of the earliest major multi-alphabet substitution ciphers. It was 
invented in the sixteenth century by Johannes Trithemius. A tabula recta is a square 
table of alphabets made by shifting the previous alphabet to the right, as shown in 
Fig. 1.2.

This essentially creates 26 different Caesar ciphers. Trithemius described this in 
his book Polygraphia, which is presumed to be the first published book on cryptol-
ogy. To encrypt a message using this cipher, you substitute the plain text letter for 
the letter that appears beneath it in the table. Basically, the first letter of the plain 
text (denoting the row) is matched with the first letter of the keyword (denoting the 
column), and the intersection of the two forms the cipher text. This is repeated with 
each letter. When the end of the keyword is reached, you start over at the beginning 
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Fig. 1.2 Tabula recta

of the keyword. Trithemius used a fixed keyword, so although this did change the 
frequency distributions found in single-substitution ciphers, it still had a significant 
flaw when compared to later developments such as Vigenère.

 Vigenère

Perhaps the most widely known multi-alphabet cipher is the Vigenère cipher. This 
cipher was first described in 1553 by Giovan Battista Bellaso, though it is misat-
tributed to nineteenth-century cryptographer Blaise de Vigenère (Singh 2000). It is 
a method of encrypting alphabetic text by using a series of different mono-alphabet 
ciphers selected based on the letters of a keyword. Bellaso also added the concept of 
using any keyword, thereby making the choice of substitution alphabets difficult to 
calculate. Essentially, the Vigenère cipher uses the tabula recta with a keyword. So, 
let us assume you have the word book, and you wish to encrypt it. You have a key-
word for encryption, that keyword is dog. You would like up the first letter of your 
plaintext, b on the left-hand side of the tabula recta, with the first letter or your 
keyword d on the top. The first letter of your cipher text is then e. Then you take the 
second letter of your plaintext, o, and line it up with the second letter of the key-
word, also o, producing the second letter of your cipher text, c. The next o in book 
will line up with the g in dog, producing u. Now that you have reached the end of 
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your keyword, you start over at d. So, the k in book is lined up with the d in dog, 
producing the last letter of your cipher text, which is n. Thus, using Vigenère, with 
the keyword dog, the plaintext book becomes the cipher text ecun.

For many years, Vigenère was considered very strong—even unbreakable. 
However, in the nineteenth century, Friedrich Kasiski published a technique for 
breaking the Vigenère cipher. We will revisit that when we discuss cryptanalysis 
later in this book. It is important that you get accustomed to mathematical notation. 
Here, using P for plain text, C for cipher text, and K for key, we can view Vigenère 
very similarly to Caesar, with one important difference: the value K changes.

 
Ci Pi Ki� � � �mod26

 

The i denotes the current key with the current letter of plain text and the current let-
ter of cipher text. Note that many sources use M (for message) rather than P (for 
plain text) in this notation. Let us assume the word you wish to:

A variation of the Vigenère, the running key cipher, simply uses a long string of 
random characters as the key, which makes it even more difficult to decipher.

 The Beaufort Cipher

The Beaufort cipher also uses a tabula recta to encipher the plain text. A keyword is 
preselected by the involved parties. This cipher was created by Sir Francis Beaufort 
(1774–1857) and is very similar to the Vigenère cipher. A typical tabula recta was 
shown earlier in this chapter in Fig. 1.1.

When using the Beaufort cipher, you select a keyword, except unlike Vigenère, 
you locate the plain text in the top row, you move down until you find the matching 
letter of the keyword, and then you choose the letter farthest to the left in the row as 
the cipher text.

For example, using the tabula recta in Fig.  1.1, and the keyword falcon, you 
would encrypt the message Attack at dawn in the following manner:

 1. Find the letter A on the top row.
 2. Go straight down that column until you find the letter F (the first letter of the 

keyword).
 3. Use the letter in the far-left column as the cipher text letter. In this case, which 

would be F.
 4. Repeat this, except this time use the next letter of the keyword, a. Locate the 

second letter of the plain text t in the top row.
 5. Move down that column until you find an a, and then we select the letter on the 

far left of that row, which would be h.
 6. When you reach the last letter of the keyword, you start over at the first letter of 

the keyword, so that
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Attack at dawn 
 

becomes

Fhscmdfhicsa 
 

 Devices

In modern times, devices are almost always used with cryptography. For example, 
computers are used to encrypt email, web traffic, and so on. In ancient times, there 
were also ciphers based on the use of specific devices to encrypt and decrypt 
messages.

 Scytale Cipher

The Scytale cipher is one such ancient cypher. Often mispronounced (it actually 
rhymes with “Italy”), this cipher used a cylinder with a strip of parchment wrapped 
around it. If you had the correct diameter cylinder, then when the parchment was 
wrapped around it, the message could be read (Dooley 2018). You can see the con-
cept shown in Fig. 1.3.

If you did not have the correct size of cylinder, however, or if you simply found 
the parchment and no cylinder, the message would appear to be a random string of 
letters. This method was first used by the Spartans and later throughout Greece. The 
earliest mention of Scytale was by the Greek poet Archilochus in the seventh cen-
tury BC. However, the first mention of how it actually worked was by Plutarch in 
the first century BCE, in his work The Parallel Lives:

The dispatch-scroll is of the following character. When the ephors send out an admiral or a 
general, they make two round pieces of wood exactly alike in length and thickness, so that 
each corresponds to the other in its dimensions, and keep one themselves, while they give 
the other to their envoy. These pieces of wood they call “scytalae.” Whenever, then, they 
wish to send some secret and important message, they make a scroll of parchment long and 
narrow, like a leather strap, and wind it round their “scytale,” leaving no vacant space 

Fig. 1.3 Scytale
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thereon, but covering its surface all round with the parchment. After doing this, they write 
what they wish on the parchment, just as it lies wrapped about the “scytale”; and when they 
have written their message, they take the parchment off, and send it, without the piece of 
wood, to the commander. He, when he has received it, cannot other get any meaning of 
it—since the letters have no connection, but are disarranged—unless he takes his own “scy-
tale” and winds the strip of parchment about it, so that, when its spiral course is restored 
perfectly, and that which follows is joined to that which precedes, he reads around the staff, 
and so discovers the continuity of the message. And the parchment, like the staff, is called 
“scytale,” as the thing measured bears the name of the measure.

 Alberti Cipher Disk

The Alberti cipher disk, created by Leon Battista Alberti, is an example of a multi- 
alphabet substitution. Alberti wrote about this cipher in 1467 in his book De Cifris. 
It consists of two disks attached in the center with a common pin. Each disk had 24 
equal cells. The larger, outer disk, called the stabilis, displayed an uppercase Latin 
alphabet used for the plain text. The smaller, inner disk, called the mobilis, dis-
played a lowercase alphabet for the cipher text.

To encrypt a message, a letter on the inner disk was lined up with a letter on the 
outer disk as a key. If you knew what letter to line up with, you would know which 
key to use. This has the effect of offering multiple substitution alphabets. You can 
see an example of the cipher disk, with the English alphabet, in Fig. 1.4.

In Alberti’s original cipher disk, he used the Latin alphabet. So, the outer disk 
had the Latin alphabet minus a few English letters, as well as numbers 1 through 4 
for use with a codebook that had phrases and words assigned four-digit values.

Fig. 1.4 Cipher disk

1 History of Cryptography to the 1800s



19

Fig. 1.5 Jefferson disk

 The Jefferson Disk

The c, which was called a “wheel cipher” by its inventor, Thomas Jefferson, is a 
rather complex device, at least for its time. Invented in 1795, the disk is a set of 
wheels or disks, each displaying the 26 letters of the English alphabet. The disks are 
all on a central axle and can be rotated about the axle. The order of the disks is the 
key, and both sender and receiver had to order their disks according to the key. An 
example of the Jefferson disk is shown in Fig. 1.5.

When using the Jefferson disk, the sender would rotate the letters on the disks 
until the message was spelled out in a single row. The sender would then copy down 
any row of text on the disks other than the one that contained the plain text message. 
That enciphered message would then be sent to the recipient. The recipient then 
arranged the disk letters according to the predefined order and then rotated the disk 
until the message was displayed.

It should be noted that this device was independently invented by Étienne 
Bazeries (1846–1931), a French cryptographer, although Jefferson improved on the 
disk in his version. Bazeries was known for being a very skilled cryptographer and 
cryptanalysis. After he broke several transposition systems used by the French mili-
tary, the French government hired him to work for the Ministry of Foreign Affairs. 
During World War I, he worked on breaking German ciphers.

Stories such as this are not uncommon in cryptography. Two different parties 
may independently invent the same or remarkably similar ciphers. This often occurs 
from time to time in modern times, when at least some work in cryptography is clas-
sified by various governments. You will see other examples of this in later chapters 
on modern ciphers.

 Phaistos Disc

This is a clay disk from the Minoan palace of Phaistos on the island of Crete. It is 
believed to date from sometime between 1850 BCE and 1600 BCE (i.e., the Bronze 
Age). This disk has 45 distinct signs. However, unlike the other devices we have 
discussed, this one has never been deciphered. Archeologists do not know the key 
for this and don’t know precisely how it was used.
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 Phryctoriae

It may seem like a stretch to call this a cipher, but it was an integral part of secure 
communications in ancient Greece. This was a set of towers positioned on mountain 
tops. Fire beacons were used to send messages. Greek letters were represented by a 
given number of torches shown. The following table illustrates this:

 1 2 3 4 5  

1  Α Β Γ Δ Ε  

2  Ζ Η Θ Ι Κ  

3  Λ Μ Ν Ξ Ο  

4  Π Ρ Σ Τ Υ  

5  Φ Χ Ψ Ω  

 

So, to represent M, one would do first two torches on the right and three torches 
on the left. This illustrates that the need to encode messages for transmission is 
nothing new. Human beings have been using such systems for millennia. The sys-
tems we have now are more complex, but the same essential concepts.

 Book Ciphers

Book ciphers have probably been around for as long as books have been available. 
Essentially, the sender and receiver agree to use a particular book as its basis. The 
simplest implementation is to send coordinates for words. So, for example, 3 3 10 
means “go to page 3, line 3, tenth word.” In this way, the sender can specify words 
with coordinates and write out entire sentences. There are numerous variations of 
this cipher. For example, you could combine book ciphers with Vigenère and use the 
book coordinates to denote the keyword for Vigenère.

 Beale Ciphers

In 1885, a pamphlet was published describing treasure buried in the 1820s by one 
Thomas J. Beale in Virginia. The Beale ciphers are three cipher texts that allegedly 
give the location, contents, and names of the owners of the buried treasure. The first 
Beale cipher, which has not been solved, provides the location. The second cipher 
provides details of the contents of the treasure and has been solved. The second 
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cipher was a book cipher that used the US Declaration of Independence as the book. 
Each number in the cipher represents a word in the document. There is a great deal 
of controversy regarding the Beal ciphers, which we will explore in more detail in 
Chap. 2. They are presented here simply as an example of a book cipher.

 Dorabella Cipher

The Dorabella cipher is not a book, but rather a letter. It was composed by Edward 
Elgar to Dora Penny and sent in July of 1897. Ms. Penny never delivered the mes-
sage, and it remains an unexplained cipher. It consists of 87 characters spread over 
3 lines. There have been proposed solutions, but no one has been able to verify their 
proposed solution.

 Babington Plot Ciphers

In 1586 there was a plot to assassinate Queen Elizabeth I. The reason for the plot 
was to depose Queen Elizabeth who was a protestant and replace her with Mary 
Queen of Scots who was Roman Catholic. Queen Mary was currently imprisoned. 
Anthony Babington was one of the conspirators and communicated with encrypted 
messages with Queen Mary. The details of the ciphers are less important than the 
illustration of the role of ciphers in political intrigue.

 Transposition Ciphers

So far, we have looked at ciphers in which some sort of substitution is performed. 
However, this is not the only way to encrypt a message. It is also possible to trans-
pose parts of a message. Transposition ciphers provide yet another avenue for 
encryption.

 Reverse Order

The simplest implementation of a transposition cipher is to reverse the plain text. In 
this way

Attack at dawn
 

becomes
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Nwadtakcatta
 

Obviously, this is not a particularly difficult cipher to break, but it demonstrates 
a simple transposition.

 Rail Fence Cipher

The rail fence cipher may be the most widely known transposition cipher. You 
encrypt the message by alternating each letter on a different row. So

Attack at dawn
 

is written like this:

A   t   c   a   d   w
t   a   k   t   a   n

 

Next you write down the text on both lines, reading from left to right, as you 
normally would, thus producing

Atcadwtaktan
 

To decrypt the message, the recipient must write it out on rows:

A   t   c   a   d   w
t   a   k   t   a   n

 

Then the recipient reconstructs the original message. Most texts use two rows as 
examples, but any number of rows can be used.

 Geometric Shape Cipher

In the geometric shape cipher, the sender writes out the plain text in rows and then 
maps a path (i.e., a shape) through it to create the cipher text. So, if the plain text is

Attack the beach at sunrise
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this message would be written in rows like this:

A  t  t  a  c  k  t
h  e  b  e  a  c  h
a  t  s  u  n  r  i s  e

 

Then the sender chooses some path through the message to create the cipher text. 
Perhaps start at bottom right and go up and down the columns as shown in Fig. 1.6.

Using the path depicted in Fig. 1.6, the cipher text reads

esihtkcrnacaeusottetaha

For this example, I used a very simple geometric path through the plain text, but 
you could use other, more complex patterns as well. This method is sometimes 
called a route cipher, as it is encrypted using a specific route through the plain text.

 Columnar Cipher

The columnar cipher is an intriguing type of transposition cipher. In this cipher, the 
text you want to encrypt is written in rows usually of a specific length and deter-
mined by some keyword. For example, if the keyword is falcon, which is six char-
acters long, you would write out your messages in rows of six characters each. So, 
you would write out

A t t a c k
t h e b e a
c h a t s u
n r i s e q

 

Notice the added q at the end. That was added because the last row is only five 
characters long. In a regular columnar cipher, you pad the last row so that all rows 
are of equal length.

Fig. 1.6 Geometric shape cipher
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If you leave the blank spaces intact, this would be an irregular columnar cipher, 
and the order of columns would be based on the letters in the keyword as they 
appear in the alphabet. So, if the keyword is falcon, the order is 3 1 4 2 6 5 as f is the 
third lowest letter in the alphabet, a is the lowest, l is the fourth lowest, and so on. 
So, if we apply 3 1 4 2 6 5 to encrypt the message, we first write out the letters down 
column 3, then column 1, then column 4, then column 2, then column 6, and then 
column 5. So, the message

a t t a c k 
t h e b e a 
c h a t s u 
n r i s e q 

 

is encrypted like so:

teaiatcnabtskauqcese
 

Many variations of the columnar cipher, such as the Myskowski variation, have 
been created over the years, each adding some subtle twist to the concept.

 Myskowski Variation

When using a columnar cipher, what happens if the keyword includes the same let-
ter twice? Normally, you treat the second occurrence as if it were the next letter. For 
example, if babe is the keyword, the second b is treated as if it were a c, so the order 
would be 2 1 3 4.

In 1902, Emile Myskowski proposed a variation that did something different. 
The repeated letters were numbered identically, so babe would be 2 1 2 3. Any plain 
text columns that had unique numbers (in this case 1 and 3) would be transcribed 
downward as usual. However, the recurring numbers (in this case 2) would be tran-
scribed left to right.

 Combinations

One of the first thoughts that may occur when you’re first learning cryptography is 
to combine two or more of the classic ciphers, such as those covered in this chapter. 
For example, you might use a Vigenère cipher first and then put the message through 
a columnar transposition or a rail fence cipher. Combining some substitution cipher 
with a transposition cipher would increase the difficulty a human would have in 
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breaking the cipher. You can think of this in mathematical terms as a function of a 
function:

 
f g x� �� �

 

where g is the first cipher, x is the plain text, and f is the second cipher. And you 
could apply them in any order—first a substitution and then a transposition, or 
vice versa.

When you’re exploring this train of thought, be aware that if you simply apply 
two mono-alphabet substitution ciphers, you have not improved secrecy at all. The 
cipher text will still preserve the same letter and word frequencies. In fact, the best 
improvement will come from combining transposition and substitution ciphers. As 
you will see beginning in Chap. 6, modern block ciphers combine substitution and 
transposition, albeit in a more complex fashion. Don’t think, however, that such 
innovations will lead to ciphers that are sufficient for modern security needs. 
Performing such combinations is an intriguing intellectual exercise and will hone 
your cryptography knowledge, but these methods would not provide much security 
against modern computerized cryptanalysis.

 D’Agapeyeff Cipher

For the more adventuresome reader, this cipher may capture your attention. It is, as 
of yet unbroken. So, I cannot tell you specifically how it works. I can only give you 
a bit of history and then present to you the unbroken cipher text, should you choose 
to undertake this rather herculean challenge.

In 1939 cryptography Alexander D’Agapeyeff authored the first edition of the 
book Codes and Ciphers. In that book he offered the following cipher text, shown 
in Fig. 1.7, as a challenge. In later editions of the book, this challenge was omitted.

Fig. 1.7 D’Agapeyeff cipher
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 Conclusions

In this chapter, you have been exposed to a variety of historical ciphers. You were 
shown single-substitution ciphers such as Caesar and Atbash and multi-alphabet 
ciphers such as Vigenère. You learned about the weaknesses of mono-alphabet sub-
stitution ciphers and how multi-alphabet methods attempt to overcome those issues. 
You were introduced to a variety of transposition ciphers, including the rail fence 
and columnar ciphers. This chapter also introduced you to devices such as Scytale 
and the Jefferson disk. It is important that you get very comfortable with these 
ciphers before proceeding on.

You were also introduced to some basic mathematical notation to symbolize 
some of the ciphers in this chapter as well as some general cryptographic terminol-
ogy such as cipher text and key space. That notation and those terms should be very 
familiar to you because they will help form the basis for modern symmetric ciphers 
you’ll read about, beginning in Chap. 4.

 Test Your Knowledge

A few questions are provided here to aid you in testing your knowledge before you 
proceed.

 1. What is the most obvious weakness in a mono-alphabet cipher?

 A. They preserve word frequency.
 B. They can be cracked with modern computers.
 C. They are actually quite strong.
 D. They don’t use complex mathematics.

 2. The total number of possible keys for a given cipher is referred to as the 
_______________.

 A. Key group
 B. Key domain
 C. Key space
 D. Key range

 3. Which of the following methods used a cylinder with text wrapped around it?

 A. Vigenère cipher
 B. Jefferson disk
 C. Cipher disk
 D. Scytale
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 4. What is an affine cipher?

 A. Any cipher of the form ax + b (≡ m)
 B. Only single-substitution ciphers
 C. Any single-substitution cipher
 D. A multi-alphabet cipher

 5. What are the key features of homophonic substitution?

 A. Multiple substitution alphabets are used.
 B. A single plain text letter may have several cipher text representations.
 C. The cipher text is phonically similar to the plain text.
 D. It combines substitution with transposition.
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Chapter 2
History of Cryptography from the 1800s

 Introduction

In Chap. 1 you were introduced to relatively simple ciphers. These ciphers were 
widely used for many centuries. However, beginning in the 1800s, cryptography 
entered an age of growth. More complex ciphers were developed. These might not 
be considered particularly complex by modern standards, but they were certainly 
more complex than the earlier ciphers. In this chapter we will look at the end of the 
pre-computer age of cryptography and continue on into the twentieth century. If you 
have any difficulty with a cipher, I strongly urge you to take a pencil and paper and 
experiment with it until you are comfortable.

While these ciphers are more complex than those in Chap. 1, they are still not 
adequate for the modern computer age. It would be an egregious mistake to attempt 
to implement one of these, perhaps via computer code, and then presume your data 
is secure. Modern computers can utilize brute force methods. And in fact, non- 
computerized cryptanalysis methods have been developed to attack many of these 
ciphers. We examine those methods in Chap. 17, when we explore cryptanalysis in 
general.

 In This Chapter We Will Cover the Following

• Playfair cipher
• Two-square and four-square ciphers
• Hill cipher
• ADFGVX cipher
• Bifid and trifid ciphers
• Gronsfeld cipher
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• Vernam cipher
• Enigma
• Historical figures in cryptography

 Playfair

The Playfair cipher was devised in 1854 by Charles Wheatstone; however, it was 
popularized by Lord Playfair; thus, it bears his name. It is sometimes called the 
Wheatstone-Playfair cipher or the Playfair square (Rahim and Ikhwan 2016). While 
this cipher is clearly less complex than the modern ciphers we shall explore in later 
chapters, it was first rejected by the British government as being too complex. They 
later changed their mind, and this cipher was actually used by the British military in 
World War I and to some extent in World War II. This cipher works by encrypting 
pairs of letters, also called digraphs, at a time.

Charles Wheatstone lived from February 6, 1802 to October 19, 1875. He was an 
accomplished inventor and scientists. Among his various contributions to science 
was the Wheatstone bridge. This is an electrical circuit that is used to measure elec-
trical resistance. The original bridge was invented by Samuel Hunter Christie, but 
Wheatstone improved it. Wheatstone also made a number of contributions to our 
knowledge and application of electricity.

The Playfair cipher depends on a 5 × 5 table that contains a keyword or key 
phrase. To use the Playfair cipher, one need only memorize that keyword and four 
rules. To use the cipher, first break the plain text message into digraphs. So that 
“Attack at Dawn” becomes “At ta ck at da wn.” If the final digraph is incomplete 
(just a single letter), you can pad it with a letter z.

Any square of 5 × 5 letters can be used. You first fill in the keyword, then start, in 
order, adding in letters that did not appear in the keyword. I/J are combined. You can 
see this in the table below. In this example the keyword is “falcon.”

F A L C O
N B D E G
H I/J K M P
Q R S T U
V W X Y Z

Since the 5 × 5 matrix is created by starting with a keyword, then filling in letters 
that did not appear in the keyword, the matrix will be different when different key-
words are used. The next step is to take the plain text, in this case “attack at dawn,” 
and divide it into digraphs. If there are any duplicate letters, replace the second letter 
with an x. For example, “letter” would be “letxer.” Playfair does not account for 
numbers or punctuation marks, so you will need to remove any punctuation from 
the plain text and spell out any numbers.
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Next, you take the plain text, in our case

At ta ck at da wn

And find the pairs of letters in the table. Look to the rectangle formed by those 
letters. In our example the first letters are AT, thus forming the rectangle shown 
below, with A in the upper left-hand corner and T in the lower right-hand corner.

A L C
B D E
I/J K M
R S T

Then you will take the opposite ends of the rectangle to create the cipher text. A 
is in the upper left hand, so you replace it with whatever appears in the upper right 
hand, which in this case is the letter C. T is in the lower right-hand corner, so you 
replace it with whatever letter is in the lower left hand, which in this case is the letter 
R. Thus, AT gets enciphered as CR.

The next digraph is TA and will form the same rectangle. However, since T is the 
first letter of the plain text, R will be the first letter of the cipher text, yielding 
RC. Next, we have CK. Those letters form the rectangle shown here.

A L C
B D E
I/J K M

C becomes L, and K becomes M, so we have LM. If you continue this process 
through to the end of the plain text, you will have “Attack at dawn” encrypted 
to yield

CRRCLMCRBLVB

Yes, this cipher does take some practice to master. However, as previously noted, 
it was eventually used by the British military. It should be noted that the cipher dis-
rupts the letter and word frequencies found in single-substitution ciphers, merely by 
encrypting digraphs instead of single letters. It was also used by the government of 
New Zealand as late as the early 1940s for non-military communications.

 Two-Square Cipher

The two-square cipher is also often referred to as a double Playfair, for reasons that 
will soon become apparent. Like the Playfair, the two-square cipher operates on 
digraphs. There are two variations of the two-square cipher, the horizontal and the 
vertical. These refer to how the squares are arranged. In the horizontal method, they 
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are side by side; in the vertical, the squares are arranged one on top of the other. As 
you might suppose, each square requires its own keyword, so the two-square cipher 
is based on using two keywords as well as two matrices.

Let us consider an example of a vertical two-square cipher with the keywords 
“falcon” and “osprey” shown below.

F A L C O
N B D E G
H I/J K M P
Q R S T U
V W X Y Z

O S P R E
Y A B C D
F G H I/J K
L M N Q T
U V W X Z

Just as with the Playfair, you divide the plain text into digraphs. For example, 
“attack at dawn” becomes:

At ta ck at da wn

Now you will form a rectangle, just like with Playfair, but the rectangle will 
bridge the two matrices. You find the first letter of plain text in the top matrix and 
the second letter in the bottom matrix. In this case A in the top matrix and T in the 
bottom forms the rectangle shown here:

A L C O
B D E G
I/J K M P
R S T U
W X Y Z

S P R E
A B C D
G H I/J K
M N Q T

The letter A is in the upper left-hand corner, so you replace it with the letter in 
the upper right-hand corner, which in this case is the letter O. The letter T is in the 
bottom right-hand corner, so you replace it with the letter in the bottom left-hand 
corner, in this case M, giving you the cipher text of
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OM

If you continue this process through the entire plain text, you will finally gener-
ate the cipher text shown here:

OM RC OI OM BB XM

There were also specialized rules should the two letters line up (i.e., be in the 
exact same column). In that case, the cipher text is the same as the plain text. If you 
are using the horizontal two-square cipher, then the same rule applies if the two 
plain text characters are in the same row.

 Four-Square Cipher

As you can probably surmise, the four-square cipher takes the Playfair model and 
expands it to use four squares. This cipher was invented by Felix-Marie Delastelle. 
Delastelle was a Frenchman who lived from 1840 until 1902 and invented several 
ciphers including the bifid, trifid, and four square (Aishwarya et al. 2014).

Delastelle contributions to cryptography during the 1800s extend well beyond 
the four-square cipher. He also developed the bifid and trifid ciphers which will be 
covered a bit later in this chapter. He finished work on a book on cryptography 
entitled ité Élémentaire de Cryptographie, just 11 months before he died in April 
1902. His book was published 3 months after his death. What is most remarkable 
was that Delastelle was an amateur cryptographer with no formal training in math. 
Given the state of cryptography in the 1800s, this was possible, though uncommon. 
However, with modern cryptography it is simply impossible to do any substantive 
work in cryptography without a strong mathematics background.

The four-square works by first generating four squares of 5 × 5 letters, often 
either the Q is omitted or I/J, are combined in order to account for the 26 letters in 
the alphabet. Notice that in the matrices shown below, in some cases I have omitted 
the Q, in others combined I and J. Also note that the letters may or may not be in 
alphabetical order. It should also be noted that the two uppercase matrices are going 
to be cipher text and the two lowercase matrices are for plain text. This should also 
explain why it is the two uppercase matrices that are not in alphabetical order.

a b c d e E D A R P
f g h i j L B C X F
k l m n o G H I J K
p r s t u N O M S T
v w x y z U V W Y Z

D E Y W O a b c d e

Four-Square Cipher
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R K A B C f g h i/j k
F G H I J l m n o p
L S N P M q r s t u
T U V X Z v w x y z

You then split the message into digraphs (two letter pairs) so that “Attack at dawn” 
becomes:

at ta ck at da wn

Now the next part may seem a bit complex, so follow along carefully. First you 
find the first letter in the upper-left plain text matrix. In this case it is the first row. 
Then find the second letter of the digraph in the lower right-hand plain text matrix. 
It is in the fourth column. Below these two letters are in bold and underlined.

a b c d e E D A R P
f g h i j L B C X F
k l m n o G H I J K
p r s t u N O M S T
v w x y z U V W Y Z

D E Y W O a b c d e
R K A B C f g h i/j k
F G H I J l m n o p
L S N P M q r s t u
T U V X Z v w x y z

Because we are working with a digraph, we need to encrypt both the a and the t. 
To find the first letter of the cipher text, you use the row of the first letter of plain 
text, in this case one, and the column of the second letter of cipher text, in this case 
four. Now find that letter in the upper right-hand cipher text matrix. Row 1, letter 4 
is R. Then to find the second letter of the cipher text, you take the row of the second 
letter of plain text, in this case four, and the column of the first letter, in this case 
one, and find that letter in the lower left-hand cipher text matrix. In this case that 
gives the letter L. You can see this in the matrices below, where the relevant letters 
are in bold and under lined.

a b c d e E D A R P
f g h i j L B C X F
k l m n o G H I J K
p r s t u N O M S T
v w x y z U V W Y Z
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Fig. 2.1 Hill cipher

D E Y W O a b c d e
R K A B C f g h i/j k
F G H I J l m n o p
L_S N P M q r s t u
T U V X Z v w x y z

So, at in plain text becomes RL in cipher text. This process is continued through-
out the entire plain text phrase. Yielding

RL NW PA RL EW WG

 Hill Cipher

The Hill cipher was invented by Lester A. Hill in 1929. It is a bit more complex than 
other cipher we have studied thus far. It is based in linear algebra and uses matrix 
mathematics. We will be exploring those topics in much more detail in later chap-
ters. To encrypt a message, you break the plain text into a block of n letters. Each 
letter being represented by a number (a = 1, b = 2, c = 3, etc.) should be noted that 
the number assignment is not critical. Some implementations start with a = 0. That 
block of numbers representing the block of plain text forms a matrix that is multi-
plied by some invertible n X n matrix, mod 26. If you do not have some math back-
ground, this may seem rather intimidating; not to worry, it will all be made clear.

The matrix used is the key for this cipher. It should be selected randomly and be 
mod 26 (26 for the alphabet used in English; other alphabets would require a differ-
ent mod). For our discussions on this cipher, we will use the following matrix 
as a key:

 

Bear in mind that while I am showing you a 3 × 3 matrix, any size can be used as 
long as it is a square. For those readers not familiar with matrix math, I will show 
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you just enough to allow you to understand the Hill cipher. Chaps. 4 and 5 will give 
you a better introduction to mathematics for cryptography. To understand multiply-
ing a matrix by a vector, examine this example using letters:

 

You take each row of the matrix and multiply it times each item in the vector. 
That provides a resulting matrix that is the product of the original matrix multiplied 
by the vector. In the case of the Hill cipher, the vector is simply numbers represent-
ing a block of text. So “Attack at dawn” is

1 20 20 1 3 11 1204 1 23 14

Please note that this conversion assumes 1 is a. Some sources assume 0 is a. Now 
we break this down into three-character blocks giving

1 20 20
1 3 11
1 20 4
1 23 14

And multiply each vector times the key. This is shown in Fig. 2.1.
The resulting vector (304, 542, 401) has to be mod 26 giving

18 22 11

Then you convert these numbers back to letters, giving ATT plain text encrypts 
to RWK (if we assume a = 1). Now repeat this process for each block of letters until 
the entire message is encrypted. The cipher text will be Rwkybh ne uykt. To decrypt 
a message, you need to convert the letters of the cipher text back to numbers, and 
then taking blocks of cipher text, multiply them by the inverse of the key matrix.

 ADFGVX

The ADFGVX cipher is an improvement to the previous ADFGX cipher. ADFGVX 
was invented by Colonel Fritz Nebel in 1918 and was used by the German Army 
during World War I. It is essentially a modified Polybius square combined with a 
columnar transposition. You may recall in Chap. 1, a discussion of combining 
ciphers in order to create a new cipher. It is interesting to note that ADFGVX was 
designed to work well when transmitted by Morse code.
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Let us start by examining the ADFGX cipher, and then we will examine the 
improvement. The cipher works by first creating a modified Polybius square. Rather 
than number coordinates, the letters A, D, F, G, and X are used (the letter V is not 
used to create the modified Polybius square).

A D F G X
A B T A L P

D D H O Z K

F Q F V S N

G G I/J C U X

X M R E W Y  

Notice that the letters are not in order in the Polybius square. This is a common 
variation to help make the cipher more secure. The next step is to encrypt the mes-
sage using this modified Polybius square. Let us assume the message is “attack at 
dawn.” As with the traditional Polybius square, each letter is represented by its 
coordinates, in this case by two letters, giving us:

AF AD AD AF GF DX AF AD DA AF XG FX

Next the message is written out under in columns under some keyword. Let us 
continue using “falcon” as our keyword

F A L C O N
A F A D A D
A F G F D X
A F A D D A
A F X G F X

Now the columns are sorted by alphabetical order of the keyword. So, we have

A  C F L N O
F  D A  A D A
F  F A  G X D
F  D A  A A D
F  G A  X X F

Then each column is written down in sequence as the cipher text. That gives us

FFFF DFDG AAAA AGAX DXAX ADDF

Obviously one can use any size transposition keyword one wishes. In practice, 
longer keywords were frequently used. In 1918 the ADFGX cipher was expanded to 
add the letter V making a 6 × 6 cipher which allowed for all 26 letters (no need to 
combine I and J) and allowed digits 0–9. Other than that, the ADFGVX works 
exactly the same as the ADFGX cipher.
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A D F G
A B T 2 L

D D 7 O Z

F 3 F V S

G 0 IJ C U X 8

V G A 0 J Q 5

X M R E W Y 9

V X
P H

1 K

4 B

 

Compared to various classical ciphers, and prior to the computer age, this was a 
very strong cipher and difficult to break. A French army officer, Lieutenant Georges 
Painvin, worked on analyzing this cipher and was eventually able to break the 
cipher. However, his method required large amounts of cipher text to cryptanalyze. 
It was a forerunner to modern cipher text only attacks that we will examine in 
Chap. 17.

 Bifid

The bifid cipher is another cipher that combines the Polybius square with a transpo-
sition cipher. It was invented by Felix Delastelle in 1901. The first step is, of course, 
to create a Polybius square, as shown here:

1 2 3 4 5
1 B G W K Z

2 P D S N Q

3 I/J A L X E

4 O F C U M

5 T H Y V R  

As you can see, the letters are not necessarily put in alphabetical order. The coor-
dinates are written down, as with the traditional Polybius cipher, except they coor-
dinates are written vertically forming rows. Thus, the phrase “Attack at dawn” is 
written:

3  5  5  3  4  1  3  5  2  3  1  2
2  1  1  2  3  4  2  1  2  2  3  4

Then read out in rows, much like a rail fence cipher, producing the following stream 
of numbers:

3 5 5 3 4 1 3 5 2 3 1 2 2 1 1 2 3 4 2 1 2 2 3 4

Next, those numbers are put into pairs, and converted back to letters, yielding:
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EYOESGPGXPDX

To decrypt a message the process is reversed.

 The Gronsfeld Cipher

The Gronsfeld cipher is just a variant of the Vigenère cipher we discussed in Chap. 
1. It uses 10 different alphabets, corresponding to the digits 0–9. It was widely used 
throughout Europe (Dooley 2018). The numbers can be picked at random, which is 
more secure but harder to remember, or the numbers might be of some significance 
to the sender and recipient.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
0 ABCDEFGHIJKLMNOPQRSTUVWXYZ
1 BCDEFGHIJKLMNOPQRSTUVWXYZA
2 CDEFGHIJKLMNOPQRSTUVWXYZAB
3 DEFGHIJKLMNOPQRSTUVWXYZABC
4 EFGHIJKLMNOPQRSTUVWXYZABCD
5 FGHIJKLMNOPQRSTUVWXYZABCDE
6 GHIJKLMNOPQRSTUVWXYZABCDEF
7 HIJKLMNOPQRSTUVWXYZABCDEFG
8 IJKLMNOPQRSTUVWXYZABCDEFGH
9 JKLMNOPQRSTUVWXYZABCDEFGHI

You would select each letter of plain text and substitute it for the cipher text cor-
responding to the appropriate alphabet. Thus, for the first letter, use alphabet 0, and 
then for the next letter, use alphabet 1, then use alphabet 2, etc. Once you use alpha-
bet 9, you start over with alphabet 0. So, to encrypt the plain text “attack at dawn,” 
we would first find the first letter, in this case A, and in this case, the first alphabet 
(alphabet 0) yields A as the cipher text. Then you find the second letter of plain text, 
T, and the second alphabet yields U. Then you find the second T, and the third alpha-
bet (alphabet 2) yields V. Continuing this process we arrive at the cipher text of:

AUVDGP GZ LJWO

As an interesting historical note, in 1892 the French government arrested several 
anarchists who were utilizing the Gronsfeld cipher for communications.
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 The Vernam Cipher

The Vernam cipher is a type of one-time pad (Mollin 2000). The concept behind a 
one-time pad is that the plain text is somehow altered by a random string of data so 
that the resulting cipher text is truly random. Gilbert Vernam (April 3, 1890 to 
February 7, 1960) proposed a stream cipher that would be used with teleprinters. It 
would combine character by character a prepared key that was stored on a paper 
tape, with the characters of the plain text to produce the cipher text. The recipient 
would again apply the key to get back the plain text.

In 1919 Vernam patented his idea (US Patent 1,310,719). In Vernam’s method he 
used the binary XOR (exclusive OR) operation applied to the bits of the message. 
We will be examining binary operations including XOR, in more detail in Chap. 4. 
To truly be a one-time pad, by modern standards, a cipher needs two properties. The 
first is suggested by the name: the key is only used once. After a message is enci-
phered with a particular key, that key is never used again. This makes the one-time 
pad quite secure but also very impractical for ongoing communications such as one 
encounters in e-commerce. The second property is that the key be as long as the 
message. That prevents any patterns from emerging in the cipher text. It should be 
noted that Vernam also patented three other cryptographic inventions: US Patent 
1,416,765; US Patent 1,584,749; and US Patent 1,613,686.

One-time pads are still used for communications today, but only for the most 
sensitive communications. The keys must be stored in a secure location, such as a 
safe, and used only once for very critical messages. The keys for modern one-time 
pads are simply strings of random numbers sufficiently large enough to account for 
whatever message might be sent.

 Edgar Allan Poe

While Edgar Allan Poe is most known for his literary works, he also was an accom-
plished amateur cryptographer. In 1841 Poe wrote an essay entitled “A Few Words 
on Secret Writing”; it was published in “Graham’s Magazine.” In his story The 
Gold-Bug, cryptography plays a central role in the story. While Poe is not known to 
have done any research in cryptography, nor created any ciphers, he did play a key 
role in increasing the public interest in the field of cryptography. William Friedman, 
a cryptographer who lived from September 24, 1891 to November 12, 1969, cred-
ited his interest in cryptography to Poe’s story The Gold-Bug. Friedman was the 
director of research for the Army Signals Intelligence Service in the 1930s. He is 
also credited with coining the term “cryptanalysis.”

In December 1839, Poe published a challenge in the “Alexander’s Weekly 
Messenger.” In that challenge he stated he could solve any single-substitution cipher 
than readers could submit. His challenge stated:
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It would be by no means a labor lost to show how great a degree of rigid method enters into 
enigma-guessing. This may sound oddly; but it is not more strange than the well-known fact 
that rules really exist, by means of which it is easy to decipher any species of hieroglyphical 
writing – that is to say writing where, in place of alphabetical letters, any kind of marks are 
made use of at random. For example, in place of A put % or any other arbitrary character – 
in place of B, a *, etc., etc. Let an entire alphabet be made in this manner, and then let this 
alphabet be used in any piece of writing. This writing can be read by means of a proper 
method. Let this be put to the test. Let anyone address us a letter in this way, and we pledge 
ourselves to read it forthwith--however unusual or arbitrary may be the characters employed.

From December 1839 to May 1840, he was able to successfully solve all of the 
ciphers that readers submitted. There was one submitted that he could not break. 
However, various analysts have determined that this cipher was simply a set of ran-
dom characters and not a legitimate example of cipher text.

 Cryptography Comes of Age

The various ciphers used in the 1800s through the first part of the twentieth century 
were certainly more complex than the ciphers of more ancient times. However, they 
were still ciphering that could be handled manually, with pencil and paper. The 
twentieth century moved more toward encryption related to devices.

 Enigma

Contrary to popular misconceptions, the Enigma is not a single machine, but rather 
a family of machines. The first version was invented by German engineer Arthur 
Scherbius toward the end of World War I. It was also used by several different mili-
taries, not just the Nazi Germans. Some military texts encrypted using a version of 
Enigma were broken by Polish cryptanalysts: Marian Rejewski, Jerzy Rozycki, and 
Henryk Zygalski. The three basically reverse engineered a working Enigma 
machine. The team then developed tools for breaking Enigma ciphers, including 
one tool named the cryptologic bomb.

The core of the Enigma machine was the rotors. These were disks that were 
arranged in a circle with 26 letters on them. The rotors where lined up. Essentially 
each rotor represented a different single-substitution cipher. You can think of the 
Enigma as a sort of mechanical poly-alphabet cipher. The operator of the Enigma 
machine would be given a message in plain text, and then type that message into 
Enigma. For each letter that was typed in, Enigma would provide a different cipher 
text based on a different substitution alphabet. The recipient would type in the 
cipher text, getting out the plain text, provided both Enigma machines had the same 
rotor settings. Figure 2.2 is a picture of an enigma machine.
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Fig. 2.2 An Enigma 
machine

 Enigma Variations

There were several Enigma models including:

Enigma A, the first public Enigma
Enigma B
Enigma C
Enigma B, used by the United Kingdom, Japan, Sweden, and others
Navy Cipher D used by the Italian Navy
Funkschlüssel C, used by the German Navy beginning in 1926
Enigma G used by the German Army
Wehrmacht Enigma I, a modification to the Enigma G, used extensively by the 

German Military
M3, an improved Enigma introduced in 1930 for the German military

There have been systems either derived from Enigma, or similar in concept. 
These include the Japanese system codenamed GREEN by American cryptogra-
phers, the SIGABA system, NEMA, and others.

 Alan Turing

One cannot tell the story of Enigma without at least mentioning Alan Turing. He is 
famous for leading the team that was able to crack the Enigma version used by the 
German Navy during World War II, a story that has been immortalized in the movie 
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“The Imitation Game.” During World War II, Turing worked for the Government 
Code and Cipher School that operated out of Bletchley Park. Bletchley Park is 50 
miles northwest of London. The mansion and 58 acres were purchased by MI6 
(British Intelligence) for use by the Code and Cipher School. A number of promi-
nent people worked at Bletchley Park including Derek Taunt (a mathematician), 
Max Newman (a mathematician), and Hugh Alexander (a chess champion).

Turing’s impact on the field of cryptography is profound. He led the British team 
responsible for attempting to break the German naval Enigma. He worked to 
improve the pre-war Polish machine that would find Enigma settings. He was suc-
cessful, and MI6 was able to decipher German naval messages. This work was con-
sidered highly classified. They feared that if the Germans realized that the Enigma 
had been compromised, they would change how they communicated. Therefore, 
intelligence gathered via Turing’s team was kept a closely guarded secret, and when 
it needed to be shared with others (such as military commanders), a cover story was 
given to account for the source of the information. Many sources claim that Turing’s 
work at Bletchley Park shortened the war by at least 2 years, saving millions of lives.

The work at Bletchley Park was kept in strict secrecy, but in the decades since the 
war, many details have been declassified and are now available to the public. 
Turing’s team was by no means the only team working at Bletchley Park. There 
were various “huts” or buildings used for various purposes. As was already men-
tioned, Hut 8 was where Turing and his team worked on the Naval Enigma. In Hut 
6 work was ongoing on the Army and Air Force Enigmas. Hut 7 concentrated on 
Japanese codes and intelligence. Other Huts were used for intelligence work and 
support work (such as communications and engineering); there was even Hut 2 
which was a recreational hut where the workers at Bletchley could enjoy beer, tea, 
and other recreation.

The work at Hut 8 centered on use of what is called a bombe. That is an electro-
mechanical device that helps to determine what settings the Enigma machine was 
using. The initial design used at Bletchley part was created by Alan Turing and later 
refined by others such as Gordon Welchman, a British mathematician.

The work at Bletchley was kept very secret, and much of the equipment and 
documents were destroyed at the end of the war. Even close relatives did not know 
what the people at Bletchley were working on. Today it is home to a museum with 
extensive displays of cryptography history, including Enigma machines.

 Kryha

This was a device invented by Alexander von Kryha. During WWII, he worked as 
an officer in the German military. Like many cryptographic devices, this one has 
several versions. The general machine design had two concentric rings, each con-
taining a substitution alphabet. The user would encrypt by finding the plain text 
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letter on the outer ring and then reading the corresponding letter on the inner ring. 
Then a lever was pressed causing the inner ring to “step” or move. This meant that 
each letter essentially had a separate substitution cipher. Using English this means 
26 different substitutions, if you are not being case sensitive, or 52 different substi-
tutions if you were case sensitive.

 SIGABA

SIGABA was an encryption machine used by the United States military from World 
War II through the 1950s (Lee 2003). The machine was specifically developed to 
overcome weaknesses found in other rotor systems, such as Enigma. The device 
was a joint effort of the US Army and Navy. One can find detailed specification on 
this machine today, but some of the operating principles remained classified until 
the year 2000. SIGABA was patented as patent 6,175,625. That patent was filed on 
15 December 1944 but remained classified until 2001. There is a picture of a 
SIGABA machine in Fig. 2.3.

There were several similar devices used during the mid-twentieth century. The 
British Air Ministry used a device named Mercury as late as the early 1960s. 
Mercury was designed by E.W. Smith and F. Rudd. The machine was in wide use in 
the British military by 1950. Rotor-based machines were in wide use. In addition to 
SIGABA and Mercury, there was the M-325 (US Patent 2,877, 565) used by the US 
Foreign Service in the late 1940s.

The French government made use of a rotor machine in the 1950s, named HX-63. 
It was designed by a Swiss company named Crypto AG who specialized in secure 
communications equipment. In the 1940s the US Army used a device known as 

Fig. 2.3 SIGABA
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M-228 (also known as SIGCUM) to encrypt communications. This device was also 
designed by William Friedman who would go on to become director of research for 
the Army Signals Intelligence Service.

 Lorenz Cipher

The Lorenz cipher is actually a group of three machines (SZ40, SZ42A, and SZ42B) 
that were used by the German Army during World War II (Davies 1995). These 
machines were rotor stream cipher machines. They were attached to standard tele-
printers to encrypt and decrypt the message sent via the teleprinter.

These machines were attachments added to teleprinters, to encrypt the data auto-
matically. The machine generated a stream of pseudo random characters. These 
characters where the key that was combined with the plain text using the exclusive 
or operation to create cipher text. We will be discussing the exclusive or operations 
in more detail in Chap. 3.

 Navajo Code Talkers

While this does not represent a true cipher, it is a topic that is important in the his-
tory of cryptography. Phillip Johnston was a World War I veteran and had been 
raised on a Navajo Reservation. He was one of the few non-Navajo people who 
spoke the language. At the beginning of World War II, he proposed to the US Marine 
Corps the use of Navajo. His reasoning was that very few non-Navajo knew the 
language, and being an unwritten language, it would be difficult for someone to 
learn it.

The new system was tested, and it was proved that Navajo men could encode, 
transmit, and decode a three-line message in 20 seconds or less. This was critical 
because the machines that were being used at the time required 30 seconds for the 
same steps to be accomplished. And in the heat of battle time is of the essence.

In both World War I and World War II, Navajo code talkers were used for secure 
communications by the US military, specifically by the US Marines in World War 
I. However, there were earlier uses of other indigenous languages, such as Cherokee 
and Choctaw code talkers in World War I. This was the most publicized use of an 
obscure language to facilitate secure communication, but not the only such use. 
During the Sino-Vietnamese war, a brief border war fought between the People’s 
Republic of China and the Socialist Republic of Vietnam in early 1979, China used 
Wenzhounese speakers for coded messages. Wenzhounese is a language spoken in 
the Wenzhou province of China.
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During the Arab-Israeli war of 1973, Egypt utilized Nubian speakers to transmit 
sensitive communications. At one time Nubian dialects were spoken in much of 
Sudan, but in more recent times, this language is limited to small numbers of people 
in the Nile valley and parts of Darfur.

 VIC Cipher

This is an interesting cipher, in that it was done completely by pencil and paper, but 
used in the 1950s. Soviet spy Reino Häyhänen uses this cipher. It is considered an 
extension of the Nihilist ciphers which were manual symmetric ciphers used by 
Russian Nihilists in the 1880s when organizing against the tsars.

The algorithm uses three inputs: a short phrase, a date (in six-digit format), and 
a personal 1- to 2-digit number. There was also a 5-digit key group that was embed-
ded in the cipher text at some location that was not publicly known. The four inputs 
(phrase, date, personal number, and key group) were combined to form a 50-digit 
block of pseudo random numbers. This was used to create keys for a straddling 
checkerboard and two columnar transpositions. The plain text was first encrypted 
with the straddling checkerboard and then was put through transpositions with the 
columnar transposition ciphers. A straddling checkerboard takes plain text and con-
verts into digits followed by fractionation (dividing each plain text symbol into 
multiple cipher text symbols) and data compression. Then the key group was 
inserted into the cipher text at a location determined by the personal number.

 IFF Systems

The Identification Friend or Foe system for aircraft depends on cryptography. 
Britain was the first to work out an IFF system. The most primitive of these systems 
simply sent a prearranged signal at specific intervals. With the advent of radar, it 
was important to identify what aircraft the radar system had detected. The IFF Mark 
I was first used in 1939. It was an active transponder that would receive a query 
(called an interrogation) from the radar system. The query consisted of a distinctive 
pulse using a specific frequency. The transponder would then respond with a signal 
that used a steadily increasing amplitude, thus identifying the aircraft as friendly.

By 1940 the Mark III was in use by Western Allies and continued to be used 
throughout World War II. The Mark III expanded the types of communications that 
could be accomplished, including a coded Mayday response. In Germany IFF sys-
tems were also being developed. The first widely implemented system was the FuG 
25a. Before a plane took off, two mechanical keys were inserted, each of 10 bits. 
These provided the keys to encode the IFF transmissions. British scientists, how-
ever, where able to build a device that would trigger a response from any FuG 25a 
system within range, thus revealing the position of German planes flying at night.
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Since World War II, the IFF systems have been used for a variety of purposes. 
This operates in four primary modes:

Mode 1 is not secure and simply used to track position of aircraft and ships.
Mode 2 is used for landings on aircraft carriers.
Mode 3 is a standard system used by commercial (i.e., non-military) aircraft to com-

municate their position. This is used around the world for air traffic control.
Mode 4 is encrypted and thus secure.

In modern times, secure IFF systems are a part of military air defense operations. 
Cryptography is critical in ensuring these systems are secure and reliable. In some 
cases, the cryptographic key used is changed daily. These systems represent one, 
very practical application of cryptography. The primary goal is to ensure that 
friendly aircraft is not shot down.

 The NSA: The Early Years

It is impossible to discuss the history of cryptography without some discussion of 
the history of the US National Security Agency. Today they are a large organization 
and are often reported to be the single largest employer of mathematicians, any-
where in the world. The history of cryptography in the latter half of the twentieth 
century, and beyond, is closely intertwined with the history of the NSA.

While the NSA formally was founded in 1952, there were many precursors to it. 
As early as 1919, the US Department of State created the Cipher Bureau, often 
simply called the “Black Chamber.” The Black Chamber operated in an office in 
Manhattan, and its main purpose was to crack the communications of foreign gov-
ernments. They persuaded Western Union to allow them to monitor telegraphs 
transmitted by Western Union customers. The group had significant initial successes 
but was shut down in 1929 by the Secretary of State. He felt that spying was not a 
gentlemanly or honorable activity.

In 1924 the US Navy formed its Radio Intelligence office with the purpose of 
developing intelligence from monitoring radio communications. By 1942 the US 
Army renamed its Signal Intelligence Service, as Signal Security Service. At this 
time, the various military branches had their own initiatives on communications, 
radio intelligence, and cryptography, and cooperation was at a minimum.

In 1949 the various military agencies coordinated cryptology activities with a 
new, centralized organization named the Armed Forces Security Agency. This 
agency was part of the Department of Defense, rather than a specific branch of the 
military. In 1951, President Harry Truman set up a panel to investigate the short-
comings of the AFSA. Among those shortcomings was the failure to predict the 
outbreak of the Korean War. From this investigation came the National Security 
Agency. President Truman issued a classified directive entitled “Communications 
Intelligence Activities” that, among other things, established the NSA.
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For much of its early history, the existence of the NSA was not acknowledged. 
This led to those who did know, jokingly referring to the NSA as “No Such Agency.” 
Obviously, the history of any intelligence agency is not completely public. But let’s 
examine some highlights that are.

After World War II, Soviet encryption was unbreakable and thus posed a signifi-
cant issue for US Intelligence agencies. This fact, coupled with the discovery of 
Soviet Spies in various western governments, lead to a renewed emphasis on signals 
intelligence (SIGINT) and cryptanalysis.

The NSA had two primary roles. The first being to be able to monitor and deci-
pher the communications of other nations. This would enable the gathering of 
important intelligence. The second being the protection of US communications 
from other nations eavesdropping. This led the NSA to develop a standard now 
known as TEMPEST, an acronym for Transient Electromagnetic Pulse Emanation 
Standard. This standard applies to both equipment used and to deployment and con-
figuration of communications equipment.

During the cold war, the NSA grew and had some significant successes. As one 
prominent example, in 1964 the NSA intercepted and decrypted communications 
regarding China’s first nuclear weapon test. There were many others; some are still 
classified today. In recent years The Washington Times reported that NSA programs 
have foiled terrorist plots in over 20 different countries. We will see the NSA again 
in later chapters, particularly when we study modern cryptographic ciphers such as 
DES and AES in Chaps. 6 and 7 and then when we discuss cryptographic backdoors 
in Chap. 18.

 Conclusions

In this chapter you were introduced to more complex ciphers than in Chap. 1. Some 
of these algorithms used matrices in order to encrypt and decrypt text. There were 
many variations of the Polybius square you learned about in Chap. 1. The Hill 
cipher introduced you to the basics of matrix algebra, which you will see more of in 
Chaps. 4 and 5. You also learned about contributions to cryptography made by his-
torical figures such as Edgar Allan Poe and Alan Turing.

We also explored some significant developments in the history of cryptography 
including the famous Navajo Code Talkers and IFF systems that are critical to air 
traffic control and air defense. We ended the chapter with a discussion of the history 
of the National Security Agency and its impact on the history of cryptography. This 
information combined with Chap. 1 provides foundational knowledge of the history 
of cryptography prior to the computer age.
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 Test Your Knowledge

A few questions are provided here to aid you in testing your knowledge before you 
proceed.

 1. The ______is based on using a matrix as the key and grouping letters in m let-
ter groups.

 2. Which of the following is a variation of Vigenère using 10 alphabets, one for 
each decimal numeral 0 through 9?

 (a) Playfair
 (b) Hill
 (c) Bifid
 (d) Gronsfeld

 3. What was Edgar Allan Poe’s main contribution to cryptography?

 (a) Popularizing cryptography
 (b) Creating the Hill cipher
 (c) Creating SIGABA
 (d) Breaking the Hill cipher

 4. What did Alan Turing work on?

 (a) Breaking the German Naval Enigma
 (b) Breaking the German Army Enigma
 (c) Breaking all Enigma variations
 (d) Breaking the SIGABA system

 5. The _____ cipher works by modifying a Polybius square. Rather than number 
coordinates, letters are used.
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Chapter 3
Basic Information Theory

 Introduction

Information theory may seem like an obscure topic, but it is very important to mod-
ern cryptography. More importantly, it is not overly difficult to grasp the essentials. 
And all you need to progress through this book are the essentials. In this chapter we 
are going to explore the fundamentals of this topic. Of course, entire books have 
been written on the topic, so in this chapter we will give you just an introduction, 
but enough for you to understand the cryptography we will be discussing in subse-
quent chapters. For some readers this will be a review. We will also explore the 
essentials of what a mathematical theory is as well as what a scientific theory is. 
This chapter also provides an introduction to basic binary mathematics, which 
should be a review for most readers.

While information theory is relevant to cryptography, that is not the only application 
of information theory. At its core, information theory is about quantifying information. 
This will involve understanding how to code information, information compression, 
information transmission, and information security (i.e., cryptography).

 In This Chapter We Will Cover

• Information theory
• Claude Shannon’s theorems
• Information entropy
• Confusion and diffusion
• Hamming distance and Hamming weight
• Scientific and mathematical theories
• Binary math
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 The Information Age

It is often stated that we live in an information age. This would clearly make infor-
mation theory pertinent not only to an understanding of cryptography but also to an 
understanding of modern society. First, we must be clear on what is meant by the 
phrase “information age.” To a great extent, the information age and the digital age 
go hand in hand. Some might argue the degree of overlap; however, it is definitely 
the case that without modern computers, the information age would be significantly 
stifled. While information theory began before the advent of modern digital comput-
ers, the two topics are still inextricably intertwined.

From one perspective the information age is marked by information itself becom-
ing a primary commodity. Clearly, information has always been of value. But it was 
historically just a means to a more concrete end. For example, even pre-historic 
people needed information, such as where to locate elk or other games. However, 
that information was just peripheral to the tangible commodity of food. In our 
example, the food was the goal; that was the actual commodity. The information age 
is marked by information itself being widely considered a commodity.

If you reflect on this just briefly, I think you will concur that in modern times 
information itself is often viewed as a product. For example, you purchased this 
book you now hold in your hands. Certainly, the paper and ink used to make this 
book were not worth the price paid. It is the information encoded on the pages that 
you paid for. In fact, you may have an electronic copy and not actually have pur-
chased any pages and ink at all. If you are reading this book as part of a class, then 
you paid tuition for the class. The commodity you purchased was the information 
transmitted to you by the professor or instructor (and of course augmented by the 
information in this book!) So clearly information as a commodity can exist sepa-
rately from computer technology. The efficient and effective transmission and stor-
age of information, however, require computer technology.

Yet another perspective on the information age is the proliferation of informa-
tion. Just a few decades ago, news meant a daily paper, or perhaps a 30-minute 
evening news broadcast. Now news is 24 hours a day on several cable channels and 
on various internet sites. In my own childhood, research meant going to the local 
library and consulting a limited number of books that were, hopefully, not more 
than 10 years out of date. Now, at the click of a mouse button, you have access to 
scholarly journals, research websites, almanacs, dictionaries, encyclopedias, and 
avalanche of information. Thus, one could view the information age as the age in 
which most people have ready access to a wide range of information.

Younger readers who have grown up with the internet, cell phones, and generally 
being immersed in a sea of instant information may not fully comprehend how 
much information has exploded. It is important to understand the explosion of infor-
mation in order to fully appreciate the need for information theory. To provide you 
some perspective on just how much information is being transmitted and consumed 
in our modern civilization, consider the following facts. As early as 2003, experts 
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estimated that humanity had accumulated a little over 12 exabytes of data over the 
entire course of human history. Modern media such as magnetic storage, print, and 
film had produced 5 exabytes in just the first 2 years of the twenty-first century. In 
2009, researchers claimed that in a single year, Americans consumed over 3 
zettabytes of information. As of 2019 the World Wide Web is said to have had 4.7 
zettabytes, or 4700 exabytes of data. That is just the internet, not including offline 
storage, internal network servers, and similar data. If you were to try to put all that 
data on standard external drives, such as 4 terabyte external drives that are quite 
common as of this writing, it would take 109,253,230,592 such drives.

Such large numbers can be difficult to truly comprehend. Most readers under-
stand kilobytes, megabytes, and gigabytes but may not be as familiar with larger 
sizes. Here you can see the various sizes of data:

Kilobyte 1000 bytes
Megabyte 1,000,000 bytes
Gigabyte 1,000,000,000 bytes
Terabyte 1,000,000,000,000 bytes
Petabyte 1,000,000,000,000,000 bytes
Exabyte 1,000,000,000,000,000,000 bytes
Zettabyte 1,000,000,000,000,000,000,000 bytes
Yottabyte 1,000,000,000,000,000,000,000,000 bytes

These incredible scales of data can be daunting to grasp but should provide you 
an idea as to how much information is in our modern society. It should also clearly 
demonstrate that whether you measure that by the amount of information we access, 
or the fact that we value information itself as a commodity, we are in the informa-
tion age. And this age has come upon us quite rapidly. Consider hard drives for 
computers. In 1993, I owned an IBM XT with a 20-megabyte hard drive. While 
working on this second edition of this book, in the year 2020, I purchased a 
10- terabyte external drive for well under $200. That is an increase in capacity of 
several orders of magnitude. And it seems this increase will continue for at least the 
foreseeable future.

 Claude Shannon

It is impossible to seriously examine information theory without discussing Claude 
Shannon. Claude Shannon is often called the father of information theory (Gray 
2011). He was a mathematician and engineer who lived from April 30, 1916 until 
February 24, 2001. He did a great deal of fundamental work on electrical applica-
tions of mathematics and work on cryptanalysis. His research interests included 
using Boolean algebra (we will discuss various algebras at length in Chap. 5) and 
binary math (which we will introduce you to later in this chapter) in conjunction 
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with electrical relays. This use of electrical switches working with binary numbers 
and Boolean algebra is the basis of digital computers.

During World War II, Shannon worked for Bell Labs on defense applications. 
Part of his work involved cryptography and cryptanalysis. It should be no surprise 
that his most famous work, information theory, has been applied to modern develop-
ments in cryptography. It should be noted that in 1943, Shannon became acquainted 
with Alan Turing, whom we discussed in Chap. 2. Turing was in the United States 
to work with the US Navy’s cryptanalysis efforts, sharing with the United States 
some of the methods that the British had developed.

Information theory was introduced by Claude Shannon in 1948 with the publica-
tion of his article A Mathematical Theory of Communication (Guizzo 2003). 
Shannon was interested in information, specifically in relation to signal processing 
operations. Information theory now encompasses the entire field of quantifying, 
storing, transmitting, and securing information. Shannon’s landmark paper was 
eventually expanded into a book. The book was entitled The Mathematical Theory 
of Communication and was co-authored with Warren Weaver and published in 1963.

In his original paper, Shannon laid out some basic concepts that might seem very 
elementary today, particularly for those readers with an engineering or mathematics 
background. At the time, however, no one had ever attempted to quantify informa-
tion nor the process of communicating information. The relevant concepts he out-
lined are given below with a brief explanation of their significance to 
cryptography:

• An information source that produces a message. This is perhaps the most ele-
mentary concept Shannon developed. There must be some source that produces 
a given message. In reference to cryptography, that source takes plain text and 
applies some cipher to create cipher text.

• A transmitter that operates on the message to create a signal which can be sent 
through a channel. A great deal of Shannon’s work was about the transmitter and 
channel. These are essentially the mechanisms that send a message, in our case 
an encrypted message, to its destination.

• A channel, which is the medium over which the signal, carrying the information 
that composes the message, is sent. Modern cryptographic communications 
often take place over the internet. However, encrypted radio and voice transmis-
sions are often used. In Chap. 2 you were introduced to IFF (Identification Friend 
or Foe) systems.

• A receiver, which transforms the signal back into the message intended for deliv-
ery. For our purposes the receiver will also decrypt the message, producing plain 
text from the cipher text that is received.

• A destination, which can be a person or a machine, for whom or which the mes-
sage is intended. This is relatively straightforward. As you might suspect, some-
times the receiver and destination are one and the same.

Information entropy is a concept that was very new with Shannon’s paper and 
one we delve into in a separate section of this chapter.
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In addition to these concepts, Shannon also developed some general theorems 
that are important to communicating information. Some of this information is more 
general and applies primarily to electronic communications but does have relevance 
to cryptography.

 Theorem 1: Shannon’s Source Coding Theorem

This theorem can be stated simply as follows: It is impossible to compress the data 
such that the code rate is less than the Shannon entropy of the source, without it 
being virtually certain that information will be lost (Yamano 2002). In information 
theory, entropy is a measure of the uncertainty associated with a random variable. 
We will explore this in detail later in this chapter. What this theorem is stating is that 
if you compress data in a way that the rate of coding is less than the information 
content, then it is quite likely that you will lose some information. It is frequently 
the case that messages are both encrypted and compressed. Compression is used to 
reduce transmission time and bandwidth. Shannon’s coding theorem is important 
when compressing data.

 Theorem 2: Noisy Channel Theorem

This theorem can be simply stated as follows: For any given degree of noise con-
tamination of a communication channel, it is possible to communicate discrete data 
(digital information) nearly error-free up to a computable maximum rate through 
the channel. This theorem addresses the issue of noise on a given channel. Whether 
it be a radio signal or a network signal traveling through a twisted pair cable, there 
is usually noise involved in signal transmission. This theorem essentially states that 
even if there is noise, you can communicate digital information. However, there is 
some maximum rate at which you can compute information. That rate is comput-
able and is related to how much noise there is in the channel.

 Concepts

There are some key concepts of information theory that are absolutely pivotal for 
your study of cryptography. You have been given a brief overview of information 
theory, and those concepts have some relevance to cryptography. However, in this 
section you will learn core concepts that are essential to cryptography.
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 Information Entropy

Shannon thought this was a critical topic in information theory. His landmark paper 
had an entire section entitled “Choice, Uncertainty And Entropy” that explored this 
topic in a very rigorous fashion. We need to not explore all the nuances of Shannon’s 
ideas here, just enough for you to move forward in your study of cryptography.

Entropy has a different meaning in information theory than it does in physics. 
Entropy, in the context of information, is a way of measuring information content. 
There are two difficulties people have in mastering this concept, and I would like to 
address both. The first difficulty lies in confusing information entropy with thermo-
dynamic entropy that you probably encountered in elementary physics courses. In 
such courses entropy is often described as the measure of disorder in a system. This 
is usually followed by a discussion of the second law of thermodynamics which 
states that in a closed system entropy tends to increase. In other words, without the 
addition of energy, a closed system will become more disordered over time. Before 
we can proceed to discuss information entropy, you need to firmly grasp that infor-
mation entropy and thermodynamic entropy are simply not the same things. So, you 
can take the entropy definition you received in freshman physics courses and put it 
out of your mind, at least for the time being.

The second problem you might have with understanding information theory is 
that so many references explain the concept is different ways, some of which can 
seem contradictory. In this section I will demonstrate for you some of the common 
ways that information entropy is often described so that you can have a complete 
understanding of these seemingly disparate explanations.

In information theory, entropy is the amount of information in a given message 
(Yeung 2012). This is simple and easy to understand, and as you will see, it is essen-
tially synonymous with other definitions you may encounter. One example of an 
alternative explanation of information entropy is that it is sometimes described as 
the number of bits required to communicate information. This definition is simply 
stating that if you wish to communicate a message, that message contains informa-
tion; if you represent the information in binary format, how many bits of informa-
tion is contained. It is entirely possible that a message might contain some 
redundancy, or even data you already have (which, by definition, would not be 
information); thus, the number of bits required to communicate information could 
be less than the total bits in the message. This is actually the basis for lossless data 
compression. Lossless data compression seeks to remove redundancy in a message 
and thus compress the message. The first step is to determine the minimum number 
of bits to communicate the information in the message or, put another way, to cal-
culate the information entropy.

Another example of a definition that might sound peculiar to you is that many 
texts describe entropy as the measure of uncertainty in a message (Hu et al. 2010). 
This may seem puzzling to some readers. I have defined information entropy as “the 
measure of uncertainty in a message” and “the number of bits required to commu-
nicate information.” How can both of these be true? Actually, they are both saying 
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the same thing. Let us examine the definition that is most likely causing you some 
consternation: entropy as a measure of uncertainty. It might help you to think of it 
in the following manner: only uncertainty can provide information. For example, if 
I tell you that right now you are reading this book, this does not provide you with 
any new information. You already knew that, and there was absolutely zero uncer-
tainty regarding that issue. However, the content you are about to read in remaining 
chapters is uncertain. You don’t know what you will encounter, at least not exactly. 
There is, therefore, some level of uncertainty and thus information content. Put even 
more directly: uncertainty is information. If you are already certain about a given 
fact, then no information is communicated to you. New information clearly requires 
there was uncertainty that the information you received cleared up. Thus, the mea-
sure of uncertainty in a message is the measure of information in a message.

Now we need to move to a somewhat more mathematical expression of this con-
cept. Let us assume X is some random variable. The amount of entropy measured in 
bits that X is associated with is usually denoted by H(X). Next, we will further 
assume that X is the answer to a simple yes or no question. If you already know the 
answer, then there is no information. It is the uncertainty of the value of X that pro-
vides information. Put mathematically, if you already know the outcome, then H(X) 
= 0. If you do not know the outcome, then you will get 1 bit of information from this 
variable X. That bit could be a 1 (a yes) or a 0 (a no), so H(X) = 1.

Hopefully, you have a good grasp of the concept of information entropy; let’s try 
to make it more formal and include the concept of probability. What is the informa-
tion content of a variable X? First, we know X has some number of possible values; 
we will call that number n. With a binary variable that is one single bit, then n = 2 
(values 0 or 1). However, if you have more than 1 bit, then you have n > 2. For 
example, 2 bits has n = 22. Let us consider each possible value of X to be i. Of 
course, all possible values of X might not have the same probability. Some might be 
more likely than others. For example, if X is a variable giving the height of your 
next-door neighbor in inches, a value of 69 (5 feet 9 inches) is a lot more probable 
than a value of 89 (7 feet 5 inches). So, consider the probability of each given i to be 
Pi. Now we can write an equation that will provide the entropy (i.e., the information 
contained) in the variable X, taking into account the probabilities of individual val-
ues of X. That equation is shown in Fig. 3.1.

The symbol pi denotes the probability of the occurrence of the ith category of 
symbol in the string being examined. The symbol H denotes the Shannon entropy. 
The value is given in bits, thus log2. This formula allows one to calculate the infor-
mation entropy (i.e., Shannon entropy) in a given message. As stated earlier in this 
book, we won’t be examining proofs in this text. In fact, for our purposes, you can 
simply accept the math as given. There are a number of excellent mathematics 
books and courses that delve into the proofs for these topics.

Fig. 3.1 The information 
entropy of X
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For two variables or two messages that are independent, their joint entropy is the 
sum of the two entropies. That formula is shown in Fig. 3.2.

If the two variables are not independent, but rather variable Y depends on vari-
able X, then instead of joint entropy, you have conditional entropy. That formula is 
shown in Fig. 3.3.

The equation shown in Fig. 3.1 provides a way of calculating the information 
contained in (i.e., the information entropy) some variable X, assuming you know the 
probabilities of each possible value of X. If you do not know those probabilities, you 
can still get at least a range for the information contained in X. That is done with the 
equation shown in Fig. 3.4.

This equation assumes that there is some information and some level of uncer-
tainty; thus, we set the lower range at greater than zero. Hopefully, this gives you a 
clear understanding of the concept of information entropy. The basic concept of 
information entropy, often called Shannon entropy, is essential to cryptography, and 
you will encounter it later in this book. Joint entropy and differential entropy are 
more advanced topics and are introduced here for those readers who wish to delve 
deeper, beyond the scope of this book.

 Quantifying Information

Understanding information entropy is essential to understanding how we quantify 
information. If you have any doubts about your understanding of entropy, please 
reread the preceding section before proceeding. Quantifying information can be a 
difficult task. For those new to information theory, even understanding what is 
meant by “quantifying information” can be daunting. Usually it is done in the con-
text of binary information (bits). In fact, while one can find many different defini-
tions for what information is, within the context of information theory, we look at 
information as bits of data. This works nicely with computer science, since comput-
ers store data as bits. A bit can only have one of two values 0 or 1. This can be 
equivalent to yes or no. Of course, one can have several bits together containing 
several yes or now values, thus accumulating more information.

Once we have defined information as a single bit of data, the next issue becomes 
quantifying that data. One method often used to explain the concept is to imagine 
how many guesses it would take to ascertain the contents of a sealed envelope. Let 
me walk you through this helpful thought experiment.

Suppose someone hands you an envelope that is sealed and contains some mes-
sage. You are not allowed to open the envelope. Rather you have to ascertain the 
contents merely by asking a series of yes or no questions (binary information:1 

Fig. 3.2 Joint entropy
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Fig. 3.3 Conditional 
entropy

Fig. 3.4 Range of information contained in X

being yes, 0 being no). What is the smallest number of questions required to accu-
rately identify the contents of the message within the sealed envelope?

Notice that we stated the scenario as how many questions, on average, will it 
take. Clearly if you try the same scenario with different people posing the queries, 
even with the same message, you will get a different number of questions needed. 
The game could be repeated with different messages. We then enumerate messages, 
and any given message is Mi, and the probability of getting that particular message 
is Pi. This leaves us with the question of what exactly is the probability of guessing 
a specific message. The actual equation takes us back to Fig. 3.1. Computing the 
entropy of a given message is quantifying the information content of that message.

 Confusion and Diffusion

The concept of confusion, as relates to cryptography, was outlined in Claude 
Shannon’s 1949 paper “Communication Theory of Secrecy Systems.” In general, 
this concept attempts to make the relationship between the statistical frequencies of 
the cipher text and the actual key as complex as possible. Put another way, the rela-
tionship between the plain text, cipher text, and key should be complex enough that 
it is not easy to determine what that relationship is.

If an algorithm does not produce sufficient confusion, then one could simply 
examine a copy of plain text and the associated cipher text and determine what the 
key is. This would allow the attacker to decipher all other messages that are 
encrypted with that same key.

Diffusion literally means having changes to one character in the plain text, affect-
ing multiple characters in the cipher text, unlike historical algorithms (Caesar 
cipher, Atbash, Vigenère) where each plain text character only affected one cipher 
text character.

Shannon thought the related concepts of confusion and diffusion were both 
needed to create an effective cipher:

Two methods (other than recourse to ideal systems) suggest themselves for frustrating a 
statistical analysis. These we may call the methods of diffusion and confusion. In the 
method of diffusion, the statistical structure of M which leads to its redundancy is “dissi-
pated” into long range statistics—i.e., into statistical structure involving long combinations 
of letters in the cryptogram. The effect here is that the enemy must intercept a tremendous 
amount of material to tie down this structure, since the structure is evident only in blocks of 
very small individual probability. Furthermore, even when he has sufficient material, the 
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analytical work required is much greater since the redundancy has been diffused over a 
large number of individual statistics.

These two goals are achieved through a complex series of substitution and per-
mutation. While not secure enough to withstand modern cryptanalysis, an example 
can be made using the historic ciphers you studied in Chaps. 1 and 2. Let us assume 
you have a simple Caesar cipher whereby you shift each letter three to the right. 
This will provide you a small degree of confusion, but no diffusion. Now assume 
you swap every three letters. This transposition will provide another small degree of 
confusion. Now let us apply a second substitution, this time two letters to the right. 
The two substitutions, separated by a transposition, provide minimal diffusion. 
Consider the following example:
Plain text: Attack at dawn
Step 1 (shift right 3) dwwdfn dw gdzq
Step 2 (swap 3 letter blocks) dfndww  dz qdw
Step 3 (shift right 2) fhpfyy  fb sfy

Let us try changing just one letter of plain text (though it will make for a mis-
spelled plain text word). Change “attack at dawn” to “attack an dawn.”

Plain text: Attack an dawn
Step 1 (shift right 3) Dwwdfn dq gdzq
Step 2 (swap 3 letter blocks) dfndww  dz qdq
Step 3 (shift right 2) fhpfyy  fb sfs

Now compare this cipher text to the one originally produced. You can see only 
one letter has changed; it is the last letter. Instead of sfy, you now have sfs. This 
provides only minimal confusion and still no diffusion! What is missing? Two 
things are missing. The first being that, at least by modern standards, this simply is 
not complex enough. It is certainly an improvement on the basic Caesar cipher, but 
still it is not enough. The second problem is that there is no mechanism to have a 
change in one character of plain text change multiple characters in the cipher text. 
In modern ciphers operations are at the bit level, not the character level. Furthermore, 
in modern ciphers there are mechanisms to propagate a change, and we will see 
those beginning in Chap. 6. However, this example should give you the general idea 
of combining substitution and permutation.

 Avalanche

This term means that a small change yields large effects in the output, like an ava-
lanche. This is Horst Feistel’s variation on Claude Shannon’s concept of diffusion. 
We will see Feistel’s ideas used in many of the block ciphers we explore in Chap. 6. 
Obviously, a high avalanche impact is desirable in any cryptographic algorithm. 
Ideally, a change in one bit in the plain text would affect all the bits of the cipher 
text. This would be complete avalanche, but that has not been achieved in any cur-
rent algorithm.
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 Hamming Distance

The Hamming distance is, essentially, the number of characters that are different 
between two strings (Bookstein et  al. 2002). This can be expressed mathemati-
cally as:

 
h x y,� �  

Hamming distance is used to measure the number of substitutions that would be 
required to turn one string into another. In modern cryptography we usually deal 
with binary representations, rather than text. In that context, Hamming distance can 
be defined as the number of ones if you exclusive or (XOR) two strings. The concept 
of Hamming distance was developed by Richard Hamming who first described the 
concept in his paper “Error Detecting and Error Correcting Codes.” The concept is 
used widely in telecommunications, information theory, and cryptography.

Hamming distance only works when the strings being compared are of the same 
length. One application is to compare plain text to cipher text to determine how 
much has changed. However, if there are two strings of different lengths to be com-
pared, another metric must be used. On such metric is the Levenshtein distance. 
This is a measurement of the number of single character edits required to change 
one word into another. Edits can include substitutions (as with Hamming distance) 
but can also include insertions and deletions. The Levenshtein distance was first 
described by Vladimir Levenshtein in 1965.

 Hamming Weight

The concept of Hamming weight is closely related to Hamming distance. It is essen-
tially comparing the string to a string of all zeros. Put more simply, it is how many 
1s are in the binary representation of a message. Some sources call this the popula-
tion count or pop count. There are actually many applications for Hamming weight 
both within cryptography and in other fields. For example, the number of modular 
multiplications required for some exponent e is computed by log2 e + hamming 
weight (e). You will see modular arithmetic in Chap. 4. Later in this book, the RSA 
algorithm is examined at length; you will find that the e value in RSA is chosen due 
to low Hamming weight.

Unlike Hamming distance, Richard Hamming was not the first to describe the 
concept of Hamming weight. The concept was first introduced by Irving S. Reed, 
though he used a different name. Richard Hamming later described a practically 
identical concept to the one Reed had described, and this latter description was 
more widely known, thus the term Hamming weight.
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 Kerckhoffs’s Principle/Shannon’s Maxim

Kerckhoffs’s principle is an important concept in cryptography. Auguste Kerckhoffs 
first articulated this in the 1800s, stating that the security of a cipher depends only 
on the secrecy of the key, not the secrecy of the algorithm. Claude Shannon rephrased 
this stating that “One ought to design systems under the assumption that the enemy 
will ultimately gain full familiarity with them.” This is referred to as Shannon’s 
maxim and states essentially the same thing Kerckhoffs’s principle states.

Let me attempt to restate and expound this in terms you might find more verbose 
but hopefully easier to understand. Either Kerckhoffs’s principle or Shannon’s 
maxim states that the only thing that you must keep secret is the key. You don’t need 
to keep the algorithm secret. In fact, this book which you are currently holding in 
your hand will, in subsequent chapters, provide you the intimate details of most 
modern algorithms. And that in no way compromises the security of those algo-
rithms. As long as you keep your key secret, it does not matter that I know you are 
using AES 256 bit, or Serpent, or Blowfish, or any other algorithm you could 
think of.

I would add to Kerckhoffs’s principle/Shannon’s maxim something I will hum-
bly call Easttom’s corollary: “You should be very wary of any cryptographic algo-
rithm that has not been published and thoroughly reviewed. Only after extensive 
peer review should you consider the use of any cryptographic algorithm.” Consider 
that you have just created your own new algorithm. I mean no offence, but the most 
likely scenario is that you have mistaken ignorance for fresh perspective and your 
algorithm has some serious flaw. One can find many examples on the internet of 
amateur cryptographers believing they have invented some amazing new algorithm. 
Often their “discovery” is merely some permutation on polyalphabetic ciphers you 
studied in Chap. 1. But even if you are an accomplished cryptographic researcher, 
one with a proven track record, it is still possible you could make an error. To dem-
onstrate this fact, consider Ron Rivest. You will hear a great deal about Dr. Rivest in 
coming chapters. His name is the R in RSA, and he has been involved in other sig-
nificant cryptographic developments. He submitted an algorithm to the SHA-3 com-
petition (which we will discuss in detail in Chap. 9); however, after several months 
of additional analysis, a flaw was found, and he withdrew his algorithm from con-
sideration. If such a cryptographic luminary as Ron Rivest can make a mistake, 
certainly you can?

The purpose of publishing an algorithm is so that experts in the field can review 
it, examine it, and analyze it. This is the heart of the peer review process. Once an 
algorithm is published, then other cryptographers get to examine it. If it withstands 
a significant amount of time (usually years) of such analysis, then and only then 
should it be considered for use.

This issue has serious practical implications. In September 2011 I was inter-
viewed by CNN Money reporter David Goldman regarding a company who claimed 
to have an “unbreakable code.” The reporter also interviewed cryptography experts 
from Symantec and Kaspersky labs. All of us agreed that the claim was nonsense. 
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The algorithm was being kept “secret” and not open to peer review. It also happens 
that the person producing the unbreakable code produced cipher text challenging 
people to break it. The cipher text produced failed every randomness test it was put 
to, indicating it was very weak.

There is of course one, very glaring, exception to publishing an algorithm. The 
US National Security Agency (NSA) organizes algorithms into two groups. Suite B 
are published. This includes algorithms such as Advanced Encryption Standard 
(AES). You can find the complete details of that algorithm in many sources, includ-
ing Chap. 7 of this book. The second group is the suite A algorithms, which are 
classified and not published. This seems to violate the spirit of Kerckhoffs’s prin-
ciple and peer review. However, keep in mind that the NSA is the single largest 
employer of mathematicians in the world. This means that they can subject an algo-
rithm to thorough peer review, entirely via their own internal staff, all of whom have 
clearance to view classified material.

 Information Diversity

Hartley entropy was introduced by Ralph Hartley in 1928 and is often referred to as 
the Hartley function. If a sample is randomly elected from a finite set A, the infor-
mation revealed after the outcome is known is given by the Hartley function, shown 
in the following equation (Kakihara 2016):

 
H A Ab0 � � �� log

 

In the Hartley function, the H0(A) is the measure of uncertainty in set A. The 
cardinality of A is denoted by |A|. If the base of the logarithm is 2, then the unit of 
uncertainty is referred to as the Shannon. However, if the natural logarithm is used 
instead, then the unit is the nat. When Hartley first published this function, he uti-
lized a base-ten logarithm. Since that time, if a base 10 is used, then the unit of 
information is called the Hartley. Hartley entropy tends to be a large estimate of 
entropy and is thus often referred to as max entropy.

Another measure of uncertainty in a message is the min-entropy (Wan et  al. 
2018). This measure of entropy tends to yield a small information entropy value, 
never greater than the standard Shannon entropy. This formula is often used to find 
a lower bound for information entropy. The formula is shown in the following 
equation:

 
H p
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min log
1 2i  

In the equation above there exists some set A with an independent discrete ran-
dom variable X taken from that set and a probability that X = xi of pi for i – 1,….k. 
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When the random variable X has a min-entropy (i.e., an H value), then the probabil-
ity of observing any particular value for X is less than or equal to 2−H.

Another measure of information entropy is the Rényi entropy (Linke et al. 2018). 
The Rényi entropy is used to generalize four separate entropy formulas: Hartley 
entropy, the Shannon entropy, the collision entropy, and the min-entropy (Hayashi 
2012), as shown in the following equation:
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In the equation above X denotes discrete random variable with possible outcomes 
(1, 2, …., n) with probabilities pi for i = 1 to n. Unless otherwise stated, the loga-
rithm is base 2, and the order, α, is 0 < α < 1. The aforementioned collision entropy 
is simply the Rényi entropy in the special case that α = 2, and not using loga-
rithm base 2.

 Scientific and Mathematical Theories

We have discussed information theory, but we have not discussed what constitutes a 
theory within the scientific and mathematical world. Mathematics and science are 
closely related, but the processes are slightly different. We will examine and com-
pare both in this section. Many words have a different meaning in specific situations 
than they do in normal day-to-day conversation. For example, the word “bug” usu-
ally refers to an insect, but in computer programming, it refers to a flaw in a pro-
gram. Even a simple and common word such as “love” means different things in 
different situations. For example, you may “love” your favorite TV show, “love” 
your spouse, and “love” chocolate ice cream, but you probably don’t mean the same 
thing in each case. The word “love” has a different meaning in different contexts. 
So, when one is attempting to define a term, it is important to consider the context 
one is using it in.

This is even truer, when a word is being used in a specific technical or profes-
sional context. Various professions have very specific definitions for certain words. 
The legal community is a good example. Many words have very specific meanings 
within the law, meanings which might not exactly match their ordinary daily use.

It is also true that scientists (as well as mathematicians) have some very specific 
meanings for words they use. The term theory is such a word. This word has a very 
different meaning in a scientific context than it does in everyday language. In the 
day-to-day vernacular, a theory is often synonymous with a guess. For example, 
your favorite sports team is on a losing streak; you might have a “theory” about why 
they are losing. And in this case, by theory you probably mean just a guess. You may 
or may not have a shred of data to support your “theory.” In fact, it may be little 
more than a “gut feeling.”
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In science, however, a theory is not a guess or “gut feeling”; it is not even just an 
“educated guess.” An educated and testable guess is called an hypothesis (Larson 
2004). The key part being that it is a testable guess. In fact, a guess that is untestable 
has no place in science at all. When you have a testable, educated, guess, you then 
have a hypothesis. Once you have tested that hypothesis, you have a fact. The fact 
may be that the test results confirm or reject your hypothesis. Usually you will 
repeat the test several times to make sure the results were not an error. But even an 
hypothesis is more than a wild guess or a hunch. It is an educated estimate that must 
be testable. If it is not testable, it is not even a hypothesis.

 What Is a Mathematical Theory?

We will see, in our discussion of scientific theories, that theories are conceptual 
models. We will also see that a mathematical theory and a scientific theory are very 
closely related. Theories in math flow from axioms. An axiom is a single fact that is 
assumed to be true without proof. I think it should be obvious to all readers that one 
must have only the most basic facts taken on an a priori basis as axioms.

There are a number of interesting math theories. Graph theory studies mathemat-
ical structures that represent objects and the relationship between them. It does this 
by using vertices (the objects) and edges (the connections between objects). Set 
theory studies collections of objects or sets. It governs combining sets, overlapping 
sets, subsets, and related topics.

However, mathematics deals with proofs not experiments. So, the hypothesis, 
which we will see momentarily in the scientific process, is not strictly applicable to 
mathematics. That is why we begin with axioms. The statements are derived from 
those axioms, statements whose veracity can be objectively determined. This is 
sometimes taught using truth tables.

Individual mathematical theories address a particular system. These theories 
begin with a foundation that is simply the data describing what is known or what is 
assumed (i.e., axioms). New concepts are logically derived from this foundation and 
are (eventually) proven mathematically. Formal mathematics courses will discuss 
first-order theories, syntactically consistent theory, deductive theories, and other 
nuances of mathematical theory. However, this book is focused on applies mathe-
matics and more narrowly on one single narrow subtopic in applied mathematics: 
cryptography. We won’t be delving into the subtleties of mathematical theory, nor 
will you be exposed to proofs. For our purposes we will simply apply mathematics 
that others have rigorously proven.
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 The Scientific Process

The scientific process is primarily about experimentation. Nothing is really “true” 
until some experiment says it is true. Usually multiple experiments need to confirm 
that something is, indeed, true. The first step is to create an hypothesis, an educated 
guess that can be tested. You will then develop facts from that. Testing, experimen-
tation, and forming hypothesis are all important parts of the scientific process. 
However, the pinnacle of the scientific process is the theory.

This was not always the case. In ancient times it was far more common for phi-
losophers to simply formulate compelling arguments for their ideas, without any 
experimentation. Ptolemy, in the second century C.E., was one of the early propo-
nents of experimentation and what is today known as the scientific method. Roger 
Bacon, who lived in the thirteenth century C.E., is often considered the father of the 
modern scientific method. His experimentation in optics was a framework for the 
modern approach to science.

 A Scientific Theory

You know that an hypothesis is a testable guess. You also know that after conducting 
a number of tests, you will have one or more facts. Eventually one has a number of 
facts that require some explanation. The explanation of those facts is called a theory. 
Or put another way, “A theory is an explanation of a set of related observations or 
events based upon proven hypotheses and verified multiple times by detached 
groups of researchers. How does a scientific theory compare to a scientific law? In 
general, both a scientific theory and a scientific law are accepted to be true by the 
scientific community as a whole. Both are used to make predictions of events. Both 
are used to advance technology.”

Now think about this definition for the word theory for just a moment. A “theory 
is an explanation.” That is the key part of this definition. After you have accumu-
lated data, you must have some sort of explanation. A string of facts with no connec-
tion and no explanation is of little use. This is true not only in science but also in 
other fields. Think about how a detective works. Anyone can notice a string of facts. 
The detective’s job is to put those facts together in a manner which is consistent 
with all the facts. This is very similar to what scientists do when trying to formulate 
a theory. Note that with both the scientist and the detective, the theory must match 
all the facts.

It is sometimes difficult for non-scientists to become accustomed to this use of 
the word theory. People often make the mistake of simply consulting a standard 
dictionary for a definition. Yet even a basic dictionary usually has multiple defini-
tions. For example, the Merriam-Webster online dictionary lists many alternative 
definitions for the word theory. Some of those definitions are synonymous with 
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guess. However, even this standard dictionary offers alternative definitions for the 
word theory. The ones applicable to sciences use of the word theory are:

“1: the analysis of a set of facts in their relation to one another”
“3: the general or abstract principles of a body of fact, a science, or an art <music 

theory>”
“5: a plausible or scientifically acceptable general principle or body of principles 

offered to explain phenomena <wave theory of light>”

As you can see, these three definitions are not synonymous with guess or gut 
feeling. An even better explanation of this was given by the Scientific American 
Magazine:

Many people learned in elementary school that a theory falls in the middle of a hierarchy of 
certainty--above a mere hypothesis but below a law. Scientists do not use the terms that 
way, however. According to the National Academy of Sciences (NAS), a scientific theory is 
“a well-substantiated explanation of some aspect of the natural world that can incorporate 
facts, laws, inferences, and tested hypotheses.” No amount of validation changes a theory 
into a law, which is a descriptive generalization about nature. So, when scientists talk about 
the theory of evolution--or the atomic theory or the theory of relativity, for that matter--they 
are not expressing reservations about its truth.

The point to keep in mind is that a theory is an explanatory model. It explains the 
facts we know and gives us context for expanding our knowledge base. While sci-
entific theories are based on experimentation and mathematical theories are based 
on proofs and axioms, the issue of being an explanatory model is the same for a 
scientific theory or a mathematical theory. Putting it in the context of information 
theory, it is a theory that gives a conceptual model of information and provides the 
framework to continue adding to our knowledge of information.

 A Look at Successful Scientific Theories

Examining in general terms what a theory is, and what it is not, may still not be an 
adequate explanation for all readers. So, let’s look at a concrete example. Let’s look 
at an example of a very well-accepted theory and how it relates to specific facts. For 
this purpose, we will consider gravity. Newton observed the fact things tend to fall. 
In a very general way, this is the essence of his law of gravity: gravity makes things 
fall downward. Of course, he expressed that law mathematically with this equation: 
F = Gm1m2/d2.

In this equation, F is the force of gravity, G is a constant (the gravitational con-
stant) which can be measured, m1 and m2 are the masses of the two objects (such as 
the earth and a falling apple), and d is the distance between them. This law of grav-
ity can be measured and verified thousands of times and in fact has been.

But this law, by itself, is incomplete. It does not provide an adequate explanation 
for why this occurs. We know there is gravity; we all feel its pull, but what is it? 
Why does gravity work according to this formula? Einstein’s theory of general rela-
tivity was an explanation for why there is gravity. With general relativity, Einstein 
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proposed that matter causes time and space to curve. Much like a ball sitting on a 
stretched-out sheet causes a curving in the sheet. Objects that get close enough to 
the ball will tend to fall toward it, due to this curvature.

Clearly Einstein’s general theory of relativity explains all the observed facts. But 
there is still yet another component to make it a scientific theory. It must make some 
predictions. By predictions I don’t mean that it foretells the future. What I mean is 
that if this theory is valid, then one would expect certain things to also be true. If 
those predictions turn out not to be true, then Einstein’s general theory of relativity 
must either be modified or rejected. Whether you choose to modify a theory or 
reject it depends on how well its predictions work out. If it is 90% accurate, then you 
would probably just look to adjust the theory, so it matched the facts. However, if it 
was only right less than half the time, you should probably consider simply reject-
ing the theory outright. Well what predictions do we get from the theory of general 
relativity? A few of those predictions are as follows:

 1. That gravity can bend light. This has been reconfirmed literally hundreds of 
times with more precision each time. More recently, in 2003, the Cassini satellite 
once again confirmed this prediction. And keep in mind, this 2003 test was just 
one more among many, all confirming that gravity can bend light.

 2. Light loses energy escaping from a gravitational field. Because the energy of 
light is proportional to its frequency, a shift toward lower energy means a shift to 
lower frequency and longer wavelength. This causes a “red shift” or shift toward 
the red end of the visible spectrum. It was experimentally verified on earth using 
gamma rays at the Jefferson Tower Physics Laboratories.

 3. Deflection of light by gravity: General relativity predicts that light should be 
deflected or bent by gravity. This was first confirmed by observations and mea-
surements of a solar eclipse in 1919. It has since been confirmed by hundreds of 
experiments over decades.

There are other predictions made by the general theory of relativity, and every 
single one has been confirmed by dozens and in some cases hundreds of indepen-
dent experiments. Note the word independent. These experiments were carried out 
by people with no particular vested interest in proving Einstein correct. And in a few 
cases, they really wanted to prove him wrong. Yet in every case, the data confirmed 
Einstein’s theory. You would be hard put to find any physicist who does not agree 
that the general theory of relativity is valid and true. Some may argue it is not yet 
complete, but none will argue that it is not true. Hundreds of experiments spanning 
many decades and literally thousands of scientists have confirmed every aspect of 
general relativity. Now that this theory is well established, it can be used to guide 
future experiments and deeper understanding of gravity, as well as related topics.
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 Binary Math

Binary math is not actually a part of information theory, but it is critical information 
you will need in order to be able to understand cryptography in later chapters. Many 
readers will already be familiar with binary math, and this will be a review. However, 
if your background does not include binary math, then this section will teach you 
the essentials you will need to know.

First let us define what binary math is. It is actually rather simple. It is mathemat-
ics that uses a base two rather than the more familiar base ten. The only reason you 
find base ten (i.e., the decimal number system) to be more “natural” is because you 
have ten fingers and ten toes. Or at a minimum, most people have ten fingers and 
toes, so even if some accident or birth defect left you personally with a different 
number of fingers and toes, you understand that ten is normal for humans.

Once we introduce the concept of zero, then you have ten digits in the base-ten 
system, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Keep in mind there is not really a number ten 
in the base-ten system. There is a 1 in the tens place and a 0 in the one’s place. The 
same thing is true with binary, or base two numbers. There is not actually a number 
two. There is a 1 in the two’s place and a zero in the 1’s place. This chart comparing 
the two might be helpful to you:

Number in base ten (decimal) Number in base two (binary)

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000

Binary numbers are important because that is, ultimately, what computers under-
stand. You can, of course, represent numbers in any system you wish. And a number 
system can be based on any integer value. Historically there have been a few widely 
used. Hexadecimal (base 16) and octal (base 8) are sometimes used in computer 
science because they are both powers of 2 (24 and 23, respectively) and thus easily 
converted to and from binary. The Babylonians used a base 60 number system, 
which you still see today in representation of degrees in a geographic coordinate 
system. For example, 60 seconds makes a minute, and 60 minutes makes a degree, 
so one can designate a direction by stating 45 degrees, 15 minutes, and 4 seconds.

The modern concept of binary numbers traces back to Gottfried Leibniz who 
wrote an article entitled “Explanation of the Binary Arithmetic.” In that article, 
Leibniz noted that the Chinese I-Ching hexagrams corresponded to binary numbers 
ranging from 0 to 1111111 (or 0–63 in decimal numbers).
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 Converting

Since humans tend to be more comfortable with decimal numbers, you will fre-
quently want to convert from binary to decimal and may need to make the inverse 
conversion as well. There are many methods; one common one takes advantage of 
the fact that the various “places” in a binary number are powers of two. So, consider 
for a moment a binary number 10111001 and break it down into the powers of two. 
If there is a 1 in a given place, then you have that value. If not, you have a zero. For 
example, if there is a 1 in the 27 place, then you have 128; if not, you have a zero.

Power of 2 27 26 25 24 23 22 21 20

Value of that place 128 64 32 16 8 4 2 1
Binary numeral 1 0 1 1 1 0 0 1

128 0 32 16 8 0 0 1

Now just add the values you have: 128 + 32 + 16 + 8 + 1 = 185.
This may not be the fastest method, but it works, and it is easy to understand.

 Binary Operations

One can do all the mathematical operations with binary that one might do with deci-
mal numbers. Fortunately, with cryptography you will be primarily concerned with 
three operations: AND, OR, and XOR. And these are relatively easy to understand. 
For all of our examples, we will consider two 4-bit binary numbers: 1101 and 1100. 
We will examine how the AND, OR, and XOR operations work on these two 
numbers.

 Binary AND

The binary AND operation combines two binary numbers, one bit at a time. It asks 
is there a 1 in the same place in both numbers. If there is, then the resulting number 
is a 1. If not, then the resulting number is a 0. You can see in Fig. 3.5 the comparison 
of the right most digit in two four-digit binary numbers.

Since the first number has a 1 in this place, and the second has a 0, the resultant 
number is a 0. You continue this process from right to left. Remember if both 

Fig. 3.5 Binary AND for 
right most digit
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numbers have a 1, then the resulting number is a 1. Otherwise the resulting number 
is a 0. You can see this in Fig. 3.6.

 Binary OR

The binary OR operation is just a little different. It is asking the question of whether 
there is a 1 in the first number or the second number, or even in both numbers. So 
basically, if either number has a 1, then the result is a 1. The result will only be a 
zero if both numbers are a zero. You can see this in Fig. 3.7.

Essentially the OR operation asks is there a 1 in the first number and/or the sec-
ond number.

 Binary XOR

The binary XOR is the one that really matters for cryptography. This is the opera-
tion that provides us with interesting results we can use as part of cryptographic 
algorithms. With the binary exclusive or (usually denoted XOR), we ask the ques-
tion is there a 1  in the first number or second number, but not in both. In other 
words, we are exclusively asking the “OR” question, rather than asking the “AND/
OR” question that the OR operation asks. You can see this in Fig. 3.8.

What makes this operation particularly interesting is that it is reversible. If you 
perform the XOR operation again, this time taking the result of the first operation 
and XORing it with the second number, you will get back the first number. You can 
see this in Fig. 3.9.

This is particularly useful in cryptographic algorithms. Our example used 4-bit 
numbers but extrapolate from that. Assume instead of 4 bits, the first number was a 
lengthy message, for example, 768 bits lone. And the second number was a ran-
domly generated 128-bit number we used as the key. You could then break the 768- 
bit plain text into blocks of 128 bits each (that would produce 6 blocks). Then you 
XOR the 128-bit key with each 128-bit block of plain text, producing a block of 
cipher text. The recipient could then XOR each 128-bit block of cipher text with the 
128-bit key and get back the plain text.

Before you become overly excited with this demonstration, this simple XOR 
process is not robust enough for real cryptography. However, you will see, begin-
ning in Chap. 6, that the XOR operation is a part of most modern symmetric ciphers. 
It cannot be overly stressed, however, that it is only a part of modern ciphers. The 
XOR operation is not, in and of itself, sufficient.

Fig. 3.6 Binary AND for 
two numbers
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Fig. 3.7 Binary OR 
operation

Fig. 3.8 Binary XOR 
operation

Fig. 3.9 Reversing the 
binary XOR operation

 Conclusions

In this chapter you have been introduced to a number of concepts that will be critical 
for your understanding of modern ciphers, particularly symmetric ciphers we begin 
studying in Chap. 6. Information entropy is a critical concept that you must under-
stand before proceeding. You were also introduced to confusion and diffusion, 
Hamming distance, and Hamming weight. These concepts are going to be fre-
quently used in later chapters. There was also a significant coverage of what is a 
mathematical and scientific theory. Finally, the chapter ended with a basic coverage 
of binary math.

 Test Your Knowledge

 1. The difference in bits between two strings X and Y is called Hamming distance.
 2. If you take 1110 XOR 0101, the answer is _______.
 3. A change in one bit of plain text leading to changes in multiple bits of cipher text 

is called _______.
 4. The amount of information that a given message or variable contains is referred 

to as _______.
 5. _________ refers to significant differences between plain text, key, and cipher 

text that make cryptanalysis more difficult.
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Chapter 4
Essential Number Theory and Discrete 
Math

 Introduction

Much of cryptography depends on at least a working knowledge of number theory. 
You will see elements of it in some symmetric ciphers; however, it will be most 
applicable when you study asymmetric cryptography in Chaps. 9 and 10. You will 
discover that all asymmetric algorithms are simply applications of some facet of 
number theory. This leads us to the question of what is number theory. Traditionally, 
number theory has been the study of positive, whole numbers. The study of prime 
numbers is a particularly important aspect of number theory. Wolfram MathWorld 
describes number theory as follows:

Number theory is a vast and fascinating field of mathematics, sometimes called “higher 
arithmetic,” consisting of the study of the properties of whole numbers. Primes and prime 
factorization are especially important in number theory, as are a number of functions such 
as the divisor function, Riemann zeta function, and totient function. (Wolfram 2022)

This current chapter is designed to provide the reader just enough number theory 
that the cryptographic algorithms discussed later will be comprehensible. There are 
a dizzying number of tomes on the topic of number theory. Each of the topics in this 
chapter could certainly be expanded upon. If you are someone with a rigorous math-
ematical background, you may feel that some topics are given a rather abbreviated 
treatment. And in that, you would be correct. It should also be pointed out that there 
will be no mathematical proofs. In mathematics, proofs are foundational. Anyone 
actually pursuing mathematics must learn about proofs and understand proofs. 
However, our goals in this text can be met without such proofs.

While we will be pursuing number theory for its applications in cryptography, it 
is important to realize just how essential this topic is to the broader world of math-
ematics. Underwood Dudley described number theory as:

Mathematics exists mainly to give us power and control over the physical world, but it has 
always been so fascinating that it was studied for its own sake. Number theory is that sort 
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of mathematics: it is of no use in building bridges, and civilization would carry on much as 
usual if all of its theorems were to disappear, nevertheless it has been studied and valued 
since the time of Pythagoras. That greatest of mathematicians Carl Friedrich Gauss called 
it “The Queen of Mathematics,” and “Everybody’s Mathematics” is what the contemporary 
mathematician Ivan Niven calls it. (Dudley 2012)

Number theory is the gateway to understanding much broader areas of mathe-
matics. In fact, it will be helpful to study number theory before delving into Chap. 
5, where you will explore abstract algebra and linear algebra. While not absolutely 
necessary in order to study cryptography, it is my sincere hope that you find the 
topic of number theory as captivating as I do.

For those readers with a solid foundation in mathematics, this should be just a 
brief review. For those readers lacking in such a foundation, allow me to quote from 
the famed author Douglas Adams “Don’t Panic.” You will be able to understand the 
material in this chapter. Furthermore, this chapter will be sufficient for you to con-
tinue your study of cryptography. But keep in mind that if these topics are new to 
you, this chapter (along with Chap. 5) might be the most difficult chapters for you. 
You may wish to read the chapters more than once. I will also provide some study 
tips as we go through this chapter, directing you to some external sources should 
you feel you need a bit more coverage of a particular topic.

 In This Chapter We Will Cover

• Number systems
• Prime numbers
• Important number theory questions
• Modulus arithmetic
• Set theory
• Logic
• Combinatorics

 Number Systems

The first step in examining number theory is to get a firm understanding of number 
systems. In this section we will examine the various sets of numbers. You have prob-
ably encountered them at some point in your education, and this is likely to be just 
a refresher. While any symbol can be used to denote number groups, certain sym-
bols have become common. The following table summarizes those symbols.
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Symbol Description

N N denotes the natural numbers. These are also sometimes called the counting numbers. 
They are 1, 2, 3, etc.

Z Z denotes the integers. These are whole numbers −1, 0, 1, 2, etc.—the natural numbers 
combined with zero and the negative numbers

Q Q denotes the rational numbers (ratios of integers). Any number that can be expressed 
as a ratio of two integers. Examples are 3/2, 17/4, 1/5

P P denotes irrational numbers. Examples include √2
R R denotes the real umbers. This includes the rational numbers as well as irrational 

numbers
i i denotes imaginary numbers. These are numbers whose square is a negative

    � �1 1i

The preceding table summarizes number systems and their common symbol. Now, 
in the next few subsections, we can explore these systems in more detail.

 Natural Numbers

The obvious place to begin is with the natural numbers. These are so-called because 
they come naturally. That is to say that this is how children first learn to think of 
numbers. These are often also called counting numbers. Many sources count only 
the positive integers: 1, 2, 3, 4, etc., without including zero (Bolker 2012). Other 
sources include zero. In either case these are the numbers that correspond to count-
ing. If you look on your desk and count how many pencils you have, you can use 
natural numbers to accomplish this task.

Zero has a fascinating history. While to our modern minds the concept of zero 
may seem obvious, it actually was a significant development in mathematics. While 
there are some indications that the Babylonians might have had some concept of 
zero, it usually attributed to India. By at least the ninth century C.E., they were car-
rying out calculations using zero. If you reflect on that for a moment, you will real-
ize that zero as a number, rather than just a placeholder, was not known to ancient 
Egyptians and Greeks. In fact, it was the famous mathematician Fibonacci who 
brought the concept of zero to the western world in the early 1200s. This may seem 
a bit stunning to some readers. To the modern mind, zero is a self-evident concept. 
But clearly that was not the case. For many centuries, western civilization had no 
such mathematical concept.

 Integers

Eventually the natural numbers required expansion. While negative numbers may 
seem perfectly reasonable to you and I, they were unknown in ancient times. 
Negative numbers first appeared in a book from the Han Dynasty in China. In this 
book, the mathematician Liu Hui described basic rules for adding and subtracting 

Number Systems



78

negative numbers. In India, negative numbers first appeared in the fourth century 
C.E. and were routinely used to represent debts in financial matters by the seventh 
century C.E.

The knowledge of negative numbers spread to Arab nations, and by at least the 
tenth century C.E., Arab mathematicians were familiar with and using negative 
numbers. The famed book Al-jabr wa’l-muqabala written by Al-Khwarizmi, from 
which we derive the word algebra, did not include any negative numbers at all. As 
with the concept of zero, Fibonacci was one of the first Europeans to use negative 
numbers. However, he only used them in reference to debts.

 Rational Numbers

Number systems evolve in response to a need produced by some mathematical 
problem. Negative numbers, discussed in the preceding section, were developed in 
response to subtracting a larger integer from a smaller integer (i.e., 3 − 5). Rational 
numbers were first noticed as the result of division. In fact, the two symbols one 
learns for division in modern primary and secondary school are “÷” and “/.” Now 
that is not a mathematically rigorous definition, nor is it meant to be. A mathemati-
cal definition is any number that can be expressed as the quotient of two integers 
(Hua 2012). However, like many early advances in mathematics, the formalization 
of rational numbers was driven by practical issues.

 Irrational Numbers

Eventually the division of numbers led to results that could not be expressed as the 
quotient of two integers. The classic example comes from geometry. If one tries to 
express the ratio of a circles circumference to its radius, the result is an infinite 
number. It is often approximated as 3.14159, but the decimals continue on and no 
pattern repeats. Irrational number are sometimes repeating, but they need not be. As 
long as a number is a real number that cannot be expressed as the quotient of two 
integers, it is classified as an irrational number.

 Real Numbers

Real numbers is the superset of all rational numbers and all irrational numbers. It is 
likely that all the numbers you encounter on a regular basis are real numbers, unless 
of course you work in certain fields of mathematics or physics. And for quite a long 
time, these where considered to be the only numbers that existed. The set of real 
numbers is infinite.
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 Complex Numbers

Imaginary numbers developed in response to a specific problem. The problem 
begins with the essential rules of multiplications. If you multiple a negative with a 
negative, you get a positive. For example, −1 * −1 = 1. This becomes a problem if 
one considers the square root of a negative number. Clearly the square root of a 
positive number is also positive. √4 = 2, √1 = 1, etc. But what is the √−1? If you 
answer that it is −1, that won’t work. −1 * −1 gives us positive 1. This conundrum 
led to the development of imaginary numbers. Imaginary numbers are defined as 
follows: i2 = −1 (or conversely √−1 = i). So that the square root of any negative 
number can be expressed as some integer multiplied by i. A real number combined 
with an imaginary number is referred to as a complex number.

Imaginary numbers work in much the same manner as real numbers do. If you 
see the expression 4i, that denotes 4 * −1 . It should also be noted that the name 
imaginary number is unfortunate. These numbers do indeed exist and are useful in 
a number of contexts. For example, such numbers are often used in quantum physics 
and quantum computing.

Complex numbers are simply real numbers and imaginary together in an expres-
sion. For example:

 3 4+ i  

This is an example of a complex number. There is the real number 4, combined 
with the imaginary number i to produce 4i or 4 * −1 . Let us put this a bit more 
formally. A complex number is a polynomial with real coefficients and i for which 
i2 + 1 = 0 is true. You can perform all the usual arithmetic operations with complex 
numbers that you have performed with real numbers (i.e., rational numbers, irratio-
nal numbers, integers, etc.). Let us consider a basic example:

 

3 2 1 1

3 1 2 1

4 3

�� � � �� �
� �� � � �� �
� �

i i

i

i  

Here is another example, this time subtracting.

 

1 2 3 4

1 3 2 4

2 2

�� � � �� �
� �� � � �� �
� �

i i

i i

i  

As you can see, basic addition and subtraction with complex numbers are very 
easy. Multiplying complex numbers is also quite straightforward. We use the same 
method you probably learned in elementary algebra as a youth: FOIL or First, Outer, 
Inner, Last. This is shown in Fig. 4.1.
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Fig. 4.1 FOIL method

 � � � �ac adi cbi bdi2  

It is beneficial to examine a few concrete examples to ensure this concept is thor-
oughly understood. Let’s begin with:

 

2 2 3 2

2 3 2 2 2 3 2 2

6 4 6 4

6 10

2

�� � �� �
� �� � � �� � � �� � � �� �
� � � �
� �

i i

i i i i

i i i

i ��

� � � � � �� �
� �

4

6 10 4 1

2 10

2

2

i

i i

i

remember that

 

Let’s examine one more example before moving on:

 

3 2 2 2

3 2 3 2 2 2 2 2

6 6 4 4

6

2

�� � �� �
� �� � � ��� � � �� � � ��� �
� � � � � �
�

i i

i i i i

i i i

�� �
� � �
� �

2 4

6 2 4

10 2

2i i

i

i  

The next step would naturally seem to be to move on to division. However, 
before we do that, we must first explore another concept, the complex conjugate. 
This is something you will use frequently later in this book. Fortunately, this is very 
simple. The complex conjugate has the same real and imaginary parts, but with an 
opposite sign for the imaginary portion.

If we have a complex number, z, then the complex conjugate is usually denoted 
by either z  or z*. So, if you have:

 z i� �3 2  

then
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 z i� �3 2  

When dividing complex numbers, you multiply the numerator and denominator 
by the complex conjugate of the denominator. In general, this looks like what you 
see in Eq. 4.1:

Equation 4.1 Multiply by the complex conjugate

 

a

c

c

c

�
�

�
�
�

bi

di

di

di  

Recall that when multiplying, we use the FOIL (First, Outer, Inner, Last) method, 
so this becomes what is shown in Eq. 4.2.

Equation 4.2 Complex multiplication

 

a

c

c

c c

�
�

�
�
�

�
� � �
� � �

�
� � �bi

di

di

di

ac adi bci bdi

cdi cdi di

ac adi bci
2 2

bbdi

c d2 2�  

Let’s look at a concrete example to understand the process. We wish to divide 
2 + 3i by 5 + 2i. That gives us what is shown in Eq. 4.3.

Equation 4.3 Complex division

 

2 3

5 2

5 2

5 2

5 2 2 2 5 3 3 2

5 5 5 2 5

�
�

�
�
�

�
� � � �� � � � � � �� �

� �� � � �� � �
i

i

i

i

i i i i

i 22 2 2i i i� � � �� �  

Of course, that can be further simplified as shown in Eq. 4.4:

Equation 4.4 Simplification step 1

 
�

� � �
� � �

10 4 15 6

25 10 10 4

2

2

i i i

i i i  

Which is further simplified to what is shown in Eq. 4.5:

Equation 4.5 Simplification step 2

 

�
� � �� �

� �� �
� �� �10 19 6

25 4
12i

iremember

 

Which finally brings us to what is shown in Eq. 4.6.

Equation 4.6 The answer to division example
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�

�4 19

29

i

 

The first thing you should note is that by multiplying by the complex conjugate, 
we have removed the imaginary factor from the denominator. There is only one 
thing left to do, and that is put this into the form a + bi; thus we now have:

 

4

29

19

29
− i

 

So, at this point, you should be able to add, subtract, multiply, divide, and find 
the complex conjugate of complex numbers. You have the basic algebraic skills for 
complex numbers.

 Transcendental Numbers

Some would argue that transcendental numbers are not necessary for introductory 
cryptography. And I might be inclined to agree. However, you see such numbers 
with some frequency, and it is useful to have some understanding of what they are. 
These numbers are also not particularly difficult to understand. Transcendental 
numbers are numbers other than algebraic numbers. This of course begs the ques-
tion of what is an algebraic number, an algebraic number that is a root of a non-zero 
polynomial of some finite degree with rational coefficients. Algebraic numbers 
include both real numbers and complex numbers.

Two examples of transcendental numbers are π and e. However, there are actu-
ally infinitely many transcendentals (Fel’dman and Nesterenko 2013). One fact 
regarding real transcendental numbers is that they are irrational. However, the 
reverse is not true. Certainly not all irrational numbers are transcendental. A good 
example is 2 , because that is actually a root of the polynomial equation x2 − 2 = 0.

While Leonhard Euler was the first to define transcendental numbers as we now 
know them, the use of such numbers predates Euler. The use of the term transcen-
dental in reference to numbers stems from a 1682 paper by Leibniz in which he 
proved that sin x is not an algebraic function of x (Shafarevich and Fel’dman 1998).

Euler’s number is not only one of the more common examples of a transcenden-
tal number, but Leonhard Euler was one of the first to provide a definition of tran-
scendental numbers. He did so in the eighteenth century. It was Joseph Liouville in 
1844 who first provide the existence of transcendental numbers. In 1873 Charles 
Hermite proved that e was indeed a transcendental number. The famous mathemati-
cian David Hilbert proposed a number of problems. Hilbert’s seventh problem is 
stated as: If a is an algebraic number that is not zero or one, and b is an irrational 
algebraic number, is ab necessarily transcendental?
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 Prime Numbers

Prime numbers have a particular significance in cryptography. As we will see in 
later chapters, the RSA algorithm would simply not exist without an understanding 
and use of prime numbers. A prime number is defined as natural number greater 
than 1 that has no positive divisors other than itself and 1. Note that the number 1 
itself is not considered prime. There are a number of facts, conjectures, and theo-
rems in number theory related to prime numbers.

The fundamental theorem of arithmetic states that every positive integer can be 
written uniquely as the product of primes, where the prime factors are written in 
order of increasing size (Stopple 2003). The practical implication of this is that any 
integer can be factored into its prime factors. This is probably a task you had to do 
in primary school, albeit with relatively small integers. If you consider the funda-
mental theorem of arithmetic for just a moment, you can see that it is one (of many) 
indications of how important prime numbers are.

The next interesting thing to note about prime numbers is that there are an infi-
nite number of primes. This was first proven by Euclid; however, many other proofs 
of this have been constructed by mathematicians such as Leonhard Euler and 
Christian Goldbach. Though we know there are infinite prime numbers, how many 
are found in a given range of numbers is a more difficult question. For example, if 
you consider the number of primes between 1 and 10, there are four (2, 3, 5, and 7). 
Then between 11 and 20, there are four more (11, 13, 17, and 19). However, there 
are only 2 between 30 and 40 (31 and 37). In fact, as we go further and further 
through the positive integers, prime numbers become more sparse. It has been deter-
mined that the number of prime numbers less than x is approximately x/ln(x). 
Consider the number 10. The natural logarithm of 10 is approximately 2.302, 
10/2.302 = 4.34, and we have already seen there are 4 primes between 1 and 10. 
Euclid’s famous work “Elements” written around 300 BCE contained significant 
discussion of prime numbers including theorems regarding there being an infinite 
number of primes.

 Finding Prime Numbers

Now you understand what prime numbers are, you know they are infinite, and you 
know the general distribution of prime numbers. You will discover later in this book 
prime numbers are a key part of cryptographic algorithms such as RSA. So how 
does one generate a prime number? The obvious first thought, which may have 
occurred to you, is to simply generate a prime number and then check to see if it is 
prime. You can check by simply trying to divide that random number n by every 
number up to the square root of n. So, if I ask you if 67 is prime, you first try to 
divide it by 2, that does not work; then next by 3, that does not work; then by 4, that 
does not work; and so forth. In just a few moments you will find that yes indeed 67 
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is a prime number. That wasn’t so hard was it? And for a computer, it would be 
much faster. Unfortunately, in cryptographic algorithms, like RSA, we need much 
larger prime numbers. Modern RSA keys are a minimum of 2048 bits long and need 
two prime numbers to generate. Those prime numbers need to be very large. So 
simply generating a random number and using brute force to check if it is prime 
simply is not possible by hand and could take quite some time by computer. For this 
reason, there have been numerous attempts to formulate some algorithm that would 
consistently and efficiently generate prime numbers. Let us look at just a few.

 Mersenne Prime

Marin Mersenne was a French theologian who lived from September 8, 1588 to 
September 1, 1648. He made significant contributions to acoustics and music theory 
as well as mathematics. Mersenne believed that the formula 2p − 1 would produce 
prime numbers. Investigation has shown that this formula will produce prime num-
bers for p = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257, but not for many other numbers 
such as p = 4, 6, 8, 9, 10, 11, etc. His conjecture resulted in a prime of the form 
2p − 1 being named a Mersenne prime. By 1996, there were 34 known Mersenne 
primes, with the last 8 discoveries made on supercomputers. Clearly the formula 
can generate primes, but frequently does not. Any number of the format 2p − 1 is 
considered a Mersenne number. It so happens that if p is a composite number, then 
so is 2p − 1. If p is a prime number, then 2p − 1 might be prime (Riesel 2012). 
Mersenne originally thought all numbers of that form would be prime numbers.

 Fermat Prime

Pierre de Fermat, a mathematician of the seventeenth century, made many signifi-
cant contributions to number theory. Fermat also proposed a formula which he 
thought could be used to generate prime numbers. He believed that numbers of the 
format shown in the following equation would be prime.

 2 12n

+  

Several such numbers, particularly the first few powers of 2, are indeed prime. As 
you can see here:
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Unfortunately, just like Mersenne primes, not all Fermat numbers are prime. This 
was an attempt to produce a reliable algorithm for creating prime numbers that 
unfortunately failed.

 Eratosthenes Sieve

In some cases, the goal is not to generate a prime but to find out if a number is 
indeed a prime. We need some method(s) that are faster than simply trying to divide 
by every integer up to the square root of the integer in question. Eratosthenes sieve 
is one such method. Eratosthenes was the librarian at Alexandria, Egypt, in 
200  B.C.  He was also quite the mathematician and astronomer. He invented a 
method for finding prime numbers that is still used today. This method is called 
Eratosthenes’ sieve. Eratosthenes’s sieve essentially filters out composite integers in 
order to leave only the prime numbers (Helfgott 2020).

The method is actually rather simple:
To find all the prime numbers less than or equal to a given integer n by 

Eratosthenes’ method:

 1. Create a list of consecutive integers from 2 to n: (2, 3, 4, ..., n).
 2. Initially, let p equal 2, the first prime number.
 3. Starting from p, count up in increments of p and mark each of these numbers 

greater than p itself in the list. These will be multiples of p: 2p, 3p, 4p, etc.; note 
that some of them may have already been marked.

 4. Find the first number greater than p in the list that is not marked. If there was no 
such number, stop. Otherwise, let p now equal this number (which is the next 
prime), and repeat from step 3.

To illustrate, you can do this with a chart. Start with one such as the one shown in 
Fig. 4.2. For the purposes of demonstrating this concept, we are only concerning 
ourselves with numbers through 100.

The first step is to cross out the number 2 because it is prime and then cross out 
all multiples of 2, since they are, by definition, composite numbers. Following this 
sequence will eliminate several integers that we are certain are not prime numbers. 
You can see this in Fig. 4.3.

Now we do the same thing with 3 (since it is also a prime number) and for all 
multiples of 3. You can see this in Fig. 4.4.

You will notice that many of those are already crossed out, since they were also 
multiples of 2. You can skip 4, since it is a multiple of 2, and go straight to 5 and 
multiples of 5. Some of those (like 15) are also multiples of three or multiples of 2 
(like 10, 20, etc.) and are already crossed out. You can skip 6, 8, and 9 since they are 
multiples of numbers that have already been used; that leaves 7 and multiples of 7. 
Given that we are stopping at 100, you will find if you use 11 and multiples of 11 
that will finish your application of Eratosthenes sieve. Once you have crossed out 
multiples of 5, 7, and 11, what is left are prime numbers. Remember 1 is not prime. 
You can see this in Fig. 4.5.
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Fig. 4.2 Numbers 
through 100

Fig. 4.3 Eliminating 
multiples of 2

This can be a tedious process and is often implemented via a computer program. 
If you are going past 100, you just keep using the next prime number and multiples 
of it (13, 17, etc.).

 Other Sieves

There have been a number of more modern sieve systems developed. The Sieve of 
Atkin is one such sieve. It was developed in 2003 by Arthur Atkin and Daniel 
J. Bernstein. The sieve of Sundaram is another such algorithm for finding prime 
numbers. It was developed in the 1930s by the Indian mathematician S.P. Sundaram. 
The sieve of Sundaram is relatively simple so we will go into more detail on it here.

The first step is to start with a list of integers from 1 to some number n. Then 
remove all numbers of the form i + j + 2ij. The numbers i and j are both integers with 
1 ≤ i <≤ j and i + J + 2ij ≤ n. After you have removed those numbers, the remaining 
numbers are doubled and incremented by one, giving a list of the odd prime num-
bers below 2n + 2. Like the sieve of Eratosthenes, the sieve of Sundaram operates 
by removing composite numbers, leaving behind only the prime numbers.

4 Essential Number Theory and Discrete Math



87

Fig. 4.4 Eliminating 
multiples of 3

Fig. 4.5 The prime 
numbers that are left

 Lucas-Lehmer Test

This is a test designed to determine if a given number n is a prime number. It is a 
deterministic test of primality that works on Mersenne numbers. That means it is 
only effective for finding out if a given Mersenne number is prime. Remember a 
Mersenne number is one of the form 2p − 1. In the 1800s, French mathematician 
Edouard Lucas developed a primality test. In the early twentieth century, American 
mathematician Derrick Lehmer provided a proof of this test. The test is now called 
the Lucas-Lehmer test (Riesel 2012).

The term deterministic might not be entirely clear to some readers. Throughout 
the study of cryptography, you will encounter the terms deterministic and probabi-
listic. You will see this in reference to primality tests, pseudo random number gen-
erators, and other algorithms. The meanings of these two terms are fairly simple. 
The basic concept is that a probabilistic algorithm has a probability of giving the 
desired result, whereas a deterministic algorithm will give the desired result. In 
reference to primality testing, a probabilistic test can only tell you that a given num-
ber is probably prime; a deterministic test will tell you that it is definitely prime 
(or not).
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A number, called the Lucas-Lehmer number, is part of a sequence of numbers 
where each number is the previous number squared minus 2. So, if you start with 4, 
you will get the sequence shown here.
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The test is as follows:
For some p ≥ 3 which is itself a prime number, 2p − 1 is prime if and only if Sp − 1 

is divisible by 2p − 1.
Example: 25  –  1  =  31, so since S4  =  37,634 is divisible by 31, 31 must be a 

prime number.
This may be one of those areas where you are tempted to question the veracity of 

a claim I have made, in this instance, the reliability of the Lucas-Lehmer test. As I 
stated at the beginning of this chapter, we will not be demonstrating mathematical 
proofs. You can spend some time with this test, using various values of S to see for 
yourself that it does indeed work. That is certainly not the same as working out a 
proof but could give you some level of comfort that the test does, indeed, work.

 Relatively Prime

The concept of prime numbers, and how to generate them, is critical to your study 
of cryptography. There is another topic you should be familiar with; that is the con-
cept of numbers that are relatively prime, also often called co-prime. The concept is 
actually pretty simple. Two numbers x and y are relatively prime (co-prime) if they 
have no common divisors other than 1. So, for example, the number 8 and 15 are 
co-prime. The factors of 8 are 1, 2, and 4. The factors of 15 are 1, 3, and 5. Since 
these two numbers (8 and 15) have no common factors other than 1, they are rela-
tively prime. There are lots of interesting facts associated with co-prime numbers. 
Many of these facts were discovered by Leonhard Euler.

Leonhard Euler asked a few simple questions about co-prime numbers. The first 
question he asked was, given an integer n, how many numbers are co-prime to n? 
That number is called Euler’s totient or simply the totient. The symbol for the totient 
of a number is shown in Fig. 4.6.

The term for the integers that are smaller than n and have no common factors 
with n (other than 1) is totative. For example, 8 is a totative of 15. Another term for 
Euler’s totient is the Euler phi function.

The story of Euler’s totient is emblematical of much of mathematics. Euler intro-
duced this function in 1793. For many years after his death, there was no practical 

Fig. 4.6 Euler’s totient
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application for this concept. In fact, there was no practical use for it until modern 
asymmetric cryptography in the 1970s, almost 200 years later. This is one example 
of pure mathematics that later is found to have very important practical applications.

The next question Euler asked was, what if a given integer, n, is a prime number? 
How many totatives will it have (i.e., what is the totient of n)? Let us take a prime 
number as an example, for example, 7. Given that it is prime, we know that none of 
the numbers smaller than it have any common factors with it. Thus, 2, 3, 4, 5, and 6 
are all totatives of 7. And since 1 is a special case, it is also a totative of 7, so we find 
there are six numbers that are totatives of 7. It turns out that for any n that is prime, 
the Euler’s totient of n is n − 1. Therefore, if n = 13, then the totient of n is 12. And 
then Euler asked yet another question about co-prime numbers. Let us assume you 
have two prime numbers m and n. We already know that the totient of each is m − 1 
and n − 1, respectively. But what happens if we multiply the two numbers together? 
If we multiply m * n and get k, what is the totient of k? Well, you can simply test 
every number less than k and find out. That might work for small values of k but 
would be impractical for larger values. Euler discovered a nice shortcut. He found 
that if you have two prime numbers (m and n) and multiplied them together to get k, 
the totient of that k was simply the totient if m * the totient of n. Put another way, 
the totient of k is (m − 1)(n − 1).

Let us look at an example. Assume we have to prime numbers m = 3 and m = 5.

 1. If we multiply them together, we have k = 15.
 2. Totient of n = n − 1 or 2.
 3. The totient of m is m − 1 or 4.
 4. 2 * 4 gives us 8.
 5. The totient of k (15) is 8.

15 is a small enough number we can test it. What are its factors (other than 1)? 3 
and 5, which means it has common factors with any multiple of 3 or 5 smaller than 
15: 3, 6, 9, 12, 5, and 10. So what numbers does it not have common factors with? 
1, 2, 4, 7, 8, 11, 13, and 14. And if you take a moment to count those, you will see 
there are eight. Of course, Euler relied on rigorous mathematical proofs, which we 
are foregoing in this chapter, but hopefully this example provides you with a com-
fort level regarding calculating totients.

Now all of this may sound rather obscure, even unimportant to some readers. 
However, these facts are a very big part of the RSA algorithm which we will be 
examining in some depth in Chap. 10. In fact, when you first see the RSA algorithm, 
you will see several elements we have discussed in this section.

 Important Operations

Some mathematical operations are critical to even a basic understanding of modern 
cryptographic algorithms. Readers with a solid foundation of mathematics should 
already be familiar with these operations, but in case you are not, we will briefly 
introduce you to them in this section.
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 Divisibility Theorems

There are some basic facts about divisibility that you should be aware of. These 
define some elementary facts regarding the divisibility of integers. For integers a, b, 
and c, it is true that:

If a | b and a | c, then a | (b + c). Example: 3 | 6 and 3 | 9, so 3 | 15.
If a | b, then a | bc for all integers c. Example: 5 | 10, so 5 | 20, 5 | 30, 5 | 40.
If a | b and b | c, then a | c. Example: 4 | 8 and 8 | 24, so 4 | 24.

These are basic divisibility theorems. You will see them applied in later chapters in 
specific cryptographic algorithms. It is recommended that you commit them to 
memory before proceeding.

 Summation

You have probably seen the summation symbol frequently: ∑. If not, you will see it 
later in this book. It is basically a way of adding a sequence of numbers in order to 
get their sum. Any intermediate result, at any given point in the sequences, is a par-
tial sum (sometimes called a running total or prefix sum). The numbers that are to 
be added up are often called addends or sometimes summands (Neukirch 2013). 
They can be any numbers, but in cryptography, we will most often be interested in 
summing integers.

A basic example is shown in Fig. 4.7.
What this figure is stating is that we are dealing with some integer i. Begin with 

the value of i set to 1. Add up the i values from 1 until you reach 100. It is more 
convenient to use the summation symbol rather than expressly write out the summa-
tion of a long series of values. The notation you see used in Fig. 4.7 is often called 
the capital sigma notation as the ∑ is the sigma symbol.

The letter to the right of the summation symbol is the variable we are dealing 
with. The number under the summation is the initial value of that variable. Finally, 
the number over the summation symbol (often denoted with an n) is the stopping 
point. You can manually add these numbers up 1 + 2 + 3 + 4...100 if you wish. 
However, there is a formula that will compute this summation:

 
n n �� �� �1 2/

 

In our example, that is

 
100 101 2 5050� �� � �/

 

Fig. 4.7 Summation
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A similar operation can be done with multiplication using the pi symbol ∏. This 
symbol works exactly like the capital Sigma notation; however, rather than adding 
up the series to arrive at a sum, you multiply the series in order to arrive at a product.

 Logarithms

Logarithms play a very important role in asymmetric cryptography. There is an 
entire class of asymmetric algorithms that are based on what is called the discrete 
logarithm problem. Most readers encountered logarithms during secondary school. 
The logarithm of a number is simply the exponent to which some fixed value (called 
the base) must be raised to produce that number. Let’s assume base 10 and ask what 
is the logarithm of 10,000. Well what number must 10 be raised to in order to pro-
duce the number 10,000? The answer is 4, 104 = 10,000.

In our example we used base 10. Most people are quite comfortable with base 10. 
It is known as the common logarithm in mathematics. However, you can use any 
base you might wish. For example, if you wanted to ask what the logarithm is of 
16 in base 2, you would write that as log2(16). Remember that you are asking what 
power must 2 be raised to, to get 16. The answer is 4, 24 = 16.

 Natural Logarithm

The natural logarithm, denoted as ln, is very widely used in math and science. 
Natural logarithms use the irrational number e (approximately 2.718) as the base. 
The natural logarithm of some number x is usually written as ln x but can be written 
as loge x. As with any logarithm, the natural log is what power e must be raised to in 
order to give some particular number.

The basic concept of the natural logarithm was developed by Grègoire de Saint- 
Vincent and Alphonse Antonio de Sarasa in the early seventeenth century. They 
were working on problems involving hyperbolic sectors. For those readers who are 
new to logarithms and/or natural logs, this brief treatment might not leave you fully 
confident in your understanding. Fortunately, there are two online tutorials you may 
wish to consult to get more on these topics. The first is Purplemath http://www.
purplemath.com/modules/logs3.htm. The second is BetterExplained http://betterex-
plained.com/articles/demystifying- the- natural- logarithm- ln/

 Discrete Logarithm

Now that you have a basic grasp of logarithms and even natural logs, we can turn 
our attention to discussing discrete logarithms. These play an important role in algo-
rithms we will explore in Chaps. 10 and 11. To understand discrete logarithms, keep 
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in mind the definition of a logarithm. It is the number to which some base must be 
raised to get another number. Discrete logarithms ask this same question but do so 
in regard to a finite group. In Chap. 5, we will take up the concept of groups in much 
more detail.

Put more formally a discrete logarithm is some integer k that solves the equation 
xk  =  y, where both x and y are elements of a finite group (Vinogradov 2016). 
Computing a discrete logarithm is a very difficult problem, which is why discrete 
logarithms form the basis for some modern cryptographic algorithms. We will take 
up this topic again in Chap. 10 when we discuss specific algorithms, and after we 
have discussed groups in Chap. 5. For now, you should note that a discrete loga-
rithm is, essentially, a logarithm within some finite group.

 Modulus Operations

Modulus operations are important in cryptography, particularly in RSA. Let us 
begin with the simplest explanation and then later delve into more details. To use the 
modulus operator, simply divide A by N and return the remainder.

 Thus5 2 1mod =  

 And12 5 2mod =  

This explains how to use the modulus operator, and in many cases, this is as far 
as many programming textbooks go. But this still leaves the question of why are we 
doing this? Exactly what is a modulus? One way to think about modulus arithmetic 
is to imagine doing any integer math you might normally do but bound your answers 
by some number. A classic example is the clock. It has numbers 1 through 12, so any 
arithmetic operation you do has to have an answer that is 12 or less. If it is currently 
4 o’clock and I ask you to meet me in 10 hours, simple math would say I am asking 
you to meet me at 14 o’clock. But that is not possible; our clock is bounded by the 
number 12! The answer is simple, take your answer and use the mod operator with 
a modulus of 12 and look at the remainder.

 14 12 2mod =  

I am actually asking you to meet me at 2 o’clock (whether that is a.m. or p.m. 
depends on which the original 4 o’clock was, but that is really irrelevant to under-
standing the concepts of modular arithmetic). This is an example of how you use 
modular arithmetic every day. The clock example is widely used; in fact, most text-
books rely on that example. It is intuitive, and most readers will readily grasp the 
essential point of modular arithmetic. You are performing arithmetic bounded by 
some number, which is called the modulus. In the clock example, the modulus is 12, 
but one can perform modular arithmetic using any integer as the modulus.
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While the basic concepts of modular arithmetic dates back to Euclid who wrote 
about modular arithmetic in his book Elements, the modern approach to modular 
arithmetic was published by Carl Gauss in 1801

 Congruence

Congruence in modulus operations is a very important topic, and you will see it 
applied frequently in modern cryptographic algorithms. We saw this earlier in Chap. 
1 and stated then that we would explain it more detail later. Now is the time to more 
fully explore this concept.

Two numbers a and b are said to be “congruent modulo n” if

 
a n b n a b nmod mod mod� � � � � � � � �  

The symbol ≡ is used to denote congruence in mathematics. In many program-
ming languages, the % symbol is used to perform the modulo operation (i.e., to 
divide the first number by the second, and only return the remainder).

It should be noted that if two numbers are congruent modulo n, then the differ-
ence between a and b will be some multiple of n. To make this clear, let us return to 
the clock analogy used earlier in this chapter. 14 and 2 are congruent modulo. And 
it turns out that the difference between 14 and 2 is 12, a multiple of n (1 × 12). We 
also know that 14, or 1400 hours on the 24-hour clock, is 2 o’clock. So, when we 
say that 14 and 2 are congruent modulo 12, we are stating that, at least in reference 
to modulo 12, 14 and 2 are the same. Look at another example; 17 and 5 are congru-
ent modulo 12. And the difference between them is 12. And again, using the 24-hour 
clock to test our conclusions, we find that 1700 hours is the same as 5 p.m.

There are some basic properties of congruences that you should be aware of:

 

a b n n a b

a b n b a n

a b n b c

� � � �� �
� � � � � �
� � � �

mod

mod mod

mod m

if

implies

and ood modn a c n� � � � �imply
 

 Congruence Classes

A congruence class is a group of numbers that are all congruent for some given 
modulus. Another name for congruence classes is residue class. So, let us consider 
an example where the modulus is 5. What numbers are congruent modulo 5? Let’s 
begin with 7. 7 mod 5 = 2. So now we ask what other numbers mod 5 = 2. We will 
arrive at an infinite series of numbers 12, 17, 22, 27, 32, etc. (Weil 2013). You 
should also note that this works the other way (i.e., with integers smaller than the 
modulus, including negatives). We know that 7 mod 5 = 2, but 2 mod 5 = 2 (the 
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nearest multiple of 5 would be 0; 0 * 5, thus 2 mod 5 = 2). Make sure you fully 
understand why 2 mod 5 = 2, then we can proceed to examine negative numbers. 
Our next multiple of 5 after 0, going backward, is −5 (5 * −1). So, −3 mod 5 = 2. 
We can now expand the elements of our congruence class to include −3, 0, 2, 7, 12, 
17, 22, 27, 32, etc.

You should also note that for any modulus n, there are n congruence classes. If 
you reflect on this for just a moment, you should see that the modulus itself creates 
a boundary on the arithmetic done with that modulus, so it is impossible to have 
more congruence classes than the integer value of the modulus. Modulus operations 
are very important to several asymmetric cryptography algorithms that we will be 
examining in Chap. 10. So, make certain you are comfortable with these concepts 
before proceeding.

 Famous Number Theorists and Their Contributions

When learning any new topic, it is often helpful to review a bit of its history. In some 
cases, this is best accomplished by examining some of the most important figures in 
that history. Number theory is replete with prominent names. In this section I have 
restricted myself to just a brief biography of those mathematicians whose contribu-
tions to number theory are most relevant to cryptography.

 Fibonacci

Leonardo Bonacci (also known as Fibonacci) lived from 1170 until 1250 and was 
an Italian mathematician. He made significant contributions to mathematics. He is 
most famous for the Fibonacci numbers. Fibonacci numbers represent an interesting 
sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, etc.

The sequence is derived from adding the two previous numbers. To put that in a 
more mathematical format

 Fn Fn Fn� � � �1 2  

Therefore, in our example, we see that 2 is 1 + 1; 3 is 2 + 1; 5 is 3 + 2; 8 is 5 + 3; etc.
The sequence continues infinitely. Fibonacci numbers were actually known in 

India but unknown in Europe until Fibonacci discovered them. He published this 
concept in his book Liber Abaci. This number series has many interesting applica-
tions; for our purposes, the most important is its use in pseudo random number 
generators which we will be exploring in Chap. 12.

Fibonacci was the son of a wealthy merchant and was able to travel extensively. 
He spent time traveling the Mediterranean area studying under various Arab 
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mathematicians. In his aforementioned book Liber Abaci, he also introduced Arabic 
numerals which are still widely used today.

 Fermat

Pierre de Fermat (pronounced “ferm a ”) lived in the first half of the seventeenth 
century. He was trained as a lawyer and was an amateur mathematician, though he 
made significant contributions to mathematics. He did work in analytical geometry 
and probability but is probably best known for several theorems in number theory, 
which we will take a brief look at.

Fermat’s little theorem states that if p is a prime number, then for any integer a, 
the number ap − a is an integer multiple of p. What does this mean? It may be best 
for us to examine an example. Let us take a = 2 and p = 5. This gives us 25 or 32. 
32–2 is 30, which is indeed a multiple of p (5). This actually turns into a primality 
test. If you think P is a prime number, then test it. If it is prime, then ap − a should be 
an integer multiple of p. If it is not, then p is not prime.

Let us test this on some numbers we know are not prime. Use p  =  8. 
28–2 = 256–2 = 250. 250 is not an integer multiple of 9; therefore, 9 is not prime. 
This is an example of how various aspects of number theory, that might not at first 
appear to have practical applications, can indeed be applied to practical problems. 
This theorem is usually expressed in a modulus format, which we discussed previ-
ously in this chapter.

Fermat first articulated this theorem in 1640, wording his theorem as follows:
p divides ap − 1 − 1 whenever p is prime and a is co-prime to p.
Fermat is perhaps best known for Fermat’s Last Theorem, sometimes called 

Fermat’s conjecture. This theorem states that no three positive integers (x, y, z) can 
satisfy the equation xn + yn = cn for any n that is greater than 2. Put another way, if 
n > 2, then there is no integer to the n power that is the sum of two other integers to 
the n power. Fermat first proposed this in 1637, actually in handwritten notes in the 
margin of his copy of Arithmetica. He claimed to have a proof that would not fit in 
the margin, but to date, no one has ever found Fermat’s proof. However, in subse-
quent years, mathematicians have provided proofs of this theorem. Andrew Wiles in 
1994 provided such a proof.

 Euler

Leonhard Euler is an important figure in the history of mathematics and number 
theory. Let us begin by properly pronouncing his name. To an American, the spell-
ing might seem to indicate it should be pronounced like “you ler,” but in fact, it is 
pronounced like “oil er.” Euler is considered one of the best mathematicians of all 
time and certainly the pinnacle of eighteenth-century mathematics.
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Euler was born on April 15, 1707, in Switzerland. His father was a pastor of a 
church. As a child, his family was friends with the Bernoulli family. One of the 
Bernoullis, Johann Bernoulli, was a prominent mathematician of the time. Euler’s 
contributions to mathematics are very broad. He worked in algebra, number theory, 
physics, and geometry. The number e you probably encountered in elementary cal-
culus courses (approximately 2.7182), which is the base for the natural logarithm, 
is named after Euler, and the Euler-Mascheroni constant is also named after Euler.

Leonhard Euler was responsible for the development of infinitesimal calculus 
and provided proofs for Fermat’s little theorem, as well as inventing the totient func-
tion you encountered earlier in this chapter. He also made significant contributions 
to graph theory. We will be discussing graph theory later in this chapter in reference 
to discrete mathematics. Incidentally Euler also provided a proof of Fermat’s little 
theorem. In addition to these achievements, Euler is widely considered the father of 
modern graph theory.

 Goldbach

Christian Goldbach lived from March 18, 1690 until November 20, 1765. He was 
trained as a lawyer but is remembered primarily for his contributions to number 
theory. It is reported that he had me with a number of famous mathematicians, 
including Euler. While he made other contributions to number theory, he is best 
remembered for Goldbach’s conjecture which, at least as of this writing, is an 
unsolved mathematical problem. The conjecture can be worded quite simply:

Every integer greater than 2 can be expressed as the sum of two prime numbers.
For small numbers, this is easy to verify (though the number 3 immediately poses a 

problem as mathematicians don’t generally consider 1 to be prime).

 

4 2 2

5 3 2

6 3 3

� �
� �
� �

both primes

both primes

both primes  

While this has been shown for very large numbers, and no exception has been found, 
it has not been mathematically proven.

 Discrete Mathematics

As you saw in our discussion of number theory, some numbers are continuous. For 
example, real numbers are continuous. What I mean by that statement is that there 
is no clear demarcation point. As one example, 2.1 and 2.2 can be further divided 
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into 2.11, 2.12, 2.13...2.2. And even 2.11 and 2.11 can be further divided into 2.111, 
2.112, 2.113...2.12. This process can continue infinitely. The calculus deals with 
continuous mathematics. One of the most basic operations in calculus, the limit, is 
a good example of this. Discrete mathematics, however, is concerned with those 
mathematical constructs that have clearly defined (i.e., discrete) boundaries. You 
can probably already surmise that integers are a major part of discrete mathematics, 
but so are graphs and sets.

 Set Theory

Set theory is an important part of discrete mathematics. A set is a collection of 
objects which are called the members or elements of that set. If we have a set, we 
say that some objects belong (or do not belong) to this set and are (or are not) in the 
set. We say also that sets consist of their elements.

As with much of mathematics, terminology and notation are critical. So, let us 
begin our study in a similar fashion, building from simple concepts to more com-
plex. The most simply I can think of is defining an element of a set. We say that x is 
a member of set A (Balakrishnan 2012). This can be denoted as

 x A∈  

Sets are often listed in brackets. For example, the set of all odd integers <10 
would be shown as follows:

 
A , , , ,� � �13 5 7 9

 

And a member of that set would be denoted as follows:

 3∈A  

Negation can be symbolized by a line through a symbol. For example:

 2∉A  

2 is not an element of set A.
If a set is not ending, you can denote that with ellipses. For example, the set of 

all odd numbers (not just those less than 10) can be denoted

 
A � �� �1 3 5 7 9 11, , , , , ,

 

You can also denote a set using an equation or formula that defines membership in 
that set.

Discrete Mathematics



98

Sets can be related to each other; the most common relationships are briefly 
described here:

Union:  If you have two sets A and B, elements that are a member of A, B, or both 
represent the union of A and B, symbolized as A  ∪ B.
Intersection:  If you have two sets A and B, elements that are in both A and B are 
the intersection of sets A and B, symbolized as A ∩ B. If the intersection of set A and 
B is empty (i.e., the two sets have no elements in common), then the two sets are 
said to be disjoint.
Difference:  If you have two sets A and B, elements that are in one set, but not 
both, are the difference between A and B. This is denoted as A\B.
Compliment:  Set B is the compliment of set A if B has no elements that are also 
in A. This is symbolized as B = Ac.
Double compliment:  The compliment of a sets compliment is that set. In other 
words, the compliment of Ac is A. That may seem odd at first read but reflect on the 
definition of the compliment of a set for just a moment. The compliment of a set has 
no elements in that set. So, it stands to reason that to be the compliment of the com-
pliment of a set, you would have to have all elements within the set.

These are basic set relationships. Now a few facts about sets:

Order is irrelevant:  {1, 2, 3} is the same as {3, 2, 1} or {3, 1, 2} or {2, 1, 3}.
Subsets:  Set A could be a subset of Set B. For example, if set A is the set of all odd 
numbers <10 and set B is the set of all odd numbers <100, then set A is a subset of 
set B. This is symbolized as A ⊆ B.
Power set:  As you have seen, sets may have subsets. Let us consider set A as 
all integers less than 10. Set B is a subset; it is all prime numbers < 10. Set C is a 
subset of A; it is all odd numbers <10. Set D is a subset of A; it is all even numbers 
less than 10. We could continue this exercise making arbitrary subsets such as 
E = {4, 7}, F {1, 2, 3}, etc. The set of all subsets for a given set is called the power 
set for that set.

Sets also have properties that govern the interaction between sets. The most impor-
tant of these properties are listed here:

Commutative Law:  The intersection of set A with set B is equal to the inter-
section of set B with set. The same is true for unions. Put another way, when consid-
ering intersections and unions of sets, the order the sets are presented in is irrelevant. 

That is symbolized as seen here: 
a A B B A

b A B B A

� � � � �

� � � � �

Associative Law:  Basically, if you have three sets and the relationships between all 
three are all unions or all intersections, then the order does not matter. This is sym-
bolized as shown here:

a A B C A B C

b A B C A B C

� � �� �� � � �� �
� � �� �� � � �� �
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Distributive Law:  The distributive law is a bit different than the associa-
tive, and order does not matter. The union of set A with the intersection of B and C 
is the same as taking the union of A and B intersected with the union of A and 
C. This is symbolized as you see here:

a A B C A B A C

b A B C A B A C

� � � �� � � �� �� �� �
� � � �� � � �� �� �� �
De Morgan’s Laws:  These govern issues with unions and intersections and 
the compliments thereof. These are more complex than the previously discussed 
properties. Essentially the compliment of the intersection of set A and set B is the 
union of the compliment of A and the compliment of B. The symbolism of De 
Morgan’s Laws is shown here:

a A B A B

b A B A B

c c c

c c c

� � �� � � �

� � �� � � �

These are the basic elements of set theory. You should be familiar with them 
before proceeding.

 Logic

Logic is an important topic in mathematics as well as in science and philosophy. In 
discrete mathematics, logic is a clearly defined set of rules for establishing (or refut-
ing) the truth of a given statement. While we won’t be delving into mathematical 
proofs in this book, should you choose to continue your study of cryptography, at 
some point you will need to examine proofs. The formal rules of logic are the first 
steps in understanding mathematical proofs.

Logic is a formal language for deducing knowledge from a small number of 
explicitly stated premises (or hypotheses, axioms, facts). Some of the rules of logic 
we will examine in this section might seem odd or counter intuitive. Remember that 
logic is about the structure of the argument, not so much the content. Before we 
begin, I will need to define a few basic terms for you:

Axiom:  An axiom is something assumed to be true. Essentially one has to start 
from somewhere. Now you could, like the philosopher Descartes, begin with “I 
think therefore I am” (e cogito ergo sum), but that would not be practical for most 
mathematical purposes. So, we begin with some axiom that is true by definition. For 
example, any integer that is only evenly divisible by itself and 1 is considered to be 
prime. That is an axiom. Another word for axiom is premise.
Statement:  This is a simple statement that something is true. For example, “3 
is a prime number” is a statement; “16 is 3 cubed” is a statement.
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Argument:  An argument is just a sequence of statements. Some of these 
statements, the premises, are assumed to be true and serve as a basis for accepting 
another statement of the argument, called the conclusion.
Proposition:  This is the most basic of statements. For example, if I tell you that 
I am either male or female, that is a proposition. If I then tell you I am not female, 
that is yet another proposition. If you follow these two propositions, you arrive at 
the conclusion that I am male. A proposition is a statement that is either true or not. 
Some statements have no truth value and therefore cannot be propositions. For 
example, “stop doing that!” does not have a truth value and therefore is not a 
proposition.

The exciting thing about formal logic is that if one begins with a premise that is 
true, and faithfully adheres to the rules of logic, then one will arrive at a conclusion 
that is true. Preceding from an axiom to a conclusion is deductive reasoning. This is 
the sort of reasoning often used in mathematical proofs. Inductive reasoning is gen-
eralizing from a premise. Inductive reasoning can suffer from overgeneralizing. We 
will be focusing on deductive logic.

 Propositional Logic

Previously you saw the definition for a proposition. You may also recall that I told 
you that mathematical logic is concerned with the structure of an argument, regard-
less of the content. This leads us to common method of presenting logic in text-
books, that is, to ignore actual statements and to put letters in their place. Often the 
letters p and q can be used. P and q might represent any propositions you might wish 
to make. For example, p could denote “The author of this book has a gray beard,” 
and q could denote “The author of this book has no facial hair.” Considering these 
two propositions, it is not possible for both to be true.

P or q is true.
It is impossible that p and q are true.
It is certainly possible that not p is true
And it is possible that not q is true.
There are symbols for each of these statements (as well as other statements you 

could make). It is important to become familiar with basic logic symbolism. 
Table 4.1 gives you an explanation of the most common symbols used in deduc-
tive logic.

Table 4.1 is not an exhaustive list of all symbols in logic, but these are the most 
commonly used symbols. Make certain you are familiar with these symbols before 
proceeding with the rest of this section. Several of the symbols given above are what 
are termed connectives. That just means they are used to connect two propositions. 
There are some basic rules for connectives, shown in Table 4.2.

A few basic facts about connectives are given here:

Expressions either side of a conjunction are called conjuncts (p∧q).
Expressions either side of a disjunction are called disjuncts (p∨q).
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Table 4.1 Symbols used in deductive logic

Symbol Meaning

∧ This is the and symbol. Sometimes represented with a . or &. For example, p ∧ q 
means that both p and q are true. This is often called the conjunction of p and q

∨ This is the or symbol. Sometimes represented with a + or ||. For example, p ∨ q means 
that either p is true, or q is true, or in both are true. This is often called the disjunction 
of p and q

∨ This is the exclusive or symbol. For example, p ∨ q means that either p is true, or q is 
true, or in both are true

∃ This symbol means “there exits.” For example: ∃ some p such that p ∧ q
Read that as “There exists some p such that p and q are both true.” Examples: ∃ x 
“there is an x” or “there exists an x”

∃! This symbol means “there exists exactly one”
∀ This symbol means “for every.” Examples: ∀ x “for every x,” or “for all x”
⊥ This symbol denotes a contradiction
→ This symbol means “implies,” for example, p → q means that “if p is true, that implies 

that q is true”
¬ This symbol denotes negation or “not.” Sometimes symbolized with!.

Table 4.2 Connectives

Connective Interpretation

¬ Negation ¬p is true if and only if p is false
∧ A conjunction p ∧ q is true if and only if both p and q 

are true
∨ A disjunction p ∨ q is true if and only if p is true or q 

is true
⇒ An implication p ⇒ q is false if and only if p is true 

and q is false

In the implication p ⇒ q, p is called the antecedent and q is the consequence.
The order of precedence with connectives is: Brackets, Negation, Conjunction, 

Disjunction, Implication.

 Building Logical Constructs

Now that you are familiar with the basic concepts of deductive logic, and you know 
the essential symbols, lets practice converting some textual statements into logical 
structures. That is the first step to applying logic to determining the veracity of the 
statements. Consider this sample sentence:

Although both John and Paul are amateurs, Paul has a better chance of winning the golf 
game, despite John’s significant experience.
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Now let us restate that using the language of deductive logic. First, we have to 
break this long statement down into individual propositions and assign each to some 
variable.

p: John is an amateur.
q: Paul is an amateur.
r: Paul has a better chance of winning the golf game.
s: John has significant golf experience.

We can now phrase this in symbols.

 
p q r s�� � � �

 

This sort of sentence does not lend itself easily to deducing truth, but it does give us 
an example of how to take a sentence and rephrase it with logical symbols.

 Truth Tables

Once you have grasped the essential concepts of propositions and connectives, the 
next step is to become familiar with truth tables. Truth tables provide a method for 
visualizing the truth of propositions.

Here is a simple one. Keep in mind that the actual statement is irrelevant, just the 
structure. But if it helps you to grasp the concept, we will have p be the proposition 
“you are currently reading this book.”

Proposition Counter

P ¬ P
T F
F T

What this table tells us is that if P is true, then not P cannot be true. It also tells us 
that if P is false, then not P is true. This example is simple, in fact trivial. All this 
truth table is doing is formally and visually telling you that either you are reading 
this book, or you are not, and both cannot be true at the same time. With such a 
trivial example, you might even wonder why anyone would bother using a truth 
table to illustrate such an obvious fact. In practice, one probably would not use a 
truth table for this example. However, due to the ease most readers will have with 
comprehending the simple fact that something is either true or not, this makes a 
good starting point to learn about truth tables. Some of the tables we will see in just 
a few moments will not be so trivial.

Next let us examine a somewhat more complex truth table, one that introduces 
the concept of a conjunction. Again, the specific propositions are not important.

p q p ∧ q

T T T
T F F
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p q p ∧ q

F T F
F F F

This truth table illustrates the fact that only if p is true and q is true will p ∧ q be true.
What about a truth table for disjunction (the or operator)?

p q p ∨ q

T T T
T F T
F T T
F F F

As you can see that truth table shows us, quite clearly, what we stated earlier about 
the or (disjunction) connective.

The exclusive or operation is also interesting to see in a truth table. Recall that 
we stated either p is true, or q is true, but not both.

p q p ∨ q

T T F
T F T
F T T
F F F

Next, we shall examine implication statements. Consider p → q. This is read as p 
implies q. The term implies, in logic, is much stronger than in vernacular speech. 
Here it means that if you have p, you will have q.

p q p → q

T T T
T F F
F T F
F F T

The previous truth tables were so obvious as to not require any extensive expla-
nation. However, this one may require a bit of discussion. The first row should make 
sense to you. If we are stating that p implies q, and we find that p is true and q is true, 
then yes, our statement p implies q is true. The second one is also obvious. If p is 
true, but q is not, then p implies q cannot be true. But what about the last two rows? 
We are stating that p implies q; however, in row three, we see q is true, but p is not. 
Therefore, not p implies q, so our statement that p implies q is not true. In the fourth 
row, if have not p and not q, then p implies q is still true. Nothing in p being false 
and q being false invalidates our statement that p implies q.
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 Combinatorics

Combinatorics is exactly what the name suggests; it is the mathematics behind how 
you can combine various sets. Combinatorics answers questions such as how many 
different ways can you choose from four colors to paint six rooms? How many dif-
ferent ways can you arrange four flowerpots? Before such questions can be 
answered. As you can probably surmise, combinatorics, at least in crude form, is 
very old. Greek historian Plutarch mentions combinatorial problems, though he did 
not use the language of mathematics we use today. The Indian mathematician 
Mahavira, in the ninth century, actually provided specific formulas for working with 
combinations ad and permutations (Hunter 2017). It is not clear if he invented them, 
or simply documented what he had learned from other mathematicians

There are general problems that combinatorics addresses. These include the exis-
tence problem which asks if a specific arrangement of objects exits. The counting 
problem is concerned with finding the various possible arrangements of objects 
according to some requirements. The optimization problems is concerned with find-
ing the most efficient arrangements.

Let us begin our discussion with a simple combinatorics problem. Let’s assume 
that you are reading this textbook as part of a university course in cryptography. Let 
us further assume that the class has 30 students. Of those students, there are 15 
computer science majors and 15 students majoring in something else; we will call 
these “other.”

It should be obvious that there are 15 ways you can choose a computer science 
major from the class and 15 ways you can choose an “other.” This gives us 15 × 15 
ways of choosing a student from the class. But what if we need to pick a student that 
is either a computer science major or an “other.” This gives us 15 + 15 ways of 
choosing. You may be wondering why one method gave us multiplication and the 
other gave us addition. The first two rules you will learn about in combinatorics are 
the multiplication rule and the addition rule.

The multiplication rule: Assume there is a sequence of r events that we will call 
the events E1, E2, etc. There are n ways in which a specific event can occur. The 
number of ways an event occurs does not depend on the previous event. This means 
we must multiply the possible events. In our example, the event was selecting one 
of the students, regardless of major. So, we might select one from computer science 
or we might select one from “other.” The multiplication rule is sometimes called the 
rule of sequential counting.

The addition rule: Now suppose there are r events E1, E2, etc. such that there are 
n possible outcomes for a given event, but further assume that no two events can 
occur simultaneously. This means we will use the addition rule. The addition rule is 
also sometimes called the rule of disjunctive counting. The reason for this name is 
that the addition rule (also called the sum rule) states that if set A and set B are dis-
joint sets, then addition is used.

Let us look at a few more examples of selecting from groups, illustrating both the 
addition rule (also sometimes called the sum rule) and the multiplication rule 
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(sometimes called the product rule). I find that when a topic is new to a person, it is 
often helpful to view multiple examples in order to fully come to terms with the 
subject matter.

What happens when we need to pick from various groups? Assume you are about 
to take a trip and you wish to bring some reading material along with you. Assume 
you have five history books, three novels, and three biographies. You need to select 
one book from each category. There are five different ways to pick a history book, 
three different ways to select a novel, and three different ways to choose a biogra-
phy. The total possible combinations is 5 + 3 + 3. Why did we use addition here? 
Because each choice can only be made once. You have five historical books to 
choose from, but once you have chosen one, you cannot select any more. Now you 
have three novels to choose from, but once you have chosen one, you cannot select 
any more.

Now let’s look at an example where we use the multiplication or product rule. 
Let us assume you have three rooms to paint and four colors of paint. For each room 
you can use any of the three colors regardless of whether it has been used before. 
So, we have 4 * 4 * 4 possible choices. Why did we use multiplication rather than 
addition? Because each choice can be repeated. Assume your four colors are green, 
blue, yellow, and red. You can select green for all three rooms if you wish, or green 
for the first room only, or not use green at all.

The multiplication rule gets modified if selection removes a choice. Let’s return 
the paint example. Only now, once you have selected a color, you cannot use it any-
more. In the first room, you have four colors to select from, but in the next room 
only three and in the final room only two. So, the number of possible combinations 
is 4 * 3 * 2. Selection removed a choice each time. Selection with removal is actu-
ally pretty common. Assume you have five people you wish to line up for a picture. 
It should be obvious that you cannot “reuse” a person. Once you have placed them, 
they are no longer available for selection. Thus, the possible combinations are 
5 * 4 * 3 * 2 * 1.

 Permutations

Permutations are ordered arrangements of things. Because order is taken into con-
sideration, permutations that contain the same elements but in different orders are 
considered to be distinct. When a permutation contains only some of the elements 
in a given set, it is called an r-permutation. What this means for combinatorics is 
that the order of the elements in the set matters. Consider the set {a, b, c}. How 
many ways can you combine these elements if order matter?

 a b c a c b b a c b c a c a b c b a; ; ; ; ;  

There are six ways to combine this set, if order matters. If you add 1 more letter (d), 
then there are 24 combinations:
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abcd acbd bcad bacd cabd cbad

abdc acdb bcda badc cadb cbda

adbc adcb bdcca bdac cdab cdba

dabc dacb dbca dbac dcab dcba  

Fortunately, you don’t have to actually write out the possibilities each time in 
order to determine how many combinations of a given permutation there are. The 
answer is n! For those not familiar with this symbol, it is the factorial symbol. It 
means n * n − 1 * n − 2 * n − 3, etc. For example, 4! is 4 * 3 * 2 * 1.

Consider ordering a subset of a collection of objects. If there is a collection of n 
objects to choose from, and we are selecting r of the objects, where 0 < r < n, then 
we call each possible selection a r-permutation from the collection. Consider you 
have a set of three letters {a, b, c} and you wish to select two letters. In other words, 
you wish to select an r-permutation from the collection of colored balls. How many 
r-permutations are possible?

 ab ba ac ca bc cb  

What if our original collection was four letters {a, b, c, d} and you wished to select 
a two-letter r-permutation?

 

ab ac ad ba bc bd

ca cb cd da db dc  

These examples should be illustrating to you that the number of r-permutations of a 
set of n objects is n!/(n − r)!

To verify this, go back to our first example of an r-permutation. We had a set of 
3 objects, and we wished to select 2. 3! is 3 * 2 * 1 = 6. The divisor (n − r)! is 
(3  –  2)! or 1. So, we have six r-permutations. In the second example, n  =  4. 
4!  =  4  *  3  *  2  *  1  =  24. The divisor (n −  r)! is (4  –  2)! or 2. So, we have 12 
r-permutations.

Clearly, we could continue exploring combinatorics and delving further into 
various ways to combine subsets and sets. But at this point, you should grasp the 
basic concepts of combinatorics. This field is relevant to cryptography in a variety 
of ways, particularly in optimizing algorithms. And on a personal note, I have found 
combinatorics to be a fascinating branch of discrete mathematics with numerous 
practical applications.

 Conclusions

This chapter covered the basic mathematical tools you will need to understand later 
cryptographic algorithms. In this chapter you were introduced to number systems. 
Most importantly you were given a thorough introduction to prime numbers, 
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including how to generate prime numbers. The concept of relatively prime or co-
prime was also covered. That is an important topic and one you should thoroughly 
understand as it is applied in the RSA algorithm.

You also saw same basic math operations such as summation and logarithms and 
were introduced, briefly, to discrete logarithms. The discussion of modulus opera-
tions is critical for your understanding of asymmetric algorithms. The chapter con-
cluded with an introduction to discrete mathematics including set theory, logic, 
combinatorics, and graph theory. Each topic was only briefly covered in this chap-
ter; however, if you thoroughly and completely understand what was discussed in 
this chapter, it will be sufficient for you to continue your study of cryptography. The 
key is to ensure that you do thoroughly and completely understand this chapter 
before proceeding. If needed, reread the chapter and consult the various study aids 
referenced in this chapter.

 Test Your Knowledge

 1. The statement “Any number n ≥ 2 is expressible as a unique product of 1 or more 
prime numbers” describes what?

 2. log327 = ____
 3. Are 15 and 28 relatively prime? ____
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Chapter 5
Essential Algebra

 Introduction

Particular aspects of algebra are essential to cryptographic algorithms you will be 
exploring later in this book. As with the previous chapter, this one poses a few prob-
lems. First, as those readers with a strong education in mathematics might be won-
dering, how does one cover such a broad topic in a single chapter. Second, those 
readers without a robust background in mathematics might be wondering if they can 
learn enough and grasp enough of the concepts, to later apply them to 
cryptography.

Let me address these questions before you start reading. As with Chap. 4, in this 
chapter I am going to focus only on those items you absolutely need in order to later 
understand the cryptographic algorithms we are going to cover. Certainly, each of 
these topics could be given much more coverage. Entire books have been written on 
abstract algebra, linear algebra, and algorithms. In fact, some rather sizeable tomes 
have been written just on the topic of algorithm analysis. And linear algebra can be 
a course unto itself at both the undergraduate and graduate level. However, it is not 
required that you have that level of knowledge in order to understand the cryptogra-
phy you will encounter later in this book. However, I would certainly recommend 
exploring these topics in more depth at some point. Particularly, if you have an 
interest in going further in cryptography, I am also going to continue with the prac-
tice of not delving into mathematical proofs. This means that you, as the reader, 
must accept a few things simply on faith. Or you can refer to numerous mathemati-
cal texts that do indeed provide proofs for these concepts.

To those readers with a less rigorous mathematical background, keep in mind 
that you only need to have a firm grasp of the concepts presented in this chapter. You 
do not need to become a mathematician, though I would be absolutely delighted if 
this book motivated you to study mathematics more deeply. I definitely think one 
needs to be a mathematician (at some level) in order to create cryptographic 
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algorithms, but one can understand existing algorithms with a bit less mathematical 
depth. And that is the ultimate goal of this book, to help you understand existing 
cryptography. And as with the preceding chapter, I will be providing you with links 
to resources where you can get additional information and explanations if you feel 
you need it.

 In This Chapter We Will Cover

• Groups, rings, and fields
• Diophantine equations
• Basic linear algebra
• Algorithms
• The history of algebra

 Groups, Rings, and Fields

The initial algebraic concept we will explore in this chapter is one that might not 
seem like algebra at all to some readers. Readers with a less rigorous mathematical 
background might think of algebra as solving linear and quadratic equations as you 
probably did in secondary school. However, that is only an application of algebra. A 
far more interesting topic in algebra, and one far more pertinent to cryptography, is 
the study of sets and operations on those sets (Vinogradov 2016).

One of the major concepts studied in abstract algebra is that of special sets of 
numbers and operations that can be done on those numbers. Mathematics students 
frequently struggle with these concepts; I will endeavor to make them as simple as 
I can without leaving out any important details. The concepts of groups, rings, and 
fields are just sets of numbers with associated operations.

First think about a set of numbers. Let us begin with thinking about the set of real 
numbers. This is an infinite set, as I am sure you are aware of. Now ask what opera-
tions can you do on numbers that are a member of this set wherein the result will 
still be in the set? You can certainly add two real numbers, and the answer will 
always be a real number. You can multiply two real numbers, and the answer will 
always be a real number. What about the inverse of those two operations? You can 
subtract two real numbers, and the answer will always be a real number. You can 
divide two real numbers, and the answer will always be a real number (of course 
division by zero is undefined). Now at this point, you may think all of this is absurdly 
obvious; you might even think it odd I would spend a paragraph discussing it. 
However, let us turn our attention to sets of numbers wherein all of these facts are 
not true.

Think about the set of all integers. That is certainly an infinite set, just like the set 
of real numbers. You can certainly add any two integers, and the sum will be another 
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integer. You can multiply any two integers, and the product will still be an integer. 
So far this sounds just like the set of real numbers. Now, let us turn our attention to 
the inverse operations. You can certainly subtract any integer from another integer, 
and the answer is still an integer. But what about division? There are infinitely many 
scenarios where you cannot divide one integer by another and still have the answer 
be an integer. Certainly dividing 6 by 2 gives you an integer, as would dividing 10 
by 5 and 21 by 3 and infinitely more examples. But what if I divide 5 by 2? The 
answer is not an integer; it is instead a rational number. Or what if I divide 20 by 3, 
the answer is not an integer. And there are infinitely many other examples wherein 
I cannot divide. Therefore, if I wish to limit myself only to integers, I cannot use 
division as an operation.

These two examples, real numbers and integers, illustrate how sets of numbers 
can differ. Depending on what satisfies the membership requirements in a given set 
of numbers, certain operations may not result in an answer that is within that set of 
numbers. As we will see in the coming paragraphs, there are numerous sets of num-
bers with varying operations that are permitted or prohibited. The question is 
always: Will the answer to this particular operation always yield a member of the set 
of numbers in question?

Imagine for a moment that you wish to limit your mathematics to an artificial 
world in which only integers exist. Set aside, for now, any considerations of why 
you might do this and just focus on this thought experiment for just a moment. As 
we have already demonstrated, in this artificial world, you have created the addition 
operation exists and functions as it always has, so does the inverse of addition, sub-
traction. The multiplication operation behaves in the same fashion you have always 
seen it. However, in this imaginary world, the division operation simply does not 
exist, since it has the very real possibility of producing non-integer answers. And 
such answers do not exist in our imaginary world of “only integers.”

Before we continue on with more specific examples from the world of abstract 
algebra, let us look at one more hypothetical situation that should help clarify these 
basic points. What if we have limited ourselves to only natural numbers, counting 
numbers. Certainly, I can add any two counting numbers, and the answer will always 
be a natural number. I can also multiply any two natural numbers, and I can rest 
assured that the product will indeed be another natural number. But what of the 
inverse of these operations? I can certainly subtract some natural numbers and have 
an answer that is still a natural number. But there are infinitely many cases where 
this is not true. For example, if I attempt to subtract 7 from 5, the answer is a nega-
tive number, which is not a natural number. In fact, any time I attempt to subtract a 
larger natural number from a smaller natural number, the result will not be a natural 
number. Furthermore, division is just as tricky with natural numbers as it is with 
integers. There are infinitely many cases where the answer will not be a natural 
number. So, in this imaginary world of only natural numbers, addition and multipli-
cation work exactly as you would expect them too. However, their inverse opera-
tions: subtraction won’t always work, and division will often not work.

Abstract algebra concerns itself with structures just like this. These structures 
(groups, rings, fields, etc.) have a set of numbers and certain operations that can be 
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performed on those numbers. The only allowed operations in a given structure are 
those whose result would still be within the prescribed set of numbers. You have 
already been introduced to concepts like this in Chap. 4. Recall the modulo arithme-
tic you learned about in Chap. 4. The numbers used were integers bound by the 
modulo operation.

Don’t be overly concerned with the term “abstract algebra.” There are certainly 
practical applications of abstract algebra. In fact, some sources prefer to call this 
“modern algebra,” but since it dates back a few centuries, even that may be a misno-
mer. You will see applications later in this book when we discuss asymmetric cryp-
tography, particularly with Chap. 11, “Elliptic Curve Cryptography.” Even the 
symmetric algorithm, Advanced Encryption Standard (AES), which you will study 
in Chap. 7 applies some of these structures.

 Groups

A group is an algebraic system consisting of a set which includes an identity ele-
ment, one operation, and its inverse operation. Let us begin with explaining what an 
identity element is. An identity element is simply some number within a set that you 
can apply some operation to any other number in the set, and the other number will 
still be the same. Put more mathematically the identity element I can be expressed 
as follows:

 a I a� �  

where * is any operation that we might specify, not necessarily multiplication. An 
example would be with respect to the addition operation, zero is the identity ele-
ment. You can add zero to any member of any given group, and you will still have 
that same number. With respect to multiplication, 1 is the identity element. Any 
number multiplied by 1 is still the same number.

There are four properties any group must satisfy: closure, associativity, identity, 
and invertibility. Closure is the simplest of these properties. It simply means that an 
operation performed on a member of the set will result in a member of the set. This 
is what was discussed a bit earlier in this section. It is important that any operations 
allowed on a particular set will result in an answer that is also a member of the set. 
Associative property just means that you can rearrange the elements of a particular 
set of values in an operation without changing the outcome. For example, 
(2 + 2) + 3 = 7. But even if I change the order and instead write 2 + (2 + 3), the 
answer is still 7. This is an example of the associative property. The identity element 
was already discussed. The invertibility property simply means that a given opera-
tion on an element in a set can be inverted. As we previously discussed, subtraction 
is the inversion of addition; division is the inversion of multiplication.

Thinking back to our example of the set of integers, integers constitute a group. 
First there is an identity element, zero. There is also one operation (addition) and its 
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inverse (subtraction). Furthermore, you have closure. Any element of the group (i.e., 
any integer) added to any other element of the group (i.e., any other integer) still 
produces a member of the group (i.e., the answer is still an integer).

 Abelian Group

An Abelian group or commutative group has an additional property. That property 
being the commutative property: a + b = b + a if the operation is addition; ab = ba 
if the operation is multiplication (Weil 2013).

This commutative requirement simply means that applying the group operation 
(whatever that operation might be) does not depend on the order of the group ele-
ments. In other words, whatever the group operation is, you can apply it to members 
of the group in any order you wish. To use a trivial example, consider the group of 
integers with the addition operation. Order does not matter:

 4 2 2 4� � �  

Therefore, the set of integers with the operation of addition is an abelian group.

 Cyclic Group

A cyclic group is a group that has elements that are all powers of one of its elements. 
For example, if you start with element x, then the members of a cyclic group 
would be

 x x x x x x� � �2 1 0 1 2 3, , , , , , .  

Of course, the other requirements for a group, which we discussed previously in 
this section, would still apply to a cyclic group. The basic element x is considered to 
be the generator of the group, since all other members of the group are derived from 
it (Neukirch 2013). It is also referred to as a “primitive element” of the group. 
Integers could be considered a cyclic group with 1 being the primitive element (i.e., 
generator). All integers can be expressed as a power of 1, in this group. This may 
seem like a rather trivial example, but it is also one that is easy to understand.

 Rings

A ring is an algebraic system consisting of a set, an identity element, two opera-
tions, and the inverse operation of the first operation (Bolker 2012). That is the 
formal definition of a ring, but it may seem a bit awkward to you at first read, so let 
us examine this concept a bit further and then look at an example. If you think back 
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to our previous examples, it should occur to you that when we are limited to two 
operations, they are usually addition and multiplication. It may also occur to you 
that the easiest to implement an inverse of is addition, with subtraction being the 
inverse.

A ring is essentially just an abelian group that has a second operation. We have 
seen that the set of integers with the addition operation forms a group, and further-
more they form an abelian group. If you add the multiplication operation, then the 
set of integers with both the addition and the multiplication operations forms a ring.

 Fields

A field is an algebraic system consisting of a set, an identity element for each opera-
tion, two operations, and their respective inverse operations. You can think of a 
group that has two operations rather than one, and it has an inverse for both of those 
operations. It is also the case that every field is a ring, but not every ring will neces-
sarily be a field. For example, the set of integers are a ring, but not a field (the 
inverse of multiplication can produce answers that are not in the set of integers). 
Fields also allow for division (the inverse operation of multiplication), whereas 
groups do not.

A classic example of a field is the field of rational numbers. Each number can be 
written as a ratio (i.e., a fraction) such as x/y (x and y could be any integers you like), 
and the additive inverse is simply −x/y. The multiplicative inverse is just y/x.

 Galois Fields

Galois fields are also known as finite fields. You will learn more about Galois him-
self in the history section of this chapter. These types of fields are very important in 
cryptography, and you will see them used in later chapters. These are called finite 
fields because they have a finite number of elements (Vinogradov 2016). If you 
think about some of the groups, rings, and fields we have previously discussed, all 
were infinite. The sets of integers, rational numbers, and real numbers are all infi-
nite. Galois fields are finite.

In a Galois field, there are some integers such that n repeated terms equal zero. 
Put another way, there is some boundary on the field, thus making it finite. The 
smallest n that satisfies this is some prime number, and that prime number is referred 
to as the characteristic of the field. You will often see a Galois field defined as 
follows:

 
GF pn� �  
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In this case, the GF does not denote a function. Rather, this statement is saying 
that there is a Galois field with p as the prime number (the characteristic we men-
tioned previously in this section), and the field has pn elements. A Galois field is 
some finite set of numbers (from 0 to pn − 1) and some mathematical operations 
(usually addition and multiplication) along with the inverses of those operations.

Now you may immediately be thinking, how can a finite field even exist? If the 
field is indeed finite, would it not be the case that addition and multiplication opera-
tions could lead to answers that don’t exist within the field? To understand how this 
works, think back to the modulus operation we discussed in Chap. 4. Essentially, 
operations “wrap around” the modulus. If we consider the classic example of a 
clock, then any operation whose answer would be more than 12 simply wraps 
around. The same thing occurs in a Galois field. Any answer greater than pn simply 
wraps around.

Let us examine an example, a rather trivial example but one that makes the point. 
Consider the Galois field GF (31). First, I hope you realize that 31 is the same as 3 
and most texts would simply write this as GF(3). Thus, we have a Galois field 
defined by 3. In any case, addition or multiplication of the elements would cause us 
to exceed the number 3. We simply wrap around. This example is easy to work with 
because it only has three elements: 1, 2, and 3. Considering operations with those 
elements, several addition operations pose no problem at all:

 1 1 2 1 2 3� � � �  

However, others would be a problem
2 + 2 = 4, except that we are working within a Galois field, which utilizes the 

modulus operations so 2 + 2 = 1 (we wrapped around at three).
Similarly, 2 + 3 = 2.
The same is true with multiplication.
2 × 2 = 1 (we wrap around at 3)
2 × 3 = 0 (again we wrap around at 3)
You can, I hope, see how this works. Now in cryptography we will deal with 

Galois fields that are larger than the trivial example we just examined, but the prin-
ciples are exactly the same.

 Diophantine Equations

A Diophantine equation is any equation for which you are interested only in the 
integer solutions to the equation. Thus, a linear Diophantine equation is a linear 
equation ax + by = c with integer coefficients for which you are interested only in 
finding integer solutions. There are two types of Diophantine equations. Linear 
Diophantine equations have elements that are of degree 1 or zero. Exponential 
Diophantine equations have at least one term that has an exponent greater than 1.
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The word Diophantine comes from Diophantus, a third-century C.E. mathemati-
cian who studied such equations. You have actually seen Diophantine equations 
before, though you might not have realized it. The traditional Pythagorean theorem 
can be a Diophantine equation, if you are interested in only integer solutions as can 
be the case in many practical applications.

The simplest Diophantine equations are linear and are of the form

 ax by c� �  

where a, b, and c are all integers. Now there is an integer solution to this problem if 
and only if c is a multiple of the greatest common divisor of and b. For example: the 
Diophantine equation 3x + 6y = 18 does have solutions (in integers) since gcd(3,6) = 3 
which does, indeed, evenly divide 18.

 Linear Algebra

While linear algebra has applications in many fields, including quantum physics and 
machine learning, it began as a way to solve systems of linear equations (thus the 
name). Linear equations are those for which all elements are of the first power. 
Thus, the following three equations are linear equations:

 

a b

x

x y z

� �
� �
� � �

10

3 5 44

4 2 35  

However, the following are not linear equations:

 

2 2 10

4 4 3 17

2

2

x

y x

� �
� � �  

The first three equations have all elements to the 1st power (often that with a 
number such as x1 the 1 is simply assumed and not written). But in the second set of 
equations, at least one element is raised to some higher power. Thus, they are not 
linear. While linear algebra was created for the express purpose of solving linear 
equations, it has applications beyond that. In this chapter, the focus on linear algebra 
is in relation to certain cryptographic algorithms we will see in Chap. 20. These 
algorithms are lattice based. Understanding those algorithms requires at least a 
basic working knowledge of linear algebra.

When linear algebra is used, numbers are presented in the form of a matrix. And 
in this section, we will examine how to perform a variety of operations using matri-
ces. Before we can delve into matrix math, we will need to define what a matrix is. 
A matrix is a rectangular arrangement of numbers in rows and columns. Rows run 
horizontally, and columns run vertically. The dimensions of a matrix are stated “m 
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× n” where “m’ is the number of rows and “n” is the number of columns. Here is an 
example in Eq. 5.1.

Equation 5.1 A matrix

1 2

2 0

3 1

�

�

�
�
�

�

�

�
�
�

A matrix is just an array that is arranged in columns and rows. You may have 
previously heard the term “vector.” Vectors are simply matrices that have one col-
umn or one row. A vector can be considered a 1 × m matrix. A vector that is vertical 
is called a column vector, and one that is horizontal is called a row vector. Matrices 
are usually labeled based on column and row; this is shown in Eq. 5.2.

Equation 5.2 Matrix annotation

a b

C D

ij ij

ij ij

�

�
�
�

�

�
�
�

The letter i represents the row, and the letter j represents the column. A more 
concrete example is shown in Eq. 5.3.

Equation 5.3 Matrix annotation continued

1 4

2 1

�

�
�

�

�
�

This notation is commonly used for matrices including row and column vectors.
There are different types of matrices, common ones are listed here:

Column matrix: A matrix with only one column.
Row matrix: A matrix with only one row.
Square matrix: A matrix that has the same number of rows and columns.
Equal matrices: Two matrices are considered equal if they have the same number of 

rows and columns (the same dimensions) and all their corresponding elements 
are exactly the same.

Zero matrix: Contains all zeros.

Each of these has a role in linear algebra. We will see that as we proceed.

 Matrix Addition and Multiplication

If two matrices are of the same size, then they can be added to each other by simply 
adding each element together (Poole 2014). You start with the first row and first 
column in the first matrix and add that to the first row and the first column of the 
second matrix thus in the sum matrix. This is shown in Eq. 5.4.
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Equation 5.4 Matrix addition

a a

a a

b b

b b

A b a b

A b
11 12

21 22

11 12

21 22

11 11 12 12

21 2

�

�
�

�

�
� �

�

�
�

�

�
� �

� �
� 11 22 22a b�

�

�
�

�

�
�

Let us repeat this with a more concrete example, as shown in Eq. 5.5.

Equation 5.5 Matrix addition example

3 2

1 4

2 3

2 1

3 2 2 3

1 4 2 1

5 5

5 3

�

�
�

�

�
� �

�

�
�

�

�
� �

� �
� �

�

�
�

�

�
� �

�

�
�

�

�
�

However, multiplication is a bit more complicated. You can only multiply two 
matrices if the number of columns in the first matrix is equal to the number of rows 
in the second matrix. First let us take a look at multiplying a matrix by a single 
number. This single number is generally referred to as a scaler. You simply multiply 
the scalar value by each element in the matrix. This is shown in Eq. 5.6.

Equation 5.6 Scaler multiplication

C
a a

a a

ij ij

ij ij

ij ij

ij ij

ca ca

ca ca

�

�
�
�

�

�
�
�
�
�

�
�
�

�

�
�
�

For a more concrete example, consider what is shown in Eq. 5.7.

Equation 5.7 Scaler multiplication example

2
1 3

2 2

2 1 2 3

2 2 2 2

2 6

4 4

�

�
�

�

�
� �

�

�
�

�

�
� �

�

�
�

�

�
�

� �

� �

Multiplication of two matrices is a bit more complex. The two matrices need not 
be of the same size. The requirement is that number of columns in the first matrix is 
equal to the number of rows in the second matrix. If that is the case, then you mul-
tiply each element in the first row of the first matrix by each element in the second 
matrixes first column. Then you multiply each element of the second row of the first 
matrix by each element of the second matrixes second column. Let’s first examine 
this using variables rather than actual numbers. We will also use square matrices to 
make the situation even simpler.

 

a b

c d

f

g h

�

�
�

�

�
� �

�

�
�

�

�
�

e

 

This is multiplied in the following manner:
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a e b g a b a b

a f b h a b a b

c e d g a

� � � �

� � � �

� �

� �� �
� �� �
�

11 11 12 21

11 12 12 22

11
�� �

� � � �

�� �
� �� �

b a b

c f d h a b a b

11 12 21

11 11 12 21  

Thus, the product will be

 

a e b g a f b h

c e d g c f d h

� � �� � � � �� �
� � �� � � � �� �

 

It is worthwhile to memorize this process. Let us now see this implemented with a 
concrete example.

 

1 2

3 1

2 2

1 3

�

�
�

�

�
�
�

�
�

�

�
�

 

We begin with

 

1 2 2 1 6

1 2 2 3 8

3 2 1 1 7

3 2 1 3 9

� �

� �

� �

� �

� �
� �
� �
� �  

The final answer is

 

6 8

7 9

�

�
�

�

�
�

 

This is why we previously stated that you can only multiply two matrices if the 
number of columns in the first matrix is equal to the number of rows in the sec-
ond matrix.

It is important to remember that matrix multiplication, unlike traditional multi-
plication (with scalar values), is not commutative. Recall the commutative property 
states a * b = b * a. If a and b are scalar values, then this is true; however, if they are 
matrices, this is not the case. For example, consider the matrix multiplication shown 
in Eq. 5.8.

Equation 5.8 Matrix multiplication is not commutative

2 3

1 4

1 1

2 3

8 11

9 13

�

�
�

�

�
�
�

�
�

�

�
� �

�

�
�

�

�
�
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Now if we simply reverse the order, you can see that an entirely different answer 
is produced. This is shown in Eq. 5.9

Equation 5.9 Matrix multiplication is not commutative part B

1 1

2 3

2 3

1 4

3 7

7 15

�

�
�

�

�
�
�

�
�

�

�
� �

�

�
�

�

�
�

This example illustrates the rather important fact that matrix multiplication is not 
commutative.

 Matrix Transposition

Matrix transposition simply reverses the order of rows and columns (Greub 2012). 
While we have focused on 2 × 2 matrices, the transposition operation is most easily 
seen with a matrix that has a different number of rows and columns. Consider the 
matrix shown in the Eq. 5.10.

Equation 5.10 An exemplary matrix

2 3 2

1 4 3

�

�
�

�

�
�

To transpose it, the rows and columns are switched creating a 2 × 3 matrix. The 
first row is now the first column. You can see this in Eq. 5.11.

Equation 5.11 Matrix transposition

2 1

3 4

2 3

�

�

�
�
�

�

�

�
�
�

If we label the first matrix A, then the transposition of that matrix is labeled 
AT. Continuing with the original matrix being labeled A, there are a few properties 
of matrices that need to be described.

Property Explanation

(AT)T = A If you transpose, the transposition of A, you get back to A
(cA)T = cAT The transposition of a constant, c multiplied by an array A, is equal to 

multiplying the constant c by the transposition of A
(AB)T = BTAT A multiplied by B then the product transposed is equal to B transposed 

multiplied by A transposed
(A + B)T = AT + BT Adding the matrix A and the matrix B and then transposing the sum is equal 

to first transposing A and B and then adding those transpositions
AT = A If a square matrix is equal to its transpose, it is called a symmetric matrix
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The preceding table is not exhaustive. Rather, it is a list of some of the most com-
mon properties regarding matrices. These properties are not generally particularly 
difficult to understand. However, there is an issue with why one would do them. 
What do they mean? All too often introductory linear algebra texts focus so intensely 
on helping a student to learn how to do linear algebra that the meaning behind 
operations is lost. Let us take just a moment to explore what transpositions are. A 
transposition is rotating about the diagonal. Remember that matrices can be viewed 
graphically. Consider a simple row matrix

 
1 2 4� �  

Transposing that row matrix creates a column matrix:

 

1

2

4

�

�

�
�
�

�

�

�
�
�

 

Think of a vector as a line in some space. For now, we will limit ourselves to 2D and 
3D space. You can then think of a matrix as a transformation on a line or set of lines.

 Submatrix

A submatrix is any portion of a matrix that remains after deleting any number of 
rows or columns. Consider the 5 × 5 matrix shown in Eq. 5.12.

Equation 5.12 A 5 × 5 matrix

2 2 4 5 3

3 8 0 2 1

2 3 2 2 1

4 3 1 2 4

1 2 2 0 3

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

If you remove the second column and second row, as shown in Eq. 5.13, you get 
a submatrix.

Equation 5.13 Removing a row and column
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You are left with the matrix shown in Eq. 5.14.

Equation 5.14 The resulting submatrix

2 4 5 3

2 2 2 1

4 1 2 4

1 2 0 3

�

�

�
�
�
�

�

�

�
�
�
�

That matrix shown in Eq. 5.14 is a submatrix of the original matrix.

 Identity Matrix

An identity matrix is actually rather simple. Think back to the identity property of 
groups. An identity matrix accomplishes the same goal; multiplying a matrix by its 
identity matrix leaves it unchanged. To create an identity matrix, just have all the 
elements along the main diagonal set to 1 and the rest to zero. Consider the matrix 
shown below.

 

3 2 1

1 1 2

3 0 3

�

�

�
�
�

�

�

�
�
�

 

Now consider the identity matrix. It must have the same number of columns and 
rows, with its main diagonal set to all 1s and the rest of the elements all 0s. You can 
see the identity matrix shown here:

 

1 0 0

0 1 0

0 0 1

�

�

�
�
�

�

�

�
�
�

 

If you multiple the original matrix by the identity matrix, the product will be the 
original matrix. You can see this in Eq. 5.15.
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Equation 5.15 Multiply by the identity matrix

3 2 1

1 1 2

3 0 3

1 0 0

0 1 0

0 0 1

3 2 1

1 1 2

3 0 3

�

�

�
�
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�
�
�
�

�

�
�
�

�

�

�
�
��

In our examples we have focused not only on square, 2 × 2 or 3 × 3 matrices, but 
also on matrices that only consist of integers. A matrix can consist of rational num-
bers, real numbers, and even complex numbers. But since our goal was just to give 
you an introduction to the concepts of matrix algebra, we have not delved into those 
nuances.

One application of matrix algebra is with linear transformations. A linear trans-
formation is sometimes called a linear mapping or even just a linear function. It is 
essentially just some mapping between two vector spaces that has the operations of 
addition and scalar multiplication.

Note Wolfram MathWorld defines a vector space as “A vector space V is a set that 
is closed under finite vector addition and scalar multiplication.” Another way of put-
ting this is a vector space is a collection of objects (in our case integers) called vec-
tors, which may be added together and multiplied (“scaled”) by numbers, called 
scalars.

 Determinants

Next, we will turn our attention to another relatively easy computation, the determi-
nant of a matrix (Wilkinson et al. 2013). The determinant of a matrix A is denoted 
by |A|. Calculating the determinant is not overly difficult. The question becomes: 
Why are we interested in this value? The determinant can be used for any number 
of things, but for our current purposes, it is necessary to calculate the determinant in 
order to find eigenvalues and eigenvectors. An example of a determinant in a generic 
form is shown below:

 
A

a b

C d
ad bc

�

�
�

�

�
� � �

 

A more concrete example might help elucidate this concept.

 
A

2 3

1 2
2 2 3 1 1

�

�
�

�

�
� � � �� � � � �� � �

 

A determinant is a value which is computed from the individual elements of a 
square matrix. It provides a single number, also known as a scaler value. Only a 
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square matrix can have a determinant. The calculation for a 2 × 2 matrix is simple 
enough; we will explore more complex matrices in just a moment. However, what 
does this single scalar value mean? There are many things one can do with a deter-
minant, most of which we won’t use in this text. It can be useful in solving linear 
equations and changing variables in integrals (yes linear algebra and calculus go 
hand in hand). But what is immediately useable for us is that if the determinant is 
non-zero, then the matrix is invertible. This will be important later.

What about a 3 × 3 matrix, such as Eq. 5.16

Equation 5.16 A 3 × 3 matrix

a b c

a b c

a b c

1 1 1

2 2 2

3 3 3

�

�

�
�
�

�

�

�
�
�

This calculation is substantially more complex. There are a few methods to do 
this. We will use one called “expansion by minors.” This method depends on break-
ing the 3 × 3 matrix into 2 × 2 matrices. The 2 × 2 matrix is formed by b2, c2, b3, and 
c3, shown in Eq. 5.17.

Equation 5.17 3 × 3 matrix determinant part 1

 

This one was rather simple, as it fits neatly into a contiguous 2 × 2 matrix. But to 
find the next one, we have a bit different selection.

Equation 5.18 3 × 3 matrix determinant part 2

 

The next step is to get the lower left corner square matrix.

Equation 5.19 3 × 3 matrix determinant part 3
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As with the first one, this one forms a very nice 2 × 2 matrix. Now what shall we 
do with these 2 × 2 matrices? The formula is actually quite simple and is shown in 
Eq. 5.20.

Equation 5.20 3 × 3 matrix determinant part 4

det det det

a b c

a b c

a b c

a
b c

b c
a

a1 1 1

2 2 2

3 3 3

1
2 2

3 3
2
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�
�

�

�
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�
�
�
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�
�

�

�
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22 2

3 3
3

2 2

3 3

c

a c
a

a b

a b
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�
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�

�
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�
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We take the first column, multiplying it by its cofactors, and with a bit of simple 
addition and subtraction, we arrive at the determinant for a 3 × 3 matrix. A more 
concrete example might be useful. Let us calculate the determinant for this matrix 
shown in Eq. 5.21.

Equation 5.21 3 × 3 matrix example

3 2 1

1 1 2

3 0 3

�

�

�
�
�

�

�

�
�
�

This leads to

 

3
1 2

0 3
3 1 3 2 0 3 3 9

2
1 2

3 3
2 1
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det

det 33 2 3 2 3 6

1
1 1

3 0
1 1 0 1 3 1 3

� � � � �� � � �� � � �
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�
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�

�
� � � � � � �� � � ��

�

� � � �det ( �� � �3
 

And that leads us to 9 − (−6) + (−3) = 12
Yes, that might seem a bit cumbersome, but the calculations are not overly dif-

ficult. We will end our exploration of determinants at 3 × 3 matrices. But yes, one 
can take the determinant of larger square matrices.

 Eigenvalues and Eigenvectors

Let us move on to an interesting topic, that of eigenvalues and eigenvectors. 
Eigenvalues are a particular set of scalars associated with a linear system of equa-
tions (i.e., a matrix equations) that are sometimes also known as characteristic roots, 
characteristic values, proper values, or latent roots (Poole 2014). Let us make this a 
bit clearer. Let us consider a column vector we will call v. Then also consider an n 
x n matrix we will call A. Then consider some scalar λ. If it is true that
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 Av v� � ,  

then we say that v is an eigenvector of the matrix A and λ is an eigenvalue of the 
matrix A.

Let us look a bit closer at this. The prefix eigen is actually the German word 
which can be translated as specific, proper, particular, etc. Put in its most basic form, 
an eigenvector of some linear transformation, T, is a vector that when T is applied to 
it does not change direction; it only changes scale. It changes scale by the scalar 
value λ, the eigenvalue (Lang 2012). That term linear transformation may seem odd. 
However, in matrix algebra, one will find that matrices can be operators on vectors. 
The matrix is used to transform the vector. Now we can revisit the former equation 
just a bit and expand our knowledge of linear algebra.

 
T v v� � � �

 

This appears precisely like the former equation, but with one small difference. 
The matrix A is now replaced with the transformation T. Not only does this tell us 
about eigenvectors and eigenvalues, but it also tells us a bit more about matrices. A 
matrix, when applied to a vector, transforms that vector. The matrix itself is an 
operation on the vector.

Putting this another way, linear algebra encourages you to think differently about 
matrices. You can think of a matrix as a number, and that is accurate. But you can 
also think of a matrix as an operation, much like addition, subtraction, exponentia-
tion, etc. Perhaps the most difficult aspect of linear algebra for new students is learn-
ing to think a bit differently about numbers. But consider the conversation of the 
history of numbers in Chap. 4. At one time, irrational numbers required a radical 
shift on one’s thinking about numbers. It can be helpful to consider matrices in the 
same manner. A matrix is a new way of thinking about numbers.

Let us add something to this. How do you find the eigenvalues and eigenvectors 
for a given matrix? Surely it is not just a matter of trial and error with random num-
bers. Fortunately, there is a very straightforward method, one that is actually quite 
easy at least for 2 × 2 matrices. Consider the following matrix:

 

5 2

9 2

�

�
�

�

�
�

 

How do we find its eigenvalues?
Well, the Cayley-Hamilton theorem provides insight on this issue. That theorem 

essentially states that a linear operator A is a zero of its characteristic polynomial 
(Wilkinson et al. 2013). For our purposes it means that

 
det A I� �� 0
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We know what a determinant is; we also know that I is the identity matrix. The λ 
is the eigenvalue we are trying to find. The A is the matrix we are examining. 
Remember that in linear algebra, one can apply a matrix to another matrix or vector, 
so a matrix is, at least potentially, an operator. Thus, we can fill in this equation:

 

det
5 2

9 2

1 0

0 1
0

�

�
�

�

�
� �

�

�
�

�

�
� ��

 

Now, we just have to do a bit of algebra, beginning with multiplying λ by our 
identity matrix which will give us:

 

det
5 2

9 2

0

0
0
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�
�
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�
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which in turn leads to

 

( )( )
2

2

5 2
det 0

9 2

5 2 18
10 7 18 0

7 8 0

λ
λ

λ λ
λ λ

λ λ

− 
= − 

= − − −
= − + − =

− − =  

This can be factored (note if the result here cannot be factored, things do get a bit 
more difficult, but that is beyond our scope here).

 
� �– 8 1 0� � �� � �  

This means we have two eigenvalues

 

�
�
1

2

8

1

�
� �  

For a 2 × 2 matrix, you will always get two eigenvalues. In fact, for any nxn matrix, 
you will get n eigenvalues, but they may not be unique.

Now that you have the eigenvalues, how do you calculate the eigenvectors?
We know that

 

A �
�

�
�

�

�
�

�
� �

5 2

9 2

8

1
1

2

�
�  
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We are seeking unknown vectors, so let us label the vector 
X

Y

�

�
�

�

�
� .

Now recall the equation that gives us eigenvectors and eigenvalues

 Av v� �  

Let us take one of our eigenvalues and plug it in
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5 2

9 2

8

8

x y

x y

X

Y
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This gives us two equations:

 5 2 8x y x� �  

 9 2 8x y y� �  

Now we take the first equation and to a bit of algebra to isolate the y value. Subtract 
the 5x from each side to get:

 2 3y x=  

Then divide both sides by 2 to get

 y x= 3 2/  

It should be easy to see that to solve this with integers (which is what we want), then 
x = 2 and y = 3 solve it. Thus, our first eigenvector is

 

2

3
81

�

�
�
�

�
� �with�

 

You can work out the other eigenvector for the second eigenvalue on your own using 
this method.

This section should provide you just enough linear algebra to move forward with 
your study of cryptography. Obviously, one can go much further. But if you fully 
understand this section, you will have a basic working knowledge of linear algebra.
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 Vector Spaces

Wolfram MathWorld defines a vector space as “A vector space V is a set that is 
closed under finite vector addition and scalar multiplication.” Another way of put-
ting this is a vector space is a collection of objects (in our case integers) called vec-
tors, which may be added together and multiplied (“scaled”) by numbers, called 
scalars. This definition may not be entirely clear to some readers. This section will 
attempt to clarify things a bit.

Vectors are an essential part of linear algebra. We normally represent data in the 
form of vectors. In linear algebra, these vectors are treated like numbers. They can 
be added and multiplied. A vector will look like what is shown here:

 

1

3

2

�

�

�
�
�

�

�

�
�
�

 

The vector just shown is vertical and is called a column matrix. This vector has only 
integers; however, a vector can have rational numbers, real numbers, and even com-
plex numbers. Vectors can also be horizontal, as shown here:

 
1 3 2� �  

In which case, they are referred to as row vectors. Often you will see variables in 
place of vector numbers, such as

 

a

b

c

�

�

�
�
�

�

�

�
�
�

 

You can multiply two vectors together; you can also multiply a vector by a scaler. 
Scalers are individual numbers, and their name derives from the fact that they 
change the scale of the vector. Consider the scaler 3 multiplied by the first vector 
shown in this section:

 

3

1

3
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3
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You simply multiply the scaler, by each of the elements in the vector. Formally, 
a vector space is a set of vectors which is closed under addition and multiplication 
by real numbers. Think back to the earlier discussion of abstract algebra with 
groups, rings, and fields. A vector space is a group. In fact, it is an abelian group. 
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You can do addition of vectors, and the inverse. You also have a second operation 
scaler multiplication, without the inverse. Note that the first operation, addition, is 
commutative, but the second operation, multiplication, is not.

So, what are basis vectors? If you have a set of elements E (i.e., vectors) in some 
vector space V, the set of vectors E is considered a basis if every vector in the vector 
space V can be written as a linear combination of the elements of E. Put another 
way, you could begin with the set E, the basis, and through a linear combinations of 
the vectors in E, create all the vectors in the vector space V. And as the astute reader 
will have surmised, a vector space can have more than one basis set of vectors.

This of course brings one to the question of what linear dependence or indepen-
dence is. In the theory of vector spaces, a set of vectors is said to be linearly depen-
dent if one of the vectors in the set can be defined as a linear combination of the 
others; if no vector in the set can be written in this way, then the vectors are said to 
be linearly independent. To describe linear independence, we must first define 
dependence. A set of vectors (V1, V2, V3, ….Vn) are said to be linearly dependent if 
there is a set of ki, not all zero, such that

 k V k V k Vn n1 1 2 2 0� � � �.  

If that is not the case, then the vectors are said to be linearly independent.
A basis for a vector space is a set of linearly independent vectors. Consider the 

following example (a rather trivial one):
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It happens that for any scalars a, b, and c, the following is true:
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This should provide you at least some general notion of what a vector space is. This 
topic will be quite important in Chap. 20, when lattice-based algorithms are dis-
cussed. Another topic that will come up in the study of lattice-based algorithms is 
spanning the vector space. A set of vectors A1, A2, ⋅⋅⋅, An is said to span a vector 
space V if they are in V, and every vector in V can be expressed as a linear combina-
tion of the A1, A2, ⋅ ⋅ ⋅, An. Another related topic is that of a subspace. A subspace is 
a subset of a vector space which is a vector space itself, e.g., the plane z = 0 is a 
subspace of R3 (it is essentially R2). We’ll be looking at Rn and subspaces of Rn.
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 Algorithms

All the cryptography you will study from this point on consist of various algorithms. 
Readers who have majored in computer science have probably taken a course in 
data structures and algorithms. For those readers without such a background, this 
section will first introduce you to some concepts of algorithms and then discuss 
general algorithm analysis in the context of sorting algorithms. We will complete 
this section by studying a very important algorithm.

 Basic Algorithms

Before we can begin a study of algorithms, we must first define what an algorithm 
is. An algorithm is simply a systematic way of solving a problem. A recipe for an 
apple pie is an algorithm. If you follow the procedure, you get the desired results. 
Algorithms are a routine part of computer programming. Often the study of com-
puter algorithms centers on sorting algorithms. The sorting of lists is a very com-
mon task and therefore a common topic in any study of algorithms.

It is also important that we have a clear method for analyzing the efficacy of a 
given algorithm. When considering any algorithm if the desired outcome is achieved, 
then clearly the algorithm worked. But the real question is how well did it work? If 
you are sorting a list of ten items, the time it takes to sort the list is not of particular 
concern. However, if your list has one million items, then the time it takes to sort the 
list, and hence the algorithm you choose, is of critical importance. Similar issues 
exist in evaluating modern cryptographic algorithms. It is obviously imperative that 
they work (i.e., that they are secure), but they also have to work efficiently. 
E-commerce would not be so widespread if the cryptographic algorithms used pro-
vided for an unacceptable lag. Fortunately, there are well-defined methods for ana-
lyzing any algorithm.

When analyzing algorithms, we often consider the asymptotic upper and lower 
bounds. Asymptotic analysis is a process used to measure the performance of com-
puter algorithms. This type of performance is based on a factor called computa-
tional complexity. Usually this is a measure of either the time it takes for an 
algorithm to work or the resources (memory) needed. It should be noted that one 
usually can only optimize time or resources, but not both. The asymptotic upper 
bound is simply the worst-case scenario for the given algorithm, whereas the asymp-
totic lower bound is a best case.

Some analysts prefer to simply use an average case; however, knowing the best 
case and worst can be useful in some situations. In simple terms, both the asymp-
totic upper bound and lower bounds must be within the parameters of the problem 
you are attempting to solve. You must assume that the worst-case scenario will 
occur in some situations.
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The reason for this disparity between the asymptotic upper and lower bounds has 
to do with the initial state of a set. If one is applying a sorting algorithm to a set that 
is at its maximum information entropy (state of disorder), then the time taken for the 
sorting algorithm to function will be the asymptotic upper bound. If, on the other 
hand, the set is very nearly sorted, then one may approach or achieve the asymptotic 
lower bound.

Perhaps the most common way to formally evaluate the efficacy of a given algo-
rithm is Big O notation. This method is measure of the execution of an algorithm, 
usually the number of iterations required, given the problem size n. In sorting algo-
rithms, n is the number of items to be sorted. Stating some algorithm f(n) = O(g(n)) 
means it is less than some constant multiple of g(n). The notation reads, “f of n is 
big oh of g of n.” This means that saying an algorithm is 2N means it will have to 
execute two times the number of items on the list. Big O notation essentially mea-
sures the asymptotic upper bound of a function. Big O is also the most often used 
analysis (Cormen et al. 2009).

Big O notation was first introduced by the mathematician Paul Bachmann in his 
1892 book Analytische Zahlentheorie. The notation was popularized in the work of 
another mathematician named Edmund Landau. Because Landau was responsible 
for popularizing this notation, it is sometimes referred to as a Landau symbol.

Omega notation is the opposite of Big O notation. It is the asymptotic lower 
bound of an algorithm and gives the best-case scenario for that algorithm. It gives 
you the minimum running time for an algorithm.

Theta notation combines Big O and Omega to give the average case (average 
being arithmetic mean in this situation) for the algorithm. In our analysis, we will 
focus heavily on the Theta, also often referred to as the Big O running time. This 
average time gives a more realistic picture of how an algorithm executes.

Now that we have some idea of how to analyze the complexity and efficacy of a 
given algorithm, let’s take a look at a few commonly studied sorting algorithms and 
apply these analytical tools.

 Sorting Algorithms

Sorting algorithms are often used to introduce someone to the study of algorithms. 
This is because they are relatively easy to understand and they are so common. 
Since we have not yet explored modern cryptography algorithms, I will also use 
sorting algorithms to illustrate concepts of algorithm analysis.

Elementary implementations of the merge sort sometimes utilize three arrays. 
This would be one array for each half of the data set and one to store the final sorted 
list in. There are non-recursive versions of the merge sort, but they don’t yield any 
significant performance enhancement over the recursive algorithm on most 
machines. It should also be noted that almost every implementation you will find of 
merge sort will be recursive.
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You can see that this is relatively simple code. The name derives from the fact 
that the lists are divided, sorted, and then merged, and this procedure is applied 
recursively. If one had an exceedingly large list and could separate the two sub lists 
onto different processors, then the efficacy of the merge sort would be significantly 
improved.

 Quick Sort

The quick sort is a very commonly used algorithm. Like the merge sort, it is recur-
sive, meaning that it simply calls itself repeatedly until the list is sorted. Some books 
will even refer to the quick sort as a more effective version of the merge sort. The 
quick sorts is the same as merge sort (n ln n); however, the difference is that this is 
also its best-case scenario. However, it has an O (n2), which indicates that its worst- 
case scenario is quite inefficient (Cormen et al. 2009). So, for very large lists, the 
worst-case scenario may not be acceptable.

This recursive algorithm consists of three steps (which bear a strong resemblance 
to the merge sort):

 1. Pick an element in the array to serve as a pivot point.
 2. Split the array into two parts. The split will occur at the pivot point. So, one array 

will have elements larger than the pivot and the other with elements smaller than 
the pivot. Clearly one or the other should also include the pivot point.

 3. Recursively repeat the algorithm for both halves of the original array.

One very interesting aspect of this algorithm is that the efficiency of the algo-
rithm is significantly impacted by which element is chosen as the pivot point. The 
worst-case scenario of the quick sort occurs when the list is sorted and the leftmost 
element is chosen; this gives a complexity of O(n2). Randomly choosing a pivot 
point rather than using the leftmost element is recommended if the data to be sorted 
isn’t random. As long as the pivot point is chosen randomly, the quick sort has an 
algorithmic complexity of O(n log n).

 Bubble Sort

The bubble sort is the oldest and simplest sort in use. By simple I mean that from a 
programmatic point of view, it is very easy to implement. Unfortunately, it’s also 
one of the slowest. It has an O (n2). This means that for very large lists, it is probably 
going to be too slow. As with most sort algorithms, its best case (lower asymptotic 
bound) is O(n).

The bubble sort works by comparing each item in the list with the item next to it 
and swapping them if required. The algorithm repeats this process until it makes a 
pass all the way through the list without swapping any items (in other words, all 
items are in the correct order). This causes larger values to “bubble” to the end of 
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the list while smaller values “sink” toward the beginning of the list, thus the name 
of the algorithm.

The bubble sort is generally considered to be the most inefficient sorting algo-
rithm in common usage. Under best-case conditions (the list is already sorted), the 
bubble sort can approach a constant n level of complexity. General case is an O(n2).

Even though this is one of the slower algorithms available, it is seen more often 
simply because it is so easy to implement. Many programmers who lack a thorough 
enough understanding of algorithm efficiency and analysis will depend on the bub-
ble sort.Now that we have looked at three common sorting algorithms, you should 
have a basic understanding of both algorithms and algorithm analysis. Next, we will 
turn our attention to an important algorithm that is used in cryptography.

 Euclidean Algorithm

The Euclidean algorithm is a method for finding the greatest common divisor of two 
integers. Now that may sound like a rather trivial task, but with larger numbers, it is 
not. It also happens that this plays a role in several cryptographic algorithms you 
will see later in this book. The Euclidian algorithm proceeds in a series of steps such 
that the output of each step is used as an input for the next one. Let k be an integer 
that counts the steps of the algorithm, starting with zero. Thus, the initial step cor-
responds to k = 0, and the next step corresponds to k = 1, k = 2, k = 3, etc.

Each step, after the first, begins with two remainders rk − 1 and rk − 2 from the pre-
ceding step. You will notice that at each step the remainder is smaller than the 
remainder from the preceding step. So that rk − 1 is less than its predecessor rk − 2. This 
is intentional and central to the functioning of the algorithm. The goal of the kth step 
is to find a quotient qk and remainder rk such that the equation is satisfied

 r qk r rk k k� �� �2 1  

where rk < rk − 1. In other words, multiples of the smaller number rk − 1 are sub-
tracted from the larger number rk − 2 until the remainder is smaller than the rk − 1.

That explanation may not be entirely clear. So, let us look at an example.
Let a = 2322, b = 654.
2322 = 654⋅3 + 360 (i.e., the 360 is the remainder). This now tells us that the 

greatest common denominator of the two initial numbers, gcd(2322, 654), is equal 
to the gcd(654, 360). These are still a bit unwieldy, so let us proceed with the 
algorithm.

654 = 360⋅1 + 294 (the remainder is 294). This tells us that the gcd(654, 360) is 
equal to the gcd(360, 294). The following steps continue this process until there 
simply is no further to go:
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Therefore, gcd(2322,654) = 6.
This process is quite handy and can be used to find the greatest common divisor 

of any two numbers. And, as I previously stated, this will play a role in cryptography 
you will study later in this book.

If you still need a bit more on the Euclidian algorithm, there are some very help-
ful resources on the internet. Rutgers University has a nice simple page in this issue 
http://www.math.rutgers.edu/~greenfie/gs2004/euclid.html as does the University 
of Colorado at Denver http://www- math.ucdenver.edu/~wcherowi/courses/m5410/
exeucalg.html

 Designing Algorithms

Designing an algorithm is a formal process. Algorithms are developed to provide 
systematic ways of solving certain problems. Therefore, it should be no surprise that 
there are systematic ways of designing algorithms. In this section we will examine 
a few of these methods.

The divide and conquer approach to algorithm design is a commonly used 
approach. In fact, it could be argued that it is the most commonly used approach. It 
works by recursively breaking down a problem into sub-problems of the same type, 
until a point is reached where these sub-problems become simple enough to be 
solved directly. Once the sub-problems are solved, the solutions to the sub-problems 
are then combined to provide a solution to the original problem. In short you keep 
subdividing the problem until you find manageable portions that you can solve. 
Then after solving those smaller, more manageable sub-problems, you combine 
those solutions in order to solve the original problem.

When approaching difficult problems, such as the classic Tower of Hanoi puzzle, 
the divide and conquer method provides an efficient way to solve the problem. For 
many such problems, the paradigm offers the only workable way to find a solution. 
The divide and conquer method often leads to algorithms that are not only effective 
but that are also efficient.

The efficiency of the divide and conquer method can be examined by considering 
the number of sub-problems being generated. If the work of splitting the problem 
and combining the partial solutions is proportional to the problem’s size n, then 
there are a finite number p of sub-problems of size ~ n/p at each stage. Furthermore, 
if the base cases require O(1) (i.e., constant-bounded) time, then the divide and 
conquer algorithm will have O(n log n) complexity. This is often used in sorting 
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problems in order to reduce the complexity from O(n2). Recall from the first paper 
on algorithm analysis that an O of n log n is fairly good for most sorting algorithms.

In addition to allowing one to devise efficient algorithms for solving complex 
problems, the divide and conquer approach is well suited for execution in multipro-
cessor machines. The reason for this is that the sub-problems can be assigned to 
different processors in order to allow each processor to work on a different sub- 
problem. This leads to sub-problems being solved simultaneously, thus increasing 
the overall efficacy of the process.

The second method is the “greedy approach.” The textbook Introduction to 
Algorithms by Cormen and Leiserson defines greedy algorithms as those that select 
what appears to be the most optimal solution in a given situation. In other words, a 
solution is selected that is ideal for a specific situation, but not be the most effective 
solution for the broader class of problems. The greedy approach is used with opti-
mization problems. In order to give a precise description of the greedy paradigm, we 
must first consider a more detailed description of the environment in which most 
optimization problems occur. In most optimization problems, one will have the 
following:

• A collection of candidates. That collection might be a set, list, array, or other data 
structure. How the collection is stored in memory is irrelevant.

• A set of candidates which have previously been used.
• A predicate solution that is used to test whether or not a given set of candidates 

provide an efficient solution. This does not check to see if those candidates pro-
vide an optimal solution, just whether or not they provide a working solution.

• Another predicate solution (feasible) to test if a set of candidates can be extended 
to a solution.

• A selection function, which chooses some candidate which has not yet been used.
• A function which assigns a value to a solution.

Essentially, an optimization problem involves finding a subset S from a collec-
tion of candidates C where that subset satisfies some specified criteria. For example, 
the criteria may be that it is a solution such that the function is optimized by 
S. Optimized may denote any number of factors, such as minimized or maximized. 
Greedy methods are distinguished by the fact that the selection function assigns a 
numerical value to each candidate C and chooses that candidate for which:

SELECT(C) is largest
or SELECT(C) is smallest

All greedy algorithms have this same general form. A greedy algorithm for a 
particular problem is specified by describing the predicates and the selection 
function.

Consequently, greedy algorithms are often very easy to design for optimization 
problems.

The general form of a greedy algorithm is as follows:

functionselect (C : candidate_set) returncandidate
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functionsolution (S : candidate_set) returnboolean
functionfeasible (S : candidate_set) returnboolean

The aforementioned book Introduction to Algorithms by Cormen and Leiserson 
is an excellent book on algorithms. It is often used as a textbook for university 
courses. It might be a bit beyond the mathematical abilities of some readers, but if 
you are looking for a thorough discussion of algorithms, I recommend that book.

 Conclusions

Several topics have been explored in this chapter. Groups, rings, and fields were the 
first topics. These algebraic structures, particularly Galois fields, are very important 
to cryptography. Make certain you are quite familiar with them before proceeding 
to Chap. 6. Next you saw Diophantine equations. These are so common in algebra, 
that at least a basic familiarity of them is quite important.

The next thing we explored in this chapter was matrix algebra. Matrices are not 
overly complex, and you saw the fundamentals explained in this chapter. You should 
be comfortable with matrices and the basic arithmetic operations on matrices. You 
will see this mathematics used in some cryptographic algorithms.

This chapter also introduced you to algorithms. An understanding of the sorting 
algorithms is not as critical as having a conceptual understanding of algorithms and 
algorithm analysis. Finally, you were introduced to some basics of the history of 
algebra. As with Chaps. 3 and 4, the topics in this chapter are foundational and nec-
essary for your understanding of subsequent chapters.

It is also important to reiterate something stated in the introduction to this chap-
ter. Each of the topics presented here is the subject of entire books. You have only 
seen a basic introduction in this chapter, just enough information to allow you to 
understand the cryptography discussed later in this book. If you wish to delve even 
deeper into cryptography, you will benefit from further study in these various topics.

 Test Your Knowledge

 1. A __________ is any equation for which you are interested only in the integer 
solutions to the equation.

 2. A matrix which has all 1s in its main diagonal and the rest of the elements zero 
is a what?

 (a) Inverse matrix
 (b) Diagonal matrix
 (c) Identity matrix
 (d) Revers matrix
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 3. Omega notation is ____?

 (a) The asymptotic upper bound of an algorithm
 (b) The asymptotic lower bound of an algorithm
 (c) The average performance of an algorithm
 (d) Notation for the row and column of a matrix

 4. A ____ is an algebraic system consisting of a set, an identity element, two 
operations, and the inverse operation of the first operation.

 (a) Ring
 (b) Field
 (c) Group
 (d) Galois field

 5. A ____ is an algebraic system consisting of a set, an identity element for each 
operation, two operations, and their respective inverse operations.

 (a) Ring
 (b) Field
 (c) Group
 (d) Galois field

 6. Is the set of integers a group with reference to multiplication? ____
 7. Is the set of natural numbers a subgroup of the set of integers with reference to 

addition? ____
 8. If a | b and a | c, then ____.
 9. A group that also has the commutative property is an abelian group.
 10. ___________ is a process used to measure the performance of computer 

algorithm.
 11. Solve this determinant |A|

2 1

1 3.

�

�
�

�

�
�

 (a) 8
 (b) 6
 (c) 0
 (d) 5
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Chapter 6
Feistel Networks

 Introduction

This chapter is the first of two chapters regarding symmetric ciphers. The focus of 
this chapter will be on Feistel networks, but before we get to that rather specific 
topic, it is important to establish what a symmetric cipher is and the different types 
of symmetric ciphers. The first issue is to determine what is a symmetric cipher. 
Fortunately, defining a symmetric cipher is very easy. It is an algorithm that uses the 
same key to decrypt the message as was used to encrypt the message. You can see a 
demonstration of this in Fig. 6.1.

The process is rather straightforward and functions much like a key in a physical 
door. The same key is used to unlock the door that was used to lock it. This is prob-
ably the modality of cryptography that is easiest for cryptography novices to learn. 
There are some significant advantages that symmetric cryptography has over asym-
metric cryptography. For example, symmetric cryptography is always faster than 
asymmetric (which we will examine in Chaps. 10 and 11), and it is just as secure 
with a smaller key.

Now that you understand what symmetric cryptography is, at least in principle, 
we need to consider the various types of symmetric ciphers. While the classic cryp-
tography discussed in Chaps. 1 and 2 could be considered to be symmetric ciphers, 
for the purposes of our current discussion, we are only contemplating modern 
ciphers. With that in mind, there are two major classifications of symmetric algo-
rithms. They are block ciphers and stream ciphers. A block cipher literally encrypts 
the data in blocks. 64-bit blocks are quite common, although some algorithms (like 
AES) use larger blocks. For example, AES uses a 128-bit block. Stream ciphers 
encrypt the data as a stream, one bit at a time

Modern block ciphers use a combination of substitution and transposition to 
achieve both confusion and diffusion (recall those concepts from Chap. 3). 
Remember that substitution is changing some part of the plain text for some 
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Fig. 6.1 Symmetric cryptography

matching part of cipher text. The Caesar and Atbash ciphers are simple substitution 
ciphers. Transposition is the swapping of blocks of cipher text. For example, if you 
have the text “I like icecream,” you could transpose or swap every three-letter 
sequence (or block) with the next and get:

“ikeI l creiceam”
Of course, modern block ciphers accomplish substitution and transposition at the 

level of bits, or rather blocks of bits, and our example used characters. However, the 
example above illustrates the concept. Within the topic of block ciphers are two 
major subtypes: Feistel networks (e.g., DES) and substitution-permutation net-
works (e.g., AES). In this chapter, we will examine several Feistel ciphers. Some, 
like DES, we will examine in rather thorough detail. Others, we will simply describe 
in general terms. In Chap. 7, we will discuss substitution-permutation networks as 
well as stream ciphers.

It is not critical that you memorize every algorithm in this chapter, even those 
that are described in detail. It is recommended that you pay particular attention to 
DES and Blowfish. Then study the other algorithms enough to see how that differs 
from DES and Blowfish. The goal of this chapter is to provide you with a solid 
understanding of Feistel ciphers.

As with previous chapters, I will also provide you with places to go get more 
information. In some cases, these will be books; in others, they will be websites. I 
am aware that websites may not always be up and available, but they are also easy 
and free for you to access. If a given URL is no longer available, then I suggest you 
simply use your favorite search engine to search the topic.

One more issue to understand, one which will permeate this book, is how these 
algorithms fit into broader cryptosystems. A complete cryptographic system will 
need algorithms for key exchange, algorithms for securing the confidentiality of 
data, and algorithms for ensuring the integrity of the data. Each of these algorithms 
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is often referred to as a cryptographic primitive. For example, AES, which we will 
explore in this chapter, would be a cryptographic primitive used to secure the data. 
Diffie-Hellman, which we will explore in Chap. 10, is a cryptographic primitive 
used to exchange keys. SHA-2, a hashing algorithm we will explore in Chap. 9, is a 
cryptographic primitive used to ensure data integrity. These various cryptographic 
primitives are combined to provide a complete security system.

 Cryptographic Keys

Before we start looking at Feistel ciphers, you need to have a basic understanding 
of cryptographic keys and how they are used. With all block ciphers, there are really 
two types of keys. The first is the cipher key and the second is the round key. The 
cipher key is a random string of bits that is generated and exchanged between par-
ties that wish to send encrypted messages to each other. It should be noted that it is 
not actually a random number but rather a pseudo random number, but we will dis-
cuss that in more detail in Chap. 12. For now, you just need to understand that the 
cipher key is a number generated by some algorithm, such that it is at least some-
what random. The more random it is, the better the key. When someone says a par-
ticular algorithm has a certain key size, they are referring to this cipher key. For 
example, DES uses a 56-bit cipher key. How that key is exchanged between the two 
parties is not relevant at this point. Later, when we discuss asymmetric cryptogra-
phy, and again when we cover SSL/TLS, we will cover key exchange.

In addition to that cipher key, all block ciphers also have a second algorithm 
called a key schedule. This key schedule takes the cipher key and derives from it a 
unique key, called a round key, for each round of the cipher. For example, DES has 
a 56-bit cipher key but derives 48-bit round keys for each of its 16 rounds. The key 
schedule is usually rather simple, mostly consisting of shifting bits.

The purpose of using a key schedule is so that each round uses a key that is 
slightly different than the previous round. Since both the sender (who encrypts the 
message) and the receiver (who must decrypt the message) are using the same 
cipher key as a starting point and are using the same key schedule, they will gener-
ate the same round keys. But this leaves the question of why do it this way? If you 
wanted a different key for each round, why not just generate that many cipher keys? 
For example, why not just create 16, DES keys? There are two reasons. The first 
being the time needed. Using pseudo random number generators to generate keys is 
computationally more intensive than most key scheduling algorithms and thus much 
slower. Secondly, there is the issue of key exchange. If you generate multiple cipher 
keys, then you have to exchange all of those keys. It is much easier to generate a 
single cipher key, exchange that key, and then derive round keys from the cipher key.

Cryptographic Keys
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 Feistel Function

At the heart of many block ciphers is a Feistel function. Since this function forms 
the basis for so many symmetric ciphers, it makes it one of the most influential 
developments in symmetric block ciphers. It is also known as a Feistel network or a 
Feistel cipher. This function is named after its inventor, the German-born physicist 
and cryptographer Horst Feistel.

While most known for his contributions to DES, Horst Feistel made other impor-
tant contributions to cryptography. He invented the Lucifer cipher, which was the 
precursor to DES. He also worked for the US Airforce on IFF (Identification Friend 
or Foe) devices. Feistel had a bachelor’s degree from MIT and a master’s degree 
from Harvard; both degrees were in physics.

A Feistel cipher is a particular class of block ciphers. A simple view of the Feistel 
function is shown in Fig. 6.2.

The process is actually not that difficult to understand if you take it one step at a 
time. Trying to grasp the entire process at once might prove difficult if this is new to 
you, so take it one small step at a time.

This function starts by splitting the bock of plain text data into two parts (tradi-
tionally termed L0 and R0). The specific size of the plain text bock varies from one 
algorithm to another. Sizes of 64 bits and 128 bits are very commonly used in many 
block ciphers. If you are using a 64-bit block, this leaves you with 32 bits in L0 and 
32 bits in R0. The 0 simply indicates that this is the initial round. In the next round, 
these will be L1 and R1; then in the next round, they will be L2 and R2; and so on for 
as many rounds as that particular cipher uses (Nyberg 1996)..

After the initial bock of plain text is split into two halves, the round function F is 
applied to one of the two halves (Courtois et al. 2018). The term “round function” 
simply means a function performed with each iteration, or round, of the Feistel 
cipher. The details of the round function F can vary with different implementations. 
Usually these are relatively simple functions, to allow for increased speed of the 
algorithm. For now, you can simply treat the round function as a black box. We will 

Fig. 6.2 Feistel: 
simple view
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get to the details of each round function in the specific algorithms we will examine 
(DES, Blowfish, etc.). In every case, however, at some point in the round function, 
the round key is XOR’d with the block of text input into the round function. This is, 
in fact, usually the first step of the round function.

The output of the round function F is then XOR’d with the other half (the half 
that was not subjected to the round function). What this means is that, for example, 
you take L0, pass it through the round function F, and then take the result and XOR 
it with R0. Then the halves are transposed. So L0 gets moved to the right and R0 gets 
moved to the left (Courtois et al. 2018).

This process is repeated a given number of times. The main difference between 
various Feistel functions is the exact nature of the round function F and the number 
of iterations. You can see this process in Fig. 6.3.

This basic structure can provide a very robust basis for cryptographic algorithms. 
The swapping of the two halves guarantees some transposition occurs, regardless of 
what happens in the round function. The Feistel function is the basis for many algo-
rithms including DES, CAST-128, Blowfish, Twofish, RC5, FEAL, MARS, TEA, 
and others. But it was first used in IBM’s Lucifer algorithm (the precursor to DES).

You might wonder how many rounds do you need to make a Feistel secure. 
Michael Luby and Charles Rackoff analyzed the Feistel cipher construction and 
proved that if the round function is a cryptographically secure pseudo random func-
tion, then three rounds is sufficient to make the block cipher a pseudo random per-
mutation, while four rounds is sufficient to make it a “strong” pseudo random 
permutation.

Fig. 6.3 Feistel function

Feistel Function
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Fig. 6.4 Unbalanced Feistel function

 Unbalanced Feistel

There is a variation of the Feistel network called an unbalanced Feistel cipher. 
Unbalanced Feistel ciphers use a modified structure where L0 and R0 are not of 
equal lengths. This means that L0 might be 32 bits and R0 could be 64 bits (making 
a 96-bit block of text). This variation is actually used in the Skipjack algorithm. You 
can see this process in Fig. 6.4.

 Pseudo-Hadamard Transform

This is a technique that is applied in several symmetric ciphers, so it is important to 
be familiar with it. Fortunately, it is rather simple to understand. A pseudo- Hadamard 
transform (often simply called a PHT) is a transformation of a bit string that is 
designed to produce diffusion in the bit string. The bit string must be of even length 
because it is split into two equal halves. So, for example, a 64-bit string is divided 
into two 32-bit halves. To compute the transform of a, you add a + b (mod 2n). To 
compute the transform of b, you add a + 2b (mod 2n). The n is the number of bits of 
each half, in our example 32. Put in more formal mathematical notation
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That is it, PHT is a rather simple transform, and because of its simplicity, it is com-
putationally fast, making it attractive for cryptographic applications.

 MDS Matrix

An MDS matrix (maximum distance separable) is a matrix that represents a func-
tion. It is used in cryptography to accomplish diffusion. It is used in several crypto-
graphic algorithms, including Twofish. A basic definition of the MDS matrix is: An 
m × n matrix over a finite field is an MDS matrix if it is the transformation matrix of 
a linear transformation. This is a greatly simplified definition. This definition is, 
however, adequate for you to understand how algorithms like Twofish are designed. 
For those readers seeking a more mathematically rigorous definition of MDS matri-
ces, consider this quote:

MDS code over a field is a linear mapping from a field elements to b field elements, produc-
ing a composite vector of a + b elements with the property that the minimum number of 
non-zero elements in any non-zero vector is at least b + 1. Put another way, the ‘distance’ 
(i.e., the number of elements that differ) between any two distinct vectors produced by the 
MDS mapping is at least b + 1. It can easily be shown that no mapping can have a larger 
minimum distance between two distinct vectors, hence the term maximum distance sepa-
rable. MDS mappings can be represented by an MDS matrix consisting of a × b elements.

 Lucifer

The Lucifer cipher was the first incarnation of a Feistel cipher. There were varia-
tions; perhaps the most widely known used a 128-bit cipher key and operated on 
128-bit blocks. The original description by Horst Feistel had a 48-bit cipher key 
applied to a 48-bit block. Yet another variant used a 64-bit cipher key on a 32-bit 
block. Regardless of the key size or block size, Lucifer operated exactly as the pre-
vious description of the Feistel cipher. The 128-bit block of plain text is separated 
into two 64-bit blocks (L and R). The R block is subjected to the round function. 
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Unlike DES, Lucifer did not have initial or final permutations (we will discuss those 
in the section on “DES”). The round function has only a few, relatively simple steps.

The key schedule algorithm produces a 64-bit round key (often called a sub key) 
for each round as well as 8 bits that are called ICBs (interchange control bits). The 
64-bit block to be encrypted is treated as a series of 8 bytes. The 8 bits of the ICB is 
matched to each of the bytes of the 64-bit block. What this means is that you look at 
the first bit of the ICB, if it is a 0, then the left nibble and right nibble of the first byte 
of the block are swapped. If that bit is a 1, then the two nibbles are left unchanged. 
Then you look at the second bit of the ICB, if it is a 0, then the nibbles of the second 
byte of the block are swapped. This continues through all 8 bits of the ICB and all 8 
bytes of the block. Since the ICB is generated each round with the round key, it 
changes each round. This gives a transposition in the round function that is based on 
the key.

It should be noted that there are a number of block ciphers that have key- 
dependent functionality. In some cases, like Lucifer, it is simply deciding whether 
or not to execute a basic transposition. In other algorithms, the round key may be 
used to generate the s-boxes. Key dependency does make an algorithm more resis-
tant to some types of cryptanalysis. Once this step is done (swapping based on the 
ICB), the output bits are XOR’d again with the round key. The output of that is then 
input into the s-boxes.

The key scheduling algorithm is simple. Each round, the 128-bit cipher key is 
shifted in a shift register. The left 64 bits are taken to form the round key and the 
right 8 bits form the ICB.  After each round, the 128 bits are shifted 56 bits to 
the left.

As you can see, Lucifer is relatively simple; however, consider how much change 
is actually taking place. First individual bytes of plain text have their nibbles (4-byte 
halves) swapped based on the ICB. Then the result is XOR’d with the round key. 
Then that output is subjected to an s-box. In these three steps, the text is subjected 
to transposition as well as multiple substitutions. Then consider that the most widely 
known variant of Lucifer (the 128-bit key and 128-bit block) uses 16 rounds. So, the 
aforementioned transposition and substitutions will be executed on a block of plain 
text 16 times.

To get a good idea of just how much this alters the plain text, let us consider a 
simplified example. In this case we won’t have any s-boxes, just transposition and 
XOR operation. Let us begin with a single word of plain text:

Attack
If we convert that to ASCII codes, then convert those to binary we get

01000001 01110100 01110100 01100001 01100011 01101011
Now let’s assume we have a cipher key that is just 8 random bits. We are not even 

going to alter this each round, as most real algorithms do. Our key for this example is:

11010011  00110110
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Furthermore, to make this similar to Lucifer but simpler, we will simply swap 
nibbles on every other byte. And again, to make this simpler, we will do the entire 
text at one time, instead of one block at a time. So round one is like this

Plain text 01000001 01110100 01110100 01100001 01100011 01101011
Swapped 00010100 01110100 01000111 01100001 00110110 01101011

(only every other block is swapped)
XOR with key produces

11000111 01000010 10010100 01010111 11100101 01011101
Converted to ASCII is

199 66 148 87 229 93
You can find ASCII tables all over the internet, using one to convert this to actual 

text yields:

199 = a symbol, not even a letter or number
66 = B
148 = a symbol, not even a letter or number
87 = W
229 = a symbol, not even a letter or number
93 =]

Consider that this is the output after one round and it was an overly simplified 
round at that. This should give you some indication of how effective such encryp-
tion can be.

 DES

The Data Encryption Standard is a classic in the annals of cryptography. It was 
selected by the National Bureau of Standards as an official Federal Information 
Processing Standards (FIPS) for the United States in 1976. While it is now consid-
ered outdated and is not recommended for use, it was the premier block cipher for 
many years and bears study. The primary reason it is no longer considered secure is 
its small key size. The algorithm itself is quite sound. Many cryptography textbooks 
and university courses use this as the basic template for studying all block ciphers. 
We will do the same and give this algorithm more attention than most of the others 
in this chapter.

DES uses a 56-bit cipher key applied to a 64-bit block. There is actually a 64-bit 
key, but 1 bit of every bite is actually used for error correction, leaving just 56 bits 
for actual key operations.

DES is a Feistel cipher with 16 rounds and a 48-bit round key for each round. 
Recall from the earlier discussion on keys that a round function is a sub key that is 
derived from the cipher key each round, according to a key schedule algorithm. 
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DES’s general functionality follows the Feistel method of dividing the 64-bit block 
into two halves (32 bits each, this is not an unbalanced Feistel cipher), applying the 
round function to one half, and then XORing that output with the other half.

The first issue to address is the key schedule. How does DES generate a new sub 
key each round? The idea is to take the original 56-bit key and to slightly permute it 
each round, so that each round is applying a slightly different key, but one that is 
based on the original cipher key. To generate the round keys, the 56-bit key is split 
into two 28-bit halves, and those halves are circularly shifted after each round by 1 
or 2 bits. This will provide a different sub key each round. During the round key 
generation portion of the algorithm (recall that this is referred to as the key schedule) 
each round, the two halves of the original cipher key (the 56-bit key of the two end 
points of encryption must exchange) are shifted a specific amount. The amount is 
shown in this table:

Round How far to shift to the left

1 1
2 1
3 2
4 2
5 2
6 2
7 2
8 2
9 1
10 2
11 2
12 2
13 2
14 2
15 2
16 1

Once the round key has been generated for the current round, the next step is to 
address the ½ of the original block that is going to be input into the round function. 
Recall that the two halves are each 32 bits. The round key is 48 bits. That means that 
the round key does not match the size of the half block it is going to be applied to. 
You cannot really XOR a 48-bit round key with a 32-bit ½ block, unless you simply 
ignore 16 bits of the round key. If you did so, you would basically be making the 
round key effectively shorter and thus less secure, so this is not a good option. The 
32-bit half needs to be expanded to 48 bits before it is XOR’d with the round key. 
This is accomplished by replicating some bits so that the 32-bit half becomes 48 bits.

This expansion process is actually quite simple. The 32 bits that is to be expanded 
is broken into 4-bit sections. The bits on each end are duplicated. If you divide 32 
by 4, the answer is 8. So, there are eight of these 4-bit groupings. If you duplicate 
the end bits of each grouping, that will add 16 bits to the original 32, thus providing 
a total of 48 bits.
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It is also important to keep in mind that it was the bits on each end that were 
duplicated; this will be a key item later in the round function. Perhaps this example 
will help you to understand what is occurring at this point. Let us assume 32 bits as 
shown here:

11110011010111111111000101011001
Now divide that into eight sections each of 4 bits, as shown here:

1111 0011 0101 1111 1111 0001 0101 1001
Now each of these has its end bits duplicated, as you see here:

1111 becomes 111111
0011 becomes 000111
0101 becomes 001011
1111 becomes 111111
1111 becomes 111111
0001 becomes 000011
0101 becomes 001011
1001 becomes 110011

The resultant 48-bit string is now XOR’d with the 48-bit round key. That is the 
extent of the round key being used in each round. It is now dispensed with, and on 
the next round, another 48-bit round key will be derived from the two 28-bit halves 
of the 56-bit cipher key.

Now we have the 48-bit output of the XOR operation. That is now split into eight 
sections of 6 bits each. For the rest of this explanation, we will focus on just one of 
those 6-bit sections, but keep in mind that the same process is done to all eight 
sections.

The 6-bit section is used as the input to an s-box. An s-box is a table that takes 
input and produces an output based on that input. In other words, it is a substitution 
box that substitutes new values for the input. The s-boxes used in DES are pub-
lished, the first of which is shown in Fig. 6.5.

Notice this is simply a lookup table. The 2 bits on either end are shown in the 
left-hand column, and the 4 bits in the middle are shown in the top row. They are 
matched, and the resulting value is the output of the s-box. For example, with the 
previous demonstration numbers we were using, our first block would be 111111. 
Therefore, you find 1xxxx1 on the left and x1111x on the top. The resulting value is 
13 in decimal or 1101 in binary.

Fig. 6.5 The first DES s-box

DES
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You may be wondering, why take in 6 bits and only output four? Is that not losing 
information? Recall during the expansion phase we simply duplicated the outer 
most bits, so when we come to the s-box phase and drop the outer most bits, no data 
is lost. As we will see in Chap. 8, this is a compression s-box. Those are difficult to 
design properly.

At the end of this, you have produced 32 bits that are the output of the round 
function. Then in keeping with the Feistel structure, they get XOR’d with the 32 bits 
that were not input into the round function, and the two halves are swapped. DES is 
a 16-round Feistel cipher, meaning this process is repeated 16 times.

There are only two parts still left to discuss regarding DES. The first is the initial 
permutation called the IP, and the final permutation, which is an inverse if the 
IP. This is shown in Fig. 6.6, which is an excerpt from FIPS Publication 46-3.

The initial permutation that was mentioned earlier is simply a transposition of 
the bits in the 64-bit plain text block. This is done before the rounds of DES are 
executed, and then the reverse transposition is done after the rounds of DES have 
completed. Basically, the first 58th bit is moved to the first bit spot, the 50th bit to 
the second bit spot, the 42nd bit to the 3rd bit spot, etc.

Earlier in this chapter, we looked at a very simplified version of the Lucifer 
cipher and saw that it was quite effective at altering the plain text. It should be obvi-
ous to you that DES is at least as effective as Lucifer. The small key size is really the 
only reason that DES is no longer considered secure. Furthermore, DES is probably 
the most widely studied symmetric cipher, certainly the most often cited Feistel 
cipher. It is important that you fully grasp this cipher before moving on to the rest 
of this chapter. You may need to reread this section a few times to make sure you 
fully grasp the details of DES.

For a thorough discussion of the technical details of DES, refer to the actual 
government standard documentation: US Department of Commerce/National 
Institute of Standards and Technology FIPS Publication 46-3 http://csrc.nist.gov/
publications/fips/fips46- 3/fips46- 3.pdf. For a less technical but interesting anima-
tion of DES, you may try http://kathrynneugent.com/animation.html.

 3DES

Eventually it became obvious that DES would no longer be secure. The US federal 
government began a contest seeking a replacement cryptography algorithm. 
However, in the meantime, 3DES was created as an interim solution. Essentially it 
does DES three times, with three different keys.

Triple DES uses a “key bundle” which comprises three DES keys, K1, K2, and 
K3. Each key is standard 56-bit DES key. There were some variations that would 
use the same key for K1 and K3, but three separate keys are considered the 
most secure.
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Fig. 6.6 DES overview from FIPS 46-3

 s-box and p-box

An s-box is just a substitution box. It defines that each of the input bits is substituted 
with a new bit (Easttom 2018). You have seen an s-box in the description of DES. It 
simply is a table that substitutes some output for a given input.

A p-box, or permutation box, is a variation on the s-box. Instead of each input bit 
being mapped to a bit found in a lookup table, the bits that are input are also trans-
posed or permuted. Some may be transposed and others left in place. For example, 
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a 6-bit p-box may swap the 1st and 4th bits and swap the 2nd and 3rd bit but leave 
the 5th bit in place. s-box and p-box will be discussed in detail in Chap. 8.

 DEAL

This algorithm designed by Lars Knudsen and is derived from DES, to be an 
improvement on DES. The name is an acronym for Data Encryption Algorithm with 
Large Blocks. Like DES, it is a Feistel cipher and uses the same round function as 
DES. Unlike DES, it has a 128-bit block size with key sizes of 128, 192, or 256 bits. 
The number of rounds is contingent on the key size. The two smaller key sizes use 
six rounds, and the 256-bit key uses eight rounds. It was submitted as a candidate 
for the AES contest but was rejected due to slow speed. That slow speed may not be 
an issue today with more advanced computers being widely available.

 MacGuffin

This algorithm is not widely used, but it is noteworthy because it is an example of a 
Generalized Unbalanced Feistel Network. MacGuffin is based on DES, but the plain 
text bock is not split into equal halves. Instead, either 48 bits of the 64-bit block go 
into the round function, thus the unbalanced Feistel cipher (Blaze and Schneier 
1994). The algorithm still uses the expansion and then follows it with eight com-
pression s-boxes, just like DES. The key schedule is actually a modified version of 
the algorithm itself. Variations of MacGuffin using 32 rounds with a 128-bit key 
have also been proposed.

 GOST

GOST is a DES-like algorithm developed by the Soviets in the 1970s. It was classi-
fied but released to the public in 1994. It uses a 64-bit block and a key of 256 bits. 
It is a 32-round Feistel cipher (Courtois and Misztal 2011). GOST is an acronym for 
gosudarstvennyy standart, which translates into English as “state standard.”

GOST was developed in the Soviet Union in the 1970s as a classified algorithm. 
It was declassified and made public in 1994. The official designation is GOST 
28147-89. It was meant as an alternative to the US DES algorithm and has some 
similarities to DES. GOST uses a 64-bit block and a 256-bit key with 32 rounds. 
Like DES, GOST uses substitution boxes or s-boxes; however, unlike DES, the 
original s-boxes were classified. The round key for GOST is relatively simple: add 
a 32-bit sub key to the block, modulo 232, and then take the output and submit it to 
the s-boxes. The output of the s-boxes is routed to the left by 11 bits.
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The key schedule is as follows: break the 256-bit cipher key into eight separate 
32-bit keys. Each of these keys will be used four times.

The s-boxes are eight boxes each 4 × 4. The s-boxes are implementation depen-
dent. That means that they are generated, for example, using a pseudo random num-
ber generator. Since the s-boxes are not standardized, each party using GOST needs 
to ensure that the other party is using the same s-box implementation. The s-boxes 
each take in 4 bits and produce 4 bits. This is different from DES where the s-boxes 
take in 6 bits and product 4 bits of output.

The round function is very simple, so to compensate for this, the inventors of 
GOST use 32 rounds (twice that of DES), and the s-boxes are secret and implemen-
tation specific. While the diversity of s-boxes can make certain types of cryptanaly-
sis more difficult on GOST, it also means the individuals implementing GOST must 
be very careful in their creation of the s-boxes. We will be examining s-boxes in 
detail in Chap. 8.

 Blowfish

Blowfish is a symmetric block cipher. This algorithm was published in 1993 by 
Bruce Schneier. Schneier has stated that, “Blowfish is unpatented, and will remain 
so in all countries. The algorithm is hereby placed in the public domain and can be 
freely used by anyone.” This fact has made Blowfish quite popular in open-source 
utilities.

This cryptography algorithm was intended as a replacement for DES. Like DES, 
it is a 16-round Feistel cipher working on 64-bit blocks. However, unlike DES, it 
can have varying key sizes ranging from 32 bits to 448 bits (Schneier 1993). Early 
in the cipher, the cipher key is expanded. Key expansion converts a key of at most 
448 bits into several sub key arrays totaling 4168 bytes.

The cipher itself is a Feistel cipher, so the first step is to divide the block into two 
halves. For example, a 64-bit block is divided into L0 and R0. Now there will be 
16 rounds.

The s-boxes are key dependent (as we will see later in this section). That means 
rather than be standardized as they are in DES, they are computed based on the key. 
There are four s-boxes; each is 32 bits in size. Each s-box has 256 entries. So that is

s1/0, s1/1, s1/2...s1/255
s2/0, s2/1, s2/2...s2/255
s3/0, s3/1, s3/2...s3/255
s4/0, s4/1, s4/2...s4/255

Blowfish uses multiple sub keys (also called round keys). One of the first steps in 
the cipher is to compute those sub keys from the original cipher key. This begins 
with an array called the P array. Each element of the P array is initialized with the 
hexadecimal digits of Pi, after the three. In other words, only the values after the 

Blowfish



154

decimal point. Each element of the P array is 32 bits in size. Here are the first few 
digits of Pi in decimal:

3.14159265358979323846264
Here is the same number in hexadecimal

2B992DDFA23249D6
There are 18 elements in the P array; each is 32 bits in size. They are labeled 

simply P1, P2,…P18. There are four s-boxes; each 32 bits in size are also initialized 
with the digits of Pi.

Then the first 32 bits of the cipher key are XOR’d with P1, and then the next 32 
bits are XOR’d with P2, etc. This continues until the entire P array has been XOR’d 
with bits from the cipher key. When you’re done, the P array elements are each 
hexadecimal digits of Pi XOR’d with segments of the cipher key.

The next step may be confusing for some readers, so pay close attention. You 
then take an all zero string and encrypt it with the Blowfish algorithm using the sub 
keys you just generated (i.e., the P array). Now replace P1 and P2 with the output of 
that encryption you just did. Then take that output and encrypt it with Blowfish, this 
time using the new modified keys (the P1 and P2 were modified by the last step). 
And now replace P3 and P4 with the output of that step. This process continues until 
all the entries of the P array and all four s-boxes have been replaced with the output 
of this continually evolving Blowfish algorithm.

Despite the complex key schedule, the round function itself is rather simple:
The 32-bit half is divided into four bytes, designated a, b, c, and d. Then this 

formula is applied
The F function is: F(xL) = ((S1,a + S2,b mod 232) XOR S3,c) + S4,d mod 232. You 

can see this process in Fig. 6.7.

 Twofish

Twofish was one of the five finalists of the AES contest (which we will explore in 
more detail in Chap. 7). It is related to the block cipher Blowfish, and Bruce Schneier 
also was part of the team that worked on this algorithm. Twofish is a Feistel cipher 
that uses a 128-bit block size and key sizes of 128, 192, and 256 bits. It also has 16 
rounds, like DES. Like Blowfish, Twofish is not patented and is in the public domain 
and can be used without restrictions by anyone who wishes to use it.

Like Blowfish, Twofish uses key-dependent s-boxes and has a fairly complex key 
schedule. There are four s-boxes, each 8 bits by 8 bits. The cipher key is actually 
split in half. Half is used as a key; the other half is used to modify the key-dependent 
s-boxes.

Twofish also uses a process called whitening. Key whitening is simply generat-
ing a second key and XORing it with the block. This can be done before or after the 
round function. In the case of Twofish, it is done both before and after. You can see 
this in Fig. 6.8.
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Fig. 6.7 Blowfish round function

Fig. 6.8 Key whitening
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The plain text is key whitened prior to the application of the Twofish algorithm 
and again after the application of the Twofish algorithm. In the Twofish documenta-
tion, this is referred to as input whitening and output whitening. With Twofish, 128 
bits of key material are used for the input and output whitening.

Twofish has some aspects that are not found in most other Feistel ciphers. The 
first of which is the concept of the cycle. Every two rounds are considered a cycle. 
The design of Twofish is such that in one complete cycle (two rounds) every bit of 
plain text has been modified once.

The plain text is split into four 32-bit words. The first step is the input whitening, 
and then there will be 16 rounds of Twofish. Each round, the two 32-bit words on 
the left side are put into the round function (remember all Feistel ciphers divide the 
plain text, submitting only part of it to the round function). Those two 32-bit words 
are submitted to the key-dependent s-boxes and then mixed using an MDS matrix. 
Then the results from this process are combined using the pseudo-Hadamard trans-
form (discussed earlier in this chapter). After this is complete, the results are XOR’d 
with the right two 32-bit words (that were previously left untouched) and swapped 
for the next round.

There is one nuance to the XOR of the left and right halves. The two 32-bit words 
on the right are given a slight rotation. One 32-bit word is rotated 1 bit the left, and 
then after the XOR, the other 32-bit word is rotated 1 bit to the right.

An overview of Twofish can be seen in Fig. 6.9. Note that this image is the dia-
gram originally presented in Bruce Schneier’s paper on Twofish.

If you wish to delve into more detail with Twofish, I recommend the paper that 
Schneier wrote on Twofish (found in the end notes to this chapter). You may also 
wish to consult The Twofish Encryption Algorithm: A 128-Bit Block Cipher by 
Kelsey, Whiting, Wagner, and Ferguson, ISBN-10: 0471353817.

 Skipjack

This algorithm was developed by the NSA and was designed for the clipper chip. 
While the algorithm was originally classified, it was eventually declassified and 
released to the public. The clipper chip was a chip with built-in encryption; how-
ever, a copy of the decryption key would be kept in a key escrow in case law enforce-
ment need to decrypt data without the device owner’s cooperation. This feature 
made the process highly controversial. The skipjack algorithm was designed for 
voice encryption, and the clipper chip was meant for secure phones.

Skipjack uses an 80-bit key to encrypt or decrypt 64-bit data blocks. It is an 
unbalanced Feistel network with 32 rounds. Skipjack’s round function operates on 
16-bit words (Knudsen and Wagner 2001). Skipjack uses two different types of 
rounds. These are called the A and B rounds. In the original specifications, A and B 
were termed “stepping rules.” First step A is applied for eight rounds and then step 
B for eight rounds. Then the process is repeated, totaling 32 rounds.
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Fig. 6.9 Twofish

Skipjack makes use of a substitution box that is rather interesting. The documen-
tation refers to it as the G function or G permutation. It takes a 16-bit word as input 
along with a 4-byte sub key. This G permutation includes a fixed byte S-table that is 
termed the F-table in the Skipjack documentation.

A is accomplished by taking the 16-bit word termed W1 and submits it to the G 
box. The new W1 is produced by XORing the output of the G box, with the counter 
and then with W4. The W2 and W3 words shift one register to the right, becoming 
W3 and W4. This is shown in Fig. 6.10, which is taken directly from the specifica-
tion for Skipjack.

Skipjack
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Fig. 6.10 Skipjack A round

Fig. 6.11 Skipjack B round

The B-round is very similar, with slight differences shown in Fig.  6.11 (also 
taken from the specification documentation).

The Skipjack algorithm itself is considered to be robust. However, the key escrow 
issue made it unacceptable to many civilian vendors. They feared that the US gov-
ernment would, at will, be able to eavesdrop on communications encrypted with 
Skipjack. For this reason, the Skipjack algorithm did not gain wide acceptance 
and usage.

 CAST

There are two well-known versions of CAST, CAST-128, and CAST-256. CAST-256 
was a candidate in the AES contest and is based on the earlier CAST-128. CAST-128 
is used in some versions of PGP (Pretty Good Privacy). The algorithm was created 
by Carlisle Adams and Stafford Tavares. CAST-128 can use either 12 or 16 rounds, 
working on a 64-bit block. The key sizes are in 8-bit increments, ranging from 40 
bits to 128 bits, but only in 8-bit increments. The 12-round version of CAST-128 is 
used with key sizes less than 80 bits, and the 16-round version is used with key sizes 
of 80 bits longer. CAST-128 has eight s-boxes each 32 bits in size.
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 FEAL

FEAL is an acronym for Fast data Encipherment ALgorithm. It was designed by 
Akihiro Shimizu and Shoji Miyaguchi and published in 1987. There are variations 
of the FEAL cipher, but all use a 64-bit block and essentially the same round func-
tion. FEAL-4 uses four rounds, FEAL-8 uses eight rounds, and FEAL-N uses N 
rounds, chosen by the implementer. This algorithm has not done well under crypt-
analysis. Several weaknesses have been found in the algorithm, and it is not consid-
ered secure.

 MARS

MARS was IBM’s submission to the AES contest and became one of the final five 
finalists, though it was ultimately not selected. Mars was designed by a team of 
cryptographers that included Don Coppersmith. Coppersmith is a mathematician 
who was involved in the creation of DES as well as working on various other cryp-
tological topics such as cryptanalysis of RSA. The algorithm uses a 128-bit block 
with a key size that varies between 128 and 448 bits, in increments of 32 bits.

MARS divides the input into the round function into four 32-bit words labeled A, 
B, C, and D. The algorithm has three phases. There is the 16-round phase that is the 
core of the algorithm. That phase is preceded and followed by an eight-round phase 
that does forward and backward mixing.

The general overview of MARS is shown in Fig. 6.12.
As previously mentioned, MARS can use a cipher key of 128 to 448 bits; this is 

divided into 4 to 14 32-bit words. MARS uses a key schedule that expands the user 
supplied cipher key into a key array of 40 32-bit words.

MARS uses a single, but very large s-box. The s-box for mars is a table of 512 
32-bit words. The operations are applied to the 32-bit words. The original specifica-
tion for MARS actually described the algorithm entirely in an image that is shown 
Fig. 6.13.

You can see that the A, B, C, and D are the 32-bit words that are input. The R and 
M are intermediate steps in the algorithm. Most of the algorithm consists of bit 
shifting (denoted by the >>> and <<< symbols) and XORing. The S represents the 
s-box (or a portion thereof). This is a fairly secure algorithm, even though it was not 
chosen in the AES contest; it, like any of the five finalists, is a secure algorithm that 
you should feel confident using.
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Fig. 6.12 General 
overview of MARS

 TEA

TEA, or Tiny Encryption Algorithm, was created by David Wheeler and Roger 
Needham and first publicly presented in 1994. It is a simple algorithm and easy to 
implement in code. It is a Feistel cipher that uses 64 rounds (note this is a sugges-
tion; it can be implemented with fewer or more rounds). The rounds should be even, 
since they are implemented in pairs called cycles.

TEA uses a 128-bit key operating on a 64-bit block. It also uses a constant that is 
defined as 232/the golden ratio. This constant is referred to as delta, and each round 
a multiple of delta is used. The 128-bit key is split into four different 32-bit sub keys 
labeled K[0], K[1], K[2], and K[3]. Rather than using the XOR operation, TEA uses 
addition and subtraction but done mod 232. The block is divided into two halves R 
and L. R is put through the round function.

The round function takes the R half and performs a left shift of 4. Then the result 
of that operation is added to K[0] (keep in mind that all addition is being done mod 
232). The result of that operation is added to delta (recall that delta is the current 
multiple of the 232/the golden ratio). The result of that operation is then shifted right 
5 and added to K[1]. That is the round function. As with all Feistel ciphers, the result 
of the round function is XOR’d with L, and then L and R are swapped for the 
next round.

If you are not familiar with the golden ratio, it is a very interesting number. Two 
quantities are said to be in the golden ratio if their ratio is the same as the ratio of 
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Fig. 6.13 MARS in detail

their sum to the larger of the two quantities. This can be expressed as (a + b)/a = a/b. 
the ratio is 1.6180339887....It is an irrational number. This number appears in many 
places, including in the paintings of Salvador Dali. Mathematicians throughout his-
tory including Pythagoras and Euclid have been fascinated by the golden ratio.

The Tiny Encryption Algorithm is a rather simple Feistel cipher and is often 
included in programming courses because writing it in code is relatively simple. If 
you are so inclined, you can find numerous examples of TEA in various program-
ming languages (Java, C, C++, etc.) on the internet.

 XTEA

As you may surmise, XTEA is eXtended TEA.  It is a block cipher designed by 
Roger Needham and David Wheeler with the intent to correct some weaknesses in 
TEA.  XTEA uses a 64-bit block with a 128-bit key and 64 rounds, just like 
TEA. However, it does rearrange the TEA algorithm somewhat and uses a more 
complex key schedule algorithm.

TEA



162

 LOKI97

LOKI97 was a candidate in the AES contest but was not chosen. The algorithm was 
developed by Lawrie Brown. There have been other incarnations of the LOKI 
cipher, namely, LOKI89 and LOKI91. The earlier versions used a 64-bit block.

LOKI97 uses 16 rounds (like DES) and a 128-bit block. But it operates with key 
sizes of 128, 192, or 256 bits (as does AES). It has a rather complex round function, 
and the key schedule is accomplished via an unbalanced Feistel cipher. The algo-
rithm is available without royalty.

The key schedule is treated as four 64-bit words K40, K30, K20, and K10. 
Depending on the key size being used, the four 64-bit words may need to be gener-
ated from the key provided. In other words, if there is a cipher key less than 256 bits, 
then there is not enough material for four 64-bit words, but the missing material for 
192- and 128-bit cipher keys is generated. The key schedule itself uses 48 rounds to 
generate the sub keys.

The round function is probably one of the most complex for a Feistel cipher, 
certainly more complex than the algorithms we have examined in this chapter. More 
detail can be found in the paper “Introducing the new LOKI97 Block Cipher,” by 
Lawrie Brown and Josef Pieprzyk. This paper was published in June 1998 and is 
available on the internet.

 Camellia

Camellia is a Japanese cipher that uses a block size of 128 bits and key sizes of 128, 
192, or 256 bits (like AES). With a 128-bit key, Camellia uses 18 rounds, but with 
the 192- or 256-bit keys, it uses 24 rounds (Aoki et al. 2000). Note both of these (18 
and 24) are multiples of 6. The reason is that every six rounds there is a transforma-
tion layer applied that is called the FL function. Camellia uses four s-boxes and uses 
key whitening on the input and output (key whitening is described later in this chap-
ter). Some browsers such as Chrome prefer to use Camellia for encryption. They 
will attempt to negotiate with the server, and if the server can support Camellia, the 
browser will select it over AES.

 ICE

ICE, or Information Concealment Engine, was developed in 1997. It is similar to 
DES; however, it uses a bit permutation during its round function that is key depen-
dent. ICE works with 64-bit blocks using a 64-bit key and 16 rounds. The algorithm 
is in the public domain and not patented. There is a faster variant of ICE, called 
Thin-ICE; it is faster because it uses only eight rounds.
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 Simon

Simon is actually a group of block ciphers. What makes it interesting is that it was 
released by the NSA in 2013. It has many variations, for example, there is a varia-
tion that uses 32-bit blocks with a 64-bit key and 32 rounds; however, if you use a 
64-bit block, you can choose between 96- and 128-bit keys and either 42 or 44 
rounds. The largest block size, 128 bits, can use key sizes of 128 bits, 192 bits, or 
256 bits with either 68, 69, or 72 rounds.

 IDEA

The International Data Encryption Algorithm was designed by James Massey and 
Xuejia Lai. It is a block cipher and was first published in 1991. IDEA uses 64-bit 
blocks and a 128-bit cipher key. The process has eight identical rounds and then an 
output round (Meier 1993). This algorithm is interesting because it uses a process 
we have not yet examined. That process is the Lai-Massey scheme.

Each round, the block is broken into two equal pieces, much like the Feistel 
cipher. There are some permutations done to the left and right sides. Thus, it is not 
truly a Feistel cipher but more of a pseudo Feistel. IDEA has done reasonably well 
under cryptanalysis.

 MISTY1

This algorithm was developed by Mitsuru Matsui in 1995. It was selected for the 
European NESSIE project and has been used in some implementations. However, in 
2015, it was broken with integral cryptanalysis. The name MISTY is an acronym 
with two meanings. The first is the names of the developers: Matsui Mitsuru, 
Ichikawa Tetsuya, Sorimachi Toru, Tokita Toshio, and Yamagishi Atsuhiro. The sec-
ond meaning can be “Mitsubishi Improved Security Technology.” This algorithm is 
patented but freely available for academic use.

 KASUMI

The KASUMI algorithm was designed specifically for use in UMTS (Universal 
Mobile Telecommunications System) and GSM (Global System for Mobile 
Communications) cellular communications. It is a block cipher. With UMTS, 
KASUMI is used in the confidentiality and integrity algorithms, labeled f8 and f9 in 
the UMTS standard. In GSM, KASUMI is used in the A5/3 key stream generator.
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The KASUMI algorithm uses a 128-bit key. During the key schedule algorithm, 
that cipher key is divided into eight sub keys of 16 bits each (Wallén 2000). Round 
keys are derived from the sub keys, often using bitwise rotation to the sub keys. 
KASUMI divides a 64-bit block f plain text into two 32-bit halves. It is not purely a 
Feistel cipher but very similar.

 MAGENTA

This algorithm is a block cipher, and it is also a Feistel cipher. It was developed for 
Deutsche Telekom by Michael Jacobson and Klaus Huber. The name is an acronym 
for Multifunctional Algorithm for General-purpose Encryption and Network 
Telecommunication Applications. As you can probably surmise from both the name 
and the company it was developed for, this algorithm is intended for use in telecom-
munications (Jacobson et al. 1998). It uses a block size of 128 bits with key sizes of 
128, 192, and 256 bits which are reminiscent of AES (which you will see in the next 
chapter). However, it is a Feistel cipher that can use either six or eight rounds.

 Speck

This is actually a group of related block ciphers, each a slight variation of the others. 
It was released in 2013 by the US NSA with the intention of Speck, along with a 
related algorithm Simon, be used for Internet of Things devices. Due to the restricted 
processing power of IoT devices, Speck and Simon are as concerned about perfor-
mance as they are about security.

The block size for Speck is always two words, but the words themselves could be 
16, 24, 32, 48, or 64 bits. The key is either 2, 3, or 4 words. Due to performance 
issues, the round function is rather simple. It has two rotations that consist of adding 
the right word to the left, then XORing the key into the left word, and then XORing 
the left word into the right word. The block and key size will determine the number 
of rounds, shown in the following table (all sizes are in bits).

Word size Block size Key size Rounds

16 2 × 16 = 32 4 × 16 = 64 22
24 2 × 24 = 48 3 × 24 = 72 22
24 4 × 24 = 96 23
32 2 × 32 = 64 3 × 32 = 96 26
32 4 × 32 = 128 27
48 2 × 48 = 96 2 × 48 = 96 28
48 3 × 48 = 144 29
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Word size Block size Key size Rounds

64 2 × 64 = 128 2 × 64 = 128 32
64 3 × 64 = 192 33
64 4 × 64 = 256 34

This cipher is constructed to work on systems with limited resources yet still pro-
vide adequate security.

 Symmetric Methods

There are methods that can be used to alter the way a symmetric cipher works. 
Some of these are meant to increase the security of the cipher and others to change 
a block cipher into a stream cipher. We will examine a few of the more common 
methods here in this section.

 ECB

The most basic encryption mode is the electronic codebook (ECB) mode. The mes-
sage is divided into blocks, and each block is encrypted separately. The problem is 
that if you submit the same plain text more than once, you always get the same 
cipher text. This gives attackers a place to begin analyzing the cipher to attempt to 
derive the key. Put another way, ECB is simply using the cipher exactly as it is 
described without any attempts to improve its security.

 CBC

When using cipher block chaining (CBC) mode, each block of plain text is XOR’d 
with the previous cipher text block before being encrypted. This means there is 
significantly more randomness in the final cipher text. This is much more secure 
than electronic codebook mode and is the most common mode. This process is 
shown in Fig. 6.14.

There really is no good reason to use ECB over CBC, if both ends of communi-
cation can support CBC. Cipher block chaining is a strong deterrent to know plain 
text attacks, a cryptanalysis method we will examine in Chap. 17.

The only issue with CBC is the first block. There is no preceding block of cipher 
text to XOR the first plain text block with. It is common to add an initialization vec-
tor to the first block so that it has something to be XOR’d with. The initialization 
vector is basically a pseudo random number, much like the cipher key. Usually an 
IV is only used once and is thus called a nonce (number only used once). The CBC 
mode is actually fairly old. It was introduced by IBM in 1976.
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Fig. 6.14 Cipher block 
chaining

 PCBC

The propagating cipher block chaining mode was designed to cause small changes 
in the cipher text to propagate indefinitely when decrypting, as well as when 
encrypting. This method is sometimes called plain text cipher block chaining. The 
PCBC mode is a variation on the CBC mode of operation. It is important to keep in 
mind that the PCBC mode of encryption has not been formally published as a fed-
eral standard.

 CFB

In cipher feedback mode, the previous cipher text block is encrypted, and then the 
cipher text produced is XOR’d back with the plain text to produce the current cipher 
text block. Essentially it loops back on itself, increasing the randomness of the 
resultant cipher text. While CFB is very similar to cipher block chaining, its purpose 
is a bit different. The goal is to take a block cipher and turn it into a stream cipher. 
Output feedback mode is another method used to transform a block cipher into a 
synchronous stream cipher. We will examine both of these in more detail when we 
discuss stream ciphers in Chap. 7.
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 Galois/Counter Mode

The Galois/Counter Mode (GCM) uses counter mode with Galois authentication. 
Counter mode was introduced by Whitfield Diffie and Martin Hellman in 1979 and 
is used to turn a block cipher into a stream cipher. Counter mode is combined with 
Galois field multiplication used for authentication.

 Conclusions

In this chapter, you have seen the different types of symmetric ciphers and studied 
Feistel ciphers in detail. It is critical that you fully understand the general Feistel 
structure. It is also important that you have a strong understanding of DES and 
Blowfish before proceeding to the next chapter. Other algorithms were presented in 
this chapter. While you need not memorize every single algorithm, the more algo-
rithms you are familiar with, the better.

You have also learned some new mathematics in this chapter, such as the pseudo- 
Hadamard transform. Just as importantly, you have seen improvements to symmet-
ric ciphers with techniques such as cipher block chaining.

 Test Your Knowledge

 1. _____ has an 80-bit key and is an unbalanced cipher.
 2. ____ is a Feistel cipher using variable length key sizes from 32 bits to 448 bits.
 3. The following formulas describe what?

 

�

�

� � � �
� � � �

a a b

b a b

n

n

mod

mod

2

2 2
 

___________

 4. Which of the following is a Russian cipher much like DES?

 (a) Blowfish
 (b) CAST
 (c) FEAL
 (d) GOST

 5. What is the proper term for the algorithm used to derive sub keys (round keys) 
from the cipher key?

 (a) Key algorithm
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 (b) Sub key generator
 (c) Key schedule
 (d) Round key generator

 6. Which algorithm described in this chapter was an unbalanced Feistel cipher 
used with the clipper chip?

________
 7. ________ used input whitening and output whitening as well as a pseudo- 

Hadamard transform.
 8. _____ divides the input into the round function into four 32-bit words labeled 

A, B, C, and D and then uses three phases: the 16-round phase that is the core 
of the algorithm and the pre- and post-phases of forward and backward mixing.

 9. With a 128-bit key, Camellia uses ___ rounds, but with the 192- or 256-bit key, 
it uses ___ rounds.

 10. With ________, block of plain text is XOR’d with the previous cipher text 
block before being encrypted.
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Chapter 7
Substitution-Permutation Networks

 Introduction

A substitution-permutation network (sometimes simply called and SPM) is a series 
of operations linked together. The first thing that is noticeably different from a 
Feistel cipher is that the plain text block is not split in half but instead is operated on 
as a whole. The block is subjected to alternating rounds or layers of operations 
including substitution or permutation boxes, in order to generate the cipher text. 
There are several prominent algorithms that are structured in this manner, so we will 
explore those. We will also explore stream ciphers in this chapter.

 In This Chapter We Will Cover

• AES
• Serpent
• Stream ciphers
• RC4
• FISH
• PIKE

 Replacing DES

DES (Data Encryption Standard) is actually a quite well-designed algorithm. Now, 
you may be aware that it is no longer recommended and is considered insecure. The 
issue is not the algorithm, but rather the key is simply too small. Unquestionably, in 
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the late 1970’s, when DES was first published, and even in the early 1980’s that key 
size was actually adequate. However, as computing power increased, it became 
more practical for a computer to brute force the DES key. It became apparent that a 
replacement was needed for DES. The US National Institute of Standards and 
Technology began a process in 1997–2000 in order to find a replacement for DES.

On January 2, 1997, when the NIST announced the contest, the search was on to 
find a replacement for DES. However, it was not until September 12, 1997 that the 
NIST announced the general criteria for selection as the new standard. The require-
ments were that contestant algorithms had to block ciphers that supported a block 
size of 128 bits as well as key sizes of 128, 192, and 256 bits. During the next sev-
eral months, 15 different algorithms were submitted from a variety of countries. The 
algorithms that were submitted were CAST-256, CRYPTON, DEAL, DFC, E2, 
FROG, HPC, LOKI97, MAGENTA, MARS, RC6, Rijndael, SAFER+, Serpent, and 
Twofish. Several of these submitted algorithms, while not ultimately selected, were 
solid algorithms. In Chap. 6, we examined MARS and CAST-256, and in this chap-
ter, you will see a few of the others, although there will be a substantial focus on 
AES itself.

Over the period of the contest, the algorithms were subjected to a variety of tests, 
including common cryptanalysis attacks. Two conferences were held, the first 
AES1 in August 1998 and the second AES2 in March 1999. In August of 1999, it 
was announced that the process had narrowed down the candidate list to just five 
algorithms: MARS, RC6, Rijndael, Serpent, and Twofish. These are often referred 
to in the literature as the AES finalists. It should be noted that all five of these are 
robust algorithms and are widely used today. Then in October of 2000, the NIST 
announced that the Rijndael cipher had been chosen. In computer security literature, 
you will see the same algorithm referred to as Rijndael or just AES; however, cryp-
tography literature usually refers to Rijndael.

 AES

Advanced Encryption Standard was ultimately chosen as a replacement for 
DES. AES is also known as Rijndael block cipher. It was officially designated as a 
replacement for DES in 2001 after a 5-year process involving 15 competing algo-
rithms. AES is designated as FIPS 197. FIPS is an acronym for Federal Information 
Processing Standard. Other algorithms that did not win that competition include 
such well-known algorithms as Twofish. The importance of AES cannot be over-
stated. It is widely used around the world and is perhaps the most widely used sym-
metric cipher. Of all the algorithms in this chapter, AES is the one you should give 
the most attention too.

AES can have three different key sizes; they are128, 192, and 256 bits. The three 
different implementations of AES are referred to as AES 128, AES 192, and AES 
256. The block size, however, is always 128 bits. It should be noted that the original 
Rijndael cipher allowed for variable block and key sizes in 32-bit increments 
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(Daemen and Rijmen 1998). It should be noted that the algorithm, the Rijndael 
algorithm, supports other key and block sizes. Rijndael supports key and block sizes 
of 128, 160, 192, 224, and 256 bits. However, the AES standard specifies a block 
size of only 128 bits and key sizes of 128, 192, and 256 bits.

This algorithm was developed by two Belgian cryptographers, Joan Daemen and 
Vincent Rijmen. Joan Daemen is a Belgian cryptographer who has worked exten-
sively on the cryptanalysis of block ciphers, stream ciphers, and cryptographic hash 
functions. Vincent Rijmen is also a Belgian cryptographer who helped design the 
Whirlpool cryptographic hash (which we will study in Chap. 9) as well as worked 
on ciphers such as KHAZAD, Square, and SHARK.

Rijndael uses a substitution-permutation matrix rather than a Feistel network. 
The Rijndael cipher works by first putting the 128-bit block of plain text into a 
4-byte × 4-byte matrix (Daemen and Rijmen 1998). This matrix is termed the state 
and will change as the algorithm proceeds through its steps. Thus, the first step is to 
convert the plain text block into binary and then put it into a matrix as shown in 
Fig. 7.1.

 Rijndael Steps

The algorithm consists of a few relatively simple steps that are used during various 
rounds. The steps are described here:

AddRoundKey—each byte of the state is combined with the round key using bitwise 
XOR.  This is where Rijndael applies the round key generated from the key 
schedule.

SubBytes—a non-linear substitution step where each byte is replaced with another 
according to a lookup table. This is where the contents of the matrix are put 
through the s-boxes. Each of the s-boxes is 8 bits.

ShiftRows—a transposition step where each row of the state is shifted cyclically a 
certain number of steps. In this step, the first row is left unchanged. Every byte 
in the second row is shifted one byte to the left (with the far left wrapping 
around). Every byte of the third row is shifted two to the left, and every byte of 
the fourth row is shifted three to the left (again with wrapping around). This is 
shown in Fig. 7.2.

Fig. 7.1 The Rijndael matrix
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Fig. 7.2 ShiftRows

Fig. 7.3 MixColumns

Notice that in Fig. 7.2 the bytes are simply labeled by their row and then a letter, 
for example, 1a, 1b, 1c, and 1d.

MixColumns—a mixing operation which operates on the columns of the state, com-
bining the four bytes in each column. In the MixColumns step, each column of 
the state is multiplied with a fixed polynomial. Each column in the state (remem-
ber the matrix we are working with) is treated as a polynomial within the Galois 
field (28). The result is multiplied with a fixed polynomial c(x) = 3x3 + x2 + x + 2 
modulo x4 + 1.
The MixColumns step can also be viewed as a multiplication by the particular 

matrix in the finite field GF(28) (Daemen and Rijmen 1999). This is often shown as 
matrix multiplication, as you see in Fig. 7.3.

Essentially, you take the four bytes and multiply them by the matrix, yielding a 
new set of four bytes.

 Rijndael Outline

With the aforementioned steps in mind, this is how those steps are executed in the 
Rijndael cipher. For 128-bit keys, there are ten rounds. For 192-bit keys, there are 
12 rounds. For 256-bit keys, there are 14 rounds.

Key Expansion—The first step is that the round keys are derived from the cipher key 
using Rijndael’s key schedule. The key schedule is described in more detail later 
in this chapter.
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 Initial Round

This initial round will only execute the AddRoundKey step. This is simply XORing 
with the round key. This initial round is executed once, and then the subsequent 
rounds will be executed.

 Rounds

This phase of the algorithm executes several steps, in the following order:

SubBytes
ShiftRows
MixColumns
AddRoundKey

 Final Round

This round has everything the rounds phase has, except no mix columns.

SubBytes
ShiftRows
AddRoundKey

In the AddRoundKey step, the sub key is XOR’d with the state. For each round, 
a sub key is derived from the main key using Rijndael’s key schedule; each sub key 
is the same size as the state.

 Rijndael s-box

The s-box of Rijndael is fascinating to study. We will look more deeply into them in 
Chap. 8, “s-box Design.” However, a brief description is needed here. The s-box is 
generated by determining the multiplicative inverse for a given number in 
GF(28) = GF(2)[x]/(x8 + x4 + x3 + x + 1), Rijndael’s finite field (zero, which has no 
inverse, is set to zero). In other words, the s-boxes are based on a mathematical 
formula. In fact, there are variations of the standard Rijndael s-box. It will still oper-
ate as any other s-box, taking in bits as input and substituting it for some other bits. 
You can see the standard Rijndael s-box in Fig. 7.4.
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Fig. 7.4 Rijndael s-box

 Rijndael Key Schedule

As with other ciphers, we have seen Rijndael has a key schedule in order to generate 
round keys from the original cipher key. The key schedule has three operations that 
will be combined to create the key schedule.

 The Operations

Rotate: The first operation is simply to take a 32-bit word (in hexadecimal) and to 
rotate it 8 bits (1 byte) to the left.

Rcon: This is the term that the Rijndael documentation uses for the exponentiation 
of 2 to a user-specified value. However, this operation is not performed with regular 
integers but in Rijndael’s finite field. In polynomial form, 2 is 2 = 00000010 = 0 
x^7 + 0 x^6 + 0 x^5 + 0 x^4 + 0 x^3 + 0 x^2 + 1 x + 0.

Inner Loop: The key schedule has an inner loop that consists of the follow-
ing steps:

 1. The input is a 32-bit word and at an iteration number i. The output is a 32-bit word.
 2. Copy the input over to the output.
 3. Use the above described rotate operation to rotate the output 8 bits to the left.
 4. Apply Rijndael’s s-box on all four individual bytes in the output word.
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 5. On just the first (leftmost) byte of the output word, exclusive OR the byte with 2 
to the power of (i-1). In other words, perform the rcon operation with i as the 
input and exclusive or the rcon output with the first byte of the output word.

 The Actual Key Schedule

The actual key schedule for Rijndael is one of the more complex key schedules 
found in symmetric ciphers.

Since the key schedules for 128-bit, 192-bit, and 256-bit encryption are very 
similar, with only some constants changed, the following key size constants are 
defined here:

• n has a value of 16 for 128-bit keys, 24 for 192-bit keys, and 32 for 256-bit keys.
• b has a value of 176 for 128-bit keys, 208 for 192-bit keys, and 240 for 256-bit 

keys (with 128-bit blocks as in AES, it is correspondingly larger for variants of 
Rijndael with larger block sizes).

Once you have the appropriate constants, then the steps of the Rijndael key 
schedule can be executed:

 1. The first n bytes of the expanded key are simply the encryption key.
 2. The rcon iteration value i is set to 1.
 3. Until we have the desired b bytes of expanded key, we do the following to gener-

ate n more bytes of expanded key:
 4. We do the following to create 4 bytes of expanded key:

 (a) We create a 4-byte temporary variable, t.
 (b) We assign the value of the previous 4 bytes in the expanded key to t.
 (c) We perform the key schedule core (see above) on t, with i as the rcon itera-

tion value.
 (d) We increment i by 1.
 (e) We XOR t with the 4-byte block n bytes before the new expanded key. This 

becomes the next 4 bytes in the expanded key.

 5. We then do the following three times to create the next 12 bytes of expanded key:

 (a) We assign the value of the previous 4 bytes in the expanded key to t.
 (b) We XOR t with the 4-byte block n bytes before the new expanded key. This 

becomes the next 4 bytes in the expanded key.

 6. If we are processing a 256-bit key, we do the following to generate the next 4 
bytes of expanded key:

 (a) We assign the value of the previous 4 bytes in the expanded key to t.
 (b) We run each of the 4 bytes in t through Rijndael’s s-box.
 (c) We XOR t with the 4-byte block n bytes before the new expanded key. This 

becomes the next 4 bytes in the expanded key.
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 7. If we are processing a 128-bit key, we do not perform the following steps. If we 
are processing a 192-bit key, we run the following steps twice. If we are process-
ing a 256-bit key, we run the following steps three times:

 (a) We assign the value of the previous 4 bytes in the expanded key to t.
 (b) We XOR t with the 4-byte block n bytes before the new expanded key. This 

becomes the next 4 bytes in the expanded key.

This should give you a solid working knowledge of AES. Given the widespread 
use of this algorithm, it is important that you take the time to thoroughly understand 
this algorithm before proceeding.

 Serpent

This algorithm was invented by Ross Anderson, Eli Biham, and Lars Knudsen. 
These three names are all prominent in the history of cryptography over the past 
50  years. Each has individually made major contributions to cryptography. This 
algorithm was submitted to the AES competition but was not selected, in large part 
due to the fact that its performance is slower than AES. However, in the ensuing 
years since the AES competition, computational power has increased dramatically. 
This has led some experts to reconsider the use of Serpent on modern systems.

Ross Anderson worked with Eli Biham on the Tiger cryptographic hash and 
other algorithms. He also designed the PIKE stream cipher. Eli Biham is an Israeli 
cryptographer and well known for his extensive contributions to cryptography 
including inventing the topic of differential cryptanalysis, along with Adi Shamir 
(we will be studying differential cryptanalysis in Chap. 17).

Serpent has a block size of 128 bits and can have a key size of 128, 192, or 256 
bits, much like AES (Biham et  al. 1998). The algorithm is also a substitution- 
permutation network like AES. It uses 32 rounds working with a block of four 32-bit 
words. Each round applies 1 of 8 4-bit-to-4-bit s-boxes 32 times in parallel. Serpent 
was designed so that all operations can be executed in parallel (Anderson, Biham, 
and Knudsen, 1998).

 Serpent s-boxes

Serpent uses eight different s-boxes; each is 4-bits. As this algorithm works in 32 
rounds, the s-boxes are alternated between rounds. The s-boxes have good proper-
ties of non-linearity. This is demonstrated by the fact that a change in 1 input bit will 
usually lead to 2–4 output bits being changed. The eight different s-boxes are 
described in the following table:
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Input S0 S1 S2 S3 S4 S5 S6 S7

0 3 15 8 0 1 15 7 1
1 8 12 6 15 15 5 2 13
2 15 2 7 11 8 2 12 15
3 1 7 9 8 3 11 5 0
4 10 9 3 12 12 4 8 14
5 6 0 12 9 0 10 4 8
6 5 5 10 6 11 9 6 2
7 11 10 15 3 6 12 11 11
8 14 1 13 13 2 0 14 7
9 13 11 1 1 5 3 9 4

10 4 14 14 2 4 14 1 12
11 2 8 4 4 10 8 15 10
12 7 6 0 10 9 13 13 9
13 0 13 11 7 14 6 3 3
14 9 3 5 5 7 7 10 5
15 12 4 2 14 13 1 0 6

This means that if you are currently on a round using the third s-box (S2) and the 
input is 3, then the output will be 9. If you are currently on a round using the seventh 
s-box (s6) and the input is 7, the output will be 11. The table presents these values 
in decimal format in order to make it easier for the reader to follow. Of course, 
actual implementations will use binary numbers, so the first s-box (s0) would look 
as you see in the following table.

Input Output

0000 0011
0001 1000
0010 1111
0011 0001
0100 1010
0101 0110
0110 0101
0111 1011
1000 1110
1001 1101
1010 0100
1011 0010
1100 0111
1101 0000
1110 1001
1111 1100
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 Serpent Key Schedule

There are 32 sub keys or round keys, each 128 bits in size. The key length could 
have been variable, but for the purposes of the AES competition, the key sizes were 
fixed at 128, 192, and 256 bits.

 The Serpent Algorithm

The cipher begins with an initial permutation (IP), much as DES does. It then has 32 
rounds; each round consists of a key mixing operation (note that the key mixing is 
simply XORing the round key with the text), s-boxes, and a linear transformation 
(except for the last round). In the final round, that linear transformation is instead 
replaced with a key mixing step. Then there is a final permutation (FP). The IP and 
FP do not have any cryptographic significance; instead, they simply optimize 
the cipher.

The cipher uses one s-box per round. Then during R0, the S0 s-box is used, and 
then during R1, the S1 s-box is used. Since there are only eight s-boxes, each one is 
used four times, so that R16 uses S0 again.

It should be obvious that Serpent and Rijndael have some similarities. The fol-
lowing table shows a comparison of the two algorithms.

Serpent Rijndael

Rounds 32 10, 12, or 14
Key size 128, 192, 256 128, 192, 256
Round function 
operations

XOR, s-boxes, and a linear 
transformation

s-boxes, row shifting, column 
mixing, and XOR

s-box 8 s-boxes each 4 × 4 A single 8 × 8 s-box
Speed Slower Faster

Clearly, Serpent has more rounds than Rijndael, but the round functions of the 
two algorithms are different enough that simply having more rounds does not auto-
matically mean Serpent is more secure. Serpent is slower due to more rounds, and 
it is particularly slower on computers that do not support multiprocessing. That was 
the norm for personal computers at the time of the AES competition. Now, however, 
multiprocessing computers are ubiquitous. This indicates that today, Serpent can be 
a secure and efficient algorithm.

 Square

Square was actually the predecessor algorithm to the Rijndael cipher. It was devel-
oped by Joan Daemen, Vincent Rijmen, and Lars Knudsen. It uses a 128 block with 
a 128-bit key working in 8 rounds (Daemen et al. 1997). This algorithm was first 
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published in 1997. Given the success of AES, the Square cipher has largely become 
a footnote in the history of cryptography.

You have already become acquainted with Rijmen and Daemen earlier in this 
book. Lars Knudsen is a well-known Danish cryptographer. He has done extensive 
work with analyzing block ciphers, cryptographic hash functions, and message 
authentication codes. He received his doctorate from Aarhus University in 1994.

 SHARK

SHARK was invented by a team of cryptographers including Vincent Rijmen, Joan 
Daemen, Bart Preneel, Antoon Bosselaers, and Erik De Win. SHARK uses a 64-bit 
block with a 128-bit key and operates in six rounds (the original SHARK used 6 
rounds). It has some similarities to the Rijndael cipher including the use of s-boxes 
that are based on GF(28). Remember that GF is a Galois field defined by a particular 
prime number raised to some power. Like Rijndael (and unlike DES), the s-boxes 
take a fixed number of bits and put out the same number of bits (recall that DES 
s-boxes took in 6 bits and produced 4 bits).

The original paper for SHARK described two different ways to create a key 
schedule algorithm (recall the key schedule creates round keys from the cipher key). 
The first method took n bits of the round input were XOR’d with n bits of the cipher 
key. The result was the round key. The second method used an affine 
transformation.

The term affine transformation might be new to some readers. An affine transfor-
mation is a function between affine spaces which preserves points, straight lines, 
and planes. This is often applied to geometry but works well with matrix mathemat-
ics. For more details on affine transformations, this textbook chapter from Clemson 
University is a good resource http://people.cs.clemson.edu/~dhouse/courses/401/
notes/affines- matrices.pdf.

The specific affine transformation used in SHARK is as follows. Let Ki be a key- 
dependent invertible (n × n) matrix over GF(2m). Then the operation on that matrix 
is shown in Fig. 7.5.

The general flow of the SHARK algorithm is shown in Fig. 7.6, which is a figure 
from the original SHARK paper.

 SAFER

SAFER is an acronym for Secure And Fast Encryption Routine. It is actually a fam-
ily of ciphers invented by a team that included James Massey (one of the creators of 
IDEA, a rather well-known block cipher). The older versions include SAFER K and 
SAFER SK, and the newer versions are SAFER+ and SAFER++. The first SAFER 
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cipher was published in 1993 and used a key size of 64 bits. It was eponymously 
named SAFER K-64. There was also a 128-bit version named SAFER K-128.

Cryptanalysis uncovered weaknesses in the original design, specifically in the 
key schedule. Thus, an improved key schedule was designed, and the variants were 
named SAFER SK-64 and SAFER SK-128. The SK is an acronym that means Safer 
Key schedule. SAFER+ was an improvement that was published in 1998 and sub-
mitted to the AES competition. It did not become a finalist; however, some Bluetooth 
implementations used SAFER+ for generating keys and as a message authentication 
code, but not for encrypting traffic.

The key size used with SAFER obviously depends on the particular variant of 
SAFER being discussed. The number of rounds can range from 6 to 10 with more 
rounds being used with larger key sizes. However, all the various SAFER variations 
use the same round function. They differ in key size, key schedule, and total number 
of rounds.

 The Round Function

The 64-bit block of plain text is converted into eight blocks, each of 8 bits. Each 
round consists of an XOR with the round key, the output of which is submitted to 
the s-boxes, and the output of that is subjected to another XOR with a different 
round key. This is shown in Fig. 7.7.

After this XORing and s-boxes, the text is subjected to three pseudo-Hadamard 
transforms. This is shown in Fig. 7.8.

 Key Schedule

Each of the SAFER variations has a different key scheduling algorithm. For exam-
ple, SAFER+ expands a 16-, 24-, or 32-byte cipher key into 272, 400, or 528 sub 
key bytes (again bytes not bits). An overview of the SAFER structure is shown in 
Fig. 7.9. This figure is taken from the original SAFER paper.

Fig. 7.5 The SHARK affine transformation
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Fig. 7.6 The SHARK cipher

Fig. 7.7 The SAFER round function
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 KHAZAD

The KHAZAD algorithm was designed by Vincent Rijmen (one of the creators of 
the Rijndael cipher) and Paulo Barreto. The name is not an acronym but rather is 
derived from a fictional dwarven kingdom from J.R.R. Tolkien’s books: Khazad- 
dum. KHAZAD uses eight rounds on a 64-bit block, applying a 128-bit key (Barreto 
and Rijmen 2000). This algorithm is not patented and is free to anyone who wishes 
to use it.

 NESSIE

In Europe there was a project similar to the AES competition. This project was 
named NESSIE or New European Schemes for Signatures, Integrity, and Encryption 
(Barreto and Rijmen 2000). The research project lasted from 2000 to 2003 with the 
goal of not just finding a new standard symmetric cipher but also securing crypto-
graphic primitives. You will see cryptographic primitives discussed frequently in 
this book. The term is easy to understand. Cryptographic primitives are basic cryp-
tographic algorithms that are used to build cryptographic protocols. Cryptographic 
hashes, symmetric algorithms, and asymmetric algorithms all qualify as crypto-
graphic primitives. Essentially all the algorithms you have seen so far are crypto-
graphic primitives. These primitives are combined to create cryptographic protocols 
such as SSL and TLS which we will study in Chap. 13.

Several algorithms of various types were selected including the block ciphers: 
MISTY1, Camellia, SHACAL-2, and AES/Rijndael. Also, RSA was one of the 
three asymmetric algorithms selected. For cryptographic hashes and message 
authentication codes, HMAC and SHA were chosen as well as Whirlpool.

Fig. 7.8 The SAFER PHTs
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Fig. 7.9 Overview of the 
SAFER function

 Stream Ciphers

A stream cipher is a special type of symmetric cipher. Both Feistel ciphers and 
substitution-permutation networks break the plain text into blocks and then encrypt 
each block. Stream ciphers take each bit of plain text and encrypt it with the key 
stream to produce the cipher text stream. The combination is usually done via XOR 
operations.

There are two types of stream ciphers: synchronous and self-synchronizing. In a 
synchronous stream cipher (sometimes also referred to as a binary additive stream 
cipher), the key is a stream of bits produced by some pseudo random number gen-
erator. The production of this key stream is completely independent of the plain text. 
The key stream is XOR’d with the plain text to produce the cipher text. The reason 
this is called a synchronous cipher is that the sender and receiver need to be in 
synch. If digits are added or removed from the message during transmission (such 
as by an attacker), then that synchronization is lost and needs to be restored.

Self-synchronizing ciphers use parts of the current cipher text to compute the rest 
of the key stream. In other words, the algorithm starts with an initial key stream, like 
an initialization vector, and then creates the rest of the key stream based on the 
cipher text already produced. These types of ciphers are sometimes called cipher 
text autokey. The idea was patented in 1946, long before the advent of modern 
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computer systems. With self-synchronizing ciphers, if digits are added or removed 
in transit, the receiving end can still continue to decrypt.

 LFSR

There are multiple ways to create the pseudo random key stream. One of these is to 
use linear feedback shift registers. These are chosen because they are easy to imple-
ment in hardware. A linear feedback shift register (LFSR) is a shift register that uses 
its previous state to form the input for the current state. A shift register is simply a 
type of register found in digital circuits, basically a chain of flip flops that shifts the 
data stored in it by one bit, thus the name.

Usually, a linear function is used to modify the data each round; most often, an 
XOR is used. The LFSR is given an initial value, or seed. Then the register will shift 
that value and then XOR it with the previous value. Consider this rather simplified 
example:

Input: 0101110
First it is shifted by the LFSR: 0010111

Then that value is XOR’d with the previous state so

0101110 XOR 0010111 = 0111001
Now this can be repeated with yet another shift and another XOR operation. You 

will see LSFRs used later when we discuss pseudo random number generators.

 RC4

RC4 is a widely known and used stream cipher, perhaps the most widely known. 
The RC stands for Ron’s Cipher or Rivest cipher; it was designed by Ron Rivest. 
Ron Rivest is a name that is very familiar in cryptography. He is the R in RSA which 
we will explore in Chap. 10. RC4 is widely used in many security situations includ-
ing WEP (Wired Equivalent Privacy) and TLS (Transport Layer Security). However, 
the algorithm was designed in 1987, and some experts have expressed concerns 
about its security. There has been speculation that it can be broken, and many people 
recommend no longer using it in TLS. However, it is the most widely known of 
stream ciphers and has a similar place in the history and study of stream ciphers as 
DES has in block ciphers.
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 RC4 Key Schedule Algorithm

The key scheduling algorithm is rather simple. We begin with an internal state that 
is denoted by a capital S. This state is a 256-byte array. While most of what you have 
seen so far involves bits, not bytes, this is not a typo. It is a 256-byte array. There are 
two indexes usually simply named i and j. These indexes are used to point to indi-
vidual elements in the array. The key scheduling algorithm involves shuffling 
this array.

The first step in this algorithm involves simply initializing the state with what is 
termed the identity permutation. This simply means that the first element is initial-
ized to 0, the second element to 1, the third to 0, and so on. Now obviously this is 
not very random at all; in fact, it is the antithesis of random. So, the next step con-
sists of shuffling. The shuffling involves iterating 256 times performing the follow-
ing actions:

• Compute j = j + S[i] + key[i mod key length].
• Swap S[i] and S[j].
• Increment i.

After 256 iterations of this, the array should be shuffled rather well. If you hap-
pen to have some programming experience, then the following pseudo code may 
assist you in understanding the shuffling:

for i from 0 to 255
     S[i] := i
end for loop
j := 0
for i from 0 to 255
     j := (j + S[i] + key[i mod key length]) mod 256
     swap values of S[i] and S[j]
end for loop

Now you may argue that this is too predictable; it would generate the same key 
each time. And if the algorithm stopped here, you would be correct. This is generat-
ing a state that will be used to create the key stream. We are not done yet.

The rest of the algorithm allows for the generation of a keystream of any size. 
The goal is to have a keystream that is the same size as the message you wish to 
encrypt.

The first step is to initialize the two pointers mentioned earlier, i and j, and then 
generate the keystream one byte at a time. For each new byte, the algorithm takes 
the following steps:
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Step 1: Compute new value of i and j:
i := (i + 1) % 256
j := (j + S[i]) % 256
Step 2: Swap S[i] and S[j].
Step 3: Retrieve the next byte of the keystream from the S array 
at the index:
S[i]+S[j]% 256
Again, if you have some background in programming, you may find it 
easier to understand this using pseudo code:
i = 0
j = 0
while generating the output:
     i := (i + 1) mod 256
     j := (j + S[i]) mod 256
     swap values of S[i] and S[j]
     K := S[(S[i] + S[j]) mod 256]
     output K
end while loop

Once you have generated the key stream, you simply XOR it with the plain text 
to encrypt, or XOR it with the cipher text to decrypt. One of the security issues with 
RC4 is that it does not use a nonce (recall this is a number only used once) along 
with the key. This means that if a key is being used repeatedly, it can be compro-
mised. More modern stream ciphers, such as eSTREAM, specify the use of a nonce.

In 1994 Ron Rivest published RC5, and then later, working with Matt Robshaw, 
Ray Sidney, and Yiqun Yin, he released RC6. However, both RC5 and RC6 are 
block ciphers, not stream ciphers. In fact, RC6 was designed for the AES 
competition.

 FISH

This algorithm was published by the German engineering firm Siemens in 1993. 
The FISH (FIbonacci SHrinking) cipher is a software-based stream cipher using 
Lagged Fibonacci generator along with a concept borrowed from the shrinking gen-
erator ciphers.

A Lagged Fibonacci generator, sometimes just called an LFG, is a particular type 
of pseudo random number generator. It is based on the Fibonacci sequence (Blöcher 
and Dichtl 1993). Recall that the Fibonacci sequence is essentially

 F F Fn n n� �� �1 2  

This can be generalized to
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X X X m k ln n� � � � � �� �l n k wheremod 0

 

For most cryptographic applications, the m is going to be some power of 2. 
Lagged Fibonacci generators have a maximum period of (2k−1)*2m−1. This brings 
us to the topic of the period of a pseudo random number generator (PRNG). With 
any pseudo random number generator, if you start with the same seed, you will get 
the same sequence. The period of a PRNG is the maximum of the length of the 
repetition free sequence.

Ross Anderson’s paper “On Fibonacci Keystream Generators” http://download.
springer.com/static/pdf/347/chp%253A10.1007%252F3- 540- 60590- 8_26.pdf?au
th66=1427056723_46f58d9f89128bf6e3fc71a5fead8b99&ext=.pdf provides a very 
good discussion of Fibonacci-based key generation.

 PIKE

This algorithm was published in a paper by Ross Anderson as an improvement on 
FISH. In that paper, Anderson showed that FISH was vulnerable to known plain text 
attacks. PIKE is both faster and stronger than FISH. The name PIKE is not an acro-
nym, but rather a humorous play on the previous FISH, a pike being a type of fish.

 eSTREAM

The eSTREAM project was a European search for new stream ciphers. The project 
ran from 2004 until 2008. It began with a list of 40 ciphers and used 3 phases to 
narrow that list to 7 ciphers. Four were meant for software implementations 
(HC-128, Rabbit, Salsa20/12, and SOSEMANUK) and three (Grain v1, MICKEY 
v2, and Trivium) for hardware. A brief description of some of these ciphers is pro-
vided here:

 SNOW

SNOW 1.0 was submitted to the NESSIE project. It has since been supplanted by 
SNOW 2.0 and SNOW 3G. The SNOW cipher works on 32-bit words and can use 
either a 128- or 256-bit key. The cipher uses a linear feedback shift register along 
with a finite-state machine (FSM).
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 Rabbit

Rabbit was designed by Martin Boesgaard, Mette Vetegrager, Thomas Pederson, 
Jesper Christiansen, and Ove Scavenis. It is a stream cipher that uses a 128-bit key 
along with a 64-bit initialization vector.

The cipher uses an internal state that is 513 bits. That consists eight variables 
each 32 bits in size, eight counters that are also 32 bits in size, and one counter bit. 
The variables are denoted as xj,i meaning the state of the variable of subsystem j at 
iteration i. The counter variables are denoted by cj,i. The entire algorithm is described 
in the original paper “The Stream Cipher Rabbit” that can be found online.

 HC-128

HC-128 was invented by Hongjun Wu. It uses a 128-bit key with a 128-bit initializa-
tion vector. HC-128 consists of 2 secret tables, each one with 512 32-bit elements. 
At each step, one element of a table is updated with non-linear feedback function. 
All the elements of the two tables will get updated every 1024 steps. At each step, 
one 32-bit output is generated from the non-linear output filtering function. The 
algorithm is described in detail in the paper “The Stream Cipher HC-128” which 
can be found online. In 2004, Wu published HC-256 which uses a 256-bit key and 
a 256-bit initialization vector.

 MICKEY

MICKEY, an acronym for Mutual Irregular Clocking KEY stream generator, was 
invented by Steve Babbage and Matthew Dodd. It uses an 80-bit key and a variable 
length initialization vector (up to 80 bits in length).

 A5

A5/1 is a stream cipher that was used in GSM (Global System for Mobile 
Communications also known as 2  g) cell phones. It was originally a secret but 
became public. A variation named A5/2 was developed specifically to be weaker for 
export purposes. KASUMI is used in A5/3. This algorithm is used in UMTS 
(Universal Mobile Telecommunications System also known as 3  g). In January 
2010, Orr Dunkelman, Nathan Keller, and Adi Shamir released a paper showing that 
they could break KASUMI with a related key attack. It should be noted that the 
attack was not effective against MISTY1, which we discussed in the previous 
chapter.
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 Phelix

This algorithm is interesting because the stream cipher has a built-in message 
authentication code for integrity. We will discuss message authentication codes in 
more detail in Chap. 9. The team of Bruce Schneier, Doug Whiting, Stefan Lucks, 
and Frédéric Muller created the algorithm and in 2004 submitted it to the eSTREAM 
contest. The primary operations use XOR, rotation, and addition modulo 232. The 
algorithm uses a 256-bit key with a 128-bit nonce.

 Salsa20

Two related stream ciphers, Salsa20 and ChaCha, were developed by Daniel 
Bernstein. Salsa20 was published in 2005 and ChaCha in 2008. Both algorithms are 
based on a pseudo random function that uses add-rotate-XOR operations (often 
called ARX operations). The core of the algorithm maps a 256-bit key and a 64-bit 
nonce to a 512-bit block of the key stream.

 One-Time Pad

The one-time pad is the only true uncrackable encryption, if used properly. It should 
be clear that this is only true if used properly. This idea was first described in 1882 
but then rediscovered and even patented in the early twentieth century. The first 
aspect of this idea is that a random key is used that is as long as the actual message. 
The reason this is so useful is that if the key is sufficiently random, then there will 
be no period in the key. Periods in keys are used as part of cryptanalysis. The second 
aspect of this idea is actually in the name: the key is used for one single message and 
then discarded and never used again. Should the encryption somehow be broken and 
the key discovered (and this has never been done), it would cause minimal damage 
as that key will never be used again.

The patented version of this was invented in 1917 by Gilbert Vernam working at 
AT&T. It was patented in 1919 (US Patent 1,310,719). This was called a Vernam 
cipher. It worked with teleprinter technology (the state of the art at that time). It 
combined each character of the message with a character on a paper tape key.

One-time pads are often described as being “information-theoretically secure.” 
This is because the cipher text provides no information about the original plain text. 
Claude Shannon, the father of information theory, provided that a one-time pad 
provided what he termed perfect secrecy. It should be obvious, however, that there 
are logistical issues with the one-time pad. Each message needs a new key. As we 
will see in Chap. 12, generating random numbers can be computationally intensive. 
Then we are left with the issue of key exchange. Imagine for a moment that secure 
website traffic was conducted with a one-time pad. That would require a key be 
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generated and exchanged for each and every packet sent between the web browser 
and the server. The overhead would make communication impractical. For this rea-
son, one-time pads are usually only used in highly sensitive communications 
wherein the need for security makes the cumbersome nature of key generation and 
exchange worth the effort.

 Conclusions

In this chapter you have seen substitution-permutation networks as well as stream 
ciphers. The most important algorithm to know well is AES/Rijndael. The other 
algorithms are interesting, but our focus was on AES because it is widely used 
around the world, and within the United States, it is a national standard. There was 
some brief coverage of pseudo random number generators, at least in relation to 
creating stream ciphers. However, the topic of PRNGs will be covered in much 
more detail in Chap. 12.

 Test Your Knowledge

 1. AES using a 192-bit key uses 12 rounds.
 2. What happens in the rotate phase of the Rijndael key schedule? The rotate oper-

ation takes a 32-bit word (in hexadecimal) and rotates it 8 bits to the left.
 3. Serpent is a 32-round substitution-permutation matrix algorithm using key 

sizes of 128, 192, or 256 bits.
 4. The FISH algorithm is a stream cipher developed by Siemens that uses the 

Fibonacci Lagged Sequence Generator for random numbers.
 5. What are the two types of stream ciphers? Synchronous and 

self-synchronizing.
 6. SHARK uses a 64-bit block with a 128-bit key and operates in six rounds.
 7. In Serpent there are 33 sub keys or round keys, each 128 bits in size.
 8. The RC4 key scheduling algorithm begins with a 256-byte array named 

the state.
 9. Briefly describe the Rijndael ShiftRows step: each row of the state is shifted 

cyclically a certain number of steps. The first row is unchanged, the second row 
shifted 1 byte to the left, the third row 2 bytes to the left, and the fourth row 3 
bytes to the left.

 10. Which of the following steps does not occur in the final round of Rijndael:

 (a) SubBytes
 (b) ShiftRows
 (c) MixColumns
 (d) AddRoundKey
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Chapter 8
s-box Design

 Introduction

As you have seen in previous chapters, an s-box is an integral part of many ciphers. 
In many cases it is key to the overall security of a given cipher. From DES to more 
modern ciphers, substitution boxes have provided a means of altering the cipher 
text, and even transposing text, which goes far beyond simple XOR operations. An 
s-box is a lookup table wherein m number of input bits is replaced with n number of 
output bits.

Petr Tesar in his paper “A New Method for Generating High Non-Linearity 
S-Boxes” states: “All modern block and stream ciphers have one or more non-linear 
elements. S-box is one of the most used non-linear cornerstones of modern ciphers.” 
Non-linearity is an important concept in cryptography. The goal of any cipher is to 
have the output look as much like a random number as possible and still be some-
thing we can decrypt later to get back the original plain text. Unfortunately, opera-
tions like XOR are linear. s-boxes provide a very good source of non-linearity in any 
block cipher.

 Why Study s-box Design?

Many cryptography textbooks give scant, if any, coverage of s-box design. Usually 
the s-boxes used in DES or AES are explained in varying levels of detail, but that is 
the extent. And many texts won’t go into any real depth on AES s-box design. So 
why devote an entire chapter to the study of s-boxes? Why not follow the de facto 
standard in cryptography texts and simply gloss over this topic? Put another way, 
why should you, the reader, devote time to studying this topic? There are actually 
three primary reasons you should study s-box design. Each is explained in detail in 
the following sections.
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 Critical to Block Ciphers

The first is one you should study s-box design is a reason you should already be 
aware of: that s-boxes form a major part of most block ciphers. It would be impos-
sible to thoroughly study symmetric cryptography without knowing a bit about 
s-boxes. If you do not understand s-boxes, then there is a portion of most block 
ciphers that you must treat as simply a black box, with no real understanding of 
what happens inside nor why. This fact should be readily apparent from the algo-
rithms you studied in Chaps. 6 and 7. And as has already been pointed out in this 
book, s-boxes are the primary source for non-linearity in modern block ciphers.

Consider Feistel ciphers that you studied in Chap. 6. The XOR operation forms 
a part of every Feistel cipher. In most round functions, there is an XOR with the 
round key, and of course there is a transposition of the two halves of the block each 
round. But the real substance of encrypting comes from the s-box. Without it, Feistel 
ciphers would be extremely weak and simply not acceptable for modern use. In fact, 
without the s-boxes, many block ciphers would not be much better than combining 
a substitution cipher such as Caesar with a transposition cipher such as rail fence 
and executing it several times.

 Designing Ciphers

Secondly, should you ever be involved in the design of a symmetric cipher, you will 
need to design s-boxes. These are often key to the security of a symmetric cipher. It 
will be important to understand the principles of s-box design.

Typically designing your own cipher is an extremely bad idea. This is because 
you are unlikely to produce something that is sufficiently secure. It is most probable 
that in attempting such a task, you will create a cipher that is, at best, much weaker 
than currently used algorithms. However, someone must create the new ciphers that 
appear from time to time. So clearly, some people do create new ciphers that are 
secure. However, the creators of real algorithms that are actually secure enough are 
people with a very substantial mathematical background and who have studied 
existing algorithms in quite some depth. My recommendation is that you first care-
fully study cryptography for several years, looking at existing ciphers in detail. 
Before considering developing your own cipher, you must thoroughly understand a 
wide range of existing ciphers. Consider the inventors of the algorithms you have 
seen so far in Chaps. 6 and 7. All had extensive related education, such as mathe-
matics, and all have worked in the field of cryptography for many years. This is not 
a field where a novice is likely to make a substantive contribution. Becoming a 
cryptographer is a lengthy process. This book would just be the first step on that 
journey. Then, after careful and in-depth study, if you do feel compelled to create a 
new cipher, submit it to the peer review process so other experts in the field can 
evaluate your idea.
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It is difficult to overemphasize the importance of the s-box in designing a block 
cipher. Anna Grocholewska-Czurylo, in her paper “Cryptographic Properties of 
Modified AES-Like S-Boxes,” describes the importance of s-boxes as follows: 
“S-box design is usually the most important task while designing a new cipher. This 
is because an S-box is the only non-linear element of the cipher upon which the 
whole cryptographic strength of the cipher depends. New methods of attacks are 
constantly being developed by researchers, so S-box design should always be one 
step ahead of those pursuits to ensure cipher’s security” (Grocholewska- 
Czuryło 2011).

 Altering s-boxes

Finally, there are some organizations, primarily governments, who want the security 
of well-known algorithms such as Advanced Encryption Standard (AES) but wish 
to have an implementation that is private to their organization. One reason this may 
be desirable in some situations is that it provides an extra layer of security. Should 
an outside party obtain the symmetric key being used but apply it to intercepted 
cipher text using the standard Rijndael cipher, the message will not be decrypted. 
The interest in this topic has increased as awareness of cryptographic backdoors has 
increased, particularly when such backdoors are used in random number generators 
used to generate keys for algorithms like AES. We will study cryptographic back-
doors in detail in Chap. 18.

In 2013 Edward Snowden released classified documents that indicated that the 
US National Security Agency (NSA) had placed backdoors in some random number 
generators. This prompted some concern as to the dependability of widely used 
random number generators. Some governments considered simply redesigning the 
s-boxes of AES so that their specific AES implementation was not standard, and 
thus even if the key was generated from a backdoor, one would still have to know 
the specifics of their AES implementation in order to compromise their security.

 General Facts About s-boxes

The core of most block ciphers (Blowfish, AES, DES, Serpent, GOST, etc.) is the 
s-box. A substitution box provides the source of non-linearity for a given crypto-
graphic algorithm. Other facets of the algorithm are typically just various swapping 
mechanisms and exclusive or (XOR) operations. The XOR, in particular, provides 
no diffusion or confusion in the resulting cipher text. In fact, the basis of differential 
cryptanalysis is the fact that XOR operation maintains the characteristics found in 
the plain text to cipher text. We will closely examine differential cryptanalysis in 
Chap. 17.

General Facts About s-boxes



196

 Types of s-boxes

The first issue to discuss is that s-boxes can be divided into two types. These two 
types are substitution boxes and permutation boxes. A substitution box simply sub-
stitutes input bits for output bits. A permutation box transposes the bits. It is often 
the case that cryptologists simply refer to an “s-box” possibly meaning either type.

Let us first consider a simple 3-bit s-box. This s-box simply performs substitu-
tion. Each 3 bits of input is mapped to the 3 bits of output. This s-box is shown in 
Fig. 8.1. The first bit of input is on the left and the second 2 bits on the top. By 
matching those you will identify the output bits.

For example, an input of 110 would produce an output of 100. An input of 100 
would produce an output of 101. This s-box is very simple and does not perform any 
transposition. The values of output were simply chosen at random. The other gen-
eral type of s-box is the p-box or permutation box. A p-box is an s-box that trans-
poses or permutes the input bits. It may, or may not, also perform substitution. You 
can see a p-box in Fig. 8.2.

Of course, in the process of permutation, the bit is also substituted. For example, 
if the least significant bit in the input is transposed with some other bit, then the least 
significant bit in the output is likely to have been changed. In the literature you will 
often see the term s-box used to denote either a substitution box or a permutation 
box. This makes complete sense when you consider that, regardless of which type it 
is, one inputs some bits and the output is different bits. So, for the remainder of this 
chapter, we will simply use the term s-box to denote either a substitution or permu-
tation box.

Whether it is a simple s-box or a p-box, there are three subclassifications: straight, 
compressed, and expansion. A straight s-box takes in a given number of bits and 
puts out the same number of bits. This is the design approach used with the Rijndael 
cipher. This is frankly the easiest and most common form of s-box.

A compression s-box puts out fewer bits than it takes in. A good example of this 
is the s-box used in DES. In the case of DES, each s-box takes in 6 bits but only 
outputs 4 bits. However, keep in mind that in the DES algorithm, there is a bit 
expansion phase earlier in the round function. In that case, the 32 input bits are 
expanded by 16 bits to create 48 bits. So, when 8 inputs of 6 bits each are put into 

Fig. 8.1 A 3-bit s-box
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Fig. 8.2 A p-box

Fig. 8.3 A compression s-box

each DES s-box, and only 4 produced, the difference is 16 (8 × 2). Therefore, the 
bits being dropped off are simply those that were previously added. You can see a 
compression s-box in Fig. 8.3.

The third type of s-box is similar to a compression s-box; it is the expansion 
s-box. The s-box puts out more bits than it takes in. One simple method whereby 
this can be accomplished is by simply duplicating some of the input bits. This is 
shown in Fig. 8.4.

There are significant issues associated with both compression and expansion 
s-boxes. The first issue is reversibility, or decryption. Since either type of s-box 
alters the total number of bits, reversing the process is difficult. One has to be very 
careful in the design of such an algorithm, or it is likely that decryption will not be 
possible. The second issue is a loss of information, particularly with compression 
s-boxes. In the case of DES, prior to the s-box, certain bits are replicated. Thus, 
what is lost in the compression step are duplicate bits, and no information is lost. In 
general, working with either compression or expansion s-boxes will introduce sig-
nificant complexities in your s-box design. Therefore, straight s-boxes are far 
more common.

 Design Considerations

Regardless of the type or category of s-box that is being created, there are certain 
features that any s-box must exhibit in order to be an effective s-box. It is not the 
case that you can simply put together any substitution scheme you wish and have a 
good s-box. It is not enough that it simply substitutes values; the s-box needs to 
provide confusion and diffusion (Adams and Taveres 2001). The efficacy of an 
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Fig. 8.4 An expansion s-box

s-box is usually measured by examining three separate criteria. Each of these fea-
tures contributes to the security of the s-box. Those features are strict avalanche 
criterion, balance, and bit independence criterion.

 Strict Avalanche Criterion

Strict avalanche criterion (SAC) is an important feature of an s-box (Easttom 
2018a). Remember from Chap. 3 that avalanche is a term that indicates that when 
one bit in the plain text is changed, multiple bits in the resultant cipher text are 
changed. Consider the following example:

We begin with a plain text 10110011.
Then after applying our cipher, we have this text 11100100.
But what if, prior to encrypting the plain text, we change just one bit of the plain 

text. For example, from the third bit from the left, we have 10010011.

In a cipher with no avalanche, the resulting cipher text would only change by one 
bit, perhaps 11100101. Note that the only difference between this cipher text and the 
first cipher text is the last or least significant bit. This shows that a change of 1 bit in 
the plain text only changed 1 bit in the cipher text. That is no avalanche. However, 
if our algorithm has some avalanche, then changing the plain text from

10110011 to 10010011

will change more than 1 bit in the cipher text. In this case, before the change in 
plain text, remember our cipher text was:

11100100

Now, if our cipher has some avalanche, we expect more than 1 bit in the cipher 
text to change, perhaps 2 bits:

10100101

Notice the second and last bits are different. So, a change in 1 bit of the plain text 
produced a change in 2 bits in the cipher text. Ideally one would like to get more 
avalanche than this, as much as having a change in a single bit of plain text change 
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1/2 the cipher text bits. Without some level of avalanche, a cryptanalyst can examine 
changes in input and the corresponding changes in output and make predictions 
about the key. It is therefore critical that any cipher exhibits at least some avalanche.

In most block ciphers, the primary way to achieve avalanche is the use of the 
s-box. Strict avalanche criterion is one way of measuring this phenomenon. Strict 
avalanche criterion requires that for any input bit, the output bit should be changed 
with a probability of 0.5. In other words, if you change any given input bit, there is 
a 50/50 chance that the corresponding output bit will change. One measurement of 
strict avalanche criteria is the Hamming weight. Remember from Chap. 3 that the 
Hamming weight of a specific binary vector, denoted by hwt(x), is the number of 
ones in that vector. Therefore, if you have an input of 8 bits with 3 ones and an out-
put of 4 ones, the Hamming weight of the output is 4. Simply measuring the 
Hamming weight of the input and the output and comparing them will give one 
indication of whether or not SAC is satisfied. This is a simple test that one should 
subject any s-box too.

 Balance

Balance is also important in effective s-box design (Grocholewska-Czuryło 2011). 
Various papers give slightly different definitions of balance. However, in the current 
context, perhaps the best definition is that each output symbol should appear an 
equal number of times when the input is varied over all possible values. Some 
sources address s-boxes with unequal input and output: We say an s-box with n 
input bits and m output bits, m < n, is balanced if every output occurs 2n − m times. 
So, an s-box of 6-bit input and 4-bit output would need each output bit to occur four 
times (26–4).

 Bit Independence Criterion

The bit independence criterion (BIC) is the third criteria for good s-box design 
(Easttom 2018a). Bit independence criterion states that output bits j and k should 
change independently when any single input bit i is inverted, for all i, j, and k. The 
output bits change independently of each other. They are, of course, dependent upon 
the input bits.

 Approaches to s-box Design

There are currently a number of approaches to s-box design. The first method sim-
ply uses a pseudo random number generator for each entry in the s-box (Easttom 
2018a). The problem with this approach is that you will not be able to predict 
whether or not your s-box actually fulfills the three criteria we have outlined for an 
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effective s-box. Instead, you will have to test extensively. A second approach is the 
human made. This was the method used in DES. In fact, the details of how the s-box 
for DES was designed are not public information. The actual s-boxes for DES are 
public; however, the methodology in designing them is not. These s-boxes were 
designed in cooperation with the National Security Agency. The final method uses 
some mathematical-based method to generate the values for the s-box. This is the 
method used in AES.

 DES s-box

As we discussed in Chap. 6, the National Security Agency (NSA) was involved in 
the creation of DES. Specifically, they were deeply involved in the s-box design. In 
fact, one of the IBM employees who worked on DES is quoted as saying “We sent 
the s-boxes off to Washington. They came back and were all different.” This lead 
many people do believe that there might be a cryptographic backdoor embedded in 
the DES s-boxes, which would allow the NSA to more easily break DES encrypted 
communications. However, many years of study and analysis have not revealed any 
such backdoor.

The DES s-boxes convey a resistance to differential cryptanalysis, which we will 
study in Chap. 17. In fact, it has been discovered that even a small change to the 
DES s-box can significantly weaken its resistance to differential cryptanalysis. 
Differential cryptanalysis was unknown to the public at the time DES was invented. 
In fact, differential cryptanalysis was invented (at least publicly) by Eli Biham and 
Adi Shamir in the late 1980s. It is interesting to note that both Biham and Shamir 
noticed that DES is very resistant to differential cryptanalysis. It therefore seems 
most likely that the NSA was aware of differential cryptanalysis long before it was 
publicly known and created DES to be resistant to that attack.

 The Actual s-boxes for DES

While the design choices themselves have not been made public, we can derive 
some knowledge from studying the s-boxes. As far as is publicly known, the s-boxes 
are not derived from a mathematical formula, as the s-boxes in AES are. It seems 
that each substitution was specifically and manually chosen (De Meyer and 
Vaudenay 2017). Figures  8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, and 8.12 show DES 
s-boxes 1 through 8.

As you should already know, the DES s-boxes are compression s-boxes. They 
take in 6-input bits and produce 4-output bits. If we begin by examining the first 
s-box, you can see how this is done. All possible combinations of the 4 middle bits 
of the input are listed on the top row of the s-box. All possible combinations of the 
outer 2 bits are listed on the far-left column. By matching the out bits on the left 
with the inner bits on the top, the output bits are found. Some substitutions change 
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Fig. 8.5 DES s-box #1

Fig. 8.6 DES s-box #2

Fig. 8.7 DES s-box #3

Fig. 8.8 DES s-box #4

Fig. 8.9 DES s-box #5

Fig. 8.10 DES s-box #6
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Fig. 8.11 DES s-box #7

Fig. 8.12 DES s-box #8

several bits. For example, in s-box 1, an input of all 0 s “000000” produces “1110.” 
However, others produce far less change, for example, again focusing on s-box 1, 
we see that an input of 001000 produces 0010, a simple shift of the 1 to the right.

Although most of the s-boxes provide a different substitution for any input, there 
is some overlap. For example, inputting 000110 in either s-box 2 or s-box 3 will 
produce 1110. It is also noteworthy that there are several cases wherein different 
inputs to an s-box produce the same output. For example, if you consider s-box 5, 
notice that an input of 000001 produces 1110. However, an input of 111110 also 
produces 1110.

There has been no public disclosure of why the specific design choices for DES 
s-boxes were made. As we have already mentioned, resistance to differential crypt-
analysis appears to have played a significant role. However, another factor is the 
nature of these s-boxes as compression boxes. As mentioned earlier in this chapter, 
it is difficult to design an s-box that uses compression without losing data. In the 
case of DES, it is only possible because an earlier step in the algorithm expanded 
bits. At least some of the design choices in DES are related to providing the com-
pression without losing data.

 The Rijndael s-box

Given the prominence of AES, the Rijndael s-box is a good candidate for analysis. 
In fact, this is probably the most important portion of this chapter. Before we can 
delve deeply into the s-boxes for Rijndael, we need to look at some of the mathe-
matics behind the s-box design. The actual Rijndael s-box is shown in Fig. 8.13.
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Fig. 8.13 Rijndael s-box

 The Irreducible Polynomial

The Rijndael s-box is based on a specific irreducible polynomial in a specific Galois 
field (Daemen and Rijmen 1999):

 
GF GF2 2 18 8 4 3� � � � �� � � � � �� �x x x x x/

 

In hexadecimal, this is 11B; in binary, it is 100011011.
What is an irreducible polynomial? An irreducible polynomial is a polynomial 

that cannot be factored into the product of two other polynomials. In other words, it 
cannot be reduced. This is in reference to a specific field; in the case of the irreduc-
ible polynomial, we are considering it is in reference to the Galois field GF(28). Put 
more formally: A polynomial is irreducible in GF(p) if it does not factor over GF(p). 
Otherwise, it is reducible.

Why was this specific irreducible polynomial chosen? Does it have some special 
property that makes it more suitable for cryptography? Well to answer that question, 
let us consider the actual words of the inventors of Rijndael: “The polynomial m(x) 
(‘11B’) for the multiplication in GF(28) is the first one of the lists of irreducible 
polynomials of degree 8” (Daemen and Rijmen 1999). In other words, they looked 
at a list of irreducible polynomials in a specific text and chose the first one. This is 
important to keep in mind. Any irreducible polynomial of the appropriate size can 
be used.

The text that Daemen and Rijmen consulted for their list of irreducible polyno-
mials was “Introduction to Finite Fields and Their Applications,” Cambridge 
University Press, 1986. You can check the same source that was cited by the 
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inventors of Rijndael. Here are a few irreducible polynomials from that list (in 
binary form, you may place them in polynomial or hex form if you wish):

100101011
100111001
100111111
101001101
101011111
101110111
110001011

You may have noticed that all of these, and the one chosen for Rijndael, have 
nine digits. Why use degree 8 (nine digits), isn’t that one too many? “Clearly, the 
result will be a binary polynomial of degree below 8. Unlike for addition, there is no 
simple operation at byte level.” – page 3/4 of the specification.

The reason an irreducible polynomial must be used, instead of just any polyno-
mial (also called a primitive polynomial), is that we are trying to make a non-linear 
permutation function that has diffusion, spreading input bits to output bits in a non- 
linear way.

 Multiplicative Inverse

In mathematics, the reciprocal, or multiplicative inverse, of a number x is the num-
ber which, when multiplied by x, yields 1. The multiplicative inverse for the real 
numbers, for example, is 1/x. To avoid confusion by writing the inverse using set 
specific notation, it is generally written as x−1.

Multiplication in Galois field, however, requires more tedious work. Suppose 
f(p) and g(p) are polynomials in gf(pn) and let m(p) be an irreducible polynomial (or 
a polynomial that cannot be factored) of degree at least n in gf(pn). We want m(p) to 
be a polynomial of degree at least n so that the product of two f(p) and g(p) does not 
exceed 11111111 = 255 as the product needs to be stored as a byte. If h(p) denotes 
the resulting product, then

 
h p f p g p m p� � � � �� � �� � � �� �mod

 

On the other hand, the multiplicative inverse of f(p) is given by a(p) such that

 
f p a p m p� �� � �� � � �� � �mod 1

 

Note that calculating the product of two polynomials and the multiplicative 
inverse of a polynomial requires both reducing coefficients modulo p and reducing 
polynomials modulo m(p). The reduced polynomial can be calculated easily with 
long division, while the best way to compute the multiplicative inverse is by using 
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Extended Euclidean Algorithm. The details on the calculations in gf(28) is best 
explained in the following example.

Finite field multiplication is more difficult than addition and is achieved by mul-
tiplying the polynomials for the two elements concerned and collecting like powers 
of x in the result. Since each polynomial can have powers of x up to 7, the result can 
have powers of x up to 14 and will no longer fit within a single byte. This situation 
is handled by replacing the result with the remainder polynomial after division by a 
special eighth order irreducible polynomial, which, as you may recall for Rijndael, is:

 
m x x x x x� � � � � � �8 4 3 1

 

The finite field element (00000010) is the polynomial x, which means that mul-
tiplying another element by this value increases all its powers of x by 1. This is 
equivalent to shifting its byte representation up by one bit so that the bit at position 
i moves to position i + 1. If the top bit is set prior to this move, it will overflow to 
create an x8 term, in which case the modular polynomial is added to cancel this 
additional bit, leaving a result that fits within a single byte.

For example, multiplying (11001000) by x, which is (00000010), the initial 
result is 1(10010000). The “overflow” bit is then removed by adding 1(00011011), 
the modular polynomial, using an exclusive or operation to give a final result of 
(10001011). However, you need not calculate the multiplicative inverse manually; 
the table in Fig. 8.14 provides multiplicative inverses.

Fig. 8.14 Multiplicative inverses
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 Affine Transformation

This concept originates in graphics and is also used in transforming graphics. 
Moving pixels in one direction or another is very similar to moving a value in a 
matrix, so the concept gets applied to matrices (as in AES). In geometry, an affine 
transformation or affine map or an affinity (from the Latin, affinis, “connected 
with”) between two vector spaces (strictly speaking, two affine spaces) consists of 
a linear transformation followed by a translation:

In general, an affine transform is composed of linear transformations (rotation, 
scaling, or shear) and a translation (or “shift”). Several linear transformations can be 
combined into a single one, so that the general formula given above is still appli-
cable. For our purposes, it is just a word for a linear transformation.

 Generating the s-box

The Rijndael s-box can be generated with a series of shift operations; in fact, this is 
exactly how it is usually implemented in programming. These shifts essentially 
accomplish the same process as matrix multiplication.

The matrix multiplication can be calculated by the following algorithm:

 1. Store the multiplicative inverse of the input number in two 8-bit unsigned tem-
porary variables: s and x.

 2. Rotate the value s one bit to the left; if the value of s had a high bit (eighth bit 
from the right) of one, make the low bit of s one; otherwise, the low bit of s 
is zero.

 3. Exclusive or the value of x with the value of s, storing the value in x.
 4. For three more iterations, repeat steps two and three; steps two and three are 

done a total of four times.
 5. The value of x will now have the result of the multiplication.

After the matrix multiplication is complete, exclusive or (XOR) the resultant 
value by the decimal number 99 (the hexadecimal number 0 × 63, the binary num-
ber 1100011, and the bit string 11000110 representing the number in least signifi-
cant bit first notation). This value is termed the translation vector. This last operation, 
the final XOR, is meant to prevent any situation wherein the output is the same as 
the input, in other words, to prevent s-box(a) = a.

 An Example

It may be helpful for you to see an actual example generating the s-box.
Take a number for GF(28); let’s pick 7, looking at the multiplicative inverse table 

that gives us d1 in hex or 11010001 in binary.
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Now we need to do four iterations of the process of affine transformation. We 
start by putting the multiplicative inverse into two variables s and x:

 

s

x

=
=
11010001

11010001  

Now we simply rotate s (10001101) to the left = 00011010.

If the high bit is one, make the low bit 1
else low bit is 0

Now, in this case, the high bit was 1, so we change the low bit
thus, s is 00011011

XOR that number with x so 00011011 XOR 10001101 = 10010110
s = 00011011; x = 10010110

Next, rotate s (00011011) to the left = 00110110.

If this still gives us 00110110,
XOR with x so 00110110 XOR 10010110 = 10100000
s = 00110110; x = 10100000

Next, rotate s (00110110) to the left = 01101100.

If this still gives us 01101100,
XOR with x so 01101100 XOR 10100000 = 11001100
s = 01101100; x = 11001100

Next, rotate s (01101100) to the left = 11011000.

If this still gives us 11011000,
XOR with x so 01101100 XOR 11001100 = 00010100
s = 11011000; x = 00010100

Now x (00010100) gets XOR’d with decimal 99 (hex ×63 binary 
1100011)  =  1110111 or 77. Remember the output of the matrix multiplication 
(which we have accomplished via shift operations) is finally XOR’d with the trans-
lation vector (decimal 99). This process allows one to create the Rijndael s-box, and 
it is in fact how that s-box is often created in code.

 Changing the Rijndael s-box

After studying this previous section, you should realize that there are three factors 
in generating the AES s-box. Those are the selection of the irreducible polynomial; 
in this case, it was P = x8 + x4 + x3 + x + 1, which is 11B in hexadecimal notation, 
or 100011011 in binary numbers. As we mentioned previously, the creators of the 
Rijndael cipher stated clearly that this number was chosen simply because it was the 
first one of the lists of irreducible polynomials of degree 8 in the reference book 
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they chose (Daemen and Rijmen 1999). That means that one could choose other 
irreducible polynomials.

There are a total of 30 irreducible polynomials of degree 8 to choose from. This 
gives you 29 alternatives to the traditional s-box for AES, each with well-tested 
security. For more details on this alternative, you can look into Rabin’s test for irre-
ducibility. Das, Sanjoy, Subhrapratim, and Subhash demonstrated equally secure 
variation of the Rijndael, by changing the chosen irreducible polynomial. You can 
use any of the 30 possible irreducible polynomials; each of these is equally secure 
to the original Rijndael cipher s-box.

Altering the Rijndael s-box is only practical if you have the ability to ensure that 
all parties to encrypted communication will be using your modified s-box. If you 
simply modify the s-box on your end, then you would render communication with 
other parties impossible. Even though those other parties will have the same key, 
and the same algorithm (AES), they will be using standard s-boxes. This is why 
altering AES s-boxes is primarily an issue for government entities who want to have 
secure communication with a limited number of involved parties.

A second option, one that may be the simplest to implement, is to change the 
translation vector (the final number you XOR with). Obviously, there are 255 pos-
sible variations. Rather than utilize 0 × 63, use any of the other possible variations 
for that final byte. While simple to implement, it may be more difficult to test. Some 
variations might adversely affect one of the three criteria we are attempting to main-
tain. In fact, selecting the wrong translation vector may lead to no change at all 
when applied to the product of the preceding matrix multiplication.

The third method is to change the affine transform. This can be more difficult to 
implement but safe if you simply alter parameters within the existing transform. 
Section 5.2 of Sinha and Arya paper discusses this in detail. According to Cui, 
Huang, Zhong, Chang, and Yang, the choice of affine transformation matrix or irre-
ducible polynomial has no significant impact on the security of the resultant 
cipher text.

 s-box Variations

In addition to the specific s-boxes for AES and DES, as well as known permutations 
of the AES s-boxes, there are some general approaches to s-boxes that have not been 
covered thus far in this chapter. In this section, some of these methods will be briefly 
described. This is intended to round out your knowledge of s-boxes.

 Key-Dependent s-boxes

Key-dependent s-boxes have been used for many years. Therefore, the references in 
this subsection are rather dated. The research in this area goes back a very long time, 
at least to the early 2000s. However, many of these studies still provide insight into 
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key-dependent design today. Thus, a brief review of some key studies is beneficial 
to understanding s-box design.

Kazlauskas and Kazlauskas, in their study of key-dependent AES s-boxes 
(Kazlauskas and Kazlauskas 2009), discuss the fact that the random nature of the 
s-box makes it very resistant to differential and linear cryptanalysis. The data sug-
gests that their assessment is correct. However, there are two issues their study does 
not address. The first issue is the impact such a design has on non-linearity. The fact 
that the s-box is random, based on the cipher key, might lead to the intuitive conclu-
sion that a given random s-box might be less secure and in fact decrease non- 
linearity. However, other studies have shown that one can change every aspect of the 
Rijndael s-box, the affine transform, the irreducible polynomial, and the multiplica-
tive inverse, and the resultant s-box will have no change in non-linearity (Das et al. 
2013; Cui et al. 2011; Grocholewska-Czuryło 2011)). Therefore, one can conclude 
that a randomly generated Rijndael s-box would not have improved non-linearity.

In their study, Kazlauskas and Kazlauskas generate s-boxes from each round key. 
The round keys are generated from the cipher key using the key schedule algorithm. 
The key pseudo-expansion transformation takes the 16, 24, or 32 bytes secret key 
and uses the constant rcon to generate a 176-byte long key. Recall the rcon is a con-
stant used in the Rijndael key schedule algorithm, to generate a round key from the 
cipher key. The authors use that value to aid in generating key-dependent s-boxes.

Arrag, Hamdoun, Tragha, and Khamlich in their study (Arrag et al. 2013) pro-
pose an alternative approach to generating s-boxes for the Rijndael cipher, based on 
the key. In their paper, they state that their s-box has “good non-linearity” but they 
do not provide any test data indicating the specific tests conducted, nor any com-
parison of their s-box design’s non-linearity to that of the traditional Rijndael s-box.

Arrag, Hamdoun, Tragha, and Khamlich use 1 byte from the initial cipher key 
and an XOR process to generate s-box values. Essentially, they take the standard 
Rijndael cipher s-box and XOR each byte with a byte from the cipher key. This 
would generate a key-dependent s-box for the current cipher key, not a separate key 
for each round.

Based on the criteria already discussed, there is a significant probability that the 
s-box design described in Arrag, Hamdoun, Tragha, and Khamlich’s study is equal 
in security to that of the traditional Rijndael s-box, but there is no data to indicate 
that there is any improvement in non-linearity. Their study also did not comment on 
the increased computational overload required for their key-dependent s-box design.

Krishnamurthy and Ramaswamy (Krishnamurthy and Ramaswamy 2008) 
describe an approach to creating key-dependent s-boxes for AES. Rather than com-
pletely generating a new s-box for each iteration of the cipher, the approach in this 
study is to add an additional stage to the AES design. This stage is termed rotate 
s-box. This study provides a detailed description of AES and the proposed modifica-
tion to AES. That description includes pseudo code for implementing the modified 
algorithm. Unlike other studies of key-dependent AES variations, this study did 
examine measures of non-linearity. They examined strict avalanche criterion (SAC) 
and compared traditional, unmodified AES to their modified AES. The data pre-
sented in their study shows the two to be almost identical. This would indicate that 
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their modified AES does not weaken the non-linearity of AES but also does not 
improve it either. However, like other similar studies, the authors conclude that 
making AES key-dependent improves the security of AES, even though the data 
presented in their study does not demonstrate any significant increase in security. 
And, like other similar studies, the authors do not address the added computational 
requirements of generating an s-box based on the key.

Balajee and Gnanasekar also propose a key-dependent variation of AES [29]. 
Their study does examine several measures of non-linearity including balanced out-
put and strict avalanche criterion (SAC). But these are simply measured for the 
modified algorithm and not compared against the traditional Rijndael s-box. It 
should also be noted that their proposal is more computationally intensive than 
other proposals. They begin with a process that is somewhat similar to key genera-
tion in RSA, selecting two large prime numbers p and q. What the authors do not 
address is the fact that this step alone is computationally intensive. It should also be 
noted that while their algorithm specifically proposes large prime numbers p and q, 
the numbers used in their testing are four- and five-digit prime numbers, which are 
not particularly large.

 Chaos-Driven s-boxes

In recent years, there have been numerous studies purporting to use various chaos 
mappings to generate s-boxes. Lambić (2020) proposed s-box generation based on 
one-dimension discrete space chaotic maps. Chaotic maps are functions whose 
behavior is unpredictable because they are highly sensitive to initial conditions. 
This sensitivity to initial conditions is what makes them chaotic. Low-dimensional 
chaotic maps have a simple structure, making them practical for cryptographic pur-
poses. Lu et al. (2019) also examined chaotic maps, but they focused on compound 
chaotic systems.

Long and Wang (2021) also examined chaotic maps, but they took a rather novel 
approach. They examined an artificial bee colony algorithm. Their approach is best 
described by citing their paper: “Then, the dual transposition artificial bee colony 
algorithm is used to optimize the population, where the Gaussian swap is engaged 
to strengthen the optimum efficiency, and make the population acquire a better qual-
ity with each other. With the Gaussian mutation operator, the opposition-based opti-
mization performs self-learning to obtain better population. Comparing with some 
recent S-boxes based on chaos. The S-boxes generated by the proposed scheme can 
achieve better performance in bijection, nonlinearity, strict avalanche criterion(SAC), 
bit independence criterion(BIC), I/O XOR distribution and linear approximation 
probability(LP).”
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 Conclusions

The s-box (or in some cases s-boxes) is a critical part of most block ciphers. To fully 
understand any block cipher, it is necessary to have some understanding of s-box 
design. s-boxes fall into two main categories: substitution and permutation. Either 
of these can be divided into three subcategories: straight, compression, and 
expansion.

In addition to understanding s-boxes in general, the Rijndael s-box warrants par-
ticular attention. In addition to the standard Rijndael s-box commonly used, there 
are three relatively simple methods to alter the s-box used in the Rijndael cipher. 
This will lead to permutations of Rijndael that are equal, or very nearly equal, in 
security to the original Rijndael cipher. Using such permutations will essentially 
lead to a private version of the AES algorithm. This can be useful for certain gov-
ernmental and military applications.

If you wish to delve into s-box design beyond the scope of this chapter, unfortu-
nately there are not books on s-box design. As previously mentioned, many cryptog-
raphy texts avoid this topic altogether, or provide only a cursory coverage. There 
are, however, a number of papers you may find useful in the reference section of this 
chapter.

 Test Your Knowledge

 1. In mathematics, the ____________ of a number x is the number which, when 
multiplied by x, yields 1.

 2. What is the irreducible polynomial used in standard AES?
 3. What is the strict avalanche criterion in s-box design?
 4. What is the bit independence criterion in s-box design?
 5. What is the value of the Rijndael translation vector?
 6. How many irreducible polynomials are there for the generation of the 

Rijndael s-box?
 7. What is the primary advantage that DES s-boxes convey on the DES cipher?
 8. A _______ provides the source of non-linearity for a given cryptographic 

algorithm.
 9. An s-box that transposes bits is called a _______ box.
 10. What are the two concerns with using a compression s-box?

Test Your Knowledge 
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Chapter 9
Cryptographic Hashes

 Introduction

In the preceding eight chapters, we examined cryptography as a means of keeping 
information confidential. Cryptographic hashes are not concerned with protecting 
confidentiality; instead, they are concerned with ensuring integrity. Computer secu-
rity has a handful of bedrock concepts upon which it is built. The CIA triangle, 
consisting of confidentiality, integrity, and availability, is one such concept. Different 
technologies support different aspects of the CIA triangle. For example, backups, 
disaster recovery plans, and redundant equipment support availability. Certainly, 
encrypting a message so others cannot read it supports confidentiality. But crypto-
graphic hashes are about supporting integrity.

You should be aware that as with previous chapters, some algorithms will be 
discussed in depth; others will simply be briefly described. The goal is not necessar-
ily for you to memorize every major cryptographic hashing function, but rather to 
gain a general familiarity with cryptographic hashes. It is also important for you to 
understand how cryptographic hashing algorithms are used to support security.

 In This Chapter We Will Cover

• What is a cryptographic hash?
• Specific algorithms
• Message authentication codes (MACs)
• Applications of cryptographic hashes
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 What Is a Cryptographic Hash?

A cryptographic hash is a special type of algorithm. William Stallings describes a 
hash as follows:

 1. “H can be applied to a block of data of variable size.
 2. H produces a fixed-length output.
 3. H(X) is relatively easy to compute for any given x, making both hardware and 

software implementations practical. X is whatever you input into the hash.
 4. For any given value h, it is computationally infeasible to find x such that

H(x) = h. This is sometimes referred to in the literature as the one-way property.

 5. For any given block x, it is computationally infeasible to find y! = x such that

H(y) = H(x). This is sometimes referred to as weak collision resistance.

 6. It is computationally infeasible to find any pair x, y such that H(x) = H(y)

This is sometimes referred to as strong collision resistance.”
This is a very accurate definition but may be a bit technical for the novice. Allow 

me to explain the properties of a cryptographic hash in a manner that is a bit less 
technical, but no less true. In order to be a cryptographic hash function, an algorithm 
needs to have three properties. The first property is that the function is one way. That 
means it cannot be “unhashed.” Now this may seem a bit odd at first. An algorithm 
that is not reversible? Not simply that it is difficult to reverse, but that it is literally 
impossible to reverse. Yes, that is exactly what I mean. Much like trying to take a 
scrambled egg and unscramble it and put it back in the eggshell, it is just not pos-
sible. When we examine specific hashing algorithms later in this chapter, the reason 
why a cryptographic hash is irreversible should become very clear.

The second property that any cryptographic hash must have is that a variable 
length input produces a fixed length output. That means that no matter what size of 
input you have, you will get the same size output. Each particular cryptographic 
hash algorithm has a specific size output. For example, SHA-1 produces a 160-bit 
hash. It does not matter whether you input 1 byte or 1 terabyte; you get out 160 bits.

How do you get fixed length output regardless of the size of the input? Different 
algorithms will each use their own specific approach, but in general it involves com-
pressing all the data into a block of a specific size. If the input is smaller than the 
block, then pad it. Consider the following example. This particular example is trivial 
and for demonstrative purposes only. It would not suffice as a secure cryptographic 
hash. We will call this trivial hashing algorithm or THA:

Step 1: If the input is less than 64 bits, then pad it with zeros until you achieve 64 
bits. If it is greater than 64 bits, then divide it into 64-bit segments. Make sure the 
last segment is exactly 64 bits, even if you need to pad it with zeros.

Step 2. Divide each 64-bit block into two halves.
Step 3: XOR the left have of each block with the right half of the block.
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Step 4: If there is more than one block, start at the first block XORing it with the 
next block. Continue this until you get to the last block. The output from the final 
XOR operation is your hash. If you had only one block, then take the result of 
XORing the left half with the right half and that is your hash.

Now I cannot stress enough this would not be a secure hashing algorithm. In fact, 
it likely would not be referred to as a cryptographic hashing algorithm. It is very 
easy to envision collisions occurring in this scenario and quite easily in fact. 
However, this does illustrate a rather primitive way in which the input text can be 
condensed (or padded) to reach a specific size.

Finally, the algorithm must be collision resistant. But what precisely does that 
mean? A collision occurs if two different inputs produce the same output. If you use 
SHA-1, then you have a 160-bit output. That means 2160 possible outputs. Clearly 
you could have trillions of different inputs and never see a collision. It should be 
noted that the size of the output (also called a digest or message digest) is only one 
factor in collision resistance. The nature of the algorithm itself also has an impact 
on collision resistance.

 How Are Cryptographic Hashes Used?

There are many ways that a cryptographic hash can be used. In this section you will 
see some of the most common ways they are used. Each of these will depend on one 
or more of the three key properties of a cryptographic hash that we discussed in the 
previous section. This section should help you understand the importance of cryp-
tographic hashes in computer security.

 Message Integrity

One common use of hashing algorithms is in ensuring integrity of messages 
(Easttom 2019). It should be fairly obvious that messages can be altered in transit, 
either intentionally or accidentally. Hashing algorithms can be used to detect that 
such an alteration has occurred. Consider the simple example of an email message. 
If you put the body of the message into a hashing algorithm, let’s just say SHA-1, 
the output, is a 160-bit hash. That hash can be appended at the end of the message.

When the message is received, the recipient can recalculate the cryptographic 
hash of the message and compare that result to the hash that was attached to the 
message. If the two do not match exactly, this indicates that there has been some 
alteration in the message and the message contents are no longer reliable.

Cryptographic hashes are also used in file integrity systems. For example, the 
very popular TripWire product (both the open-source Linux version and the 
Windows version) creates a cryptographic hash of key files (as designated by the 
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TripWire administrator). At any time, a hash of the current file can be compared to 
the previously computed cryptographic hash to determine if there has been any 
change in the file. This can detect anything from a simple edit of a file such as a 
spreadsheet to an executable that has been infected with a Trojan Horse.

It is likely that many readers already know what a Trojan Horse is, but in case 
you don’t, it is a program or file that has had malware attached to it. Often wrapper 
programs are used to tie a virus or spyware to a legitimate program. When the user 
executes the legitimate program, he or she does not realize that they also just 
launched the malware.

 Password Storage

Cryptographic hashes also provide a level of security against insider threats. 
Consider the possibility that someone with access to a system, for example, a net-
work administrator, has ill intent. Such a person might simply read a user’s pass-
word from the database and then use that user’s login credentials to accomplish 
some attack on the system. Then, should the attack become known, it is the end user 
who will be a suspect, not the administrator who actually perpetrated the breach. 
One way to avoid this is to store passwords in a cryptographic hash. When the user 
logs into the system, whatever password they typed in is hashed and then compared 
to the hash in the database. If it matches exactly, then the user is logged into 
the system.

Given that the database only stores a hash of the password and hashes are not 
reversible, even a network administrator or database administrator cannot retrieve 
the password from the database. If someone attempted to type in the hash as a pass-
word, the system will hash whatever input is placed into the password field, thus 
yielding a different hash than is stored in the database. The storing of passwords as 
a hash is widely used and strongly recommended.

Hashing is in fact how Windows stores passwords. For example, if your pass-
word is “password,” then Windows will first hash it producing something like:

8846F7EAEE8FB117AD06BDD830B7586C

Then store that in the SAM (Security Accounts Manager) file in the Windows 
System directory (Easttom 2017). When you log on, Windows cannot “unhash” 
your password. What Windows does is take whatever password you type in, hash it, 
and then compare that result with what is in the SAM file. If they match (exactly), 
then you can login.

It is worth noting here that there are methods for circumventing this security and 
retrieving passwords. A rainbow table is one such mechanism. A rainbow table is a 
table of pre-computed hashes. Windows uses the NTLMv2 hashing algorithm to 
store passwords. Imagine you make a table of all common eight-character pass-
words in one column and the NTLMv2 hash of them in the second column. Then 
you repeat this for all common nine-character passwords and then for all 
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Fig. 9.1 Rainbow table example

ten- character passwords. You can take this as far as you like, and your computing 
resources will support. Then if you can extract a hash from the target machine, you 
search the tables for a match. If you find a match in the second column, whatever is 
in the first column must be that person’s password. It will look something like what 
is shown in Fig. 9.1.

If an attacker is able to get the windows SAM file, then he or she can take the 
hashes and search the rainbow table seeking a match. There are even rainbow tables 
available online:

https://crackstation.net/
http://rainbowtables.it64.com/

However, there are ways for the defender to fight back against rainbow table 
attacks. The most common method is to use salt. Salt is a term for bits added to the 
text, before it is hashed. This is transparent to the user and happens without his or 
her knowledge. Basically, what occurs is when the user first selects their password, 
something is added to it, and then that value is hashed. As an example, if the user 
selects the password “password,” the system first adds something to it, perhaps dig-
its 11, and then hashes “password11.” The next time the user logs in, he or she types 
in “password,” but the system knows to add the digits 11 before hashing the input 
and comparing to the stored hash. The addition of salt means that if an attacker 
utilizes a rainbow table, what he or she gets back won’t be your actual password.

 Forensic Integrity

When conducting a forensic examination of a hard drive, one of the first steps is to 
create an image of the drive and perform the analysis on the image. After creating 
an image, it is necessary to verify that the imaging process was accurate. You do this 
by creating a hash of the original and a hash of the image and comparing the two 
(Easttom 2017). This is where the “variable length input produces fixed length out-
put” and “few or no collisions” comes in. If you have a terabyte drive and you image 
it, you want to make sure your image is an exact copy. The fact that the hash is only 
a fixed size, such as 160-bit for SHA-1, is very useful. It would be quite unwieldy if 
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the hash itself was the size of the input. Comparing terabyte size hashes would be 
problematic at best.

If you make a hash of the original and the image and compare them, you can 
verify that everything is exactly copied into the image. If it was not the case that a 
variable length input produced a fixed length output, then you would have hashes 
that were humongous and took forever to compute. Also, if two different inputs 
could produce the same output, then you could not verify the image was an 
exact copy.

 Merkle-Damgard

Before we delve into specific hashing algorithms, it is worthwhile to examine a 
function that is key to many commonly used cryptographic hashes. A Merkle- 
Damgard function (also called a Merkle-Damgard construction) is a method for 
building hash functions (Backes et al. 2012). Merkle-Damgard functions form the 
basis for MD5, SHA-1, SHA-2, and other hashing algorithms. This function was 
first described in Ralph Merkle’s doctoral dissertation published in 1979.

The function starts by applying some padding function to create an output that is 
of some particular size (256 bits, 512 bits, 1024 bits, etc.) (Backes et al. 2012). The 
specific size will vary from one algorithm to another, but 512 bits is a common size 
that many algorithms use. The function then processes blocks one at a time, com-
bining the new block of input with the block from the previous round (recall our 
trivial hashing algorithm that takes output from one block and combines it with the 
next). Put another way, if you have a 1024-bit message that you break into four 256- 
bit blocks, block 1 will be processed, and then its output is combined with block 2 
before block 2 is processed. Then that output is combined with block 3 before it is 
processed. And finally, that output is combined with block 4 before that block is 
processed. Thus Merkle-Damgard is often referred to as a compression function as 
it compresses all the message into a single output block. The algorithm will start 
with some initial value, or initialization vector that is specific to the implementation. 
The final message block is always padded to the appropriate size (256 bits, 512 bits, 
etc.) and includes a 64-bit integer that indicates the size of the original message.

 Specific Algorithms

There are a variety of specific algorithms utilized to create cryptographic hashes. 
Remember that to be a viable cryptographic hash, an algorithm needs three 
properties:

 1. Variable length input produces fixed length output.
 2. Few or no collisions.
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 3. It is not reversible.

There are a variety of cryptographic hashing functions that meet these three cri-
teria. In the United States as well as much of the world, the MD5 and SHA algo-
rithms are the most widely used and thus will be prominently covered in this chapter.

 Checksums

A much simpler algorithm than a cryptographic hash is a checksum. It can serve 
similar purposes, for example, checking for message integrity. The word checksum 
is often used as a generic term for the actual output of a specific algorithm. The 
algorithms are often called a checksum function or checksum algorithm.

 Longitudinal Parity Check

One of the simplest checksum algorithms is the longitudinal parity check. It breaks 
data into segments (called words) with a fixed number of bits. Then the algorithm 
computes the XOR of all of these words, with the final result being a single word or 
checksum. Let us assume a text that says

“Euler was a genius”
Then convert that to binary (first converting to ASCII codes and then converting 

that to binary):

01000101 01110101 01101100 01100101 01110010 00100000 01110111 01100001 
01110011 00100000 01100001 00100000 01100111 01100101 01101110 
01101001 01110101 01110011

The segments can be any size, but let us assume 2 bytes (16-bit word). This text 
is now divided into nine words (shown here separated with brackets).

[01000101 01110101][01101100 01100101][01110010 00100000][01110111 
01100001][01110011 00100000][01100001 00100000][01100111 01100101]
[01101110 01101001][01110101 01110011]

The next step is to XOR the first word with the second:

01000101 01110101 XOR 01101100 01100101 = 0010100100010000

Then that result is XOR’d with the next word

0010100100010000 XOR 00100000 01110111 = 0000100101100111

This process is continued with the result of the previous XOR then XOR’d with 
the next word until a result is achieved. That result is called the longitudinal parity 
check. This type of checksum (as well as others) works well for error detection. The 
checksum of a message can be appended to a message. The recipient then 
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recalculates the checksum and compares it. Checksums are usually quite fast, much 
faster than cryptographic hashes. However, there exists possibility of collisions (dif-
ferent inputs producing identical outputs).

 Fletcher Checksum

The Fletcher checksum is an algorithm for computing a position-dependent check-
sum devised by John G. Fletcher at Lawrence Livermore Labs in the late 1970s. The 
objective of the Fletcher checksum was to provide error-detection properties 
approaching those of a cyclic redundancy check but with the lower computational 
effort associated with summation techniques. The Fletcher checksum works by fist 
dividing the input into words and computing the modular sum of those words. Any 
modulus can be used for computing the modular sum. The checksum is appended to 
the original message. The recipient recalculates the checksum and compares it to 
the original.

 MD5

This is a 128-bit hash that is specified by RFC 1321. It was designed by Ron Rivest 
in 1991 to replace an earlier hash function, MD4. MD 5 produces a 128-bit hash or 
digest (Easttom 2019). It has been found to not be as collision resistant as SHA. As 
you might suspect, MD5 is an improvement on an earlier algorithm, MD4. As early 
as 1996, a flaw is found in MD5, and by 2004, it was shown that MD5 was not col-
lision resistant.

Keep in mind that the MD5 algorithm will ultimately produce a 128-bit output. 
The first step in the algorithm is to break the message to be encrypted into 512-bit 
segments. Each of those segments consists of 16 32-bit words. If the last segment is 
less than 512 bits, it is padded to reach 512 bits. The final 64 bits represents the 
length of the original message (Rivest 1992).

Since MD5 ultimately seeks to create a 128-bit output, it works on a 128-bit state 
that consists of four 32-bit words labeled A, B, C, and D. These 32-bit words are 
initialized to some fixed constant. The algorithm has four rounds consisting of a 
number of rotations and binary operations. There is a different round function for 
each round. Note that since MD5 is a Merkle-Damgard function, the following steps 
are done to each 512-bit block. If the message is more than 512 bits, then final out-
put of a given block is then combined with the next block until the last block is 
reached (Rivest 1992).

Round 1: B is XOR’d with C. The output of that operation is OR’d with the output 
of the negation of B XOR’d with D.

Round 2: B is XOR’d with D. The output of that operation is OR’d with the output 
of C XOR’d with the negation of D.
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Fig. 9.2 The MD5 
algorithm

Round 3: B is XOR’d with C; the output is XOR’d with D.
Round 4: C is XOR’d with the output of B OR’d with the negation of D.

These round functions are often denoted as F, G, H, and I, with F being round 1, 
G being round 2, H being round 3, and I being round 4.

The algorithm is illustrated in Fig. 9.2.
The blocks A–D have already been explained. The F in Fig. 9.2 represents the 

round function for that given round (F, G, H, or I depending on the round in ques-
tion). The message word Mi and Ki is a constant. The “<<<” denotes a binary left 
shift by s bits. After all rounds are done, the A, B, C, and D words contain the digest, 
or hash of the original message.

It should be noted that MD6 was published in 2008. It was submitted to the NIST 
SHA-3 competition but had speed issues and was not quite ready. In September 
2011, a paper was publishes showing an improved MD6 was resistant to several 
common cryptanalytic attacks.

 SHA

The Secure Hash Algorithm is perhaps the most widely used hash algorithm today. 
There are now several versions of SHA. SHA (all versions) is considered secure and 
collision free.

SHA-1: This is a 160-bit hash function which resembles the earlier MD5 algo-
rithm. This was designed by the National Security Agency (NSA) to be part of the 
Digital Signature Algorithm.
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SHA-2: This is actually two similar hash functions, with different block sizes, 
known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 
32-byte (256 bits) words where SHA-512 uses 64-byte (512 bits) words. There are 
also truncated versions of each standardized, known as SHA-224 and SHA-384. 
These were also designed by the NSA.

SHA-3: This is the latest version of SHA. It was adopted in October of 2012.

 SHA-1

Let us begin by taking a closer look at the SHA-1 algorithm. Much like MD5, there 
will be some padding. And like MD5, SHA-1 uses 512-bit blocks. The final block 
needs to be 448 bits followed by a 64-bit unsigned integer that represents the size of 
the original message. Since SHA-1 is also a Merkle-Damgard function, the follow-
ing steps are done to each 512-bit block. If the message is more than 512 bits, then 
final output of a given block is then combined with the next block until the last block 
is reached.

Unlike MD5, SHA-1 uses 5 blocks often denoted as h1, h2, h3, h4, and h5. These 
are initialized to some constant value. The message to be hashed is broken into 
characters and converted to binary format. Pad the message so it evenly breaks into 
512-bit segments with the 64-bit original message length at the end. Each 512-bit 
segment is broken into 16 32-bit words. The first step after preparing the message is 
a process that will create 80 words from the 16 in the block. This is a loop that will 
be executed until a given condition is true. You start by taking the 16 words in the 
512-bit block and putting those into the first 16 words of the 80-word array. The 
other words are generated by XORing previous words and shifting one bit to the left.

Then 80 times you loop through a process as follows:

 1. Calculate the SHA function and a constant K both based on the current round.
 2. Set word e = d; word d = c; and word c = b after rotating b left 30 bits; word 

b = 1; word a = word A rotated left 5 bits + the SHA function+ e + k + word [i] 
where i is the current round.

 3. Concatenate the final hash as a, b, c, d, and e. The reason we have five final 
words (each 32 bits) whereas MD5 only had four is that MD5 produces a 128-bit 
digest and SHA-1 produces a 160-bit digest.

You can see this process depicted in Fig. 9.3.
Notice the round function in Fig. 9.3. Like MD5, SHA-1 has a varying round 

function that changes slightly each round:

Variation 1: f(t;B,C,D) = (B AND C) OR ((NOT B) AND D) (0 <= t <= 19)
Variation 2: f(t;B,C,D) = B XOR C XOR D (20 <= t <= 39)
Variation 3: f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D) (40 <= t <=59)
Variation 4: f(t;B,C,D) = B XOR C XOR D (60 <= t <= 79)
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Fig. 9.3 The SHA-1 
algorithm

At this point, you may find both MD5 and SHA 1 to be a bit convoluted. That is 
to be expected. Remember the goal is to have a non-reversible algorithm. Thus, 
there are a number of convoluted steps designed simply to scramble the message so 
that it cannot be unscrambled.

If you have a programming background, or are simply familiar with algorithm 
analysis, you may find the following pseudo code helpful in understanding SHA-1.

    For loop on k = 1 to L
        (W(0),W(1),...,W(15)) = M[k] /* Divide M[k] into 16 words */
        For t = 16 to 79 do:
            W(t) = (W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)) <<< 1
         A = H0, B = H1, C = H2, D = H3, E = H4
         For t = 0 to 79 do:
            TEMP = A<<<5 + f(t;B,C,D) + E + W(t) + K(t) E = D, D = C,
                C = B<<<30, B = A, A = TEMP
        End of for loop
        H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 
= H4 + E
    End of for loop

 SHA-2

SHA-2 is similar in structure and function to SHA-1; it is also a Merkle-Damgard 
construction. However, it has a variety of sizes. The most common are SHA-256 
and SHA-512, but there is also SHA-224 and SHA-384.

SHA-256 uses 32-bit words and SHA-512 uses 64-bit words. In the United 
States, FIPS PUB 180–2 defines SHA-2 as a standard.
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SHA-1 is one of the most widely used hashing algorithms in existence today. 
SHA-2 is widely used in PGP, SSL, TLS, SSH, IPSec, and other security protocols. 
Certain Linux distributions, such as Debian, use SHA-2 variations to authenticate 
software packages. Some implementations of Bitcoin use SHA-2 to verify 
transactions.

 SHA-3

SHA-3 is an interesting algorithm in that it was not designed to replace SHA-2. 
There are no known significant flaws with SHA-2. There are issues with MD-5 and 
at least theoretical issues with SHA-1. SHA-3 was the result of a contest to find a 
new hashing algorithm. The actual algorithm was named Keccak designed by Guido 
Bertoni, Joan Daemen (of Rijndael cipher fame), Michaël Peeters, and Gilles Van 
Assche (Bertoni et  al. 2013). The US NIST (National Institute of Standards and 
Technology) published FIPS 202 standardizing the use of SHA-3.

Unlike SHA-1 and SHA-2 that use a Merkle-Damgard construction, SHA-3 uses 
a sponge construction (Dworkin 2015). A sponge construction (also known as a 
sponge function) is a type of algorithm. It uses an internal state and takes input of 
any size producing a specific sized output. This makes it a good fit for cryptographic 
hashes which need to take variable length input and produce a fixed length output. 
Any sponge construction uses three components. The first is a state, usually called 
S that is of some fixed size. Then there is some function f that transforms the state 
and finally a padding function to ensure the output is of the proper size.

The state is usually divided into two sections denoted R and C. The R represents 
the size bitrate, and the C is the size of the capacity. The bitrate is simply the base 
size for the algorithm. Just as Merkle-Damgard constructions might use 512-bit 
blocks, Sponge constructions have a certain base size, and the entire input must be 
a multiple of that size. The padding function is to ensure that the input is multi-
ple of R.

The Sponge function consists of iterations of the following steps (Bertoni 
et al. 2013):

The state (S) is initialized to zero.
The input string is padded using the padding function.
R is then XOR’d with the first r-bit block of padded input. Remember R is the bit 

size being used as a base for this implementation.
S is replaced by F(S). The function F is specific to a particular Sponge function.
R is then XOR’d with the next r-bit block of padded input.

This last two steps (s being replaced by F(s) and R being XOR’d with the next 
block of input) continue until the end of the input. Once the end of input has been 
reached, it is time to produce the output. That is done using the following steps:

The R portion of the state memory is the first r bits of output.
If more output bits are desired, S is replaced by F(S).

9 Cryptographic Hashes



225

The R portion of the state memory is the next r bits of output.

There are variations on this process, and what has been presented here is simply 
a generic overview of the essentials of a Sponge construction. The details of the 
function F will vary with specific implementations. In SHA-3, the state consists of 
a 5 × 5 array of 64-bit words, 1600 bits total. The authors claim 12.5 cycles per byte 
on an Intel Core 2 CPU. In hardware implementations, it was notably faster than all 
other finalists. The permutations of SHA-3 that were approved by the NIST include 
224, 256, 384, or 512-bit outputs.

 RIPEMD

RACE Integrity Primitives Evaluation Message Digest is a 160-bit hash algorithm 
developed by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. There exist 
128-, 256-, and 320-bit versions of this algorithm, called RIPEMD-128, 
RIPEMD-256, and RIPEMD-320, respectively. These all replace the original 
RIPEMD which was found to have collision issues. The larger bit sizes make this 
far more secure that MD5 or RIPEMD.

RIPEMD-160 was developed in Europe as part of RIPE project and is recom-
mended by the German Security Agency. The authors of the algorithm describe 
RIPEMD as follows: “RIPEMD-160 is a fast-cryptographic hash function that is 
tuned toward software implementations on 32-bit architectures. It has evolved from 
the 256-bit extension of MD4, which was introduced in 1990 by Ron Rivest [20, 
21]. Its main design feature are two different and independent parallel chains, the 
result of which are combined at the end of every application of the compression 
function” (Dobbertin et al. 1996).

The RIPEMD-160 algorithm is slower than SHA-1 but perhaps more secure (at 
least according to some experts). The general algorithm is that it uses two parallel 
lines of processing. Each consists of 5 rounds and 16 steps. Note that since the five 
rounds are in parallel, some sources describe RIPEMD as using ten rounds. Either 
description is accurate, depending on your perspective.

As with many other hashing algorithms, RIPEMD works with 512-bit segments 
of input text. It first must pad so that the final message block is 448 bits plus a 64-bit 
value that is the length of the original message. You may have noticed by now that 
this is a very common approach to creating hashing algorithms. Now the initial five- 
word buffer (each word being 32 bits totally 160 bits) is initialized to a set value. 
The buffers are labeled A, B, C, D, and E (much as you have seen with previous 
algorithms). The message being hashed is processed in 512-bit segments. The final 
output is the last 160 bits left in the buffer when the algorithm has completed all 
rounds (Dobbertin et al. 1996).

Specific Algorithms



226

 Tiger

Tiger is designed using the Merkle-Damgard construction (sometimes call the 
Merkle-Damgard paradigm). Tiger produces a 192-bit digest. This cryptographic 
hash was invented by Ross Anderson and Eli Biham and published in 1995. The 
one-way compression function operates on 64-bit words, maintaining three words 
of state and processing eight words of data. There are 24 rounds, using a combina-
tion of operation mixing with XOR and addition/subtraction, rotates, and S-box 
lookups, and a fairly intricate key scheduling algorithm for deriving 24 round keys 
from the 8 input words (Anderson and Biham 1996).

 HAVAL

HAVAL is a cryptographic hash function. Unlike MD5, but like most other modern 
cryptographic hash functions, HAVAL can produce hashes of different lengths. 
HAVAL can produce hashes in lengths of 128 bits, 160 bits, 192 bits, 224 bits, and 
256 bits. HAVAL also allows users to specify the number of rounds (3, 4, or 5) to be 
used to generate the hash. HAVAL was invented by Yuliang Zheng, Josef Pieprzyk, 
and Jennifer Seberry in 1992.

 NTLM

Windows currently hashes local passwords using the NTLM v2 (New Technology 
Lan Manager version 2) algorithm. Given the ubiquitous nature of Windows, it 
would be on oversight not to discuss this hashing algorithm. Windows began with 
using Lan Manager. It was a simplistic algorithm and not a true cryptographic hash 
(Easttom 2019). It is described here:

• Limited to 14 characters.
• Input text is converted to uppercase before hashing.
• Null padded to 14 bytes (if less than 14).
• Split into two 7-byte halves.
• These are used to create two separate DES keys.
• Each of these is used to encrypt a constant ASCII string KGS!@#$% yielding 

two 8-byte cipher text strings. These are then concatenated to form a 16-byte LM 
hash which is not actually a true hashing algorithm.

Then Microsoft moved on to NT hash which uses MD4 on the password (in 
Unicode), so it is an actual hash function. There is a client server exchange  consisting 
of client sending a NEGOTIATE_MESSAGE, server response with CHALLENGE_
MESSAGE, and client response with AUTHENTICATE_MESSAGE. One or both 
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of the two hashed password values that are stored on the server are used to authen-
ticate the client. These two are the LM hash or the NT hash.

 NTLM v1

Server authenticates client by sending a random 8-byte number as the challenge. 
The client performs an operation involving the challenge and a secret shared 
between client and server. The shared secret is one of the hashed passwords dis-
cussed in the previous screen. The result is a 24-byte value that is sent to the server. 
The server verifies it is correct.

 NTLMv2

The client sends two responses to the 8-byte challenge from the server. Each is a 
16-byte HMAC hash of the server challenged and an HMAC of the user’s password 
(the HMAC uses the MD5 hashing algorithm). The second response also includes 
the current time, an 8-byte random value, and the domain name.

 Whirlpool

Whirlpool was invented by Paulo Barreto and Vincent Rijmen, who was one of the 
creators of the Rijndael cipher which was chosen to become AES. Paulo Barreto is 
a Brazilian cryptographer who also worked on the Anubis and KHAZAD ciphers. 
He has worked on various projects with Vincent Rijmen and published on elliptic 
curve cryptography which you will see in Chap. 11.

Whirlpool was chosen as part of the NESSIE project (mentioned in Chap. 7) and 
has been adopted by the International Organization for Standardization (ISO) as a 
standard. Whirlpool is interesting because it is a modified block cipher (Kitsos and 
Koufopavlou 2004). It is a common practice to create a hashing algorithm from a 
block cipher. In this case, the Square cipher (precursor to Rijndael) was used as the 
basis. Whirlpool produces a 512-bit digest and can take in inputs up to 2256 bits in 
size. The algorithm is no patented and can be used free of charge.

 Skein

Skein is a cryptographic hash function and one out of five finalists in the NIST hash 
function competition. Entered as a candidate to become the SHA-3 standard, the 
successor of SHA-1 and SHA-2, it ultimately lost to NIST hash candidate Keccak. 
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Skein was created by Bruce Schneier, Stefan Lucks, Niels Ferguson, Doug Whiting, 
Mihir Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. Skein is based on the 
Threefish block cipher compressed using Unique Block Iteration (UBI) chaining 
mode while leveraging an optional low-overhead argument-system for flexibility 
(Ferguson et al. 2010).

 FSB

In cryptography, the fast syndrome-based hash functions (FSB) are a family of cryp-
tographic hash functions introduced in 2003 by Daniel Augot, Matthieu Finiasz, and 
Nicolas Sendrier. Danial Augot is a French researcher known for work in cryptog-
raphy as well as algebraic coding theory. Matthieu Finiasz has numerous publica-
tions covering a wide variety of cryptographic topics. Nicolas Sendrier is a French 
researcher with extensive publications in both cryptography and computer security.

FSB is distinctive in that it can, at least to a certain extent, be proven to be secure. 
It has been proven that breaking FSB is at least as difficult as solving a certain 
NP-complete problem known as Regular Syndrome Decoding. What this means, in 
practical terms, is that FSB is provably secure. You should recall a discussion of 
NP-complete problems from Chap. 5.

Oftentimes, security and efficiency are conflicting goals. And it is often the case 
that provably secure algorithms are a bit slower. Therefore, as you might expect, 
FSB is slower than many traditional hash functions and uses quite a lot of memory. 
There have been various versions of FSB, one of which was submitted to the SHA-3 
competition but was rejected.

 GOST

This hash algorithm was initially defined in the Russian national standard GOST R 
34.11–94 Information Technology  – Cryptographic Information Security  – Hash 
Function. This hash algorithm produces a fixed-length output of 256 bits. The input 
message is broken up into chunks of 256-bit blocks. If a block is less than 256 bits, 
then the message is padded by appending as many zeros to it as are required to bring 
the length of the message up to 256 bits. The remaining bits are filled up with a 256- 
bit integer arithmetic sum of all previously hashed blocks, and then a 256-bit integer 
representing the length of the original message, in bits, is produced. It is based on 
the GOST block cipher
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 BLAKE

BLAKE is a cryptographic hash that is based on the ChaCha stream cipher. There 
are variations on the size digest produced such as BLAKE-256 and BLAKE-512. 
BLAKE2 was announced in 2012 and BLAKE3 in 2020.

 Grøstl

Grøstl is a hash function developed by Praveen Gauravaram, Lars Knudsen, Krystian 
Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren. It 
uses an s-box, in fact the AES s-box. In fact, much of the algorithm is based on the 
Rijndael cipher.

 SWIFFT

SWIFFT is actually a collection of hash functions. They are notable because they 
are provably secure. That literally means that they have been mathematically proven 
to be secure. The mathematics of the SWIFFT hashes is a bit more complex; it uti-
lizes a fast Fourier transform and uses lattice-based mathematics. That is beyond the 
scope of this text to delve deeply into. But since the algorithms are provably secure, 
it is worthwhile to mention them.

 MAC and HMAC

As we have previously discussed, hashing algorithms are often used to ensure mes-
sage integrity. If a message is altered in transit, the recipient can compare the hash 
they received against the hash they compute and detect the error in transmission. 
But what about intentional alteration of messages? What happens if someone alters 
the message intentionally, deletes the original hash, and re-computes a new one? 
Unfortunately, a simple hashing algorithm cannot account for this scenario.

A message authentication code (or MAC) is one way to detect intentionally alter-
ations in a message. A MAC is also often called a keyed cryptographic hash func-
tion. That name should tell you how this works. One way to do this is the HMAC or 
hashing message authentication code. Let us assume you are using MD5 to verify 
message integrity. To detect an intercepting party intentionally altering a message, 
both the sender and recipient must previously exchange a key of the appropriate size 
(in this case 128 bits). The sender will hash the message and then XOR that hash 
with this key. The recipient will hash what they receive and XOR that computed 
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hash with the key. Then the two hashes are exchanged. Should an intercepting party 
simply re-compute the hash, they will not have the key to XOR that with (and may 
not even be aware that it should be XOR’d), and thus the hash the interceptor creates 
won’t match the hash the recipient computes and the interference will be detected 
(Easttom 2019).

Another common way of accomplishing a MAC is called a CBC-MAC. For this 
a block cipher is used (any cipher will do) rather than a hash. The algorithm is used 
in CBC mode. Then only the final block is used for the message authentication 
code. This can be done with any block cipher you choose. From a practical perspec-
tive, both MACs and HMACs are more secure than hashes. The addition of a shared 
secret key improves the security. Whenever possible, using a MAC or HMAC is 
preferred overusing just a hash.

 Key Derivation Functions

Related to hashes are key derivation functions. One widely used function is 
Password-Based Key Derivation Function 2 (PBKDF2). It is part of the public key 
cryptography standards, specifically PKCS #5 v2.0. PBKDF2 uses an HMAC to 
input a password or pass phrase with a salt value and repeats that process several 
times to generate derived key (Easttom and Dulaney 2017). This is one way to gen-
erate cryptographic keys. The algorithm bcrypt is a password hashing function that 
is based on the Blowfish cipher. It incorporates sale and is quite resistant to brute 
force search attacks. There are implementations of bcrypt in many popular pro-
gramming languages.

 Conclusions

In this chapter you have seen a broad overview of cryptographic hashes. The first 
important thing you should absolutely commit to memory is the three criteria for an 
algorithm to be a cryptographic hash. You should also be familiar with the practical 
applications of cryptographic hashes.

You have also been exposed to several cryptographic hashing algorithms, some 
in more detail than others. The SHA family of hashing algorithms is the most widely 
used and thus is the most important for you to be familiar with. The other algorithms 
presented in this chapter are widely used and warrant some study. You may even like 
to take one or more of these other algorithms and study them in depth. You will find 
a great deal of information, including research papers, on the internet using any 
standard search tool.
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 Test Your Knowledge

 1. ______ is a message authentication code that depends on a block cipher wherein 
only the final block is used.

 2. The ______ works by fist dividing the input into words and computing the 
modular sum of those words.

 3. A hashing algorithm that uses a modified block cipher and was chosen as part 
of the NESSIE project? ______

 4. The algorithm ultimately chosen as SHA-3?
 5. What are the three properties all cryptographic hash functions must exhibit?
 6. What is the compression function used as a basis for MD5, SHA-1, and SHA-2?
 7. _______ was developed in Europe and is recommended by the German 

Security Agency.
 8. Which algorithm discussed in this chapter was published in 1995 and produces 

a 192-bit digest?
 9. ________ was one of the five finalists in the SHA-3 competition (but did not 

win) and is based on the Threefish block cipher.
 10. Which algorithm introduced in this chapter has provable security?
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Chapter 10
Asymmetric Algorithms

 Introduction

In this chapter we will be discussing asymmetric cryptography. This will include a 
discussion of the general concepts and usage as well as an in-depth discussion of the 
more common asymmetric algorithms. You will apply the mathematics reviewed in 
Chaps. 4 and 5. Where necessary a brief reminder of the mathematical principles 
will be provided. However, if those chapters were new or difficult to you, you may 
wish to briefly review them before proceeding with this chapter.

 In This Chapter We Will Cover the Following

• What is asymmetric cryptography?
• RSA
• Diffie–Hellman
• ElGamal
• MQV
• Homomorphic encryption
• Applications

 What Is Asymmetric Cryptography?

Asymmetric cryptography, as the name suggests, is a form of cryptography wherein 
one key is used to encrypt a message, and a different (but related) key is used to 
decrypt. This concept often baffles those new to cryptography and students in 
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network security courses. How can it be that a key used to encrypt will not also 
decrypt? This will be clearer to you once we examine a few algorithms, and you see 
the actual mathematics involved. For now, set that issue to one side and simply 
accept that one key encrypts but cannot decrypt the message. Another key is used to 
decrypt. These algorithms are also often referred to as public key algorithms. This 
is because one key is made public, while the other is private.

The reason asymmetric cryptography is such a powerful concept is because sym-
metric cryptography (that you studied in Chaps. 6 and 7) has a serious problem. 
That problem is key exchange. Most cryptography books and papers prefer to use 
the fictitious characters Alice, Bob, and Eve, to explain how asymmetric cryptogra-
phy works, and I will continue that tradition. This stems from the original paper 
describing the RSA algorithm.

Let’s assume Alice would like to send Bob a message. But Alice is concerned 
that Eve might eavesdrop (thus her name!) on the communication. Now let us fur-
ther assume that we don’t have asymmetric cryptography, that all you have available 
to you are the symmetric ciphers that you learned in Chaps. 6 and 7. And assume 
Bob and Alice do not live in the same location. How can they exchange a key so that 
they might encrypt messages? Any method you might think of has the very real 
chance of being compromised, short of a secure/trusted courier manually taking 
keys between the two parties. If a courier was needed to exchange keys every time 
secure communication was required, then we would not have online banking, 
e-commerce, or a host of other useful technologies.

With public key/asymmetric cryptography, Alice will get Bob’s public key and 
use that to encrypt the message she sends to Bob. Now should Eve intercept the 
message and have access to Bob’s public key, it is ok. That key won’t decrypt the 
message. Only Bob’s private key will, and this he safeguards. You can see this in 
Fig. 10.1.

If Bob wishes to respond to Alice, he reverses the process. He gets Alice’s public 
key and encrypts a message to her that only her private key will decrypt. Thus, 
asymmetric cryptography solves the problem of key exchange. It does not impede 
security if literally every person on the planet has both Bob and Alice’s public keys. 
Those keys can only be used to encrypt messages to Bob and Alice (respectively) 
and cannot decrypt the messages. So as long as Bob and Alice keep their private 
keys secret, secure communication is achieved with no problems in key exchange.

This basic concept of one key being public and another being private is why 
asymmetric cryptography is often referred to as public key cryptography. 
Unfortunately, it is as far as many security courses go with explaining asymmetric 
cryptography. Of course, we will be delving into the actual algorithms.

 Indistinguishability

One will sometimes encounter papers discussing that a given algorithm is said to be 
IND-CPA, IND-CCA1, or IND-CC2 secure. These refer to acronyms regarding the 
algorithm’s indistinguishability under a particular attack. In this instance, 
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Fig. 10.1 Alice sends Bob a message with asymmetric cryptography

indistinguishability is defined as an attacker being unable to distinguish between the 
output and random text. IND-CPA is indistinguishability under chosen plaintext 
attack. IND-CCA1 is indistinguishability under nonadaptive chosen ciphertext 
attacks. IND-CCA2 is indistinguishability under adaptive chosen ciphertext attacks. 
These attack types will be explained in Chap. 17.

 RSA

RSA may be the most widely used asymmetric algorithm. It is certainly one of the 
most well-known. It was first published in 1977 by Ron Rivest, Adi Shamir, and 
Leonard Adleman. RSA is perhaps the most widely known asymmetric algorithm. 
This is a public key method developed in 1977 by three mathematicians, Ron Rivest, 
Adi Shamir, and Len Adleman (Easttom and Dulaney 2017). The name RSA is 
derived from the first letter of each mathematician’s last name. The algorithm is 
based on prime numbers and the difficulty of factoring a large number into its prime 
factors.

The three inventors of RSA are very well known and respected cryptographers. 
Ron Rivest has been a professor at MIT and invented several algorithms including 
RC2, RC4, RC5, MD2, MD4, MD5, and MD6. Adi Shamir is an Israeli cryptogra-
pher and one of the inventors of differential cryptanalysis. Leonard Adleman has 
made significant contributions to using DNA as a computational system.

As often happens in the history of cryptography, it turns out that there was a simi-
lar system developed earlier, but it was classified. In 1973, Clifford Cocks devel-
oped a similar system that remained classified until the late 1990s. Mr. Cocks 
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worked for the English government, specifically the Government Communications 
Headquarters (GCHQ). He did go on to develop other, nonclassified, cryptographic 
innovations. In 2001 he invented one of the early identity-based encryption method-
ologies, using aspects of number theory.

First, to create the public and private key pair, you start by generating two large 
random primes, p and q, of approximately equal size (Hinek 2009). You will need to 
select two numbers so that when multiplied together the product will be the size you 
want (i.e., 2048 bits, 4096 bits, etc.)

Next, multiply p and q to get n.
Let n = pq
The next step is to multiply Euler’s totient for each of these primes.

If you have forgotten about Euler’s totient from Chap. 4, this brief reminder 
should help you. Two numbers are considered co-prime if they have no common 
factors. For example, if the original number is 8, then 8 and 9 would be co-prime. 
Factors for 8 are 2 and 4, while factors of 9 are 3. Euler asked a few questions about 
co-prime integers. Given a number X, how many numbers smaller than X are co-
prime to X. Well, we call that number Euler’s totient, or just the totient. It just so 
happens that for prime numbers, this is always the number minus 1. For example, 7 
has 6 numbers that are co-prime to it.

When you multiply two primes together, you get a composite number. And there 
is no easy way to determine the Euler’s totient of a composite number. Recall that 
Euler found that if you multiple any two prime numbers together, the Euler’s totient 
of that product is the Euler’s totient of each prime multiplied together. So, our next 
step is:

Let m = (p − 1)(q − 1)
So, m, is the Euler’s totient of n.

Now we are going to select another number, we will call this number e. We want 
to pick e so that it is co-prime to m. Frequently a prime number is chosen for e. That 
way if e does not evenly divide m, then we are confident that e and m are co-prime, 
as e does not have any factors to consider. Many RSA implementations use 
e = 216 + 1 = 65537. This is considered large enough to be effective but small enough 
to still be fast.

At this point you have almost completed generating the key. Now we just find a 
number d that when multiplied by e and modulo m would yield a 1 (note: modulo 
means to divide two numbers and return the remainder. For example, 8 modulo 3 
would be 2). In other words:

Find d, such that de % m ≡ 1
Now you will publish e and n as the public key.
Keep d as the secret key. To encrypt you simply take your message raised to the e 

power and modulo n.

 Ciphertext Message= e nmod  
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To decrypt you take the cipher text, raise it to the d power modulo n.

 Plaintext Ciphertext= d nmod  

 RSA Example 1

Let’s look at an example that might help you understand. Of course, RSA would be 
done with very large integers. To make the math easy to follow, we will use small 
integers in this example (note this example is from Wikipedia):

Choose two distinct prime numbers, such as p = 61 and q = 53.
Compute n = pq giving n = 61 ⋅ 53 = 3233.
Compute the totient of the product as φ(n) = (p − 1)(q − 1) giving φ(3233) = (61–1)

(53–1) = 3120.
Choose any number 1 < e < 3120 that is co-prime to 3120. Choosing a prime num-

ber for e leaves us only to check that e is not a divisor of 3120. Let e = 17.
Compute d, the modular multiplicative inverse of yielding d = 2753.
The public key is (n = 3233, e = 17). For a padded plaintext message m, the encryp-

tion function is m17 (mod 3233).
The private key is (n = 3233, d = 2753). For an encrypted ciphertext c, the decryp-

tion function is c2753 (mod 3233).

 RSA Example 2

For those readers new to RSA, or new to cryptography in general, it might be help-
ful to see one more example, with even smaller numbers.

 1. Select primes: p = 17 and q = 11.
 2. Compute n = pq = 17 × 11 = 187.
 3. Compute ø(n) = (p–1) (q–1) = 16 × 10 = 160.
 4. Select e: gcd(e,160) = 1; choose e = 7.
 5. Determine d: de  =  1 mod 160 and d  <  160. Value is d  =  23 since 

23 × 7 = 161 = 10 × 160 + 1.
 6. Publish public key (7 and 187).
 7. Keep secret private key 23.

Now let us apply this to encrypt something. For some reason you have decided 
to encrypt the number 3. Thus, we will use the number 3 as the plaintext. Remember 
e = 7, d = 23, and n = 187. So, we will use the recipient’s public key which is e and n.

Ciphertext = Plaintext e mod n or
Ciphertext = 37 mod 187
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Ciphertext =2187 mod 187
Ciphertext = 130

When the recipient receives this ciphertext, he or she will use their secret key to 
decrypt it as follows:

Plaintext = Ciphertext d mod n
Plaintext = 13023 mod 187
Plaintext = 4.1753905413413116367045797e+48 mod 187
Plaintext = 3

As you can see it works, even if there is not really any particular reason to encrypt 
the number 3. But are we absolutely sure that the public key won’t decrypt the mes-
sage? That is easy to put to the test. Remember the ciphertext is 130. Remember 
e = 7, d = 23, and n = 187. What if you tried the public key (e,n) again, instead of 
the private key (d,n)?

Plaintext = Ciphertext e mod n
Plaintext = 1307 mod 187
Plaintext = 627485170000000 mod 187
Plaintext = 37

You absolutely do not get back the original text. There is one exception to this. 
RSA cannot encrypt any plaintext larger than the modulus. If you do, then the public 
key will decrypt as well as encrypt! This is why algorithms such as RSA are not 
used to encrypt drives and large input items. If you are struggling with the concepts 
of RSA key generation, I suggest you first work through these two examples. Since 
the complete process as well as the answers are provided for you, it will be easy for 
you to check your work. You may also want to do a few more examples. Start with 
any two prime numbers that are small enough to make the calculations feasible.

 Factoring RSA Keys

You may be thinking, couldn’t someone take the public key and use factoring to 
derive the private key? Well hypothetically yes. However, it turns out that factoring 
really large numbers into their prime factors is extremely difficult. The more techni-
cal description would be to state that it is computationally infeasible. There is no 
efficient algorithm for doing it. And when we say large numbers, RSA can use 1024, 
2048, 4096, 8192 bit, and larger keys. Those are extremely large numbers. Let us 
look at an example. A 2048-bit number is represented in decimal format:

5148324789325478963214778006950135669987541002514563021458 
61478551483247893254789632147780069501514832478932547896 
3214778006950135669987541002514563021458614785514832478932 
5 4 7 8 9 6 3 2 1 4 7 7 8 0 0 6 9 5 0 1 3 2 5 6 6 6 3 1 2 4 5 8 8 6 3 1 4 4 5 8 7 7 0 2 3 3 
56588963502323586589001452214785336547
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In most modern implementations, at least as of this writing, 2048-bit number is 
the smallest RSA key used. Reflect on the rather large number typed out above and 
contemplate attempting to factor that number. There are mathematical techniques 
that will improve the process, but nothing that makes factoring such large numbers 
a feasible endeavor. Of course, should anyone ever invent an efficient algorithm that 
will factor a large number into its prime factors, RSA would be dead. There cer-
tainly have been incidents where someone was able to factor a small RSA key. In 
2009 Benjamin Moody factored a 512-bit RSA key in 73 days. In 2010 researchers 
were able to factor a 768-bit RSA key. Due to these advances in factorization, mod-
ern implementations of RSA are using larger key sizes. In Chap. 17 we will examine 
cryptanalysis techniques used on RSA.

This section is just a basic introduction to RSA. A great resource for delving 
deeper into RSA is the book “Cryptanalysis of RSA and its variants” by Hinek from 
Chapman and Hall/CRC. You also might find it interesting to read the paper “Fast 
variants of RSA” by Boneh and Shacham (CryptoBytes Vol. 5, No.1).

 The Rabin Cryptosystem

This algorithm was created in 1979 by Michael Rabin. Michael Rabin is an Israeli 
cryptographer and a recipient of the Turing Award. The Rabin cryptosystem can be 
thought of as an RSA cryptosystem in which the value of e and d are fixed 
(Hinek 2009).

 e d= =2and ½  
The encryption is C ≡ P2 (mod n) and the decryption is P ≡ C1/2 (mod n).
Here is a very trivial example to show the idea.
Bob selects p = 23 and q = 7.
Bob calculates n = p × q = 161.
Bob announces n publicly; he keeps p and q private.
Alice wants to send the plaintext message M = 24. Note that 161 and 24 are rela-

tively prime; 24 is in the group selected, Z161*.

Encryption: C = 242 mod 161 = 93 and sends the ciphertext 93 to Bob.
This algorithm is not as widely used as RSA or Diffie–Hellman but is presented 

to give you a general overview of alternative asymmetric algorithms.

 Diffie–Hellman

While some security textbooks state that RSA was the first asymmetric algorithm, 
this is not accurate. In fact, Diffie–Hellman was the first publicly described asym-
metric algorithm. This is a cryptographic protocol that allows two parties to estab-
lish a shared key over an insecure channel. In other words, Diffie–Hellman is often 
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Fig. 10.2 Diffie–Hellman

used to allow parties to exchange a symmetric key through some unsecure medium, 
such as the Internet. It was developed by Whitfield Diffie and Martin Hellman 
in 1976.

As we already saw with RSA, one problem with working in cryptology is that 
much of the work is classified. You could labor away and create something wonder-
ful that you cannot tell anyone about. Then to make matters worse, years later some-
one else might develop something similar and release it, getting all the credit. This 
is exactly the situation with Diffie–Hellman. It turns out that a similar method had 
been developed a few years earlier by Malcolm J.  Williamson of the British 
Intelligence Service, but it was classified (Easttom 2019).

The system has two parameters called p and g (Rescorla 1999). Parameter p is a 
prime number, and parameter g (usually called a generator) is an integer less than p, 
with the following property: for every number n between 1 and p-1 inclusive, there 
is a power k of g such that n = gk mod p. Let us revisit our old friends Alice and Bob 
to illustrate this.

Alice generates a random private value a and Bob generates a random private 
value b. Both a and b are drawn from the set of integers.

They derive their public values using parameters p and g and their private values. 
Alice’s public value is ga mod p, and Bob’s public value is gb mod p.

They exchange their public values.
Alice computes gab = (gb)a mod p, and Bob computes gba = (ga)b mod p.
Since gab = gba = k, Alice and Bob now have a shared secret key k.
This process is shown in Fig. 10.2

 ElGamal

It is based on the Diffie–Hellman key exchange. It was first described by Taher 
Elgamal in 1984. ElGamal is based on the Diffie–Hellman key exchange algorithm 
described earlier in this chapter. It is used in some versions of PGP. The ElGamal 
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algorithm has three components: the key generator, the encryption algorithm, and 
the decryption algorithm (Tsiounis and Yung 1998). We will keep with the format 
we have used so far, that of using Alice and Bob.

• Alice generates an efficient description of a multiplicative cyclic group G of 
order q with generator g. You should remember groups from Chap. 5. A cyclic 
group is a group that is generated by a single element, in this case that is the 
generator g. With a multiplicative cyclic group, each element can be written as 
some power of g.

• Next Alice chooses a random from x from a set of numbers {0,…,q−1)
• Then Alice computes h = gx. Remember g is the generator for the group, and x is 

a random number from within the group.
• h, G, q, and g are the public keys, while x is the private key.
• If Bob wants to encrypt a message m with the public key Alice generated, the 

following process is done:

 – Bob generates a random number y chosen from {0,..,q−1}. Y is often called 
an “ephemeral key.”

 – Next, Bob will calculate c1. That calculation is simple: c1 = gy.
 – Next a shared secret s = hy is computed.
 – The message m is converted to m’ of G
 – Next, Bob must calculate c2. That calculation is relatively easy: c2 = m’ * s.
 – Bob can now send c1 and c2 = as the encrypted text.

• To decrypt a message m with the public key the first person generated, the fol-
lowing process is done:

 – The recipient calculates s = c1x.
 – The then the recipient calculates m’ = c2 * s−1.
 – Finally, m’ is converted back to the plaintext m.

The structure should look somewhat similar to Diffie–Hellman.

 MQV

Like ElGamal, MQV (Menezes–Qu–Vanstone) is a protocol for the key agreement 
that is based on Diffie–Hellman. It was first proposed by Menezes, Qu, and Vanstone 
in 1995 then modified in 1998. MQV is incorporated in the public key standard 
IEEE P1363 (Easttom 2019). HQMV is an improved version. The specific algo-
rithm is related to elliptic curves, so we will address those specifics in Chap. 11.
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 YAK

This algorithm is interesting because it includes authentication with key agreement. 
The algorithm was proposed in 2010 by Feng Hao. Like MQV and HMQV, it is 
authenticated, but it is also considered one of the simplest to implement.

The process is rather simple. Alice and Bob first agree on a group G with a gen-
erator g of prime order q (recall the discussion of abstract algebra, including groups, 
in Chap. 5). The group used is often a Schnorr group. A Schnorr group, named after 
mathematician Claus Schnorr, is a multiplicative subgroup of a finite field. To gen-
erate a Schnorr group, one must first generate values p, q, and r such that p and q are 
both prime numbers and satisfy this equation:

 p qr� �1  

Next a random number is chosen. The number must be between 1 and p and is often 
denoted by h. The generator of the group is now:

 g h pr= mod  

With authenticated key exchange, Bob has a private key of b, while Alice has a pri-
vate key of a. Bob has a long-term public key of gb, and Alice has a long-term 
public key of ga. Alice will select an x that is between 0 and q−1; Bob will select 
a y that is between 0 and q−1. Alice sends out gx along with a zero knowledge 
proof (RFC 8235 describes one such proof), and Bob sends out gy, also with a 
zero knowledge proof.
Alice computes a key using

 
K g g gy b x a x a y b� � � � �� � �� �–

 

and Bob computes a key using

 
K g g gx a y b x a y b� � � �

� �� � �� �
 

Now for each session key, Bob and Alice can use a cryptographic hash of K to create 
unique session keys.
YAK is a fascinating algorithm and one that incorporates authentication with key 

exchange. This algorithm might be a bit complex for the novice. It is not critical that 
you fully understand this algorithm. It would be outstanding if you did, but as long 
as you understand the general framework of the algorithm, that would be sufficient 
for a novice.

 Forward Secrecy

In cryptography, forward secrecy (FS), sometimes also called perfect forward 
secrecy (PFS), is a feature of specific key agreement protocols that gives assurances 
that session keys will not be compromised even if the private key of the server is 
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compromised. The term “perfect forward secrecy” was coined by C. G. Günther in 
1990. It has been used to describe a property of the Station-to-Station protocol. 
Definition: An encryption system has the property of forward secrecy if plaintext 
(decrypted) inspection of the data exchange that occurs during key agreement phase 
of session initiation does not reveal the key that was used to encrypt the remainder 
of the session.

 Optimal Asymmetric Encryption Padding

OAEP (Optimal Asymmetric Encryption Padding) was introduced by Mihir Bellare 
and Phillip Rogaway and is standardized in RFC 2437. This process processes the 
plaintext prior to encryption with an asymmetric algorithm. When used with an 
algorithm such as RSA, it gives a cryptography scheme that is proven to be secure 
against a chosen plaintext attack.

OAEP satisfies the following two goals:

 1. Add an element of randomness which can be used to convert a determinis-
tic encryption scheme like RSA into a probabilistic scheme.

 2. Prevent partial decryption of ciphertexts (or other information leakage) by 
ensuring that an adversary cannot recover any portion of the plaintext without 
being able to invert the trapdoor one-way permutation f.

OAEP has been shown to be IND-CCA1 secure.

 Cramer–Shoup

The Cramer–Shoup system is an asymmetric key encryption algorithm. It was 
developed by Ronald Cramer and Victor Shoup in 1998; it is an extension of the 
Elgamal cryptosystem. This was the first efficient algorithm proven to be secure 
against adaptive chosen ciphertext attack.

 Applications

By this point you should have some general understanding of several asymmetric 
algorithms and a very good understanding of at least RSA and Diffie–Hellman. 
What is lacking, at this point, is a thorough discussion of how asymmetric algo-
rithms are used. In this section we will look at common applications for asymmetric 
algorithms.
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 Key Exchange

As has been previously stated in this book, symmetric algorithms are much faster 
than asymmetric and achieve the same security with far smaller keys. However, 
asymmetric algorithms overcome the issue of key exchange. Therefore, it is com-
mon for asymmetric algorithms to be used for exactly that purpose. For example, in 
SSL and TLS, an asymmetric algorithm (such as RSA) is used to exchange a sym-
metric key (such as AES). This is a common way to use asymmetric algorithms.

 Digital Signatures

I am sure you have heard the term digital signature before, but do you know what 
they are and how they work? Remember that cryptographic algorithms are about 
protecting confidentiality, ensuring that only the intended recipient can read the 
message. Essentially, digital signatures take asymmetric cryptography and reverse 
it, so that they can protect integrity. Put another way, assume your boss sends you 
an email telling you that you have done such a great job, he thinks you should take 
next week off with pay. It would probably be a good thing to verify that this is legiti-
mate, really sent from him, and not a prank. What a digital signature does is to take 
the senders private and encrypt either the entire message, or a portion (like the sig-
nature block). Now anyone with the sender’s public key can decrypt that (Easttom 
2019). So, let us return to Alice and Bob to see how this works.

Bob wants to send Alice a message and make certain that she knows it is from 
him. So, he signs it with his private key. When Alice uses Bob’s public key, the mes-
sage decrypts, and she can read it. Now suppose that Bob did not really send this. 
Instead, Eve sent it, pretending to be Bob. Well since Eve does not have Bob’s pri-
vate key, she had to use some other key to sign this message. When Alice tries to 
decrypt it (i.e., verify the signature) with Bob’s public key, she will get back gibber-
ish, nonsense.

A digital signature verifies that the sender really is who he or she claims to be. 
Digital signatures form an important part of security of messages. In essence to have 
total security for a message, one would execute the following steps:

 1. Use a hash, MAC, or HMAC on the message and put the digest at the end of the 
message.

 2. Digitally sign the message, usually just a portion such as the hash or signature 
block, with your own private key.

 3. Encrypt the message with the recipient’s public key.

This process is depicted in Fig. 10.3
The recipient reverses the process:
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Fig. 10.3 message security

 1. Decrypt the message with the recipient’s private key.
 2. Verify the signature with the sender’s public key.
 3. Recalculate the hash, MAC, and HMAC and compare it to the one received to 

ensure that there are no errors in transmission.

Keep in mind, that as was stated in a previous chapter, the use of a MAC or 
HMAC is preferred over a hash. Figure 10.3 is just meant to demonstrate the con-
cept of incorporating message integrity, confidentiality, and digital signatures.

There exists more than one type of digital signature. Type I just as described is 
the most common and is referred to as a direct digital signature. The second type is 
the arbitrated digital signature. It is just like the process described above, with one 
signature. Instead of the sender digitally signing each message, a trusted third party 
digitally signs the message, attesting to the sender’s identity.

The third type of digital signature exists, that is the blind signature. The basic 
idea is that a sender makes a signer to sign a message m without knowing m; there-
fore, this is considered a blind signature. Blind signing can be achieved by a two-
party protocol, between the sender and the signer, that has the following properties.

 1. In order to sign (by a signer) a message m, the sender computes, using a blinding 
procedure, from m an m* from which m cannot be obtained without knowing a 
secret, and sends m* to the signer.

 2. The signer signs m* to get a signature sm* (of m*) and sends sm* to the sender. 
Signing is done in such a way that the sender can afterward compute, using an 
unblinding procedure, from signer’s signature sm* of m*—the signer signature 
sm of m.

This allows the arbiter to sign the message confirming that it was created on a 
given date by a specific sender, without knowing the contents of the message.

Applications



246

 Digital Signature Algorithm

A digital signature can be done with any asymmetric algorithm. However, some 
algorithms have been created specifically for digitally signing messages. Digital 
Signature Algorithm described in the US Patent 5,231,668, filed July 26, 1991, and 
attributed to David W. Kravitz. It was adopted by the US government in 1993 with 
FIPS 186. The actual algorithm functions as follows:

Choose a hash function (traditionally this has been SHA1 but the stronger the hash 
the better)

Select a key length L and N.
Note: The original Digital Signature Standard constrained L to be a multiple of 64 

between 512 and 1024. Now lengths of 2048 are recommended. US Government 
documents now specify L and N length pairs of (1024,160), (2048,224), 
(2048,256), and (3072,256).

Choose a prime number q that must be less than or equal to the hash output length.
Choose a prime number p such that p–1 is a multiple of q.
Choose g. This number g must be a number whose multiplicative order mod-

ulo p is q.
Choose a random number x, where 0 < x < q.
Calculate y = gx mod p.
Public key is (p, q, g, y).
Private key is x.
If you wish to use DSA to digitally sign, then the following steps are taken:
 1. Let H be the hashing function and m the message.

 2. Generate a random value for each message k where 0 < k < q.

 3. Calculate r = (gk mod p) mod q.

 4. Calculate s = (k−1(H(m) + x*r)) mod q.

 5. If r or s  =  zero, then recalculate for a non-zero result (i.e., pick a dif-
ferent K).

 6. The signature is (r, s).

DSA is a commonly used digital signature algorithm. In Chap. 11 we will see an 
elliptic curve variation of DSA.

 Digital Certificates

A digital certificate is a digital document that contains information about the certifi-
cate holder and (if it is an X.509 certificate) a method to verify this information with 
a trusted third party. Digital certificates are how websites distribute their public keys 
to end users, and they are how web sites can be authenticated. The most common 
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type of certificates are X.509. Before we go further into this topic, you should first 
know the contents of an X.509 certificate (Easttom and Dulaney 2017).

Version: What version of the X.509 standard is this certificate using?
Certificate holder’s public key: This is one of the reasons we use digital certificates 

so that the recipient can get the certificate holder’s public key. If you visit a web-
site that uses SSL/TLS (explained later in this chapter), then your browser gets 
the websites public key from the websites digital certificate.

Serial number: This identifies the specific certificate.
Certificate holder’s distinguished name: Something to uniquely identify the certifi-

cate holder. This will often be an email address or domain name.
Certificate’s validity period: How long is this certificate good for?
Unique name of certificate issuer: The items above identify the certificate and the 

certificate holder and provide the certificate holder’s public key. But how do you 
know this certificate really belongs to who it claims? How do you know it is not 
fake? You verify the certificate with a trusted certificate issuer, such as Verisign.

Digital signature of issuer: To prove that this certificate was issued by a trusted cer-
tificate issuer, that issuer signs the certificate. What they sign is usually the pre-
ceding information in the certificate.

Signature algorithm identifier: What digital signing algorithm did the certificate 
issuer use in this process?

For example, when you visit a website that uses SSL/TLS, your browser will first 
retrieve the website’s certificate. Then it notes the unique name of the certificate 
issuer. The browser then retrieves that issuer’s public key from the issuer, in order 
to verify the digital signature. If it is verified, then secure communications can pro-
ceed. You can see this process in Fig. 10.4.

It should be noted that one usually no longer needs to retrieve the certificate 
issuer’s public key. Most computers come with some sort of certificate store that has 
the digital certificate (and thus the public key) for the well-known certificate author-
ities. This is shown in Fig. 10.5.

There are some general terms associated with digital certificates that you should 
be familiar with. Those terms are briefly described here:

Fig. 10.4 Retrieving a digital signature
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Fig. 10.5 Certificate store

• PKI (public key infrastructure) uses asymmetric key pairs and combines soft-
ware, encryption, and services to provide a means of protecting security of busi-
ness communication and transactions.

• PKCS (Public Key Cryptography Standards) put in place by RSA to ensure uni-
form certificate management throughout the Internet.

• CA (certification authority) is an entity trusted by one or more users to issue and 
to manage certificates.

• RA (registration authority) is used to take the burden off of a CA by handling 
verification prior to certificates being issued. RA acts as a proxy between user 
and CA. RA receives request, authenticates it, and forwards it to the CA.

• X.509. This is an international standard for the format and information contained 
in a digital certificate. X.509 is the most common type of digital certificate in the 
world. It is a digital document that contains a public key signed by the trusted 
third party which is known as a certificate authority, or CA.

• CRL (certificate revocation list) is a list of certificates issued by a CA that are no 
longer valid. CRLs are distributed in two main ways: PUSH model—CA auto-
matically sends the CRL out a regular interval. Pull model—The CRL is down-
loaded from the CA by those who want to see it to verify a certificate. End user 
is responsible.

• The Online Certificate Status Protocol (OCSP) is an Internet protocol used for 
obtaining the revocation status of an X.509 digital certificate. It is described in 
RFC 2560 and is on the Internet standard track. It was created as an alternative 
to certificate revocation lists (CRL), specifically addressing certain problems 
associated with using CRLs in a public key infrastructure (PKI). The OCSP 
allows the authenticity of a certificate to be immediately verified.
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While X.509 certificates are the most common type, they are not the only type. 
Usually, websites will use an X.509 certificate, but for email, some people use a 
PGP certificate. PGP or Pretty Good Privacy is software that provides encryption as 
well as integrity. It was created by Phil Zimmerman in 1991. PGP software defines 
its own certificate. It does not have certificate authorities that issue certificates, so 
there is no third-party verification of the certificate holders’ identity. But PGP cer-
tificates can be used to exchange public keys. Here are some basic fields found in 
most PGP certificates:

PGP version number
Certificate holder’s public key
Certificate holder’s information
Digital signature of certificate owner
Certificate’s validity period
Preferred symmetric encryption algorithm for the key

The critical issue to keep in mind with PGP certificates is that they do not include 
any trusted third-party verification. Therefore, they are not used in applications 
where such verification is important, such as e-commerce. However, PGP is often 
used to encrypt email.

 SSL/TLS

Chapter 13 has a full coverage of SSL and TLS. This section is meant to be a basic 
introduction to the topic. If you ever use a secure website, for example, to check 
your bank account, shop on Amazon.com, or any sort of e-commerce, then you have 
used SSL/TLS. SSL, or Secure Sockets Layer, is a technology employed to allow 
for transport-layer security via public key encryption. Most websites now use TLS 
(the successor to SSL), but the term SSL stuck, so many people simply refer to SSL 
meaning either SSL or TLS. SSL/TLS is a protocol developed by Netscape for 
transmitting private documents via the Internet. URLs that require an SSL connec-
tion start with https: instead of http:. SSL/TLS works by using X.509 certificates so 
the browser can get the web servers public key, then that public key is used to 
exchange a symmetric key. There have been several versions as of this writing 
(Easttom 2019):

Unreleased v1 (Netscape).
Version 2 released in 1995 but had many flaws.
Version 3 released in 1996 RFC 6101.
Standard TLS1.0 RFC 2246 released in 1999.
TLS 1.1 was defined in RFC 4346 in April 2006.
TLS 1.2 was defined in RFC 5246 in August 2008. It is based on the earlier TLS 

1.1 spec
TLS 1.3 As of July 2014, TLS 1.3.
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The process of establishing an SSL/TLS connection is actually somewhat 
straightforward and is described in the following steps:

 1. When the client browser first encounters a website that is indicating the use of 
SSL/TLS, the client sends the server the client’s SSL version number, cipher 
settings (i.e., what algorithms the client is capable of), and some session-spe-
cific data.

 2. The server responds to the client with similar information from the server: the 
server’s SSL version number, cipher settings, and some session- specific data. 
The server also sends its X.509 certificate. If mutual authentication is being 
used, or if the client is requesting a server resource that requires client authenti-
cation, the server requests the client’s certificate.

 3. The client browser first uses the X.509 certificate from the server to authenticate 
the server. If the server cannot be authenticated, the user is warned of the prob-
lem and is informed that an encrypted and authenticated connection cannot be 
established. If the server can be successfully authenticated, the client proceeds to 
the next step, using the servers public key which the client retrieved from the 
X.509 certificate.

 4. Using all data generated in the handshake thus far, the client creates the pre-
master secret for the session. Then the client encrypts this pre-master secret with 
the server’s public key and sends the encrypted pre-master secret to the server.

 5. (Optional step) If the server has requested client authentication, the client will 
also send its own X.509 certificate so that the server can authenticate the client. 
The server attempts to authenticate the client. If the client cannot be authenti-
cated, the session ends. If the client can be successfully authenticated, the server 
uses its private key to decrypt the pre-master secret and then performs a series of 
steps to generate the master secret. These are the exact steps the client will use 
on the pre-master secret to generate the same master secret on the client side.

 6. Both the client and the server use the master secret to generate the session keys, 
which are symmetric keys (using whatever algorithm the client and server agreed 
upon). All communication between the client and the server, after this point, will 
be encrypted with that session key.

 7. The client sends a message to the server informing it that future messages from 
the client will be encrypted with the session key. It then sends a message indicat-
ing that the client portion of the handshake is finished. The server responds with 
a similar message, telling the client that all future messages from the server will 
be encrypted, and the server portion of the handshake is complete.

This handshake process may seem a bit complex, but it serves several purposes. 
First, it allows the client to authenticate the server and get the server’s public key. It 
then allows both the client and the server to generate the same symmetric key and 
then use that key to encrypt all communication between the two parties. This pro-
vides a very robust means of secure communication.
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 Homomorphic Encryption

Homomorphic encryption is about allowing one to perform mathematical opera-
tions on data that is still encrypted. In other words, analysis can be conducted on the 
ciphertext itself, without the need to first decipher the text. Before we delve into 
how this is accomplished, it may be useful to first understand why it is done. There 
are situations where you may desire a third party to calculate some value regarding 
data, without exposing them to the actual plaintext data. In such situations homo-
morphic encryption is the solution.

Homomorphic encryption plays an important part in cloud computing, allowing 
companies to store encrypted data in a public cloud and still use the cloud providers 
analytic tools. The cloud provider can analyze aspects of the data without decrypt-
ing the data. The Paillier cryptosystem is a homomorphic cryptography system. It is 
an asymmetric algorithm invented by Pascal Paillier in 1999. It is one of the modern 
homomorphic cryptographic algorithms.

 Conclusions

This chapter gave you an overview of asymmetric cryptography. The most impor-
tant algorithm for you to understand from this chapter is RSA. That is why you were 
shown two different examples of RSA. It is imperative that you fully understand 
RSA before proceeding. The next most important algorithm in this chapter is Diffie–
Hellman. The other algorithms are interesting, and if you proceed further into cryp-
tography you will, undoubtably, delve deeper into those algorithms.

The chapter also gave an introduction to applications of cryptography. Digital 
certificates and SSL/TLS are so commonly used that it is very important that you 
have a strong understanding of these applications before proceeding. Homomorphic 
encryption is a relatively new topic, and at this point, you need only have a general 
understanding of what it is.

 Test Your Knowledge

 1. An algorithm based on Diffie–Hellman first described in 1984 that is named 
after its inventor. ____________

 2. US Patent 5,231,668 filed July 26, 1991, and attributed to David W. Kravitz. It 
was adopted by the US government in 1993 with FIPS 186. ______________

 3. _______________________ can be thought of as an RSA cryptosystem in 
which the value of e and d are fixed. e = 2 and d = 1/2

 4. Explain the basic setup of Diffie–Hellman (the basic math including key 
generation).
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 5. Explain RSA key generation.
 6. What is the formula for encrypting with RSA?
 7. _________ was introduced by Bellare and Rogaway and is standardized in 

RFC 2437.
 8. What does PKCS stand for?
 9. What is the most widely used digital certificate standard?
 10. X.509 certificates contain the digital signature of who?
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Chapter 11
Elliptic Curve Cryptography

 Introduction

This particular algorithm may be more challenging to many readers than the algo-
rithms described in Chap. 10. If you feel uncertain as to your mathematical acumen, 
you may wish to review Chaps. 4 and 5 (with particular attention to 5). Throughout 
the chapter there will be brief reminders as to key mathematical concepts to help 
you follow along. If your goal is a career related to cryptography, then you will, at 
some point, need to master this material. However, for those readers attempting to 
get a general overview of cryptography, whose primary focus is on computer/net-
work security, then it is perfectly acceptable if you finish this chapter with just a 
broad overview of elliptic curve cryptography. Since this topic is often difficult for 
many readers, a chapter (albeit a short one) has been devoted to just this topic. 
Furthermore, in some cases, key concepts are explained more than once with slightly 
different wording to try and aid your understanding.

The reason why elliptic curve cryptography (commonly termed ECC) is more 
difficult for many people to learn is that fewer people have any prior exposure to the 
underlying mathematics. When one compares ECC to RSA, this difference becomes 
quite clear. Most people were exposed to prime numbers, factoring numbers, raising 
a number to a certain power, and basic arithmetic in primary and secondary school. 
But far fewer people are exposed to elliptic curves and discrete logarithms in school.

 In This Chapter, We Will Cover the Following

• The basic math of elliptic curves
• Elliptic curve groups as a basis for cryptography
• ECC variations
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 General Overview

Elliptic curves have been studied, apart from cryptographic applications, for well 
over a century. As with other asymmetric algorithms, the mathematics has been a 
part of number theory and algebra, long before being applied to cryptography. As 
you saw in Chap. 10, many asymmetric algorithms depend on algebraic groups. 
There are multiple means to form finite groups. Elliptic curves can be used to form 
groups and thus are appropriate for cryptographic purposes. There are two types of 
elliptic curve groups. The two most common (and the ones used in cryptography) 
are elliptic curve groups based on Fp where p is prime and those based on F2

m 
(Rabah 2006). F, as you will see in this chapter, is the field being used. F is used 
because we are describing a field. Elliptic curve cryptography is an approach to 
public-key cryptography, based on elliptic curves over finite fields.

Remember that a field is an algebraic system consisting of a set, an identity ele-
ment for each operation, two operations, and their respective inverse operations. A 
finite field, also called as Galois field, is a field with a finite number elements. That 
number is called the order of the field. Elliptic curves used for cryptographic pur-
poses were first described in 1985 by Victor Miller (IBM) and Neil Koblitz 
(University of Washington). The security of elliptic curve cryptography is based on 
the fact that finding the discrete logarithm of a random elliptic curve element with 
respect to a publicly known base point is difficult to the point of being impractical 
to do (Rabah 2006).

Neal Koblitz is a mathematics professor at the University of Washington and a 
very well-known cryptographic researcher. In addition to his work on elliptic curve 
cryptography, he has published extensively in mathematics and cryptography. Victor 
Miller is a mathematician with the Institute for Defense Analysis in Princeton. He 
has worked on compression algorithms, combinatorics, and various subtopics in the 
field of cryptography.

Fig. 11.1 The graph of an 
elliptic curve
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First, we need to discuss what an elliptic curve is. An elliptic curve is the set of 
points that satisfy a specific mathematical equation. The equation for an elliptic 
curve looks something like this (Hankerson et al. 2006):

 y x Ax B2 3� � �  

You can see this equation graphed in Fig. 11.1.
There are other ways to represent an elliptic curve, but Fig. 11.1 is the most com-

mon and perhaps the easiest to understand. Another way to describe an elliptic curve 
is that it is simply the set of points that satisfy an equation that has two variables in 
the second degree and one variable in the third degree. The first thing you should 
notice from the graph in the figure is the horizontal symmetry. Any point on the 
curve can be reflected about the x-axis without changing the shape of the curve.

Professor Lawrence Washington of the University of Maryland describes an 
elliptic curve a bit more formally, as follows: “an elliptic curve E is the graph of an 
equation of the form where A and B are constants. This will be referred to as the 
Weierstrass equation for an elliptic curve. We will need to specify what set A, B, x, 
and y belong to. Usually, they will be taken to be elements of a field, for example, 
the real numbers R, the complex numbers C, the rational numbers Q, one of the 
finite fields Fp (=Zp) for a prime p, or one of the finite fields Fq, where q = pk with k1.”

This chapter will only provide you with an overview of elliptic curve cryptogra-
phy. Washington’s book is an excellent place to get more detail. There have been 
two editions of his book; I have both and highly recommend them. However, the 
book does assume a level of mathematical sophistication that the current book you 
are reading does not.

The operation used with the elliptic curve is addition (remember the definition of 
a group requires a set along with an operation). Thus, elliptic curves form addi-
tive groups.

Recall from earlier in this book, a group is an algebraic system consisting of a 
set, an identity element, one operation, and its inverse operation. An Abelian group 
or commutative group has an additional axiom a + b = b + a if the operation is addi-
tion; ab = ba if the operation is multiplication. A cyclic group is a group that has 
elements that are all powers of one of its elements.

 Basic Operations on Elliptic Curves

The members of the elliptic curve field are integer points on the elliptic curve. You 
can perform addition with points on an elliptic curve. Throughout this chapter, as 
well as most of the literature on elliptic curve, we consider two points P and Q. The 
negative of a point P = (xP,yP) is its reflection in the x-axis: the point −P is (xP,−yP). 
Notice that for each point P on an elliptic curve, the point −P is also on the curve 
(Hankerson et al. 2006). Suppose that P and Q are two distinct points on an elliptic 
curve, and assume that P is not merely the inverse of Q. To add the points P and Q, 
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a line is drawn through the two points. This line will intersect the elliptic curve in 
exactly one more point called −R. The point −R is reflected in the x-axis to the point 
R. The law for addition in an elliptic curve group is P + Q = R (Bos et al. 2014).

The line through P and −P is a vertical line which does not intersect the elliptic 
curve at a third point; thus, the points P and −P cannot be added as previously. It is 
for this reason that the elliptic curve group includes the point at infinity O. By defi-
nition, P + (−P) = O. As a result of this equation, P + O = P in the elliptic curve 
group. O is called the additive identity of the elliptic curve group; all elliptic curves 
have an additive identity. See Fig. 11.2.

To add a point P to itself, a tangent line to the curve is drawn at the point P. If yP 
is not 0, then the tangent line intersects the elliptic curve at exactly one other point, 
−R. −R is reflected in the x-axis to R (Cohen et al. 2005). This operation is called 
doubling the point P and can be seen in Fig. 11.3.

The tangent from P is always vertical if yP = 0.
If a point P is such that yP = 0, then the tangent line to the elliptic curve at P is 

vertical and does not intersect the elliptic curve at any other point. By definition, 
2P = O for such a point P.

Recall that the field Fp uses the numbers from 0 to p − 1, and computations end 
by taking the remainder on division by p (i.e., the modulus operations). For exam-
ple, in F23 the field is composed of integers from 0 to 22, and any operation within 
this field will result in an integer also between 0 and 22.

An elliptic curve with the underlying field of Fp can form by choosing the vari-
ables a and b within the field of Fp. The elliptic curve includes all points (x,y) which 
satisfy the elliptic curve equation modulo p (where x and y are numbers in Fp).

For example: y2 mod p = x3 + ax + b mod p has an underlying field of Fp if a and 
b are in Fp. If x3 + ax + b contains no repeating factors, then the elliptic curve can be 
used to form a group. An elliptic curve group over Fp consists of the points on the 

Fig. 11.2 P + (−P)
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Fig. 11.3 Doubling the P

corresponding elliptic curve, together with a special point O called the point at infin-
ity. There are finitely many points on such an elliptic curve.

At the foundation of every asymmetric cryptosystem is a hard mathematical 
problem that is computationally infeasible to solve. The discrete logarithm problem 
is the basis for the security of many cryptosystems including the elliptic curve cryp-
tosystem. More specifically, the ECC relies upon the difficulty of the elliptic curve 
discrete logarithm problem (ECDLP).

Recall that we examined two geometrically defined operations over certain ellip-
tic curve groups. These two operations were point addition and point doubling. By 
selecting a point in an elliptic curve group, one can double it to obtain the point 
2P. After that, one can add the point P to the point 2P to obtain the point 3P. The 
determination of a point nP in this manner is referred to as scalar multiplication of 
a point. The ECDLP is based upon the intractability of scalar multiplication prod-
ucts (Washington 2008).

In the multiplicative group Zp*, the discrete logarithm problem is: given elements 
r and q of the group and a prime p, find a number k such that r = qk mod p. If the 
elliptic curve groups are described using multiplicative notation, then the elliptic 
curve discrete logarithm problem is: given points P and Q in the group, find a num-
ber that Pk = Q; k is called the discrete logarithm of Q to the base P. When the 
elliptic curve group is described using additive notation, the elliptic curve discrete 
logarithm problem is: given points P and Q in the group, find a number k such that 
Pk = Q (Washington 2008).

The following is a common example, used in many textbooks, papers, and web 
pages. It uses rather small numbers that you can easily work with but makes the 
general point of how elliptic curve cryptography works. In the elliptic curve group 
defined by
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 y x x F2 3 9 17 23� � � over ,  

what is the discrete logarithm k of Q = (4,5) to the base P = (16,5)?
One way to find k is to compute multiples of P until Q is found. The first few 

multiples of P are:

 

P P P P P

P P
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Since 9P = (4,5) = Q, the discrete logarithm of Q to the base P is k = 9.
In a real application, k would be large enough such that it would be infeasible to 

determine k in this manner. This is the essence of elliptic curve cryptography; obvi-
ously we use larger fields, much larger.

If you are still struggling with the concepts of elliptic curves, there is an excellent 
online tutorial that does a good job of explaining these concepts. You might find that 
reviewing that tutorial then rereading this section aids you in understanding http://
ars technica .com/secur i ty /2013/10/a-  re la t ively-  easy-  to-  unders tand- 
 primer- on- elliptic- curve- cryptography/

 The Algorithm

In the preceding section, we discussed elliptic curves in general; in this section we 
will discuss specific applications to cryptography. In cryptographic applications, the 
elliptic curve along with some distinguished point at infinity is used along with the 
group operation of the elliptic group theory from an Abelian group, with the point 
at infinity as identity element. The structure of the group is inherited from the divi-
sor group of the underlying algebraic variety.

For cryptographic purposes, it is necessary to restrict ourselves to numbers in a 
fixed range. The restriction is that only integers are allowed. You must also select a 
maximum value. If one selects the maximum to be a prime number, the elliptic 
curve is called a “prime curve” and can be used for cryptographic applications. To 
use ECC all parties must agree on all the elements defining the elliptic curve, that is, 
the domain parameters of the scheme. The field is defined by p in the prime case and 
the pair of m and f in the binary case. To focus on the prime case (the simpler), the 
field is defined by some prime number p. The elliptic curve is defined by the con-
stants A and B used in the equation (Bos et al. 2014):

 y x Ax B2 3� � �  

Finally, the cyclic subgroup is defined by its generator (i.e., base point) G.
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The elliptic curve are the points defined by the above equation with an extra point 
O which is called the point at infinity, and keep in mind that point O is the identity 
element for this group.

Given a point P = (x,y) and a positive integer n, we define [n]P = P + P + ...+ P 
(n times). The order of a point P = (x,y) is the smallest positive integer n, such that 
[n]P = O.

We denote by < P > the group generated by P. In other words,< P > = {O, P, 
P+P, P+P+P, ...}.

Now that you have a group, defined by an elliptic curve, the security of elliptic 
curve cryptography is provided by the elliptic curve discrete logarithm problem.

The elliptic curve discrete logarithm problem (ECDLP) is this: given an elliptic 
curve C defined over Fq and two points P, Q that are elements of the curve C, find 
an integer x such that Q = xP.

Discrete logarithm review: To understand discrete logarithms, keep in mind the 
definition of a logarithm. It is the number to which some base must be raised to get 
another number. Discrete logarithms ask this same question but do so in regard to a 
finite group. Put more formally, a discrete logarithm is some integer k that solves the 
equation xk = y, where both x and y are elements of a finite group. A discrete loga-
rithm is, essentially, a logarithm within some finite group.

In the preceding section, we saw basic math, specifically addition, within an 
elliptic curve. You can choose any two points on an elliptic curve and produce 
another point. The process is not particularly complicated. You first begin with two 
points P1 and P2. These are defined as

 

P x y

P x y

1 1 1

2 2 2

� � �
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,

,
 

The curve itself is symbolized as E given by the equation you already have seen 
y2 = x3 + AX + B.

Now to define a new point, we will call P3 and draw a line (which we will call L) 
through points P1 and P2. You can see that no matter where P1 and P2 are and that 
this line L will intersect E (the elliptic curve) at a third point P3. You can see this in 
Fig. 11.4.

You can reflect that across the X-axis (simply change the sign of the y coordi-
nate), and you have P3.

As you already know, an elliptic curve is the set of points that satisfy a specific 
mathematical equation. The equation for an elliptic curve looks something like this:

 y x ax b2 3� � �  

and some point at infinity. This means that choosing different values for a and b 
changes the elliptic curve.

The size of the elliptic curve determines the difficulty of finding the discrete 
logarithm, and thus the security of the implementation. The level of security afforded 
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Fig. 11.4 Line intersecting 
curve E

by an RSA-based system with a large modulus can be achieved with a much smaller 
elliptic curve group. This is one strong reason why elliptic curve cryptography has 
generated so much interest.

The US National Security Agency has endorsed ECC algorithms and allows their 
use for protecting information classified up to top secret with 384-bit keys (Easttom 
2019). This is important because that is much smaller than RSA keys. ECC achieves 
a level of security at least equal to RSA but with key sizes almost as small as sym-
metric algorithms such as AES.

 ECC Variations

As you can see from the previous sections, elliptic curves form groups, and those 
groups can be used just as any other algebraic group. The practical implication of 
this is that one can adapt various algorithms to elliptic curve groups. There are many 
permutations of elliptic curve cryptography including:

• Elliptic Curve Diffie-Hellman (used for key exchange)
• Elliptic Curve Digital Signature Algorithm (ECDSA)
• Elliptic Curve MQV key agreement protocol
• Elliptic Curve Integrated Encryption Scheme (ECIES)
• In this section we will take a closer look at two of these.
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 ECC Diffie-Hellman

Diffie-Hellman, which you studied in Chap. 10, is the oldest key exchange protocol. 
It is natural to modify for elliptic curves. Elliptic Curve Diffie-Hellman (often sim-
ply called ECDH) is a key exchange or key agreement protocol used to establish a 
shared secret over an insecure medium (Easttom 2019). That shared secret is then 
either used directly or as the basis to derive another key. In the case of ECDH, the 
public private key pairs are based on elliptic curves.

The process begins with selecting domain parameters. Bob and Alice agree on a 
particular elliptic curve group E of order n. Alice and Bob also select a primitive 
element P that is a member of the group E. P also has the order of n. It is assumed 
that E, n, and P are known to any adversary. There are two secret keys Alice’s a and 
Bob’s b. The values a * G and b * G can be exchanged in a public, open channel. 
Alice and Bob then have a secret key generated by (a * G) * b = (b * G) * a (Cohen 
et al. 2005). The following steps summarize this:

 1. Alice generates a random ECC key pair: {alicePrivateKey, alicePublicKey = ali-
cePrivateKey * G}

 2. Bob generates a random ECC key pair: {bobPrivateKey, bobPublicKey = bob-
PrivateKey * G}

 3. Alice and Bob exchange their public keys through an open, insecure channel.
 4. Alice calculates sharedKey = bobPublicKey * alicePrivateKey
 5. Bob calculates sharedKey = alicePublicKey * bobPrivateKey
 6. Now both Alice and Bob have the same sharedKey == bobPublicKey * alicePri-

vateKey == alicePublicKey * bobPrivateKey

For more details consult NIST document 800-56A Revision 2 http://csrc.nist.
gov/publications/nistpubs/800- 56A/SP800- 56A_Revision1_Mar08- 2007.pdf

 ECC DSA

The Digital Signature Algorithm was invented specifically for digitally signing 
messages. Of course, one can use any asymmetric algorithm to sign a message, but 
the Digital Signature Algorithm was designed for that purpose. As you might expect, 
there is an elliptic curve variation on this algorithm.

To illustrate how this works, we will consider the fictitious Bob and Alice. First, 
the two parties must agree on some parameters. The curve denoted as E, the base 
point/generator of the elliptic curve denoted as G, and the order of G (an integer) 
denoted by n. Now to sign a message, Alice takes the following steps (Hankerson 
et al. 2006):

ECC DSA
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Select a random integer k that is less than n (i.e., K > 1; k < n).
Compute kG = (x1,y1) and r = x1 mod n. If r = 0, then go to step 1.
Compute k−1 mod n.
Compute e = SHA-1(m). Most digital signature algorithms use a hash; 
in this case, the hash is usually SHA-1. So, this is stating that 
you compute the SHA-1 hash of the message.
Compute s = k−1{e + dA . r} mod n.
If s = 0, then go to step 1. In other words, you keep repeating 
until s! = 0. This is not usually time-consuming and could happen 
on the first attempt.
Allice’s signature for the message m is (r, s).

In order for Bob to verify Alice’s signature (r,s), he will execute the follow-
ing steps:

Verify that r and s are integers in [1,n−1].
Compute e = SHA-1(m).
Compute w = s−1 mod n.
Compute u1 = ew mod n and u2 = rw mod n.
Compute (x1,y1) = u1G+ u2 QA

Compute v = x1 mod n.
Accept the signature if and only if v = r.

This is very much like the traditional Digital Signature Algorithm, except that it 
is using elliptic curve groups. ECC DSA is quite secure. There have been a few 
reported breaches, but those were based on faulty implementations, not on the algo-
rithm itself being insecure. For example, in March of 2011, researchers published a 
paper with the IACR (International Association of Cryptological Research) demon-
strating that it is possible to retrieve a TLS private key of a server using OpenSSL 
using a timing attack. OpenSSL authenticates with Elliptic Curve DSA over a 
binary field. However, the vulnerability was fixed in a subsequent release of 
OpenSSL and was an implementation issue, not a flaw in the algorithm.

 Conclusions

In this chapter we have examined the use of elliptic curve groups for cryptography. 
This may be the most mathematically challenging chapter in this entire book. For 
most security applications, you need only to be aware of the general description of 
the various elliptic curve algorithms. For those readers interested in pursuing cryp-
tography in more depth, this chapter provides just an introduction to this topic. 
Various resources have been suggested in this chapter that will give you more detail 
and depth on ECC.
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 Test Your Knowledge

 1. Which of the following equations is most related to elliptic curve 
cryptography?

 (a) Me % n
 (b) P = Cd % n
 (c) Ce % n
 (d) y2 = x3 + Ax + B

 2. Which ECC variation requires the use of SHA?
 3. What is an algebraic group?
 4. What is a discrete logarithm?
 5. What kind of key does ECC DH produce?

References

Bos, J. W., Halderman, J. A., Heninger, N., Moore, J., Naehrig, M., & Wustrow, E. (2014, March). 
Elliptic curve cryptography in practice. In International Conference on Financial Cryptography 
and Data Security (pp. 157-175). Springer, Berlin, Heidelberg.

Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., & Vercauteren, F. (Eds.). 
(2005). Handbook of elliptic and hyperelliptic curve cryptography. CRC press.

Easttom, C. (2019). Computer Security Fundamentals, 4th Edition. New York City, New York: 
Pearson Press

Hankerson, D., Menezes, A.  J., & Vanstone, S. (2006). Guide to elliptic curve cryptography. 
Springer Science & Business Media.

Rabah, K. (2006). Elliptic curve cryptography over binary finite field gf. Information Technology 
Journal, 5 (1) 204-229. Retrieved from http://docsdrive.com/pdfs/ansinet/itj/2006/204- 229.pdf.

Washington, L.  C. (2008). Elliptic curves: number theory and cryptography. Chapman and 
Hall/CRC.

References

http://docsdrive.com/pdfs/ansinet/itj/2006/204-229.pdf


265

Chapter 12
Random Number Generators

 Introduction

Random numbers are a key part of cryptography. When you generate a key for a 
symmetric algorithm such as AES, Blowfish, or GOST, you need that key to be very 
random. Random numbers are also required for initialization vectors used with a 
variety of algorithms. A true totally random number is not possible to generate from 
a computer algorithm. It is only possible to generate a truly random number using 
other means including hardware, but not by using a software algorithm. Certain 
naturally occurring phenomena such as radioactive decay can form the basis for true 
random number generation. However, this is not a practical source of random num-
bers for use in cryptographic applications.

What is normally used in cryptography are algorithms called pseudorandom 
number generators. Pseudorandom number generators (PRNGs) are algorithms that 
can create long runs of numbers with good random properties but eventually the 
sequence repeats. Generating random numbers is not new. There are many ancient 
methods that have been around for many centuries, and we will explore some of 
these in this chapter. These are usually not sufficient for cryptographic purposes.

There are three types of pseudorandom number generators:

• Table lookup generators. Literally a table of pre-computed pseudorandom num-
bers is compiled, and numbers are extracted from it as needed.

• Hardware generators. Some hardware processes, perhaps packet loss on the net-
work card, or fluctuations from a chip, are used to produce pseudorandom 
numbers.

• Algorithmic (software) generators. This is the type most commonly used in cryp-
tography, and what we will focus our attention on in this chapter.
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 In This Chapter We Will Cover

• Properties of a good PRNG
• Different PRNG algorithms
• How to test for randomness

 What Makes a Good PRNG?

Now that we have discussed the fact that a true random number generator is imprac-
tical, we need to address the issue of what makes a good random number generator. 
Put another way, what makes a particular pseudorandom number generator good 
enough? To phrase that even more succinctly, is the output of a given algorithm 
random enough?

There are some specific properties that one looks for in a PRNG. There are also 
some specific tests for randomness, as well as some standards one can use. In this 
section we will look at all three of these items. This information should inform your 
evaluation of specific algorithms that we will explore later in this chapter.

 Desirable Properties of Pseudorandom Numbers

Before you consider actual algorithms and attempt to evaluate the efficacy of each 
for cryptographic purposes, it is important to understand what one is looking for in 
a cryptographic algorithm. Any pseudorandom number generator is going to gener-
ate a sequence of numbers. That sequence should have certain properties:

• Uncorrelated Sequences: This simply means that the sequences are not corre-
lated. One cannot take a given stretch of numbers (say 16 bits) and use that to 
predict subsequent bits. There, quite literally, is no correlation between one sec-
tion of output bits and another.

• Long Period: Ideally the series of digits (usually bits) should never have any 
repeating pattern. However, the reality is that there will eventually be some rep-
etition. The distance (in digits or bits) between repetitions is the period of that 
sequence of numbers. The longer the period the better. Put another way: we 
accept that there will be repeated sequences, but those should be as far apart as 
possible.

• Uniformity: It is most often that pseudorandom numbers are represented in a 
binary format. There should be an equal number of 1s and 0s, though not distrib-
uted in any discernable pattern. The sequence of random numbers should be 
uniform and unbiased. If you have significantly more (or significantly less) 1s 
than 0s, then the output is biased.

12 Random Number Generators



267

• Computational Indistinguishability: Any subsection of numbers taken from the 
output of a given PRNG should not be distinguishable from any other subset of 
numbers in polynomial time by any efficient procedure. The two sequences are 
indistinguishable. That does not, however, mean they are identical. It means 
there is no efficient way to determine specific differences.

The third category is the one most often used in cryptography. It does not pro-
duce a truly random number but rather a pseudorandom number.

 Tests of Randomness

How do you know if a given pseudorandom number generator is random enough? 
There are a variety of tests that can be applied to the output of any algorithm to 
determine the degree of randomness, more specifically if that algorithm is suitable 
for cryptographic purposes. We will start with relatively simple tests that can easily 
be executed. Then we will give an overview of more sophisticated statistical tests.

 1-D Test

The 1-D TEST is a frequency test. It is a rather simple test and is essentially used as 
a first pass. In other words, simply passing the 1-D test does not mean a given algo-
rithm is suitable for cryptographic purposes, However, if a given PRNG fails the 
1-D test, there is no need for further testing. Imagine a number line stretching from 
0 to 1, with decimal points in between. Use the random number generator to plot 
random points on this line. First divide the line into a number of “bins.” These can 
be of any size; in the graph below, there are four bins, and each size is .25.

|---------|---------|---------|---------|
  0 .25  .50  .75  1.0

Now as random numbers (between 0 and 1.0) are generated, count how many fit 
into each bin. Essentially if the bins fill evenly that is a good sign that you have 
random dispersal. If there is a significant preference for one bin over another, then 
the PRNG is not sufficiently random. That PRNG has a bias, and further testing is 
not required to determine that it is not useful for cryptographic purposes.

 Equidistribution

This test is also sometimes called the Monobit frequency test. This test just seeks to 
verify that the arithmetic mean of the sequence approaches 0.5. This can be applied 
to the entire output of a PRNG or to a given segment. Obviously the larger the seg-
ment, the more meaningful the test. The further the arithmetic mean is from 0.5, the 
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more of a bias the algorithm is displaying, and therefore, the less suitable this PRNG 
is for cryptographic purposes. As the name suggest, the test is to determine if there 
is an equal distribution of 1s and 0s throughout the output of the PRNG. This test is 
described by the National Institute of Standards as follows:

The focus of the test is the proportion of zeroes and ones for the entire sequence. The pur-
pose of this test is to determine whether the number of ones and zeros in a sequence are 
approximately the same as would be expected for a truly random sequence. The test assesses 
the closeness of the fraction of ones to zero’s that is, the number of ones and zeroes in a 
sequence should be about the same. All subsequent tests depend on the passing of this test; 
there is no evidence to indicate that the tested sequence is non-random.

This test (also sometimes just called the frequency test) has similarities to the 1-D 
test in that the purpose is to find out if there is bias in the output of a given PRNG. The 
focus of the test is the proportion of zeroes and ones for the entire sequence.

 Runs Test

A run is an uninterrupted sequence of identical bits.
The focus of this test is the total number of runs in the sequence.
A run of length k consists of exactly k identical bits and is bounded before and 

after with a bit of the opposite value.
The purpose of the runs test is to determine whether the number of runs of ones 

and zeros of various lengths is as expected for a random sequence and determines 
whether the oscillation between such zeros and ones is too fast or too slow.

Fast oscillation occurs when there are a lot of changes, e.g., 010101010 oscillates 
with every bit.

(input) E 
=  11001001000011111101101010100010001000010110100011000010001101 
00110001001100011001100010100010111000

(input) n = 100
(output) P-value = 0.500798
A p-value is a statistical test. A small p-value (typically ≤0.05) indicates strong 

evidence against the null hypothesis, so you reject the null hypothesis. A large 
p-value (>0.05) indicates weak evidence against the null hypothesis, so you fail to 
reject the null hypothesis. You can use CryptTool to apply the runs test to a sequence 
of numbers. You can find various randomness tests by looking in the drop-down 
menu under Analysis and then Analyze Randomness, as shown in Fig. 12.1.

In this case there is a seemingly random series of 1s and 0s, and to apply the runs 
test to this, you will first be prompted to select some test parameters, as shown in 
Fig. 12.2. For this example, simply use the default parameters.

The test results, shown in Fig. 12.3, are relatively simple to interpret. And in this 
case, the sequence of numbers did not pass a key part of the runs test. If subsequent 
tests also cast doubt on the particular algorithm used, then it should definitely be 
rejected.
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Fig. 12.1 CryptTool randomness analysis

Fig. 12.2 Runs test 
parameters

 Test for Longest Run of 1s
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270

Fig. 12.3 Runs test results

This test is very similar to the Runs test. It is simply testing for the longest uninter-
rupted series of 1s within a given output for a given PRNG. The purpose of this test 
is to determine whether the length of the longest run of ones within the tested 
sequence is consistent with the length of the longest run of ones that would be 
expected in a random sequence.

 Poker Test

The poker test for PRNG’s is based on the frequency in which certain digits are 
repeated in a series of numbers. It is best understood by considering a trivial exam-
ple, a three-digit number. In a three-digit number, there are only three possibilities. 
The first possibility is that the individual digits can be all different. The second pos-
sibility is that all three are different, and the third is that there is one pair of digits 
with one digit that does not match the other two.
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Fig. 12.4 The poker test

The tests actually assumes sequences of five numbers, as there are five cards in a 
hand of poker. The actual five numbers are analyzed to determine if any given 
sequence appears more frequently than the other possible sequences. This is a rather 
primitive test. When using CryptTool to execute this test, you will need to select a 
few simple parameters. For our purposes use the default settings. You can see the 
results in Fig. 12.4.

 Statistical Tests

There are many statistical tests that can be applied to a sequence of numbers to 
determine how random that sequence is. Our purpose is not to evaluate all of these 
but to give you some insight into how you might apply common statistical tests to 
determining how random a given PRNGs output is.

Chi-Squared Test

The chi-squared test is a common statistical test often used to test a sampling distri-
bution. It is often used to compare observed data with data that we would expect to 
obtain according to a specific hypothesis. It is not the purpose of this book or this 
chapter to teach statistics, so if you are not familiar with this test, it is recommended 
that you consult any elementary statistics textbook. However, the application of this 
test to PRNGs is fairly straightforward.
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Test results are usually reported as a chi2 measure. A chi2 measure of +-2 is prob-
ably random noise, +-3 probably means the generator is biased, and +-4 almost 
certainly means the generator is biased. The lower the value, the more random the 
number sequence, and the higher the value the less random the number sequence. 
The United States National Institute of Standards (NIST) recommends a number of 
statistical tests that you can use to test a given PRNG. These tests are documented 
in Statistical Testing of Random Number Generators http://csrc.nist.gov/groups/ST/
toolkit/rng/documents/nissc- paper.pdf

 Standards for PRNG

The German Federal Office for Information Security (BSI) has established four 
criteria for quality of random number generators:

K1 A sequence of random numbers with a low probability of containing identical 
consecutive elements.

K2 A sequence of numbers which is indistinguishable from “true random” numbers 
according to specified statistical tests.

K3 It should be impossible for any attacker to calculate, or otherwise guess, from 
any given subsequence, any previous or future values in the sequence.

K4 It should be impossible for an attacker to calculate, or guess from an inner state 
of the generator, any previous numbers in the sequence or any previous inner 
generator states.

To be suitable for cryptography, any PRNG should meet K3 and K4 standards.

 Specific Algorithms

In this section we will explore specific algorithms. We will start with older methods 
that produce a pseudorandom number, but perhaps not sufficient for cryptographic 
purposes. Just as we started in Chaps. 1 and 2 with historical ciphers, we will start 
here with historical PRNGs.

 Mid-Square

This is a very old algorithm. It was first described by a Franciscan friar in the thir-
teenth century. It was then re-introduced by John Von Neumann. It is a rather simple 
method and easy to follow. The following is a step-by-step description of the mid-
square method:
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 1. Start with an initial seed (for example, a four-digit integer).
 2. Square the number.
 3. Take the middle four digits.
 4. This value becomes the new seed. Divide the number by 10,000. This becomes 

the random number. Go step 2. The following is a concrete example:

 1. x0 = 1234
 2. x1: 12342 = 01522756→x1 = 5227, R1 = 0. 5227
 3. x2: 52272 = 27321529→x2 = 3215, R2 = 0.3215
 4. x3: 32152 = 10336225→x3 = 3362, R3 = 0.3362

The process is repeated indefinitely, generating a new random number each time. 
The middle 4 bits of each output is the seed for the next iteration of the algorithm.

There are some definite limitations to this algorithm. The initial starting value is 
very important. If you start with all zeros, then you will continue with all zeros. 
However, if you start with leading zeros followed by some number, the subsequent 
values produced by the algorithm will be reduced to zero. Certain seed numbers are 
known to generate short periods of repeating cycles. In fact, the best that you can get 
from any mid-square implementation of n-digit numbers is a period of 8n, and some 
have far shorter periods. This algorithm makes an excellent introduction to pseudo-
random number generators; it is easy to understand and frankly quite easy to code 
should you be interested in implementing this in a program. However, it is not ade-
quate for modern cryptographic purposes.

 Linear Congruential Generator

A linear congruential generator is an algorithm that depends on a linear equation to 
generate a pseudorandom sequence (Hallgren 1994). More specifically it depends 
on a piecewise linear congruence eq. A piecewise linear function is essentially just 
a linear function that produces different results depending on input. In other words, 
it functions in pieces. Here is a simple example:
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This function takes X and performs one of three operations, depending on the 
value of X.

There are a variety of linear congruential generators (also known as LCGs), but 
the most common form is

 
X aX C mn n� � �� �1 mod
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a is the multiplier,
c is the increment,
m is the modulus,
and X0 is the initial value of X.

The period of a general LCG is at most m, so the choice of m is quite critical. 
Some linear congruential generators have a smaller period than m.

Not all LCGs are created equally. Some are quite good, others depend heavily on 
initial conditions, and still others are very bad. RANDU was an LCG used in the 
1970s. It has a rather poor design and has widely been considered so bad at generat-
ing pseudorandom numbers, that it caused some to question the efficacy of LCGs in 
general.

There are a number of LCGs built into the random number generators of various 
libraries. Each with a value of m sufficient for most random number purposes. The 
following table provides details on some of these implementations.

m (modulus) a (multiplier) c (increment)

Borland C/C++ 232 22695477 1
Microsoft Visual/Quick C/C++ 232 214013 2531011
Java’s java.util.Random 248 25214903917 11

LCGs Implemented in Code
LCGs are fast and easy to code. And as you can see, many programming tools, 
libraries, and languages have LCGs built in so you need not even code the algorithm 
itself. However, it must be kept in mind that LCGs are not considered random 
enough for many cryptographic applications. They are a great place to start learning 
about PRNGs and for less rigorous applications might be used in some limited cryp-
tographic scenarios, but in general are not sufficient for secure cryptography.

Note: One of the major issues with cryptography is the implementation. Many 
common hard drive and file encryption products utilize sound algorithms such as 
AES and Blowfish but utilize substandard PRNGs to generate the cipher key for the 
chosen algorithm. Many programmers are not even aware that the library they are 
using may not have an adequate PRNG.

CryptTool can also be used to generate random numbers. You can find a few 
common random number generators under Individual Procedures, Tools, and 
Generate Random Numbers. This is shown in Fig. 12.5.

As you can see, LCG is one of the PRNG’s available random numbers. It starts 
with a preset seed of 314149, but you can change that if you wish. Using default 
settings, it produces 1200 bytes of pseudorandom numbers as shown in Fig. 12.6.

Feel free to test this random number with the randomness tests mentioned earlier 
in this chapter and which are also available in CryptTool.
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Fig. 12.5 CryptTool random number generation

Fig. 12.6 CryptTool random numbers from LCG
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 Lagged Fibonacci Generators

The Lagged Fibonacci Generator (often called an LFG) is a particular type of LCG 
using the Fibonacci sequence as a base. Recall that the Fibonacci sequence is essen-
tially Sn = Sn−1 + Sn−2 so that the sequence begins with 1 - 1 - 2 - 3 - 5 - 8 - 13 - 
21 - 35, etc.

LFGs come in a variety of forms. If addition is used, then it is referred to as an 
Additive Lagged Fibonacci Generator or ALFG.  If multiplication is used, it is 
referred to as a Multiplicative Lagged Fibonacci Generator or MLFG. Finally, if the 
XOR operation is used, it is called a two-tap generalized feedback shift regis-
ter or GFS.

The basic formula is

 y x xk j� � �1  

or

 
y x xk j� � � � �1 multiplicativeLCG

 

or

 
y x xk j� � � �XOR GFS1

 

The indices j, k are the lags of the generator.
When the modulus is prime, a maximum period of mk − 1 is possible. It is, how-

ever, more common to use a modulus which is a power of two, m  =  2p, with p being 
some prime number. In this case, the maximum periods are as follows:

For an additive LFG: (2k − 1)2p − 1

For a multiplicative LFG: (2k − 1)2p − 3

Any LFG must be seeded with the initial k elements of the sequence.

 Lehmer Algorithm

This PRNG is named after D. H. Lehmer, sometimes also referred to as the Park–
Miller random number generator, after S. K. Park and K. W. Miller. It is the classic 
example of a linear congruential generator. This algorithm produces a sequence of 
numbers {Xn} using a standard LCG format:

 
X a X c mn n� � � �� �1 mod

 

Here is a relatively simple example:
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 Given a c m X= = = =7 0 32 10, , ,  

 
X1 7 1 0 32 7� � �� � �mod

 

 
X Q R2 7 7 0 32 49 32 1 17� � �� � � � �mod / ; ,

 

 
X Q R3 7 17 0 32 119 32 3 23� � �� � � � �mod / ; ,

 

 
X Q R4 7 23 0 32 161 32 5 1� � �� � � � �mod / ; ,

 

However, with the small m, you would expect a repetition at some point, and 
indeed you will find one:

 
X Q R5 7 1 0 32 7 32 0 7� � �� � � � �mod / ; ,

 

 X X6 2= obviously weareat the same point as again.  

The sequence repeats with a period of 4, and that is clearly unacceptable. Let’s 
consider a few things that can be done to make this acceptable. For a range of m 
numbers 0 < m ≤ 2m, the function should generate all the numbers up to 2m before 
repeating. So clearly a large value of m is important. Even a good algorithm, with 
poorly chosen inputs, will produce bad results. This is a substantial issue. Normally, 
these sorts of algorithms are used with very large values of m. As one example, 
something on the order of m = 248 would likely be sufficient for most applications.

 Mersenne Twister

The original is not suitable for cryptographic purposes but permutations of it are. 
This PRNG was invented by Makoto Matsumoto and Takuji Nishimura. It has a 
very large period, 219937  −  1, which is greater than the many other generators 
(Matsumoto and Nishimura 1998). Its name derives from the fact that its period 
length is chosen to be a Mersenne prime. The most commonly used version of the 
Mersenne Twister algorithm is based on the Mersenne prime 219937 − 1 and uses a 
32-bit word. It is often called MT 19937. There is a 64-bit word version called MT 
199937-64. The Mersenne Twister is widely used and is implemented in PHP, 
MATLAB, Microsoft Visual C++, and Ruby.

The algorithm itself can be a bit complex to describe; the following pseudo code 
might help those readers with even a rudimentary programming background to 
understand this algorithm:
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// Create an array that is 624 bytes in size to store the state of the 

// generator

int[0..623] MERSENNE //initial array named MERSENNE

int index = 0        // index

// Initialize the generator from a seed

functioninit_generator(int seed) 

{

index := 0

MERSENNE [0] := seed

forifrom 1 to 623 { // loop over each element

MERSENNE [i] := lowest 32 bits of(1812433253 * (MERSENNE[i-1] xor
(right shift by 30 bits(MERSENNE [i-1]))) + i) 

}

}

// Extract a pseudorandom number based on the index-th value,

// calling generate_numbers() every 624 numbers

function extract_number() {

if index == 0 

{

generate_numbers()

}

int y := MERSENNE [index]

y := y xor (right shift by 11 bits(y))
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y := y xor (left shift by 7 bits(y) and (2636928640)) 

y := y xor (left shift by 15 bits(y) and (4022730752)) 

y := y xor (right shift by 18 bits(y))

index := (index + 1) mod 624

return y

}

// Generate an array of 624 numbers

function generate_numbers()

{

forifrom 0 to 623 

{

int y:=(MERSENNE [i] and 0x80000000) // 32nd bit of MERSENNE [i]

+ (MERSENNE [(i+1) mod 624] and0x7fffffff // bits 0-30 

MERSENNE [i]:= MERSENNE[(i + 397) mod 624] xor (right shift by 1 bit(y))

if (y mod 2) != 0 { // y is odd

MERSENNE[i] := MERSENNE[i] xor (2567483615) 

}

}

}

 

 Blum Blum Shub

Proposed in 1986 by Lenore Blum, Manuel Blum, and Michael Shub, the format of 
Blum Blum Shub is as follows:

 X X Mn n� �1
2 mod  
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M = pq is the product of two large primes p and q (this should remind you of the 
RSA algorithm). At each step of the algorithm, some output is derived from Xn+1. 
The main difficulty of predicting the output of Blum Blum Shub lies in the difficulty 
of “quadratic residuosity” problem (Ding 1997). That mathematical problem, put 
simply is: given a composite number n, find whether x is a perfect square modulo n. 
It has been proven that this is as hard as breaking the RSA public key cryptosystem 
which involves the factoring of a large composite. This makes Blum Blum Shub a 
quite effective PRNG.

 Yarrow

This algorithm was invented by Bruce Schneier, John Kelsey, and Niels Ferguson. 
Like all of Bruce Schneier’s inventions, this algorithm is unpatented and open 
source. Yarrow is no longer recommended by its inventors and has been supplanted 
by Fortuna. However, it is still an excellent algorithm to study because it is rela-
tively simple to understand and implement and does a good job of generating suf-
ficiently random numbers. The general structure of Yarrow is relatively simple to 
understand. Yarrow has four parts (Kelsey et al. 1999):

 1. An entropy accumulator. This basically collects semi-random samples from var-
ious sources and accumulates them in two pools.

 2. A generation mechanism. This generates the PRNG outputs.
 3. Reseed mechanism to periodically reseed the key with new entries from the 

entropy pools.
 4. A reseed control that determines when reseeding should occur.

The two pools are called the fast pool and slow pool. The slow pool provides very 
conservative reseeds of the key, while the fast pool is, as the name suggest, used 
frequently to reseed the key. Both pools contain a hash of all inputs to that point in 
time. Both pools use SHA-1 so they produce a 160-bit hash output. Put more sim-
ply, each pool is fed some semi-random source, and that source is then put into a 
hash. As new data is fed to the pool, the hash is updated. This way there is a con-
stantly changing hash value that could be used as a key (Kelsey et al. 1999).

The SHA-1 outputs are used to create keys for 3-DES. The outputs from 3-DES 
are the pseudorandom numbers. Periodically the reseed mechanism goes back to the 
entropy accumulator to get a new SHA-1 hash and so that a new key is used with the 
3-DES algorithm. Essentially the algorithm consists of accumulating semi-random 
input, hash output, and the use of hash as a seed/key for a block cipher (in this 
case 3-DES).

One reason this algorithm is worthy of study is that the same concepts could be 
easily modified. Allow me to illustrate with a simple but effective variation:

You begin with a poor PRNG such as mid-square. You use that to generate a pool 
of semi-random numbers. You can seed the PRNG with any value, even the current 
date/time stamp.
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Each number in the pool is subjected to a hashing algorithm of your choice 
(SHA-1, RipeMD, etc.)

From that pool you select two hashes. One will be the seed, and the other will be 
the input or plain text value subjected to a cipher.

Then use a block cipher of your choice (Blowfish, AES, Serpent, etc.) in cipher 
block chaining mode. The output of that cipher is your random number.

This is just provided as an example of how one can take existing cryptographic 
functions and combine them to produce numbers that should be sufficiently random 
for cryptographic purposes.

 Fortuna

Fortuna is actually a group of PRNGs and has many options for whoever imple-
ments the algorithm. It has three main components (not this is quite similar to 
Yarrow):

 1. A generator which is seeded and will produce pseudorandom data
 2. The entropy accumulator that collects random data from various sources and 

uses that to reseed the generator
 3. The seed file which has initial seed values

The algorithm uses a generator that is based on any good block cipher (McEvoy 
et al. 2006). This can be DES, AES, Twofish, etc. The algorithm is run in counter 
mode. The generator is just a block cipher in counter mode. The counter mode gen-
erates a random stream of data, which will be the output of Fortuna. Because it is 
possible that a sequence would eventually repeat, it is recommended that the key 
used for the block cipher be periodically replaced. Note that counter mode is usually 
used to turn a block cipher into a stream cipher. It generates the next keystream 
block by encrypting successive values of the counter.

After each number is generated, the algorithm generates a fresh new key that is 
used for the next PRNG. This is done so that if an attacker were to compromise the 
PRNG and learn the state of the algorithm when generating a given PRNG, this will 
not compromise previous or subsequent numbers generated by this algorithm 
(McEvoy et al. 2006).

Reseeding the algorithm is done with some arbitrary string. A hashing algorithm 
is often used for this purpose because it produces a somewhat random number itself, 
making it an excellent seed for Fortuna.

 DUAL_EC_DRBG

Dual Elliptic Curve Deterministic Random Bit Generator became well known out-
side of cryptographic circles, when Edward Snowden revealed that the algorithm 
contained a backdoor inserted by the National Security Agency. The algorithm itself 
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is based on an elliptic curve mathematics and was standardized in NIST SP 
800-90A. According to John Kelsey, the possibility of the backdoor by carefully 
chosen P and Q values was brought up at a meeting of the ANSI X9.82 committee. 
As a result, a way was specified for implementers to choose their own P and 
Q values.

In 2007 Bruce Schneier publishes an article with the title “Did NSA Put a Secret 
Backdoor in New Encryption Standard?” in Wired Magazine. His article is based on 
an earlier presentation by Dan Shumow and Niels Ferguson. Given that DUAL_
EC_DRBG is clearly not secure, the details of the algorithm are not important; 
however, the story of this algorithm is. It illustrates an important point about the 
relationship between cryptography and network security. Most network security 
professionals only learn the most elementary facts about cryptography. Major 
industry security certifications such as the Certified Information Systems Security 
Professional (CISSP from ISC2) and Certified Advanced Security Practitioner 
(CASP from the Computer Technology Industry Association) and even many uni-
versity security textbooks provided only a surface view of cryptography. This is 
dramatically illustrated by the story of DUAL_EC_DRBG. When Edward Snowden 
revealed, in 2013, that there was a backdoor in this algorithm, the network security 
community was stunned. However, the cryptography community had been discuss-
ing this possibility for many years. This is, in fact, one of the major purposes of this 
book you are reading now. To present the world of cryptography in a manner that 
even general security practitioners can understand.

 The Marsaglia CD ROM

As mentioned earlier in this chapter, there are tables of pseudorandom numbers that 
can be used as sources for random numbers. George Marsaglia produced a CD-ROM 
containing 600 megabytes of random numbers. These were produced using various, 
dependable pseudorandom number generators but were then combined with bytes 
from a variety of random sources or semi-random sources to produce quality ran-
dom numbers.

The theory behind combining random numbers to create new random numbers 
can be described as follows. Suppose X and Y are independent random bytes, and at 
least one of them is uniformly distributed over the values 0 to 255 (the range found 
in a single byte when expressed in decimal format). Then both the bitwise exclusive 
of X and Y and X+Y mod 256 are uniformly distributed over 0 to 255. If both X and 
Y are approximately uniformly distributed, then the combination will be more 
closely uniformly distributed. In the Marsaglia CD-ROM, the idea is to get the 
excellent properties of the pseudorandom number generator but to further “random-
ize” the numbers, by disrupting any remaining patterns with the combination 
operation.
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 Improving PRNGs

There are a number of ways to improve any given PRNG algorithm. One might 
think that simply creating new PRNG algorithms would be the ideal way to improve 
randomness. However, that approach can be difficult. One then needs to subject the 
new algorithm to lengthy peer review to ensure that a new problem has not been 
introduced. Furthermore, the more complex an algorithm, the more computationally 
intensive it will be. So, in some cases, it is desirable to take an existing algorithm 
and simply improve it. There are a few simple methods that can be applied to any 
PRNG to improve randomness.

 Shuffling

One of the simplest methods for improving any PRNG is to shuffle the output. 
Consider the following example:

Start with an array of 100 bytes (you can actually use any size, but we will use 
100 for this example). Then fill that array with the output of the PRNG algorithm 
you are trying to improve. When a random number is required, take any two random 
numbers from the array and combine them. This combination, as described earlier 
in reference to specific PRNGs, will increase the randomness. You can make it even 
more random by combining nonsequential elements of the array.

 Cryptographic Hash

This method is sometimes used to take a PRNG that is not cryptographically secure, 
something like a simple mid-square method, and attempts to generate a reasonably 
secure random number. The methodology is quite simple. You use the PRNG output 
as the input to a well-known cryptographic hash such as SHA-1. The output should 
be reasonably random.

 Conclusions

In this chapter you have been introduced to pseudorandom number generators. We 
have looked at specific algorithms, the desirable properties of a PRNG, and specific 
tests for randomness. It cannot be overstated how important PRNGs are in the cre-
ation of cryptographic keys for symmetric algorithms, as well as in the creation of 
initialization vectors. Even if one uses a secure algorithm, if the PRNG used to cre-
ate the key is not sufficiently random, it will weaken the cryptographic 
implementation.
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 Test Your Knowledge

 1. K3 of the German standard for PRNG states?
 2. What is the basic formula for a linear congruential generator?
 3. Briefly describe the 1-D test?
 4. What is “shuffling”?
 5. Provide a general overview of Yarrow (the major steps).
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Chapter 13
SSL/TLS

 Introduction

The preceding 12 chapters have covered the algorithms used in cryptography, 
including symmetric key cryptography, asymmetric key cryptography, crypto-
graphic hashes, and generating random numbers. In this chapter, as well as the next 
two chapters, we will be focusing on practical applications of cryptography. Chapter 
14 will discuss virtual private networks, and Chap. 15 will cover military applica-
tions of cryptography. In this chapter, our primary focus is on SSL/TLS (Secure 
Sockets Layer/Transport Security Layer). However, in order to cover this topic ade-
quately, we will first cover digital signatures, digital certificates, and the public key 
infrastructure, all of which are needed for SSL/TLS.

The importance of applied cryptography cannot be overstated. Without modern 
protocols such as SSL/TLS, modern e-commerce, online banking, and similar tech-
nologies would not exist. While it is certainly important to understand the mathe-
matics behind cryptography and the actual algorithms being implemented, it is also 
important to understand how all of this is utilized for secure communications.

 In This Chapter We Will Cover

• Digital Signatures
• Digital Certificates
• The Public Key Infrastructure (PKI)
• SSL/TLS
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 Digital Signatures

We briefly touched on digital signatures when we discussed asymmetric cryptogra-
phy in Chap. 10. The concept is to simply take some asymmetric algorithm and to 
reverse the process. Some piece of data is encrypted with the sender’s public key. 
Anyone can access the sender’s public key and decrypt/verify that message. There 
are primarily two types of digital signatures, direct and arbitrated. Each has its own 
strengths and weaknesses and is thus used in different situations. The question is not 
which type of signature is better, but rather which is better for a specific situation.

 Direct Signature

A direct signature only involves the two parties (i.e., the sender/signer and the 
receiver). The signature is usually done in one of two ways. The first is to simply 
encrypt the entire message with the sender’s private key (Easttom 2019). The sec-
ond is to create a cryptographic hash, message authentication code, or HMAC that 
is then encrypted with the sender’s private key. In either case, the recipient will 
obtain the senders public key to decrypt/verify the message.

With a direct signature, there is no third-party verification of the sender’s iden-
tity. This type of signature is often used in email communications. Verification is 
assumed based on (a) the senders email address and (b) the fact that the recipient 
used the alleged sender’s public key to verify the message and it worked. If the 
email was spoofed (i.e., it was not really the purported sender, but rather someone 
else faking their email address), then the message signature was actually done with 
some key other than the purported sender, and thus verification would fail. The basic 
process is shown in Fig. 13.1.

A typical process that was described earlier in this section involves the follow-
ing steps:

 1. Write the message.
 2. Create a hash of the message.

Fig. 13.1 Direct digital signature
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Fig. 13.2 Typical 
signature process

 3. Sign the hash with the sender’s private key.
 4. Encrypt the message with the recipient’s public key.
 5. Send the message.

This multistep process ensures message integrity with the hash, verifies the iden-
tity of the sender with the digital signature, and provides message confidentiality 
with the encryption. You can see this diagrammed in Fig. 13.2.

It should be noted in the diagram shown in Fig. 13.2 that H(M) means the cryp-
tographic hash function of the message M, H is the hashing function, and M is the 
input, or message. The S(H(M)) has similar meaning with S denoting the digital 
signature of the hash of the message M. And the hash could be replaced with a MAC 
or HMAC as needed.

 Arbitrated Digital Signature

An arbitrated digital signature works similarly to a direct signature; however, the 
entity signing the message is not the sender, but rather a third party that is trusted by 
both sender and receiver (Easttom and Dulaney 2017). The rest of the process is the 
same. This sort of digital signature is often used to provide even more assurance that 
the sender is, indeed, who they claim to be. A common implementation of this pro-
cess is shown in Fig. 13.3.
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Fig. 13.3 Arbitrated digital signature

 Blind Signatures

The blind signature takes the process of arbitrated digital signatures and adds a 
nuance to it. The signer simply signs a message verifying that the sender did indeed 
send it, but the signer has no idea what the content of the message is. This allows the 
signer to verify the origin of the message but not the content.

Think about it like this. Assume you observe a person write a note and put that 
note in an envelope and then seal the envelope. You then sign the envelope verifying 
that the person you saw write the note, did indeed write it, and place it in the enve-
lope. You can attest to the identity of the sender, but you have no idea what the 
contents are. A blind signature is a great option when the privacy of the data being 
sent is of paramount importance, for example, in voting situations or when using 
private digital currency. Blind signatures combine the enhance validation of the 
sender via arbitrated digital signatures but protect the privacy of the data.

 Digital Certificates

In Chaps. 10 and 11, we discussed asymmetric key cryptography, also known as 
public key cryptography. The strength of asymmetric cryptography is that there is 
no issue with key exchange. It is perfectly acceptable for anyone, and indeed every-
one, to have access to the public keys of both sender and receiver. However, this 
does not answer the question of how such public keys are disseminated. We dis-
cussed digital certificates briefly in a previous chapter. We will repeat some of that 
information here and expand upon it. The first step in that process is a digital certifi-
cate. A digital certificate is simply a digital document that contains some 
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information about the certificate holder and contains that certificate holders public 
key. There are two major types of digital certificates: X.509 and PGP.

 X.509

X.509 is an international standard for the format and information contained in a 
digital certificate (Easttom and Dulaney 2017). X.509 is the most common type of 
digital certificate in the world. It is a digital document that contains a public key 
signed by the trusted third party, which is known as a Certificate Authority, or 
CA. The X.509 standard was first released in 1988. It has been revised since then, 
with the most recent version being X.509 v3, specified in RFC 5280. This system 
supports not only getting information about the certificate holder but also verifying 
that information with a trusted third party. This is key to secure protocols such as 
SSL and TLS, as we will see later in this chapter.

The required content of an X.509 certificate is:

• Version – What version of X.509 is being used. Today that is most likely going 
to be version 3.

• Certificate holder’s public key – This is the public key of the certificate holder, 
essentially this is how public keys are disseminated.

• Serial number – This is a unique identifier that identifies this certificate.
• Certificate holder’s distinguished name – A distinguished, or unique, name for 

the certificate holder. Usually, a URL for a website or an email address.
• Certificate’s validity period – Most certificates are issued for 1 year, but the exact 

validity period is reflected in this field.
• Unique name of certificate issuer – This identifies the trusted third party who 

issued the certificate. Public certificate authorities include Thawte, Verisign, 
GoDaddy, and others.

• Digital signature of issuer – How do you know that this certificate was really 
issued by the certificate authority it claims to have been issued by? That is by 
having a digital signature.

• Signature algorithm identifier – In order to verify the signer’s digital signature, 
you will need the signers public key and what algorithm they used.

There are other optional fields, but these are the required fields. Notice that the 
last three items are all about verification. One of the benefits of the X.509 digital 
certificate is the mechanism for verifying the certificate holder (Easttom 2019). This 
is a key to secure communications, not just encrypting the transmissions but verify-
ing the identity of the parties involved. An overview of the process is provided in 
Fig. 13.4.

Keep in mind that the certificate issuer’s public certificate is likely already on the 
client machine, in their certificate store. Thus, Alice’s browser can retrieve that from 
Alice’s computer without the need to communicate with the certificate issuer’s 
server. This leads to a significant question: why would you trust the certificate issuer 
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Fig. 13.4 Verifying X.509 certificates

to verify the identity of the certificate holder? Certificates are issued by certificate 
authorities. These are entities that are trusted by many different third parties. The 
major certificate authorities include Symantec, GoDaddy, DigiCert, Global Sign, 
and Comodo. These certificate authorities (often abbreviated CA) are trusted ven-
dors. It should also be noted that normally today the browser need not go to the 
certificate issuer to get the CA’s public key. Most computers have a certificate store 
that contains the certificates (and thus public key’s) for the major certificate authori-
ties. A typical Windows 10 certificate store is shown in Fig. 13.5.

Companies and other organizations sometimes publish their own digital certifi-
cates, but those are only useful within the organizational network. Since the com-
pany’s certificate authority is not trusted by other networks, then the certificates 
issued by that CA won’t be trusted by other networks. There are varying levels of 
digital certificates. Each involves a different level of verification of the certificate 
holder’s identity. The more verification used, the more expensive the certificate:

• Class 1 for individuals, intended for email.
• Class 2 for organizations, for which proof of identity is required.
• Class 3 for servers and software signing, for which independent verification and 

checking of identity and authority is done by the issuing certificate authority.
• Class 4 for online business transactions between companies.
• Class 5 for private organizations or governmental security.

Most websites will simply use a class 2 digital certificate.
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Fig. 13.5 Windows 10 certificate store

 Specific Types of X.509 Certificates

A root certificate is either an unsigned public key certificate or a self-signed certifi-
cate that identifies the root certificate authority (CA). A root certificate is part of a 
public key infrastructure scheme.

Root certificates are updated on Windows automatically. When a user visits a 
secure website (by using HTTPS SSL), reads a secure email (S/MIME), or down-
loads an ActiveX control that is signed (code signing) and encounters a new root 
certificate, the Windows certificate chain verification software checks the appropri-
ate Microsoft Update location for the root certificate. If it finds it, it downloads it to 
the system. To the user, the experience is seamless. The user does not see any secu-
rity dialog boxes or warnings. The download happens automatically, behind 
the scenes.

Extended Validation (EV) SSL Certificates: where the certificate authority (CA) 
checks the right of the applicant to use a specific domain name plus it conducts a 
thorough vetting of the organization.

Organization Validation (OV) SSL Certificates: where the CA checks the right of 
the applicant to use a specific domain name PLUS it conducts some vetting of the 
organization. Additional vetted company information is displayed to customers 
when clicking on the Secure Site Seal, giving enhanced visibility in who is behind 
the site and associated enhanced trust.

Digital Certificates



292

Domain Validation (DV) SSL Certificates are certificates where the CA checks 
the right of the applicant to use a specific domain name. No company identity infor-
mation is checked, and no information is displayed other than encryption informa-
tion within the Secure Site Seal.

Wildcard certificates, as the name suggests, can be used more widely. Usually 
with multiple sub-domains of a given domain. So rather than have a different X.509 
certificate for each sub-domain, you would use a wild card certificate for all 
sub-domains.

SAN or Subject Alternative Name is not so much a type of certificate as a special 
field in X.509. It allows you to specify additional items (IP addresses, domain 
names, etc.) to be protected by this single certificate.

Code signing certificates are X.509 certificates used to digitally sign some type 
of computer code.

Machine/computer certificates are X.509 certificates assigned to a specific 
machine. These are often used in authentication schemes. For example, in order for 
the machine to sign into the network, it must authenticate using its machine 
certificate.

Email certificates are used for securing email. Secure Multipurpose Internet Mail 
Extension (S/MIME) uses X.509 certificates to secure email communications.

User certificates are used for individual users. Like machine/computer certifi-
cates, these are often used for authentication. The user must present his or her cer-
tificate to authenticate prior to accessing some resource.

There are also a number of standards related to public key cryptography. These 
standards (PKCS) provide guidance in implementing certificates. It is not necessary 
that you memorize theses, but you should be familiar with them, thus they are 
listed here:

• PKCS #1: RSA Cryptography Standard
• PKCS #2: Incorporated in PKCS #1
• PKCS #3: Diffie-Hellman Key Agreement Standard
• PKCS #4: Incorporated in PKCS #1
• PKCS #5: Password-Based Cryptography Standard
• PKCS #6: Extended-Certificate Syntax Standard
• PKCS #7: Cryptographic Message Syntax Standard
• PKCS #8: Private Key Information Syntax Standard
• PKCS #9: Selected Attribute Types
• PKCS #10: Certification Request Syntax Standard
• PKCS #11: Cryptographic Token Interface Standard
• PKCS #12: Personal Information Exchange Syntax Standard
• PKCS #13: Elliptic Curve Cryptography Standard
• PKCS #14: Pseudorandom Number Generators
• PKCS #15: Cryptographic Token Information Format Standard
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 PGP

The other type of certificate is the PGP or Pretty Good Privacy certificate. Pretty 
Good Privacy is a methodology that combines cryptographic hashes, asymmetric 
cryptography, and symmetric cryptography to create secure communications. Each 
public key is tied to a username and/or email address, so PGP is often used for email 
encryption. PGP operates by using certificates but uses self-signed digital certifi-
cates. That means there is no certificate authority and thus no third-party verifica-
tion of a sender’s identity. This is why PGP certificates are not used for web 
pages/e-commerce. A PGP certificate includes:

• PGP version number – This is just what version of PGP is being used.
• Certificate holder’s public key – The public key of the certificate holder. One of 

the purposes of using digital certificates is to disseminate public keys.
• Certificate holder’s information – This can be a bit more extensive that the X.509 

certificate. It is information to identify who this certificate belongs to.
• Digital signature of certificate owner – Since there is no CA, the certificate owner 

signs the certificate.
• Certificate’s validity period – How long the certificate is valid for.
• Preferred symmetric encryption algorithm for the key – Once asymmetric cryp-

tography is in use, what type of symmetric algorithm does the certificate holder 
prefer to use.

PGP was first created by Phil Zimmerman in 1991. The first version used a sym-
metric algorithm that Mr. Zimmerman had created himself. Later versions of PGP 
use a variety of well-known symmetric algorithms.

It should be noted that Phillip Zimmerman is well-known in the world of cryp-
tography. His PGP product is widely used to encrypt email, and he has also worked 
on voice over IP (VoIP) encryption protocols. He holds a bachelor’s degree in com-
puter science. The original release of PGP generated a criminal investigation, 
because it enabled encryption of strengths that the US government did not allow for 
export (see Chap. 15 for more on export laws). The case was dropped in 1996. Mr. 
Zimmerman has received significant recognition for his work, including being 
inducted into the Internet Hall of Fame, being named one of the “Top 50 Tech 
Visionaries” by PC World and receiving the Louis Brandeis Award. I would add that 
this positive attention is quite well deserved.

 Alternate Certificate Types

There are various types of certificates that are used for specific purposes. The 
implicit certificate is one such specialized digital certificate. Rather than have a 
copy of the subject public key and a digital signature from the issuing authority, 
implicit certificates public key is reconstructed from the data in the certificate.
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Identity-based cryptography is not necessarily a type of certificate, but it accom-
plishes the same goal of providing an entities public key. Some particular publicly 
known string representing the individual is used as the public key. This is typically 
something such as a public IP address, domain name, or similar value that would not 
only be tied to the entity but would also be unique on the Internet. Identity-based 
cryptography has not been widely used, because there is no way to revoke creden-
tials should the need arise, other than terminating the domain name, public IP, or 
other string used for a public key.

Qualified certificates are much like other public key certificates that were 
described earlier in this chapter. However, they are for a specific issue: identifying a 
particular individual. The European Union makes use of these. The concept is to 
provide a mechanism to identify an individual. This can be useful in mitigating 
online fraud and similar criminal activity.

 Public Key Infrastructure X.509

The public key infrastructure (often just called PKI) is essentially the infrastructure 
needed to create and distribute digital certificates (Easttom 2019). Since digital cer-
tificates are the means by which public keys for asymmetric algorithms are dissemi-
nated, the PKI is a key part of any implementation of asymmetric cryptography.

One role of the PKI is to bind public keys with some user’s identity via a certifi-
cate authority. In other words, it is not adequate to simply have public keys widely 
available. There needs to be some mechanism to validate that a specific public key 
is associated with a specific user. With PKI, this is done via a CA that validates the 
identity of the user.

There are several parts to the PKI. Each certificate issuer must be trusted by the 
other certificate issuers for the certificates to be interchangeable. Consider the pro-
cess of visiting an online banking site. The site has a digital certificate issued by 
some certificate authority. That certificate authority needs to be one that you and the 
bank both trust. Then later, perhaps you visit an e-commerce website. This website 
might use an entirely different certificate authority, but it must also be one that 
you trust.

The certificate authority is responsible for issuing and managing certificates. 
This includes revoking certificates. Revoking certificates is accomplished in one of 
two ways:

• CRL (certificate revocation list) is simply a list of certificates that have been 
revoked. A certificate can be revoked for many reasons, as we already mentioned. 
There are two ways these lists are distributed: (a) Push model: CA automatically 
sends the CRL out a regular interval. (b) Pull model: The CRL is downloaded 
from the CA by those who want to see it to verify a certificate. Neither model 
provides instant, real-time updates.
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• Status Checking: Given that CRL’s are not real0time, OCSP was invented. 
“Online Certificate Status Checking Protocol” is a real-time protocol that can be 
used to verify if a certificate is still valid or not. OCSP is described in RFC 6960. 
OCSP uses HTTP to communicate messages. It is supported in Internet Explorer 
7 and in Mozilla Firefox 3. Safari also supports OCSP.

The CA is often assisted by a registration authority (RA). The RA is responsible 
for verifying the person/entity requesting a digital certificate. Once that identity has 
been verified, the RA informs the CA that a certificate can be used.

The Public Key Infrastructure X.509 (PKIX) is the working group formed by the 
IETF to develop standards and models for the public key infrastructure. Among 
other things, this working group is responsible for updates to the X.509 standard.

The Public Key Cryptography Standards (PKCS) is a set of voluntary standards 
created by RSA and along with several other companies including Microsoft and 
Apple. As of this writing, there are 15 published PKCS standards:

• PKCS #1: RSA Cryptography Standard
• PKCS #2: Incorporated in PKCS #1
• PKCS #3: Diffie-Hellman Key Agreement Standard
• PKCS #4: Incorporated in PKCS #1
• PKCS #5: Password-Based Cryptography Standard
• PKCS #6: Extended-Certificate Syntax Standard
• PKCS #7: Cryptographic Message Syntax Standard
• PKCS #8: Private Key Information Syntax Standard
• PKCS #9: Selected Attribute Types
• PKCS #10: Certification Request Syntax Standard
• PKCS #11: Cryptographic Token Interface Standard
• PKCS #12: Personal Information Exchange Syntax Standard
• PKCS #13: Elliptic Curve Cryptography Standard
• PKCS #14: Pseudorandom Number Generators
• PKCS #15: Cryptographic Token Information Format Standard

These standards are formed by the working group, which involves experts from 
around the world, each contributing input to the standard.

 SSL and TLS

SSL is the Secure Sockets Layer protocol. It has been supplanted by TLS (Transport 
Layer Security). Both protocols utilize X.509 certificates both for the exchange of 
public keys and to authenticate. Many references (books, magazines, courses, etc.) 
refer to SSL, when in fact it is most likely that TLS is being used today. I will use 
the convention of referring to SSL/TLS when the specific version is not important.
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 History

When the web first began, no one considered security. HTTP, Hyper Text Transfer 
Protocol, is inherently quite insecure. It did not take long for computer scientists to 
realize that security was needed in order to use the web for sensitive communica-
tions like financial data. Netscape invented the SSL (Secure Sockets Layer) proto-
col, beginning with version 1.0 (Oppliger 2016). It was never released due to 
significant security flaws. However, version 2.0 was released in 1995 and began to 
be widely used. But security flaws were found with it, and it was subsequently sup-
planted with SSL version 3.0 in 1996. Version 3.0 was not just a minor improvement 
over past versions, it was a complete overhaul. It was published as an RFC, 
RFC 6101.

TLS 1.0 was released in 1999. It was essentially an upgrade to SSL 3.0. However, 
it was not compatible with SSL 3.0. TLS 1.0 also added support for GOST hashing 
algorithm as an option for message authentication and integrity. Previous versions 
had only supported MD5 and SHA-1 as hashing message authentication codes.

TLS 1.0 was eventually supplanted by TLS 1.1 released in April 2006. It had a 
number of specific cryptographic improvements, including improved initialization 
vectors as well as supporting cipher block chaining for AES.

In August of 2008, TLS 1.2 was released as RFC 5246. It had many improve-
ments over previous versions. Among them where:

• Replacing MD5 and SHAQ with SHA 256
• Support for advanced modes of AES encryption

TLS 1.3 was defined in RFC 8446 in August 2018. This new version offers a 
number of improvements for security. Those improvements include:

• Separating key agreement and authentication algorithms from the cipher suites
• Removing support for weak and lesser-used named elliptic curves
• Removing support for MD5 and SHA-224 cryptographic hash functions
• Requiring digital signatures even when a previous configuration is used
• Integrating HKDF and the semi-ephemeral DH proposal
• Replacing resumption with PSK and tickets
• Supporting 1-RTT handshakes and initial support for 0-RTT
• Mandating perfect forward secrecy, by means of using ephemeral keys during 

the (EC)DH key agreement
• Dropping support for many insecure or obsolete features, including compres-

sion, renegotiation, non-AEAD ciphers, non-PFS key exchange (among which 
static RSA and static DH key exchanges), custom DHE groups, EC point format 
negotiation, change cipher spec protocol, hello message UNIX time, and the 
length field AD input to AEAD cipher

• Prohibiting SSL or RC4 negotiation for backward compatibility
• Integrating use of session hash
• Deprecating use of the record layer version number and freezing the number for 

improved backward compatibility
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• Adding the ChaCha20 stream cipher with the Poly1305 message authentica-
tion code

• Adding the Ed25519 and Ed448 digital signature algorithms
• Adding the x25519 and x448 key exchange protocols

You may recall that the ChaCha cipher was discussed in Chap. 7. The Ed25519 
algorithm and the x25519 algorithm were discussed briefly in Chaps. 10 and 11. 
Perhaps the most important improvement in TLS 1.3 is that it removed support for 
various older and weaker cryptographic primitives. This includes weaker hash func-
tions and weaker elliptic curves.

 The Handshake Step by Step

The process of establishing an SSL/TLS connection is rather complex. The specific 
steps are described here (Davies 2011):

 1. Communication begins with the client sending a hello message. That message 
contains the client’s SSL version number, cipher settings (i.e., what algorithms 
can the client support), session-specific data, and other information that the 
server needs to communicate with the client using SSL.

 2. The server responds with a server hello message. That message contains the 
server’s SSL version number, cipher settings (i.e., what algorithms the server can 
support), session-specific data, and other information that the client needs to 
communicate with the server over SSL. The server also sends the client the serv-
er’s X.509 certificate. The client can use this to authenticate the server and then 
use the server’s public key. In some optional configurations, client authentication 
is required. In that case, part of the server hello message is a request for the cli-
ent’s certificate.

It should be noted that client authentication is not generally used in 
e- commerce, as it would require each and every client to have an X.509 certifi-
cate from a well-known and trusted certificate authority. I suspect that most of 
you reading this book do not have such a certificate. If e-commerce sites did 
request such a certificate, it might reduce online fraud but would also add an 
extra burden and cost to consumers. Consumers would have to purchase a certifi-
cate, at an average cost of $19.95 per year.

 3. Now the client uses the server’s X.509 certificate to authenticate the server. It 
does this by retrieving the public key of the certificate authority who issued this 
X.509 certificate and using that to verify the CA’s digital signature on the X.509 
certificate. Assuming authentication works, the client can now proceed with con-
fidence that the server is indeed who they claim to be.

 4. Using all data generated in the handshake thus far, the client creates the pre- 
master secret for the session, encrypts it with the server’s public key (obtained 
from the server’s certificate, sent in step 2), and then sends the pre-master secret 
to the server.
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 5. If the server is configured to require client authentication, then at this point the 
server requires the client to send to the server, the clients X.509 certificate. The 
server will use this to attempt to authenticate the client.

 6. If client authentication is required and the client cannot be authenticated, the 
session ends. If the client can be successfully authenticated, the server uses its 
private key to decrypt the pre-master secret that the client sent to it.

 7. Both the client and the server use the pre-master secret that was sent from the 
client to the server, to generate the session keys. The session keys are symmetric 
keys and use whatever algorithm the client and server have agreed upon in steps 
1 and 2 of the handshake process.

 8. Once the client has completed generating the symmetric key from the pre-master 
secret, the client sends a message to the server stating that future messages from 
the client will be encrypted with the session key. It then sends an encrypted mes-
sage indicating that the client portion of the handshake is finished.

 9. Once the server has completed generating the symmetric key from the pre- 
master secret, the server sends a message to the client informing it that future 
messages from the server will be encrypted with the session key. The server then 
sends an encrypted message indicating that the server portion of the handshake 
is finished.

You can see this entire process in Fig. 13.6. What is shown in Fig. 13.6 is just the 
basic handshake process, without client authentication. Keep in mind, that as was 
discussed earlier in this chapter, the client machine need not communicate with the 
CA in order to validate the certificate of the server.

The SSL/TLS process is very important. If you have ever purchased a product 
online, checked your bank statement online, or used any secure website, then you 

Fig. 13.6 SSL/TLS handshake
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Fig. 13.7 SSL/TLS 
indicator

have already participated in this process. It is the basis for secure web traffic. Once 
the handshake is completed, you will notice that your browser URL changes from 
http to https, indicating hypertext transfer protocol that is secured by SSL/TLS. Many 
browsers also display a small visual indicator that the site communications are now 
secure, as shown in Fig. 13.7/

Microsoft Edge displays the indicator at the end of the URL text filed, Mozilla 
Firefox and Google Chrome display the indicator just before the URL, but both use 
a padlock indicator.

 Handshake Initiation

The hello messages from client to server were discussed in the handshake descrip-
tion given above. The details are provided here (Davies 2011; Oppliger 2016).

The client hello consists of the following element:

• Protocol version. This indicates if this is SSL version 3, TLS version 1.1, etc.
• Random number. This is a 32-byte random number. The first four bytes are the 

time of the day in seconds; the next 28 bits are just a random number. This is used 
to prevent replay attacks.

• Session ID. This is a 32-byte number that is used to identify a given SSL/TLS 
session.

• Compression algorithm. If compression is used in transmission, the specific 
algorithm is provided here.

• Cipher suite. This is a list of the cryptographic algorithms the client is capable. 
Often this will be common symmetric ciphers such as Blowfish, AES, etc. It may 
also include hashing or message authentication code algorithms the client is 
capable of in order to allow for message integrity.

The server hello is quite similar. It consists of the following elements:

• Protocol version. This indicates if this is SSL version 3, TLS version 1.1, TLS 
version 1.3, etc.

• Random number. This is a 32-byte random number. The first four bytes are the 
time of the day in seconds; the next 28 bits are just a random number. This is used 
to prevent replay attacks.

• Session ID. This is a 32-byte number that is used to identify a given SSL/TLS 
session.

• Compression algorithm. The server selects one of the algorithms the client has 
indicated it can support.

• Cipher suite. The server selects one of the algorithms the client has indicated it 
can support.
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Table 13.1 SSL/TLS messages

Message Description

unexpected_
message

The message sent by the other party (client or server) is inappropriate and 
cannot be processed.

bad_record_mac Incorrect message authentication code. This indicates that message integrity 
may be compromised.

decryption_failed For some reason, the party sending this message was unable to decrypt 
TLSCiphertext correctly.

handshake_
failure

Unacceptable security parameters, the handshake cannot be completed.

bad_certificate There is a problem with the X.509 certificate that was sent.
unsupported_
certificate

Certificate is unsupported. Either the type or format of the certificate cannot 
be supported.

certificate_
revoked

Certificate has been revoked.

certificate_
expired

Certificate has expired.

certificate_
unknown

Certificate is unknown. This often happens with self-signed certificates.

unknown_ca CA unknown. This also happens with self-signed as well as domain 
certificates.

access_denied The other party is refusing to perform SSL/TLS handshake.
protocol_version Protocol version not supported by both parties
insufficient_
security

Security requirements not met. The minimum-security level of one party 
exceeds the maximum level of the other party. This is not a common error 
message.

During the handshake, and throughout the SSL/TLS communication process, 
there are a number of specific error messages that both client and server send to one 
another. The most critical of these messages is shown in Table 13.1.

 Applications of SSL/TLS

As we have already mentioned, secure web communications depend on SSL/TLS. If 
you use the web for e-commerce, online banking, secure social media, or other 
secure communications, then you are using SSL/TLS. Clearly this is a critical 
technology.

 OpenSSL

OpenSSL is a very popular open-source implementation of SSL/TLS. It is written 
in C and is widely used for SSL/TLS. The OpenSSL project was founded in 1998 
and is very widely used today with literally thousands of web servers running 
OpenSSL.  OpenSSL can support a wide range of cryptographic algorithms. For 
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symmetric ciphers, it can support the following: DES, AES, Blowfish, 3DES, 
GOST, CAST 128, IDEA, RC2, RC4, RC5, Camelia, and SEED. For cryptographic 
hashes, OpenSSL can support MD2, MD4, MD5, SHA-1, SHA-2, RIPEMD-160, 
GOST, and MDC-2. For asymmetric algorithms, OpenSSL can support Diffie 
Hellman, RSA, DSA, and Elliptic Curve Cryptography.

Of course, no discussion of OpenSSL would be complete without discussing the 
infamous Heartbleed bug. Heartbleed comes down to a very simple flaw, a buffer 
overread. Essentially the bug involved improper bounds checking that would allow 
an attacker to read more data than it should be able to. The flaw was implemented 
in the OpenSSL source code repository on December 31, 2011, and was released 
with OpenSSL version 1.0.1 on March 14, 2012.

The process worked as follows. A computer at one end of the connection could 
send a heartbeat request message. This is simply a request to ensure the other end is 
still active. This included a 16-bit integer, and the receiving computer would send 
back the same payload (16 bits). The bug allowed the attacker to set any return 
length size desired, up to 64 kilobytes of data. With this flaw, the attacker would 
request whatever was in active memory up to 64 kilobytes. In the case of servers, 
this 64 KB of data could include other users key, credit card information, or other 
sensitive data. This has since been patched, and OpenSSL continues to be 
widely used.

 VoIP

Voice over IP is very widely used today. The ability to place phone calls using IP 
networks is quickly replacing traditional phone calls, at least for some people. Voice 
over IP depends primarily on two protocols. SIP, or Session Initiation Protocol, will 
establish a session/phone call. Then, Real-time Transport Protocol or RTP is used to 
actually transmit the data. In many cases, sRTP (Secure Real-Time Transport 
Protocol) is used to secure the data. The sRTP protocol uses AES encryption. 
However, that still leaves the initial SIP communication insecure. There are imple-
mentations of VoIP that utilize an SSL/TLS connection established first; then, both 
the SIP and RTP communication are conducted over the SSL/TLS connection. This 
allows for complete security of the entire communication session.

 Email

Email is usually sent using the Simple Mail Transfer Protocol (SMTP) and received 
using either POP3 (Post Office Protocol version 3) or IMAP (Internet Message 
Access Protocol). All of these protocols are quite effective at transferring email but 
are simply not secure. In order to secure these protocols, SSL/TLS is added. SMTPS 
(SMTP using SSL/TLS) uses port 465 and can send email over an encrypted chan-
nel. IMAPS (IMAP using SSL/TLS) uses port 993 and can retrieve email from the 
email server over an encrypted channel.
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 Web Servers

Obviously, SSL/TLS is used to encrypt web traffic. In fact, it may be one of the most 
common applications of the SSL/TLS protocols. The two most common web serv-
ers are Apache web server and Microsoft Internet Information Server (IIS), let’s 
look at configuring SSL/TLS for each of these commonly used web servers.

Apache Web Server

The Apache web server ships by default with many Linux distributions. You can 
also download Apache for either Linux or Windows. It is an open-source product 
and a free download. This, combined with its ease of use, has made it a very popular 
web server.

Depending on the version of Apache being used, the configuration file (httpd.
conf) will be found in one of the following two locations:

• /etc/apache2
• /etc/httpd

You can configure your web server to accept secure connections and, in some 
cases, to accept only secure connections simply by changing the httpd.conf file. For 
example, if you want the server to only accept SSL version 3:

SSLProtocol -all +SSLv3
SSLCipherSuite SSLv3:+HIGH:+MEDIUM:+LOW:+EXP

Figure 13.8 shows an excerpt from an example httpd.conf file. This excerpt 
comes from the Apache.org website.

From visiting the Apache.org website you can find other possible configurations. 
As you can see, it is a rather trivial matter to enable SSL/TLS for Apache.

Fig. 13.8 Configure SSL/TLS in Apache
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Fig. 13.9 Finding IIS in Administrative Tools

Fig. 13.10 Turning on Windows Features

IIS

Microsoft Internet Information Services (IIS) is configured entirely from GUI 
(graphical user interface) methods. Unlike Apache, there is no configuration file to 
edit. However, the steps are relatively simple, and, in this section, you will see a 
step-by-step guide. The first step is to navigate to the Control Panel then 
Administrative Tools. This process will be the same in every version of Windows 
client (Windows 8, 8.1, 10, etc.). Note that it is slightly different in Windows server 
versions (Server 2012, Server 2016, Server 2019, etc.). Under Administrative Tools, 
you should see Internet Information Services, as shown in Fig. 13.9.

If you do not see this option, you need to add it. In Windows Client Operating 
Systems (Windows 7, 8, etc.), you do this by finding Programs in the Control Panel 
and then turn on Windows Features, as shown in Fig. 13.10.

IIS is a part of all versions of Windows and can be turned on/added to any 
Windows server or client. For servers, you simply use the Add Role function rather 
than turn on features. Once you have IIS turned on, you can use the IIS manager in 
the Administrative Tools to configure IIS. There are really two segments to the IIS 
management. The first is for IIS server wide, and the second is for specific sites. As 
you go through these steps, if you do not see an option mentioned, it is most likely 
that you are looking at the wrong aspect of IIS manager. You can see the Server 
Settings circled in Fig. 13.11.
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Fig. 13.11 IIS Server Settings

Fig. 13.13 Creating or 
importing certificates

Within those Server Settings, you need to select Server Certificates as shown in 
Fig. 13.12.

On the right-hand sign of the Server Certificates screen, you can create a self- 
signed certificate, create a certificate request, create a domain certificate, or import 
an existing certificate. You can see this in Fig. 13.13.

In order to test this, you may wish to just create a self-signed certificate. In order 
to apply this certificate to a specific site, you need to navigate from the Server 
Settings, to specific site settings, and select SSL Settings as shown in Fig. 13.14. 
Notice that Windows refers to SSL, when in fact you are most likely using TLS with 
any modern version of Windows.

Those settings allow you to decide if you wish to require SSL. This will mean 
that a client can only connect to this website using SSL/TLS, as opposed to the 
SSL/TLS being optional. If you choose this, then clients cannot connect to your 
website using http:// but rather must use https://. You can also select how to respond 
to client certificates. These settings are shown in Fig. 13.15.
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Fig. 13.12 IIS Server Certificates

Fig. 13.14 Site SSL Settings

Fig. 13.15 Handling SSL/TLS connections
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Finally, you have to set the bindings for this site. When you have navigated to a 
specific site, the binding’s option is on the right-hand side of the screen, as shown in 
Fig. 13.16.

There you simply bind the HTTPS protocol to a specific port, usually 443, and 
select a certificate to use with this website. This is shown in Fig. 13.17.

While this is all done through a graphical user interface, you can readily see that 
the process involves many steps.

Fig. 13.16 HTTPS bindings

Fig. 13.17 Finalizing HTTPS Bindings
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 Conclusions

SSL/TLS protocols are a cornerstone of modern secure communications. These 
protocols in turn depend on other technologies, such as X.509 certificates, digital 
signatures, and the symmetric and asymmetric algorithms we have discussed in 
previous chapters. A thorough understanding of SSL/TLS is critical to applying 
cryptography to real-world problems. After reading this chapter, you should be thor-
oughly familiar with digital certificates as well as the SSL/TLS handshake process.

You have also seen the SSL/TLS encrypted communications are important in a 
variety of technologies, including voice over IP, email, and web traffic. In this chap-
ter, you explored the basics of setting up SSL/TLS for encrypting web traffic with 
both Apache and IIS.

 Test Your Knowledge

 1. In general terms, describe how digital signatures work.
 2. Briefly describe the concept of blind signatures.
 3. What does X.509 support that PGP certificates do not?
 4. An X.509 certificate is digitally signed by who?
 5. What part of the SSL/TLS handshake includes the cryptographic ciphers the 

client can support?
 6. If a certificate that is being used in SSL/TLS is on the CRL, what message will 

be sent?
 7. What port does secure IMAP operate on by default?
 8. What is an arbitrated signature?
 9. Is voicemail secure?
 10. Where is PGP most often used?
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Chapter 14
Virtual Private Networks, Authentication, 
and Wireless Security

 Introduction

In the previous chapter, we explored SSL/TLS. In this chapter we will take a look at 
yet another common, and quite important, application of cryptography: virtual pri-
vate networks (VPNs). VPNs are designed to provide a secure connection either 
between two sites or between a remote worker and a site. The concept is to give the 
same connection one would have if one were actually physically connected to the 
network. This means the same level of security and the same (or at least substan-
tially similar) access to network resources, thus the name: it is a virtual connection 
to a private network. VPNs have evolved over time. In this chapter we will examine 
general concepts as well as specific technologies. We will also look at related tech-
nologies that are, while not strictly speaking VPNs, secure remote connections.

 In This Chapter We Will Cover

• Authentication
• PPTP
• L2TP
• IPSec
• SSL/TLS VPN
• Secure communications
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 Concepts

The Dictionary of Computer and Internet Terms defines a VPN as “a network where 
data is transferred over the Internet using security features preventing unauthorized 
access.” This is a fairly typical definition similar to what one would find in any 
computer dictionary but not quite detailed enough for our purposes.

The idea of a VPN is to emulate an actual physical network connection. This 
means it must provide both the same level of access and the same level of security. 
In order to emulate a dedicated point-to-point link, data is encapsulated, or wrapped, 
in such a way that its contents are secure. Since the packet is wrapped, it must also 
include a header that provides routing information, allowing it to transmit across the 
Internet to reach its destination. This creates a virtual network connection between 
the two points. However, this connection only provides a virtual network, and then 
the data is also encrypted, thus making that virtual network private.

The question becomes this: how does one implement the authentication and 
encryption required to create a VPN? There are several technologies that can facili-
tate establishing a VPN, each works in a slightly different manner. We will examine 
each of these in this chapter. Despite the differences in the protocols, the end goals 
are the same. First, authenticate the user and then ensure that this user is who they 
claim to be. Then, exchange cryptographic information such as what algorithms to 
use, and, finally, establish a symmetric key the two parties can use to secure data 
between the two parties.

 Authentication

Authentication is merely the process of verifying that some entity (be it a user or 
another system or another program) is indeed who they claim to be. The most obvi-
ous example of authentication is when an end user provides a username and pass-
word. The password presumably verifies that this is indeed that user. However, as 
security breaches become more widespread, a simple username and password is not 
adequate. Passwords can be guessed, written down, or similarly exposed. There are 
three main types of authentication (Easttom 2019):

Type I: This is something you know. The aforementioned password is a classic 
example. However, PIN numbers, pass phrases, etc. all constitute type I authen-
tication. They all have the same weakness: they can be guessed, stolen, etc.

Type II: This is something you have. A good example would be the debit card one 
must put into the ATM in order to extract funds. Smart cards and keys are other 
examples of type II authentication. These have the advantage that they cannot be 
guessed, but they can certainly be stolen.

Type III: Something you are. This is biometrics. Fingerprints, retinal scans, facial 
recognition, and even handwriting all constitute type III authentication. This has 
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the advantage that it cannot be guessed and cannot be stolen (at least not without 
the user being aware of it!).

These are the three primary means of authentication, but other methods exist. As 
one example, there is out-of-band authentication. This form of authentication 
involves prompting the user for information from various data sources that is likely 
to only be known to the authentic user. When you run a credit report online, many 
systems will prompt you for identifying information such as a US Social Security 
number (type I authentication) as well as ask you question such as the amount of 
your monthly credit card payment and current balance. These last two pieces of 
information are out-of-band authentication (OOB).

Type I authentication can be used for VPNs and often is. Type II can also be used. 
The best solution, often called strong authentication, is to combine type I and type 
II authentication. Using an ATM is a good example of this. You must have a debit 
card (type II) and a PIN number (type I). Some VPN solutions operate in a similar 
fashion, requiring a password and perhaps a digital certificate (see Chap. 13 for a 
detailed discussion of digital certificates) or even a smart card on the client machine, 
in order to function. Of course, as technology improves, type III is also feasible, 
even for the home user. Using facial recognition or fingerprint is already possible on 
most smartphones. If one combines a password, a smart card, and facial recognition, 
that will provide a reasonably secure level of secure authentication.

It should be noted that the US Department of Defense (DoD) uses combined 
authentication modalities. The Common Access Card (CAC, often called the “kack” 

Armed Forces of the
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Pay Grade Rank

Issue Date

Expiration Date
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ACTIVE DUTY

Fig. 14.1 Exemplary 
CAC card
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card) is a smart card used by the DoD. The front of the card has identification infor-
mation for the holder, including a photo. There is a two-dimensional barcode in the 
bottom left-hand corner and an integrated circuit chip embedded in the card. The 
information on the chip is encrypted with strong encryption. For computer access, 
one needs to insert the CAC card and provide the password or PIN. This provides 
two-factor authentication. An example of a CAC card is shown in Fig. 14.1.

In addition to considerations as to what type of authentication to utilize, the 
method of transmitting authentication data as well as cryptographic information 
must be addressed. This is handled by VPN protocols. Each protocol establishes its 
own authentication method as well as how to exchange cryptographic data.

Since all VPN protocols include authentication as well as encryption, it is impor-
tant to have a good understanding of authentication protocols before proceeding. 
Throughout this book we have examined a number of cryptographic and compared 
to those algorithms, authentication is a relatively simple process. The purpose of 
authentication is to simply verify that a given entity is who they claim to be. An 
added feature of more modern authentication protocols is to also prevent sophisti-
cated attacks such as session hijacking.

Session hijacking occurs when an attacker waits until a user has authenticated to 
a system and then takes over that session. There are various methods for doing this, 
all of which are at least moderately sophisticated. The key to all session hijacking is 
that the attacker does not need to ever actually obtain the user’s password; they 
merely take over a session after the user has supplied their password to the system.

 CHAP

Challenge-Handshake Authentication Protocol (CHAP) was specifically designed 
to prevent session hijacking. There are some earlier authentication protocols, but 
none of those are used in modern VPNs. The process of CHAP is relatively straight-
forward (Easttom and Dulaney 2017):

Fig. 14.2 The CHAP process
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 1. The client sends their username and password to the server (often called the 
authenticator in CHAP documentation).

 2. The server/authenticator then requests that the client calculate a cryptographic 
hash and send that to the server.

 3. Periodically, at random intervals, the server/authenticator will request that the 
client re-present that cryptographic hash. The purpose of this is to detect if ses-
sion hijacking has occurred and then terminate that connection.

This process is depicted in Fig. 14.2.
It should be noted that Microsoft created their own variation of CHAP, desig-

nated MS-CHAP.  This conforms to the general description given above, but the 
variations are not pertinent to our discussions of VPNs. For example, MS-CHAP v2 
provides for mutual authentication, wherein both sides authenticate each other.

 EAP

Extensible Authentication Protocol (EAP), as the name implies, is actually a frame-
work that can be modified, or extended, for a variety of purposes. The EAP standard 
was originally specified in RFC 2284, but that was supplanted by RFC 3748 and 
then later updated by RFC 5247. The various permutations of EAP differ in how 
authentication material is exchanged. There are many variations of EAP; let us take 
a look at just a few.

 LEAP

Lightweight Extensible Authentication Protocol (LEAP) was developed by Cisco 
and has been used extensively in wireless communications. LEAP is supported by 
many Microsoft operating systems including Windows 10. LEAP uses a modified 
version of MS-CHAP.

 EAP-TLS

Extensible Authentication Protocol-Transport Layer Security utilizes TLS (see 
Chap. 13) in order to secure the authentication process. Most implementations of 
EAP-TLS utilize X.509 digital certificates (also discussed in Chap. 13) to authenti-
cate the users.
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 PEAP

Protected Extensible Authentication Protocol (PEAP) encrypts the authentication 
process with an authenticated TLS tunnel. PEAP was developed by a consortium, 
including Cisco, Microsoft, and RSA Security. It was first included in Microsoft 
Windows XP but is still in use today.

 EAP-POTP

Protected One-Time Password (POTP) is a variation of EAP described in RFC 
4793. It uses a one-time password token to generate authentication keys. It can be 
used for one-way or bilateral authentication (i.e., the client authenticates to the 
server, and the server authenticates to the client).

A one-time password (OTP) is, as the name suggests, used only once; then, it is 
no longer valid. It is often used in conjunction with a device such as a key fob that 
generates the OTP. The key fob and the server use the same algorithm and tie in the 
current time stamp to generate the same OTP on both ends. Often, this is used in 
conjunction with a traditional password.

 Kerberos

Kerberos is a network authentication protocol. It is designed to provide strong 
authentication for client/server applications by using symmetric cryptography. It 
was originally developed at MIT under the name Project Athena. The protocol was 
named after the Greek mythological character Kerberos (or Cerberus), known in 
Greek mythology as being the monstrous three-headed guard dog of Hades (Neuman 
and Ts’o 1994).

Kerberos is widely used and has been implemented in versions from Windows 
2000 to the current (Server 2019 as of this writing), as well as Red Hat Enterprise 
Linux, FreeBSD, IBM AIX, and other operating systems. The process itself is pur-
posefully complex. The reason for the complexity is to prevent session hijacking 
attacks, as well as to ensure a more robust and reliable authentication mechanism. 
There are variations on the process depending on implementation, but the general 
process is as follows (Easttom 2019; Neuman and Ts’o 1994):

• The username is sent to the authentication server (AS). AS generates a secret key 
by retrieving the stored hash of the user’s password and then sends two messages 
to the client; both messages are encrypted with the key the AS generated:

Message A: Client/ticket-granting session key encrypted with secret key of 
the client.
Message B: Ticket-granting ticket (TGT) includes the client ID, client net-
work address, and validity period.
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• Then, the client machine attempts to decrypt message A with a secret key gener-
ated by the client hashing the user’s entered password. If that entered password 
does not match the password the AS found in the database, then the hashes won’t 
match and the decryption won’t work. If it does work, then message A contains 
the client/TGS session key that can be used for communications with the 
TGS. Message B is encrypted with the TGS secret key and cannot be decrypted 
by the client.

• When requesting services, the client sends the following messages to the TGS:

Message C: Composed of the TGT from message B and the ID of the 
requested service
Message D: Authenticator (which is composed of the client ID and the time 
stamp) encrypted using the client/TGS session key

• Upon receiving messages C and D, the TGS retrieves message B out of message 
C. It decrypts message B using the TGS secret key. This gives it the “client/TGS 
session key.” Using this key, the TGS decrypts message D (authenticator) and 
sends the following two messages to the client:

Message E: Client-to-server ticket (which includes the client ID, client net-
work address, validity period, and client/server session key) encrypted using 
the service’s secret key
Message F: Client/server session key encrypted with the client/TGS 
session key

• Upon receiving messages E and F from TGS, the client has enough information 
to authenticate itself to the service server (SS). The client connects to the SS and 
sends the following two messages:

Message E from the previous step (the client-to-server ticket encrypted using 
service’s secret key)
Message G: a new Authenticator, which includes the client ID and time stamp 
and is encrypted using the client/server session key

• The service server (SS) decrypts the ticket (message E) using its own secret key 
to retrieve the client/server session key. Using the session key, SS decrypts the 
Authenticator and sends the following message to the client to confirm its true 
identity and willingness to serve the client:

Message H: the time stamp found in the client’s authenticator

• The client decrypts the confirmation (message H) using the client/server session 
key and checks whether the time stamp is correct. If so, then the client can trust 
the server and can start issuing service requests to the server.

• The server provides the requested services to the client.

This process is intentionally complex with multiple reverification steps. This is 
done in order to make circumventing the system much more difficult. It is likely that 
you have used this process without knowing it, as it is the default authentication 
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mechanism in Windows domains. All of the complex process described is transpar-
ent to the user. There are some basic Kerberos terms you should be familiar with:

• Principal—a server or client that Kerberos can assign tickets to.
• Authentication server (AS)—a server that authorizes the principal and connects 

them to the ticket granting server.
• Ticket granting server (TGS)— provides tickets.
• Key distribution center (KDC)—a server that provides the initial ticket and han-

dles TGS requests. Often, it runs both AS and TGS services.
• Ticket granting ticket (TGT)—the ticket that is granted during the authentication 

process.
• Ticket—used to authenticate to the server; contains identity of the client, session 

key, time stamp, and checksum; and encrypted with server’s key.
• Session key—a temporary encryption key.

The complexity you see in Kerberos is intentional. The constant exchange of 
encrypted tickets and verification of information makes session hijacking far more 
difficult. And the combination of the session key with the ticket-granting ticket 
would mean an attacker would need to crack two strong encryption keys in order to 
subvert the system.

 SESAME

Secure European System for Applications in a Multi-vendor Environment 
(SESAME) is the European answer to Kerberos. It was developed to extend Kerberos 
and improve on its weaknesses. SESAME uses both symmetric and asymmetric 
cryptography. SESAME “Privileged Attribute Certificates” (PACS), rather than 
tickets, are digitally signed and contain the subject’s identity, access capabilities for 
the object, access time period, and lifetime of the PAC.  PACS come from the 
Privileged Attribute Server.

 NTLM

NTLM is not used in modern VPNs but is commonly used in Microsoft products to 
provide authentication as well as other security services, and, thus, you should be 
basically familiar with it. While Microsoft recommends Kerberos as the preferred 
authentication protocol, many implementations still utilize NTLM.  NTLM is a 
three-step process:

 1. The first step is for the client to connect to the server and then send a 
NEGOTIATE_MESSAGE advertising its capabilities.

 2. The server then responds with CHALLENGE_MESSAGE. This is used to estab-
lish the identity of the client.
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 3. The process culminates with the client responding to the server’s challenge with 
an AUTHENTICATE_MESSAGE.

Authentication in NTLM is accomplished by sending a hash of the password. 
NTLM version 1 uses DES-based LanMan hash. NTLM version 2 uses MD4 cryp-
tographic hash.

NTLM is vulnerable to the pass the hash attack. Essentially, the attacker acquires 
a hash of the user’s password and sends that along. The attacker does not know the 
actual password but has somehow acquired the hash. This can be done if the user 
has the same password for a local password; thus, the attacker can get that hash from 
the local SAM (Security Account Manager) file that is in Windows. It may also be 
possible to get the hash via packet sniffing. Sometimes hashes are cached on a 
machine, and the attacker gets the hash from that cache. The exact mechanism 
whereby the attacker obtains the hash is not important. Once the attacker has it, they 
can execute the pass the hash attack and log in as that user without ever actually 
knowing the user’s password.

 PPTP

Point-to-Point Tunneling Protocol (PPTP) is an older method. The standard was 
first published in 1999 as RFC 2637. The specification did not expressly define 
specific encryption or authentication modalities and left these up to the implementa-
tion of PPTP. PPTP has been supported in all versions of Windows since Windows 
95. Originally, the Microsoft implementation of PPTP used MS-CHAP for authen-
tication and DES for encryption (Tiller 2017).

PPTP is based on the earlier protocol of PPP (Point-to-Point Protocol) and uses 
TCP port 1723 to establish a connection. After the initial connection is established, 
PPTP creates a GRE tunnel. GRE (generic routing encapsulation) is a protocol 
developed by Cisco. Because PPTP is based on PPP, a brief description of PPP is in 
order. PPP was designed for moving datagrams across serial point-to-point links. It 
sends packets over a physical link, a serial cable setup between two computers. It is 
used to establish and configure the communications link and the network layer pro-
tocols and also to encapsulate datagrams. PPP has several components and is actu-
ally made up of several protocols.

Each of these handles a different part of the process. PPP was originally devel-
oped as an encapsulation protocol for transporting IP traffic over point-to-point 
links. PPP also established a standard for a variety of related tasks including:

 1. An encapsulation component.
 2. Protocols to negotiate configuration parameters.
 3. A Link Control Protocol (LCP).

PPP supports these functions by providing an extensible link control protocol 
(LCP) and a family of network control protocols (NCPs) to negotiate optional con-
figuration parameters and facilities. In addition to IP, PPP supports other protocols. 
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This is no longer such an advantage now as all mainstream networks used TCP/
IP. However, at the time of the creation of PPTP, Novel used IPX/SPX, Apple used 
AppleTalk, and Unix used TCP/IP. Now, all of these, as well as Windows, use TCP/IP.

PPTP supports two generic types of tunneling: voluntary and compulsory. In the 
case of voluntary tunneling, a remote user connects to a standard PPP session that 
enables the user to log on to the provider’s network. The user then launches the VPN 
software to establish a PPTP session back to the PPTP remote access server in the 
central network. This process is called voluntary tunneling because the user initiates 
the process and has the choice of whether to establish the VPN session. While not 
advisable, the user could simply use a standard PPP connection without the benefits 
of a VPN.

In a compulsory tunneling setup, the only connection available to the host net-
work is via a VPN. A simple PPP connection is not available, only the full PPTP 
connection, forcing users to use a secure connection. From a security standpoint, 
this is the preferred option.

 PPTP Authentication

When connecting to a remote system, encrypting the data transmissions is not the 
only facet of security. You must also authenticate the user. PPTP supports two sepa-
rate technologies for accomplishing this: Extensible Authentication Protocol (EAP) 
and Challenge-Handshake Authentication Protocol (CHAP). Both of these were 
described earlier in this chapter.

 PPTP Encryption

The PPP payload is encrypted using Microsoft Point-to-Point Encryption (MPPE) 
protocol. MPPE was designed specifically for PPTP. It uses RC4 with either a 128- 
bit, 56-bit, or 40-bit key. Obviously, 128-bit key is the strongest. One advantage to 
MPPE is that the encryption keys are frequently changed. During the initial negotia-
tion and key exchange for MPPE, a bit is set to indicate what strength of RC4 to use:

• 128-bit encryption (“S” bit set)
• 56-bit encryption (“M” bit set)
• 40-bit encryption (“L” bit set)
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 L2TP

L2TP sends its entire packet (both payload and header) via User Datagram Protocol 
(UDP). The endpoints of an L2TP tunnel are called the L2TP access concentrator 
(LAC) and the L2TP network server (LNS). The LAC initiates a tunnel, connecting 
to the LNS. After the initial connection, however, communication is bilateral. Like 
PPTP, L2TP can work in either voluntary or compulsory tunnel mode. However, 
there is a third option for an L2TP multi-hop connection.

The major differences between L2TP and PPTP are listed here:

• L2TP provides the functionality of PPTP, but it can work over networks other 
than just IP networks. PPTP can only work with IP networks. L2TP can work 
with asynchronous transfer mode (ATM), frame relay, and other network types.

• L2TP supports a variety of remote access protocols, such as TACACS+ and 
RADIUS, while PPTP does not.

While L2TP has more connection options, it does not define a specific encryp-
tion protocol. The L2TP payload is encrypted using the IPSec protocol. The RFC 
4835 specifies either the 3DES or AES encryption. IPSec is considered far more 
secure than the authentication and encryption used in PPTP.

 IPSec

IPSec, short for Internet Protocol Security, is a technology used to create virtual 
private networks. IPSec is a security used in addition to the IP protocol that adds 
security and privacy to TCP/IP communication. IPSec is incorporated with Microsoft 
operating systems as well as many other operating systems. For example, the secu-
rity settings in the Internet Connection Firewall that ships with Windows XP enables 
users to turn on IPSec for transmissions. IPSec is a set of protocols developed by the 
IETF (Internet Engineering Task Force, www.ietf.org) to support secure exchange 
of packets. IPSec has been deployed widely to implement VPNs (Davis 2001).

IPSec has two encryption modes: transport and tunnel. The transport mode works 
by encrypting the data in each packet but leaves the header unencrypted. This means 
that the source and destination address, as well as other header information, are not 

Fig. 14.3 The authentication header
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Fig. 14.4 The encapsulating security payload header

encrypted. The tunnel mode encrypts both the header and the data. This is more 
secure than transport mode but can work more slowly. At the receiving end, an 
IPSec-compliant device decrypts each packet. For IPSec to work, the sending and 
receiving devices must share a key, an indication that IPSec is a single-key encryp-
tion technology. IPSec also offers two other protocols beyond the two modes already 
described. Those protocols are AH (authentication header) and ESP (encapsulating 
security payload).

IPSec is probably the most widely used VPN protocol today. The reason is that, 
unlike PPTP and L2TP, IPSec provides a complete solution that includes built-in 
authentication and encryption. IPSec is actually comprised of multiple protocols:

Authentication header (AH)—this is used to provide for authentication and 
integrity for packets. The authentication header contains several pieces of informa-
tion, including payload length, an integrity check value (ICV), sequence number, 
and Security Parameters Index (SPI). The header format is shown in Fig. 14.3.

Encapsulating security payload (ESP)—this provides confidentiality as well as 
authentication and integrity. The encapsulating security payload header has some 
similar items to what that authentication header has. Some of the responsibilities for 
the two headers overlap (Tiller 2017). You can see that header in Fig. 14.4.

The broad steps of the IPSec process are as follows:

 1. Some party decides to initiate an IPSec VPN that starts the Internet Key Exchange 
(IKE) process.

 2. During IKE phase 1, the peers are authenticated, and security associations are 
negotiated.

 3. During IKE phase 2, the security authentication parameters are negotiated and 
finalized.

 4. Now, data can be transmitted.

One concept you will see throughout IPSec is that of the security association, 
also called an SA. This is a set of parameters such as algorithms, keys, and other 
items necessary to encrypt and authenticate. One part of IPSec initiation is to ensure 
that both peers in an IPSec connection have identical security associations. These 
security associations are established using the Internet Security Association and 
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Key Management Protocol (ISAKMP). This protocol is most often implemented 
with IKE, which occurs in two phases.

 IKE Phase 1

The primary purpose of Internet Key Exchange phase 1 is to authenticate the IPSec 
peers and to set up a secure channel between the peers to enable IKE exchanges. In 
other words, first, the two parties are authenticated; then, the subsequent steps 
involving exchange of keys can take place. IKE phase 1 is subdivided into a 
few phases:

Authenticates the identities of the IPSec peers
Negotiates a matching IKE SA policy between the peers
Uses Diffie-Hellman exchange so that both peers have the same secret key

Now, using that same secret key, the IKE phase 2 parameters can be securely 
exchanged.

There are two methods or modes for performing IKE phase 1. Those modes are:

 Main Mode

Main mode is the primary or preferred mode for IKE phase 1. In main mode, there 
are three two-way exchanges between the initiator and the receiver. In the first 
exchange, the peers agree on the symmetric algorithms to secure communication 
and the cryptographic hashes used to protect integrity. Again, this information is 
being exchanged via the key established using Diffie-Hellman.

In the second exchange, the two peers will generate secret key material used to 
generate secret keys on both ends. This is similar to the process you saw for SSL/TLS 
in Chap. 13. The IPSec standard allows for HMAC, SHA1, and SHA2 to be used for 
authentication and 3DES and AES (both with cipher block chaining) to be used for 
encryption. The third exchange involves each peer verifying the others’ identity. At 
the end of this exchange, the two peers should have identical security associations 
(SAs). Now, a secure channel exists between the two peers.

 Aggressive Mode

Aggressive mode essentially condenses the process of main mode into fewer 
exchanges. The entire process is condensed into just three packets. All of the infor-
mation required for the security association is passed by the initiating peer. The 
responding peer then sends the proposal, key material, and ID and authenticates the 
session in the next packet. The initiating peer then replies by authenticating the ses-
sion. And at that point IKE phase 1 is complete.
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Fig. 14.5 IKE phase 1 and 2

 IKE Phase 2

You may think that after IKE phase 1 there is nothing left to do. However, IPSec 
takes additional steps to ensure that there is secure, authenticated communication. 
IKE phase 2 only has one mode, called quick mode (Tiller 2017). This occurs 
immediately after IKE phase 1 is complete. Phase 2 negotiates a shared IPSec pol-
icy and then derives secret keying material used for the IPSec security algorithms. 
Phase 2 also exchanges nonces (recall these are numbers only used once) that pro-
vide protection against a variety of attacks, including replay attacks. The nonces are 
also used to generate new secret key material and prevent replay attacks. IKE phase 
2 can also be used to renegotiate a new security association if the IPSec SA lifetime 
expires, but the peers have not terminated communication.

The basic flow of these phases is shown in Fig. 14.5.
During establishment of IPSec policies, there is a setting called perfect forward 

secrecy. If this is specified in the IPSec policy, then a new Diffie-Hellman exchange 
is performed with each iteration of IKE phase 2 quick mode. This means new key 
material is used each time IKE phase 2 is executed. While IKE is the most common 
way to set up security associations, there are other methods: IPSECKEY DNS 
records are one method, and using Kerberos in a process termed Kerberized Internet 
Negotiation of Keys is another.

 VPN Gateways and Concentrators

VPN gateways can be categorized as standalone or integrated. Standalone VPNs 
incorporate purpose-built devices between the source of data and WAN link or 
between the modem and a data source in a remote office. Integrated implementa-
tions add VPN functionality to existing devices, such as routers and firewalls.

A VPN concentrator is a type of networking device that provides secure creation 
of VPN connections and delivery of messages between VPN nodes. Usually a router 
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device, built specifically for creating and managing VPN communication 
infrastructures.

One can also use a technique called split tunneling. Split tunneling allows a 
mobile user to access dissimilar security domains such as a public network (e.g., the 
Internet) and a local LAN or WAN at the same time. So perhaps the user connects 
to the corporate network with a VPN but uses their browser to surf the Internet 
through a different Internet connection.

 SSL/TLS

A new type of firewall uses SSL (Secure Sockets Layer) or TLS (Transport Layer 
Security) to provide VPN access through a Web portal. Essentially, TLS and SSL 
are the protocols used to secure websites. If you see a website beginning with 
HTTPS, then traffic to and from that website is encrypted using SSL or TLS.

Now, there are VPN solutions wherein the user simply logs on to a website, one 
that is secured with SSL or TLS, and is then given access to a virtual private net-
work. It is important to know that simply visiting a website that uses SSL or TLS 
does not mean you are on a VPN. As a general rule, most websites, such as banking 
websites, only give you access to a very limited set of data, including your account 
balances. A VPN gives you access to the network, the same or similar access to what 
you would have if you were physically on that network.

The process to connect, authenticate, and establish the VPN is the same as what 
was described in Chap. 13. The difference is that instead of simply getting secure 
access to a website, such as a bank or e-commerce site, the end user gets a virtual 
private network connection to their network.

 Other Secure Communications

There are a variety of additional secure communications that are not considered 
virtual private networks, but they do utilize authentication and encryption to provide 
secure communication with some endpoint. SSL/TLS communication with a secure 
website, described in Chap. 13, would be the most common example of such a com-
munication. In this section we will look at a few additional communication methods.

 SSH

It is common for network administrators to need to utilize some secure communica-
tion channel to a server. Telnet has long been used for this purpose. However, telnet 
sends the data in clear text and is thus insecure. The only way to secure telnet is to 
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first establish a VPN and then connect via telnet through the VPN. Secure Shell 
provides an alternative that is secure, without the need to first establish a VPN.

Unix and Unix-based systems, such as Linux, utilize SSH to connect to a target 
server. The SSH standard uses asymmetric cryptography to authenticate the remote 
computer and, when mutual authentication is required, to authenticate the client. 
SSH was first released in 1995 and was developed by Tatu Ylonen, at Helsinki 
University of Technology. His goal was to replace insecure protocols such as telnet, 
rsh, and rlogin. SSH version 1 was released as freeware. By 1999 OpenSSH had 
been released and is still a very popular version of SSH.

SSH version 2 has an internal architecture with specific layers responsible for 
particular functions.

• The transport layer handles the key exchange and authentication of the server. 
Keys are reexchanged usually after either 1 hour of time has passed or 1 gigabyte 
of data has been transmitted. This renegotiation of keys is a significant strength 
for SSH.

• The user authentication layer is responsible for authenticating the client. There 
are a few ways this can be done: the two most common are password and public 
key. The password method simply checks the user’s password. The public key 
method uses either DSA or RSA key pairs to verify the client’s identity and can 
also support X.509 certificates.

• GSSAPI (Generic Security Service Application Program Interface) authentica-
tion is a variation of SSH authentication to allow for the use of either Kerberos 
or NTLM to authenticate. While not all versions of SSH support GSSAPI, 
OpenSSH does.

SSH can be used to provide secure file transfer with technologies such as SCP 
(secure copy), SFTP (SSH File Transfer Protocol), and FISH (Files transferred 
over SSH).

SSH can be configured to use several different symmetric algorithms, including 
AES, Blowfish, 3DES, CAST128, and RC4. The specific algorithm is configured 
for each SSH implementation.

It should also be noted that while SSH is the preferred secure remote access pro-
tocol of today, this protocol had predecessors. Each of those are no longer consid-
ered security and should not be used, but a brief listing of such algorithms can be 
educational:

• rlogin was used to log in. This protocol operates at the application layer of the 
OSI model and typically uses port 513.

• Telnet is a remote access protocol developed in 1969 and standardized with RFC 
15. Like rlogin, this protocol works at the application layer.

• rsh or remote shell, as the name suggests, was used to execute shell commands 
on remote machine. This is an older Unix utility that operates on network 
port 514.
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 Wi-Fi Encryption

One obvious application of cryptography is encrypting wireless communications. 
Wi-Fi is now ubiquitous. Most homes in North America, Europe, Japan, and much 
of the world have wireless Internet in them. Free Wi-Fi can be found at bars, coffee 
shops, airports, fast-food restaurants, and other locations. For a fee one can even 
access Wi-Fi in flight on many airlines. The pervasiveness of Wi-Fi means that 
securing wireless communications is critical.

 WEP

Wired Equivalent Privacy (WEP) was released in 1999. It uses RC4 to encrypt the 
data and a CRC-32 checksum for error checking. Standard WEP uses a 40-bit key 
(known as WEP-40) with a 24-bit initialization vector to effectively form 64-bit 
encryption. 128-bit WEP uses a 104-bit key with a 24-bit IV(initialization vector). 
Because RC4 is a stream cipher, the same IV must never be used twice. The purpose 
of an IV, which is transmitted as plaintext, is to prevent any repetition, but a 24-bit 
IV is not long enough to ensure this on a busy network. The IV must never be 
repeated (recall the concept of a number only used once).

In August 2001, Scott Fluhrer, Itsik Mantin, and Adi Shamir published a crypt-
analysis of WEP. They showed that due to the improper implementation of RC4 
along with the reuse of initialization vectors, WEP could be cracked with relative 
ease. WEP should never be used today unless there is absolutely no other choice. 
However, the story of WEP illuminates one reason more security professionals need 
to understand cryptography (and thus the reason for the book you are holding in 
your hands right now). WEP was created by a consortium of computer companies, 
each contributing engineers to work on the standard. Clearly, these were skilled 
engineers with a solid understanding of network communications. However, they 
lacked an appropriate knowledge of cryptography, and this led to an insecure wire-
less encryption standard.

 WPA

Wi-Fi Protected Access (WPA) was released in 2003. It was meant as an intermedi-
ate step to make up for the issues with WEP while the full implementation of 802.11i 
(WPA2) was being finalized. One advantage of WPA over WEP is the use of the 
Temporal Key Integrity Protocol (TKIP), a 128-bit per-packet key, which generates 
a new key for each packet. This regeneration of keys makes WPA much stronger 
than WEP.
Note: 802.11 is the IEEE standard for wireless communications. If you have an 
“N” router, what you really have is a router that complies with the 802.11n wireless 
standard. 802.11i is the IEEE standard for wireless security.
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WPA operates in one of two modes:

• WPA-Personal: Also referred to as WPA-PSK (pre-shared key) mode, is designed 
for home and small office networks, and doesn’t require an authentication server. 
Each wireless network device authenticates with the access point using the same 
256-bit key.

• WPA-Enterprise: Also referred to as WPA-802.1x mode, is designed for enter-
prise networks, and requires a RADIUS authentication server. An Extensible 
Authentication Protocol (EAP) is used for authentication. EAP has a variety of 
implementation such as EAP-TLS and EAP-TTLS.

 WPA2

WPA2 is the only Wi-Fi encryption protocol that fully implements the IEEE 802.11i 
standard. It uses a robust set of cryptographic algorithms. Confidentiality is main-
tained through the use of Advanced Encryption Standard (AES) using cipher block 
chaining (CBC). Message integrity is protected via message authentication codes. 
WPA2 allows for the optional use of pairwise master key (PMK) caching and oppor-
tunistic PMK caching. In PMK caching, wireless clients and wireless access points 
cache the results of 802.1X authentications. This improves access time.

The optional use of pre-authentication that allows a WPA2 wireless client can 
perform an 802.1X authentication with other wireless access points in its range even 
though it is still connected to the current WAP. This also speeds connectivity. In 
modern Wi-Fi systems you should always select WPA2 unless you have a compel-
ling reason to use one of the other Wi-Fi protocols. In some cases, you may need to 
support older systems that cannot perform WPA2.

 WPA3

WPA3 is the latest version of WPA and features many security enhancements. WPA 
was announced in January 2018; thus, as of this writing, it is a few years old. WPA3 
has a number of security advantages over previous Wi-Fi security measures. First, 
and perhaps most obvious, is that even on open networks traffic between the client 
and the wireless access point (WAP) is encrypted. WPA3 attackers to interact with 
your Wi-Fi for every password guess they make, making it much harder and time- 
consuming to crack. WPA3 also uses mutual authentication when operating in per-
sonal mode. Specifically, it uses the Simultaneous Authentication of Equals defined 
in IEEE 802.11-2016 standard.
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 Conclusions

The point of this chapter, and the preceding chapter, is to demonstrate common 
applications of the cryptography you have been studying throughout this book. 
There are two sides to cryptography. The first is the understanding of the mathemat-
ics and algorithms being utilized to secure communications. The second is to have 
a working knowledge of the protocols that implement these cryptographic 
algorithms.

In this chapter we explored some of the most common applications of cryptogra-
phy. Virtual private networks (VPNs) were the focal point of this chapter. It is 
important that you understand the authentication methods as well as the VPN pro-
tocols presented. The most important are CHAP, Kerberos, L2TP, and IPSec. You 
were also introduced to other applications of cryptography such as Secure Shell 
(SSH) and Wi-Fi encryption. Both of these are common applications of the crypto-
graphic algorithms you have learned previously in this book.

 Test Your Knowledge

 1. What is a Kerberos principle?
 2. What attack is NTLM particularly susceptible to?
 3. The IPSec standard describes three algorithms used for integrity. What are they?
 4. What phase of IPSec involves the exchange of nonces?
 5. What authentication protocols does PPTP use?
 6. Which authentication method is based on periodically re-requesting a hash 

from the client?
 7. How many steps are in IKE phase 1 in aggressive mode?
 8. What encryption does PPTP use?
 9. What is the major weakness in WEP?
 10. Which Wi-Fi encryption protocol completely implements 802.11i?

References

Davis, C. R. (2001). IPSec: Securing VPNs. McGraw-Hill Professional.
Easttom, C. & Dulaney, E. (2017). CompTIA Security+ Study Guide: SY0-501. Hoboken, New 

Jersey: Sybex Press.
Easttom, C. (2019). Computer Security Fundamentals, 4th Edition. New York City, New York: 

Pearson Press.
Neuman, B. C., & Ts'o, T. (1994). Kerberos: An authentication service for computer networks. 

IEEE Communications magazine, 32(9), 33-38.
Oppliger, R. (2016). SSL and TLS: Theory and Practice. Artech House.
Tiller, J. S. (2017). A technical guide to IPSec virtual private networks. CRC Press.
Yuan, R., & Strayer, W. T. (2001). Virtual private networks: technologies and solutions. Addison- 

Wesley Longman Publishing Co., Inc..

References



329

Chapter 15
Military Applications

 Introduction

It may seem a bit odd to some readers to have a separate chapter specifically for 
military applications of cryptography. After all, isn’t the military the primary user of 
cryptography? Prior to the internet and the advent of e-commerce, this was undeni-
ably accurate. However, for the past several decades, banks have utilized cryptogra-
phy; websites and individuals sending email or securing their hard drives all use 
cryptography. In fact, the civilian applications for cryptography are quite numerous. 
And all that we have discussed thus far in this book can be used for civilian pur-
poses, though some of it (such as AES and GOST) are also used for military 
purposes.

In this chapter, we are going to specifically examine applications of cryptogra-
phy that are exclusively (or nearly so) the domain of militaries, governments, and 
intelligence agencies. While civilian organizations certainly have a need for secure 
communications, the need is more pressing in military and intelligence applications 
for two reasons. The first reason is that the stakes are much higher. Rather than 
money being lost, or embarrassing data being leaked, lives might be lost. In the 
event of armed conflict, a breach of security could provide the opponent with a tacti-
cal, or even strategic, advantage. The second reason is that the cryptographic needs 
of the military are different from civilians, which is the nature of the persons 
attempting to breach security. Militaries are not worried about solo hackers, or simi-
lar threats so much as concerted efforts by trained intelligence personnel to breach 
their communication.

It should be noted that the line between military and law enforcement can some-
times become blurred. The most obvious example is the investigation of terrorist 
organizations. Their activities are pursued not only by law enforcement agencies but 
also by militaries and intelligence agencies. International criminal organizations 
also blur the lines between intelligence agencies and law enforcement. In the latter 
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part of this chapter, we will discuss some items that fit in both criminal and terrorist 
categories.

In this chapter we will be discussing classified equipment and algorithms. 
However, we will only be discussing those aspects that are accessible in the public 
domain. So, you may find some algorithm descriptions much vaguer than the algo-
rithms you have explored earlier in this book. For what should be obvious reasons, 
it is not possible to give complete descriptions of classified algorithms in a pub-
lished book.

 In This Chapter We Will Cover

• NSA and cryptography
• US cryptography laws
• How do other nations use cryptography?
• Cryptography and malware
• TOR

 NSA and Cryptography

It would be impossible to discuss military applications of cryptography without 
discussing the US National Security Agency. In Chap. 2 we briefly discussed the 
history of the NSA up through the cold war. In this section we will first discuss the 
NSA’s modern cryptographic role.

 Security Classifications

Throughout this chapter you will see items designated as “secret” or “top secret.” It 
is important to understand what these terms mean. Each nation has its own classifi-
cation system, and even some agencies within the United States have their own. In 
this chapter the terms used are in reference to the US Department of Defense 
classifications.

The terms secret and top secret have specific meanings. The United States has a 
specific hierarchy of classification. The lowest being confidential. This is informa-
tion that might damage national security if disclosed. Secret information is data that 
might cause serious damage to national security if disclosed. Top-secret information 
is data that could be expected to cause exceptionally grave damage to national secu-
rity if disclosed. There is another designation: Top Secret SCI or Sensitive 
Compartmented Information.
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Each of these clearances requires a different level of investigation. For a secret 
clearance, a complete background check including criminal, work history, credit 
check, and check with various national agencies (Department of Homeland Security, 
Immigration, State Department, etc.) is required. This is referred to as a NACLC or 
National Agency Check with Law and Credit. The check for employment will cover 
the last 7 years. The secret clearance may or may not include a polygraph.

The top-secret clearance is more rigorous, as you may imagine. It uses a Single 
Scope Background Investigation (SSBI). This means a complete NACL for the sub-
ject and their spouse that goes back at least 10 years. It will also involve a subject 
interview conducted by a trained investigator. Direct verification of employment, 
education, birth, and citizenship are also required. At least four references are 
required, and at least two of those will be interviewed by investigators. A polygraph 
is also used. The SSBI is repeated every 5 years.

Sensitive Compartmented Information is assigned only after a complete SSBI 
has been completed. An SCI may have its own process for evaluating access; there-
fore, a standard description of what is involved is not available.

Regardless of the clearance level, in any clearance investigation, should any 
issues arise, the scope will be expanded to resolve those issues. For example, if a 
specific issue arises in regard to the applicant’s education, but that education 
occurred 20 years ago, the investigation would be expanded to address that issue.

 NSA Cryptographic Standards

Since the early days of the National Security Administration (NSA), the agency has 
been responsible for the US government cryptography. The NSA defines crypto-
graphic algorithms in two ways. First, there are four product types labeled type 1, 2, 
3, and 4. Then there are two suites of algorithms named suite A and B.

 Type 1 Products

Type 1 products are those that the NSA endorses for use on classified US purposes 
(Bauer 2013; Davida 1981). This often includes equipment and algorithms that are 
classified, though in some cases classified equipment might use an unclassified 
algorithm.

HAIPE-IS

HAIPE-IS: HAIPE or High Assurance Internet Protocol Encryptor is a device that 
can use both suite A and B algorithms. A HAIPE device is often used as a secure 
gateway to connect two sites. HAIPE-IS is based on IPSec with additional enhance-
ments. The device’s purpose is to encrypt IP traffic. Much of it functions in a 
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manner transparent to the user. There are specialized Cisco routers that incorporate 
HAIPE into them.

HAVE QUICK

HAVE QUICK is actually a frequency hopping algorithm, originally developed for 
UHF radios used between ground and air. Military radio traffic hops through a range 
of frequencies making it very difficult to jam signals. For signals to employ HAVE 
QUICK, it is important that both ends are initialized with an accurate time of day 
(often called TOD). They often also use a word of the day (WOD) that serves a key 
for encrypting transmissions. Finally, they use a NET number to select a specific 
network. HAVE QUICK is not in itself an encryption system; however, many sys-
tems combine HAVE QUICK with encryption in order to provide confidentiality 
and prevent jamming.

SINCGARS

Single Channel Ground and Airborne Radio System (SINCGARS) is a VHF FM 
band radio using from 30 to 87.975 MHz. It is currently used by the US Military as 
well as other countries. It can provide both single frequency and frequency hopping 
modes. Early units did not have built-in crypt and required external cryptographic 
units. Later versions had built in cryptographic units.

There have been many models starting with the RT-1439 produced in 1988. More 
recent developments include the RT-1523G, RT-1730C and E (for naval applica-
tions), and RT-1702G made to be carried by an individual solider. One example of 
these systems is shown in Fig. 15.1.

Fig. 15.1 SINCGARS system
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 Type 2 Products

Type 2 products are those the NSA endorses for sensitive but unclassified purposes. 
The KEA asymmetric algorithm and the SKIPJACK block cipher are examples. 
Equipment includes Fortezza, CYPRIS, etc.

Fortezza Plus

The Fortezza Plus card, also known as the KOV-14 card, is a PC card that provides 
cryptographic functions and keys for secure terminal equipment. The original 
Fortezza Crypto Card was a card that contained a security token. Each user is issued 
a Fortezza card that includes, among other things, private keys used to access sensi-
tive data. The original Fortezza card was developed to use the SKIPJACK algorithm.

Fortezza Plus is an improvement that uses a classified algorithm. Fortezza Plus is 
used with secure terminal equipment for voice and data encryption. There is an even 
more modern improvement on Fortezza Plus called the KSV-21. KSV-21 is back-
ward compatible with the Fortezza Plus card. You can see a Fortezza card shown in 
Fig. 15.2.

Fishbowl

Fishbowl is an entire architecture designed to provide secure voice over IP. Phones 
utilized two layers of encryption. When using the phone on a commercial channel, 
all communications must be sent through a managed server. The entire purpose is to 
allow for secure communications.

Fig. 15.2 Fortezza card
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 Type 3 and 4 Products

Type 3 products are unclassified. Many of the algorithms we have examined in this 
book so far are in this category including DES, AES, SHA, etc. Type 4 products are 
those that the NSA has not endorsed for any government use. These are usually 
products that have such weak encryption as to make them of no practical value.

 Suite A

Suite A algorithms are unpublished, classified algorithms. These are used for highly 
sensitive systems. Suite A algorithms include MEDLEY, BATON, SAVILLE, 
WALBURN, JOSEKI, and SHILLELAGH.

SAVILLE

The SAVILLE algorithm is often used in voice encryption. While its details are 
classified, some indications suggest it may have a 128-bit key. This algorithm was 
purportedly a joint project between NSA and British Intelligence, developed in the 
late 1960s. The VINSON group of voice encryption devices are based on the 
SAVILLE encryption algorithm.

BATON

The BATON algorithm itself is classified. However, the publicly available standard 
PKCS#11 has some general information about BATON. PKCS (public key cryptog-
raphy standards). The PKCS 11 defines an API for cryptographic tokens such as 
those used in smart cards. BATON is a block cipher using a 128 block with a 320-bit 
key. It can also be used in ECB mode with a 96-bit block.

While this was mentioned earlier in this book, it is worth mentioning again here. 
The NSA using classified algorithms is not in conflict with the Kerckhoff principle. 
To begin with the NSA is the largest employer of mathematicians and cryptogra-
phers in the world. They can subject an algorithm to internal peer review that is 
quite exhaustive. Furthermore, Kerckhoff teaches us that the security of a crypto-
graphic mechanism should only depend on the secrecy of the key, not the secrecy of 
the algorithm. The keyword is depend. The suite A algorithms do not depend on the 
secrecy of the algorithm for security. But it does at a bit of additional security.

15 Military Applications



335

 FIREFLY

This is a key exchange protocol (similar in purpose to Diffie-Hellman). It is used in 
specific cryptographic systems, including secure phones.

 Suite B

Suite B algorithms are published. AES is a perfect example. Suite A includes many 
algorithms that you have already seen. These algorithms are all publicly available,and 
many have been fully described in the previous chapters of this book:

Advanced Encryption Standard. If using a 128-bit key, AES is considered secure 
enough for secret information. If using a 256-bit key, AES is considered secure 
enough for top-secret information.

Elliptic Curve Digital Signature Algorithm
Elliptic Curve Diffie-Hellman
Secure Hash Algorithm 2 (SHA2 256, 384, and 512).
Elliptic Curve. ECC with a 384-bit key is considered secure enough for top-secret 

information.

 The Modern Role of the NSA

The NSA has been involved in encrypted communications for military purposes, 
since its inception (Bamford 2018). This involves not only both developing and 
approving cryptography for US government use but also attempting to compromise 
the cryptographic communications of other countries. In the past several years, 
NSA involvement in cyber espionage has increased. The Office of Tailored Access 
Operations is a cyber warfare and intelligence gathering unit within the NSA. One 
of its goals is to infiltrate foreign systems. Edward Snowden revealed that the TAO 
has a suite of software tools used specifically for breaking into systems.

Despite the NSA expanding into areas of cyber espionage and cyber warfare, its 
primary role is still to secure communications. The NSA leads the US government 
in creating and approving cryptography. For example, for the past few years, the 
NSA has been recommending moving from RSA to Elliptic Curve Cryptography. 
And many US government agencies are now using variation of ECC, including ECC 
Digital Signature Algorithm and ECC Diffie-Hellman. Data mining and similar 
roles involve heavy use of both mathematics and computer science, so it is only 
natural that the NSA is involved in those activities.
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 Secure Phones

Obviously, secure communications have been of interest to militaries and intelli-
gence agencies for some time. There have been a number of these through the years, 
some briefly described here:

STU-II (Standard Telephone Unit II) was developed by the NSA. It was used from 
the 1980s and uses a specific algorithm, LPC-10, to digitize the voice.

STU-III was introduced in 1987. It looked like a standard desktop phone. The func-
tion was that one of the callers requested to initiate secure transmission; then the 
callers pressed a button on their respective phones that would begin encrypt-
ing calls.

STE (Secure Terminal Equipment) is designed to replace STU-III. The STE also 
appears like a standard office desk phone. The STE allows a Fortezza Crypto 
Card to be inserted. These cards were described previously in this chapter. The 
device now supports the Secure Communication Protocol.

FASCINATOR is a type 1 encryption model designed to be installed on Motorola 
digital radios. This was developed in the late 1080s and was originally meant to 
be used the DES.

 US Cryptography Laws and Regulations

Export laws regarding cryptography were quite strict up until the year 2000 when 
they have relaxed. Prior to 1996, the US government regulated most cryptography 
exports under the auspices of the Arms Export Control Act and the International 
Traffic in Arms Regulations. This meant that cryptography was treated much like 
weapons and ammunition. The laws did not relax at one time; it was a gradual 
change in the US government attitude toward exporting cryptography.

One of the first steps was made in 1992 when 40-bit RC2 and RC4 were made 
available to export and no longer governed by the State Department, but rather man-
aged by the Commerce Department. When Netscape developed SSL, this required a 
re-examination of cryptographic export laws. The US version used RSA with key 
sizes of 1024 bit and larger, along with 3DES or 128-bit RC3. The international ver-
sion used the 40-bit RC4.

There were various legal challenges to cryptography export rules, throughout the 
early 1990s. The expansion of e-commerce and online banking also required some 
rethinking of these export laws. In 1996, President Bill Clinton signed an executive 
order that moved commercial cryptography off of the munitions list and treated as 
standard commerce. In 1999 regulations were again relaxed allowing export of 
56-bit symmetric keys (DES) and 1024-bit RSA. Currently certain technologies are 
exempted from any export controls:
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• Software or hardware specifically designed for medical use is exempted from 
export controls.

• Cryptography that is specifically used for copyright or intellectual property pro-
tections is exempted from export controls.

In general, as of this writing, in order to export cryptographic products from the 
United States to other nations, one needs a license from the US Commerce 
Department. And, for the most part, these restrictions have been relaxed. For exam-
ple, McAfee’s Data Protection Suite, which includes encryption, has been granted 
an “ENC/Unrestricted” license exception by the US Department of Commerce.

When exporting any software that includes cryptographic functions, it is impor-
tant to check with the appropriate government entity within your country. For exam-
ple, in the United States, in 2014, the company Wind River Systems (a subsidiary of 
Intel) was fined $750,000 for exporting encryption to several countries, including 
China, Russia, and Israel. In the United States, cryptography (as well as many other 
items) for use in government systems is regulated by the Federal Information 
Processing Standard. Civilian use of cryptography is not regulated (except for the 
export of cryptography).

 How Do Other Nations Handle Cryptography?

While the NSA is an obvious starting point for examining government sponsored 
cryptography, it is not the only place. Clearly other nations develop their own cryp-
tographic systems and standards. In some cases, the cryptography developed is 
applied to military purposes and/or classified. In this section we will take a brief 
look at how other nations deal with cryptography.

This information is very important for a few reasons. The first is that you, the 
reader, may not reside within the United States. Furthermore, you may travel abroad 
and be subjected to the cryptography laws of the nations you visit. And should you 
be involved in the creation, design, or sale of cryptographic products, a knowledge 
of international laws is important.

 International Regulations and Agreements

It is important to note that governments have an interest in regulating import and 
export of cryptographic equipment and software. The export issue may be more 
obvious, so let us begin with that. If a given nation has cryptographic software or 
hardware that is highly secure, that government may wish to limit its export to other 
countries. It is not in any government’s interest to hand other nations the means to 
secure their communications. Import restrictions may not be so obvious. One major 
reason for such restrictions is the fear of cryptographic backdoors (see Chap. 18). 
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Essentially there is a concern that if products are imported from foreign nations, 
those products could contain backdoors that subvert security.

 COCOM and Wassenaar

There have been attempts to regulate and standardized the export of various prod-
ucts considered to be of strategic military value. Such products include both muni-
tions and cryptographic products. One early attempt was the Coordinating 
Committee for Multilateral Export Controls (COCOM) which consisted of Australia, 
Belgium, Canada, Denmark, France, Germany, Greece, Italy, Japan, Luxemburg, 
The Netherlands, Norway, Portugal, Spain, Turkey, United Kingdom, and the 
United States (Hunt 1982). Other nations did not join the committee but cooperated 
with the standards it set, those countries are: Austria, Finland, Hungary, Ireland, 
New Zealand, Poland, Singapore, Slovakia, South Korea, Sweden, Switzerland, 
and Taiwan.

In 1991 COCOM decided to allow export of mass-market software that imple-
mented cryptography. In 1995 there was a successor to COCOM named Wassenaar 
Arrangement on Export Controls for Conventional Arms and Dual-Use Goods and 
Technologies (often simply called the Wassenaar agreement).
Note: The name comes from the town where an original agreement was reached 
in 1995. The town is Wassenaar and is a suburb of the Hague in the Netherlands. As 
of this writing, there are 41 countries that have signed the Wassenaar agreement.

This agreement followed most of the COCOM recommendations but provided a 
specific exception for the use of mass-market and public domain cryptographic soft-
ware. There was also a personal use exception that allowed the export of products 
that were for the user’s personal use (i.e., encrypting their laptop hard drive).

In 1998 the Wassenaar agreements were revised to allow (Shehadeh 1999) the 
following:

• Export for all symmetric cryptography products using keys up to 56 bits
• Export for all asymmetric cryptography products using keys up to 512 bits
• Export for elliptic curve-based asymmetric products using keys up to 112 bits
• Export of mass market products (software and hardware) that use up to 64-bit keys

Note:  In 2000 the Wassenaar agreements lifted the 64-bit limit for mass-market 
cryptographic products.

 Specific Governments

The European Union regulates cryptography exports under the “Council Regulation 
(EC) No 1334/2000 setting up a Community regime for the control of exports of 
dual-use items and technology.” The EU essentially follows the Wassenaar agree-
ment with a few exceptions:

15 Military Applications



339

• Export from one EU member nation to another is relaxed, with the notable excep-
tion of cryptanalysis products.

• Exceptions can be applied for exporting to certain nations including Canada, 
Australia, Japan, and the United States.

Australia regulates the export of cryptographic products via the “Defense and 
Strategic Goods List.” What is notable about this regulation is that it has a specific 
exemption for public-domain software. In 2001 Australia passed the “Cybercrime 
Act, No. 161, 2001” which included a clause requiring the release of encryption 
keys or decrypting the data if a court order was issued.

Australia passed its Defense Trade Control Act of 2012. This act describes “dual- 
use goods” (those products with both military and civilian usage) and has segments 
on electronics and telecommunication. However, its requirements on encryption are 
not that clear and some fear that it could lead to criminalizing the teaching of 
cryptography.

China first implemented an order “Commercial Use Password Management 
Regulations” in 1999 that requires a license from the government in order to import 
or export cryptographic functions. In 2000 the government of China clarified this 
indicating that the order refers to products that have cryptography as a core func-
tion. Products such as mobile phones and web browsers, for which cryptographic 
functions are ancillary, are exempted.

Several nations require a license in order to utilize encrypted communications. In 
Iran a license is required in order to use cryptography for any communications. 
Israel requires a license from the government to export or import cryptographic 
products. Pakistan requires government approval for the sale or use of cryptography 
products.

India, under the Information Technology Act 2000, does not require a license but 
does require that any organization or individual comply with any agency of the 
government to assist in decrypting data if requested.

While Russia has signed the Wassenaar agreement, its laws go a bit further. A 
license is required to import cryptography products manufactured outside of Russia. 
Exporting cryptography requires government approval.

Belarus has strict regulations regarding the import and export of cryptography. A 
license is required for the design, production, sale, repair, and operation of cryptog-
raphy. Belarus, as well as other countries, may not recognize a personal use 
exception.

Many of us use encrypted hard drives on our personal computers. When travel-
ling internationally, it is recommended that you check the laws of the countries you 
will be travelling through. It may even be necessary for you to take a separate lap-
top, one without encryption.

Belgium passed a law “the Law on information-science crime” in 2000. Article 
9 of that law allows a court to issue an order to someone that is reasonably suspected 
of having “special knowledge” of encryption services, to give information to law 
enforcement on how to decrypt data. This means that if a suspect has encrypted 
data, the court can order the vendor of the cryptography product to provide 
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assistance in decrypting the data. Failure to comply can result in 6 to 12 months of 
incarceration.

There has been a great deal of debate regarding how to handle evidence that has 
been encrypted by parties suspected of criminal activity. Currently the United States 
has no laws specifically compelling anyone to reveal encrypted data or to assist in 
decrypting the data. However, several countries do. And there has been discussion 
of having such laws in the United States.

 Cryptography and Malware

Malware, even cryptographic malware, may seem to be an unrelated topic for this 
chapter. How does malware relate to military applications of cryptography? As 
cyber warfare becomes increasingly real, malware has become a common weapon 
used by governments and other entities. Malware that utilizes cryptography in one 
form or another has become increasingly common.

The term cryptovirology is sometimes applied to the study of how cryptography 
is combined with malware. One application of cryptography to malware is the use 
of encryption to protect the virus from detection. This is one example of what is 
called an armored virus. One of the first armored viruses was named Cascade and 
was discovered in the late 1980s. This clearly demonstrates that using encryption to 
bolster viruses is not a new technique.

Malware encryption is done not only to prevent detection but also to make it dif-
ficult to analyze the malware. To use encryption the malware needs at least three 
components:

• The actual malware code (which is encrypted)
• A module to perform encryption/decryption
• A key

Cryptoviral extortion, or ransomware, is another application of cryptovirology. 
Ransomware is malware that, once it has infected the target machine, encrypts sen-
sitive files on that machine. The machine user is then sent a ransom message, 
demanding money for the attacker to decrypt the files. The one-half virus was an 
early virus that would encrypt certain files. However, it did not demand ransom. 
That virus was first reported in 2007. Virus.Win32.Gpcode.ag used a 660-bit ver-
sion of RSA to encrypt certain files. It then asked for a ransom. If the ransom was 
paid, the victim was sent a key.

One of the most widely known examples is the infamous CryptoLocker. It was 
first discovered in 2013. CryptoLocker utilized asymmetric encryption to lock the 
user’s files. Several varieties of CryptoLocker have been detected.

CryptoWall is a variant of CryptoLocker first found in August of 2014. It looked 
and behaved much like CryptoLocker. In addition to encrypting sensitive files, it 
would communicate with a command and control server and even take a screenshot 
of the infected machine. By March of 2015, a variation of CryptoWall had been 
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discovered which is bundled with the spyware TSPY_FAREIT.YOI and actually 
steals credentials from the infected system, in addition to holding files for ransom.

The viruses mentioned so far are just a sample of viruses that use encryption. The 
purpose of this chapter is not to educate you on viruses; however, the line between 
viruses and cryptography is becoming blurred. As you have seen already, cryptog-
raphy can be used with malware to create both new forms of malware (ransomware) 
and enhanced viruses (armored viruses).

 Weaponized Malware

Most analysts believe that the Stuxnet and Flame viruses were designed for the 
express purpose of cyber espionage and/or sabotage of the Iranian government. 
Moving forward one should expect to see more examples of malware-based attacks 
and state-sponsored malware espionage. A variety of nations have either already 
been found to have been engaged in such activities or are strongly suspected of 
being engaged in such activities.

As our first example of cyber warfare via malware infections, consider the 
Stuxnet virus. Stuxnet first spread via infected thumb drives; however, once it was 
on an infected machine, it would spread over the entire network and even over the 
internet. The Stuxnet virus then searched for a connection to a specific type of pro-
grammable logic controller (PLC), specifically the Siemens Step7 software. Once 
that particular PLC was discovered, Stuxnet would load its own copy of a specific 
DLL (Dynamic Linked Library) for the PLC, in order to monitor the PLC and then 
alter the PLC’s functionality. It was meant to only target centrifuge controllers 
involved in Iran’s uranium enrichment. Clearly this was meant to be a targeted 
attack. However, it spread beyond the intended targets. While many reported no 
significant damage from Stuxnet, outside the Iranian reactors, it was detected on 
numerous machines.

While Stuxnet’s targeting was clearly inadequate, its design was a classic virus 
design. Stuxnet has three modules: a worm that executes routines related to the 
attack, a link file that executes the propagated copies of the worm, and a rootkit 
responsible for hiding files and processes, with the goal of making it more difficult 
to detect the presence of Stuxnet. It is not the purpose of this paper to explore the 
intricacies of Stuxnet; rather Stuxnet is introduced as both an example of state- 
sponsored malware attacks and at least an attempt to target such attacks.

Our second exemplary malware is the Flame virus. The Flame virus was first 
discovered in May 2012 in Iran. It was spyware that recorded keyboard activity and 
network traffic, took screen shots, and is even reported to record Skype conversa-
tions. It also would turn the infected computer into a Bluetooth beacon attempting 
to download information from nearby Bluetooth-enabled devices.

Kaspersky labs reported that the Flame file contained an MD5 Hash that only 
appeared on machines in the Middle East. This indicates the possibility that the 
virus authors intended to target the malware attack to a specific geographical region. 
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The Flame virus also appears to have had a kill function allowing someone control-
ling it to send a signal directing it to delete all traces of itself. These two items 
indicate an attempt to target the malware, though like Stuxnet, the outcome of that 
targeting was less than optimal.

 Cyber Warfare

Cyber warfare may seem like a topic far removed from cryptography. While a com-
plete discussion of cyber warfare is beyond the scope of this text, it is appropriate to 
briefly introduce the topic. As you have already seen, weaponized malware is an 
element of cyber warfare, and cryptovirology certainly has a role to play.

Let us begin by defining what we mean by cyber warfare. According to the Rand 
Corporation “Cyber warfare involves the actions by a nation-state or international 
organization to attack and attempt to damage another nation’s computers or infor-
mation networks through, for example, computer viruses or denial-of-service 
attacks.” It is important to realize that cyber warfare is not just a topic for science 
fiction. Here are a few real-world incidents:

• 2008 CENTCOM is infected with spyware. CENTCOM or Central Command is 
the US Army entity that is responsible for command and control throughout the 
middle east and central Asia. That means that during the conflicts in Iraq and 
Afghanistan, spyware was infecting a critical system for at least a certain period 
of time.

• In 2009 a drone video feed is compromised. In Afghanistan, an unknown attacker 
was able to tap into the video feed of a US drone and see the video feed.

• On December 4, 2010, a group calling itself the Pakistan Cyber Army hacked the 
website of India’s top investigating agency, the Central Bureau of 
Investigation (CBI).

• In December of 2009, Hackers broke into computer systems and stole secret 
defense plans of the United States and South Korea. Authorities speculated that 
North Korea was responsible. The information stolen included a summary of 
plans for military operations by South Korean and US troops in case of war with 
North Korea, though the attacks traced back to a Chinese IP address.

• The security firm Mandiant tracked several APTs over a period of 7 years, all 
originating in China, specifically Shanghai and the Pudong region. These APTs 
were simply named APT1, APT2, etc. The attacks were linked to the UNIT 
61398 of China’s military. The Chinese government regards this units’ activities 
as classified, but it appears that offensive cyber warfare is one of its tasks. Just 
one of the APTs from this group compromised 141 companies in 20 different 
industries. APT1 was able to maintain access to victim networks for an average 
of 365 days, and in one case, for 1764 days. APT1 is responsible for stealing 6.5 
terabytes of information from a single organization over a 10-month time frame.
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• The BlackEnergy malware explicitly affected power plants. The malware is a 
32-bit Windows executable. BlackEnergy is a versatile malware, capable of ini-
tiating multiple attack modalities. It was a multifaceted malware that included 
distributed denial of service (DDoS) attacks. BlackEnergy also can deliver 
KillDisk, an aspect that would erase every file on the target system. In December 
2015, a substantial region of the Ivano-Frankivsk province in Ukraine had power 
shutdown for approximately 6  hours due to the BlackEnergy malware. The 
attacks have been attributed to a Russian cyber espionage group named 
Sandworm.

• In 2015 half of the nation of Turkey had a 12-hour power outage attributed to 
Iran. The attack was by APT group MuddyWater that has ties to Iran’s Ministry 
of Intelligence and Security. They used malicious PDFs and Office documents as 
their main attack vector.

• In 2016 the hacker group Shadow Brokers appeared. They publish what they 
claim are hacking tools they stole from the NSA. The most famous was the tool 
EternalBlue which was extremely effective at breaching Windows 7 machines.

• The Shamoon virus first hit Saudi Aramco in 2012 and made a resurgence in 
2017. Shamoon functions as spyware but also deletes files following it has 
uploaded them to the attacker. The malware attacked Saudi Aramco computers. 
The group named “Cutting Sword of Justice” took credit for the attack.

• In 2019 Russia accuses the United States of planting malware on Russia’s 
power grid.

• In 2022 the United States claimed it removed malware around the world to pre-
vent Russian cyberattacks. The malware would allow GRU (Russian Military 
Intelligence) to create and control botnets.

Each of these incidents reveal that cyber warfare and cyber espionage are indeed 
realities. However, the latter demonstrates the role cryptography plays in at least 
some of cyber warfare. For example, in the drone incident of 2008, it is likely that 
the encrypted communications with the drone were compromised in some fashion. 
At a minimum, each of these incidents reveal the need for robust, secure 
communications.

 TOR

TOR, or the Onion Router, may not seem like a military application of cryptogra-
phy; however, it is appropriate to cover this topic in this chapter for two reasons:

 1. The TOR project is based on an earlier onion routing protocol developed by the 
US Navy, specifically for military applications. So, TOR is an example of mili-
tary technology being adapted to civilian purposes.

 2. TOR is used by privacy advocates every day, but it is also used by terrorists’ 
groups and organized criminals.
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TOR consists of thousands of volunteer relays spread around the world. Each 
relay uses encryption to conceal the origin and even final destination of the traffic 
passing through it. Each relay is only able to decrypt one layer of the encryption, 
revealing the next stop in the path. Only the final relay is aware of the destination, 
and only the first relay is aware of the origin. This makes tracing network traffic, 
practically impossible.

The basic concepts for onion routing were developed at the US Naval Research 
Laboratory in the mid-1990s and later refined by the Defense Advanced Research 
Projects Agency (DARPA). The goal was to provide secure intelligence communi-
cation online. Onion router communication uses TLS (covered in depth in Chap. 13) 
and ephemeral keys. Ephemeral keys are so called because they are created for one 
specific use and then destroyed immediately after that use. The symmetric key often 
used is 128-bit AES.

While the TOR network is a very effective tool for maintaining privacy, it has 
also become a way to hide criminal activity. There exist markets on the TOR net-
work that are used expressly to sell and distribute illegal products and services. 
Stolen credit card numbers and other financial data are a common product on TOR 
markets. A screenshot of one of these markets is depicted in Fig. 15.3.

Even more serious criminal activity can be found on TOR. There are places that 
distribute child pornography, weapons, and others that even purport to perform mur-
der for hire. Drug sales on the dark web are quite common and are shown in 
Fig. 15.4.

More closely related to military and intelligence operations, it has been reported 
that various terrorists’ groups have used TOR for communication and recruitment. 
TOR’s anonymity makes it a perfect venue for terrorist communications. The crimi-
nal activity on TOR also provides a means for fundraising for terrorist 
organizations.

In 2015, the founder of Silk Road, Ross Ulbricht, the most well-known of the 
TOR markets, was sentenced to life in prison. Many people on various news outlets 

Fig. 15.3 Stolen financial data market on TOR
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Fig. 15.4 drug sales on the dark web

are claiming this sentence is draconian. And one can certainly argue the merits of 
any sentence. But allow me to give you food for thought. Silk Road was not simply 
a venue for privacy, or even for marijuana exchanges. It became a hub for massive 
drug dealing including heroin, cocaine, meth, etc. It was also used to traffic arms, 
stolen credit cards, child pornography, and even murder for hire. The venue Mr. 
Ulbricht created was a hub for literally thousands of very serious felonies.

 TOR Technical Details

The Onion Router network uses a number of nodes to create the anonymous net-
work. Each type of node has a specific purpose. The nodes are described here:

 1. Entry node: It is the first node where the traffic enters the tor network. Any relay 
node can act as an entry node. There is no difference in the function of the entry 
and relay nodes.

 2. Relay node: Relay nodes accept tor connections, unwrap the additional layer of 
the Perfect Forward Secrecy, and relay the connection to the next node in the 
forward path chain. Default configurations have set only one node in the middle 
of the tor circuit. But you can increase the number as desired.
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 3. Exit node: This is the node that communicates to the destination. Again, this 
node is no different from the other nodes, but it communicates to the destination 
server and forwards the traffic out of the tor network. There are a number of 
websites that advertise exit nodes. A few are listed here:

 1. https://www.dan.me.uk/tornodes
 2. https://check.torproject.org/cgi- bin/TorBulkExitList.py?ip=1.1.1.1
 3. https://torstatus.blutmagie.de/This site has additional data.
 4. https://www.bigdatacloud.com/insights/tor- exit- nodes This site also has geo-

location of exit nodes.

 4. Advertised relay nodes: These nodes are called advertised nodes as they are 
listed in the directory servers.

 5. Bridge nodes: Bridge nodes are like any other nodes, with one difference is that 
these are not advertised, which mean bridge nodes are not listed in the directory 
servers.

 Conclusions

In this chapter we have examined various military and government applications of 
cryptography. We have looked at the NSA classifications of cryptography as well as 
specific military applications. We also examined various laws regarding cryptogra-
phy for the United States as well as other countries. The examination of cryptogra-
phy and malware covered cryptovirology and weaponized malware. As cyber 
warfare becomes more prevalent, it is likely that cryptovirology will play an impor-
tant part as one of the weapons of choice in cyber war.

 Test Your Knowledge

 1. What suite of algorithms does the NSA designated as classified?
 2. Which products are used for classified purposes only?
 3. Which products are used for sensitive but unclassified purposes?
 4. What key length of ECC is considered adequate for top-secret information?
 5. What key length of AES is considered adequate for top-secret information?
 6. What government agency currently regulates the export of cryptography from 

the United States?
 7. What was the successor to COCOM?
 8. ____________ is the study of how cryptography is combined with malware.
 9. Software that encrypts data and only provides the decryption key once a fee has 

been paid is called _____________.
 10. What symmetric algorithm does TOR use?
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Chapter 16
Steganography

 Introduction

Strictly speaking, steganography is not cryptography, but the topics are often cov-
ered in the same course or textbook. The reason being that both technologies seek 
to prevent unwanted parties from viewing certain information. Cryptography tries to 
accomplish this via applying mathematics to make the message undecipherable 
without the key. Steganography attempts to secure data by hiding it in other innocu-
ous media. In this chapter we will examine how steganography is done, the history 
of steganography, and how to detect steganography.

 In This Chapter We Will Cover

• Historical steganography
• Steganography tools
• How steganography works

 What Is Steganography?

Steganography is the art and science of writing hidden messages in such a way that 
no one, apart from the sender and the intended recipient, suspects the existence of 
the message, a form of security through obscurity. Often, the message is hidden in 
some other file, such as a digital picture or audio file, so as to defy detection (Easttom 
2019). The advantage of steganography, over cryptography alone, is that messages 
do not attract attention to themselves. If no one is aware the message is even there, 
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then they won’t even try to decipher it. In many cases messages are encrypted and 
hidden via steganography.

The most common implementation of steganography utilizes the least significant 
bits in a file in order to store data. By altering the least significant bit, one can hide 
additional data without altering the original file in any noticeable way. There are 
some basic steganography terms you should know (Easttom and Dulaney 2017).

• Payload is the data to be covertly communicated. In other words, it is the mes-
sage you wish to hide.

• The carrier is the signal, stream, or data file into which the payload is hidden.
• The channel is the type of medium used. This may be still photos, video, or 

sound files.

The most common way steganography is accomplished today is by manipulating 
the least significant bits in a graphics file. In every file there are a certain number of 
bits per unit of the file. For example, an image file in Windows is 24 bits per pixel. 
There are 8 bits for red, 8 bits for green, and 8 bits for blue. If you change the least 
significant of those bits, then the change is not noticeable with the naked eye. And 
one can hide information in the least significant bits of an image file.

Let us walk through the basic concept of altering the least significant bit. Consider 
the picture of this book’s author, shown in Fig. 16.1.

If one selects a single pixel, in this case denoted by the area in the lower right- 
hand part of the image, circled in white, then you can see the RGB (red—green—
blue) settings in Fig. 16.2.

The settings are red, 174; green, 211; and blue, 253. Let’s take one of those, red, 
and change just 1 bit, the least significant bit. Decimal value 174, when converted to 
binary, is 1010 1110. So, let us change that last bit, resulting in 1010 1111, which 
would be 175 in decimal. In Fig. 16.3 you can see a comparison of what changes 
occur by changing 1 bit of that pixel.

Fig. 16.1 This book’s 
cover

16 Steganography
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Fig. 16.2 Selecting a single pixel

Fig. 16.3 1 bit changed in a picture

What Is Steganography?
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As you can see, it is impossible to tell a difference. Given that the average picture 
is made of tens of thousands of pixels, one could change the least significant bit of 
thousands of these pixels and in those LSBs store some covert message. That mes-
sage would be undetectable to the human eye. This is the basic concept behind 
modern steganography.

 Historical Steganography

In modern times, steganography means digital manipulation of files to hide mes-
sages. However, the concept of hiding messages is not new. There have been many 
methods used throughout history. The ancient Chinese wrapped notes in wax and 
swallowed them for transport. If the messenger was intercepted in transit, no matter 
how thoroughly he was searched, the message could not be found (Kahn 1996).

In ancient Greece a messenger’s head might be shaved, a message written on his 
head, and then his hair was allowed to grow back. Obviously, this method had some 
significant drawbacks. It took time to prepare a message for transport. This method 
was reported by the Greek historian Herodotus, who claimed that this was used to 
warn Greece of the impending Persian invasion.

Another method used by ancient Greeks was to scrape the wax off of a wooden 
folding table and then write on the wood. New wax was then applied covering up 
the message. The recipient needed to remove the wax to see the message. This was 
reportedly used by a Greek named Demaratus, who warned the Spartans of the 
impending invasion by Xerxes. Aeneas Tacticus lived in Greece, in the fourth cen-
tury B.C.E (Easttom 2019). He wrote on the art of war and is considered one of the 
first to provide a guide for secure military communications. Among his writings on 
secure military communications is this excerpt:

Those who employ traitors must know how they should send in messages. Dispatch them, 
then, like this. Let a man be sent openly bearing some message about other matters. Let the 
letter be inserted without the knowledge of the bearer in the sole of his sandals and be sewed 
in, and, to guard against mud and water, have it written on beaten tin so that the writing will 
not be effaced by the water. And when he reaches the one intended and goes to rest for the 
night, this person should pull out the stitches of the sandals, take out and read the letter, and, 
writing another secretly, let him send the man back, having dispatched some reply and hav-
ing given him something to carry openly. For in this way no one else, not even the messen-
ger, will know the message (Siege Defense by Aeneas Tacticus).

Among Aeneas’ innovations was the astragal. It was essentially a hollow sphere 
with holes representing letters. String was threaded through the holes, the order of 
the strings passage through various holes, spelled out words.

In 1499 Johannes Trithemius wrote a book entitled Steganographia. It is the first 
known use of the term steganography (Easttom and Dulaney 2017). The book was 
actually a three-volume series and was about the occult. However, hidden within 
that text was the text concerning cryptography and steganography. Aside from his 
work with steganography, Trithemius was a very interesting person. He was not 
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Fig. 16.4 The Cardano grill

only a Benedictine abbot but also a cryptographer and involved in the occult. He 
wrote extensive histories; however, it was later discovered that he had inserted sev-
eral fictional portions into his historical works.

Another interesting form of hiding messages was the Cardan Grille, invented and 
named after Girolama Cardano. Essentially an innocuous message is written on 
paper, but when the grill is laid over the paper, it has specific holes revealing certain 
letters, which combine to form a different message, the hidden message. You can 
see an example of this technique in Fig. 16.4.

During World War II, the French Resistance sent messages written on the backs 
of couriers using invisible ink. If the courier was intercepted, even a strip search 
would not reveal the message. When the courier reached his or her destination, the 
message was retrieved.

Microdots are images/undeveloped film, the size of a typewriter period, and 
embedded in innocuous documents. These were said to be used by spies during the 
Cold War. With this technique, a very close examination of a document, using a 
magnifying class, might reveal the microdot. However, the detection process was so 
tedious that detection was highly unlikely.

Also, during the Cold War, the US Central Intelligence Agency used various 
devices to hide messages. For example, they developed a tobacco pipe that had a 
small space to hide microfilm but could still be smoked.

 Methods and Tools

As was stated earlier in this chapter, using the least significant bit is the most com-
mon method for performing steganography. However, it is not the only method. As 
you have seen already, historically, there have been a number of methods that pre-
date computers. Even in this digital age, there are alternative ways to hide data and 
different carrier files. Most books and tutorials focus on hiding data in an image. 
However, one can also hide data in a wave file, video file, or, in fact, any sort of digi-
tal file.

Whatever technique one uses for steganography, there exist the issues of capacity 
and security. Capacity refers to the amount of information that can be hidden. 
Obviously, there is a relationship between the size of the carrier file and the size of 
data that can be hidden in that carrier file. Security is how well hidden the data is 
and how easy it is to detect the hidden message using steganalysis techniques, which 
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we will examine later in this chapter. As you will see, some tools do a better job of 
providing security than do other tools. There are a number of tools available for 
implementing steganography. Many are free or at least have a free trial version. In 
the next section we will examine a few such tools.

 Classes of Steganography

While LSB is the most common method, there are three general classes of stegano-
graphic methods. These are injection based, substitution based, and genera-
tion based.

• Injection-based techniques hide data in sections of file that are not processed by 
the processing applications. For example, comment blocks of an HTML file. 
This does change file size.

• Substitution-based techniques literally substitute some bits of the data to be hid-
den for some bits of the carrier file. This replaces bits in the carrier file and does 
not increase file size. The least significant bit (LSB) method is the most obvious 
example of a substitution method.

• There is a third technique, called the generation technique. Essentially, the file 
that is to be hidden is altered to create a new file. There is no carrier file. 
Obviously, there are limits to what one can do with generation techniques.

In addition to classifying steganography by the techniques used to hide data, it is 
also possible to categorize steganographic techniques based on the medium used. 
As was previously stated, hiding files in images is the most common technique, but 
literally any medium can be used.

 Discrete Cosine Transform

The discrete cosine transform (DCT) is referenced throughout the literature on steg-
anography. It has been applied to image steganography, audio steganography, and 
video steganography. So, it is important that you at least have some familiarity with 
this technique. DCT takes a finite sequence of data points and expresses them in 
terms of the sum of cosine functions oscillating at different frequencies. DCTs 
express a function or a signal in terms of a sum of sinusoids with different frequen-
cies and amplitudes. A sinusoid is a curve similar to the sine function but possibly 
shifted in phase, period, amplitude, or any combination thereof.

DCTs work on a function only at a finite number of discrete data points. DCTs 
only use cosine functions (DFTs can use cosine or sine functions). There are varia-
tions of the DCT, simply termed as DCT-I, DCT-II, DCT-III, DCT-IV, DCT-V, 
DCT-VI, DCT-VII, and DCT-VIII (i.e., 1 through 8). DCTs are a type of Fourier- 
related transforms that are similar to the discrete Fourier transform (DFT). DFTs 
convert a list of samples of a function, which are equally spaced, into a list of coef-
ficients, ordered by their frequencies. This is a somewhat simplified definition. A 
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full explanation is beyond the scope of this text, but you may wish to consult one of 
these resources:

http://www.dspguide.com/ch8.htm
http://www.robots.ox.ac.uk/~sjrob/Teaching/SP/l7.pdf
http://mathworld.wolfram.com/DiscreteFourierTransform.html

It is not imperative that you master DCTs to understand steganography. However, 
a general understanding of the concept is necessary, as DCTs are frequently used to 
implement steganography. If you aspire to develop your own steganographic tool or 
technique, a deeper understanding of DCTs will be required.

 Steganophony

Steganophony is a term for hiding messages in sound files (Artz 2001). This can be 
done with the LSB method or other methods, such as echo hiding. This method adds 
extra sound to an echo inside an audio file, and that extra sound conceals informa-
tion. Audio steganography/steganophony can use the LSB method to encode hidden 
data. Usually, audio files, such as MP3 or WAV files, have sufficient size to hide 
data. MP3 files are often used with mobile music devices, typically are 4 MB to 
10 MB in size. This provides a large number of bytes wherein the least significant 
bit can be manipulated. If one begins with a 6 MB file and uses only 10% of the 
bytes in that file, storing data in the least significant bits allows for approximately 
600 K bits or 75,000 bytes. To give some perspective on how much data this encom-
passes, a typical 20+ page Word document will occupy far less than 75,000 bytes.

Another method used with steganophony is parity coding. This approach divides 
the signal into separate samples and embeds the secret message into the parity bits. 
Phase coding can also be used to encode data. This is a bit more complex but very 
effective. Jayaram, Ranganatha, and Anupam describe this method as follows:

The phase coding technique works by replacing the phase of an initial audio seg-
ment with a reference phase that represents the secret information. The remaining 
segments phase is adjusted in order to preserve the relative phase between segments. 
In terms of signal to noise ratio, Phase coding is one of the most effective coding 
methods. When there is a drastic change in the phase relation between each fre-
quency component, noticeable phase dispersion will occur. However, as long as the 
modification of the phase is sufficiently small, an inaudible coding can be achieved

This method relies on the fact that the phase components of sound are not as 
perceptible to the human ear as noise is. Phase coding is explained in the following 
procedure:

(a)  Divide an original sound signal into smaller segments such that lengths are 
of the same size as the size of the message to be encoded.

(b) Matrix of the phases is created by applying Discrete Fourier Transform (DFT).
(c) Calculate the Phase differences between adjacent segments.
(d)  Phase shifts between adjacent segments are easily detectable. It means, we 

can change the absolute phases of the segments but the relative phase differ-
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ences between adjacent segments must be preserved. So, the secret informa-
tion is inserted only in the phase vector of the first signal segment as follows

(e)  Using the new phase of the first segment a new phase matrix is created and 
the original phase differences.

(f)  The sound signal is reconstructed by applying the inverse Discrete Fourier 
Transform using the new phase matrix and original magnitude matrix and 
then concatenating the sound segments back together.

The receiver must know the segment length to extract the secret information 
from the sound file.

Then the receiver can use the DFT to get the phases and extract the secret 
information.

 Video Steganography

Information can also be hidden in video files (Fridrich 2009). There are various 
methods to accomplish this. Certainly, the LSB method can be used. Discrete cosine 
transform is often used for video steganography. This method alters values of cer-
tain parts of the individual frames. The usual method is to round up the values.

 Tools

There are a number of steganography tools available on the Internet, either for free 
or very low cost.

 Quick Stego/QuickCrypto

This tool has been available as a free download from the Internet, for many years. The 
name has now changed to QuickCrypto, and new features have been added. You can 
download the product from http://quickcrypto.com/download.html. You can see the 
main screen in Fig. 16.5 with the steganography options highlighted via red rectangles.

When you click on the menu hide file or click the Stego button at the bottom of 
the screen (both are highlighted in Fig. 16.5), you can find the original QuickStego 
product, shown in Fig. 16.6.

You will notice you can either type in text you wish to hide or open a text file to 
import that text to hide. For this demonstration I will type in a message and then 
select “Open File” in the carrier file section to select a carrier file. This is shown in 
Fig. 16.7.

The next step is to click the “Hide Data” button. If you look in the folder where 
you found the carrier file, you will see a new file named “carrierfilename 2.” You can 
open the original and the new file side by side, and you won’t be able to see any 
difference. The QuickStego tool only works with hiding text files, not hiding other 
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Fig. 16.5 QuickCrypto main screen

Fig. 16.6 QuickStego main screen
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Fig. 16.7 Selecting a carrier file with QuickStego

images. However, due to that limitation, the ratio of hidden data to carrier file is very 
large, making detection more difficult.

 InvisibleSecrets

InvisibleSecrets is a very popular tool for steganography. You can download a trial 
version of InvisibleSecrets from http://www.invisiblesecrets.com/download.html. 
This tool has a number of capabilities including encryption as well as steganogra-
phy. The main screen is shown in Fig. 16.8 with the steganography option high-
lighted with a red rectangle.

We will walk through the basic process of steganographically hiding data in an 
image using InvisibleSecrets. First, simply click on the hide button highlighted in 
Fig. 16.8. That will take you to the screen, shown in Fig. 16.9, where you select the 
file or files you wish to hide. Keep in mind that the smaller the ratio of hidden files 
to carrier file, the easier it will be to detect. So, for example, if you choose to hide 
five JPEGs in one JPEG carrier file, it will most likely be detectable. For this dem-
onstration I will select only one text file.

After clicking the next button, you will be prompted to select a carrier file. One 
of the features that makes InvisibleSecrets a preferable tool is that it gives you mul-
tiple options for carrier file, including HTML or WAV (audio) files. You can see this 
in Fig. 16.10, though for this demonstration I am selecting a JPEG image file.

After selecting the carrier file, you can enter a password that will be required to 
extract the hidden files. You can also choose to encrypt your hidden files with a 
number of symmetric algorithms, including AES and Blowfish; this is shown in 
Fig. 16.11.
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Fig. 16.8 InvisibleSecrets main screen

Finally, you must select the name of the resulting file (carrier with hidden files). 
You cannot select file type here; the final file will be the same type of file as the car-
rier file you selected previously. You can see this in Fig. 16.12.

InvisibleSecrets is not the only steganography tool available. The Internet is 
replete with free or low-cost steganography tools. However, InvisibleSecrets is rela-
tively sophisticated, supports multiple carrier types, and integrates encryption, mak-
ing it one of the better low-cost steganography tools.

 MP3 Stego

This is another tool; one you can download for free from http://www.petitcolas.net/
fabien/steganography/mp3stego/. This tool is used to hide data into MP3 files. From 
the MP3 Stego readme file are these instructions on how to encode or decode data 
into a WAV or MP3 file.

• encode -E data.txt -P pass sound.wav sound.mp3 compresses sound.wav (the 
carrier file) and hides data.txt. This produces the output called sound.mp3. The 
text in data.txt is encrypted using the password “pass.”
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Fig. 16.9 Selecting files to hide with InvisibleSecrets

• decode -X -P pass sound.mp3 uncompresses sound.mp3 into sound.mp3.pcm 
and attempts to extract hidden information. The hidden message is decrypted, 
uncompressed, and saved into sound.mp3.

You can see this is a very simple program to use and is freely available on the 
Internet. It works entirely from the command line and only works with sound files 
as the carrier file. However, given the ubiquitous nature of sound files, this tool is a 
good choice for hiding data in a secure manner.

 OpenStego

OpenStego is a simple tool, free download (you can get it from http://openstego.
sourceforge.net/), and easy to use. The main screen simply directs the user to select 
(a) the file to hide, (b) the carrier file, (c) the resulting file, and (d) a password. Then, 
click the “Hide Data” button. This is shown in Fig. 16.13.

 DeepSound

DeepSound is designed for hiding data in sound files. It is a free download from 
http://jpinsoft.net/. The main screen is shown in Fig. 16.14.
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Fig. 16.10 Selecting a carrier file with InvisibleSecrets

It is an easy to use, very intuitive tool. It can work with MP3, WAV, WMA, and 
other sound files. It takes just a few seconds to hide a document, image, or any other 
file into a music file.

 Other Tools

A simple search of the Internet for steganography tools will reveal a host of free or 
low-cost steganography tools. Some are general purposes, much like InvisibleSecrets, 
others have narrowly defined functionality. This proliferation of steganography 
tools means that this technology is widely available. And one need not have an 
understanding of steganographic methods or of programming in order to use steg-
anography. A few of the widely used tools include:

• SNOW: This hides data in the white space of a document.
• Camouflage: This adds the option to hide a file to the right click menu in Windows 

(note: it does not work in Windows 8).
• BMP Secrets: This works primarily with BMP files.
• Hide4PGP: This hides data in BMP, WAV, or VOC files.

Methods and Tools
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Fig. 16.11 Password and encryption with InvisibleSecrets

 Current Use of Steganography

Steganography is a powerful tool for hiding data. For this reason, it is widely used 
today, both for innocuous purposes and nefarious purposes. As early as 2001 there 
was speculation that terrorists were using steganography to communicate. A 2015 
paper from the SANS Institute has this to say about terrorists using steganography:

Using image files to transfer information is the method that first comes to mind. Many 
newspapers have reported that “according to nameless ‘U.S. officials and experts’ and 
‘U.S. and foreign officials,’ terrorist groups are ‘hiding maps and photographs of terrorist 
targets and posting instructions for terrorist activities on sports chat rooms, pornographic 
bulletin boards and other Web sites (https://www.giac.org/paper/gsec/1411/hiding- 
plain-view-steganography-terrorist-tool/102638).

Confessions from actual terrorists have verified that Al-Qaeda used steganography 
to hide both operations details and training materials in pornographic material.

Steganography is not just a tool used by international terrorists. Certain criminals 
find it necessary to hide their communications. In particular, more technically savvy 
child pornographers have been known to use steganography in order to hide their 
illicit images in innocuous carrier files. This poses a significant issue for forensics 
analysts.

Steganography has also been used in industrial espionage cases. In one case an 
engineering firm suspected one of their employees of stealing intellectual property. 
Investigators found that this employee had sent out emails with pictures attached 
that seemed innocuous but actually had data hidden in them via steganography.
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Fig. 16.12 Naming the resulting file with InvisibleSecrets

Fig. 16.13 OpenStego

These are just three nefarious purposes for steganography. The wide proliferation 
of steganography tools, discussed earlier in this chapter, means that this technology 
is available to anyone who can use a computer, regardless of whether or not they 
understand the principles of steganography. Many forensics tools are now including 
functionality that attempts to detect steganography. One should expect to see the use 
of steganography increase in the coming years.
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Fig. 16.14 DeepSound main screen

Not all uses of steganography involve illicit intent. One good example is water-
marking. Watermarking embeds some identifying mark or text into a carrier file, for 
the purpose of being able to identify copyright protected materials. For example, an 
artist who generates digital versions of his or her art may want to embed a water-
mark to identify the image should someone use that image without the artist’s 
permission.

 Steganalysis

If you can hide data in images, or other carrier files, there must be some way to 
detect it. Fortunately, there is. Steganalysis is the attempt to detect steganographi-
cally hidden messages/files in carrier files. It should be noted that any attempt to 
detect steganography is simply a best effort; there is no guarantee of success. One 
of the most common methods is to analyze close color pairs. By analyzing changes 
in an image’s close color pairs, the analyst can determine if it is likely that LSB 
steganography was used. Close color pairs consist of two colors whose binary val-
ues differ only in their least significant bit. Of course, you would expect a certain 
number of pixels to vary only in the least significant bit. But if the number of such 
pixels which meet this criterion is greater than one would expect, that might indicate 
steganography was used to hide data.
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A related method is the raw quick pair (RQP) method. The RQP method is essen-
tially an implementation of the close color pair concept. The RQP method is based 
on statistics of the numbers of unique colors and close color pairs in a 24-bit image. 
RQP analyzes the pairs of colors created by LSB embedding.

Another option uses the chi-square method from statistics. Chi-square analysis 
calculates the average LSB and builds a table of frequencies and pair of values. 
Then, it performs a chi-square test on these two tables. Essentially, it measures the 
theoretical vs. calculated population difference. The details of chi-square analysis 
are beyond the scope of this text. However, any introductory university text on sta-
tistics should provide a good description of this and other statistical techniques.

Friedrich and Goljan give an overview of various steganalysis methods stating:

Pfitzman and Westfeld introduced a powerful statistical attack that can be applied to any 
steganographic technique in which a fixed set of Pairs of Values (PoVs) are flipped into each 
other to embed message bits. For example, the PoVs can be formed by pixel values, quan-
tized DCT coefficients, or palette indices that differ in the LSB. Before embedding, in the 
cover image the two values from each pair are distributed unevenly. After message embed-
ding, the occurrences of the values in each pair will have a tendency to become equal (this 
depends on the message length). Since swapping one value into another does not change the 
sum of occurrences of both colors in the image, one can use this fact to design a statistical 
Chi-square test. We can test for the statistical significance of the fact that the occurrences of 
both values in each pair are the same. If, in addition to that, the stego-technique embeds 
message bits sequentially into subsequent pixels/indices/coefficients starting in the upper 
left corner, one will observe an abrupt change in our statistical evidence as we encounter the 
end of the message (https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.5975&r
ep=rep1&type=pdf).

More advanced statistical methods can also be used; for example, Markov chain 
analysis has been applied to steganalysis. A Markov chain is a collection of random 
variables {X_t} that transits from one state to another with the property that looking 
at the present state, the future state is not dependent on the past states. This is some-
times referred to as being “memoryless.” It is named after Andrey Markov. 
According to Sullivan et al. (2006):

In this paper, we take the logical next step toward computing a more accurate performance 
benchmark, modeling the cover data as a Markov chain (MC). The Markov model has the 
advantage of analytical tractability, in that performance benchmarks governing detection 
performance can be characterized and computed explicitly.

Another method is to compare similar files. If, for example, several MP3 files all 
came from the same CD, the analyst can look for inconsistencies in compression, 
statistical anomalies, and similar issues to see if one of the MP3 files was different 
than the others. That difference might indicate the presence of steganography.

 Distributed Steganography

There have been various techniques for distributing payload across multiple carrier 
files. My first patent, US Patent No. 8,527,779 B1 Method and apparatus of per-
forming distributed steganography of a data message, was for just such a method, so 
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I will describe this method for you in this section. This invention was designed 
specifically for covert communications for undercover law enforcement officers and 
intelligence agencies. Unfortunately, it can also be applied to nefarious communica-
tions. But the intent was a virtually undetectable communication channel for use 
with sensitive law enforcement and similar activities.

The purpose of steganography, regardless of the implementation, is to hide some 
underlying message so that an observer is not even aware the message is present. 
This is very useful in covert communications, particularly in the intelligence com-
munity. Most permutations of steganography deal with how to embed the message 
(text, image, video, or audio) into the carrier file. Some permutations, such as 
SNOW, even use blanks at the end of text files in order to hide messages. However, 
this invention is concerned with how to fragment the message and hide it in various 
carrier/cover files, making the detection of the entire message extremely difficult, 
approaching impossibility.

With distributed steganography, as described in US Patent 8,527,779, the mes-
sage is distributed across multiple carrier signals/sources in order to further hide the 
message. For example, a single text message would be broken into blocks, each 
block hidden in a different image. It should also be noted that the block size can 
vary, and the blocks are not necessarily stored in order. This means that the first car-
rier file will not necessarily hold the first segment of the hidden message/file. This 
is applying permutation to the blocks. Of course, the parties communicating would 
have to be able to reorder the blocks in their appropriate order.

Consider an example with using 8-bit blocks on a message “Steganography is 
cool.” Each character represents 8 bits, so every 8 characters would be a separate 
block. Keep in mind that blanks are also represented by 8 bits, so this message 
would have five separate blocks stored in five separate images. This is shown in 
Fig. 16.15.

The obvious issue now is how to retrieve the blocks. This issue would involve 
knowing how many blocks total were to be retrieved, the order of each block (i.e., 
is this block 2 of 4, 3 of 7, etc.), and knowing the carrier/cover file to retrieve the 
blocks from. This invention deals with all three issues.

 Total Blocks and Block Order

Each block stored in an image would have an additional 2 bytes (16 bits) appended 
to the image. The first byte would contain information as to which block this was 
(i.e., block 3 of 9), and the second byte would store the total number of blocks the 
message contained (i.e., 9 blocks).

Since 8 bits can store decimal numbers between 0 and 255, this would necessi-
tate breaking a message down into no more than 255 blocks. The size of the block 
would be determined by the size of the original message divided by 255.

It would also be possible to use additional bytes to store the block numbering 
data. For example, one could use 2 bytes (16 bits) to store the value of the current 
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Fig. 16.15 Distributing payload across multiple carrier files

block and an additional 2 bytes (16 bits) to store the total number of blocks. This 
would allow a message to be broken into 65,535 total blocks. Use of up to 4 bytes 
(64 bits) for the value of the current block and 4 bytes (64 bits) for the total number 
of blocks would allow a message to be broken into 4,294,967,295 blocks. This 
would be appropriate for video or audio messages hidden in audio or video signals. 
These additional bytes indicating block number and total blocks are called block 
pointers.

The use of block numbering is similar to how TCP packets are sent over a net-
work. Each packet has a number, such as “packet 2 of 10.” This same methodology 
is applied to hiding blocks of data in diverse images. This requires distributed steg-
anography to have a key, much like the keys used in encryption. However, this key 
would contain the following information:

• Block size
• Size of block pointer (i.e., the bytes used to indicate block numbering)

The preferred way to find the location of the images containing secret messages 
would be to add that information to the key. This information could be an IP address 
or URL to find the image (if images are stored at different locations) or the image 
name (if all images are on a single storage device). You can see this in Fig. 16.16.

Notice that it is possible to store images on web pages, file servers, or FTP serv-
ers. This means the actual message could be fragmented and stored around the 
Internet in various locations. In some cases, it could even be stored on third party 
servers without their knowledge. It is also possible, even recommended, to use dif-
ferent carrier file types. Parts of the hidden message could be stored in images, such 
as JPEGs, while other parts could be stored in audio or video files.

If desired, it would be possible to implement distributed steganography in such a 
manner that the locations where data would be hidden could be predetermined. For 
example, messages would always be hidden in specific images at predetermined 
locations. Thus, the person who needs to receive those messages would simply 
check those images at regular intervals. This would, obviously, be less secure.
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Fig. 16.16 Distributed steganography key

The actual encoding of the message could be done with any standard steganog-
raphy technique, such as using the least significant bits or discrete cosine transform 
to store the hidden message. It would also be advisable to have the message first 
encrypted using any preferred encryption algorithm before hiding it using distrib-
uted steganography. It would also be advisable to at least encrypt the steganography 
key. It should be noted that combining encryption and steganography makes for a 
very powerful way to protect data. Some of the tools we examined previously in this 
chapter, such as InvisibleSecrets, provide the option to both encrypt the data and to 
hide it in a carrier file.

 Conclusions

In this chapter we have examined a fascinating area of data security. We have exam-
ined steganography. The most common way to perform steganography is the LSB 
method. However, in this chapter you were also given a brief overview of additional 
methods. You should be familiar with the concepts of steganography as well as at 
least one of the steganography tools mentioned in this chapter. You were also intro-
duced to steganalysis and were provided with a brief description of common meth-
ods for detecting steganography. Finally, the chapter concluded with a good 
description of a specific patented method for distributed steganography.
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 Test Your Knowledge

 1. What is the most common method for doing steganography?
 2. Where was the first known use of the word steganography?
 3. What is the method that uses a grill or mask to cover a paper, revealing only the 

hidden message?
 4. __________ hide data in sections of file that are not processed by the process-

ing applications.
 5. ___________ replace some bits of the carrier file with some bits of the data to 

be hidden.
 6. _____________ takes a finite sequence of data points and expresses them in 

terms of the sum of cosine functions oscillating at different frequencies.
 7. Parity coding is often used with what type of steganography?
 8. One of the most common methods of steganalysis is ____________.
 9. ________________ is a statistical test that can be used to detect 

steganography.
 10. The file that data is hidden in is called what?
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Chapter 17
Cryptanalysis

 Introduction

What does it mean to “break” a cipher? This means finding any method to decrypt 
the message that is more efficient than simple brute force attempts. Brute force is 
simply trying every possible key. If the algorithm uses a 128-bit key, that means 2128 
possible keys. In the decimal number system, that is 3.402 * 1038 possible keys. If 
you are able to attempt one million keys every second, it could still take as long as 
10,790,283,070,806,014,188,970,529 years to break.

This brings us to cryptanalysis: what is it? Cryptanalysis is using techniques 
(other than brute force) to attempt to derive the key. You must keep in mind that any 
attempt to crack any nontrivial cryptographic algorithm is simply an “attempt.” 
There is no guarantee of any method working. And whether it works or not, it will 
probably be a long and tedious process. This should make sense to you. If cracking 
encryption were a trivial process, then encryption would be useless.

In fact, cryptanalysis is a very tedious and, at times, frustrating endeavor. It is 
entirely possible to work for months, and your only result is to have a little more 
information on the key that was used for encrypting a given message. What one sees 
in movies wherein encryption is broken in hours or even minutes is simply not real-
istic. Who needs to understand cryptanalysis? Obviously, certain intelligence gath-
ering agencies and military personnel have a need for a strong working knowledge 
of cryptanalysis, beyond what this chapter will provide. In some cases, law enforce-
ment officers and forensics analysts have a need to at least understand cryptanalysis 
well enough to know what is feasible and what is not. It is not uncommon for sus-
pects to use encryption to hide evidence from authorities. Furthermore, cryptanaly-
sis techniques are often used to test algorithms. If a new algorithm, or a variation of 
an old algorithm, is proposed, one way to begin testing that algorithm is to subject 
it to appropriate cryptanalysis techniques.
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Clearly, a thorough understanding of cryptanalysis would take more than a single 
chapter of a book. In fact, many introductory cryptography books ignore this topic 
altogether. The goal of this chapter is simply to acquaint you with the fundamentals 
of cryptanalysis. If you wish to go on to study this topic in more depth, then this 
chapter should form a solid foundation. You will also find links and suggestions in 
this chapter for further study. If you don’t wish to learn more about cryptanalysis, 
then this chapter will provide more than enough information for most security 
professionals.

 In This Chapter We Will Cover

• Classic techniques of cryptanalysis
• Modern methods
• Rainbow tables
• The birthday paradox
• Other methods for breaching cryptography

 Classic Methods

Recall that this book began with a study of classic ciphers. This was done to help 
you, the reader, become comfortable with the concepts of cryptography, before 
delving into more modern algorithms. A similar issue exists with cryptanalysis. It is 
often easier for a student of cryptography to understand class methods before 
attempting to study modern methods. In this section we will examine methods that 
are only effective against classic ciphers. These won’t help you break RSA, AES, or 
similar ciphers but might aid you in understanding the concepts of cryptanalysis.

 Frequency Analysis

This is the basic tool for breaking most classical ciphers. In natural languages, cer-
tain letters of the alphabet appear more frequently than others. By examining those 
frequencies, you can derive some information about the key that was used. This 
method is very effective against classic ciphers, such as Caesar, Vigenère, etc. It is 
far less effective against modern methods. In fact, with modern methods, the most 
likely result is that you will simply get some basic information about the key, but 
you will not get the key. Remember in English the words the and and are the two 
most common three letter words. The most common single letter words are I and a. 
If you see two of the same letters together in a word, it is most likely ee or oo.

A few general facts will help you, at least with English as the plaintext:
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T is the most common first letter of a word.
E is the most common last letter of a word.
“The” is the most common word.
HE, RE, AN, TH, ER, and IN are very common two-letter combinations.
ENT, ING, ION, and AND are very common three letter combinations.

These methods are quite effective with any of the classic ciphers discussed in 
Chaps. 1 and 2 but are not effective against more modern ciphers.

When teaching introductory cryptography courses, I often conduct a lab to illus-
trate this. In this lab I have each student write a brief paragraph, then select some 
substitution shift (i.e., +1, −2, +3, etc.), and apply that single substitution cipher to 
their message. Essentially, they are applying a Caesar cipher to their message. Then, 
I ask the students to exchange the resulting ciphertext with a classmate. Each stu-
dent then applies frequency analysis to attempt to break the cipher. Having con-
ducted this lab on numerous occasions of many years, I find that it is typical that 
approximately ½ of the class can crack the cipher within 10–15 minutes. These are 
usually students with no prior background in cryptography or cryptanalysis. This 
lab has multiple purposes. The first is to introduce the student to primitive crypt-
analysis, and the second is to illustrate the fact that classic ciphers are no longer 
adequate for modern cryptographic purposes.

 Kasiski

Kasiski examination was developed by Friedrich Kasiski in 1863. It is a method of 
attacking polyalphabetic substitution ciphers, such as the Vigenère cipher (Swenson 
2008). This method can be used to deduce the length of the keyword used in the 
polyalphabetic substitution cipher. Once the length of the keyword is discovered, 
you line up the ciphertext in n columns, where n is the length of the keyword. Then, 
each column can be treated as a monoalphabetic substitution cipher. Then, each 
column can be cracked with simple frequency analysis. The method simply involves 
looking for repeated strings in the ciphertext. The longer the ciphertext, the more 
effective this method will be. This is sometimes also called Kasiski’s test or 
Kasiski’s method.

Note Kasiski lived in the nineteenth century and was a German officer as well as 
cryptographer. He published a book on cryptography entitled Secret Writing and the 
Art of Deciphering.

 Modern Methods

Obviously, cracking modern cryptographic methods is a nontrivial task. In fact, the 
most likely outcome to your attempt is failure. However, with enough time and 
resources (i.e., computational power, sample cipher-/plaintexts, etc.), it is possible. 
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Next, we will generally discuss some techniques that can be employed in this pro-
cess (Swenson 2008).

Known plaintext attack: With this technique the attacker obtains a number of plain-
text/ciphertext pairs. Using the information, the attacker attempts to derive infor-
mation about the key being used. This will require many thousands of plaintext/
ciphertext pairs in order to have any chance of success.

Chosen plaintext attack: In this attack the attacker obtains the ciphertexts corre-
sponding to a set of plaintexts of his or her own choosing. This can allow the 
attacker to attempt to derive the key used and thus decrypt other messages 
encrypted with that key. This can be difficult but is not impossible.

Ciphertext only: The attacker only has access to a collection of ciphertexts. This is 
much more likely than known plaintext but also the most difficult. The attack is 
completely successful if the corresponding plaintexts can be deduced, or even 
better the key. The ability to obtain any information at all about the underlying 
plaintext is still considered a success.

Related-key attack: Like a chosen plaintext attack, except the attacker can obtain 
ciphertexts encrypted under two different keys. This is actually a very useful 
attack if you can obtain the plaintext and matching ciphertext.

The chosen plaintext and known plaintext attacks often puzzle students who are 
new to cryptanalysis. How, they ask, can you get samples of plaintext and cipher-
text? You cannot simply ask the target to hand over such samples; can you? Actually, 
it is not that difficult. Consider, for example, that many people have signature blocks 
in all their emails. If you send an email to the target and get a response, that is an 
example of a plaintext (i.e., the signature block). If you later intercept an encrypted 
email from that target, you know that the matching plaintext is for the encrypted text 
at the end of the email. This is just one trivial example of how to get plaintext/
ciphertext pairs. There are more mathematically sophisticated and difficult meth-
ods. Linear, differential, and integral cryptanalysis are three widely used methods. 
Some of these are applications of known plaintext or chosen plaintext attacks.

 Linear Cryptanalysis

This technique was invented by Mitsuru Matsui. It is a known plaintext attack and 
uses a linear approximation to describe the behavior of the block cipher (Swenson 
2008). Given enough pairs of plaintexts and corresponding ciphertext, bits of infor-
mation about the key can be obtained. Clearly, the more pairs of plaintext and 
ciphertext one has, the greater the chance of success. Linear cryptanalysis is based 
on finding affine approximations to the action of a cipher. It is commonly used on 
block ciphers (Matsui 1993).

Remember cryptanalysis is an attempt to crack cryptography. For example, with 
the 56-bit DES key, brute force could take up to 256 attempts. Linear cryptanalysis 
will take 247 known plaintexts. This is better than brute force but still impractical for 
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most situations. Matsui first applied this to the FEAL cipher and then later to 
DES. However, the DES application required 247 known plaintext samples, making 
it impractical.

With this method, a linear equation expresses the equality of two expressions, 
which consist of binary variables that are XOR’d. For example, the following equa-
tion, XOR sum of the first and third plaintext bits and the first ciphertext bit, is equal 
to the second bit of the key. This is shown in Fig. 17.1.

You can use this method to slowly recreate the key that was used. Now, after 
doing this for each bit, you will have an equation of the form shown in Fig. 17.2.

You can then use Matsui’s Algorithm 2, using known plaintext/ciphertext pairs, 
to guess at the values of the key bits involved in the approximation. The right-hand 
side of the equation is the partial key (the object is to derive some bits for part of the 
key). Now, count how many times the approximation holds true over all the known 
plaintext/ciphertext pairs. This count is called T. The partial key which has a T value 
that has the greatest absolute difference from half the number of plaintext/ciphertext 
pairs is determined to be the most likely set of values for those key bits. In this way 
you can derive a probable partial key.

 Differential Cryptanalysis

Differential cryptanalysis is a form of cryptanalysis applicable to symmetric key 
algorithms. This was invented by Eli Biham and Adi Shamir. Essentially, it is the 
examination of differences in an input and how that affects the resultant difference 
in the output. It originally worked only with chosen plaintext. However, it could also 
work with known plaintext and ciphertext only.

The attack is based on seeing pairs of plaintext inputs that are related by some 
constant difference (Biham and Shamir 2012). The usual way to define the differ-
ences is via XOR operation, but other methods can be used. The attacker computes 
the differences in the resulting ciphertexts and is looking for some statistical pattern. 
The resulting differences are called the differential. Put another way, “differential 
cryptanalysis focuses on finding a relationship between the changes that occur in 
the output bits as a result of changing some of the input bits.”

The basic idea in differential cryptanalysis is that, by analyzing the changes in 
some chosen plaintexts and the difference in the outputs resulting from encrypting 
each one, it is possible to recover some properties of the key. Differential crypt-
analysis measures the XOR difference between two values. Differentials are often 
denoted with the symbol Ω. Thus, you might have a differential Ωa and another 
differential Ωb. A characteristic is composed of two differentials. For example, dif-
ferential Ωa in the input produces differential Ωb in the output. These matching 

Fig. 17.1 The basics of linear cryptanalysis
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Fig. 17.2 The form of linear cryptanalysis

differentials are a characteristic. What the characteristic demonstrates is that the 
specified differential in the input leads to a particular differential in the output.

Differential cryptanalysis is about probabilities. So, the question being asked is 
this: What is the probability that a given differential in the input Ωa will lead to a 
particular differential in the output Ωb (Swenson 2008)? In most cases, differential 
analysis starts with the s-box. Since most symmetric ciphers utilize s-boxes, this is 
a natural and convenient place to start. If you assume an input of X1 that produces 
an output of Y1 and an input of X2 that produces an output of Y2, this produces a 
differential (i.e., the difference between X1 and X2 produces the difference between 
Y1 and Y2). This is expressed as follows:

 �i � �X X This is the input differential1 2 .  

 �o � �Y Y This is the output differential1 2 .  

Now, we need to consider the relationship between input differentials and output 
differentials. To do this we have to consider all possible values of Ωi and measure 
how this changes the values of Ωo. For each possible value of X1, X2, and Ωi, you 
measure the change in Y1, Y2, and Ωo and record that information.

Even though differential cryptanalysis was publicly discovered in the 1980s, 
DES is resistant to differential cryptanalysis based on the structure of the DES 
s-box. Since the DES s-box is the portion of DES that was constructed by the NSA, 
it stands to reason that the NSA was aware of differential cryptanalysis in the 1970s.

 Higher-Order Differential Cryptanalysis

This is essentially an improvement on differential cryptanalysis that was developed 
by Lars Knudsen in 1994. Higher-order differential cryptanalysis focuses on the 
differences between differences that would be found with ordinary differential 
cryptanalysis. This technique has been shown to be more powerful than ordinary 
differential cryptanalysis. Specifically, it has been applied to a symmetric algorithm 
known as the KN-Cipher, which had previously been proven to be immune to stan-
dard differential cryptanalysis. Higher-order differential cryptanalysis has also been 
applied to a variety of other algorithms, including CAST.

 Truncated Differential Cryptanalysis

Ordinary differential cryptanalysis focuses on the full difference between two texts 
and the resulting ciphertext, but truncated differential cryptanalysis analyzes only 
partial differences. Taking partial differences into account, it is possible to use two 
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or more differences within the same plaintext/ciphertext pair to be taken into 
account. As the name suggests, this technique is only interested in making predic-
tions of some of the bits, instead of the entire block. It has been applied to Twofish, 
Camellia, Skipjack, IDEA, and other block ciphers.

 Impossible Differential Cryptanalysis

Put another way, standard differential cryptanalysis is concerned with differences 
that propagate through the cipher with a greater probability than expected. 
Impossible differential cryptanalysis is looking for differences that have a probabil-
ity of 0 at some point in the algorithm. This has been used against Camellia, ARIA, 
TEA, Rijndael, Twofish, Serpent, Skipjack, and other algorithms.

 Integral Cryptanalysis

Integral cryptanalysis was first described by Lars Knudsen. This attack is particu-
larly useful against block ciphers based on substitution-permutation networks, an 
extension of differential cryptanalysis (Knudsen and Wagner 2002). Differential 
analysis looks at pairs of inputs that differ in only 1-bit position, with all other bits 
identical. Integral analysis, for block size b, holds b-k bits constant and runs the 
other k through all 2k possibilities. For k = 1, this is just differential cryptanalysis, 
but with k > 1 it is a new technique.

 Mod-n Cryptanalysis

This can be used for either block or stream ciphers. This method was developed in 
1999 by John Kelsey, Bruce Schneier, and David Wagner (Kelsey et al. 1999). This 
excerpt from the inventor’s paper gives a good overview of the technique:

Nearly all modern statistical attacks on product ciphers work by learning some way to dis-
tinguish the output of all but the last rounds from a random permutation. In a linear attack, 
there is a slight correlation between the plaintext and the last-round input; in a differential 
attack, the relationship between a pair of inputs to the last round isn't quite random. 
Partitioning attacks, higher-order differential attacks, differential attacks, and related-key 
attacks all t into this pattern.

Mod n cryptanalysis is another attack along these lines. We show that, in some cases, the 
value of the last-round input modulo n is correlated to the value of the plaintext modulo n. 
In this case, the attacker can use this correlation to collect information about the last-round 
subkey. Ciphers that sufficiently attenuate statistics based on other statistical effects (linear 
approximations, differential characteristics, etc.) are not necessarily safe from correlations 
modulo n.
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 Asymmetric Cryptanalysis

So far, we have focused on symmetric ciphers, particularly block ciphers. However, 
there are also known weaknesses in asymmetric ciphers. Since RSA is the most 
widely used asymmetric cipher, we will focus our attention on it. The goal of this 
section is to simply introduce you to the issues with RSA. For more details refer to 
any of the papers referenced in this section.

Recent studies have discovered potential flaws in RSA. Heninger and Shacham 
found that RSA implementations that utilized a smaller modulus were susceptible 
to cryptanalysis attacks. In their study, they considered RSA implementations that 
utilized a small exponent in the algorithm. A smaller modulus is sometimes used to 
increase the efficiency of the RSA algorithm. However, the size of the modulus 
value could also be used to reduce the set of possible factors and thus decrease the 
time required to factor the public key. In fact, a great many RSA implementations 
use e = 216 + 1 = 65,537. Consequently, a cryptanalyst already has the public key and 
thus has e and n. And the n is relatively small, making it possible, with extensive 
computing power and time, to derive the private key. The authors of this study 
clearly showed that it is possible to derive the private RSA key, which would render 
that particular RSA encryption implementation useless.

In their methodology Heninger and Shacham formulated a series of linear equa-
tions that would progressively approximate the RSA private key. The approxima-
tions were based approximations of factoring the public key. This technique is very 
similar to the linear cryptanalysis method for cryptanalysis of symmetric key 
algorithms.

Zhao and Qi also utilized implementations that have a smaller modulus operator. 
The authors of this study also applied modular arithmetic, a subset of number the-
ory, to analyzing weaknesses in RSA. Many implementations of RSA use a shorter 
modulus operator in order to make the algorithm execute more quickly. Like 
Heninger and Shacham, Zhao and Qi showed that, based on the mathematical rela-
tionships between the elements of the RSA algorithm, which increases in efficiency 
resulting from a smaller modulus, will also render a decrease in the efficacy of that 
RSA implementation.

In their study, Zhao and Qi utilized a lattice matrix attack on the RSA implemen-
tation in order to attempt to factor the public key and derive the private key. The 
specifics of this mathematical methodology are not relevant to this paper. What is 
significant is that the researchers used a different approach than Heninger and 
Shacham and achieved the same results on RSA applications using a small modulus.

Aciicmez and Schindler examined the RSA cryptographic algorithm, as imple-
mented in SSL. Given that SSL/TLS is used for online banking and e-commerce, 
the security of any implementation of the protocol is an important topic. Aciicmez 
and Schindler wanted to understand if there were flaws in the implementation that 
would allow an unintended third party to break the SSL implementation. The 
authors explained how a particular type of cryptanalysis can be used to break this 
particular specific implementation of RSA. Since RSA and SSL are both used 
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extensively in e-commerce, exploring weaknesses in either is important. It is impor-
tant to note that this analysis was dependent upon essential elements of num-
ber theory.

In their study of SSL using RSA, Aciicmez and Schindler examined the timing 
for modular arithmetic operations used in that specific implementation of RSA. This 
ultimately led to a method for factoring the public key, thus yielding the private key 
used in that RSA implementation. This methodology is important because normal 
approaches to factoring the public key are entirely too time-consuming to be of 
practical use (Swenson 2008). It is important to derive some additional information 
about the implementation of RSA in order to attempt a more practical approach to 
factoring. By utilizing number theory, specifically in respect to the functionality of 
modular arithmetic, the researchers were able to significantly decrease the time 
required for factoring the public key.

Given that the authors of this study were able to significantly decrease the time 
required to factor the public key in order to derive the private key, clearly, these find-
ings are significant. The study clearly shows a problem with some implementa-
tions of RSA.

These studies mentioned are simply a sample of known attack vectors against 
RSA. Many of these attacks depend on a small modulus. And we have seen that 
many RSA implementations utilize the same small modulus (e = 216 + 1 = 65,537). 
It is also true that increases in computing power will make these attacks, as well as 
brute force attempts to crack RSA, even more practical. So far, the cryptography 
community has reacted by simply using ever larger key sizes for RSA. It seems 
likely that an entirely new asymmetric algorithm may be needed. But in the mean-
time, when you implement RSA, make sure you will not only use a large key size 
but also be wary of using too small a modulus value.

 General Rules for Cryptanalysis

Regardless of the technique used, there are three resources for cryptanalysis:

Time—the number of “primitive operations” that must be performed. This is quite 
loose; primitive operations could be basic computer instructions, such as addi-
tion, XOR, shift, and so forth, or entire encryption methods.

Memory—the amount of storage required to perform the attack.
Data—the quantity of plaintexts and ciphertexts required.

In essence this means that, with infinite time, memory, and data, any cipher can 
be broken. Of course, we do not have infinite resources. In fact, resources are gener-
ally quite limited, particularly time. It would do no good to break the encryption of 
military communications and learn of an attack…if that break occurred several 
weeks after the attack. The information is only of use if it is timely.

In general, the primary advantage that a government entity has in cryptanalysis 
is the resource of memory. A supercomputer, or even a cluster of high-end servers, 
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can put far more resources to breaking a cipher than can an individual with a single 
computer. Even with those resources, however, breaking a modern cipher is far from 
trivial. It is still an onerous, resource-intensive task with no guarantee of success. 
Breaking a modern cipher with your individual computer is simply not feasible.

There are also varying degrees of success:

Total break—the attacker deduces the secret key.
Global deduction—the attacker discovers a functionally equivalent algorithm for 

encryption and decryption but without learning the key.
Instance (local) deduction—the attacker discovers additional plaintexts (or cipher-

texts) not previously known.
Information deduction—the attacker gains some Shannon information about plain-

texts (or ciphertexts) not previously known.
Distinguishing algorithm—the attacker can distinguish the cipher from a random 

permutation.

Consider this list carefully. A total break may be the only way many readers have 
thought about success in cryptanalysis. However, that is only one possible definition 
of a successful cryptanalysis. In fact, it is the least likely outcome. In general, if 
your cryptanalysis produces more information about the key than was previously 
known, then that is considered a success.

 Rainbow Tables

Many passwords are stored with a cryptographic hash. This prevents the network or 
database administrator from reading the password, since it is hashed. If you will 
recall from Chap. 9, cryptographic hashes are not reversible. That means that it is 
not merely computationally difficult, or impractical to “unhash” something, but that 
it is mathematically impossible. It would seem that breaking passwords protected 
by cryptographic hashes is impossible. That, however, is not the case.

A rainbow table is essentially a precomputed table of hashes. The most primitive 
way to accomplish this would be to simply precompute hashes of all possible pass-
words of a given size. Assuming a standard English keyboard, there are 26 charac-
ters in upper or lower case (that is 52 possibilities), ten digits, and about eight 
special characters (#,!, $, etc.) or about 70 possible values each character could take 
on (the value 70 is just a rough estimate to illustrate this concept). So, a single char-
acter password could have 70 possible values, whereas a two-character password 
could have 702 or 4900. Even an eight-character password could have up to 
576,480,100,000,000 possible values. So, calculating tables that account for all 
passwords of any length from five to ten characters would be both computationally 
intensive and require a great deal of storage.

The method for composing precomputed tables of hashes, described above, is the 
most primitive way to accomplish this task. Hash chains are used to make this pro-
cess more efficient and to reduce the space needed to store the precomputed hashes. 
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The concept of a hash chain is to use a reduction function, we will call R, that maps 
hash values back to plaintext values. This is not unhashing or reversing a hash; it is 
just a method to more quickly precompute hashes. The next even more advanced 
method is to replace the reduction function with a sequence of related reduction 
functions R1….Rk.

The issue then becomes how to implement this process. For example, Microsoft 
Windows stores the hash of passwords in the SAM file. One has to first obtain the 
SAM file for a target machine, then take the contents, and search through rainbow 
tables for matches in order to find the passwords. The tool Ophcrack automates this 
process for you. It can be placed on a CD/DVD and will boot to a live version of 
Linux. Then, it launches a tool that copies the SAM file from the Windows machine 
and searches the rainbow tables on the CD/DVD for a match. You can see the inter-
face of Ophcrack in Fig. 17.3. This screenshot comes from an actual system, so 
some information is redacted for security purposes.

Rainbow tables get very large. As of this writing, there are no portable rainbow 
tables that can return passwords that are more than 12–14 characters in length. 
Therefore, longer passwords are useful in thwarting this attack.

Fig. 17.3 Ophcrack

Rainbow Tables
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 The Birthday Paradox

There is a mathematical puzzle that can help. It is called the birthday paradox 
(sometimes called the birthday problem). The issue is this: how many people would 
you need to have in a room to have a strong likelihood that two would have the same 
birthday (i.e., month and day, not year). Obviously if you put 367 people in a room, 
at least two of them must have the same birthday, since there are only 365 days in a 
year + Feb 29 on leap year. However, we are not asking how many people you need 
to guarantee a match, just how many you need to have a strong probability. It just 
so happens that, with even 23 people in the room, you have a 50% chance that two 
have the same birthday.

How is this possible? How is it that such a low number can work? Basic proba-
bility tells us that when events are independent of each other, the probability of all 
of the events occurring is equal to a product of the probabilities of each of the 
events. Therefore, the probability that the first person does not share a birthday with 
any previous person is 100%, since there are no previous people in the set. That can 
be written as 365/365. Now, for the second person, there is only one preceding per-
son, and the odds that the second person has a different birthday than the first are 
364/365. For the third person, there are two preceding people he or she might share 
a birthday with, so the odds of having a different birthday than either of the two 
preceding people are 363/365. Since each of these are independent, we can compute 
the probability as follows:

365/365 * 364/365 * 363/365 * 362/365 … * 342/365 (342 is the probability of the 
23 persons sharing a birthday with a preceding person). Let us convert these to 
decimal values, which yields (truncating at the third decimal point):

1 * 0.997 * 0.994 * 0.991 * 0.989 * 0.986 * … 0.936 = 0.49 or 49%. This 49% is 
the probability that they will not have any birthdays in common; thus, there is a 
51% (better than even odds)that two of the 23 will have a birthday in common.

Just for reference, if you have 30 people, the probability that two have the same 
birthday is 70.6%. If you have 50 people, the probability raises to 97%, which is 
quite high. This does not simply apply to birthdays. The same concept can be 
applied to any set of data. It is often used in cryptography and cryptanalysis. The 
birthday paradox represents a guideline for how one might get a collision in a hash-
ing algorithm.

In reference to cryptographic hash functions, the goal is to find two different 
inputs that produce the same output. When two inputs produce the same output from 
a cryptographic hash, this is referred to as a collision. It just so happens that the 
number of samples from any set of n elements required to get a match or collision 
is 1.174 √n. Returning to the preceding birthday problem, 1.174 √365 = 22.49. 
For more details on this mathematical problem and how it applies to cryptography, 
you may wish to consult: Chapter 2 of Modern Cryptanalysis: Techniques for 
Advanced Code Breaking, which provides even more detailed coverage of the birth-
day paradox.
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 Other Methods

Cryptanalysis is a formal process whereby one applies specific techniques in an 
attempt to crack cryptography. However, as you have seen in this chapter, the ability 
to completely crack a cipher is quite limited. In many cases the best one can achieve 
is to derive some additional information about the target key. In addition, breaking 
cryptography is so time-consuming, and the probability of actually deriving the key 
is so small that cryptanalysis provides no practical means of breaking ciphers. Put 
another way: cryptanalysis is an excellent tool for testing the security of a given 
cipher, but it is usually not efficient enough to make it a practical means for situa-
tions that require the cipher be compromised in a short period of time. For example, 
a law enforcement agency that needs to break the encryption on a hard drive is 
unlikely to find cryptanalysis techniques of much utility. However, there are other 
methods for compromising ciphers that might provide more immediate results. 
These methods all depend on some flaw in the implementation of the 
cryptography.

 Other Passwords

Particularly with email and hard drive encryption, there is usually some password 
the user must know in order to decrypt the information and access it. Many hard 
drive encryption tools utilize very strong encryption. For example, Microsoft 
Bitlocker uses AES with a 128-bit key. Several open-source hard drive encryption 
tools use AES with a 256-bit key. It is simply not feasible to break the key. However, 
it is entirely possible that the user has utilized the same password (or a substantially 
similar permutation) somewhere else, for example, with their email account or with 
their Windows password. So, you can check these sources. For example, you may 
wish to use Ophcrack on their Windows computer and take those passwords (and 
again use permutations of those passwords as well) to try and decrypt the encrypted 
partition or email.

Many people are not even aware that their email password has been cracked. 
Several websites keep lists of email accounts that have been breached. Sites 
including:

haveibeenpwned.com
PwnedList.com

If, for example, you are a law enforcement officer attempting to breach an 
encrypted drive belonging to a suspect, you may wish to check these sites to see if 
that suspect’s email account has been breached. You can then use the email pass-
word, and close permutations, to attempt to decrypt the hard drive.

Other Methods

http://haveibeenpwned.com
http://pwnedlist.com
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 Related Data

It is often the case that people choose passwords that have meaning for them. This 
makes memorization much easier. I frequently advise forensic analysts to learn all 
they can about a suspect. In particular photographing or videotaping the area where 
the computer is seized can be quite valuable. If, for example, the suspect is an enthu-
siastic fan of a particular sports team, with memorabilia extensively displayed in his 
or her home or office, then this might aid in breaking encrypted drives, phones, and 
emails. It is at least reasonably likely that this individual’s cryptography password 
is related to his or her beloved sports team.

 Spyware

Of course, the easiest way to breach encryption is to see the password when the user 
types it in. This is often accomplished via spyware. For intelligence gathering agen-
cies, this is a viable option. For law enforcement, this can only be done with a war-
rant, and for civilians this is simply not an option.

 Resources

As stated at the beginning of this chapter, the goal of this chapter is just to get you 
a general familiarity with the concepts of cryptanalysis. If you are seeking more 
specifics, perhaps even tutorials on cryptanalysis, then I suggest you first master the 
information in this chapter and then consider the following resources:

A Tutorial on Linear and Differential Cryptanalysis by Howard M. Heys Memorial 
University of Newfoundland: http://www.engr.mun.ca/~howard/PAPERS/ldc_
tutorial.pdf

The Amazing King Tutorial on Differential Cryptanalysis: http://www.theamazing-
king.com/crypto- diff.php (Note that this source is not a typical scholarly resource 
but is very easy to understand.)

The Amazing King Tutorial on Linear Cryptanalysis: http://www.theamazingking.
com/crypto- linear.php (Note that this source is not a typical scholarly resource 
but is very easy to understand.)

 Conclusions

This chapter has provided you with a broad general introduction to cryptanalysis. 
You should be very familiar with classic techniques, such as frequency analysis. It 
is also important that you understand the concept of the birthday paradox as well as 
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how it is applied to hashing algorithms. For modern methods, such as linear crypt-
analysis and differential cryptanalysis, it is only necessary that you have a general 
understanding of the concepts and some grasp of the applications. It is not critical 
that you will be able to apply these techniques. You should, however, have a work-
ing knowledge of rainbow tables.

 Test Your Knowledge

 1. What is brute force cracking?
 2. Applying the birthday paradox, how many keys would you need to try out of n 

possible keys to have a 50% chance of finding a match?
 3. In English ___ is the most common first letter of a word.
 4. In English ___ is the most common word.
 5. With ______, the attacker obtains a number of plaintext/ciphertext pairs.
 6. ________________ is based on finding affine approximations to the action of 

a cipher.
 7. With ________________, the attacker discovers additional plaintexts (or 

ciphertexts) not previously known.
 8. With ________________, the attacker discovers a functionally equivalent algo-

rithm for encryption and decryption but without learning the key.
 9. A ________________ is essentially a precomputed table of hashes.
 10. The concept of a hash chain is to use a ________________, we will call R, that 

________________.
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Chapter 18
Cryptographic Backdoors

 Introduction

In 2013 Edward Snowden released classified documents that demonstrated the NSA 
had placed a cryptographic backdoor into a particular pseudorandom number gen-
erator, the DUAL_EC_DRBG (Landau 2014) or dual elliptic curve deterministic 
random bit generator (some sources cite it as DUAL_ECC_DRBG emphasizing the 
elliptic curve cryptography). This made quite a bit of news in the computer security 
world. Suddenly, everyone was talking about cryptographic backdoors, but few 
people knew what such a backdoor was or what it meant. Did it mean the NSA 
could read your email as easily as reading the New York Times? Did it mean you 
were vulnerable to hackers exploiting that backdoor? In this chapter we are going to 
address these questions.

In this chapter we will also be giving a general overview of what cryptographic 
backdoors are and how they function, and we will look at specific cryptographic 
backdoors. While the specifics are quite interesting, the most important part of this 
chapter are the general concepts. You should complete this chapter with a working 
understanding of what a cryptographic backdoor is and how it affects security. We 
will also discuss a few general countermeasures.

 In This Chapter We Will Cover

• What are cryptographic backdoors?
• General concepts of cryptographic backdoors
• Specific examples of cryptographic backdoors
• How prevalent are cryptographic backdoors?
• Countermeasures
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 What Are Cryptographic Backdoors?

What is a cryptographic backdoor? To begin with the concept of a backdoor is bor-
rowed from computer security and computer programming. In computer program-
ming a backdoor is some way to bypass normal authentication. It is usually put in 
by the programmer, often for benign purposes. He or she simply wishes to be able 
to circumvent the normal authentication process (which may be cumbersome) for 
testing purposes. It is just important that these backdoors be removed from the code 
before distribution of the final product (Easttom 2018a). In security, a backdoor is 
some method that allows an attacker to circumvent the normal authentication for a 
target computer. For example, an attacker might send a Trojan horse to a victim, and 
that Trojan Horse contains some remote desktop software, such as Timbuktu, or 
opens up a reverse command shell, using a tool such as netcat. Now, the attacker can 
circumvent normal authentication methods and directly access the target computer.

The concept of a cryptographic backdoor is not exactly the same, but it is related. 
A software backdoor gives unfettered access to the intruder. A cryptographic back-
door simply makes the encrypted message more susceptible to cryptanalysis. In 
essence most cryptographic backdoors simply mean that a given element if a cipher 
susceptible to some attack. For example, if the pseudorandom number generator 
used to generate a key for a symmetric cipher contains a backdoor, then that key is 
not really random.

Nick Sullivan describes the issue as follows:

In some cases, even this might not be enough. For example, TrueCrypt, like most crypto-
graphic systems, uses the system’s random number generator to create secret keys. If an 
attacker can control or predict the random numbers produced by a system, they can often 
break otherwise secure cryptographic algorithms. Any predictability in a system’s random 
number generator can render it vulnerable to attacks. It’s absolutely essential to have an 
unpredictable source of random numbers in secure systems that rely on them. (Sullivan 2014)

 General Concepts

Kleptography is a colloquial term for creating cryptographic algorithms that resem-
ble the original/actual algorithms but provide the creator an advantage in cracking 
encrypted messages. Whether you refer to cryptographic backdoors or kleptogra-
phy, there are some basic properties a successful backdoor must have (Easttom 2018b).

 Output Indistinguishability

This means that if one compares the output of the standard algorithm (without the 
backdoor) with the output of the algorithm with the backdoor, no difference should 
be discernible. Without output indistinguishability, anyone with even moderate 
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cryptographic skills could simply compare the output of your algorithm implemen-
tation with the backdoor to other algorithm implementations and discover the exis-
tence of the backdoor.

 Confidentiality

If a person is using a cryptographic algorithm that has a backdoor, that backdoor 
should not generally reduce the security of the cipher. In other words, the vulnera-
bility should only be to the person who created the backdoor. A random attacker, 
unaware of the existence of the backdoor, should not have an increased chance to 
break the cipher.

 Ability to Compromise the Backdoor

Obviously, the backdoor must provide a means whereby the attack who created the 
backdoor can compromise the cipher. This is, indeed, the entire purpose of having a 
cryptographic backdoor. As mentioned previously, however, that should not make 
the cipher more susceptible to general attacks.

Bruce Schneier described three other properties, he believed, a successful cryp-
tographic backdoor should possess:

Low discoverability. The less the backdoor affects the normal operations of the program, 
the better. Ideally, it shouldn’t affect functionality at all. The smaller the backdoor is, the 
better. Ideally, it should just look like normal functional code. As a blatant example, an 
email encryption backdoor that appends a plaintext copy to the encrypted copy is much 
less desirable than a backdoor that reuses most of the key bits in a public IV (initializa-
tion vector).

High deniability. If discovered, the backdoor should look like a mistake. It could be a single 
opcode change. Or maybe a “mistyped” constant. Or “accidentally” reusing a single-use 
key multiple times. This is the main reason I am skeptical about _NSAKEY as a deliber-
ate backdoor, and why so many people don't believe the DUAL_EC_DRBG backdoor is 
real: they’re both too obvious.

Minimal conspiracy. The more people who know about the backdoor, the more likely the 
secret is to get out. So, any good backdoor should be known to very few people. That's 
why the recently described potential vulnerability in Intel's random number generator 
worries me so much; one person could make this change during mask generation, and 
no one else would know.

In general, a cryptographic backdoor needs to, first and foremost, allow the 
attacker to subvert the security of the backdoor cipher. It must also be relatively easy 
to use. Preferably it would compromise a wide number of ciphers, giving the 
attacker the greatest range of potential access.

General Concepts
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 Specific Examples

The following examples of specific cryptographic backdoors are given to provide a 
practical illustration of the concepts. The RSA example given is probably the easiest 
to understand. The Dual_EC_DRBG backdoor has received so much attention in 
the media that it would be impossible to have a discussion of backdoors and not 
discuss Dual_EC_DRBG. Keep in mind that it is not critical that you memorize the 
backdoor techniques discussed in this section, just that you know the general con-
cepts being used.

 Dual_EC_DRBG

Dual_EC_DRBG or dual elliptic curve deterministic random bit generator is a pseu-
dorandom number generator that was promoted as a cryptographically secure pseu-
dorandom number generator (CSPRNG) by the National Institute of Standards and 
Technology (NIST). This PRNG is based on the elliptic curve discrete logarithm 
problem (ECDLP) and is one of the four CSPRNGs standardized in the NIST SP 
800-90A (Scott 2013).

As early as 2006 cryptography researchers suggested the algorithm had signifi-
cant security issues. Other researchers in 2007 discovered issues with the efficiency 
of Dual_EC_DRBG and questioned why the government would endorse such an 
inefficient algorithm. Then, in 2007, Shamow and Ferguson published an informal 
presentation suggesting that Dual_EC_DRBG might have a cryptographic back-
door (Easttom 2018a).

In 2013, The New York Times reported internal NSA memos leaked by Edward 
Snowden suggest an RNG generated by the NSA, which was used in the Dual_EC_
DRBG standard does indeed contain a backdoor for the NSA. Given that there had 
been discussions in the cryptographic community regarding the security of Dual_
EC_DRBG for many years, this revelation was not a particular shock to the crypto-
graphic community. However, it generated a great deal of surprise in the general 
security community.

 Details

Note This section is much easier to follow if you have a good understanding of 
elliptic curve cryptography in general. You may wish to review Chap. 11 before 
proceeding.

The algorithm specification specifies an elliptic curve, which is basically just a 
finite cyclic (and thus Abelian) group G. The algorithm also specifies two group 
elements P,Q. It doesn’t say how they were chosen; all that is known is that they 
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were chosen by the NSA. It is the choice of P and Q that form the basis for the 
backdoor. In the simplified algorithm, the state of the PRNG at time t is some inte-
ger s.To run the PRNG one step forward, we do the following:

You compute sP (recall we use additive group notation; this is the same as P s, if you 
prefer multiplicative notation), convert this to an integer, and call it r.

You compute rP, convert it to an integer, and call it s′ (this will become the new state 
in the next step).

You compute rQ and output it as this step’s output from the PRNG. (OK, techni-
cally, we convert it to a bit string in a particular way, but you can ignore that.)

Now here’s the observation: it is almost certain that P = eQ for some integer e. 
We don’t know what e is, and it’s hard for us to find it (that requires solving the 
discrete log problem on an elliptic curve, so this is presumably hard). However, 
since the NSA chose the values P,Q, it could have chosen them by picking Q ran-
domly, picking e randomly, and setting P = eQ. In particular, the NSA could have 
chosen them so that they know e.

And here the number e is a backdoor that lets you break the PRNG. Suppose the 
NSA can observe one output from the PRNG, namely, rQ. They can multiply this by 
e to get erQ. Now notice that erQ = r(eQ) = rP = s′. So, they can infer what the next 
state of the PRNG will be. This means they learn the state of your PRNG! That’s 
really bad—after observing just one output from the PRNG, they can predict all 
future outputs from the PRNG with almost no work. This is just about as bad a break 
of the PRNG as could possibly happen.

 RSA Backdoor

The RSA backdoor involves compromising the generation of keys for RSA. This 
example is based on an example by Yung and Young RSA labs (Young and Yung 
2005). The specific steps are similar to the usual method of generating RSA keys but 
slightly modified.

Choose a large value x randomly that is of the appropriate size for an RSA key (i.e., 
2048 bits, 4096 bits, etc.).

Compute the cryptographic hash of this x value, denoted as H(x). We will call that 
hash value p.

If the cryptographic hash of x, the value p, is either a composite number or p-1 not 
relatively prime to e, then go to step 1; repeat until p is a prime and then proceed 
to step 4. It should be noted that this step may need to be repeated several times 
to find a suitable H(x); thus, this entire process is not particularly efficient.

Now, choose some large random number we will call R.
Encrypt the value of x with the attacker’s own private key. Denote this value as c. 

Essentially c is the digital signature of x, signed by the attacker. It should be 
noted that this is yet another flaw in this particular approach. You have to ensure 
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you generate a public/private key pair just for this purpose. If you use a private/
public key pair that you utilize for general communication, then you will have 
just signed your backdoor.

Now you solve for (q,r) in (c || R) = pq + r.
Much like computing H(x), if it turns out that q is composite or q-1 not co-prime to 

e, then go to step 1.
Now, you output the public key (n = pq,e) and the private key p.
The victim’s private key can be recovered in the following manner:
The attacker obtains the public key (n,e) of the user.
Let u be the 512 uppermost bits of n.
The attacker sets c1 = u and c2 = u + 1 (c2) accounts for a potential borrow bit having 

been taken from the computation

 
n pq c R r� � � � � .

 

The attacker decrypts c1 and c2 to get s1 and s2, respectively.
Either p1 = H(s1) or p2 = H(s2) will divide n.

Only the attacker can perform this operation since only the attacker knows the 
needed private decryption key corresponding to Y.

 Compromising a Hashing Algorithm

Some researchers have even been exploring methods for compromising crypto-
graphic hashing algorithms. Albertini et al. wrote a paper in which they created a 
cryptographic backdoor for SHA-1. In that paper, the authors state:

SHA-1 as a target because it is (allegedly) the most deployed hash function and because of 
its background as an NSA/NIST design. We exploit the freedom of the four 32-bit round 
constants of SHA-1 to efficiently construct 1-block collisions such that two valid executa-
bles collide for this malicious SHA-1. Such a backdoor could be trivially added if a new 
constant is used in every step of the hash function. However, in SHA-1 only four different 
32-bit round constants are used within its 80 steps, which significantly reduces the freedom 
of adding a backdoor. Actually, our attack only modifies at most 80 (or, on average, 40) of 
the 128 bits of the constants. (Joux and Youssef 2014)

The details of their approach are not important to our current discussion. What is 
important is that this is one more avenue for compromising cryptographic algo-
rithms. Now not only symmetric ciphers and asymmetric ciphers, but cryptographic 
hashes as well.
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 The Prevalence of Backdoors

While a cryptographic backdoor can be a significant security issue, the problem is 
not particularly prevalent. Consider that resources are needed to implement a cryp-
tographic backdoor. As you have seen in this chapter, the algorithms are not overly 
difficult, but how does one get a target organization to utilize a cipher, pseudoran-
dom number generator, key generator, or hash that contains a backdoor? Clearly, 
there are going to be two primary methods for doing this. In this section we will 
look at both methods.

 Governmental Approach

The first approach is the one that most people are familiar with, and, that is, govern-
ment agencies either implementing backdoors in standards, as was the case with 
DUAL_EC_DRBG, or working with a company to get a backdoor in their product. 
This method always runs the risk of being discovered. Even the most secure of intel-
ligence agencies, when working with outside vendors, runs a risk of operational 
security being compromised.

The first such attempt was not really a backdoor, so much as it was a method 
whereby law enforcement, with a warrant, could gain access to symmetric keys 
used in secure voice communications. This was the Skipjack symmetric cipher 
implemented on the clipper chip. However, negative reactions to the possibility of 
the federal government being able to listen in on secure communications prevented 
this project from moving forward.

According to Bruce Schneier:

The FBI tried to get backdoor access embedded in an AT&T secure telephone system in the 
mid-1990s. The Clipper Chip included something called a LEAF: a Law Enforcement 
Access Field. It was the key used to encrypt the phone conversation, itself encrypted in a 
special key known to the FBI, and it was transmitted along with the phone conversation. An 
FBI eavesdropper could intercept the LEAF and decrypt it, then use the data to eavesdrop 
on the phone call (Schneier, 2013).

Edward Snowden also has claimed that Cisco cooperated with the NSA to intro-
duce backdoors in Cisco products. Specifically, Snowden claimed that Cisco routers 
built for export (not for use in the United States) were equipped with surveillance 
tools. He further claimed that this was done without the knowledge of Cisco. 
According to an article in InfoWorld, “Routers, switches, and servers made by 
Cisco are booby-trapped with surveillance equipment that intercepts traffic handled 
by those devices and copies it to the NSA’s network.” In other cases, a government 
agency might get the full cooperation of a technology company. Several sources 
claim that the computer security firm RSA took ten million dollars from the NSA to 
make Dual_EC_DRBG the default for its BSAFE encryption tool kit.

The Prevalence of Backdoors
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 Private Citizen/Group Approach

It may seem like cryptographic backdoors are a tool that only government agencies, 
generally, intelligence gathering agencies, can use, but that is not the case. There are 
several methods whereby a small group, or even an individual, might introduce a 
cryptographic backdoor. I am not aware of any real-world cases of this occurring, 
but it is certainly possible.

PRNG—People often select third-party products to generate random numbers for 
cryptographic keys. Any competent programmer with a working knowledge of 
cryptographic backdoors could create a product that generated random numbers/
keys with a backdoor. Such a product could then be released as freeware, or via 
a website, guaranteeing a significant number of people might use the PRNG.

Product tampering—Any individual working in a technology company, if that indi-
vidual works in the right section of the company, could potentially introduce a 
backdoor without the company being aware.

Hacking—Though this is more difficult and thus less likely to occur, there is always 
the potential to hack into a device and compromise its cryptography. For exam-
ple, a router with VPN capabilities must generate new keys for each VPN ses-
sions. Theoretically, one could hack that router and alter its key generation. Such 
a task would be difficult.

These are just three ways that an individual or small group might implement a 
cryptographic backdoor. Clearly, this makes such backdoors a serious concern.

Note While I indicate that I have not yet heard of individuals or small groups creat-
ing cryptographic backdoors, which may be due simply to a lack of skills, the pri-
mary purpose in writing this book was to correct the problem that so few security 
professionals have any real understanding of cryptography. The same lack of knowl-
edge about the details of cryptography also permeates the hacking community.

 Countermeasures

Detecting cryptographic backdoors is a very difficult task. As we have seen earlier 
in this chapter, one of the goals of a cryptographic backdoor is to be undetectable. 
You could, of course, subject any random number generator or cipher to extensive 
cryptanalysis to determine if a backdoor is likely, but that process is very time- 
consuming and beyond the capabilities of most organizations. And waiting until 
some researcher discovers a likely backdoor is inefficient. You could be using that 
backdoor cipher for quite a few years before some researcher discovers the back-
door (Easttom 2018b).

The first issue is key generation. There is always a risk when you rely on a third 
party for key generation. In Chap. 12 we discussed pseudorandom number 

18 Cryptographic Backdoors



395

generators. The best solution, assuming you have the necessary skills in program-
ming and basic mathematics, is to write code for your own key generation. For 
symmetric keys I would recommend implementing Blum Blum Shub, Yarrow, or 
Fortuna.

Crepeau and Slakmon state: “This suggests that nobody should rely on RSA key 
generation schemes provided by a third party. This is most striking in the smartcard 
model, unless some guarantees are provided that all such attacks to key generation 
cannot have been embedded.” For many this is not a viable option. For example, 
many programmers who write applications for Microsoft Windows rely on the 
Microsoft CryptoAPI for key generation. A simple mechanism, at least for generat-
ing symmetric keys, would be to take that API (or any other) and subject it to a 
cryptographic hash that has the appropriately sized output and then use that output 
as the key. An even simpler approach would be to generate two random numbers 
and then XOR them together using the resulting number as your key. Either tech-
nique will essentially bury the cryptographic backdoor in another operation. The 
cryptographic hashing technique is the more secure and reliable of the two methods.

There have been some attempts in the industry to address this issue as well. The 
Open Crypto Audit Project (https://opencryptoaudit.org/) is an attempt to detect 
cryptographic flaws, including backdoors, in open-source software. Their website 
lists the organizations charter:

provide technical assistance to free open source software (“FOSS”) projects in the public 
interest

to coordinate volunteer technical experts in security, software engineering, and cryptography
to conduct analysis and research on FOSS and other widely software in the public interest
contract with professional security researchers and information security firms to provide 

highly specialized technical assistance, analysis and research on FOSS and other widely 
used software in the public interest

The group includes a number of respected cryptographers.

 Conclusions

This chapter has provided you with an introduction to cryptographic backdoors. 
Since the Snowden revelations of 2013, this topic has become very widely dis-
cussed in the security community. Cryptographic researchers have been exploring 
backdoors for many years before those revelations.

You need not know the details of the specific implementations discussed in this 
chapter. However, the general concepts of output indistinguishability, confidential-
ity, etc. are critical, and you should have a solid working knowledge of these topics. 
It is also important that you have some knowledge of countermeasures discussed in 
this chapter.

Conclusions

https://opencryptoaudit.org/
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 Test Your Knowledge

 1. In regard to cryptographic backdoors, what is output indistinguishability?
 2. In regard to cryptographic backdoors, what is confidentiality?
 3. What made the clipper chip relevant to backdoors?
 4. _______ is a colloquial term for creating cryptographic algorithms that resemble 

the original/actual algorithms but provide the creator an advantage in cracking 
encrypted messages.

 5. In simple terms, the backdoor in Dual_EC_DRBG is based on what?
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Chapter 19
Quantum Computing and Cryptography

 Introduction

Advances in quantum computing will significantly increase computing power. 
While quantum computing promises to provide advancements in a wide range of 
computer science applications, there will be a deleterious effect on cybersecurity. It 
has already been demonstrated that quantum computing will render current asym-
metric (i.e., public key) cryptographic protocols obsolete (Easttom 2019). Symmetric 
algorithms will not be affected so significantly. Algorithms such as AES, Blowfish, 
Serpent, and GOST will still be usable but may need longer keys.

It is the nature of currently widely used algorithms such as RSA, Diffie-Hellman, 
and Elliptic Curve that leads to the problem presented by quantum computing. 
Almost all facets of network security depend at least to some degree on asymmetric 
cryptography. This includes e-commerce, online banking, secure conferencing, and 
a variety of other tasks. Many of which you have studied earlier in this book. 
Presently widely used algorithms are secure because they are based on mathemati-
cal problems that are difficult to solve. By difficult, it is meant that they cannot be 
solved in practical time using classical (i.e., non-quantum) computers. RSA is based 
on the difficulty of factoring integers into their prime factors. Diffie-Hellman is 
based on the difficulty of solving the discrete logarithm problem. The various 
improvements to Diffie-Hellman such as Elgamal and MQV are also predicated on 
the difficulty of solving the discrete logarithm problem. Even elliptic curve cryptog-
raphy, which includes several algorithms, is based on the difficulty of solving dis-
crete logarithm problems of a random elliptic curve element with respect to a 
publicly known base point. The dilemma for cybersecurity is that it has already been 
proven that these mathematical problems can be solved with quantum computers.

Because it has been proven that quantum algorithms can solve the problems that 
form the basis for current asymmetric cryptography, in a time that is practical, quan-
tum computing will eventually render existing asymmetric or public key algorithms 
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obsolete and ineffective. That means that the cryptography used for key exchange in 
VPNs, digital certificates, all e-commerce solutions, and even some network authen-
tication protocols will no longer be secure. TLS, which is widely used to secure 
Internet traffic including Web traffic, email, and even voice-over IP, will no longer 
be secure. While these dangers to cybersecurity are not immediate because quantum 
computing is not yet a practical, usable reality, it is important for anyone in cyber-
security to be aware of the problem and to be familiar with the progress toward 
solutions.

 What This Means for Cryptography

Peter Shor developed the eponymously named Shor’s algorithm. He proved that a 
quantum computer it can factor an integer N in polynomial time. The specific actual 
time is log N, where N is the integer being factored (Lavor et al. 2003). This is sub-
stantially faster than the most efficient known classical factoring algorithm that 
works in sub-exponential time. It has also been shown that quantum computers will 
also be able to solve discrete logarithm problems.

A brief history of quantum computing is useful to understand the current state of 
quantum computing and thus the impact on cybersecurity. In the early 1980s, 
Richard Feynman conceived of a “quantum mechanical computer.” Richard 
Feynman first proposed complex calculations could be performed faster on a quan-
tum computer. At that point, quantum computing was just a concept. In 1998, Los 
Alamos Laboratory and Massachusetts Institute of Technology propagated the first 
qubit through a solution of amino acids. The same year, the first two qubit machine 
was built by the University of California at Berkeley.

The first five-photon entanglement was demonstrated by Jian-Wei Pan’s group at 
the University of Science and Technology of China in 2004. Five qubits are the 
minimal number of qubits required for universal quantum error correction. In 2005, 
the Institute of Quantum Optics and Quantum Information at the University of 
Innsbruck in Austria developed the first qubyte (8 qubits) system. Just 1 year later, 
in 2006, the first 12 qubit quantum computer was announced by researchers at the 
Institute for Quantum Computing and the Perimeter Institute for Theoretical Physics 
in Waterloo, as well as MIT, Cambridge. Yale University created the first quantum 
processor in 2009.

In 2012, D-Wave claims a quantum computation using 84 qubits. Five years 
later, in 2017, IBM announced a working 50-qubit quantum computer that can 
maintain its quantum state for 90 microseconds. In 2018, Google announced the 
creation of a 72-qubit quantum chip called “Bristlecone.” Note the issue with the 
IBM 50-qubit computer only maintaining state for 90 microseconds. One issue that 
is preventing quantum computing from advancing faster is the issue of decoherence. 
There are significant issues with maintaining the state of the qubits long enough to 
accomplish practical tasks.
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In November 2021, IBM announced its new processor named Eagle, which fea-
tures 127 qubits. This processor also reduces interference, thus reducing errors. On 
October 25, 2021, Chinese researchers have developed the Jiuzhang 2 66-qubit pro-
grammable photon-based quantum computer and used it to solve a task 1024 times 
as fast as classical computers. The problem solved was rather obscure. It involves 
Gaussian boson sampling (GBS), a classical simulation algorithm. Zuchongzi and 
Jiuzhang 2.0 are currently China’s two leading quantum computers.

This brief overview of the history of quantum computing demonstrates two facts. 
The first is that practical, usable quantum computers are not yet available. However, 
the second fact is that research in quantum computing is progressing at a rapid pace, 
with many organizations investing time, effort, and money into this research. That 
would tend to indicate that quantum computing will eventually be a practical, usable 
reality. Many experts believe that will be the case within 10 years.

 What Is a Quantum Computer?

It is beyond the scope of this book to provide a detailed discussion of quantum com-
puting. However, we can provide a general description. A quantum computer is, 
simply put, a machine that performs calculations based on the laws of quantum 
mechanics, which is the behavior of particles at the subatomic level. Rather than 
using traditional bits, quantum computer utilizes qubits. A qubit is a two-state quan-
tum-mechanical system. Qubits store data based on some quantum state of some 
particle, and spin or polarization works well (Nielsen and Chuang 2011). The qubit, 
unlike a bit, is not in one state or the other but is in a superposition of states until it 
is measured. Once measured, it will render a discrete value (1 or 0), but until it is 
measured, it is in a superposition of states. That is why a qubit is often represented 
by something called a Bloch sphere, shown in Fig. 19.1.

What is occurring is that there are issues with making quantum computers con-
tinue working over a period of time that is useful for practical usage. The most 
prominent obstacle is controlling or removing quantum decoherence. What this 

Fig. 19.1 Bloch sphere
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means is that the state of the qubits doesn’t keep their state for a long enough period 
of time. Trying to control this decoherence is the major challenge to quantum com-
puting (Rieffel and Polak 2011). This usually means isolating the system from its 
environment as interactions with the external world cause the system to decohere. 
However, internal factors in the quantum computer itself can cause decoherence. 
Most quantum computing solutions are kept at supercooled temperatures, and even 
then, the state cannot be maintained indefinitely.

Theoretically, a quantum system could maintain coherence indefinitely if it were 
completely isolated from the external environment; however, no system is perfectly 
isolated from its environment. It has even been demonstrated that cosmic rays and 
background environmental radiation can contribute to decoherence in quantum 
computers. Even entanglements can occur between the quantum computing system 
and its environment.

In addition to the external environment, the system itself can be an issue. For 
example, the physical equipment needed for things like implementing quantum 
gates is constructed of atoms and particles that have quantum properties. In general, 
many systems are only able to maintain coherence for a matter of microseconds to 
a few seconds.

One method used to help combat decoherence is supercooling to just a fraction 
of 1 Kelvin. In fact, some systems cool to a few nanokelvins. If you are not familiar, 
or don’t recall the Kelvin scale, 0 Kelvin is the equivalent to −273.15 Celsius or 
−459.67 Fahrenheit. This is not arbitrary. The point 0 Kelvin is absolute zero, which 
implies no thermal energy at all. Thus, nanokelvins are literally a fraction of a 
degree above absolute zero. To provide some context, temperatures in space are 
often around 2.7 Kelvin. Obviously, proximity to heat sources such as stars can alter 
that. The surface of Pluto plummets to about 40 Kelvin. So quantum computing 
relies on temperatures that are much colder than Pluto and even colder than 
deep space.

The two states of a qubit are represented with quantum notation as |0 > or |1>. 
These represent horizontal or vertical polarization. A qubit is the superposition of 
these two basis states. This superposition is represented as |ψ> = α|0> + β|1> . The 
qubit will produce a single state (1 or 0) when measured but will contain any super-
position of those two states (Rieffel and Polak 2011).

The issue for quantum computing is really about the qubits. The difference 
between a classical bit and a qubit is more than a mere naming convention change. 
An effective explanation for qubits is found in Neilson and Chuang:

What then is a qubit? Just as a classical bit has a state – either 0 or 1 – a qubit also has a 
state. Two possible states for a qubit are the states |0〉 and |1〉, which as you might guess 
correspond to the states 0 and 1 for a classical bit. Notation like ‘|〉’ is called the Dirac nota-
tion, and we’ll be seeing it often, as it’s the standard notation for states in quantum mechan-
ics. The difference between bits and qubits is that a qubit can be in a state other than |0〉 or 
|1〉. It is also possible to form linear combinations of states, often called superpositions. 
(Nielsen and Chuang 2011)
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Qubits are using the aforementioned bracket notation. However, this is just a 
convention for representing column vectors (recall linear algebra discussed in Chap. 
5). Thus,
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The bra-ket notation also called Dirac notation is used to represent vectors. In 
this case, the two states |0> and |1> are both kets. If one wishes to represent two 
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This is precisely the reason bracket notation is preferred. As the qubits increase, 
representing the states via column matrices becomes quite cumbersome.

 Quantum Physics Basics

It is important to understand that a qubit is information stored in subatomic parti-
cles. As such, it is subject to quantum mechanics. It is beyond the scope of this book 
to delve deeply into that topic. However, some brief comments are in order. The 
world of quantum physics is one of probability, not determinism. This can be diffi-
cult for most people to understand and to come to terms with. For example, consider 
a photon. It will have a polarization, perhaps vertical or horizontal. Until some inter-
action occurs to that photon, however, it is in neither polarization. Rather, it is in a 
superposition of possible states. When an interaction occurs, then that photon’s 
wave function collapses into an actual value. A wave function is a mathematical 
description of the quantum state of a quantum system. It is usually represented by 
the Greek letter psi, either lower case ψ or upper case Ψ. A wave function is a func-
tion of the degrees of freedom for the quantum system. In such a system, degrees of 
freedom indicate the number of independent parameters that describe the systems 
state. As one example, photons and electrons have a spin value, and that is a discrete 
degree of freedom for that particle.

A wave function is a superposition of possible states. More specifically, it is a 
superposition of eigenstates that collapses to a single eigenstate based on interaction 
with the environment. Chapter 5 discussed eigenvalues and eigenvectors. An eigen-
state is basically what physicists call an eigenvector.

Thus, a qubit, when measured, will have a value of 1 or 0. But prior to that mea-
surement, it is a superposition of all possibilities between 1 and 0. Now, there has 
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been some popular misunderstanding of this issue. This does not mean that an intel-
ligent observer must measure the photon (or other particle) to cause the wave func-
tion to collapse. Other things can cause that collapse. Interaction with another 
particle, an energy field, even cosmic rays can lead to the wave function collapse. 
This fact of quantum computers makes them better able to handle some problems, 
but also far more prone to error.

While decoherence is the greatest problem facing quantum computing, error cor-
rection is another. Most experts agree that if we can get the quantum hardware to the 
point that errors are less than 1%, then algorithms can take us the rest of the way to 
reliable quantum computers. Quantum error correction is an important area of 
research in quantum computing.

While there are challenges to making quantum computing work practically, there 
are literally thousands of talented scientists and engineers working on the problem. 
And new advances and improvements are announced with great regularity. Most 
experts in the field believe these issues will be overcome in the next 5–10 years. 
This means that the time of current asymmetric algorithms is coming to an end.

A term commonly heard is quantum supremacy. John Preskill coined the term 
quantum supremacy referring to a quantum computer solving a particular problem 
that is either unsolvable or extremely impractical to solve with a classical computer. 
An example of quantum supremacy occurred in October 2019 when Google and 
NASA performed calculations using the Sycamore quantum computer approxi-
mately three million times faster than can be done on the fastest classical computer.

The journey to quantum mechanics began with trying to understand the nature of 
light. The debate goes back to the 1600s. Isaac Newton had proposed that light was 
a particle or corpuscle. Christian Huygens had advocated that light was a wave, 
much like a sound wave or water wave. Christian Huygens was not alone in his view 
of light as a wave, but the prominence of Isaac Newton certainly gave weight to the 
corpuscular view of light. This began what would become the birth of quantum 
mechanics. Classical physics could not explain several things, including the nature 
of light. In 1801, Thomas Young performed an experiment that demonstrates the 
wave behavior of light. Young shined light through two slits in a barrier and had a 
photosensitive plate on the other side. What occurs is that when light went through 
two apertures, it appeared to have interference on the receiving side, much like a 
water wave or sound wave.

Further variations of the double slit experiment began to shed some light on the 
situation. First, it was noted that sending waves/particles through the double slit one 
at a time, it certainly appeared as dots, or particles on the target. This can be done 
by simply closing one of the slits. But as more is sent through the slits, a wave pat-
tern emerges. This type of experiment has been done with photons, electrons, and 
other particles. Essentially, it leads to the idea that light is both a particle and a 
wave. This is also true for other subatomic particles. The concept is often referred 
to as wave-particle duality.

The history of quantum mechanics also includes some questions that may seem 
a bit obscure today. One of those issues was the study of blackbody radiation. This 
topic was very important in the 1800s. A blackbody is an opaque, nonreflective 
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object. The radiation is the thermal radiation (heat) in and around such a blackbody. 
A perfect absorber absorbs all electromagnetic radiation incident on it; such an 
object is called a blackbody. Obviously, such an object is hypothetical as no object 
can perfectly absorb energy.

In 1859, Gustav Kirchhoff proved that the energy emitted from a blackbody 
depends only on the temperature of the blackbody and the frequency of the energy 
absorbed. He developed the rather simple formula E = J (T,v). In this formula E is 
energy, T is temperature, and v is frequency. However, Kirchhoff did not know what 
the function J was and challenged other physicists to find it.

The next issue is the photoelectric effect. Essentially when some electromagnetic 
radiation, such as light, hits material, electrons are emitted (or other particles). This 
seems simple enough to understand. Classical (i.e., pre-quantum or relativity) elec-
tromagnetic theory held that the intensity of light would be proportional to the 
kinetic energy of the electrons emitted. This should mean that a dim light will pro-
duce lower energy electrons than a bright light. But experiments did not show this. 
Rather, experiments showed a correlation between frequency and the electrons dis-
lodged. In fact, below a certain frequency, no electrons are emitted at all.

Einstein proposed this photoelectric effect was due to light being a collection of 
discrete wave packets termed photons than a wave propagating through space. Work 
by Einstein, Plank, and others would eventually establish what is now known as 
wave-particle duality. This seems to counter the previous experiments by Young and 
others that clearly showed light was a wave.

All of this brings us to a fundamental issue. The quantum physics world does not 
behave in the same manner as the macro world you are accustomed to. We have the 
wave-particle duality issue that showed us that subatomic particles are simply a dif-
ferent sort of thing than what we are accustomed to. This also includes the fact that 
any subatomic particle is a wave function consisting of probability amplitudes until 
that wave function collapses. If this seems odd to you, you are not alone. Many 
prominent physicists have opined, essentially, that no one truly understands all of 
quantum mechanics. We can use it, we can describe it mathematically, but why 
things are this way, we do not know.

There is one more issue to bring to your attention before we complete describing 
this strange world of quantum physics. That issue is entanglement. Entanglement 
begins with two particles being generated in such a way that the quantum state of 
each particle is inextricably linked to the other. Essentially, the two particles have a 
quantum state such that each particle cannot be truly described independently. Thus, 
properties such as momentum, polarization, spin, etc. are correlated. This means 
that a change to one entangled particle will instantly cause a coordinated change in 
the other. If one particle in an entangled pair has a spin that is clockwise, the other 
particle in the pair will have a counterclockwise spin. If you find this hard to fathom, 
you are in excellent company. In fact, Albert Einstein famously called this “spooky 
action at a distance.”
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 Physical Qubits

It is not strictly necessary that one understand more about quantum computing than 
what has been discussed thus far in order to appreciate the impact of quantum com-
puting on current cryptographic algorithms. However, some additional details are 
provided in this section, particularly the physical implementation of qubits. We have 
discussed qubits in the logical form, without discussing how qubits are actually 
physically built.

Electrons and photons are two of the most obvious ways to implement a qubit. 
Electron qubits use some property such as electron spin to indicate the state of the 
qubit. For example, an up spin can designate state |0> and a down spin can designate 
|1>. Some researchers have focused on quantum states of electrons in particular 
mediums. For example, the Okinawa Institute of Science and Technology has 
worked on using electrons in liquid helium. Data suggests that electron spin states 
in liquid helium would maintain coherence longer.

Nuclear magnetic resonance quantum computing is a very interesting approach 
to physically implementing quantum computers. This approach uses spin states of 
nuclei within molecules to represent the qubits. The states are probed using nuclear 
magnetic resonances, thus the name.

Gallium arsenide (GaAs) is often used to create quantum dots. A quantum dot is 
a device that is nanoscale in all three dimensions. The electron spin in the GaAs 
quantum dot is subject to an effective magnetic field. This field is called an 
Overhauser field. The Overhauser effect is a nuclear effect that occurs when the 
nuclear spin polarization of one population of nuclear is transferred to another. This 
is accomplished via cross-relaxation. The details of cross-relaxation are beyond the 
scope of our current discussion; however, the general process is an RF pulse or 
series of pulses is applied to some sample in a homogeneous magnetic field and the 
resonance frequency of the nuclei.

Nitrogen vacancy centers are another method of realizing quantum computers. 
These are defects in diamonds. Essentially during the formation of the diamond, a 
nitrogen atom was substituted for a carbon atom creating a vacancy in the lattice. 
This vacancy can be in two charge states: neutral and negative. The nitrogen atom 
on one hand has five valence electrons. Three of them are covalently bonded to the 
carbon atoms, while the other two remain nonbonded and are called a lone pair. The 
vacancy on the other hand has three unpaired electrons, and two of those form a 
quasi-covalent bond and one remains unpaired. The qubit is stored in the spin of that 
lone electron.

The US Department of Energy Argonne National Laboratory in May 2022 
announced it had created qubits by freezing neon gas into a solid and spraying elec-
trons onto the solid. The electrons were then trapped, allowing it to be used as 
a qubit.
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 Possible Quantum-Resistant Cryptographic Algorithms

The primary reason quantum computing is a concern for cybersecurity profession-
als is that quantum algorithms have already been developed, which can solve the 
problems that form the basis for current asymmetric algorithms. A widely studied 
example is Shor’s algorithm that was mentioned briefly earlier. Peter Shor devel-
oped Shor’s algorithm for factoring integers. On a quantum computer, it can factor 
an integer N in polynomial time (actual time is log N). This is substantially faster 
than the most efficient known classical factoring algorithm (the general number 
field sieve), which works in sub-exponential time.

There are several classes of algorithms that might provide a quantum computing- 
resistant solution. The two most widely studied are multivariate cryptography and 
lattice-based cryptography. Lattice-based mathematics promises to provide a range 
of cryptographic solutions. Lattice based cryptography involves the construction of 
cryptographic primitives based on lattices. Lattices are essentially matrices, which 
you studied in Chap. 5 of this book. You may wish to briefly review that before 
continuing. A cryptographic primitive is an algorithm such as a symmetric cipher, 
asymmetric cipher, cryptographic hash, or message authentication code that is part 
of a cryptographic application. Essentially, a complete cryptographic system must 
account for both confidentiality and integrity of the message. This often involves 
encrypting the message for confidentiality, exchanging symmetric cryptographic 
keys via some asymmetric algorithm, ensuring integrity with a cryptographic hash 
function, and digitally signing the message. Each of these aspects of security is 
accomplished via a different algorithm, a specific cryptographic primitive. The 
cryptographic primitives are combined to provide a complete cryptographic system.

Classical asymmetric cryptography is based on problems in number theory such 
as the factoring problem or the discrete logarithm problem. Lattice-based cryptog-
raphy is simply cryptographic systems based on some problem in lattice-based 
mathematics. One of the most commonly used problems for lattice cryptography is 
the Shortest Vector Problem (SVP). Essentially, this problem is that given a particu-
lar lattice, how do you find the shortest vector within the lattice? More specifically, 
the SVP problem involves finding the shortest nonzero vector in the vector space V, 
as measured by a norm, N. A norm is a function that assigns a strictly positive length 
or size to each vector in a vector space. The SVP problem is a good choice for post- 
quantum computing (Easttom 2019).

The GGH algorithm, named after its inventors Goldreich, Goldwasser, and 
Halevi, is a lattice-based cryptosystem that was first published in 1997 and uses the 
closest vector problem (CVP). This problem is summarized as given a vector space 
V and a metric M for a lattice L and a vector v that is in the vector space V, but not 
necessarily in the lattice L, find the vector in the lattice L that is closest to the vector 
v. This problem is related to the previously discussed SVP problem and is also dif-
ficult to solve.

There are a variety of mathematical problems based on lattices that can form the 
basis for cryptographic systems; SVP and CVP are only two choices. Another such 
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problem is the Learning With Errors (LWE) problem. This is a problem from the 
field of machine learning. It has been proven that this problem is as difficult to solve 
as several worst-case lattice problems. The LWE problem has been expanded to use 
algebraic rings with Ring-LWE.

Another lattice-based cryptosystem is NTRU. It was invented by Hoffstein, 
Pipher, and Silverman. It is the most well-known and widely studied lattice-based 
cryptographic system. NTRU is a cryptosystem that provides both encryption and 
digital signatures. It has been shown to be resistant to Shor’s algorithm, unlike many 
other asymmetric cryptographic systems. NTRU is more secure than RSA even in a 
classical computing context. That makes it a viable option for classical computing 
(Easttom 2019).

Many lattice-based cryptographic algorithms are also resistant against current 
cryptanalytical attacks. This means that lattice-based cryptography is a preferable 
solution, even when considering only classical computing. There have been 
advances in number sieves that are improving even classical computing’s ability to 
break RSA. This demonstrates that there is a need for improved asymmetric crypto-
graphic primitives, even before quantum computing becomes a reality.

The National Institute of Standards (NIST) is currently conducting a multiyear 
study, due to be completed in 2022, which is studying algorithms for post-quantum 
cryptography. The NIST study is simply allowing cryptographers from around the 
world to submit proposed algorithms that will then be subjected to years of crypt-
analysis. This is similar to the NIST study in the late 1990s that leads to the stan-
dardization of the Advanced Encryption Standard in 2001.

 Conclusions

Quantum computers are based on storing data in quantum states of particles. Such 
as polarization of a photon or energy of electrons. Quantum computers are able to 
solve problems such as factorization of integers and discrete logarithm in polyno-
mial time. This means that the security of RSA, Diffie-Hellman, and many other 
algorithms will be compromised by quantum computers. There are numerous algo-
rithms that could potentially provide quantum computing-resistant solutions.

 Test Your Knowledge

 1. What is the meaning of Shor’s algorithm for cryptography?
 2. What is a quantum computer?
 3. Before measurement, what is the state of a qubit?
 4. What is the closest vector problem?
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Chapter 20
Lattice-Based Cryptography

 Introduction

Lattice-based algorithms are cryptographic algorithms that are based on mathemati-
cal problems related to lattices. Recall that the security of RSA is based on the 
computational difficulty of factoring an integer into its prime factors. Diffie- 
Hellman, and its variations, have security based on the computational difficulty of 
solving the discrete logarithm problems (Hoffstein et al. 2008). The various elliptic 
curve-based algorithms depend on the difficulty of solving the discrete logarithm in 
reference to an elliptic curve and a point not on the curve.

Before exploring specific problems, then algorithms, it is important to under-
stand lattices. Presumably, you recall the material from Chap. 5, particularly the 
section on linear algebra. If you are not completely clear on those topics, you should 
probably review that chapter before continuing with this one. Lattices are matrices 
and can be any number of dimensions, though for ease of presentation, most books 
demonstrate two-dimensional matrices. The matrices used in lattice-based cryptog-
raphy are much larger than the matrices one typically sees in textbooks, or else 
solving mathematical problems based on a lattice would be a trivial task to solve, 
and encryption based on lattices would be easily broken.

Lattice-based cryptography are cryptographic primitives based on some problem 
in lattice-based mathematics. One mathematical problem that is often utilized for 
lattice-based cryptography is the Shortest Vector Problem (SVP) (Bhatia and Kumar 
2019). The Shortest Vector Problem involves finding the shortest nonzero vector in 
the vector space V, as measured by a norm, N. Recall vector spaces from Chap. 5. A 
norm is a function that assigns a strictly positive length or size to each vector in a 
vector space. The SVP problem is a good choice for post-quantum computing.

Asymmetric cryptography is based on mathematical problems that are difficult 
to solve. In fact, the problems are so difficult to solve that no solution can be found 
within a practical period of time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Another mathematical problem for lattices is the closest vector problem (CVP). 
This problem is summarized as given a vector space V, and a metric M for a lattice 
L and a vector v that is in the vector space V, but not necessarily in the lattice L, find 
the vector in the lattice L that is closest to the vector v (Micciancio and Regev 2009). 
This problem is related to the previously discussed SVP problem and is also diffi-
cult to solve.

 Lattice-Based Mathematical Problems

A lattice can be defined as a set of points in some space having n-dimensions, which 
has a periodic structure. The basis vectors of the lattice are used to generate the lat-
tice (Micciancio and Regev 2009). Equation 20.1 provides a mathematical descrip-
tion of a lattice.

Equation 20.1 Definition of a lattice
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In Eq. 20.1, the values b1…bn are basis vectors. Or this can be expressed as the 
sum (Σ) of the vectors x that are all elements of the set of integers (Z).

A lattice consists of vectors. Lattices use linearly independent vectors. A set of 
vectors is described as linearly dependent if any one of the vectors in the set can be 
defined as a linear combination of the other vectors. Conversely, if there is no vector 
in the set that can be defined in this manner, then the vectors are described as lin-
early independent (Micciancio and Regev 2009). These vectors form the basis for a 
lattice.

This is one aspect of the definition of a lattice, but not the only one. Lattices also 
appear in geometry and group theory. Consider the real numbers Rn. A lattice is a 
subgroup of the group Rn that is isomorphic to the integer group Zn. This of course 
requires that we define what a subgroup is. In group, theory is defined as follows: if 
G is a group under some operation, and H is a subset of G that also forms a group 
under that operation, then H is a subgroup of G. Consider the group of integers 
under the operation of addition. This is clearly a subgroup of the group of rational 
numbers under the operation of integers.

It is also important that you understand the term isomorphic in this context. One 
often sees that term used in connection with graph theory; however, it has applica-
tions in group theory and other areas of mathematics. In any area of mathematics, 
an isomorphism is a mapping between two structures that preserves the structures 
and can be reversed via an inverse mapping. Isomorphisms are important because 
two isomorphic structures will also have the same properties.
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One, somewhat trivial example is the group of real numbers with respect to addi-
tion (R,+). This group is isomorphic with the group of positive real numbers with 
multiplication (R+, x).

Now that we have defined the concept of lattices from two different perspectives, 
we can explore lattices a bit further. Some of this material is new, and some is a brief 
review of some concepts in Chap. 5. These are critical concepts in order for you to 
understand lattice-based cryptography.

The term vector space is quite central to lattice-based cryptography. First, con-
sider a vector. A vector is a group of values. The values can be real numbers, com-
plex numbers, integers, etc. A set of such vectors that is closed under vector addition 
and closed under scaler multiplication is a vector space. Put a bit more formally, 
consider a set of vectors V, and within that set, select any two vectors w and v and a 
scaler α. The following must be true for V to be a vector space:

 (a) Given v, w ϵ V, v + w ϵ V
 (b) Given v ϵ V and a scaler α, αv ϵ V

These are not the only property of vector spaces. There are a number of associa-
tivity and commutativity properties. However, the two properties just listed are gen-
erally the ones that limit some set of vectors to being a vector space or not. However, 
in the interest of completeness, here are the additional properties given vectors v and 
w in vector space V along with scaler α:

 (a) v + w = w + v (commutativity of addition).
 (b) (u + v) + w = u + (w + v) (associativity of addition).
 (c) α (v + w) = αv + αw (distributive).
 (d) (α + β)v = αv + βv (distributive).
 (e) There is a vector z ϵ V such that z + v = v (i.e., a zero vector).
 (f) For each v, there is a −v ϵ V such that v + (−v) = z (additive inverse).

Vectors have a number of practical applications, but for our current purpose, we 
can simply consider them as mathematical objects. The dimension of a vector space 
V is the number of vectors over its base field. This is often called the cardinality of 
the vector space V. A set of vectors B form a basis in a vector space V, if every vector 
in V can be written as a finite linear combination of the vectors in B. Then B is the 
set of basis vectors for the vector space V. It is certainly possible that a vector space 
V can have more than one basis set B. However, all such bases must have the same 
number of elements, as that is the dimension of the vector space V.

Another concept from linear algebra that is used frequently in lattice-based cryp-
tography is orthogonality. Two elements in a vector space (u and v) are said to be 
orthogonal if their dot product is zero. A dot product is the sum of the products of 
the corresponding elements of the two vertices. Essentially, the dot product is used 
to produce a single number, a scaler, from two vertices or two matrices. This is 
contrasted with the tensor product. In math, a tensor is an object with multiple indi-
ces, such as a vertex or array. The tensor product of two vector spaces, V and W and 
V ⊗ W, is also a vector space.
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Unimodular matrices are also used in some lattice-based algorithms. A unimodu-
lar matrix is a square matrix of integers with a determinant of +1 or −1. A determi-
nant is a value that is computed from the elements of a square matrix. The determinant 
of a matrix A is denoted by |A|. Here is an example of a unimodular matrix:
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Recall from Chap. 5 that we take three submatrix determinants to get the deter-
minant of this matrix:
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Recall that each determinant is computed by ad − bc. Thus, we have

 
2 2 7 3 6 3 4 7 3 9 2 4 6 2 9� � � � � �� � � � ��
�

�
� � � � � � ��

�
�
� � � � � ��

�
�
�–

 

which in turn gives us

 
2 14 18 3 28 27 2 24 18�� � �� �� �� �–

 

which is

 
� � � � � �8 3 12 1

 

Cyclic lattices are also used in some cryptographic applications (Micciancio and 
Regev 2009). A cyclic lattice is a lattice that is closed under a rotational shift opera-
tor. Equation 20.2 provides a more rigorous definition.

Equation 20.2 Definition of cyclic lattice

 
A lattice is cyclic if rotL Z x L x Ln� � � � : .

 

 Shortest Integer Problem

The shortest integer problem (sometimes called short integer solution [SIS]) is 
given an m × n lattice A that is comprised of m uniformly random vectors (which are 

integers), also stated as A ϵ zq
n m× , find a nonzero short integer vector v satisfying 
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such that Ax = 0 mod q. This problem forms the basis for Ajtai cryptographic primi-
tive. There are other ways of stating this problem that you will find in some of the 
literature; however, this form is used here because it is the clearest.

 Shortest Vector Problem

The Shortest Vector Problem (SVP) is frequently used as a basis for lattice-based 
cryptographic systems. This problem is given a particular lattice, and a norm N for 
a lattice L, find the shortest nonzero vector in V as measured by N in L. Put more 
formally, the SVP problem is to find the shortest vector in the vector space V, as 
measured by a norm, N. Remember that a norm is a mathematical function that 
assigns a positive integer to each vector in a vector space, which is the vectors 
length or size. The shortest vector must be a nonzero vector.

Put even more formally, given lattice L, vector v, and Norm n:

 
N v L� � � �

 

λL denotes the length of the shortest nonzero vector in the lattice L.
There are several different approaches to solving this problem, none of which 

solve the problem in a time that is of practical use, even with a quantum computer. 
This means that the SVP is a good foundation for lattice-based cryptography. Later 
in this chapter, we will review the methods for solving lattice-based problems. The 
issue to keep in mind the lattices used is so large that one cannot simply look and 
find the solution to this or other lattice-based problem.

A variation of the shortest vector problem is the Gap Shortest Vector Problem 
(GapSVP). This problem begins with a fixed function of the dimension of the lattice 
N. We will refer to this function as β. β is a fixed function of the dimension of the 
lattice L. Given a basis for the lattice, the algorithm is attempting to determine if 
λ(L) ≤ 1 or λ > β (Chen et al. 2016).

 Closest Vector Problem

Another mathematical problem that is used in lattice-based cryptography is the 
closest vector problem (CVP). This problem is given a particular vector space V, 
along with a metric M for a lattice L and a vector v that is in the vector space V, but 
not necessarily in the lattice L, how does one find the vector in the lattice L that is 
closest to the vector v (Chen et al. 2016). This problem is related to the previously 
discussed shortest vector problem and is also computationally hard to solve. In fact, 
the CVP is in fact a generalization of the SVP.

Given the relationship of CVP to SVP, you might assume there is a GapCVP 
much as there is a GapSVP.  If you assume that, you are indeed correct. With 
GapSVP, the input consists of a lattice basis and a vector v, and the algorithm must 
determine if one of the following is correct:
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• There is a lattice vector w such that the distance between w and v is at most 1.
• Every vector in the lattice is at a distance greater than β from v.

 Cryptographic Algorithms

Lattice problems are effective for forming cryptographic algorithms. In 1996, the 
first lattice-based cryptographic algorithm was published. This was created by 
Milos Ajtai and based on the short integer solution (SIS). This algorithm has been 
shown to have various vulnerabilities, so it is not actually used for cryptography 
today. However, it was the first demonstration of the application of lattices to cryp-
tography and thus is usually mentioned in any discussion of lattice-based cryptog-
raphy. In this section, we will review the three most widely used lattice-based 
cryptographic algorithms.

 NTRU

NTRU was first publicly described in 1996 by Jeffery Hoffstein, Jill Pipher, and 
Joseph Silverman. There have also been additional variants of this algorithm devel-
oped since its initial publication. The acronym NTRU stands for N-th degree 
Truncated polynomial Ring Units (Chen et al. 2016). NTRU can best be defined as 
a group of related cryptographic algorithms. This group of algorithms has been one 
of the most studied lattice-based cryptosystems. It is a very important group of 
algorithms, particularly due to the fact that two variations of NTRU have made it 
past round three of the NIST project to find a quantum-resistant cryptography 
standard.

NTRU is based on the shortest vector problem in a lattice (Bhatia and Kumar 
2019). The security of NTRU is predicated on the computational difficulty of factor-
ing certain polynomials in a given truncated polynomial ring (Ducas et al. 2014). 
This requires that we briefly explore the concept of polynomial rings for those read-
ers who might not be familiar with them.

A polynomial ring is a ring formed from the set of polynomials in one or more 
indeterminates (i.e., variables) with coefficients in another ring. Recall the discus-
sion of rings in Chap. 5. A ring is a set with two operations, an identity element, two 
operations, and the inverse operation of the first operation. A polynomial is an 
expression that consists of variables and coefficients. Another term for the variable 
is indeterminate as it was in the definition of a polynomial ring.

Consider as an example of a polynomial ring the ring R[X]. This is a ring in X 
over a field r with coefficients of p. This can be defined as follows:

 p p p X p X p X p Xn
n

n
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�
0 1 2

2
1

1
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A truncated polynomial ring is a ring made up of polynomials only up to some 
set degree. Essentially, the degree of the polynomial is limited or truncated.

For those readers who would like a more rigorous mathematical treatment of 
polynomial rings, I recommend the following resources:

https://people.seas.harvard.edu/~salil/am106/fall09/lec16.pdf
http://www.math.umd.edu/~immortal/MATH403/lecturenotes/ch16.pdf

Now with that preliminary mathematical information covered, we can return to 
the NTRU algorithm. NTRU specifically utilizes the truncated polynomial ring 
shown in Eq. 20.3.

Equation 20.3 NTRU’s truncated polynomial ring

 
R Z x xN� � � �� � 1

 

Z is the set of integers, X being an element of the set of integers.
N is understood to be prime. The key generation process begins with the selec-

tion of N, followed by the selection of p and q that must satisfy the criteria that 
gcd(p,q) = 1. q is often some power of 2, and p is usually relatively small (Ducas 
et al. 2014).

The next step is the generation of two polynomials, usually labeled f and g, each 
having a degree at most N−1. The two polynomials have coefficients in {−1,0,1} 
(e.g., −x3, −x2 + x−1). The polynomial f must also have inverses for both modulo p 
and modulo q. If f does not have inverses both for modulo p and q, then a different 
f value must be selected. The next step is to actually calculate the inverse of f mod 
p and f mod q. These are usually designated as fp and fq, respectively (Hoffstein et al. 
2008). The public key is generated according to Eq. 20.4.

Equation 20.4 NTRU key generation step 2

 
h pf g q� � �q mod

 

The h is the public key. The polynomials f, fp, and g are the private key. Now that 
we have a key, how do we apply it to encryption and decryption? We will use the 
traditional Alice and Bob for this discussion. Assume some message m that is in the 
form of a polynomial. We already have h and q. Alice wants to encrypt the message 
m and send it to Bob. Alice now chooses some random polynomial r, usually with 
small coefficients. Now to encrypt, Alice performs the following equation, shown in 
Eq. 20.5.

Equation 20.5 NTRU key generation step 3

 
e r h m q� � � �� mod
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When Bob receives this message, he will need to decrypt it. Bob takes the 
encrypted message e and uses Eq. 20.6 to decrypt:

Equation 20.6 NTRU key generation step 4

 
a f e q� � �� mod

 

Note that a, in Eq. 20.6, represents an intermediate step to the plaintext we wish 
to retrieve. Keep in mind that e is just r * h + m. And f, fp, and g are private keys. 
This means we could rewrite Eq. 20.6 as shown in Eq. 20.7.

Equation 20.7 NTRU key generation step 5

 
a f r h m q� �� �� �� � mod

 

Remember the key generation process, and that should tell you that h is really 
pfqg (mod q) so we can rewrite Eq. 20.7 to what you see in Eq. 20.8.

Equation 20.8 NTRU key generation step 6

 
a f r pf g m q� �� �� �� � �

q mod
 

You don’t have to consider the permutation of the decryption equation. You can 
stay with the a = f * e (mod q) version. It was just important that you fully under-
stand the process. Now Bob will need to calculate a polynomial, typically called b, 
which satisfies Eq. 20.9.

Equation 20.9 NTRU key generation step 7

 
b a p� � �mod

 

Recall Bob’s secret key was f, fp, and g, and we have not used all of those values 
yet. Well, now Bob will use them to get back the message m that Alice sent using 
Eq. 20.10.

Equation 20.10 NTRU key generation step 8

 
m f b p� � ��

p mod
 

As was discussed previously, NTRU is actually a family of algorithms, what has 
just been described in NTRUEncrypt. You now have a solid understanding of 
NTRUEncrypt key generation, encryption, and decryption. There are many reasons 
this algorithm has received so much attention as a candidate for quantum-resistant 
cryptography. The first is that as of this writing, it has not been shown to be 
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susceptible to any quantum attacks, such as Shor’s algorithm. Furthermore, NTRU 
performs faster than RSA. Performance is crucial in real-world applications.

In addition to the aforementioned NIST standards project, there are other stan-
dards that are evaluating NTRU variations. The European Union’s PQCRYPTO 
project is examining the Stehl-Steinfeld version of NTRU as a possible European 
standard. This version is provably secure but is less efficient than the original NTRU.

IEEE 1363.1 is the IEEE standard for public-key cryptographic techniques based 
on hard problems over lattices. This standard was published in 2008 and is no longer 
an active standard; however, when this standard was active, it specifically recom-
mended NTRUEncrypt.

There are also public, open-source NTRU libraries. There is an entire NTRU 
open-source project on GitHub: https://github.com/NTRUOpenSourceProject. You 
can also find open-source Java implementations of NTRU on GitHub: https://github.
com/tbuktu/ntru. The Cipher EX V1.5 project for .NET includes NTRU libraries: 
https://www.codeproject.com/Articles/828477/Cipher- EX- V.

There have been multiple cryptanalysis studies of NTRU algorithms, including 
NTRU signature schemes dating back many years. However, all of these are predi-
cated on attacks involving the implementation of NTRU rather than fundamental 
mathematics. All of these attacks also focus on NTRU signature algorithms. All 
cryptographic algorithms are predicated on correct implementation. Incorrect 
implementation can significantly degrade the performance of any cryptographic 
algorithm.

More recent cryptanalysis studies have focused on the mathematical assump-
tions underpinning NTRU. These studies have demonstrated the resilience of NTRU 
against a range of cryptographic attacks. The newer studies of NTRU taken in light 
of the earlier studies indicate NTRU is mathematically sound but can be weakened 
by improper implementation.

 GGH

The GGH algorithm, which is named after the surnames of its inventors Oded 
Goldreich, Shafi Goldwasser, and Shai Halevi, is a widely studied lattice-based 
cryptosystems (Bhatia and Kumar 2019). It is an asymmetric algorithm that has 
been demonstrated to be resistant to cryptanalysis. This algorithm was first publicly 
described in 1997 (Easttom 2019). The algorithm was constructed using the closest 
vector problem (CVP). The private key is a basis vector B of the lattice L and a uni-
modular matrix U (recall the discussion of unimodular matrices earlier in this 
chapter).

This basis vector has certain properties, such as the vectors are nearly orthogonal 
vectors and a matrix U that is unimodular. The public key is another basis of the 
same lattice of the form B′ = UB. The message M is a message space that consists 
of the vector (m1,..., mn) in a range of −M < mi < M.
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The message is encrypted by multiplying the message vector by the public key 
B′. This is shown mathematically in Eq. 20.11.

Equation 20.11 GGH step 1

 v m bi i� � �

 

Remember that m consists of integer values while B′ is a lattice point. This means 
we can describe the cipher test as listed in Eq. 20.12.

Equation 20.12 GGH step 2

 c v e� �  

The e is an error correcting vector (1, −1). To decrypt the message of the cipher 
text, c is multiplied by the inverse of B, B−1. Put mathematically,

 M cB� �1.  

This is a relatively easy to understand algorithm. While it is well studied, there 
have been successful cryptanalytical attacks. Lee and Hahn, in 2010, demonstrated 
partial information of the plaintext can aid in decrypting the GGH algorithm cipher-
text (Easttom 2019). While their method was applied against the highest dimension 
of GGH being proposed at the time, it also required coupling with Nguyen’ attack. 
The Lee and Han method also required some knowledge of the plaintext; thus, it can 
be argued this cryptanalysis of GGH is intriguing but unlikely to represent real- 
world cryptanalysis conditions.

The study conducted by de Barros and Schechter in 2015 suggested enhance-
ments to GGH. The authors began by describing GGH succinctly as follows:

Its main idea is to encode a message into a lattice vector v, add some small perturbation r 
and generate the ciphertext c = v + r. The norm of the vector r must be sufficiently small, so 
the v is the lattice vector closest to c.

They then describe the most direct way of attacking GGH is to reduce the public 
key in order to find a basis to apply Babai’s algorithm. de Barros and Schechter 
further state even if the private key cannot be derived, the message may be retrievable.

Zeroizing attacks have been successful against several variations of GGH. In 
their 2015 paper, Brakerski et al. described these types of attacks as follows:

Roughly speaking, Zeroizing attacks proceed by honestly computing many top-level encod-
ing of zero, then using the prescribed zero-testing procedure to setup and solve a system of 
multilinear equations in the secret parameters of the scheme. These attacks rely crucially on 
the linearity of the zero-testing procedure, and so some attempts were made recently to 
devise alternative zero-testing procedures which are non-linear.
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 Peikert’s Ring

The Peikert’s Ring algorithm is for key distribution, much like Diffie-Hellman that 
you saw in Chap. 11. There are variations, such as the ring learning with errors key 
exchange algorithm (RLWE-KEX). This algorithm is designed to be secure against 
quantum computer attacks.

Ring Learning With Errors (RLWE) works with a ring of polynomials modulo 
some polynomial (Easttom 2019). Recall our discussion of polynomial rings earlier 
in this chapter. The polynomial is often represented with the symbol Ф(x). The coef-
ficients are in the field of integers mod q. Multiplication and addition are reduced 
mod Ф(x). The key exchange algorithm can be generally described as follows:

There is some polynomial often expressed as follows:
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The coefficients of this polynomial are integers mod q (Bhatia and Kumar 2019). 
The polynomial itself is a cyclotomic polynomial. For those readers not familiar 
with cyclotomic polynomials, this topic is a bit more rigorous mathematically. You 
don’t necessarily need to have a full understanding of it to have a general working 
knowledge of Ring LWE.  However, for the sake of completeness, it will be 
described here.

The short definition is that cyclotomic polynomials are polynomials whose com-
plex roots are primitive roots of unity. However, that is only helpful if one is familiar 
with roots of unity and roots in general. The nth root of unity where n is a positive 
integer is some number x that satisfies this rather simple equation shown in 
Eq. 20.13.

Equation 20.13 Roots of unity

 xn = 1  

This explains roots of unity, and I suspect that is rather simpler than you might 
have feared. However, it does not explain the primitive roots of unity. A given root 
of unity, we will call it n, is said to be primitive if it is not the mth root of unity for 
some smaller m. To put this another way, assume you have found a root of unity 
(xn = 1). In order to be considered a primitive root of unity, it must also satisfy this 
condition shown in Eq. 20.14.

Equation 20.14 Primitive root of unity

 x m xm � � � �1 1 2 3 4 1for , , , , , .  
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Now for those readers seeking an even more rigorous mathematical definition, 
the nth cyclotomic polynomial is the polynomial given by the formula shown in 
Eq. 20.15.

Equation 20.15 nth cyclotomic polynomial

 
$n x x� � � �� ��

�

�
 

Do not be overly concerned if this explanation is still rather opaque to you. This 
is completely normal if you don’t have a solid background in number theory. 
However, you can certainly continue on and understand the gist of Ring-LWE even 
with a rather hazy understanding of roots of unity.

Now continuing with key generation, there is usually an initiator for the key 
exchange. We will use the symbol I to represent that party. Then there is a respon-
dent we will represent with R. Both parties know the values q, n, and a(x) and can 
generate small polynomials according to the distribution Xα with parameter α. The 
value q is a prime number. The value a(x) is a fixed polynomial shared by both the 
initiator I and the respondent R. Now we can address the steps of key generation:

First generate two polynomials with small coefficients. These polynomials will 
generally be called sI and eI (yes, the I subscript is for initiator, and as you will see 
shortly, the R subscript is for responder).

 Compute I I Ip as e� � 2  

Now the initiator sends that pI to the responder.
At this point, the responder will generate two polynomials, sR and er.

 Compute R R Rp as e� � 2  

Next, the recipient will generate a small e′R from Xα
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Compute
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Next the signal function will be used. This function has not yet been described. 
The signal function is rather complex. If you don’t fully grasp it, that won’t be an 
impediment to following the rest of key generation. However, again in the interest 
of completion, the signal function works as follows:

First, you define a subset we will call E:
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The function is the characteristic function of the complement of E. The term 
characteristic function can have different meanings in different contexts. In this 
case, it is an indicator function of a subset. The term indicator function means the 
function indicates membership in the subset. A 1 is returned if the value is a member 
of the subset, and a 0 is returned if the value is not a member of the subset. The 
actual signal function (S) is this:

 
S v v E S v v E� � � � � � � �1 0if if;

 

Continuing on with key generation, we now use the signal function we just 
described by applying it to each coefficient of kR.

 
w S k� � �R  

The respondent’s key stream skR and is calculated by

 
sk k wR R ,� � �mod2

 

Now the respondent will send the w and the pR to the initiator.
The initiator receives those two values and now will take a sample e′I from Xα 

and compute:

 K p s eI R I I� � �2  

The sKI mod2 (KI, w) is the initiator’s key stream.
You might be thinking this is quite a complex series of steps. And you would be 

correct. This is clearly more complex than key generation in GGH or NTRU. It is 
also more complex than key generation for Diffie-Hellman that you saw in Chap. 11.

The security of this key exchange algorithm will depend on the sizes of the 
parameters. Frequently, sizes such as n = 1024, q = 40,961 and Ф(x) = x1024 + 1 are 
suggested (or similar sizes). There has been a substantial amount of research focus-
ing on variations in parameter sizes in order to achieve an acceptable level of secu-
rity while also preserving an adequate efficiency.

 Solving Lattice Problems

Lattice basis reduction algorithms such as Lenstra-Lenstra-Lovász (LLL) or Block 
Korkin-Zolotarev (BKZ) are then applied, with the goal of reducing the B matrix 
basis to a different basis that forms the same lattice but with smaller “length” of the 
basis. Lattice reduction algorithms are generally based on Gram-Schmidt orthogo-
nalization and decomposition.
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The concept of lattice basis reduction is relatively simple. Given some integer 
lattice basis as input, try to find another basis with shorter vectors that are nearly 
orthogonal. Recall our previous discussion on basis vector. What is being attempted 
is to find another basis vector that is shorter but otherwise quite similar to the one 
used for this lattice. This creates a mathematical problem that is easier to solve than 
the original problem. When applied to cryptography, it presents a method for having 
a probability of deriving the private key.

The goal of this chapter is not to focus on lattice reduction but rather to introduce 
you to the process as it applies to lattice-based cryptography. For the readers’ edifi-
cation, an entire subsection on LLL with substantial detail is provided; however, 
that is only one lattice reduction algorithm. There are others such as Block Korkin- 
Zolotarev (BKZ), Seysen Reduction, and others. There is also a rather large body of 
research on such algorithms.

 Lenstra-Lenstra-Lovász (LLL)

Lenstra, Lenstra, and Lovasz finds an approximately short vector[md] guaranteed to 
be within a factor (2/3) n of the actual shortest[md] in polynomial time. LLL pro-
duces a “reduced” basis of a lattice, producing an approximately short basis vector 
as a result (Hlawka et al. 1986). The details of this algorithm will also be rather 
complex but not such that most readers cannot follow the general outline. A few 
preliminaries are in order. There is a lattice L and a basis B = {b1, b2,…bd} that has 
n-dimensional integer coordinates with d ≤ n. The LLL algorithm calculates a 
reduced lattice basis.

This Gram-Schmidt orthogonal basis can be represented as:

 
B b b bn

� � � �� �� �1 2, , .
 

Once you have the basis B, the next step is to define its Gram-Schmidt process 
orthogonal basis. For those readers not familiar, the Gram-Schmidt is a process for 
orthonormalizing a set of vectors. The Gram-Schmidt process takes a finite, linearly 
independent set of vectors and generates an orthogonal set of vectors that spans the 
same k-dimensional subspace as the original set.

Next is the use of a projection operator. In linear algebra, a projection is a linear 
transformation P from a vector space to itself such that if the projector P is applied 
twice, it provides the same result as if it was applied once P2 = P. This type of opera-
tion is referred to as idempotent. Idempotence is the property of an operator that can 
be applied multiple times with the result not changing after the first application. 
Incidentally, the word idempotent stems from idem meaning “same” and potent 
indicating strength or power. Thus, the word literally means the same strength.
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Equation 20.16 shows the Gram-Schmidt process projection operator.

Equation 20.16 Gram-Schmidt process projection operator
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In Eq. 20.16, <u, v> represents the inner product of the vectors u and v. This 
projection projects the vector v orthogonally onto the line spanned by vector u.

The Gram-Schmidt process then goes through a series of projection steps. The 
details are not critical for us in this discussion. However, the Gram-Schmidt coef-
ficients are relevant and are shown in Eq. 20.17.

Equation 20.17 Gram-Schmidt coefficients
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Then the LLL algorithm will reduce the basis B if there is a parameter, usually 
denoted by δ such that:

 1. For 1 ≤ j ≤ i ≤ n: |μi,j| ≤ 0.5
 2. For k = 2, 3, …, n: δ ||bk*||2 + �k k, �1

2  || bk�
�

1 ||2

This might seem rather convoluted and not really clear to some readers. So let us 
explore this just a bit. The first issue is the parameter δ. The key to LLL is finding 
the correct parameter. Lenstra, Lentsa, and Lovasz originally used δ = 3/4. Others 
have used δ = 1 and δ = 1/4. Finding the right parameter is part of the issue of getting 
LLL to work properly. Secondly, let us address B and B*. B is the set of basic vec-
tors for the lattice L. B* is the Gram-Schmidt process orthogonal basis. The concept 
is to find reduced basis vectors so that one can solve the lattice problem and poten-
tially break the cryptographic algorithm that depends on that lattice problem.

It is also worth noting that lattice reduction in general and LLL in particular are 
not guaranteed to work in breaking an algorithm. They simply have a probability of 
doing so. And even when these methods do work, they are not instantaneous. In fact, 
they can take substantial time. The focus on these algorithms is that they can break 
a lattice-based cryptographic algorithm in less time than would otherwise be 
required. The key to take away from this discussion of LLL is that any proposed 
lattice-based algorithm should be thoroughly analyzed in light of lattice reduction 
algorithms. For those readers familiar with mathematics, it has a function 
LatticeReduce that uses LLL. There is also a stand-alone implementation of LLL in 
fplll available on GitHub https://github.com/fplll/fplll
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 Conclusions

This chapter introduced lattice-based problems and lattice-based cryptographic 
algorithms. These are important issues to understand as they are part of the work to 
find cryptographic algorithms that are resistant to quantum computer attacks. While 
the focus of this book is on quantum computing itself, quantum-resistant cryptogra-
phy is part of that topic. You also saw a brief introduction to lattice reduction meth-
ods for attacking lattice-based cryptography.

 Test Your Knowledge

 1. Which of the following is the most accurate definition of a subgroup?

 (a) If G is a group under some operation, and H is a subset of G that also forms 
a group under that operation, then H is a subgroup of G.

 (b) If G is a group under some operation and its inverse, and H is a subset of G, 
and then H also forms a group under that operation, then H is a subgroup of G.

 (c) If G completely contains H, then H is a subgroup of G.
 (d) If H has the elements all in G and has the same operations as G, then H is a 

subgroup of G.

 2. Which of the following is a property required for V to be a vector space?

 (a) Given v, w ϵ V, v + w ϵ V
 (b) Given v, w ϵ V, vw ϵ V
 (c) Given v ϵ V and a scaler α, αv ϵ V
 (d) Given v ϵ V and w ∉ V, vw ∉ V

 3. A ______ lattice is a lattice that is closed under a rotational ____ operator.

 (a) unitary, shift
 (b) unimodular, scalar
 (c) cyclic, scalar
 (d) cyclic, shift

 4. What does the following describe: Given an m × n lattice A that is comprised of 
m uniformly random vectors (which are integers), also stated as A ϵ zq

n m× , find a 
nonzero short integer vector v satisfying such that Ax = 0 mod q.

 (a) Shortest vector problem
 (b) Closest vector problem
 (c) Shortest integer problem
 (d) Closest integer problem
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 5. _____ was first publicly described in 1996 by Jeffrey Hoffstein, Jill Pipher, and 
Joseph Silverman. There have also been additional variants of this algorithm 
developed since its initial publication of shortest vector problem.

 (a) Ajtai
 (b) NTRU
 (c) GGH
 (d) Peikert’s Ring

 6. _____ was first lattice-based cryptographic algorithm published.

 (a) Ajtai
 (b) NTRU
 (c) GGH
 (d) Peikert’s Ring

 7. The equation R = z[x] ∕ (xN − 1) is most closely associated with what algorithm.

 (a) Ajtai
 (b) NTRU
 (c) GGH
 (d) Peikert’s Ring
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Chapter 21
More Approaches to Quantum-Resistant 
Cryptography

 Introduction

In this chapter, multiple approaches to cryptography will be explored. Some of 
these will require either a review of mathematics or introduction to mathematics 
that were not covered earlier in this book.

 Multivariate Cryptography

The term multivariate cryptography refers to cryptographic primitives that are 
based on multivariate polynomials over a finite Field F (Ding and Petzoldt 2017). 
These algorithms have been proposed as quantum resistant. Some of these algo-
rithms are part of the NIST project seeking a quantum-resistant standard. You can 
visit that website at https://csrc.nist.gov/projects/post- quantum- cryptography.

 Mathematics

The algorithms in this chapter require you to use some mathematics we have cov-
ered in previous chapters as well as some that may be new to some readers. For this 
reason, we have this brief section introducing you to mathematical concepts you 
will need. We also review briefly the critical mathematics needed with regard to 
specific algorithms in the sections on those algorithms.

Recall from Chap. 5 that a field is an algebraic system consisting of a set, an 
identity element for each operation, two operations, and their respective inverse 
operations. You can think of a field as a group that has two operations rather than 
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one, and it has an inverse for both of those operations. A finite field is just a field that 
is limited or finite. Chapter 11 discussed finite fields in relationship to elliptic curve 
cryptography.

One new concept we need to explore is that of an extension field. If we have a 
field F and then we have a field E ⊆ F, such that the operations of E are those of F, 
we can say that E is a subfield of F and F is an extension field of E.

A polynomial is an expression consisting of variables and coefficients such as 
you see in Eq. 21.1.

Equation 21.1 A polynomial

 x x2 3 12� �  

The polynomial shown in Eq. 21.1 is a univariate polynomial as it has only one 
variable (also called an indeterminate). A multivariable polynomial has more than 
one variable as demonstrated in Eq. 21.2.

Equation 21.2 A polynomial with multiple variables

 x y z2 3 12� �  

Equation 21.2 is a multivariable polynomial. More precisely, it is trivariate as it 
has three variables. Multivariate cryptography is the general term for cryptographic 
algorithms based on multivariable polynomials.

The essence of the system of multivariate quadratic equations problem (MQ) is 
to solve a system p1(x) = p2(x) = …pm(x) = 0 where each pi is a quadratic in x – (x1,…
xn) with all the coefficients and variables are in a field Fq with q elements.

Multivariate cryptography uses trapdoor one-way functions that take the form of 
a multivariate quadratic polynomial (Ding and Petzoldt 2017). The public key is 
given by a public set of quadratic polynomials:

 
P p w w p w wi n m n� �� � � �� �� �1 1, , ,.

 

Each pi is a nonlinear polynomial in w = (w1,…,wn).
A trapdoor function is a function that is relatively easy to compute in one direc-

tion but computationally infeasible to compute in the other direction. Essentially, 
without knowing specifics about the inputs to the algorithm, it would take so much 
time and computing resources to solve the problem that it is impractical to do so. 
Trapdoor functions are the key to many cryptographic algorithms. The discrete log-
arithm and integer factorization that we saw in Chap. 11 are examples. Consider 
integer factorization. It is quite easy to multiply two primes and get an integer. It is 
much more difficult to factor that integer into its prime factors.

In addition to the term polynomial, you will see the term irreducible polynomial 
rather frequently. This actually means precisely what the name suggests. This is a 
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polynomial that cannot be factored into the product of two other polynomials. It 
cannot be reduced any further.

We have three terms: injective, surjective, and bijective. In its simplest terms, 
injective means that everything in A can be mapped to something in B, but there 
might be items in B with nothing matching in A. Surjective means that every B has 
at least one matching A but could actually have more than one match in A. Bijective 
means every A has a B and vice versa. Figure 21.1 should refresh your memory.

Affine transformations are used by some of these algorithms. Generally speak-
ing, an affine transformation is an automorphism of an affine space. For some read-
ers, that definition might not bring any clarity. It might be helpful to consider the 
case of geometry. In Euclidean geometry, an affine transformation is a geometric 
transformation that will preserve the lines and any parallelism but won’t necessarily 
preserve angles and distances. As you can tell from the definition, this term has its 
origins in geometry.

The term isomorphism comes up frequently in multivariate cryptography as dis-
cussed briefly in previous chapters. An isomorphism is a mapping between two 
structures that preserves the structure and can be inverted. The term structure is used 
intentionally because it is rather vague. Isomorphisms can apply to graphs in graph 
theory, topology structures, algebraic structures, and others.

 Matsumoto-Imai

Published by Tsutomu Matsumoto and Hideki Imai in 1988, the Matsumoto-Imai 
cryptographic algorithm was one of the first published multivariate systems, which 
makes it important to study (Ding and Petzoldt 2017). This cryptographic system 
was later broken, so it is not currently used; however, its importance in the history 
of multivariate cryptography warrants a brief examination.

Fig. 21.1 Injective, surjective, and bijective
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The system begins with a finite field we will call F with q elements. Then we 
have g(X) that is an irreducible polynomial of degree n over the field F. Then we 
have a second field we will call E. E is an extension of F, of degree n. Put another way:

 
E F x g x� � � � �/

 

Next, we identify an isomorphism between the vector space Fn and the extension 
field E. We will designate this isomorphism as ϕ. Equation 21.3 describes this 
isomorphism.

Equation 21.3 Matsumoto-Imai isomorphism
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There is a bijective map F: E ->E over the extension field E as defined in Eq. 21.4.

Equation 21.4 [em] Matsumoto-Imai bijective map

 
F Y Y q� � � �� 1

 

The value of θ in Eq. 21.4 is 0 < θ < n and the gcd (qn − 1, qθ + 1) = 1.
To be able to invert the map F, the extended Euclidian algorithm is used to com-

pute an integer h such that h(qθ + 1) = 1 mod (qn − 1). Using the Euclidean algorithm 
(discussed in Chap. 10) to invert F (to get F−1), we have what is shown in Eq. 21.5.

Equation 21.5 [em] Matsumoto-Imai inverted field
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The public key is the composed map shown in Eq. 21.5.
P = S F T with two invertible linear maps:

 

S F F

T F F

n n

n n

:

:

 
 
>
>  

The private key is S, h, and T.
To encrypt a message M that is represented as a vector z = (z1, z2….zn), you use 

Eq. 21.6.

Equation 21.6 [em] Matsumoto-Imai encryption

 
w P z Fn� � ��  
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To decrypt the process is a bit more involved. There are steps to be taken, begin-
ning with the cipher text w:

 1. x = S−1(w) ϵ Fn

 2. X = ϕ(x)
 3. Y = F−1(X)
 4. y = ϕ−1(Y, )
 5. z = T(y)

Figure 21.2 shows the general relationship of the elements in the system.
The Matsumoto-Imai cryptosystem, while shown to have security flaws, did pave 

the way for other multivariate algorithms. As you will see later in this chapter, many 
of those are robust and could potentially be quantum-resistant algorithms. It is also 
noteworthy that many algorithms have been created that are variations of 
Matsumoto-Imai.

 Hidden Field Equations

The Hidden Field Equations (HFE) is a public key cryptography system that was 
invented by Jacques Patarin and first publicized at Eurocrypt in 1996 (Ding et al. 
2020). The cryptographic security is based on the difficulty of finding solutions to a 
system of multivariate quadratic equations, sometimes referred to as the MQ prob-
lem. This algorithm was created as an improvement of the Matsumoto-Imai system.

The basis of the mathematics for this particular cryptography algorithm is not 
overly complex, but a few new concepts will need to be introduced. We begin with 
a base field we will call Fq. Then we have two extension fields over that base field. 
Our extension fields are Fq

n and Fq
m. Let us briefly review extension fields. First, 

keep in mind the definition of a field discussed in Chap. 1 and reviewed in the intro-
duction to this chapter. If we have a field F and then we have a field E ⊆ F, such that 
the operations of E are those of F, we can say that E is a subfield of F and F is an 
extension field of E (Ding et al. 2020).

τ

φ φ –1

P

F`

F

S
z ∈ Fn y ∈ Fn x ∈ Fn w ∈ Fn

X ∈ EY ∈ E

Fig. 21.2 Matsumoto-Imai 
cryptosystem
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Let us examine this in slightly different terminology. Consider our previous field 
E. We also have a field F, which contains all of E, plus additional elements. But the 
operations in E and F are the same. This would make field F an extension of field E.

First consider some finite field Fq with q as a power of 2 and some extension field 
G. The basis of G is B1, B2,…Bn.

Next consider some value h such that h = qθ + 1 for some value of θ and 0 < h < qn. 
Now further add that the greatest common denominator, gcd (h, qn − 1) = 1. Put in 
other terms, h and qn − 1 have no common factor other than 1 and are thus co-prime 
or relatively prime. This all leads to a map of u -> uh on G that is one to one. The 
inverse map is u ->uh′ where h′ is the multiplicative inverse of h mod qn − 1.

The concept of the HFE cryptosystem is to build the secret key, beginning with a 
polynomial P in one unknown x over some finite field Fq

n. It should be noted that in 
actual practice, q = 2 is commonly used, though n can be any number, preferably 
quite large. Now that we have this field Fq

n and we have a polynomial P, one can 
find solutions to the equation P(x) = y, if such solutions exist. The polynomial (p1, 
p2…pn) is transformed so that the public information hides the structure and pre-
vents inverting it. This is accomplished by using the finite fields Fq

n as a vector 
space over Fq and selecting two linear affine transformations.

The values of S, P, and T constitute the private key. Just as a refresher, our poly-
nomial P along with our two affine transformations S and T are the private key. The 
public key is the (p1,…..pn) of a finite field Fq.

To encrypt a message M, it needs to be transferred from the field Fq
n to Fn

q . The 
message M is then a vector (x1, x2, ….xn) ϵ Fn

q . The cipher text is generated by 
evaluating each of the polynomial’s pi at each of the vector elements. This is shown 
in Eq. 21.7.

Equation 21.7 HFE encryption

 
c p x x x p x x x p x x x Fn n n n

n� �� � �� � � �� ��1 1 2 2 1 2 1 2, , , , , , q. , . , ., . .
 

This can be described more compactly as shown in Eq. 21.8.

Equation 21.8 HFE encryption compact expression

 
c P z Fn� � �� q  

Decryption is a bit more complex, much as it was on the Matsumoto-Imai sys-
tem. Recall we have S, P, and T as private keys. We begin with inverting the affine 
map S, which can be expressed as shown in Eq. 21.9.

Equation 21.9 HFE decryption step 1

 
x S c Fn� � ���1

q  
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This can also be expressed as shown in Eq. 21.10.

Equation 21.10 HFE decryption step 1 alternate expression

 
X x� � ��

 

The next step is to find the solutions Y1,…Yk of F(Y)  =  X. This is shown in 
Eq. 21.11.

Equation 21.11 HFE decryption step

 
y Y E F Y X� � � � �� �:

 

The third step involves Eq. 21.12.

Equation 21.12 HFE decryption step 3

 
y Yi i� � ��� 1

 

The plaintext is then generated by Eq. 21.13.

Equation 21.13 HFE decryption final step

 
z T yi i� � ��1

 

There have been several variations of HFE, each of which has its own strengths 
and weaknesses; however, the existence of these variations further illustrates the 
value of HFE.

 Multivariate Quadratic Digital Signature (MQDSS)

This algorithm, as the name suggests, is used explicitly for digital signatures. It is 
based entirely on the MQ problem. The multivariate quadratic polynomial (MQ) 
problem was mentioned briefly earlier in this chapter. The details of the MQ prob-
lem are not as important as understanding how difficult it is to solve. The difficulty 
of solving MQ problem is contingent upon a number of parameters, including the 
number of variables, the number of equations, the size of the base field, etc. For 
those readers who wish to explore the mathematical details of this problem, there is 
an excellent paper from the International Association of Cryptological Research 
(IACR) called “MQ Challenge: Hardness Evaluation of Solving Multivariate 
Quadratic Problems” (https://eprint.iacr.org/2015/275.pdf).

The MQDSS is based on a multivariate quadratic system shown in Eq. 21.14.
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Equation 21.14 MQDSS system

 P F Fn m:  >  

The coefficients are chosen randomly. Those coefficients are then fixed for the 
users utilizing this particular implementation of MQDSS. Each user then choses a 
random vector s from the Fn as his or her private key (Chen et al. 2017). Put more 
clearly, the users choose an s such that

 s Fn∈  

The public key is computed as:

 
k P s Fm� � �� .

 

To be verified, a user of the system will need to demonstrate he or she knows a 
solution of the quadratic system P(x) = v without revealing any information about 
their private key s (Chen et al. 2017). The specifics of how that is proved are not 
really necessary for our current purposes. The issue to understand is that this system 
is provably secure.

 SFLASH

The SFLASH algorithm was created for the European New European Schemes for 
Signatures, Integrity, and Encryption (NESSIE) project. NESSIE was a European 
project from 2000 to 2003 to identify secure cryptography algorithms. The project 
reviewed symmetric, asymmetric, and hashing algorithms (Easttom 2020).

SFLASH was designed as a digital signature algorithm. The first item of note 
about this algorithm is that it is substantially faster than RSA. It is important to keep 
in mind that security is only one aspect of a successful algorithm. In order to be of 
practical use, the algorithm must also be efficient. To better understand this, imagine 
there is an asymmetric algorithm that is measurably more secure than RSA, Elliptic 
Curve Cryptography, NTRU, and GGH; however, that algorithm requires 30 min-
utes to encrypt a message. How could such an algorithm be used for applications 
like e-commerce? Consumers are unlikely to embrace an e-commerce website that 
requires 30 minutes for checkout.

SFLASH is a variant of Matsumoto-Imai. Thus, understanding the mathematics 
of that algorithm will aid you in understanding this algorithm. The idea is to remove 
a small number of equations from the public key. As with Matsumoto-Imai, we 
begin with a finite field F that has q elements. We also have an extension field E of 
n degree. Then we define an isomorphism ϕ Fn -> E. Key generation is very similar 
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to the key generation of Matsumoto-Imai. There is a parameter θ such that (qn − 1, 
qθ + 1) = 1.

The next step is to define a univariate map shown in Eq. 21.15.

Equation 21.15 SFLASH univariate map

 
F E E F Y Y q: , � � � � �� 1

 

The extended Euclidean algorithm is used to compute the signing exponent h, 
shown in Eq. 21.16.

Equation 21.16 SFLASH exponent h

 
H q qn1 1 1�� � � �� mod

 

As with Matsumoto-Imai, there is an affine transformation T: Fn -> Fn and a 
randomly chosen invertible affine transformation over the vector space Fn is 
selected: S: Fn -> Fn−a.

The private key consists of the two maps S and T and the signing exponent h. The 
public key P is the composed map shown in Eq. 21.17.

Equation 21.17 SFLASH public key

 S��1

 

This algorithm, as you can see, is somewhat similar to the Matsumoto-Imai. As 
was stated at the beginning of this chapter, many algorithms have been created that 
are variations or improvements of Matsumoto-Imai (Easttom 2020).

 SWIFFT

SWIFFT is actually not a single algorithm but rather a collection of functions. These 
are provably secure hash functions. The SWIFFT functions are all based on the fast 
Fourier transform (FTT). Therefore, a logical place for us to begin is a brief explora-
tion of the FFT. The name is an acronym for Sliding Windowed Infinite Fast Fourier 
Transform.

An FFT is an algorithm that computes the discrete Fourier transform of a 
sequence to a representation in the frequency domain. It is called fast because it 
reduced the number of computations needed for N points from 2N2 to 2N log2 N.

Now let us walk through this algorithm step by step.
The first step is to select a polynomial variable. This is often denoted with the 

symbol α.
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Now you will input the message you wish to encrypt. That message is frequently 
denoted with a capital M and is of a length of mn. The values of mn are defined by 
the length of M as we will see in the next steps.

The next step is to convert the messages M into a collection of m polynomials. 
These polynomials are denoted by pi and are polynomials within some polynomial 
ring R. A polynomial ring is a ring formed from the set of polynomials in one or 
more indeterminates with coefficients in another ring. Recall that we discussed 
rings in Chap. 5. A ring is a set with two operations, an identity element, two opera-
tions, and the inverse operation of the first operation. A polynomial is an expression 
that consists of variables and coefficients. Another term for variable is indetermi-
nate as it was in the definition of a polynomial ring.

The next step is to compute the Fourier coefficients of each pi. These Fourier 
coefficients are defined as ai and are fixed (Easttom 2020).

For the following step, one performs pointwise multiplication of the Fourier 
coefficients pi with the Fourier coefficients of ai for each i. This will then be fol-
lowed by using an inverse Fourier Fast Transform to yield m polynomials fn each of 
a degree less than 2n.

For the next step, we will compute the following formula:

 
f f p

i

m

i
n� � � �

�
�

1

1mod and�
 

Finally, you convert the f to n log(p) bits and output those bits.

Step 1. Select a polynomial variable….
Step 2. Convert the messages M into a collection of m polynomials…
Step 3. Compute the Fourier coefficients of each pi….
Step 4. ???

The steps are summarized as follows:

Step 1. Select a polynomial variable.
Step 2. Input the message you wish to encrypt.
Step 3. Convert the messages into a collection of m polynomials.
Step 4. Compute the Fourier coefficients.
Step 5. Point wise multiplication of the Fourier coefficients pi with the Fourier coef-

ficients of ai.
Step 6. Compute the formula f f p

i

m

i� � �
�
�

1

mod  and αn + 1.

SWIFFT, unlike many other provably secure algorithms, is considered fast. 
There are some known attacks on SWIFFT. Two are the generalized birthday attack 
and the inversion attack. The generalized birthday attack requires 2106 operations to 
succeed. Inversion attacks take 2445 operations. This means that it is impractical to 
break SWIFFT.

For those readers who would like to delve deeper into SWIFFT, the following 
link may be helpful:
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https://www.alonrosen.net/PAPERS/lattices/swifft.pdf

For those readers not familiar with birthday attacks, these are quite important in 
cryptography. There is a mathematical puzzle that can help. It is called the birthday 
paradox (sometimes called the birthday problem). The issue is this: how many peo-
ple would you need to have in a room to have a strong likelihood that two would 
have the same birthday (i.e., month and day, not year)?

Obviously, if you put 367 people in a room, at least two of them must have the 
same birthday because there are only 365 days in a year + Feb 29 on leap year. 
However, we are not asking how many people you need to guarantee a match, just 
how many you need to have a strong probability. It just so happens that with even 23 
people in the room, you have a 50% chance that two have the same birthday.

How is this possible? How is it that such a low number can work? Basic proba-
bility tells us that when events are independent of each other, the probability of all 
of the events occurring is equal to a product of each of the events’ probabilities. 
Therefore, the probability that the first person does not share a birthday with any 
previous person is 100% because no previous people are in the set. That can be writ-
ten as 365/365. Now for the second person, there is only one preceding person, and 
the odds that the second person has a different birthday than the first are 364/365. 
For the third person, there are two preceding people he or she might share a birthday 
with, so the odds of having a different birthday than either of the two preceding 
people are 363/365. Because each of these is independent, we can compute the 
probability as follows:

365/365 * 364/365 * 363/365 * 362/365 … * 342/365 (342 is the probability of the 
23-person sharing a birthday with a preceding person.)

Let us convert these to decimal values, which yields (truncating at the third deci-
mal point):

0.997 * .994 * .991 * .989 * .986 * … .936 = .49 or 49%.

This 49% is the probability that they will not have any birthdays in common; 
thus, there is a 51% (better than even odds) that two of the 23 will have a birthday 
in common.

Just for reference, if you have 30 people, the probability that two have the same 
birthday is 70.6%. If you have 50 people, the probability rises to 97%, which is 
quite high. This does not simply apply to birthdays. The same concept can be 
applied to any set of data. It is often used in cryptography and cryptanalysis. The 
birthday paradox represents a guideline for how one might get a collision in a hash-
ing algorithm.

In reference to cryptographic hash functions, the goal is to find two different 
inputs that produce the same output. When two inputs produce the same output from 
a cryptographic hash, this is referred to as a collision. It just so happens that the 
number of samples from any set of n elements required to get a match or collision 
is 1.174 √n. Returning to the preceding birthday problem, 1.174 √365 = 22.49.
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 Lamport Signature

Published in 1979 by Leslie Lamport, the Lamport signature algorithm has been 
around for quite some time. One can create a Lamport signature using any crypto-
graphically secure one-way function (Abdullah et al. 2018). Based on the earlier 
discussion of hash functions, it should be clear that cryptographic hash functions are 
often used for this purpose.

The algorithm begins with generating a key pair. One party uses a pseudorandom 
number generator to create 256 pairs of random numbers. Each number generated 
is also 256 bits in size. Thus, a total of approximately 128 kilobytes is generated (i.e. 
(2 * 256 * 256)/1024). This 128-kilobyte number is kept as a private key.

In order to generate the public key, each of these 512 random numbers (2 * 256) 
is hashed. This leads to a total of 512 hashes, each of 256 kilobytes in size. This is 
the public key that is shared with anyone who might wish it (Abdullah et al. 2018).

As the name suggests, this algorithm is for digital signatures. The purpose of 
digital signatures is not to preserve message confidentiality but to assure message 
integrity. For example, when an email is signed, that does not prevent someone 
other than the intended recipient from reading it. However, it does allow the recipi-
ent to be able to verify who sent it.

The sender who generated the keys now wishes to sign a message. The first step 
is to hash the message so that a 256-bit hash or digest is produced. Then for each bit 
in the hash, one number from the pairs that make up the private key is selected. This 
usually means if the bit is 0, then the first number is used, and if it is 1, then the 
second number is used. This will produce a sequence of 256 numbers, each itself 
being 256 bits long. Thus, the signature is 64 kilobytes. What makes this different 
from some other signature algorithms is that the signature is used one time only. The 
sender will then destroy the private keys used (Easttom 2020).

To verify the signature, the recipient will also hash the message to get a 256-bit 
hash/digest. Then the recipient uses the bits in that hash/digest to select out 256 of 
the hashes in the sender’s public key. He uses the same selection method that the 
sender utilized (i.e., if it is 0, use the first hash; if it is 1, use the second). Now the 
recipient will hash each of the 256 random numbers in the sender’s signature. If all 
of these exactly match the 256 hashes selected from the sender’s public key, then the 
signature is verified. If any don’t match, the signature is rejected. These steps are 
summarized in Fig. 21.3.

 Code-Based Cryptography

The term code-based cryptography refers to cryptosystems that rely on error- 
correcting codes as their basis. Some of these algorithms have been around for quite 
some time, even decades. They have received renewed interest as quantum comput-
ing progresses. There is a clear interest in quantum-resistant cryptography.
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 McEliece

The McEliece cryptosystem is eponymously named after its inventor Robert 
McEliece. This algorithm was published in 1978. That makes it perhaps the oldest 
algorithm being proposed as quantum resistant. Despite its age, this algorithm has 
already been shown to be immune to Shor’s algorithm (Easttom 2020).

The security of McEliece is based on the difficulty of decoding a general linear 
code (Bernstein et al. 2017). For those readers not familiar, a brief description of a 
general linear code is provided. A linear code is used for error correction. There is a 
linear combination of codes. Linear codes are frequently used in forward error cor-
rection. Hamming codes are a classic example of a linear code. Hamming codes can 
detect errors and correct them.

The algorithm has some parts that might seem vague. This is because there is 
some flexibility in the linear codes one can choose. Thus, the specifics of the linear 
code are not delineated in the algorithm. We will begin with key generation, which 
is often the most complex part of an asymmetric algorithm.

 1. The first step is the person generating the key must select a linear code we will 
call C. Linear codes often have functions that generate matrices; we call those 
generators. So there will be a generator G for the linear code C. The C chosen 
should also give rice to a decoding algorithm we will call A. The code is able to 
correct t errors.

 2. Now the person generating the key must select a random k × k binary nonsingu-
lar matrix we will call S. Recall that a nonsingular matrix is a square matrix that 
is invertible.

 3. Next, the person generating the key chooses a random n × n permutation matrix 
we will call P. A permutation matrix is a square binary matrix that has exactly 
one entry of 1 in each row and each column and 0 s elsewhere.

Fig. 21.3 Lamport signature
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 4. The next step is for the person generating the key to compute a k × n matrix we 
will call H. This is computed by SGP (i.e., the nonsingular matrix multiplied by 
the generator, then that product multiplied by the permutation matrix).

The public key is (H, t), and the private key is (SPA).
Now to encrypt is relatively simple. The sender takes a message m that has a 

binary length k (Bernstein et  al. 2017). The sender then computes this simple 
formula:

 � �c mH  

Then the sender generates a random n-big vector we will call z that contains 
exactly t ones.

The cipher text c = c′ + z
The recipient will decrypt with the following steps:

 1. First compute the inverse of P we will call this P−1.

 2. Then computer d = cP−1.

 3. Then the decoding algorithm A is used to decode d to m′.

The original message me is then decrypted using this rather simple formula:

 m m S� � �1
 

As you can see, the general process is not as complex as some of the algorithms 
we have examined, both in this chapter and in Chaps. 13 and 14. However, there are 
issues that we did not define. This is due to the fact that the McEliece cryptosystem 
does not define what code C you must select. And that selection will in turn deter-
mine the generator matrix G and the decoding algorithm A. Therefore, when 
describing McEliece, these aspects are not explicitly defined.

It is not critical that you have a deep understanding of these codes, but for the 
interested reader, let us explore one type of code that is often used in applications of 
the McEliece cryptosystem. These are binary Goppa codes. Binary Goppa codes are 
a subset of the class of Goppa codes eponymously named after Valery Goppa.

A binary Goppa code is defined by a polynomial g(x) of degree t over some finite 
field, usually denoted as GF(2m) and a sequence of n distinct elements from GF(2m) 
that are not roots of the polynomial.

The McEliece cryptosystem originally used parameters n = 1024, k = 524, and 
t = 50. Recent cryptanalyses suggest larger parameters such as N = 2048, k = 1751, 
t = 27, or even larger. For true resistance against quantum computers, parameters of 
n = 6960, k = 5413, and t = 119 or larger are suggested. This yields a rather large 
public key of 8,373,911 bits. The most important thing to remember about McEliece 
is that like NTRU described in Chap. 20, this algorithm has made it to round 3 of the 
NIST quantum computing standards selection process.
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 Niederreiter Cryptosystem

Developed in 1986 by Harald Neiderreiter, the Niederreiter cryptosystem is a varia-
tion of the McEliece cryptosystem. It is probably a good idea to make sure you are 
quite familiar with McEliece before continuing with this section.

The Neiderreiter cryptosystem security is relatively the same as McEliece; how-
ever, its encryption process is faster than McEliece, which has made it interesting 
for cryptography. It also usually uses the binary Goppa code as discussed earlier. 
The key generation is quite similar to McEliece (Yevseiev et al. 2019):

 1. First select a binary (n, k)-linear Goppa code, G, capable of correcting t errors. 
This code has a decoding algorithm A.

 2. Then generate an (n − k) × n parity check matrix, H, for the code, G.
 3. Next select a random (n − k) × (n − k) binary nonsingular matrix, S.
 4. The next step is to select a random n × n permutation matrix. We will again 

call this P.
 5. Next compute the (n − k) × n matrix, Hp = SHP.

The public key is (Hp, t) and the private key is (S, H, P).
In order to encrypt a message m as a binary string em, which is a string of length 

t, the cipher text is generated with this formula:

 c H ep t=  

While encryption is a bit simpler than the McEliece system, the decryption is 
quite reminiscent of the McEliece decryption:

First compute S−1c from HPmt (i.e., S−1c = HPmt).
Now you need to use the decoding algorithm for G to recover Pmt.

The message m = P−1PmT.
Another use of the Niederreiter cryptosystem is for digital signatures, which is in 

fact a common application of Niederreiter.

 Supersingular Isogeny Key Exchange

The name of this particular algorithm might seem rather daunting, but its full name 
might give you some relief: supersingular isogeny Diffie-Hellman key exchange. If 
you recall the descriptions of Diffie-Hellman from Chap. 11 and bear in mind the 
purpose of this algorithm is key exchange, it might be a bit easier for you to 
understand.

This is a newer algorithm having been published in 2011. It begins with elliptic 
curve operations such as you were briefly introduced to in Chap. 11. In this chapter, 
we will first expand upon that knowledge of elliptic curves and then describe this 
algorithm.

Supersingular Isogeny Key Exchange
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 Elliptic Curves

Elliptic curves can be used to form groups and thus are appropriate for crypto-
graphic purposes. There are two types of elliptic curve groups. The two most com-
mon (and the ones used in cryptography) are elliptic curve groups based on Fp 
where p is prime and those based on F2

m. F, as you will see in this chapter, is the 
field being used. F is used because we are describing a field. Elliptic curve cryptog-
raphy is an approach to public-key cryptography, based on elliptic curves over 
finite fields.

Remember that a field is an algebraic system consisting of a set, an identity ele-
ment for each operation, two operations, and their respective inverse operations. A 
finite field, also called a Galois Field, is a field with a finite number of elements. 
That number is called the order of the field. Elliptic curves used for cryptographic 
purposes were first described in 1985 by Victor Miller and Neal Koblitz. The secu-
rity of elliptic curve cryptography is based on the fact that finding the discrete loga-
rithm of a random elliptic curve element with respect to a publicly known base point 
is difficult to the point of being impractical to do.

An elliptic curve is the set of points that satisfy a specific mathematical equation. 
The equation for an elliptic curve looks something like this:

 y x Ax B2 3� � �  

You can see this equation graphed in Fig. 21.4.
The operation used with the elliptic curve is addition (remember the definition of 

a group requires a set along with an operation). Thus, elliptic curves form addi-
tive groups.

Recall from earlier in this book, a group is an algebraic system consisting of a 
set, an identity element, one operation, and its inverse operation. An abelian group 
or commutative group has an additional axiom a + b = b + a if the operation is addi-
tion and ab = ba if the operation is multiplication. A cyclic group is a group that has 
elements that are all powers of one of its elements.

The members of the elliptic curve field are integer points on the elliptic curve. 
You can perform addition with points on an elliptic curve. Throughout this chapter, 
as well as most of the literature on elliptic curve, we consider two points P and 
Q. The negative of a point P = (xP,yP) is its reflection in the x-axis: the point −P is 
(xP,−yP). Notice that for each point P on an elliptic curve, the point −P is also on 
the curve. Suppose that P and Q are two distinct points on an elliptic curve, and 
assume that P is not merely the inverse of Q. To add the points P and Q, a line is 
drawn through the two points. This line will intersect the elliptic curve in exactly 
one more point called −R. The point −R is reflected in the x-axis to the point R. The 
law for addition in an elliptic curve group is P + Q = R (Bos et al. 2012).

The line through P and −P is a vertical line that does not intersect the elliptic 
curve at a third point; thus, the points P and −P cannot be added as previously. It is 
for this reason that the elliptic curve group includes the point at infinity O. By 
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definition, P + (−P) = O. As a result of this equation, P + O = P in the elliptic curve 
group. O is called the additive identity of the elliptic curve group; all elliptic curves 
have an additive identity. See Fig. 21.5.

To add a point P to itself, a tangent line to the curve is drawn at the point P. If yP 
is not 0, then the tangent line intersects the elliptic curve at exactly one other point, 
−R. −R is reflected in the x-axis to R. This operation is called doubling the point P 
and can be seen in Fig. 21.6.

The tangent from P is always vertical if yP = 0.
If a point P is such that yP = 0, then the tangent line to the elliptic curve at P is 

vertical and does not intersect the elliptic curve at any other point. By definition, 
2P = O for such a point P.

Recall that the field Fp uses the numbers from 0 to p − 1, and computations end 
by taking the remainder on division by p (i.e., the modulus operations). For exam-
ple, in F23, the field is composed of integers from 0 to 22, and any operation within 
this field will result in an integer also between 0 and 22.

An elliptic curve with the underlying field of Fp can be formed by choosing the 
variables a and b within the field of Fp. The elliptic curve includes all points (x,y) 
that satisfy the elliptic curve equation modulo p (where x and y are numbers in Fp).

For example, y2 mod p = x3 + ax + b mod p has an underlying field of Fp if a and 
b are in Fp.

If x3 + ax + b contains no repeating factors, then the elliptic curve can be used to 
form a group. An elliptic curve group over Fp consists of the points on the corre-
sponding elliptic curve, together with a special point O called the point at infinity. 
There are finitely many points on such an elliptic curve.

Fig. 21.4 The Graph of an 
elliptic curve
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 SIDH

Now that you have reviewed the basics of elliptic curves, we can move forward to 
discuss supersingular isogeny Diffie Hellman (SIDH). We will have to add a few 
additional concepts. First consider the equation of an elliptic curve:

 y x ax b2 3� � �  

Now we add a new concept, the j-invariant of an elliptic curve. Let us approach 
this a bit differently than some texts do. We will start from the interpretation and 
then work on the math. Consider a model for an elliptic curve E ⊂ P2. P is an ele-
ment of E (i.e., P ϵ E). Recall from our previous discussions of elliptic curves that 
one can draw lines through the curve. There are lines the go through P and are tan-
gent to E. These lines are invariant.

The J-Invariant for an elliptic curve described by the function y2 = x3 + ax + b is 
given by this formula:

 
j E

a

a b
� � �

�
1728

4

4 27

3

3
 

When curves are isometric, they will have the same j-invariant over a closed 
field. In this case, the term isometric means that there is a function between two 
groups that establishes a one-to-one correspondence between the group’s elements. 
Furthermore, the function respects the given group operations. Recall from Chap. 
11, when we discussed elliptic curve cryptography, we stated that the elliptic curves 

Fig. 21.5 P + (−P).
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Fig. 21.6 Doubling the P

from algebraic groups. So what is being discussed here is the fact that if two curves 
are isometric, they will have the same j-invariant (over a closed field).

This still leaves the term isogeny unexplored. In this context, an isogeny is a 
morphism of algebraic groups that is surjective and has a finite kernel. Kernels are 
an aspect of algebra we have yet to explore. For our purposes now, all you need to 
know is that when you have a homomorphism (and an isomorphism is a type of 
homomorphism), then the kernel is the inverse image of 0. This requires a bit of 
explanation as to what an inverse image is. Consider some function f that is a func-
tion from X to Y (the particulars of the function are immaterial for our discussion). 
Now consider a set S ⊆ Y. The inverse of S is the subset T that is defined in the fol-
lowing way:

 
f S x T f x S� � � � ��� �1

 

The mathematics of supersingular isogeny Diffie-Hellman does have some math-
ematics that is simply beyond the scope of this introductory book. However, it is 
important that you have a general idea of the more basic mathematical aspects and 
that you understand that it is a key exchange algorithm. However, for those readers 
with a more rigorous mathematical background, the math will be presented here.

The fictional characters of Alice and Bob, whom you might recall from Chap. 10, 
have been used in demonstrating asymmetric cryptography since the publication of 
the original paper on RSA in 1977. Alice and Bob will each have a prime number of 
a particular form. These forms are shown here:

Supersingular Isogeny Key Exchange
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E L A E LA

B
eBe and�� �� �� ��  

It should be relatively clear that the capital A represents Alice’s values, and the 
capital B represents Bob’s. Alice and Bob will each select a random cyclic subgroup 
(this will be secret) of their respective torsion subgroup and compute the corre-
sponding isogeny.

That step might have included several items you are not familiar with. You should 
recall the discussion of groups and abelian groups from Chap. 1. Recall that a group 
is an algebraic system consisting of a set, an identity element, one operation, and its 
inverse operation. And an abelian group adds to those requirements the commuta-
tive property. A torsion subgroup is a subgroup of an abelian group that consists of 
all the elements of the abelian group that have finite order. In this case, order is a 
term that comes from group theory and means cardinality (i.e., the number of ele-
ments). If it happens that all the elements in the abelian group have finite order (i.e., 
number of elements), then the group is called torsion. And finally recall that a cyclic 
group is a group that has elements that are all powers of one of its elements. So for 
example, if you start with element x, then the members of a cyclic group would be:

 x x x x x x� � �2 1 0 1 2 3, , , , , , .  

Back to our discussion of what Bob and Alice do, they will now publish the equa-
tion of the target curve of their isogeny. This allows both parties to privately (and 
more importantly secretly) calculate new isogenies from E so they will both have 
the same shared secret. Why will they arrive at the same shared secret? Because the 
curves have a common j-invariant and are therefore isomorphic.

Let us summarize the steps. First, we have the setup process that both Alice and 
Bob complete:

 1. A prime of the form E[LeAA] * E LB
eB�� ��  * f ± 1

 2. A supersingular elliptic curve E over fp2 (a finite field)
 3. Fixed elliptic points on the curve E, those points being PA, QA, PB, QB (remember 

P and Q as points in an elliptic curve.
 4. The order of PA and QA, is (lA)eA. The order of PB and QB is (lB)eB.

This will allow both Alice and Bob to have the necessary material for the key 
exchange. Next, we have a series of steps in the key exchange. Some are performed 
by Alice and some by Bob.

Alice generates two random integers mA, nA < (lA)eA.
Alice generates RA:= mA * (PA) + nA (QA).

For those readers not familiar, the symbol := means “is defined to be.”
Alice uses the point RA that was created in the preceding step, to create an isog-

eny mapping E -> EA that we will call ϕA and curve EA that is isogenous to the 
curve E.
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Alice now applies the mapping, ϕA, that was just created to PB and QB (remember 
Bob created these) to form two points on the curve EA. Those points are ϕA PB 
and ϕA QB

Alice sends to three things to Bob: EA, ϕA PB, and ϕA QB

Now it is time for Bob to perform his end so that the two parties have a shared 
secret key. Bob will essentially do the same things Alice did, only the subscripts will 
be the reverse of what Alice used.

 1. Bob generates two random integers mB, nB < (lB)eB.
 2. Bob generates RB:= mB * (PB) + nB (QB)
 3. Bob uses the point RB that was created in the preceding step, to create an isogeny 

mapping E -> EB that we will call ϕBA and curve EB that is isogenous to the 
curve E.

 4. Bob now applies the mapping, ϕB, that was just created to PA and QA (remember 
Alice created these) to form two points on the curve EB. Those points are ϕB PA 
and ϕB QA

 5. Bob now sends to three things to Alice: EB, ϕA PB, and ϕB QA.

Now both Alice and Bob have exchanged materials so they can now create a 
shared secret key.

Now Alice can use the parts she received from Bob as well as items she gener-
ated, as follows:

 1. mA(ϕB (PA)) + nA(ϕB (QA.)) = SBA

 2. Alice then uses SBA to create an isogeny mapping we will call ψBA

 3. Then Alice uses ψBA to create an elliptic curve EBA that is isogenous to E.
 4. Finally, Alice computes the j-invariant of the curve EBA. We can call this j- 

invariant K (you will see why in just a moment).

Bob will do something almost identical:

 1. mB(ϕA (PB)) + nB(ϕA (QB.)) = SBA

 2. Bob then uses SAB to create an isogeny mapping we will call ψAB

 3. Then Bob uses ψAB to create an elliptic curve EAB that is isogenous to E.
 4. Finally, Bob computes the j-invariant of the curve EAB. We can call this j- invariant 

K. We call it K because if the curves are isogenous, they generate the same 
j-invariant, and now we have a common key for Alice and Bob to use.

Yes, this is a rather long process, with many steps. It also may stretch the math-
ematics of some readers. However, it is one of the contenders for a quantum 
computer- resistant key exchange algorithm. Therefore, it is worthwhile to reread 
this section a few times if needed to ensure you are at least generally comfortable 
with the outline of the algorithm.

For those readers who want to delve more into this algorithm, there is an excel-
lent paper from the International Association of Cryptologic Research (IACR) that 
will go into more depth: https://eprint.iacr.org/2019/1321.pdf. It is often helpful 
when learning something new, particularly something that is relatively challenging, 
to read two or more different explanations.
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 Conclusions

This chapter focused on multivariate cryptography. Some of the mathematics might 
have been new for some readers. The algorithms in this chapter are all viable candi-
dates for quantum-resistant cryptography and thus worthy of study. Combining this 
chapter with Chap. 20 will provide you with a solid general understanding of quan-
tum computing-resistant cryptographic algorithms.

 Test Your Knowledge

 1. Which of the following is the most accurate description of a field?

 (a) A set, an identity element for one operation, one operation, and its inverse 
operation

 (b) A set, an identity element for each operation, two operations, and an inverse 
for one of those operations

 (c) A set, an identity element for one operation, two operations, and their 
respective inverse operations

 (d) A set, an identity element for each operation, two operations, and their 
respective inverse operations

 2. A bijective map F: E ->E over the extension field E is most closely associated 
with which algorithm?

 (a) Matsumoto-Imai
 (b) Hidden Field Equations
 (c) SFLASH
 (d) MQDSS

 3. gcd (h, qn − 1) = 1 is most closely associated with which algorithm?

 (a) Matsumoto-Imai
 (b) Hidden Field Equations
 (c) SFLASH
 (d) MQDSS

 4. Which algorithm has a public key k = P(s) ϵ Fm?

 (a) Matsumoto-Imai
 (b) Hidden Field Equations
 (c) SFLASH
 (d) MQDSS
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 5. ________signature algorithm is substantially faster than RSA.

 (a) Matsumoto-Imai
 (b) Hidden Field Equations
 (c) SFLASH
 (d) MQDSS
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