
Chapter 6
Perceptron and Neural Networks

6.1 Introduction

For most people, the area of machine learning and artificial intelligence starts
and ends with neural networks. From the name itself, it suggests an implicit
resemblance with human brain and the neurons inside it. Common sense dictates:
as the biological neurons are responsible for the human intelligence, these artificial
neurons must be the building blocks of artificial intelligence. Incidently, in this case,
the common sense is not far from the truth. The invention of such an artificial neuron
(technically called as perceptron in the literature) indeed marked the beginning of
modern neural networks.

6.1.1 Biological Neuron

A biological neuron looks like the illustration shown in Fig. 6.1. It is composed of
three main parts that are unique to it along with other typical cellular objects:

1. Soma: This is the nucleus of the neuron.
2. Dendrites: They exhibit a complex treelike structure with branches ranging up

to tens of thousands. These are responsible for receiving messages from other
neurons.

3. Axon: This is a long stemlike structure that carries the incoming signals from the
dendrites to send it to other neurons that may be physically farther away. It ends
in axon terminals that look similar to dendrites.

The activation of neurons and the transmission of the messages to and from
neurons are controlled by electrochemical processes. Each neuron is continuously
getting activation signals from the other connecting neurons. The information is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. V. Joshi, Machine Learning and Artificial Intelligence,
https://doi.org/10.1007/978-3-031-12282-8_6

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12282-8_6&domain=pdf

 -2016 61494 a -2016 61494 a
 
https://doi.org/10.1007/978-3-031-12282-8_6


58 6 Perceptron and Neural Networks

Fig. 6.1 Biological neuron [25]

gathered in the neuron’s cell body where it gets processed and then sent out to axon
terminals.

6.2 Perceptron

Perceptron was introduced by Rosenblatt [64] in 1957 with an architecture that was
strongly influenced by that of a biological neuron. It was used to craft a generalized
computation framework for solving linear problems. It was quite effective, one of
a kind machine at the time and seemingly had unlimited potential. In the early
days after its successful implementation to solve certain types of problems, some
critical flaws were detected in the theory of perceptron that limited their scope
significantly (e.g., problem of implementing XOR operation). However, these issues
were overcome in time with addition of multiple layers in the architecture of the
perceptron giving rise to the concept of artificial neural networks (ANNs). The
addition of nonlinear kernel functions like sigmoid further extended the scope of
ANNs. We will study the concept of perceptron and its evolution into modern ANNs
in this chapter. However, we will restrict the scope to traditional neural networks and
will not delve into the deep networks. We will study those in Chap. 13.

Geometrically a single-layer perceptron with linear mapping represents a linear
plane in n-dimensions. In n-dimensional space, the input vector is represented as
(x1, x2, . . . , xn) or x. The coefficients or weights in n-dimensions are represented
as (w1, w2, . . . , wn) or w. The equation of perceptron in the n-dimensions is then
written in vector form as



6.2 Perceptron 59

Fig. 6.2 Perceptron

x.w = y (6.1)

Figure 6.2 shows an example of a n-dimensional perceptron. This equation looks a
lot like the linear regression equation that we studied in Chap. 5, which is essentially
true, as perceptron represents a similar computational architecture to solve this
problem. However, the differences lie in the way the weights are computed or
learned.

6.2.1 Implementing Perceptron

Let’s use the sklearn library and Google Colab as explained in the earlier chapter
to implement the perceptron. As perceptron architecture is primarily used for
classification, let’s use the Iris dataset to illustrate the use of perceptron. Iris dataset
contains 150 samples corresponding to three types of flowers. Each type of flower
has 50 samples. There are f our features for each samples making the data four
dimensional.

Figure 6.3 shows how we can import the perceptron model from sklearn and train
it on Iris data. In Fig. 6.4 we apply the trained model on the same data to see how
well it is trained. As can be seen, the overall prediction accuracy of this classifier is
only at 0.48. As the original data is not linearly separable, the accuracy of simple
perceptron is not great.

Ideally, we should use separate datasets for training and predicting, but we are
using the same dataset here for the purpose of illustrating how well the model
is learning the patterns and also to emphasize the fact that the model is not just
remembering the training patterns showing 100% accuracy on them. We will also
use these scores as reference to compare with other models that we will learn in the
chapter.



60 6 Perceptron and Neural Networks

Fig. 6.3 Implementing perceptron using Google Colab and sklearn

Fig. 6.4 Visualizing the training performance with perceptron on Iris data

If there are multiple variables to be predicted using the same set of inputs, one can
have a series of perceptrons in parallel to generate those outputs. This architecture
is called as single-layer perceptron.



6.3 Multilayered Perceptron or Artificial Neural Network 61

6.3 Multilayered Perceptron or Artificial Neural Network

Multilayered perceptron or (MLP) is a logical extension of the single-layer architec-
ture, again following the functioning of biological neural network, where there are
multiple layers of perceptrons chained in series. Each layer can contain an arbitrary
number of nodes or perceptrons as needed. Figure 6.1 shows an illustration of a
generic MLP with 3 layers. Let n1 be the number of nodes in layer 1, which is the
same as the input dimensionality. The subsequent layers have n2 and n3 number of
nodes. The layers of nodes between the input and output layers are called as hidden
layers, as their size is independent of the input and output, and are not directly
visible from that perspective. The number of nodes in hidden layers can have any
arbitrary value. Typically the more complex the relation between input and output,
the more and bigger hidden layers are used. Also, all the consecutive layers in MLP
are fully connected, meaning each of the internal layers needs to be fully connected
to all the nodes in the previous and next layer. It is important to note that as long
as we are using linear mapping (also called as activation function) at each node,
single-layer perceptron and multilayered perceptron are mathematically equivalent.
In other words, having multiple layers does not really improve the capabilities of the
model, and it can be proved mathematically using rigorous calculations. Thus, the
real benefits of MLP architecture start to surface with the use of nonlinear activation
functions.

6.3.1 Feedforward Operation

The network shown in Fig. 6.5 also emphasizes another important aspect of
MLP called as feedforward operation. The information that is entered from the
input propagates through each layer towards the output. There is no feedback of

Fig. 6.5 Multilayered perceptron



62 6 Perceptron and Neural Networks

information from any layer backwards when the network is used for predicting the
output in the form of regression or classification. This process also closely resembles
the operation of human brain.

6.3.2 Nonlinear MLP or Nonlinear ANN

The major improvement in the MLP architecture comes in the way of using
nonlinear mapping. Instead of using simple dot product of the input and weights,
a nonlinear function, called as activation function, is used.

6.3.2.1 Activation Functions

The most simple activation function is a step function, also called as a sign function,
as shown in Fig. 6.6. This activation function is suited for applications like binary
classification. However, as this is not a continuous function, it is not suitable for
most training algorithms as we will see in the next section.

Fig. 6.6 Activation function sign



6.3 Multilayered Perceptron or Artificial Neural Network 63

Fig. 6.7 Activation function tanh

The continuous version of step function is called as a hyperbolic tan or tanh
function as shown in Fig. 6.7. Sometimes a variation of tanh function called as
sigmoid function is used. Sigmoid function has exactly the same shape, but its value
ranges from 0 to 1, instead of from −1 to 1 in the case of tanh function.

The relationship between input x and output Y at a given node that uses sigmoid
activation function S(x) can be written as

S(x.w) = y (6.2)

where w represents weights for each input coming to the given node. This mapping
ensures that the value of y will always be bounded between 0 and 1 irrespective of
the values of inputs and the weights.

With the use of such nonlinear activation functions, MLP architecture is no more
equivalent to the single layer and can now deal with more complex and nonlinear
input-output mappings.



64 6 Perceptron and Neural Networks

6.3.3 Training MLP

During the training process, the weights of the network are learned from the labelled
training data using the process of backpropagation. Conceptually the process can be
described as

1. Present the input to the neural network.
2. All the weights of the network are assigned some default value.
3. The input is transformed into output by passing through each node or neuron in

each layer.
4. The output generated by the network is then compared with the expected output

or label.
5. The error between the prediction and label is then used to update the weights of

each node.
6. The error is then propagated in backward direction through every layer, to update

the weights in each layer such that they minimize the error.

Reference [65] summarizes various backpropagation training algorithms commonly
used in the literature along with their relative performances. We are not going to
go into the mathematical details of these algorithms here, as the theory quickly
becomes quite advanced and can make the topic very hard to understand. Also, as
we look at the implementation of this algorithm using sklearn, we will see that with
conceptual understanding of the training framework, one is sufficiently armed to
apply these concepts to solve real problems.

Thus, backpropagation algorithm for training and feedforward operation for pre-
diction mark the two phases in the operation of neural network. Backpropagation-
based training can be done in two different methods.

1. Online or stochastic method
2. Batch method

6.3.3.1 Online or Stochastic Learning

In this method a single sample or a small subset of an entire training set (drawn
randomly) is sent as input to the network, and based on the output error, the weights
are updated. The optimization method most commonly used to update the weights in
this setup is called stochastic gradient descent or SGDmethod. The use of stochastic
here implies that the samples are drawn randomly from the whole dataset rather
than using them sequentially. The process can converge to the desired accuracy
level even before all the samples are used. It is important to understand that in
stochastic learning process, a small set of samples is used in each iteration, and
the learning path is more noisy. The set of samples used in each iteration is called a
mini-batch. SGD is beneficial when the expected learning path can contain multiple
local minima and/or the size of training data is too large that using all the data in
each iteration is not feasible.



6.3 Multilayered Perceptron or Artificial Neural Network 65

6.3.3.2 Batch Learning

In batch method the entire training dataset is used and divided into small and
deterministic set of batches (unlike stochastic method where samples are drawn
randomly). The entire batch of samples is sent to the network before computing the
error and updating the weights. After an entire batch is processed, the weights are
updated. The training process using each batch is called as one iteration. When all
the samples are used once, it is considered as one epoch in the training process.
Typically multiple epochs are used before the algorithm fully converges. As the
batch learning uses a batch of samples in each iteration, it reduces the overall noise,
and the learning path is cleaner. However, the process is a lot more computation
heavy and needs more memory and computation resources. Batch learning is
preferred when computer hardware permits, and the learning path is expected to
be relatively smooth.

6.3.4 Hidden Layers

The concept of hidden layers needs a little more explanation. As such they are
not directly connected with inputs and outputs, and there is no theory around
how many such layers are optimal in a given application. Each layer in MLP
transforms the input to a new dimensional space. The hidden layers can have a
higher dimensionality than the actual input, and thus they can transform the input
into an even higher dimensional space. Sometimes, if the distribution of input
in its original space has some nonlinearities and is ill conditioned, the higher
dimensional space can help improve the distribution and as a result improve the
overall performance. These transformations also depend on the activation function
used. Increasing the dimensionality of hidden layer also makes the training process
much more complicated, and one needs to carefully trade between the added
complexity and performance improvement. Also, how many such hidden layers
should be used is another variable where there are no theoretical guidelines. Both
these parameters are called as hyperparameters, and one needs to do an open-ended
exploration using a grid of possible values for them and then choose the combination
that gives the best possible results within the constraints of the training resources.

6.3.5 Implementing MLP

We revisit the problem of classifying the Iris data, now with MLP architecture with
logistic activation function and a single hidden layer with 50 nodes (the number 50
is selected as fairly arbitrary) (Fig. 6.8). We use all the other default parameters to
train the model using sklearn library. We then apply on the same training data as
before to see how the algorithm is able to model the data (Fig. 6.9).



66 6 Perceptron and Neural Networks

Fig. 6.8 Implementing MLP using Google Colab and sklearn

Fig. 6.9 Visualizing the training performance with MLP on Iris data

As you can see, the classification accuracy is order of magnitude better compared
to a simple perceptron using linear mappings.

6.4 Radial Basis Function Networks

Radial basis function networks RBFN or radial basis function neural networks
RBFNN are a variation of the feedforward neural networks (we will call them
as RBF networks to avoid confusion). Although their architecture as shown in



6.4 Radial Basis Function Networks 67

Fig. 6.10 Architecture of radial basis function neural network

Fig. 6.10 looks similar to MLP as described above, functionally they are more close
to the support vector machines with radial kernel functions. The RBF networks are
characterized by three layers: an input layer, a single hidden layer, and an output
layer. The input and output layers are linear weighing functions, and the hidden layer
has a radial basis activation function instead of sigmoid-type activation function that
is used in traditional MLP. The basis function is defined as

fRBF (x) = e−β‖x−μ‖2) (6.3)

The above equation is defined for a scalar input, but without lack of generality, it
can be extended for multivariate inputs. μ is called as center, and β represents the
spread or variance of the radial basis function. It lies in the input space. Figure 6.11
shows the plot of the basis function. This plot is similar to Gaussian distribution.

6.4.1 Interpretation of RBF Networks

Aside from the mathematical definition, RBF networks have a very interesting
interpretability that regular MLP does not have. Consider that the desired values
of output form n number of clusters for the corresponding clusters in the input
space. Each node in the hidden layer can be thought of as a representative of each
transformation from the input cluster to the output cluster. As can be seen from
Fig. 6.11, the value of radial basis function reduces to 0 rather quickly as the distance
between the input and the center of the radial basis function μ increases with respect



68 6 Perceptron and Neural Networks

Fig. 6.11 Plot of radial basis function

to the spread β. Thus, RBF network as a whole maps the input space to the output
space by linear combination of outputs generated by each hidden RBF node. It is
important to choose these cluster centers carefully to make sure the input space
is mapped uniformly and there are no gaps. The training algorithm is capable of
finding the optimal centers, but the number of clusters to use is a hyperparameter
(in other words it needs to be tuned by exploration). If an input is presented to RBF
network that is significantly different than the one used in training, the output of
the network can be quite arbitrary. In other words the generalization performance of
RBF networks in extrapolation situations is not good. However, if requirements for
the RBF network are followed, it produces accurate predictions.

6.4.2 Implementing RBF Networks

We can implement RBF network with sklearn using GaussianProcessClassifier and
selecting the kernel as RBF. Figure 6.12 shows the code for implementation. The
following figures show the code for implementation. We will use all the default
parameters for the model to focus on the concept. As can be seen, the accuracy is
better than MLP, but marginally, and with some tuning both models can essentially
produce similar results (Fig. 6.13).



6.5 Overfitting 69

Fig. 6.12 Implementing RBF network using Google Colab and sklearn

Fig. 6.13 Visualizing the training performance with RBF network on Iris data

6.5 Overfitting

Neural networks open up a feature-rich framework with practically unlimited scope
to improve the performance for the given training data by increasing the complexity
of the network. Complexity can be increased by manipulating various factors as
follows:

1. Increasing the number of hidden layers
2. Increasing the nodes in hidden layers
3. Using complex activation functions



70 6 Perceptron and Neural Networks

4. Increasing the training epochs

Such improvements in training performance with arbitrary increase in complex-
ity typically lead to overfitting. Overfitting is a phenomenon where we try to model
the training data so accurately that in essence we just memorize the training data
rather than identifying the generic patterns and structure in it. Such memorization
leads to significantly worse performance on unseen data. However, determining the
optimal threshold where the optimization should be stopped to keep the model
generic enough but also accurate is not trivial. Multiple approaches are proposed
in the literature, e.g., Optimal Brain Damage [67] or Optimal Brain Surgeon [66].
Before delving into the regularization techniques specifically tailored for neural
networks, let’s look at the concept of regularization in general.

6.5.1 Concept of Regularization

When we are dealing with any prediction problem, we have a loss function that
we want to optimize using labelled training data. This optimization process leads to
finding the values of the parameters of the equation and concludes the training. If we
start with overly complex functional, the process can lead to what we just defined
as memorization. In order to restrict the memorization, we can use a mathematical
trick, by altering the optimization functional with some added terms. These added
factors limit the range of values that the parameters of the algorithm can take and
ultimately ensure that the memorization is avoided.

6.5.2 L1 and L2 Regularization

C(x) = L(x) + λ
∑

‖W‖ (6.4)

C(x) = L(x) + λ
∑

‖W‖2 (6.5)

The process of regularization that alters the optimization function (or loss function),
also called as technique of Lagrangian multipliers, typically adds another term in the
optimization problem that restricts the complexity of the network and is weighted by
Lagrangian weighing factor λ. Equations 6.4 and 6.5 show the updated cost function
C(x) use of L1 and L2 types of regularizations to reduce the overfitting.

L(x) is the loss function that is dependent on the error in prediction, while
W stands for the vector of weights in the neural network. The L1 norm tries to
minimize the sum of absolute values of the weights, while the L2 norm tries to
minimize the sum of squared values of the weights. Each type has some pros
and cons. The L1 regularization requires less computation but is less sensitive



6.7 Exercises 71

to strong outliers, as well as prone to making the weights zero. In other words,
L1 regularization tends to reduce the overall dimensionality of the problem by
dropping some weights altogether. L2 regularization is typically overall a better
metric and provides slow weight decay towards zero, but is more computation
intensive. However, depending on the problem at hand, either one can be a better
choice. Linear methods (regression/classification) that use L1 regularization are also
called as Lasso methods, and the ones that use L2 regularization are also called as
Ridge methods.

6.5.3 Dropout Regularization

This is an interesting method and is only applicable to the case of neural networks,
while the L1 and L2 regularization can be applied to any algorithm. In dropout
regularization, the neural network is considered as an ensemble of neurons in
sequence, and instead of using a fully populated neural network, some neurons are
randomly dropped from the path. The effect of each dropout on overall accuracy
is considered, and after some iterations, an optimal set of neurons is selected in
the final models. As this technique actually makes the model simpler rather than
adding more complexity like L1 and L2 regularization techniques, this method is
quite popular, specifically in the case of more complex and deep neural networks
that we will study in later chapters.

6.6 Conclusion

In this chapter, we studied the machine learning model based on simple neural
network. We studied the concept of single perceptron and its evolution into full-
fledged neural network. We also studied the variation of the neural networks using
radial basis function kernels. In the end we studied the effect of overfitting and how
to reduce it using regularization techniques.

6.7 Exercises

1. Play with the parameters of MLP, e.g., the number of hidden layers, the number
of nodes in each hidden layer, and activation function, and see the effect of the
changes on the accuracy.

2. Separate the training and test data using sklearn.model_selection.train_test_split
function. Use 70% training and 30% test, and repeat MLP training to see how
the test accuracy compares with the earlier method of using the same data for
training and test for MLP.



72 6 Perceptron and Neural Networks

3. Play with all the parameters for RBF Network, and see the impact on the
accuracy. Split the training and test data as before, and see the effect of that.

4. After fine-tuning all the models, see which model gives the absolute best
accuracy, and also compare which model is easier to tune.

5. Ridge and Lasso regression models are offered in sklearn in sklearn.linear_model.
Try these two alternatives for perceptron in classification of Iris data, and
compare the results.


	6 Perceptron and Neural Networks
	6.1 Introduction
	6.1.1 Biological Neuron

	6.2 Perceptron
	6.2.1 Implementing Perceptron

	6.3 Multilayered Perceptron or Artificial Neural Network
	6.3.1 Feedforward Operation
	6.3.2 Nonlinear MLP or Nonlinear ANN
	6.3.2.1 Activation Functions

	6.3.3 Training MLP
	6.3.3.1 Online or Stochastic Learning
	6.3.3.2 Batch Learning

	6.3.4 Hidden Layers
	6.3.5 Implementing MLP

	6.4 Radial Basis Function Networks
	6.4.1 Interpretation of RBF Networks
	6.4.2 Implementing RBF Networks

	6.5 Overfitting
	6.5.1 Concept of Regularization
	6.5.2 L1 and L2 Regularization
	6.5.3 Dropout Regularization

	6.6 Conclusion
	6.7 Exercises


