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1 Introduction

My interest in the interplay between mathematical analysis and probability theory
goes back to the beginning of my studies at the University of Oslo in the mid
1960s. But it really gained momentum in the late 1970s when I started studying
the beautiful little book Stochastic Integrals by Henry McKean [13]. My colleague
at the time, Knut Aase, and I ran a little seminar on the book at Agder College (now
the University of Agder) and we were both fascinated by this new calculus that the
book presented, namely the Itô calculus!

Then in 1982 Sandy Davie and Alan Sinclair offered me a Research Fellowship
and invited me to spend one semester at the Department of Mathematics, University
of Edinburgh. There they asked me to give a course on stochastic differential
equations (SDEs). I knew nothing about SDEs, but started immediately to study
the subject intensively, in an effort to at least stay ahead of my (very advanced)
audience. It was a rewarding experience, which opened up a new world, consisting
of both interesting new mathematics and a number of important applications, e.g.
to modelling of dynamical systems with noise, filtering theory, optimal stopping,
stochastic control and (subsequently) mathematical finance. I was enthusiastic about
this new field of mathematics and started lecturing about it, almost like preaching a
gospel, at a number of places, including Agder College, Eötvös Loránd University,
the University of Tromsø, and California Institute of Technology (Caltech). Every
time I used the opportunity to polish my lecture notes, based on useful feedback
from the audience.
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In 1984 I submitted my lecture notes to Springer, and asked them to consider
the manuscript for publication, for example in the Springer Lecture Notes in
Mathematics (LNM). At a conference in Lancaster the same year I was fortunate
to meet the recently appointed Springer Mathematical Editor, namely Catriona
Byrne, who was handling my manuscript. She saw the potential of the manuscript
and recommended that it be considered for publication in the new book series
Universitext. The reviews were all very positive, and in 1985 the first edition of
my book Stochastic Differential Equations [18] appeared, and it became a great
success. I think one reason for the success of the book was that it filled a gap in
the literature. There were already several excellent books available, written by top
experts, but my book was written from the point of view of an enthusiastic beginner,
who was not trying to humiliate the reader but to work with the reader to understand
the topic. Some years later a professor once told me that although more recent and
more polished editions of my book were available, he gave his students the first
edition to start with, because it was somehow more “raw” and direct, without all the
technical subtleties (that should be taken seriously later) and therefore easier as a
first encounter with the field.

I will always be grateful to Catriona for her encouragement and support, not just
for the first edition of this book, but also for later editions [17] and for the other
books I wrote later with coauthors. I think she is an important reason for the success
of Springer among the mathematical community.

2 Equations with Noise and White Noise Theory

One of the fascinations with stochastic analysis is the interplay between mathemat-
ical analysis and probability theory. And perhaps the most spectacular example
of such interplay is the topic of dynamical systems subject to noise. Noise in
some form is everywhere in our society. For example, it can be in the form of
mechanical noise from machines, noise due to lack of information in the system, or
environmental noise due to random fluctuations in weather. A classic example is the
model for population growth:
Let Y (t) denote the density of a given population at time t . Then the most basic
model for the growth of Y (t) is the differential equation

dY (t)

dt
= α0(t)Y (t); Y (0) = y0 (constant) (1)

where α0(t) is a given function, representing the relative growth rate. The solution
of this differential equation is

Y (t) = y0 exp

(∫ t

0
α0(s)ds

)
.
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A weakness of this model is that it does not take into account that there might be
unpredictable, random changes, or “noise” in the environment. If we add “noise” in
the relative growth rate, the equation gets the form

dY (t)

dt
= α(t) + σ(t)W(t); Y (0) = y0, (2)

where W(t) represents “noise” at time t and σ is a given “noise” coefficient.
The question is what properties such a “noise” process W(t) should have. If
we try to represent W(t) by a stochastic process defined on a filtered probability
space (�,F , {Ft }t≥0,P), then ideally, i.e. if we think of noise as “white” in some
sense, we could require that W(t1) and W(t2) are independent if t1 �= t2 and that
W(t) is normalised, in the sense that E[W(t)] = 0 (where E denotes expectation
with respect to P) and E[W 2(t)] < ∞ for all t . But it turns out that no such
measurable stochastic process exist. However, since the Brownian motion process
B(t) = B(t, ω); t ≥ 0, ω ∈ � is continuous and has stationary, independent
increments, one could try to put

W(t) = dB(t)

dt
. (3)

This derivative does not exist in the ordinary (strong) sense, but since t �→ B(t, ω)

is continuous for a.a. ω, it is weakly differentiable for a.a. ω, and we could try
to interpret it weakly, in the sense that we regard the equation (2) as an integral
equation, that is

Y (t) = y0 +
∫ t

0
Y (s)

(
α(s) + σ(s)

dB(s)

ds

)
ds

= y0 +
∫ t

0
Y (s)α(s)ds +

∫ t

0
σ(s)Y (s)dB(s).

This last integral can be made rigorous as an Itô integral. It is sometimes written in
the following short-hand, differential form

dY (t) = α(t)Y (t)dt + σ(t)Y (t)dB(t); Y (0) = y0.

Applying the Itô rules of stochastic calculus (the Itô formula), we find the following
well-known solution

Y (t) = y0 exp
( ∫ t

0
σ(s)dB(s) +

∫ t

0
{α(s) − 1

2σ
2(s)}ds

)
. (4)
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2.1 A More Elaborate Model

In the model above we are only considering the population at one given point x in
space and the noise is in time only. In an attempt to get a more realistic model, let
us consider the population density Y (t, x) at the time t ∈ R and at the point x ∈ R

n,
where n is the dimension of the space. For simplicity of the notation, let us assume
that n = 1 in the following. In this case, it is natural to assume that the “noise”
depends on both time and space also, i.e. that it is represented by a 2-parameter
process W(t, x). This is also relevant in many other situations, for example in
temperature modelling or, more generally, weather modelling. Assuming this, and
arguing as in (2) and allowing the coefficients to depend on both t and x, we arrive
at the following 2-parameter stochastic differential equation for Y (t, x):

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)W(t, x)dtdx.

Now suppose we proceed as above, and try to represent W(t, x) weakly as

W(t, x) = ∂2B(t, x)

∂t∂x
, (5)

where B(t, x); t ≥ 0, x ∈ R is a 2-parameter Brownian motion, also called a
Brownian sheet. (See the next section for an explanation.) Then we arrive at the
following stochastic integral equation

Y (t, x) = y0 +
∫ t

0

∫ x

0
α(s, z)Y (s, z)dsdz +

∫ t

0

∫ x

0
σ(s, z)Y (s, z)B(ds, dz),

where the last integral is the space-time (2-parameter) Itô integral with respect
to B(·, ·), as constructed in [5, 23, 24]. See also [14, 20] and [22]. As in the 1-
parameter case, we will use the following short-hand differential notation

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)Y (t, x)B(dt, dx); t, x ≥ 0 (6)

Y (t, 0) = Y (0, x) = y0; for all t, x ≥ 0.

It follows from Theorem 2.4.1 in [14] that this stochastic partial differential equation
(SPDE) has a unique adapted solution. The question is:

Problem 2.1 Can we find a formula for the solution of (6), like we did in the 1-
parameter case (4)?

In view of the many applications of white noise theory to 1-parameter stochastic
calculus (see e.g. [1–4, 6, 7, 9–11, 19] and also the spectacular white noise solution
of general SDEs in [12]), it is natural to ask if such an interplay can be useful also in
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the multi-parameter case. To support this idea we will show that white noise theory
can be used to find the solution of (6). We will explain how after a short review of
multi-parameter white nose calculus. It is mainly based on the presentation in [9],
and we refer to that book for proofs and more details.

3 Multi-Parameter White Noise Calculus

The basic idea of white noise analysis, due to Hida [8], is to consider white noise W

rather than Brownian motion B as the fundamental object. Within this framework,
we will see that Brownian motion can indeed be expressed as the integral of white
noise.

3.1 The d-Parameter White Noise Probability Space

In the following d will denote a fixed positive integer, interpreted as either the
time, space or time-space dimension of the system we consider. More generally,
we will call d the parameter dimension. Let S(Rd) be the Schwartz space of
rapidly decreasing smooth (C∞) real-valued functions on R

d . Recall that S(Rd)

is a Fréchet space under the family of seminorms

‖f ‖k,α := sup
x∈Rd

{(1 + |x|k)|∂αf (x)|},

where k is a nonnegative integer, α = (α1, · · · , αd) is a multi-index of nonnegative
integers α1, · · · , αd and

∂αf = ∂ |α|f
∂x

α1
1 · · · ∂x

αd

d

where |α| := α1 + · · · + αd.

The dual � = S ′(Rd) of S(Rd), equipped with the weak-star topology, is the space
of tempered distributions. This space will be the base of our basic probability space,
which we explain in the following:
As events we will use the family F = B(S ′(Rd)) of Borel subsets of S ′(Rd), and
our probability measure P is defined by the following result:

Theorem 3.1 (The Bochner–Minlos Theorem) There exists a unique probability
measure P on B(S ′(Rd)) with the following property:

E[ei〈·,ϕ〉] :=
∫
S ′

ei〈ω,ϕ〉dμ(ω) = e− 1
2 ‖ϕ‖2; i = √−1
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for all ϕ ∈ S(Rd), where ‖ϕ‖2 = ‖ϕ‖2
L2(Rd )

, 〈ω, ϕ〉 = ω(ϕ) is the action of

ω ∈ S ′(Rd) on ϕ ∈ S(Rd) and E = EP denotes the expectation with respect to P.

We will call the triplet (S ′(Rd),B(S ′(Rd)),P) the white noise probability space,
and P is called the white noise probability measure.
The measure P is also often called the (normalized) Gaussian measure on S ′(Rd).
It is not difficult to prove that if ϕ ∈ L2(Rd) and we choose ϕn ∈ S(Rd) such that
ϕn → ϕ in L2(Rd), then

〈ω, ϕ〉 := lim
n→∞〈ω, ϕn〉 exists in L2(P)

and is independent of the choice of {ϕn}. In particular, if we define

B̃(x) := B̃(x1, · · · , xd, ω) = 〈ω, χ[0,x1]×···×[0,xd ]〉; x = (x1, · · · , xd) ∈ R
d ,

where [0, xi] is interpreted as [xi, 0] if xi < 0, then B̃(x, ω) has an x-continuous
version B(x, ω), which becomes a d-parameter Brownian motion, in the following
sense:

By a d-parameter Brownian motion we mean a family {B(x, ·)}x∈Rd of random
variables on a probability space (�,F ,P) such that

• B(0, ·) = 0 almost surely with respect to P,
• {B(x, ω)} is a continuous and Gaussian stochastic process, and, further,
• for all x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ R

d+, B(x, ·), B(y, ·) have
the covariance

∏d
i=1 xi ∧ yi . For general x, y ∈ R

d the covariance is∏d
i=1

∫
R

θxi
(s)θyi

(s)ds, where θx(t1, . . . , td ) = θx1(t1) · · · θxd
(td), with

θxj
(s) =

⎧⎨
⎩

1 if 0 < s ≤ xj

−1 if xj < s ≤ 0
0 otherwise.

It can be proved that the process B̃(x, ω) defined above has a modification
B(x, ω) which satisfies all these properties. This process B(x, ω) then becomes
a d-parameter Brownian motion.

We remark that for d = 1 we get the classical (1-parameter) Brownian motion
B(t) if we restrict ourselves to t ≥ 0. For d ≥ 2 we get what is often called the
Brownian sheet.

With this definition of Brownian motion it is natural to define the d-parameter
Wiener–Itô integral of ϕ ∈ L2(Rd) by

∫

Rd

ϕ(x)dB(x, ω) := 〈ω, ϕ〉; ω ∈ S ′(Rd).
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We see that by using the Bochner–Minlos theorem we have obtained an easy con-
struction of d-parameter Brownian motion that works for any parameter dimension
d. Moreover, we get a representation of the space � as the Fréchet space S ′(Rd).
This is an advantage in many situations, for example in the construction of the Hida–
Malliavin derivative, which can be regarded as a stochastic gradient on �. See
Sect. 4 and e.g. [7] and the references therein.

3.2 Chaos Expansion in Terms of Hermite Polynomials

The Hermite polynomials hn(x) are defined by

hn(x) = (−1)ne1/2x
2 dn

dxn
(e−1/2x2); n = 0, 1, 2, · · · .

We see that the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, · · · .

The Hermite functions ξn(x) are defined by

ξn(x) = π−1/4((n − 1)!)−1/2e−1/2x2hn−1(
√
2x); n = 1, 2, · · · .

Some important properties of the Hermite functions are the following:

• ξn ∈ S(R) for all n

• The collection {ξn}∞n=1 constitutes an orthonormal basis for L2(R).

• sup
x∈R

|ξn(x)| = O(n−1/12).

We now use these functions to define an orthogonal basis for L2(P):
In the following, we let δ = (δ1, · · · , δd) denote d-dimensional multi-indices

with δ1, · · · , δd ∈ N. It follows that the family of tensor products

ξδ := ξ(δ1,··· ,δd ) := ξδ1 ⊗ · · · ⊗ ξδd
; δ ∈ N

d

forms an orthogonal basis for L2(Rd). Let δ(j) = (δ
(j)

1 , δ
(j)

2 , · · · , δ
(j)
d ) be the j th

multi-index number in some fixed ordering of all d-dimensional multi-indices δ =
(δ1, · · · , δd) ∈ N

d . We may assume that this ordering has the property that

i < j ⇒ δ
(i)
1 + δ

(i)
2 + · · · + δ

(i)
d ≤ δ

(j)

1 + δ
(j)

2 + · · · + δ
(j)
d ,

i.e., that the {δ(j)}∞j=1 occur in increasing order.
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Now define

ηj := ξδ(j) = ξ
δ
(j)
1

⊗ · · · ⊗ ξ
δ
(j)
d

; j = 1, 2, · · · .

We regard multi-indices as elements of the space (NN

0 )c of all sequences α =
(α1, α2, · · · ) with elements αi ∈ N0 and with compact support, i.e., with only
finitely many αi �= 0. Put

J = (NN

0 )c.

Definition 3.2 Let α = (α1, α2, · · · ) ∈ J . Then we define

Hα(ω) :=
∞∏
i=1

hαi
(〈ω, ηi〉); ω ∈ S ′(Rd).

Theorem 3.3 (Wiener–Itô Chaos Expansion Theorem) Every f ∈ L2(P) has a
unique representation

f (ω) =
∑
α∈J

cαHα(ω),

where cα ∈ R for all α.

Moreover, the following isometry holds:

‖f ‖2
L2(P)

=
∑
α∈J

α!c2α.

Example 3.1 The d-parameter Brownian motion B(x, ω) is defined by:

B(x, ω) = 〈ω,ψ〉,

where

ψ(y) = χ[0,x1]×···×[0,xd ](y).

Proceeding as above, we write

ψ(y) =
∞∑

j=1

(ψ, ηj )ηj (y) =
∞∑

j=1

⎛
⎝

x∫
0

ηj (u)du

⎞
⎠ ηj (y),
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where we have used the multi-index notation

x∫
0

ηj (u)du =
xd∫
0

· · ·
x1∫
0

ηj (u1, · · · , ud)du1 · · · dud =
d∏

k=1

xk∫
0

ξ
β

(j)
k

(tk)dtk

when x = (x1, · · · , xd). Therefore,

B(x, ω) = 〈ω,

∞∑
j=1

x∫
0

ηj (u)duηj 〉 =
∞∑

j=1

⎛
⎝

x∫
0

ηj (u)du

⎞
⎠ 〈ω, ηj 〉.

We conclude that B(x, ω) = B(x1, x2, ..., xd , ω) has the expansion

B(x, ω) =
∞∑

j=1

x∫
0

ηj (u)duHε(j) (ω)

=
∞∑

j=1

( x1∫
0

x2∫
0

...

xd∫
0

ηj (u)du1du2...dud

)
Hε(j) (ω). (7)

3.3 The Stochastic Test Function Spaces (S)

and the Stochastic Distribution Space (S)∗

We have seen that the growth condition

∑
α

α!c2α < ∞ (8)

assures that

f (ω) :=
∑
α

cαHα(ω) ∈ L2(P).

By replacing condition (8) by various other conditions we will obtain a family of
stochastic test functions and stochastic generalized functions that relates to L2(P)

in a way that is analogous to the spaces S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd). These
spaces provide a favourable setting for the study of stochastic (ordinary and partial)
differential equations.

As an analogue, recall the characterizations of S(Rd) and S ′(Rd) in terms of
Fourier coefficients: As above we let {δ(j)}∞j=1 = {(δ(j)

1 , · · · , δ
(j)
d )}∞j=1 be a fixed
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ordering of all d-dimensional multi-indices δ = (δ1, · · · , δd) ∈ N
d . In general,

if α = (α1, · · · , αj , · · · ) ∈ J , β = (β1, · · · , βj , · · · ) ∈ (RN)c are two finite
sequences, we will use the notation

αβ = α
β1
1 α

β2
2 · · ·αβj

j · · · where α0
j = 1.

Theorem 3.4 (Reed and Simon [21], Theorem V. 13–14)

(a) Let ϕ ∈ L2(Rd), so that

ϕ =
∞∑

j=1

ajηj , (9)

where aj = (ϕ, ηj ); j = 1, 2, · · · , are the Fourier coefficients of ϕ with
respect to {ηj }∞j=1. Then ϕ ∈ S(Rd) if and only if

∞∑
j=1

a2j (δ
(j))γ < ∞,

for all d-dimensional multi-indices γ = (γ1, · · · , γd).
(b) The space S ′(Rd) can be identified with the space of all formal expansions

T =
∞∑

j=1

bjηj (10)

such that

∞∑
j=1

b2j (δ
(j))−θ < ∞

for some d-dimensional multi-index θ = (θ1, · · · , θd).

If this condition holds, then the action of T ∈ S ′(Rd) given by (10) on ϕ ∈
S(Rd) given by (9) is

〈T , ϕ〉 =
∞∑

j=1

ajbj .

We now formulate a stochastic analogue of this result. The following quantity is
crucial: If γ = (γ1, · · · , γj , · · · ) ∈ (RN)c (i.e., only finitely many of the real



Space-Time Stochastic Calculus and White Noise 639

numbers γj are nonzero), we use the short-hand notation

(2N)γ :=
∞∏

j=1

(2j)γj .

Definition 3.5 (The Hida Spaces of Stochastic Test Functions and Stochastic
Distributions)

(a) The stochastic test function space (S)

Let (S) consist of the functions

f =
∑
α∈J

cαHα ∈ L2(P) with cα ∈ R

such that

‖f ‖2k :=
∑
α∈J

c2α(α!)2(2N)kα < ∞ for all k ∈ N

equipped with the projective topology.
(b) The stochastic distribution spaces (S)∗

Let q ∈ R. We say that the formal sum F = ∑
α∈J

bαHα belongs to the Hida

distribution Hilbert space (S)−q if

‖F‖2−q :=
∑
α∈J

α!c2α(2N)−αq < ∞. (11)

We define the Hida stochastic distribution space (S)∗ as the union (S)∗ =⋃
q∈R(S)−q equipped with the inductive topology.

Note that (S)∗ can be regarded as the dual of (S)as follows:
The action of F = ∑

α

bαHα ∈ (S)∗ on f = ∑
α

aαHα ∈ (S), where bα, aα ∈ R, is

given by

〈F, f 〉 =
∑
α

α!aαbα.

We have the inclusions

(S) ⊂ L2(P) ⊂ (S)∗.
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Example 3.2 (Singular White Noise) One of the most useful properties of (S)∗ is
that it contains the singular or pointwise white noise:

The d-parameter singular white noise process is defined by the formal expansion

W(x) = W(x, ω) =
∞∑

k=1

ηk(x)Hε(k) (ω); x ∈ R
d . (12)

From the definition one van verify that

W(x, ω) ∈ (S)∗.

By comparing the expansion (12) for singular white noise W(x) and the
expansion (7) for Brownian motion B(x), we see that

W(x) = ∂d

∂x1 · · · ∂xd

B(x) in (S)∗. (13)

In particular, for d = 1, we put x1 = t and get the familiar identity

W(t) = d

dt
B(t) in (S)∗.

3.4 The Wick Product

Since x �→ B(x, ω) is continuous a.s., it is weakly differentiable a.s., and we see
that the identity (13) also holds in the weak distribution sense (in S ′(Rd)), a.s. For
that matter, one could argue that we might as well work on S ′(Rd) (a.s.) However,
there is no tractable product operator on S ′(Rd). One of the (many) advantages
of working on (S)∗ is that it has a natural multiplication called the Wick product,
which is a binary operation on both (S) and (S)∗, and is fundamental in the study
of stochastic (ordinary and partial) differential equations. In general, one can say
that the use of this product corresponds to—and extends naturally—the use of Itô
integrals. We now explain this in more detail.

Definition 3.6 The Wick product F � G of two elements

F =
∑
α

aαHα, G =
∑
α

bαHα ∈ (S)∗ with aα, bα ∈ R
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is defined by

F � G =
∑
α,β

(aα, bβ)Hα+β.

An important property of the spaces (S)∗, (S) is that they are closed under Wick
products:

Lemma 3.7

(a) F,G ∈ (S)∗ ⇒ F � G ∈ (S)∗;
(b) f, g ∈ (S) ⇒ f � g ∈ (S).

It is easy to see directly from the definition that the Wick product is commutative,
associative and distributive over addition.

The Wick powers F �k ; k = 0, 1, 2, · · · of F ∈ (S)∗ are defined inductively as
follows:

F �0 = 1.

F �k = F � F �(k−1) for k = 1, 2, · · · .

The Wick exponential of F ∈ (S)∗ is defined by

exp� F =
∞∑

n=0

1
n!F

�n; if convergent in (S)∗.

3.5 Wick Product and Hermite Polynomials

There is a striking connection between Wick powers and Hermite polynomials
hn; n = 0, 1, 2, ...:

Theorem 3.8 Choose ϕ ∈ L2(Rd) and define the random variable wϕ by

wϕ(ω) = 〈ω, ϕ〉.

Then

w�n
ϕ = ‖ϕ‖nhn(

wϕ

‖ϕ‖ ) (14)

where ‖ϕ‖ = ‖ϕ‖L2(Rd ).
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This result can be used to get an explicit formula for the Wick exponential:

Theorem 3.9 (The Wick Exponential) Let ϕ ∈ L2(Rd). Then

exp� ( ∫
Rd

ϕ(x)B(dx)
)

= exp
( ∫

Rd

ϕ(x)B(dx) − 1
2

∫
Rd

ϕ2(x)dx
)
.

Proof We may assume that ϕ = cη1, in which case we get, with w(ϕ) =∫
Rd ϕ(x)B(dx),

exp�[w(ϕ)] =
∞∑

n=0

1

n!w(ϕ)�n =
∞∑

n=0

1

n!c
n〈ω, η1〉�n

=
∞∑

n=0

cn

n! H
�n
ε1

(ω) =
∞∑

n=0

cn

n! Hnε1(ω)

=
∞∑

n=0

cn

n! hn(〈ω, η1〉) = exp
[
c〈ω, η1〉 − 1

2c
2
]

= exp

[
w(ϕ) − 1

2‖ϕ‖2
]
,

where we have used the generating property of the Hermite polynomials. ��

3.6 Wick Multiplication and Itô Integration

One of the most striking features of theWick product is its relation to Itô integration.
In short, this relation can be expressed as follows:

Theorem 3.10 Let Y (x) be an Itô integrable process. Then

∫

Rd

Y (x)B(dx) =
∫

Rd

Y (x) � W(x)dx. (15)

Here the left-hand side denotes the Itô integral of the stochastic process Y (x) =
Y (x1, x2, ..., xd , ω) with respect to B(dx) = B(dx1dx2...dxd), while the right-hand
side is to be interpreted as an (S)∗-valued (Pettis) Lebesgue integral of Y � W in
(S)∗.

This relation explains why the Wick product is so natural and important in
stochastic calculus. It is also the key to the fact that Itô calculus (with Itô’s
formula, etc.) with ordinary multiplication is equivalent to ordinary calculus with
Wick multiplication. To illustrate this, consider the example with d = 1, x = t and
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Y (t) = B(t) · χ[0,T ](t). Then by the Itô formula the left-hand side of (15) becomes

T∫
0

B(t)dB(t) = 1

2
B2(T ) − 1

2
T , (16)

while (formal) Wick calculation makes the right-hand side equal to

T∫
0

B(t) � W(t)dt =
T∫
0

B(t) � B ′(t)dt = 1

2
B(T )�2,

which is equal to (16) by virtue of (14).

4 The Space-Time Hida–Malliavin Calculus

It is natural to ask if also the Hida–Malliavin derivative can be extended to the space-
time case. As in previous sections we assume that the Brownian motion B(x);
x ∈ R

d , is constructed on the space (�,B,P) with � = S ′(Rd). Note that any
γ ∈ L2(Rd) can be regarded as an element of � = S ′(Rd) by the action

〈γ, ϕ〉 =
∫
Rd

γ (x)ϕ(x)dx; ϕ ∈ S(Rd).

Following the approach in [7] we define the Hida–Malliavin derivative as
follows:

Definition 4.1

(i) Let F ∈ L2(P) and let γ ∈ L2(Rd) be deterministic. Then the directional
derivative of F in (S)∗ in the direction γ is defined by

Dγ F (ω) = lim
ε→0

1

ε

[
F(ω + εγ ) − F(ω)

]
(17)

whenever the limit exists in (S)∗.
(ii) Suppose there exists a function ψ : Rd �→ (S)∗ such that

∫
Rd

ψ(x)γ (x)dx exists in (S)∗ and

Dγ F =
∫
Rd

ψ(x)γ (x)dx, for all γ ∈ L2(Rd).

(18)
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Then we say that F is Hida–Malliavin differentiable in (S)∗ and we write

ψ(x) = DxF, x ∈ R
d .

We call DxF ∈ (S)∗ the Hida–Malliavin derivative of F at x.

Example 4.2 Suppose F(ω) = 〈ω, f 〉 = ∫
Rd f (x)B(dx), f ∈ L2(Rd). Then

Dγ F = 1

ε

[ 〈ω + εγ, f 〉 − 〈ω, f 〉 ] = 〈γ, f 〉 =
∫
Rd

f (x)γ (x)dx.

Therefore F is Hida–Malliavin differentiable and

Dx

( ∫
Rd

f (u)B(du)
)

= f (x) for a.a. x ∈ R
d .

As in the 1-parameter case one can prove the following:

Lemma 4.3 (Chain Rule) Let F ∈ L2(P) be Hida–Malliavin differentiable, with
DxF ∈ L2(λ × P), where λ denotes Lebesgue measure. Suppose that ϕ ∈ C1(R)

and ϕ′(F )DxF ∈ L2(λ×P). Then ϕ(F ) is also Hida–Malliavin differentiable and

Dx

(
ϕ(F )

) = ϕ′(F )DxF for a.a. x ∈ R
d . (19)

4.1 The General Hida–Malliavin Derivative

The Hida–Malliavin derivative can be expressed in terms of the Wiener–Itô chaos
expansion as follows: Recall that

Hα(ω) :=
∞∏
i=1

hαi
(θi); where θi = 〈ω, ηi〉

Then by the chain rule (19) we have,

DxHα =
m∑

k=1

∏
j �=k

hαj
(θj )αkhαk−1(θk)ηk(x) =

m∑
k=1

αkηk(x)Hα−ε(k) . (20)

In view of this, the following definition is natural:

Definition 4.4 (The General Hida–Malliavin Derivative) If F = ∑
α∈J cα

Hα ∈ (S)∗ we define the Hida–Malliavin derivative DxF of F at x in (S)∗ by
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the following expansion:

DxF =
∑
α∈J

∞∑
k=1

cααkηk(x)Hα−ε(k) , (21)

whenever this sum converges in (S)∗.

This extension of the Hida–Malliavin derivative makes it possible to deal with
more general cases. In short, taking the Hida–Malliavin derivative DxF may take
you from L2(P) into (S)∗, but conditioning with respect to Fx brings you back to
L2(λ × P). For example, in the case d = 1 the following extension of the Clark–
Ocone representation theorem [17] was proved in [1]:

Theorem 4.5 (Generalised Clark–Ocone Theorem (d=1)) Let F ∈ L2(FT ,P).
Then DtF ∈ (S)∗ for all t , E[DtF |Ft ] ∈ L2(λ × P) and

F = E[F ] +
∫ T

0
E[DtF |Ft ]dB(t).

It is natural to ask if a similar result can be obtained in the general parameter
case:

Problem 4.6 Is there a d-parameter version of Theorem 4.5?

5 Solving the Population Growth Equation

We now have the machinery from white noise theory we need to solve the space-
time stochastic partial differential equation (6):

Theorem 5.1 Suppose α(t, x) and σ(t, x) are deterministic and in L2(R2). Then
the solution Y (t, x) of the equation

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)Y (t, x)B(dt, dx); t, x ≥ 0,

Y (t, 0) = Y (0, x) = y0 (constant) for all t, x ≥ 0,

can be written as

Y (t, x) =

y0

∞∑
n=0

1

n!
n∑

k=0

‖σ‖k

k!(n−k)!

[(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

hk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)]
.
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Proof First note that the equation can be written

Y (t, x) = y0 +
∫ t

0

∫ x

0
K(s, z) � Y (s, z)dsdz, (22)

where

K(s, z) = α(s, z) + σ(s, z)W(t, x), with W(t, x) = ∂2

∂t∂x
B(t, x). (23)

Substituting for Y (s, z) in (22) we get

Y (u) = y0 +
∫ u

0
K(u1) �

(
y0 +

∫ u1

0
K(u2) � Y (u2)du2

)
du1,

where we put u = (t, x), uj = (sj , zj ); j = 1, 2, ....
Repeating this we obtain

Y (u) = y0

(
1 +

∫ u

0
K(u1)du1 +

∫ u

0

(∫ u1

0
K(u1) � K(u2)du2

)
du1

+ · · · +
∫ u

0

(∫ u1

0
· · ·

∫ un

0
K(u1) � K(u2) � · · · � K(un+1)du1du2 . . . dundun+1

)
+ Rn

(24)

where

Rn =

y0

∫ u

0

(∫ u1

0
· · ·

∫ un

0
K(u1) � K(u2) � · · · � K(un+1) � Y (un+1)du1du2 . . . dun

)
dun+1

It follows from the Våge inequality [9], Theorem 3.3.1, that Rn → 0 in (S)∗ as
n → ∞. Therefore we get, by letting n → ∞ in (24),

Y (t, x) = y0

∞∑
n=0

∫ u

0

(∫ u1

0
· · ·

∫ un

0
K(u1) � K(u2) � · · · � K(un+1)du1du2 . . . dun

)
dun+1

= y0

∞∑
n=0

1

n!n!
∫

[0,u]n
K(u1) � K(u2) � · · · � K(un)(v)du1 . . . dun

= y0

∞∑
n=0

1

n!n!
(∫

[0,u]
K(v)dv

)�n

= y0

∞∑
n=0

1

n!n!
n∑

k=0

n!
k!(n−k)!

(∫ t

0

∫ x

0
α(s, z)dsdz

)�(n−k) (∫ t

0

∫ x

0
σ(s, x)B(ds, dz)

)�k
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= y0

∞∑
n=0

1

n!n!
n∑

k=0

n!
k!(n−k)!

(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

‖σ‖khk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)

= y0

∞∑
n=0

1

n!
n∑

k=0

‖σ‖k

k!(n−k)!
(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

hk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)
.

��
Remark 5.1 A direct consequence of this result is that

E[Y (t, x)] = y0

∞∑
n=0

‖σ‖n

n!n!
(∫ t

0

∫ x

0
α(s, z)dsdz

)n

,

and if we assume that α = 0 , we get

Y (t, x) = y0

∞∑
n=0

‖σ‖n

n!n! hn

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)
.

Remark 5.2 It follows from the proof that this result holds for any random y0 ∈
L2(P), if we replace the product by a Wick product and interpret the equation in the
Wick–Itô–Skorohod sense, that is

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)Y (t, x) � W(t, x)dtdx; t, x ≥ 0,

Y (t, 0) = Y (0, x) = y0 ∈ L2(P) for all t, x ≥ 0.

Then the solution is

Y (t, x) =

y0 �
∞∑

n=0

1

n!
n∑

k=0

‖σ‖k

k!(n−k)!
(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

hk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)
,

which has expectation

E[Y (t, x)] = E[y0]
∞∑

n=0

‖σ‖n

n!n!
(∫ t

0

∫ x

0
α(s, z)dsdz

)n

.

Note that no adaptedness conditions are needed.
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6 Concluding Remarks

The multi-parameter stochastic calculus is a mostly unexplored area of research. It
is clearly crucial in the study of stochastic partial differential equations driven by
space-time Brownian motion. See e.g. [14–16, 22] and also [9], which includes
SPDEs driven by space-time Poisson random measure white noise as well. But it
is also important for many other applications. In this informal note I have tried
to illustrate that white noise calculus can be a powerful tool in the study of multi-
parameter stochastic calculus in general.

Acknowledgements I am grateful to Nacira Agram and Yaozhong Hu for valuable comments.
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