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1 Introduction

Dedication
We are happy to have been given the opportunity to contribute a little paper to a
publication in honor of Catriona Byrne. The first named author had the great luck
of meeting Catriona already in the early 80s and has discussed with her many issues
concerning our common passion, mathematics in all its multiform and fascinating
aspects. She is a very special communicative person, full of enthusiasm. It is
always a great pleasure to meet her and share with her impressions about not
only mathematics but also the world of arts. She saw at an early stage how the
still rather scattered attempts to create more bridges between probability theory,
rather abstract aspects of the theory of stochastic processes and infinite-dimensional
analysis on one hand, and apparently distant other areas of mathematics, from
number theory to geometry and non-standard analysis on the other, could be
enhanced, also through interactions coming from mathematical physics (especially
quantum theory). Catriona joined, directly or through her coworkers, several
scientific meetings, in particular those where S.A. was in some way involved
(from Bielefeld, Bochum, Bonn and Oberwolfach to Levico, Verona, Warwick),
and the informal discussions with her produced new interconnections between
the participants. S.A. also remembers with gratitude the encouraging interest she
expressed in work he was pursuing on the theory of Feynman path integrals. This
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led in particular to a second edition of a Lecture Notes in Mathematics [11], with the
late Raphael Høegh-Krohn and Sonia Mazzucchi as coauthors. Also on her initiative
four lectures in the series “Saint-Flour Seminars in Probability” were republished
in a Springer book with the title Mathematical physics at Saint-Flour [8] with,
besides S.A., Hans Föllmer, Leonard Gross and Ed Nelson as authors. It is not
by chance that these lectures happen to have a strong component in analysis and
probability theory besides one in mathematical physics. The present paper relates
to a number of arguments that have their roots in the topics treated in that book
initiated by Catriona. Her influence in fact is also recognizable in many books of
Proceedings edited by S.A. in various collaborations, in particular those emanating
from activities of the Research Center BiBos. It is a great pleasure for all authors
to thank Catriona for all she has done for the mathematical community and in
particular for our areas of work. We do this with our heartfelt wishes for good
health, happiness, enjoyment and success in all her future undertakings (it is really
difficult to imagine a future for her not full of beautiful activities!).

The Topics Discussed
The topics we shall present in the present paper are connected, in several ways, with
those of concern in the above mentioned books [8, 11]. The main motivations come
from questions that arose in physics, namely on how to better understand certain
phenomena appearing in nature, as manifestations of an underlying “quantum
world”.

In the first part of this exposé (Sects. 2–6) we shall concentrate on attempts
to understand in a mathematical way some aspects of the particular complex
phenomenon of Bose–Einstein condensation (BEC). In the second part (Sect. 7) we
shall mention and briefly discuss future possible developments in this connection,
but also more general issues connected with multiform and fascinating relations
between quantum evolution and probabilistic evolution that still have not been
brought to light.

Let us start by briefly mentioning what the physical phenomena of BEC is.
BEC might be characterized by saying that it happens when a sufficiently diluted
gas of bosons (i.e. consisting of identical particles with integer spin, in the case
we shall consider with spin zero, called “bosons”) confined to a box, is cooled
down in an appropriate way to “very low temperatures” (close to absolute zero).
In this case a large fraction of the number of bosons of the gas happen to get into
the same lowest energy quantum state (“ground state”), and behaves as a single
quantum object. Since the cooled down gas is often macroscopic, we have then a
macroscopic system exhibiting quantum behavior. The phenomenon was predicted
in the sense of theoretical physics for an “ideal boson gas” (without any interaction),
using quantum statistical considerations, by S.N. Bose and A. Einstein already in
1924–1925. Its experimental verification for a “real gas” had to wait until 1995
(for this experimental work E. Cornell, W. Ketteler and C. Wiemann received the
Nobel prize in 2001). Present day experimental techniques have been developed
very much since then, and permit us to establish many detailed properties of BEC.
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Of particular interest for us is that the quantum state associated with a BE
condensate can be well described by a single quantum mechanical wave function
satisfying a nonlinear Schrödinger equation with a cubic nonlinearity called the
Gross–Pitaevskii equation (see below and for references, e.g., [64, 65] and [80]).
The nonlinear term in this equation expresses a local self-interaction of each particle
of the condensate and depends on the density of the particles (it is the collective
result of the presence of 2-particle interactions between the particles of the gas).

The mathematical derivation of the Gross–Pitaevskii (GP) equation and other
related equations from a quantum mechanical N -particle system, described by a
Hamiltonian HN (see (1) below), usually with a confining potential V and with two
particle interactions given by a potential vN , taking the limit as N tends to infinity,
has been an important issue in mathematical physics for many years and there is still
much research going on, as we shall indicate.

The derivation involves the choice of particular 2-particle interactions, scaled in
a certain way depending on N and the dimension n of the underlying space in which
particles move (here we shall mainly consider the case n = 3, but other values of n

have been examined by similar methods). As we shall mention in detail in Sect. 2, in
the case n = 3 essentially three choices of scaling, characterized by a parameter 0 ≤
β ≤ 1, have been discussed: the mean-field one for β = 0 (where the limit equation,
called the mean-field or Hartree equation, contains a cubic nonlinear and non-local
term with a “good kernel”); the intermediate one for 0 < β < 1 (where the limit
equation is a nonlinear Schrödinger equation with a cubic local nonlinearity with
a constant factor in front involving the integral of the original 2-particle potential);
and for the value β = 1 the GP equation (with a local cubic nonlinearity and a
constant in front depending on the scattering length of the 2-particle potential).

As we mentioned above, the GP regime (β = 1) is the most used in the study
of BEC, but it is also the one that is most mathematically complex. The major
results were obtained in a series of papers by Lieb, Seiringer and Yngvason (see,
e.g., [63, 65] and the book [64], see also [24, 43]). The choice of the 2-particle,
translation invariant, potentials is a point interaction one, that heuristically permits
certain explicit calculations (typical of point interactions, see, e.g., [9, 13]) leading
in particular to the presence of a local nonlinearity, but also already presents for
n = 3 intriguing mathematical problems in the choice of the starting Hamiltonian
(connected with the theory of self-adjoint extensions of symmetric operators and
renormalization theory; these problems also arise in physical phenomena like the
Efimov and Thomas effects, and not by chance their study, both theoretical and
experimental, has strong connections with the work on BEC: see, e.g., [7], [42] and
also the excellent exposition in [47], we shall say a bit more on this in Sect. 7). For
a detailed explanation of the mean-field scaling limit β = 0 and its applications see,
e.g., [61, 62]. For the intermediate case 0 < β < 1 see, e.g., [83].

In our presentation in the first part of the present paper we shall stress a new
approach to this circle of problems developed in the last decade, starting from [72],
based on ideas of Nelson’s stochastic mechanics (see, e.g., [23, 40, 76, 78, 79]),
associating to a solution of the N -particle Schrödinger equation related to the N-
body Hamiltonian HN a certain diffusion process on RnN having invariant measure



508 S. Albeverio et al.

whose drift is the logarithmic derivative of the solution of the original Schrödinger
equation. It was shown in [72] that in the GP-limit one gets a process with drift
depending on the wave function of the BE condensate. A further discussion can be
found in [16]. Progress associated with this state is discussed and a probabilistic
counterpart of the asymptotic localization of the interaction energy has been shown
in [73] and chaotic properties have been established in [86] for this scaling limit.
Other developments in this setting are discussed in Sect. 7. We shall also present,
in Sect. 4, original results on the mean field limit. For this we shall use a new
variational approach that is inspired by previous work of K. Yasue [87] and Guerra–
Morato [51], starting from an N -particle approximation of the relative mean-field
stochastic optimal control problem introduced in [4].

In Sect. 5 we present a Markovian N -particle approximation (based on our work
in [4]) to the stochastic optimal control discussed in Sect. 4. With a suitable choice
of potentials we prove two convergence results: one involving the invariant measure
of the optimal controlled N -particle process, the other concerning the law of the
process on the whole path space C0([0, T ],RnN) (for any arbitrary T > 0 fixed). In
Theorem 5.1 the convergence to zero of the 1

N
-multiple of the entropy of ρ0,N (the

invariant measure of the optimally controlled N -particle system) relative to ρ⊗N
0

(the tensor product of the invariant measure of the optimally controlled mean-field
system) is proven. A corresponding result, Theorem 5.2, holds for the conditional
entropy (with respect to the k-partial marginals, for any k ∈ N) on the path space.

In Sect. 6 the case of a variational problem with a convoluted delta potential is
studied for all values of β ∈ (0, 1]. The optimal control is discussed in relation to
the methods used in Sects. 4 and 5 for the case β = 0. In the case 0 < β < 1 both
the convergence of the “value function” and the probability measure on the path
space, with respect to the relative entropy, are considered (see Theorems 6.1 and 6.2
respectively), using the methods of [5]. In the case β = 1, a weak convergence
result of the probability law on the path space, obtained in [6], is also mentioned.

In Sect. 7 we first discuss possible extensions of the work presented in the
previous sections on stochastic optimal control, especially to a time-dependent case
(rather than the stationary case studied before). We also broaden the perspective to
other problems where the relations between hyperbolic problems and parabolic ones
play an important role, e.g., we mention the truly infinite-dimensional problems
one meets when one replaces particle quantum mechanics with relativistic quantum
field theory. Here new problems arise and very little is known about extending
optimal stochastic control to this area. We observe that much success in the study of
quantum fields has been obtained by taking a “Euclidean, Wiener-like, path integral”
method instead of the “hyperbolic path integral” (Feynman path integral). The latter
corresponds in a sense to taking imaginary time in the Euclidean path integral, fol-
lowed by an analytic continuation procedure. More direct methods have been devel-
oped to extend the existing rigorous mathematical work of Feynman path integrals
(see [10, 11, 68]) from the “finite-dimensional case” of non-relativistic quantumme-
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chanics to the “infinite-dimensional case” of quantum field theory. Additional con-
nections between probability, analysis, and geometry are also briefly mentioned.

2 Quantum Mechanics and Bose–Einstein Condensation

For the sake of simplicity hereafter we consider the quantummechanical description
ofN ∈ N identical Bosons of massm > 0. More precisely, theN -body Hamiltonian
used in the description of the experiments on Bose–Einstein Condensation (BEC)
[37, 56, 69] is of the type

HN =
N∑

i=1

(
− h̄2

2m
�i + V (ri)

)
+

∑

1≤i<j≤N

vN(ri − rj), (1)

where V : R3 → R is a confining potential, vN a pair-wise repulsive (rotation
invariant) interaction potential and ri ∈ R3, i = 1, . . . , N . HN is realized (under
suitable assumptions ) as a self-adjoint operator in the complex L2

s (R
3N)-space of

permutation symmetric square-integrable functions (“wave functions”). We denote
the scalar product in this space by (·, ·) and the norm by ||·||. h̄ denotes the (reduced)
planck’s constant.

The state of the system is described by the wave function �N,t solving the
Schrödinger equation

ih̄∂t�N,t = HN�N,t =
N∑

i=1

(
− h̄2

2m
�i�N,t + V (ri)�N,t

)
+

∑

1≤i<j≤N

vN(ri − rj)�N,t .

(2)

with the initial condition �N,0 ∈ L2(R3N), whose modulus square ρN
t (r) =

|�N,t (r)|2, r ∈ R3N gives (by Born’s interpretation) the probability density (with
respect to Lebesgue measure) associated with the system of N -particles. In the
following we will focus on the stationary case, more precisely the ground state, i.e.
the wave function �N,t does not depend on t , and it is the eigenfunction of the
lowest eigenvalue of HN . In the study of BEC, the ground state plays the main role
(physically this is due to the fact that the BEC phenomenon happens at very low
temperatures). Let us characterize the ground state denoted by �0, by a variational
principle: consider the functional

E[�] := 1

2

∫

R
3N

�(r)HN�(r)dr = T� + ��. (3)
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E[�] is the mean quantum mechanical energy, where

T� :=
N∑

i=1

∫

R
3N

|∇i�|2dr1 · · · drN

is the “(mean) kinetic energy” and

�� =
N∑

i=1

∫

R
3N

V (ri )|�|2dr1 · · · drN + 1

2

N∑

i=2

∫
vN(r1 − ri )|�|2dr1 · · · drN

the (mean) potential energy associated with � ∈ L2
s (R

3N). If there exists a
minimizing function �0

N of E[�] with respect to the complex-valued functions �

in L2
s (R

3N) subject to the constraint ‖�‖2 = 1, it is called a variational ground
state. The corresponding energy E[�0

N ] given by

E[�0
N ] := inf

{
E(�) : ‖�‖2 = 1

}
,

where � in the previous set belongs to L2
s (R

3N), is called ground state energy.
Under suitable assumptions on the potentials V and v one can prove the existence
and uniqueness of the ground state �0

N for (1). By the minimax principle (see, e.g.,
[81, Thm. XIII.1]) one has HN�N

0 = E[�0
N ]�N

0 , i.e. �N
0 is the eigenfunction

corresponding to the lowest eigenvalue E[�0
N ] of HN , as a self-adjoint operator

acting in L2
s (R

3N).

Remark 2.1 Uniqueness of the ground state is to be understood as uniqueness
apart from an overall phase. Regularity conditions on V and v implying the strict
positivity and the continuous differentiability of the ground state (wave function)
are well known (indeed they follow by a suitable adaptation of the arguments in
[81] (Thm.XIII.46 and XIII.47) and [81] (Thm.XIII.11)), respectively).

The mathematical notion of the quantum phenomenon of Bose–Einstein conden-
sation can be introduced in quantum theory by starting from the one-particle density
matrix, i.e. the operator in L2(R3) having kernel:

γ (r, r′) =
∫

�0
N(r, r2, . . . rN) · �0

N(r′, r2, . . . rN)dr2 · · · drN,

where �0
N denotes the wave function of the ground state.

Definition 2.1 Complete BEC is defined by the property that

lim
N↑∞ γ (r, r′) = ϕ(r)ϕ(r′)

for some ϕ ∈ L2(R3) and in some topology for density matrices.
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One of the main problems in the mathematical physics literature of the subject
consists in justifying the various non-linear one-particle approximation models for
describing the Bose–Einstein condensate. This goal is pursued, in the ground state
framework, starting from the N -body Hamiltonian for N Bose particles (1) and by
performing a suitable limit of an infinite number of particles.

Under certain assumptions on V and vN , it has been shown that, for N → +∞,
there is a limit wave function ϕ in L2(R3) of norm 1 solving a suitable (nonlinear)
Schrödinger equation with Hamiltonian of the form

HBE(ϕ) = − h̄2

2m
� + V (r) + ṽ(|ϕ|2, r), r ∈ R3, (4)

where ṽ(|ϕ|2, r) is an L2(R3)-operator depending on the probability density |ϕ|2 on
R
3. The related energy functional is given by the expression

EBE(ϕ) =
∫

R
3

(
1

2m
|∇ϕ(r)|2 + 1

2
V (r)|ϕ(r)|2 + 1

4
ṽ(|ϕ|2, r)|ϕ(r)|2

)
dr. (5)

The precise form of the operator ṽ is strongly dependent on the kind of scaling limit
of the original interaction potential vN . If we take vN (in (1)) of the form

vN(r) = N3β

N − 1
v0(N

βr), 0 ≤ β ≤ 1 (6)

we can distinguish three regimes:

1. the mean-field regime (also called Hartree), that is β = 0, in which

ṽ(|ϕ|2, r) =
∫

R
3
v0(r − y)|ϕ|2(y)dy = (v0 ∗ |ϕ|2)(r);

2. the intermediate regime (also called nonlinear Schrödinger), i.e. 0 < β < 1, in
which

ṽ(|ϕ|2, r) =
(∫

R
3
v0(y)dy

)
|ϕ|2(r) =

(∫

R
3
v0(y)dy

)
(δ0 ∗ |ϕ|2)(r)

(where δ0 is the Dirac delta in 0);
3. the Gross–Pitaevskii regime, i.e. β = 1, in which ṽ(|ϕ|2, r) = 4πh̄2a

m
(δ0 ∗

|ϕ|2)(r), where a is the scattering length of the potential v0 (see, e.g., [64,
Appendix C] for the definition of scattering length, and see also [9] for other
physical contexts where it plays an important role).

We remark that when β = 0, which corresponds properly to the mean-field
approximation, the potential range is fixed and the intensity of the interaction
potential decreases as 1/N for N → ∞. In the regime corresponding to 0 < β < 1
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the interaction potential goes to a delta function in the sense of the convergence of
measures. This intermediate (or general) mean-field case is not very well studied
and it is usually called the nonlinear Schrödinger limit. There are many results
both for the mean-field and for the intermediate case. For the latter there are some
quantitative estimates of the convergence rate for small values of β (see [62, 82] and
references therein). In [4] the general mean-field convergence problem (0 < β < 1)
is faced by using the hard results for the case β = 1 and the convergence of the one-
particle ground-state energy to the ground-state energy of the nonlinear Schrödinger
functional for the case of purely repulsive interaction potential is proved.

We finally stress that the case β = 1 cannot be considered as a mean-field regime
and it involves the scattering length of the interaction potential. The convergence of
the ground state energy in this setting has been provided by Lieb and Seiringer [63]
and Lieb et al. [65] and, recently, in [75].

In the time-dependent framework one of the main problems is that of controlling
whether the Bose–Einstein condensation is preserved by the time evolution, that
is, whether at time t > 0 for N large enough the one-particle density γ 1

N,t is, in

some approximation, equal to |ϕt |2, where ϕt is the solution of the nonlinear (time-
dependent) Schrödinger or Gross–Pitaevskii equation. More precisely, starting from
a factorized initial wave function for the N -body Hamiltonian (1) and introducing
the time evolution �N,t of the initial wave function, the goal is to prove that the
one-particle density associated to �N,t converges to |ϕt |2, with ϕt playing the role
of the time-dependent wave function of the Bose–Einstein condensate (see, e.g.,
[1, 20, 27, 43]). The techniques used in the time-dependent setting are different
from those of the stationary one, in particular instead of the mean quantum energies
the Schrödinger hierarchies are used. Many other problems, such as the study of the
fluctuations around the limit, are actually faced in the more general time-dependent
framework, see for instance [26, 28].

3 Nelson’s Stochastic Mechanics

One of the main problems in giving a stochastic representation of solutions to the
Schrödinger equation is the reversibility in time of the quantum evolution (which
is given by a one-parameter unitary group, and not by a contraction semigroup).
Indeed the time marginal probability of, for example, a diffusion Markov process is
a solution to the Fokker–Planck equation, which is a parabolic (and thus non-time-
reversible) equation. A possible solution to this problem, at least in the one particle
case, is given by Nelson’s Stochastic Mechanics, introduced by Edward Nelson in
1966. It intends to study certain quantum phenomena using a well-determined class
of diffusion processes (see [23, 30, 40, 76, 78, 79]). See [29] for a relatively recent
review on Nelson’s Stochastic Mechanics. Here we recall only the basic elements
of the theory in order to present a suggestive variational approach (due to K. Yasue,
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see [87], and F. Guerra and L. Morato, see [51], see below and Sect. 7 for other
references) that motivated our own approach in Sect. 4.

Consider a quantum particle of mass m moving on Rn, subject to a force of

potential V (and thus having Hamiltonian H = − h̄2

2m� + V (x)). Nelson associates
to it a Markovian process which is a solution to the following SDE:

dXt = b(Xt , t)dt + νdWt, (7)

where ν =
√

h̄
m
, W is a standard Wiener process in Rn, and b : Rn × R+ → R

n is a
measurable vector field whose regularity will be made more precise below. The core
of the kinetic part of the theory is the fundamental pair of stochastic derivatives. The
forward stochastic derivative is on smooth real functions f on Rn defined by:

Df (Xt ) := lim
h↓0 Et

[
f (Xt+h) − f (Xt )

h

]

(where Et is the conditional expectation with respect to Xt ) and has the property
that:

DXt = b(Xt , t).

Nelson also introduced the backward stochastic derivative:

D∗f (Xt ) := lim
h↓0 Et

[
f (Xt ) − f (Xt−h)

h

]

which gives:

D∗Xt = b∗(Xt , t),

for a certain vector field b∗ on Rn ×R+. The literature on time reversal of diffusion
processes is quite large (see, e.g., [71] and references therein, see also [74]).
Foellmer [46] individuated, in the context of Stochastic Mechanics presented here,
a sufficient condition for the existence of the backward derivative: E[|b(Xt , t)|2] <

∞. If the vector field b is such that the probability density ρt for the solution Xt to
the SDE (7) is strictly positive and differentiable, we have the relation

b∗(x, t) = b(x, t) − ν2

2
∇ log ρt (x). (8)

As for the dynamic, Nelson introduced the stochastic Newton equation

1

2
[DD∗ + D∗D]Xt = −∇V (Xt), (9)
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where V is the potential in which the particle of mass m is moving. Using the
relation between b∗ and b, writing u(x, t) = 1

2 (b(x, t) − b∗(x, t)) and v(x, t) =
1
2 (b∗(x, t) + b(x, t)) we get

∂tv = −∇V (x) + u · ∇u + v · ∇v + ν2

2
�u, (10)

∂tu = −∇(u · v) − ν2

2
∇(∇ · v), (11)

which are reversible (in time) equations. It is possible to prove, by choosing the
initial conditions in a suitable way, that the previous system of PDEs (10), (11)
admits solutions which, by an important result of Carlen (see [29–32], permit us
to solve Eq. (7) and to associate a stochastic process to the quantum system. The
solution process is then associated with the Schrödinger equation with the potential
V (appearing in Eq. (9)). In the stationary case Eq. (10) reduces to an equation for
u which is of the form Vu = 1

2 (|u|2 + ν2div(u)).
K. Yasue initiated a heuristic variational formulation of the association of Xt to

the Schrödinger equation by introducing a Lagrangian function L associated with
the quantum Hamiltonian H

L(DXt,D
∗Xt,Xt ) = 1

4

(
|D∗Xt |2 + |DXt |2

)
− V (Xt). (12)

An alternative action functional, proposed by Guerra and Morato, is given by the
expression

L̃(DXt,D
∗Xt,Xt ) = 1

2

(
D∗Xt · DXt

) − V (Xt). (13)

By the relations (8) and (9) the Lagrangian (12) can be thought of as a function of
the vector field b, the process Xt and the probability density ρt associated with it.
Thanks to this observation we can use the Lagrangian L to formulate an optimal
control problem for the controlled SDE (7) (where the vector field b plays the role
of control parameter). We consider the finite horizon optimal control problem and
the ergodic control problem associated with the Lagrangian L, i.e. we have the
respective cost functions

J fh(ρ0, b, ρt ) = EX0∼ρ0

[∫ T

0
L(DXt,D

∗Xt,Xt )dt

]
, (14)

J e(ρ0, b) = EX0∼ρ0

[
lim sup
T →+∞

1

T

∫ T

0
L(DXt,D

∗Xt,Xt )dt

]
(15)
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(the suffixes fh and e in J stand for “finite horizon” and “ergodic”, respectively, see,
e.g., [44, 45] for a reference on stochastic optimal control i the notation X0 ∼ ρ0
stands for X0 having law ρ0). The reason for the choice of the cost functionals is
that the optimal controls of the previous problems satisfy the Schrödinger equation.
The same optimal control problems can be obtained replacing the Lagrangian L
with the functional L̃, given in Eq. (13), in the definition of the cost functionals J fh

and J e. More precisely, if b is an optimal control to the problem (14) where the
optimal solution process Xt has density ρt , then there is a unique (up to a complex
multiplicative constant) function �t : Rn × R+ → C such that

b(x, t) = Re

(∇�t(x)

�t (x)

)
+ Im

(∇�t(x)

�t (x)

)
, ρt (x) = |�t(x)|2,

and the function �t satisfies the Schrödinger associated to the Hamiltonian H .
Carlen proved the existence of Nelson diffusions also in the general case in which
there are nodes of the wave function [29], [30] under a finiteness condition on
the Fisher information. In the ergodic case the optimal control b and the related
probability density ρ do not depend on the time t and they are of the form

b(x) = ∇ log(�0(x)), ρ(x) = |�0(x)|2,

where the function �0 is the (real) ground state of the Hamiltonian H . Let us
mention, finally, that the variational formulations by Yasue, as well as by Guerra–
Morato, have important connections with the entropic optimal transport problem
(see [38] and [35] for studies on this connection in a rigorous probabilistic setting
related to the heat rather than the Schrödinger equation). See also Sect. 7 for other
variational approaches.

4 Non-linear Stochastic Mechanics

We want to take inspiration from the above sketched variational formulation
of stochastic mechanics and the methods used in the convergence proof of the
Bose–Einstein condensation to study some stochastic optimal control problems of
McKean–Vlasov type (namely where the cost function depends not only on the
solution process Xt to the controlled equation but also on its law).

Following [4], let us start with the autonomous stochastic differential equation
(SDE)

dXt = b(Xt )dt + νdWt ; t ≥ 0, (16)

where b is a C1 function from Rn to Rn, ν > 0 is a constant, and Wt , t ≥ 0, is
an n-dimensional standard Brownian motion. The starting point for Xt at t = 0 is
x0 ∈ Rn. We look here at b as a “control vector field” and we associate to (16) the



516 S. Albeverio et al.

following “cost functional”

J (b, x0) = lim sup
T →+∞

1

T

(∫ T

0
Ex0

[ |b(Xt )|2
2

+ V(Xt ,Law(Xt ))

]
dt

)
, x0 ∈ Rn.

(17)

Let P(Rn) be the space of probability measures on Rn endowed with the topology
given by weak convergence, V : Rn × P(Rn) → R where P(Rn) is the set
of probability measures on Rn is a regular function (hereafter called “potential”)
satisfying some technical hypotheses (see Hypothesis V below) and Ex0 denotes the
expectation with respect to the solution Xt to the SDE (16) such that X0 = x0 ∈ Rn.

In [4] we proved existence and uniqueness of the optimal control b ∈ C1(Rn,Rn)

for the problem given by (16) and (17). Here we give a simplified proof of these
results. We remark that the action functional explicitly depends on the law of Xt

through the potential V but we find that the optimal control itself can be expressed
in terms of the same law.

We define the following “value function”:

J := ess supx0∈Rn

(
inf

b∈C1(R
n
,R

n
)

J (b, x0)

)
, (18)

where ess sup is the essential supremum over x0 ∈ R
n and J is the cost

functional (17).

Remark 4.1 There are two important observations to make about the initial con-
ditions chosen in the definition of the value function (18). The first one is that the
function x0 �−→ infα∈C1(R

n
,R

n
) J (α, x0) is almost surely constant in x0 with respect

to the Lebesgue measure (see Theorem 4.1 below). This means that the ess supx0∈Rn

is used only to exclude a set of measure zero with respect to x0.
The second observation is that it is possible to extend our analysis by considering

J̄ (b, ρ) := lim sup
T →+∞

1

T

(∫ T

0
EX0∼ρ(x)dx

[ |b(Xt )|2
2

+ V(Xt ,Law(Xt ))

]
dt

)
,

(19)

where the processXt now has an initial probability law Law(X0)which is absolutely
continuous with respect to Lebesgue measure of the form ρ(x)dx. Indeed in
both Theorem 4.1 and Lemma 4.1, below, we can replace the deterministic initial
condition with a random one, of the previous type, obtaining the corresponding
statement. This fact proves that

J = inf
b∈C1(R

n
,R

n
)

J̄ (b, ρ),
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for any ρ ∈ L1(Rn). In this paper we consider deterministic initial conditions in
order to simplify the treatment of the general problem.

Definition 4.1 If K : P(Rn) → R is a function we say that K is Gâteaux
differentiable if for any μ,μ′ ∈ P(Rn) there exists a bounded continuous function
∂μK(·, μ) : Rn → R such that

lim
ε→0+

K(μ + ε(μ − μ′)) − K(μ)

ε
=

∫

R
n
∂μK(y, μ)(μ(dy) − μ′(dy)), (20)

and we can choose the normalization condition given by

∫

R
n
(∂μK)(y, μ)μ(dy) = 0.

When a function K̄ : Rn × P(Rn) → R depends also on x ∈ Rn we say that K̄ is
Gâteaux differentiable if K̄(x, ·) is Gâteaux differentiable for any x ∈ Rn. In this
case we write

lim
ε→0+

K̄(x, μ + ε(μ − μ′)) − K̄(x, μ)

ε
=

∫

R
n
∂μK̄(x, y, μ)(μ(dy) − μ′(dy)).

After these remarks, let us make precise the hypothesis on the functional V
entering in the cost functional (17):

• Hypotheses V:
(i) The map V is continuous from Rn×P(Rn) to R (where we recall that P(Rn)

is equipped with the weak topology of convergence of measures).
(ii) There is a positive function V and there are three positive constants

c1, c2, c3, with c2 > 0, such that for any μ ∈ P(Rn):

V (x) − c1 ≤ V(x, μ) ≤ c2V (x) + c3, x ∈ Rn. (21)

Furthermore, we assume that V is such that

|∂αV (x)| ≤ CαV (x) V (x) ≤ C1V (y) exp(C2|x − y|), x, y ∈ Rn

(22)

where α ∈ Nn is a multiindex of length at most |α| ≤ 2, and Cα , C1 and C2
are positive constants; V is also assumed to be growing to +∞ as |x| →
+∞.

(iii) The map V is Gâteaux differentiable and ∂μV(x, y, μ) is uniformly bounded
from below and we have

∂μV(x, y, μ) ≤ D1 + D2V (x)V (y), x, y ∈ Rn (23)
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for some constants D1,D2 ≥ 0. Furthermore, whenever

∂μṼ(y, μ) = V(y, μ) +
∫

R
n
∂μV(x, y, μ)μ(dx)

is well defined (namely when
∫
R

n V (x)μ(dx) < +∞), we require that

∂μṼ(·, μ) is a C
n
2+δ(Rn,R) Hölder function for some δ > 0.

• Hypothesis CV the functional Ṽ is convex.
• Hypothesis QV : the function V, in Hypotheses V , is radially symmetric V (x) =

V̄ (|x|), where V̄ is a C1(R+,R) increasing function for which there are constants
e1, ε > 0, e2, e3 ≥ 0 such that:

(i) V̄ (r) ≥ e1r
2+ε − e2,

(ii) V̄ ′(r) ≤ e3(V̄ (r))
3
2 , r := |x|.

Remark 4.2 The previous hypotheses on the functional V cover the mean-field
scaling regime of the interacting potential v0 in the Bose–Einstein Condensation
(BEC) (see Eq. (6) for β = 0). Indeed in the mean-field BEC the functional V in
Eq. (17)) has the form

V(x, μ) = V0(x) +
∫

R
n
v0(x − y)μ(dy), (24)

where V0, v0 ∈ C
n
2+ε(Rn), ε > 0 and μ ∈ Mc(R

n) (where Mc(R
n) is the space

of signed measures on Rn having total mass less than c ∈ R+). Furthermore,
we require that V0 grows to plus infinity as |x| → +∞, and there is a function
V , satisfying the relation (22) and Hypothesis QV , such that V0(x) ∼ V (x) as
|x| → +∞ (where ∼ stands for V0(x) is bounded from above and below by positive
constants times V (x) as |x| → +∞). We also assume that v0 is bounded, reflection
symmetric, i.e., v0(x) = v0(−x), and that there exists a positive measure π on Rn

such that, for any x ∈ Rn, v1(x) = ∫
R

n e−ikxπ(dk) (i.e. v1 is the Fourier transform
of a positive measure). The class of functionals (24) satisfy the above Hypotheses
V and CV .

First we have that if the vector field b in Eq. (16) is such that J (b, x0) < +∞,
then there is a unique invariant measure ρb of Eq. (16).

Lemma 4.1 Under hypotheses V(i) and V(ii), if J (b, x0) as given by (17) (with
b ∈ C1) is not equal to +∞ there exists an unique and ergodic invariant probability
density measure ρb ∈ W 1, n

2 (Rn) for the SDE (16) so that μb(dx) = ρb(x)dx is the
invariant ergodic probability measure for the SDE (16). Furthermore, we have

J̃ (b, ρb) ≤ J (b, x0)
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for almost all x0 ∈ Rn with respect to Lebesgue measure, where

J̃ (b, ρb) :=
∫

R
n

( |b(x)|2
2

+ V(x, ρb)

)
ρb(x)dx. (25)

Proof The proof is given in [4]. ��
In order to minimize the cost functional (25) with respect to ρ, for ρ ∈

W 1, n
2 (Rn), ρ(x) ≥ 0 and

∫
R

n ρ(x)dx = 1, we set

Cρ = {b ∈ C1(Rn,Rn), L∗
b(ρ) = 0 and |J̃ (b, ρ)| < +∞}. (26)

Then Cρ is the subset of C1(Rn,Rn) vector fields bρ ∈ Cρ such that L∗
bρ

(ρ) = 0
(where L∗

bρ
is the adjoint of the infinitesimal generator Lbρ for the solution process

Xt of Eq. (16) and the equality, in the definition of Cρ in (26), is understood in a
distributional sense) and |J̃ (bρ, ρ)| < +∞.

Remark 4.3 Suppose that b ∈ C1(Rn,Rn) such that J (b, x0) < +∞, then by
Lemma 4.1 there is a unique positive probability density ρb which is invariant and
thus, since b ∈ C1(Rn,Rn) by well-known results (see Proposition 3.1 in [4]), it
satisfies the equation L∗

b(ρb) = 0. This implies that b ∈ Cρb
, where Cρb

is defined
by Eq. (26) with ρ = ρb.

We now introduce the following energy functional, for ρ ∈ W 1, n
2 (Rn),

E(ρ) := EK(ρ) + EP (ρ) =
∫

R
n

|∇ρ|2
2ρ

dx +
∫

R
n
V(x, ρ)ρ(x)dx, (27)

where the two terms on the right-hand side correspond by definition to the kinetic
EK(ρ) and potential EP (ρ) energies, respectively. The kinetic term is also called the
Fisher information.

The next lemma states a useful monotonicity property of the cost functional J̃ .

Lemma 4.2 For any given ρ ∈ W 1, n
2 (Rn) we have

E(ρ) = J̃

(∇ρ

ρ
, ρ

)
≤ inf

b∈Cρ

J̃ (b, ρ),

where J̃ (b, ρ) is defined in (25).

Proof By [25, Chapter 3, Theorem 3.1.2], if ρ is the density of the invariant measure
of the SDE (16) we have that

∫

R
n

|∇ρ(x)|2
ρ2(x)

ρ(x)dx ≤
∫

R
n
|b(x)|2ρ(x)dx,
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for any b ∈ Cρ , with the equality holding if and only if b = ∇ρ
2ρ . Since∫

R
n V(x, μ)ρ(x)dx depends only on the invariant measure ρ(x)dx, the lemma is

proved. ��
Let us now minimize the function E(ρ) given by (27) under the condition∫
R

n ρ(x)dx = 1. Introducing the variable ϕ = √
ρ the energy functional (27)

becomes

E(ϕ2) =
∫

R
n

( |∇ϕ|2
2

+ V(x, ϕ2)ϕ2(x)

)
dx, (28)

with ϕ ∈ L2(Rn) satisfying the condition
∫
R

n ϕ2(x)dx = 1.

Remark 4.4 The above well-known energy functional admits a unique minimizer
which is strictly positive (see [4] and references therein). Furthermore, in the case
where V is of the form (24), it coincides with the functional (5) of Bose–Einstein
condensation in the mean field regime (β = 0 in relation (6)).

Lemma 4.3 Under hypotheses V and CV the variational problem (27), with ϕ ∈
L2(Rn) satisfying the condition

∫
R

n ϕ2(x)dx = 1, admits a unique minimizer ρ0 =
ϕ2
0 . Furthermore, ϕ0 is C2+ε(Rn) for some ε > 0, it is strictly positive and satisfies

(weakly) the equation

−�ϕ0(x) + 2V(x, ϕ2
0)ϕ0(x) + 2

∫

R
n
∂μV(y, x, ϕ2

0)ϕ
2
0(y)dyϕ0(x) = μ0ϕ0(x),

(29)

where the uniquely determined constant μ0 is given by

μ0 = 2E(ϕ2
0) +

∫

R
n
∂μV(y, x, ϕ2

0)ϕ
2
0(y)ϕ2

0(x)dydx. (30)

Remark 4.5 Under Hypotheses V and CV we have that J
(∇ρ0

ρ0
, x0

)
= E(ρ0),

where ρ0 = ϕ2
0 is the unique minimizer of E .

Finally we obtain our generalization, via an optimal control approach, of
stochastic mechanics versus non-linear quantum models:

Theorem 4.1 Under Hypotheses V and CV , the logarithmic gradient of the unique
minimizer ρ0 = ϕ2

0 of E , that is b = ∇ρ0
2ρ0

, is the optimal control for the problem (17)
for almost every x0 ∈ Rn with respect to the Lebesgue measure.
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Proof (of Theorem 4.1) By Remark 4.5, and the definition of J (given in Eq. (18))
we have that

J ≤ ess supx0∈RnJ

(∇ρ0

ρ0
, x0

)
= E(ρ0). (31)

In order to prove the statement of the theorem, it is sufficient to prove that E(ρ0) ≤
J, indeed, by Lemma 4.5 and inequality (31), this implies that

J ≤ ess supx0∈RnJ

(∇ρ0

ρ0
, x0

)

and thus the thesis. By Lemma 4.1, we have J̃ (b, ρb) ≤ J (b, x0) and by Lemma 4.2,
and since, by Remark 4.3, b ∈ Cρb

, we get, for any fixed b ∈ C1(Rn,Rn) such that
J (b, x0) < +∞,

E(ρb) = J̃

(∇ρb

ρb

, ρb

)
≤ inf

b̂∈Cρb

J̃ (b̂, ρb) ≤ J̃ (b, ρb).

Combining the previous two inequalities and Lemma 4.3, we obtain that, for any
b ∈ C1(Rn,Rn) such that J (b, x0) < +∞,

E(ρ0) ≤ E(ρb) ≤ J̃ (b, ρb) ≤ ess supx0∈RnJ (b, x0).

Taking the inf over b ∈ C1(Rn,Rn) from the previous inequality we get E(ρ0) ≤ J.
��

Remark 4.6 An important consequence of Theorem (4.1) is that under Hypotheses
V and CV we have that

J = E(ρ0) = inf
ϕ∈H 1(R

n
),

∫
ϕ2dx=1

E(ϕ2),

where J is the value function associated with the problem (16) and the cost
functional (17), defined by (18).

Summarizing we proved that the (stationary) Nelson diffusion with drift of
gradient type solves the ergodic optimal control problem with cost functional (17),
with V satisfying Hypothesis V , CV and QV . In particular our result contains the
mean-field nonlinear Schrödinger model for the Bose–Einstein condensate (in this
case where the potential V in the cost functional (17) is given by (24)).
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5 Convergence of Markovian N -Particle Approximation

We are interested in studying a Markovian N -particle approximation to the stochas-
tic optimal control problem given by (16) and (17). This approximation is inspired
by the variational version of stochastic mechanics presented in Sect. 3.

We consider the process XN,t = (X1
N,t , . . . , X

N
N,t ) ∈ RnN satisfying the SDE

dXi
N,t = bi

N (XN,t )dt + νdWi
t , i = 1, . . . , N (32)

where bN := (b1N, . . . , bN
N ) : RnN → R

nN is a C1+ε function, for some ε > 0, and
the Wi

t , i = 1, . . . , N are independent Brownian motions taking values in Rn. If V
is a functional satisfying Hypotheses V , we introduce the sequence

VN(x) =
N∑

i=1

V

⎛

⎝xi,
1

N − 1

N∑

k=1,k �=i

δxi

⎞

⎠ ,

where x = (x1, . . . , xN) ∈ RnN , N ≥ 2, and δxi
is a Dirac delta measure in xi ∈ Rn.

We consider the ergodic control problem (normalized with respect to the number N

of particles)

JN(bN, x0) = lim sup
T →+∞

1

NT

∫ T

0
Ex0

[ |bN(Xt )|2
2

+ VN(Xt )

]
dt . (33)

The corresponding (normalized) energy functional (analogous to the one defined
in (27)) is

EN(ρN) = EK,N(ρN) + EP,N (ρN)

= 1

N

(∫

R
nN

|∇ρN |2
2ρN

dx +
∫

R
nN

VN(x)ρN(x)dx

)
, (34)

where ρN is a positive Lebesgue integrable function such that
∫
R

nN ρN(x)dx = 1.
We also consider the value function

JN = ess supx0∈Rn

(
inf

bN∈C1(R
nN

,R
nN

)

JN(bN, x0)

)
. (35)

Remark 5.1 It is important to note that in the case where V is of the form (24) (i.e.
for the mean-field BEC), from the definition of VN , we get:

VN(x1, . . . , xN) =
N∑

k=1

V (xk) + 1

N − 1

N∑

k,h=1

v0(xk − xh),
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which is exactly the total potential of the Hamiltonian HN in (1), where vN is the
mean field scaling limit of v0 (see Eq. (6) in the case β = 0).

In the setting described above we are able to prove two convergence results:
the first one involves the invariant measure ρ0,N of the optimal controlled process
XN,t , the second concerns the law of the process XN,t on the whole path space
C0([0, T ],RnN). In order to state the two convergence results we introduce
the relative entropy between probability densities ρN, ρ′

N on RnN resp. between
probability measures P,Q on the path space C0([0, T ],Rn) as

HN(ρN |ρ′
N)) :=

{∫
R

nN log
(

ρN (x)

ρ′
N(x)

)
ρN(x)dx if supp(ρN) ⊂ supp(ρ′

N)

+∞ elsewhere
,

HC0([0,T ],Rn
)(P|Q) :=

∫

�

log

(
dP

dQ
(ω)

)
P(dω).

Theorem 5.1 Suppose that V satisfies hypotheses V , CV and QV and let ρ0,N and
ρ0 be the unique minimizers of the energies (34) and (27) respectively, then we have
as N → +∞

1

N
HN(ρ0,N |ρ⊗N

0 ) → 0. (36)

Remark 5.2 It is important to note that if ρ
(k)
0,N (x1, . . . , xk) denotes the marginal of

the measure ρ0,N (x1, . . . , xN) with respect to the first k variables, then Theorem 5.1
implies Hk(ρ

(k)
0,N |ρ⊗k

0 ) → 0 (see [4] for the details). By the Csiszar–Kullback

inequality [39, 57], this implies that ρ
(k)
0,N converges to ρ⊗k

0 in L1(Rnk) and it
also means that the N -particle system (32) (when evaluated at the optimal control
bN = 1

2∇ log ρN,0) is Kac and entropy chaotic (see, e.g., [53] for the definition of
these properties).

Let P0,N be the probability law of the process XN,t , on the path space
C0([0, T ],RnN), for the case where bN(x) = 1

2∇ log(ρ0,N (x)), x ∈ RnN is the
optimal control and the law of the initial condition XN,0 is the invariant (optimal)
measure ρ0,N . We denote by P(k)

0,N the marginal of P0,N on the path space of the first

k particles C0([0, T ],Rnk). Finally, let P0 be the law of the process Xt solution to
Eq. (16), with the optimal control b(x1) = 1

2∇ log(ρ0(x1)), x1 ∈ Rn, and starting at
the invariant measure ρ0.

Theorem 5.2 Under hypotheses V , CV and QV we have that for any k ∈ N

lim
N↑+∞H

C0([0,T ],Rnk
)
(P

(k)
0,N |P⊗k

0 ) = 0. (37)
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Proof (Idea of the Proof of Theorem 5.2)One first proves that the “value function”
1
N
JN of the N -particle system converges, as N → +∞, to J, i.e. the “value

function” of the limit problem given by (16) and (17). A stronger result holds: the
kinetic part of the energy of the N -particle system converges to the kinetic energy
of the limit problem, namely

lim
N→+∞

1

N

∫

R
nN

|∇ρ0,N (x1, . . . , xN)|2
2ρ0,N (x1, . . . , xN)

dx1 . . . dxN =
∫

R
n

|∇ρ0(x1)|2
2ρ0(x1)

dx1,

(38)

(see [4, Theorem 5.1]). Furthermore, if bN(x) = 1
2∇ log(ρ0,N (x)) and b(x1) =

1
2∇ log(ρ0(x1)), by Girsanov’s theorem we get that

1

N
H

C0([0,T ],RnN
)
(P0,N |P⊗N

0 ) = EP0,N [|b1N(XN,t ) − b(X1
N,t )|2],

(with the upper index 1 indicating the first Rn component of the corresponding
vector in RnN ). Using Eq. (29) we get

1

N
EP0,N

[|b1N(Xs) − b(X1
s )|2] =

∫

R
nN

|∇1ϕ0,N (x)|2
2

dx − μ0

+
∫

R
nN

2

(
V(x1, ρ0) −

∫

R
n
∂μV(y, x1, ρ0)ρ(y)dy

)
ϕ2
0,N (x)dx, (39)

where ϕ0,N = √
ρ0,N . Exploiting the explicit formula (30) for μ0, the con-

vergence of 1
N
JN to J, for N → +∞, and the limit (38) we obtain that

limN→+∞ 1
N
H

C0([0,T ],RnN
)
(P0,N |P⊗N

0 ) = 0. Finally, by the inequality

H
C0([0,T ],Rnk

)
(P

(k)
0,N |P⊗k

0 ) ≤ k

N
H

C0([0,T ],RnN
)
(P0,N |P⊗N

0 ), k = 1, . . . , N,

see [4], we get the thesis. ��

6 The Case of the Dirac Delta Potential

In this section we propose to the reader a potential V of the following form

Vδ(x, μ) = V0(x) + gδx ∗ μ, (40)

where V0 is a regular positive function growing at infinity (“trapping potential”), δx

is the Dirac delta centered at x ∈ Rn, g ∈ R+ is a strictly positive constant, ∗ stands
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for convolution, andμ is a probability measure. The potential Vδ does not satisfy the
regularity Hypotheses V(i) and V(iii). On the other hand it satisfies Hypothesis V(ii)
and CV , and (whenever the Gâteaux derivative is well defined) we have ∂2μ(Ṽδ) =
2δx−y , where Ṽδ = ∫

R
n V(x, μ)μ(dx), which is a positive definite distribution.

Here we do not consider the problem of proving that the optimal control ergodic
problem has a unique optimal control (i.e. we do not prove here the equivalent of
Theorem 4.1 for the potential (40)). We suppose that there exists a family CV0 ⊂
C1(Rn,Rn) of vector fields b on Rn (in general we expect that it can depend on the
trapping potential V0 in (40)) such that

inf
b∈CV0

(
lim sup
T →+∞

1

T

(∫ T

0
Ex0

[ |b(Xt )|2
2

+ V0(Xt ) + gρx0,α,t (Xt )

]
dt

))

= EX0∼ρ0(x)dx

[
|∇ρ0(Xt )|2
4ρ2

0(Xt )
+ V0(Xt ) + gρ0(Xt )

]
, (41)

where ρx0,b,t is the probability density of the law of the solution to the SDE (16)
starting at x0 ∈ Rn evaluated at time t , and ρ0 is the density of the probability
distribution minimizing the functional

Eδ(ρ) = EK(ρ) + Eδ,P (ρ) =
∫

R
n

( |∇ρ(x)|2
4ρ(x)

+ V0(x)ρ(x) + g(ρ(x))2
)
dx.

(42)

In other words we suppose that in the set Cρ (introduced in (26)) the optimal
control for the problem (16) with cost functional (17) and potential Vδ (see [16]
for an alternative derivation of a stochastic process associated with the above cost
functional) exists and it is given by b = ∇ρ0

2ρ0
. What we want to consider here is

an N -particle problem converging to the solution of the optimal control ergodic
problem just described (namely we are looking for an analogous of Theorem 5.2 for
the case where V is given by Vδ in (40)).

In general, since Vδ is not well-defined for positive measures μ that are not
absolutely continuous measures, let us then consider an approximating potential
of the form

Vδ,N (x, μ) = V0(x) +
∫

R
n
vN(x − y)μ(dy),

where vN : Rn → R is a sequence of positive functions converging in the sense of
distributions to a Dirac delta δ0 when N → ∞. Let us choose a specific sequence
of the following form

vN(r) = N3β

N − 1
v0(N

βr), x ∈ Rn (43)
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for β > 0, where v0 is a positive smooth radially symmetric function with compact
support (as in formula (6)). We take theN -particle approximation having the control
bN(x1, . . . , xN) given by the logarithmic derivative of ρ0,N , that is the minimal
probability density of the energy functional Eδ associated with Vδ,N , namely

Eδ,N (ρ) = EK,N(ρ) + Eδ,P,N (ρ)

= 1

N

N∑

i=1

(∫

R
Nn

( |∇iρ|2
4ρ

+ V0(xi)ρ

)
dx

+ 1

N − 1

∑

j=1,...,N,j �=i

∫

R
Nn

vN(xi − xj )ρdx

⎞

⎠ .

In the rest of the paper we show how the results on Bose–Einstein condensation
(mainly for n = 3, see, e.g., [61–65, 69, 75, 82]) can be used to study the conver-
gence of the N -particles approximation of the control problem with potential (40).
For this reason hereafter we shall limit our discussion to the case n = 3.

6.1 The Intermediate Scaling Limit

The case 0 < β < 1, where β is the parameter used in the rescaling (43), which is
known as intermediate scaling limit, is very similar to the regular case (β = 0) that
we discussed in Sect. 5. Indeed, in this case we can prove the following theorem.

Theorem 6.1 Under the previous hypotheses and notations, if 0 < β < 1 we have,
as N → +∞, the convergence statements Eδ,N (ρ0,N ) → Eδ(ρ0), Eδ,P,N (ρ0,N ) →
Eδ,P (ρ0) and ρ

(1)
0,N → ρ0 (where the last convergence is in the weak L1 sense) with

the constant g = ∫
R

3 v0(x)dx (where g ∈ R+ is the constant appearing in Eqs. (40)
and (41)).

Proof The proof of the theorem can be found in [62] for 0 ≤ β < 1
3 (for any n

and a more general class of potentials v0 than the one considered here) and in [5]
for 0 ≤ β < 1 (for n = 3 and a positive-definite interaction potential v0). See also
[83]. ��

Theorem 6.1 is the analogue of the results mentioned in the proof of Theorem 5.2
in this context. Thanks to Theorem 6.1 we can repeat the reasoning performed in
the proof of Theorem 5.2, obtaining:

Theorem 6.2 Under the previous hypotheses and notations, if 0 < β < 1 we have
that the law P(k)

0,N of the first k particles satisfying the system (32), with V replaced
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by Vδ , converges in total variation on the path space C0([0, T ],R3k) to P⊗k
0 (where

P0 is the law on C0([0, T ],R3) of the system (16) associated with (40)).

Proof The proof can be found in [5]. ��

6.2 The Gross–Pitaevskii Scaling Limit

The case β = 1 is completely different from the previous ones. The main difference
between the cases 0 < β < 1 and β = 1 is that in this latter case the value function
convergence result of Theorem 6.1 does not hold.

Theorem 6.3 Under the previous hypotheses and notations, if β = 1 we have that,
as N → ∞ Eδ,N (ρ0,N ) → Eδ(ρ0) and ρ

(1)
0,N → ρ0 (where the latter convergence

is in the weak sense in L1) for g = 4πa (where g ∈ R+ is the constant appearing
in Eqs. (40) and (41), and a > 0 is the scattering length of the interaction potential

v0 (see [64])). Furthermore, putting ŝ = 1
g

∫
R

3
|∇ρ0|2

ρ0
dx ∈ (0, 1) we have, as

N → +∞:

EK,N(ρ0,N ) → Eδ,K(ρ0) + gŝ

∫

R
3
ρ2
0(x)dx.

Proof The proof of the first part of the theorem is a well-known result proven in
[63, 65, 75]. The second part is proved in [65]. ��

In this case we cannot repeat the reasoning of Theorem 5.2 since we are not able
to prove that the relative entropy H(P

(k)
0,N |P⊗k

0 ) converges to 0 (in fact we do not
know whether the relative entropy converges to 0 or to another value). On the other
hand it is possible to prove a weaker result for β = 1, we have namely:

Theorem 6.4 Under the previous hypotheses and notations, if β = 1 we have that
the law P(k)

0,N converges weakly on the path space C0([0, T ],R3k) to P⊗k
0 .

Proof The proof can be found in [6]. ��
Remark 6.1 In [72] a different kind of convergence is proven and in [86] a transition
to chaos result for the particle system related to the control problem is obtained.

7 Future Research Lines

We plan to extend our stochastic approach to BEC in three different directions.
First it would be interesting to face the more difficult Gross–Pitaevskii scaling limit
(β = 1) with a similar optimal control approach. Since this scaling limit gives
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rise to a singular action functional we could try to extend stochastic mechanics to
this non-linear singular Schrödinger model on one hand and obtain the solution to a
singular optimal control problem. Since our ergodic control problem can be looked
upon as being of McKean–Vlasov type, both the drift of the SDE and the potential
depending on the probability density of the invariant measure, that is, on the law of
the stochastic process, we hope to be able to prove the complete BEC (in the sense
of Definition 2.1) and its justification by taking advantage of the advanced stochastic
techniques developed in connection with the well-studied McKean–Vlasov optimal
control problem (see, e.g., [21, 33, 58], and also [19, 85]). Finally, a big effort would
be needed to extend our stochastic approach to the general time-dependent setting.
This is not a direct consequence of the ground state case, even in the mathematical
physics approach. Indeed, the proof of BEC with a time-dependent wave function
requires different techniques (see, e.g., [1, 20, 27, 28, 43]).

Let us close with a look back to the basic problems underlying the study in this
article, in order to insert them into a “future research line” prospective. Since the
Enlightenment, much of the development of mathematics has been influenced by
problems that arose in connection with the investigation of nature, in particular
physical phenomena. Especially in the last century and into the present one, the
description and interpretations of quantum phenomena have played an important
role (for instance, in relation to classical deterministic and stochastic dynamical
systems, among other examples). For the description of quantum phenomena
ideas and methods coming from the theory of infinite-dimensional spaces, and
operators on them, play a central role on the “abstract level” (accompanied by a
more “concrete level”, like the Schrödinger equation of non-relativistic quantum
mechanics). But this is certainly not the whole story, as is seen from the early
steps of quantum mechanics itself, where other areas of mathematics entered and
got enriched in one way or the other, e.g., the representation theory of Lie groups
(to express transformation properties of observables and conservation laws), see,
e.g., [66]. Variational principles also played a founding role, inasmuch as quantum
mechanics can be seen as a deformation of classical mechanics, and reciprocally
(see, e.g., [89]), and the most important variational principles have originated in
classical mechanics (see, e.g., [2, 22] and references therein). These influences
are certainly present in the genesis of R. Feynman’s reformulation of quantum
mechanics in terms of the famous heuristic “Feynman path integral”, that became
quite important both in physics and mathematics inspired by physics. We recall
that Feynman’s original approach consisted in describing the quantum mechanical

evolution by an “integral kernel” of the form e
i
h̄
S(γ ) (i being the imaginary unit, h̄

Plank’s constant and S(γ ) the action functional, i.e., a time integral of a Lagrangian,
for a path γ in a space of continuous paths). A heuristic variational principle would

then permit us to get classical orbits from integrals involving e
i
h̄
S(γ ) expressing,

for example, the solutions of Schrödinger equation, in the “semiclassical limit”
(where h̄ is considered to be very small). This general programme has found some
mathematical realization in single cases, e.g. non-relativistic quantum mechanics in
flat space (see, e.g., [11, 15, 68]) and also in some more geometric settings and for
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quantum fields (see, e.g, [10, 60]). But the mathematical and physical potentiality
is much richer, even at the non-relativistic level, see the deep discussions of this
issue in the work of J.-C. Zambrini (e.g. [88, 89]). Another aspect of mathematics
developed in connection with quantum mechanics is stochastic analysis. It has
its origins in the 1923 work of N. Wiener on Brownian motion, where the heat
semigroup kernel plays a role similar to the above Feynman kernel. It yields
the solutions of the heat equation, the parabolic analogue of the Schrödinger
equation (but Wiener himself was also interested in quantum mechanics, see
[67]). The “Wiener path integral” and its transformations play an important role
in stochastic differential equations, invented by mathematicians like S. Bernstein
(1932) and K. Itô (1948). It is emblematic that the same K. Itô who founded the
probabilistic Itô calculus also gave a first approach to the Feynman path integral
([54, 55]; for further developments, see, e.g., the references [10, 11, 68] cited
above). As we mentioned in Sect. 3, Nelson’s stochastic mechanics is a probabilistic
approach to quantum mechanics; Euclidean methods in quantum field theory (also
strongly influenced by Nelson as a tool for the construction of relativistic, hence
hyperbolic, thus Feynman’s type) quantum fields are also ways to bring together
Feynman’s methods and probabilistic methods; there is a further approach, put
forward by J.-C. Zambrini, and called by him “Euclidean stochastic mechanics”,
that exports to the world of probability structures that are somewhat hidden inside
Feynman’s hyperbolic formalism. Zambrini actually took much inspiration from
Schrödinger’s work, based on a time symmetric view of the heat equation (rather
than Schrödinger’s equation, see, e.g., [89]). Our point is to observe that there is an
immense amount of work to be done in mathematics to better understand all these
interwoven and fascinating structures.

The relations between Nelson’s stochastic mechanics and variational principles
in the study of certain quantum mechanical problems ([51, 87] mentioned in Sect. 3)
have also generated a lot of interest in the study of the “Schrödinger probabilistic
problem”. Here a lot of activity has recently been developed, e.g., in [17, 35, 46, 59,
74, 88]. In this line there are also connections with probabilistic and analytic works
on optimal transport (see, e.g., [36, 59, 70]) that deserve much further attention. The
world of systems of many quantum particles, and their limits (see [19, 85]), proper
of quantum statistical mechanics, is another area of application where such methods
should be very useful. This also would imply applications to other areas of science
like biology, mathematical finance and game theory (see for instance [33, 34, 41]).

A final comment concerns the developments of similar constructions and con-
nections in the world of fields (and strings) instead of particles. This can be seen as
an infinite-dimensional extension of the work we just discussed in relation to non-
relativistic quantum theory, as the path γ at a fixed time t in the above Feynman
approach, instead of taking values in a finite-dimensional space, would take values
in infinite-dimensional spaces. Here the constraints of invariance with respect to
transformation groups, imposed by the Poincaré invariance of relativistic quantum
fields, causes in addition worse local singularities for the paths (much stronger
than the non-differentiability of the Wiener paths), and forces regularizations
and limits much more involved and challenging than those involved in the non-
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relativistic world. The Euclidean methods of constructive quantum field theory
based on a construction at imaginary time (“heat equation world”) followed by an
analytic continuation of the relevant correlation functions to real time (“Schrödinger
equation world”) have been useful for the construction and the study of models
in space-time dimensions up to 3 (see, e.g., [48, 77, 84], for similar methods for
path integrals in quantum statistical mechanics see, e.g., [12]). Recently new
constructive methods based on a singular stochastic partial differential equation
(of the Parisi–Wu stochastic quantization type) initiated by Hairer and Gubinelli–
Imkeller–Perkowski have been developed, see for instance [14, 49, 50, 52]. Also
here there are relations to variational principles [18] and elliptic methods [3].
However a fully fledged transposition to the field case of the methods related to
stochastic mechanics and the corresponding variational methods has still to be
elaborated.

Another aspect that might be useful to examine more closely is that in a certain
limit (like the non-relativistic one starting from relativistic models with polynomial
interactions) the Hilbert space becomes a direct sum of spaces with a fixed number
N of particles with point interactions, similar to the non-relativistic models used
in Sects. 2–6 for deriving asymptotically, for N → +∞, the Gross–Pitaevskii
equation. The N -scaling used there for β = 1 is a prototype of the quantum
field renormalization procedures and has been used to give a meaning to the
Hamiltonian (1) in the case where v0 is a Dirac delta distribution, see references
[7, 9, 42, 47] (where interesting connections with the Efimov and Thomas atomic
physics effects are discussed). It also gives a meaning to the non-relativistic limit of
the mentioned quantum theoretical models at least in space time dimension 2 (see
the references in [7]). Similar methods might also be helpful in dimension 3 and 4,
but more work has definitely to be done.

In conclusion, we mentioned some open problems involving processes with
finite-dimensional resp. infinite-dimensional state space, and both using infinite-
dimensional analysis: there is indeed plenty of room for new developments out
there, and many more beautiful flowers to be found!
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