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Preface

Upon learning of Catriona Byrne’s retirement from Springer’s mathematics staff,
we needed little convincing to suggest this commemorative volume. As the title
suggests, the theme of this volume is the future of mathematics. This is meant in a
broad sense: the contributions of the volume range from musings on the future of a
particular field to problems for future research to new results closing one door and
opening another. And for obvious reasons, this volume does not respect any of the
rules of the series for multi-author volumes.

The contributing authors, 44 distinguished mathematicians, have embraced this
challenge beautifully. Eighteen have presented a historical perspective of their field,
in five cases complemented by problems and conjectures. Eleven have oriented
reviews of their subject toward meaningful unsolved problems. There are also five
articles on the history of mathematics, four papers presenting conjectures and nine
original mathematical contributions.

The very diverse mathematical topics of this volume have been organized
alphabetically into 12 parts. Each part is introduced by a teaser page highlighting
some features of the articles, inspired by comments of the reviewers and LNM
editors.

Most of the contributions begin with heartfelt tributes to Catriona Byrne. Over
the past four decades, she has played a very important role in mathematics
publishing. We dedicate this volume to her.

On behalf of the editorial board of the Lecture Notes in Mathematics,

Paris, France Jean-Michel Morel
Paris, France Bernard Teissier
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Letter from Jean-Pierre Eckmann

Jean-Pierre Eckmann

Dear Catriona,

It is somewhat sad that I should already be writing for your retirement, but I hope
we will stay in contact for a long time. Of course, the idea to honor you not just
anywhere, but precisely in the Lecture Notes in Mathematics (LNM), marks for me
a very special occasion. After all, Springer, the Lecture Notes, the Grundlehren
and you, make for a special event for both you and me, as for a family. Indeed,
my late father, Beno Eckmann, has had a lifelong contact with Springer. When
he and Albrecht Dold founded the LNM (in 1964) you must have just started
primary school. But apparently, it must have influenced your professional choice
as a mathematician, and after your PhD in 1982 (or actually before it in 1981?) you
started to work for Springer. With your well-known drive and energy, you began to
interact with my father, who was very fond of you. And thus a “family-tradition”
started. Of course, Beno had earlier, important, contacts with the Springer family,
with Heinz Götze and Joachim Heinze. Joachim started in 1980, but you joined
in 1981. At least, I saw your signature in a special edition of the LNM Volume
1000 (with a contribution by Heinz Hopf (these were unpublished lectures he gave
in America after the war)), which my father got as a gift from Springer.

Soon after that, we two must have started to interact. Anyway, we exchanged
worries and ideas over the next 40(!) years that you have been with Springer. Of
course, as things go these days, Springer has changed owners and policy several

J.-P. Eckmann (�)
University of Geneva, Geneva, Switzerland
e-mail: Jean-Pierre.Eckmann@unige.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-M. Morel, B. Teissier (eds.), Mathematics Going Forward, Lecture Notes
in Mathematics 2313, https://doi.org/10.1007/978-3-031-12244-6_1
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2 J.-P. Eckmann

times, and has now found–hopefully for a long time–some peace in the Nature
publishing group. All this was compounded by a profound revolution in the printing
and writing business, around the turn of the millenium, about which we had many
“philosophical” discussions. But, as they say in German, you, Catriona, stood “wie
ein Fels in der Brandung” (Fig. 1).
You must have listened to thousands of talks in your 40 years at Springer, but I
found one (https://www.canalc2.tv/video/12658) where you were the speaker! The
occasion was

Fig. 1 Video stills from Catriona’s 2014 talk

ABES - Agence bibliographique de l’enseignement supérieur
Journées ABES 2014
Du 20-21 mai 2014
Le Corum, MONTPELLIER

and your talk

Les archives numériques :
quelle place dans le processus de recherche d’aujourd’hui?
Dr. Catriona Byrne
Editorial Director, Mathematics, Springer

Naturally, in that talk you described our favorite series, the LNM, and of course,
you spoke about Kato’s Grundlehren Evergreen Perturbation Theory for Linear
Operators—this pleased me as the 1966 edition of Kato’s book was my “livre de
chevet” when I was a student.

You regularly came to Zürich. I add here a photo from 2004 where you visited
the Forschungsinstitut für Mathematics ETH (FIM) for its 40th anniversary in 2004
(Fig. 2).
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Letter from Jean-Pierre Eckmann 3

Fig. 2 Catriona and Beno Eckmann, at the 40th anniversary of FIM, 2004

We sometimes talked about real mathematics, and this was always extremely
helpful to me: While I was doing my thing at home, you visited many events, and
had a clear view of what was going on. I profited enormously from your feeling for
new developments in Mathematics. No wonder, since you have handled such a long
list of books and journals (Fig. 3):

Fig. 3 Catriona’s domain of responsibility (according to Springer), probably there has been much
more

Even if you will have to leave these tasks at Springer, I sincerely hope I will have
a chance to learn more from you in the future. Thanks for everything, and let’s keep
in touch.

Jean-Pierre



Part I
Algebraic Geometry

Jean-Louis Colliot-Thélène’s article Une liste de problèmes is a richly commented
list of deep problems close to his heart. They center around rationality questions:
finding rational points on algebraic varieties, finding rational curves linking two
points, finding zero cycles of degree one on varieties over a global field, determining
whether given algebraic varieties are rational or unirational, and much more.

Bernard Teissier’s article Some ideas in need of clarification in resolution of
singularities and the geometry of discriminants presents problems in two different
areas of algebraic geometry. The first is resolution of singularities, where Teissier
explains problems related to a program for local uniformization of valuations
through a relation with toric geometry in possibly infinite dimensions. The second
part proposes to clarify the relation between the geometry of the discriminant of
miniversal unfoldings and the movements in the space of Morse functions used in
cobordism theory.

Pierre Schapira’s article Shifted sheaves for space-time begins with a condensed
history of the evolution from Mikio Sato’s microlocal analysis and Kashiwara’s
index theorem to the microlocal theory of sheaves and its connection with La-
grangian geometry through microsupports. Then Schapira proposes an unexpected
connection between the “shift” in derived categories and a simplified model of the
“Big Bang”. While this text does not strictly belong to algebraic geometry, it is
close to it in spirit.

Loring Tu’s article Lefschetz fixed point theorems for correspondences is a very
instructive exploration of the consequences of an inspiring conjecture made by
Shimura at the 1964 Woods Hole Conference on algebraic geometry concerning a
generalization of the Lefschetz fixed point theorem to smooth and also holomorphic
correspondences on varieties.



Une liste de problèmes

Jean-Louis Colliot-Thélène

Introduction

Dans cette note, je rassemble une liste de problèmes, la plupart bien
connus, et restés ouverts depuis de nombreuses années. J’ai réfléchi à la plu-
part d’entre eux mais n’en revendique pas la propriété. Je mentionne cer-
taines solutions partielles, sans faire un rapport systématique. Je renvoie à
[CT87, CT98, Sk01, CT03, CT11, SD11, CT19, W18] pour cela.

Les problèmes portent presque tous sur la généralisation en dimension plus
grande que 1 des deux énoncés suivants :

Une conique lisse sur un corps k qui possède un point rationnel sur k est
isomorphe, sur k, à la droite projective P

1
k. Ceci donne une paramétrisation

biunivoque des points rationnels de la conique par les points rationnels de la
droite projective.

Sur un corps de nombres k, si une conique lisse a un point rationnel sur
tous les complétés kv de k, alors elle a un point rationnel sur k. Grâce à
Hensel, ce critère est effectif.

Le premier énoncé remonte à l’Antiquité, le second fut établi par Legendre
sur les rationnels et par Hilbert sur les corps de nombres, et fut étendu par
Minkowski et par Hasse aux quadriques de dimension quelconque.

Beaucoup des problèmes mentionnés ici ont leur source dans mes travaux
avec Jean-Jacques Sansuc et avec Peter Swinnerton-Dyer dans les années
1970 et 1980. Certains des problèmes, en particulier ceux sur les intersections
de deux quadriques, avaient fait l’objet de rapports non publiés en 1988 et
en 2005.

J.-L. Colliot-Thélène
Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France
jean-louis.colliot-thelene@universite-paris-saclay.fr

Date: 10 décembre 2022.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-M. Morel, B. Teissier (eds.), Mathematics Going Forward, Lecture Notes
in Mathematics 2313, https://doi.org/10.1007/978-3-031-12244-6 2
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8 J.-L. Colliot-Thélène

Ich freue mich, an dieser Festschrift zu Ehren von Dr. Catriona Byrne teil-
zunehmen. Für die Einladung, und die Möglichkeit, meine Lieblingsprobleme
zusammenzubringen, bedanke ich mich bei Jean-Michel Morel und Bernard
Teissier, geschäftsführenden Herausgebern von den Springer Lecture Notes in
Mathematics. Mit dem Springer-Verlag habe ich eine spezielle Beziehung. In
den 70er Jahren habe ich oft Bücher am Heidelberger Platz in dem damaligen
West-Berlin gekauft, wie etwa das Buch “Algebraic threefolds with special re-
gards to problems of rationality” von L. Roth (1955). Über die Jahre habe
ich einige Artikel, oft auf Französisch, einmal auf Deutsch, in Springer Zeit-
schriften veröffentlicht. Für die Springer Lecture Notes in Mathematics bin
ich Kunde, Autor, Herausgeber, Gutacher gewesen. Dabei bin ich mehrmals
mit Frau Byrne in Kontakt gewesen.

1. Variétés rationnelles et variétés proches

Soit k un corps algébriquement clos. On dit qu’une variété intègre X sur
k est rationnelle si elle est birationnelle à un espace projectif Pd

k, i.e. si son
corps des fonctions k(X) est transcendant pur sur k.

Parmi les exemples classiques de variétés rationnelles, on trouve les variétés
sous-jacentes à un groupe algébrique linéaire connexe, et les variétés projec-
tives qui sont des espaces homogènes de tels groupes. Les quadriques lisses
de dimension au moins 1 rentrent dans ce cadre.

On dit qu’une variété intègre X sur k est unirationnelle s’il existe une
application rationnelle dominante d’un espace projectif vers X .

En dimension 1 et en caractéristique zéro en dimension 2, unirationa-
lité implique rationalité. C’est faux dès la dimension 3 (Clemens–Griffiths,
Iskovskikh–Manin, Artin–Mumford).

Parmi les exemples classiques de variétés unirationnelles, on trouve les quo-
tients G/H d’un groupe linéaire connexe G par un sous-groupe fermé H quel-
conque, non nécessairement connexe. Pour H fini, on connâıt des exemples
de tels quotients qui ne sont pas rationnels (Saltman, Bogomolov).

Dans la classification birationnelle des variétés de dimension supérieure
développée vers 1990 (travaux de Kollár, Miyaoka, Mori), ce qui en dimen-
sion quelconque joue le rôle des surfaces rationnelles dans la classification des
surfaces, ce sont les variétés rationnellement connexes [K99, AK03]. L’une des
définitions, en caractéristique zéro, est que par deux points (fermés) généraux
d’une telle variété il passe une courbe de genre zéro, et ce sur tout corps
algébriquement clos contenant k. En caractéristique quelconque, la bonne
définition est celle de variété séparablement rationnellement connexe. Les
deux notions cöıncident en caractéristique nulle. Dans la suite de ce texte,
par variété rationnellement connexe on entendra variété séparablement ra-
tionnellement connexe.

Supposons k de caractéristique zéro. Une variété unirationnelle est ra-
tionnellement connexe. La réciproque est un grand problème ouvert. Une
variété lisse, projective, lisse, connexe, à fibré anticanonique ample est appelée
variété de Fano. Un théorème important (Campana, Kollár–Miyaoka–Mori)



Une liste de problèmes 9

dit qu’une variété de Fano est rationnellement connexe. Ainsi toute hypersur-
face lisse X ⊂ P

n
k , n � 2, de degré d avec d � n est rationnellement connexe.

Il en est donc ainsi des hypersurfaces cubiques lisses dans P
n
k , n � 3. Il en

est aussi ainsi des intersections complètes lisses de deux quadriques dans Pn
k ,

n � 4. Ces dernières sont des variétés rationnelles sur le corps algébriquement
clos k.

Un autre théorème important (Graber–Harris–Starr, 2003) dit que l’espace
total d’une fibration de base rationnellement connexe et de fibres générales
rationnellement connexes est rationnellement connexe.

Soient maintenant k un corps quelconque et k une clôture algébrique. Nous
adoptons ici les conventions suivantes.

On dit qu’une k-variété géométriquement intègre X est rationnelle, resp.
rationnellement connexe, si la k-variété X := X ×k k est rationnelle, resp.
rationnellement connexe.

On dit qu’une k-variété géométriquement intègre X est k-rationnelle si X
est k-birationnelle à Pd

k, i.e. le corps des fonctions k(X) deX est transcendant
pur.

On dit qu’une k-variété géométriquement intègre X est stablement k-
rationnelle s’il existe des entiers n � 0 et m � 0 tels que X ×k P

n
k est

k-birationnelle à P
m
k .

On dit qu’une k-variété géométriquement intègre X de dimension d est k-
unirationnelle s’il existe une application k-rationnelle dominante d’un espace
projectif Pd

k vers X .

2. Principe de Hasse, approximation faible, obstruction de
Brauer–Manin

Étant donnée une variété algébrique X sur un corps k, on note X(k)
l’ensemble de ses points rationnels. Pour K/k une extension quelconque de
corps, on note X(K) l’ensemble des points rationnels sur K.

On veut donner des critères si possible effectifs permettant de décider si
une k-variété donnée X possède un point rationnel.

Pour éviter des répétitions, on va définir un certain nombre de propriétés.

(PRX) L’ensemble X(k) est non vide, i.e. la k-variété possède un point
rationnel sur k.

On s’intéresse particulièrement au cas des corps finis, des corps locaux (les
corps p-adiques, les corps de séries formelles en une variable sur un corps fini,
le corps R des réels, le corps C des complexes), et des corps globaux (corps
de nombres ou corps de fonctions d’une variable sur un corps fini). Etant
donné un corps global k, et une place v de ce corps, on note kv le corps local
complété par rapport à la place v.

Soit désormais k un corps global.
À toute variété algébriqueX sur k on associe l’espace X(Ak) de ses adèles.

C’est un sous-ensemble du produit
∏

v X(kv), non vide si ce produit est non
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vide. L’espace X(Ak) est muni d’une topologie naturelle. Si X est projective,
alors on a X(Ak) =

∏
v X(kv), et la topologie de l’espace des adèles cöıncide

avec la topologie produit sur
∏

v X(kv).
On introduit la propriété :

(PHX) Soit on a X(Ak) = ∅, soit on a X(k) �= ∅.
On dit que le principe de Hasse vaut pour une classe de variétés algébriques

définies sur k si, pour toute variété X dans cette classe, on a la propriété
PHX .

Pour X/k lisse et géométriquement intègre, on introduit la propriété d’ap-
proximation faible :

(AFX) L’image de l’application diagonale X(k) → ∏
v X(kv) est dense.

Cette propriété implique PHX . Si X(k) est non vide, elle équivaut au fait
que pour tout ensemble fini S de places de k, l’ensemble X(k) est dense dans
le produit fini

∏
v∈S X(kv). Il convient de noter que pour certaines classes

de variétés, on ne sait pas établir PHX pour X dans cette classe, mais que,
sous l’hypothèse X(k) �= ∅, la propriété AFX est facile à établir.

Pour X/k non nécessairement projective, on peut encore considérer une
variante de la propriété AFX . Il s’agit du problème de l’approximation forte.
Depuis 2008, il a été étudié du point de vue de l’obstruction de Brauer–
Manin, dans plusieurs articles par Fei Xu et moi, Harari, Borovoi, Demarche,
Dasheng Wei, Yang Cao, mais nous ne le discuterons pas dans ce texte. Je
renvoie à [BD13] et au rapport de Wittenberg [W18, §2.7, §3.2.4, §3.3.4,
§3.4.5] pour des résultats et références.

Pour X/k lisse et géométriquement intègre, avec X(k) �= ∅, il y a lieu
d’introduire la propriété d’approximation “faible faible” [Se92, Chap. 3]) :

(AFFX) Il existe un ensemble fini T = T (X) de places de k tel que, pour
tout ensemble fini S de places ne rencontrant pas T , l’image de l’application
diagonale X(k) → ∏

v∈S X(kv) est dense.

À tout corps k, à toute variété X sur un corps k, et plus généralement
à tout schéma X , on associe son groupe de Brauer–Grothendieck Br(X)
[CTSk21].

Pour k un corps global, la théorie du corps de classes donne des plonge-
ments jv : Br(kv) ↪→ Q/Z, et une suite exacte fondamentale

0 → Br(k) → ⊕vBr(kv) → Q/Z → 0

qui généralise la loi de réciprocité quadratique de Gauß.
Etant donnée une variété X sur un corps global k, en utilisant la foncto-

rialité du groupe de Brauer, les applications jv : Br(kv) ↪→ Q/Z induisent un
accouplement

X(Ak)× Br(X) → Q/Z

envoyant un couple ({Mv}, α) sur
∑

v jv(α(Mv)). On note X(Ak)
Br ⊂ X(Ak)

le noyau à gauche de cet accouplement. Comme remarqué par Manin en 1970,
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l’application diagonale X(k) → X(Ak) induit une inclusion

X(k) ⊂ X(Ak)
Br.

Considérons la propriété :

(BMPHX) Soit on a X(Ak)
Br = ∅, soit on a X(k) �= ∅.

On dit que l’obstruction de Brauer-Manin au principe de Hasse est la seule
pour une classe de variétés algébriques définies sur k si, pour toute variété X
dans cette classe, on a la propriété BMPHX .

Pour X/k projective, on dit que l’obstruction de Brauer-Manin à l’ap-
proximation faible est la seule pour X si l’on a :

(BMAFX) L’ensemble X(k) est dense dans X(Ak)
Br.

Cette propriété implique BMPHX . Il y a une variante où, pour kv = R

et kv = C, on remplace X(kv) par l’ensemble de ses composantes connexes.

Pour les variétés projectives, lisses, géométriquement intègres qui sont ra-
tionnellement connexes, en particulier celles qui sont géométriquement unira-
tionnelles, la propriétéBMAFX implique la propriété d’approximation faible
faible AFFX . Ceci résulte du fait que dans ce cas le quotient Br(X)/Br(k)
est fini.

Pour les k-variétés projectives et lisses géométriquement intègres, chacune
des propriétés définies ci-dessus ne dépend que du corps des fonctions de X :
si X et Y sont deux telles k-variétés birationnellement équivalentes, l’une des
propriétés vaut pour X si et seulement si elle vaut pour Y .

Si X et Y sont deux k-variétés, et Z = X×k Y , on a Z(k) = X(k)×Y (k).
Si f : X → Y est un k-morphisme, il induit une application X(Ak)

Br →
Y (Ak)

Br.
Si X,Y sont deux variétés projectives et lisses géométriquement intègres

sur un corps de nombres k, et Z = X×k Y , c’est un résultat de Skorobogatov
et Zarhin que l’on a

Z(Ak)
Br = X(Ak)

Br × Y (Ak)
Br.

3. Points rationnels des variétés rationnellement connexes sur
un corps global

La conjecture suivante fut faite par Sansuc et moi en 1979 pour les surfaces
géométriquement rationnelles [CTSa80], et étendue aux variétés rationnelle-
ment connexes en toute dimension en 1999 (voir [CT03]).

Conjecture 3.1. L’obstruction de Brauer-Manin au principe de Hasse et à
l’approximation faible pour les points rationnels est la seule obstruction pour
les variétés projectives, lisses, rationnellement connexes sur un corps global.
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Avec les notations ci-dessus, ceci dit que pour toute variété X projec-
tive, lisse, rationnellement connexe sur un corps global, on a BMPHX et
BMAFX .

3.1. Espaces homogènes de groupes algébriques linéaires connexes.
Soit k un corps de nombres.

PourG un k-groupe semisimple simplement connexe,E un espace principal
homogène de G, et X une k-compactification lisse de E, des travaux de
Eichler, Kneser, Harder et Tchernousov établirent PHX . Leurs travaux, et
ceux de Platonov, établirent AFX . Leurs travaux établissent aussi PHX et
AFX pour les variétés projectivesX qui sont espaces homogènes d’un groupe
algébrique linéaire connexe G.

Pour G un k-groupe algébrique linéaire connexe quelconque, E un espace
principal homogène de G, et X une k-compactification lisse de E, on a les
propriétés BMPHX et BMAFX (Voskresenskǐı pour les tores, Sansuc en
général), et donc aussi l’approximation faible faible AFFX . Ceci vaut aussi
si E est un espace homogène de G linéaire connexe lorsque les stabilisateurs
géométriques sont connexes (Borovoi).

Par contre, la question suivante est en général ouverte.

Problème 3.1. Soit G un k-groupe linéaire connexe, H ⊂ G un k-sous-
groupe fini. Soit X une k-compactification lisse du quotient G/H. A-t-on la
propriété BMAFX , ou du moins la propriété AFFX ?

Comme remarqué par T. Ekedahl et moi en 1988 (voir [Se92, Chap. 3]), une
réponse positive pour AFFX , appliquée à un groupe fini abstrait H plongé
dans GLn,k pour n entier convenable, implique que le groupe fini H est le
groupe de Galois d’une extension galoisienne finie de corps K/k, propriété
qu’on ne sait pas établir pour tous les groupes finis.

Un progrès récent dans cette direction a été accompli par Harpaz et Wit-
tenberg [HW20] pour une classe de groupes finis H comprenant les groupes
nilpotents (constants), ce qui leur permet, pour ces groupes, de retrouver et
préciser, du point de vue du comportement local, le théorème de Shafarevich
que les groupes finis résolubles sont des groupes de Galois sur tout corps de
nombres (on trouve la démonstration de ce théorème de Shafarevich dans des
ouvrages de Ishkhanov, Lur’e, Faddeev et de Neukirch, Schmidt, Wingberg).

3.2. Surfaces de del Pezzo et variétés de Fano. Les surfaces de del
Pezzo sont les variétés de Fano de dimension 2.

Problème 3.2. Soit k un corps global. Soit X ⊂ P
n
k une intersection complète

lisse définie par l’annulation simultanée de formes homogènes (f1, . . . , fr)
de degrés respectifs (d1, . . . , dr). Si X est dimension au moins 3 et l’on a
d1 + · · ·+ dr � n, a-t-on PHX ? A-t-on AFX ?

Soit k un corps de nombres. La méthode du cercle permet d’établir de tels
énoncés pour n grand par rapport à la somme des di (Birch 1961, Schmidt
1985, Skinner 1997).
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C’est une expérience commune que pour les variétés de Fano il est difficile
d’exhiber des contre-exemples au principe de Hasse. On consultera [B18]
pour un rapport sur cette direction de recherche très active. Sur k = Q,
Browning, Le Boudec et Sawin [BLBS20] ont récemment montré que, si l’on
ordonne (toutes) les hypersurfaces lisses X ⊂ P

n
Q

avec d � n et n � 4

par la hauteur des coefficients, alors 100 % d’entre elles satisfont le principe
de Hasse, et une proportion positive a des points rationnels. Pour d’autres
résultats “statistiques”, on consultera [BBL16, LS16, L18, Bri18, SkSo20].

Considérons maintenant des cas particuliers du problème 3.2.

Problème 3.3. Soit n � 4 et X ⊂ P
n
k une hypersurface cubique lisse sur un

corps de nombres. A-t-on PHX ? A-t-on AFX ?

Si X contient une droite rationnelle P
1
k ⊂ P

n
k , alors on a AFX [Har94].

Pour k = Q, et n � 9, Heath-Brown utilisa la méthode du cercle pour
établir X(Q) �= ∅ pour toute hypersurface cubique lisse, et C. Hooley établit
le principe de Hasse pour X lisse dans le cas n = 8.

Sur un corps global k de caractéristique p > 5, pour n � 5, Zhiyu Tian
[T17] a établi PHX .

Pour X ⊂ P
n
k intersection complète lisse sur un corps de caractéristique

zéro, on a Br(X)/Br(k) = 0 si X est de dimension au moins 3. Dans ce
cas, sur un corps de nombres, on a donc X(Ak)

Br = X(Ak). En dimension
2, par exemple pour les surfaces cubiques et les intersections de deux qua-
driques dans P4

k, ce n’est plus nécessairement le cas, il faut tenir compte de
l’obstruction de Brauer–Manin.

Problème 3.4. Soit X ⊂ P
3
k une surface cubique lisse sur un corps de

nombres. A-t-on BMPHX ? A-t-on BMAFX ?

Le cas des surfaces diagonalesX ⊂ P
3
Q
, d’équation ax3+by3+cz3+dt3 = 0,

avec a, b, c, d entiers non nuls, sans facteur cubique, et premiers entre eux
dans leur ensemble, a été testé. On sait (Cassels-Guy 1966) que PHX ne
vaut pas toujours pour ces surfaces, mais dans [CTKaS87] on montra que
BMPHX vaut lorsque les coefficients sont de valeur absolue plus petite que
100. On a un résultat conditionnel, dû à Swinnerton-Dyer [SD01]. On suppose
la finitude des groupes de Tate-Shafarevich des courbes elliptiques sur les
corps de nombres. S’il existe un nombre premier p �= 3 qui divise a mais pas
bcd, et un nombre premier q �= 3 qui divise b mais pas acd, alors le principe
de Hasse vaut pour X , et ce résultat conditionnel implique PHX pour toute
hypersurface cubique diagonale X ⊂ P

n
Q
pour n � 4.

Problème 3.5. Soit X ⊂ P
4
k une intersection complète lisse de deux qua-

driques sur un corps de nombres k. A-t-on BMPHX ?

On sait que cela vaut si X contient une conique [Sal88, CT90].
Par ailleurs, sous l’hypothèse X(k) �= ∅, on a BMAFX [SaSk91].



14 J.-L. Colliot-Thélène

Problème 3.6. Soit n � 5. Soit X ⊂ P
n
k une intersection complète lisse de

deux quadriques sur un corps de nombres k. A-t-on PHX ?

Il est facile de montrer que sous l’hypothèse X(k) �= ∅, on a AFX

[CTSaSD87].
On sait quePHX vaut siX contient un ensemble de deux droites conjugué-

es [CTSaSD87] ou si X contient une conique (Salberger, 1993, non publié).
On sait que PHX vaut pour n � 8 [CTSaSD87] et n = 7 [HB18].
Sur un corps global de caractéristique p > 2, PHX été établi pour n � 5

par des méthodes géométriques de déformation par Zhiyu Tian [T17].
Sur tout corps de nombres, Wittenberg [W07] a donné une preuve condi-

tionnelle de PHX pour n � 5. Voir la section 3.4 ci-dessous.

3.3. Espaces totaux de fibrations en variétés rationnellement con-
nexes au-dessus de la droite projective. C’est une classe naturelle de
variétés à considérer si l’on veut établir les résultats par récurrence sur la
dimension.

Problème 3.7. Soit X une variété projective et lisse sur un corps de nombres
k, munie d’un morphisme X → P

1
k dont la fibre générique est rationnellement

connexe, et dont les fibres lisses Xm au-dessus des k-points m ∈ P
1(k) satis-

font BMHPXm , resp. BMAFXm . A-t-on BMHPX , resp. BMAFX ?

Depuis [CTSaSD87], ce thème a été beaucoup exploré : travaux de Sko-
robogatov, Harari, Wittenberg, Harpaz, et de nombreux autres auteurs. Je
renvoie à [W18] pour des références détaillées.

L’hypothèse sur les fibres est par exemple satisfaite si la fibre génériqueXη

sur le corps K = k(P1) est une compactification lisse d’un espace homogène
d’un K-groupe linéaire connexe, à stabilisateurs géométriques connexes (Bo-
rovoi).

À une telle fibration on associe une mesure de sa complexité arithmétique :
la somme ρ des degrés [k(m) : k] des points fermés m ∈ P

1
k dont la fibre

Xm/k(m) est non lisse et ne contient pas de composante géométriquement
intègre de multiplicité 1.

On a des réponses positives inconditionnelles au problème 3.7 lorsque ρ
est (très) petit. Le meilleur résultat général récent est ρ � 3 [HWW21]. Pour
ρ quelconque, on a une réponse conditionnelle positive [HW16, HWW21] si
l’on accepte une conjecture difficile du type de l’hypothèse de Schinzel. Cette
hypothèse, aussi considérée par Bouniakovsky, Dickson, Hardy et Littlewood,
Bateman et Horn, affirme que, pour toute famille finie Pi(t) ∈ Z[t] de po-
lynômes irréductibles, à coefficients dominants positifs, tels qu’aucun nombre
premier ne divise

∏
i Pi(m) pour tout entier m, il existe une infinité d’entiers

n tels que chaque Pi(n) soit un nombre premier. L’idée d’utiliser l’hypothèse
de Schinzel dans ce cadre remonte à 1979, et a été poursuivie dans divers ar-
ticles. Elle vient de connâıtre un rebondissement statistique “inconditionnel”
[SkSo20].
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Un cas simple est donné par une famille de coniques, d’équation affine

y2 − a(t)z2 − b(t) = 0,

avec a(t) et b(t) polynômes de degrés quelconques. Les fibres de la projection
sur l’axe des t satisfont le principe de Hasse. Ici ρ � 5 convient.

Depuis [CTHaSk03] on a aussi beaucoup étudié les équations du type

NormK/k(Ξ) = P (t)

avec Ξ “variable” dans une extension finie K/k et P (t) ∈ k[t] polynôme non
nul. Pour K/k quelconque, les fibres ne satisfont pas en général le principe
de Hasse mais elles satisfont la variante avec obstruction de Brauer-Manin.

Sur k = Q, des progrès fondamentaux en combinatoire additive (Green,
Tao, Ziegler ; Mathiesen) ont permis d’obtenir des résultats inconditionnels
avec ρ quelconque. Les résultats de Green, Tao, Ziegler donnent une version
de l’hypothèse de Schinzel pour une famille finie de formes linéaires à deux
variables sur Q. Pour les exemples de variétés ci-dessus, [BMSk14, HW16]
montrent ainsi que lorsque k = Q et que, dans les équations ci-dessus,
le polynôme a(t)b(t), resp. le polynôme P (t), a toutes ses racines dans Q,
alors on a BMAFX (où X désigne un modèle projectif et lisse des variétés
considérées).

3.4. Au-delà des variétés rationnellement connexes. Soit k un corps
de nombres. On ne saurait étendre la conjecture 3.1 à toutes les variétés pro-
jectives et lisses sur k, comme ce fut montré inconditionnellement par Sko-
robogatov en 1999. D’autres contre-exemples géométriquement plus simples
ont depuis été donnés. Cependant, pour X espace principal homogène d’une
variété abélienne A, si l’on ignore la composante connexe de l’élément neutre
aux places archimédiennes, BMAFX résulte de la finitude conjecturelle du
groupe de Tate-Shafarevich de la variété abélienne A.

Skorobogatov (2001) conjecture BMAFX pour toute surface X de type
K3. Si l’on est prêt à utiliser non seulement la finitude des groupes de Tate-
Shafarevich mais aussi l’hypothèse de Schinzel, alors une méthode sophis-
tiquée initiée par Swinnerton-Dyer en 1993 permet de prédire un énoncé de
type BMHPX pour certaines surfaces X fibrées en courbes de genre 1 au-
dessus de la droite projective. Parmi ces surfaces, on trouve des surfaces
birationnelles à des intersections lisses de deux quadriques dans P

4, mais
aussi des surfaces K3. La méthode fut développée dans [CTSkSD98, W07].
Sous les dites conjectures, Wittenberg [W07] établit ainsi PHX pour toute
intersection complète lisse X ⊂ P

n
k pour n � 5.

La méthode de [SD01], qui n’utilise “que” l’hypothèse de finitude des
groupes de Tate-Shafarevich, a été appliquée par Skorobogatov et Swinnerton-
Dyer, et aussi par Harpaz et Skorobogatov [HS16], pour étudier le principe
de Hasse pour certaines surfaces de Kummer.
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4. Zéro-cycles des variétés sur un corps global

Soit X une variété algébrique sur un corps k. L’indice I(X) de la k-variété
X est par définition le pgcd des degrés [k(P ) : k] pour tous les points fermés P .
C’est aussi le pgcd des degrés des extensions finies K/k telles que X(K) �= ∅.
Une question plus faible que l’existence d’un point rationnel sur X est celle
si l’indice I(X) = 1.

Dans le cas des courbes projectives, lisses, géométriquement intègres de
genre 0 ou 1, des quadriques de dimension quelconque, et des intersections
de deux quadriques, ces deux questions cöıncident, mais ce n’est pas le cas
en général.

Le groupe Z0(X) des zéro-cycles sur X est le groupe abélien libre sur les

points fermés de X . À un zéro-cycle z =
∑

P nPP (nP ∈ Z) sur la k-variété
X on associe son degré degk(z) :=

∑
P nP [k(P ) : k] ∈ Z. L’indice I(X) est

donc le générateur positif de l’image de l’application degk : Z0(X) → Z.
Sur un corps de nombres k, il est alors naturel de poser la question du

principe de Hasse pour la propriété I(X) = 1 : étant donnée une k-variété
projective, lisse, géométriquement intègre X , si on a I(Xkv ) = 1 pour chaque
place v, a-t-on alors I(X) = 1 ? La réponse est non en général (courbes de
genre 1, intersections complètes lisses de deux quadriques dans P4).

Pour une k-variété X , on considère l’accouplement bilinéaire

Z0(X)× Br(X) → Br(k)

(
∑

P

nPP, α) �→
∑

P

nPCoresk(P )/k(α(P )).

Ici α(P ) ∈ Br(k(P )) est l’évaluation de α en P , et on applique ensuite la
norme, ou corestriction : Br(k(P )) → Br(k).

On peut dans ce cadre définir une obstruction de Brauer-Manin à l’exis-
tence d’un zéro-cycle de degré 1. Comme on verra ci-dessous, on peut aussi
définir un analogue de l’obstruction à l’approximation faible.

Pour les zéro-cycles, on a deux conjectures qui, à la différence de la conjec-
ture 3.1, portent sur toutes les variétés projectives et lisses, sans restriction
sur leur géométrie. Ces conjectures furent faites par Sansuc et moi (1981)
dans le cadre des surfaces rationnelles, et étendues au cas général sous la
forme ci-dessous dans [CT95, CT99]. Une conjecture proche mais d’aspect
assez différent avait été formulée par K. Kato et S. Saito (1983). Voir [W12].

Conjecture 4.1. Soient k un corps global et X une k-variété projective,
lisse, géométriquement intègre sur k. S’il existe une famille de zéro-cycles de
degré 1 zv ∈ Z0(Xkv ) tels que pour tout α ∈ Br(X) on ait

∑

v

jv(zv, α) = 0 ∈ Q/Z,

alors il existe un zéro-cycle de degré 1 sur X.
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La conjecture est ouverte déjà dans le cas des surfaces cubiques lisses.
Soient X et Y des k-variétés projectives. Soit π : Y → X un k-morphisme.

On lui associe un homomorphisme π∗ : Z0(Y ) → Z0(X). On dit qu’un zéro-
cycle sur X est rationnellement équivalent à zéro s’il est dans le sous-groupe
de Z0(X) engendré par les π∗(divY (g)) pour Y variant parmi les courbes nor-
males projectives, la fonction g ∈ k(Y )× variant parmi les fonctions ration-
nelles non nulles sur une telle courbe Y , et π : Y → X les k-morphismes. Le
groupe de Chow CH0(X) des zéro-cycles de degré zéro surX est le quotient de
Z0(X) par le sous-groupe des zéro-cycles rationnellement équivalents à zéro.
Il est muni d’une flèche degré CH0(X) → Z, dont le noyau est noté A0(X).
L’accouplement Z0(X)×Br(X) → Br(k) passe au quotient par l’équivalence
rationnelle et induit un accouplement bilinéaire CH0(X)× Br(X) → Br(k).

La conjecture suivante englobe la conjecture 4.1.

Conjecture 4.2. Soient k un corps global et X une k-variété projective,
lisse, géométriquement intègre sur k. Le complexe

proj lim
n

CH0(X)/n →
∏

v

proj lim
n

CH0(Xkv )
∗/n → Hom(Br(X),Q/Z)

induit par la somme des accouplements du groupe de Brauer de X avec les
groupes CH0(Xkv ), à valeurs dans Br(kv) ⊂ Q/Z est une suite exacte.

On note CH0(Xkv )
∗ = CH0(Xkv ) si v est une place non archimédienne,

puis CH0(Xkv )
∗ = 0 si v est une place complexe, et pour v réel le quotient

de CH0(XR) par l’image de la norme CH0(XC) → CH0(XR).

Le théorème suivant [HW16] est l’aboutissement de travaux de Salber-
ger [Sal88], Colliot-Thélène, Swinnerton-Dyer, Skorobogatov, Harari [Har94],
Wittenberg [W12]. Un argument relativement élémentaire mais essentiel du
travail de Salberger [Sal88] avait été réinterprété par Colliot-Thélène et Swin-
nerton-Dyer (1994) comme une variante inconditionnelle, adaptée aux zéro-
cycles, de l’hypothèse de Schinzel mentionnée au paragraphe 3.

Théorème 4.1. (Harpaz et Wittenberg) Soient k un corps de nombres, X
une k-variété projective et lisse géométriquement intègre, et π : X → P

1
k un

k-morphisme plat à fibre générique une variété rationnellement connexe. Si
les fibres lisses Xm au-dessus d’un point fermé m de P1 satisfont la conjecture
4.1, resp. la conjecture 4.2, alors il en est de même de X.

Y. Liang [Lia13] avait montré comment on peut établir les conjectures 4.1
et 4.2 pour les variétés projectives et lisses birationnelles à un espace ho-
mogène d’un groupe algébrique linéaire connexe à stabilisateurs connexes à
partir du résultat pour les points rationnels (connu grâce à Sansuc et Boro-
voi).

Le théorème ci-dessus s’applique donc à tout X → P
1
k comme ci-dessus

dont la fibre générique est birationnelle à un espace homogène d’un groupe
algébrique linéaire connexe à stabilisateurs connexes.
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Si X/k est une courbe projective et lisse de genre quelconque, sous l’hy-
pothèse que le groupe de Tate-Shafarevich de la jacobienne JX est fini, on a
les conjectures 4.1 et 4.2 pour X .

Projet ambitieux. En admettant la finitude des groupes de Tate-Shafarevich
des variétés abéliennes, établir la conjecture 4.1 pour les surfaces diagonales

axp + byp + czp + dtp = 0

de degré p premier dans P
3
Q
, par une extension de la méthode utilisée pour

PHX et p = 3 par Swinnerton-Dyer [SD01].

De façon plus générale, pour une variété projective et lisse, on souhaiterait
ramener la conjecture 4.1 au cas des courbes. Mais cela semble vraiment hors
d’atteinte. Une question plus modeste est : Suffit-il de connâıtre la conjecture
4.1 pour toutes les variétés projectives et lisses de dimension 3 pour l’avoir
en dimension supérieure ?

5. Rationalité des variétés et invariants birationnels

Soit X une variété sur un corps k. On dit que deux points P,Q ∈ X(k)
sont R-liés s’il existe un ouvert U ⊂ P

1
k et un k-morphisme U → X avec

P,Q ∈ f(U(k)). La R-équivalence sur X(k) est la relation d’équivalence
engendrée par cette relation.

Étant donnés un corps k de caractéristique zéro et une k-variété projec-
tive, lisse, géométriquement connexe, l’ensemble X(k)/R et le sous-groupe
A0(X) ⊂ CH0(X) formé des classes de zéro-cycles de degré zéro, sont des in-
variants k-birationnels des k-variétés projectives et lisses, et ils sont réduits à
un élément si la k-variétéX est stablement k-rationnelle, ou plus généralement
facteur direct birationnel d’un espace projectif.

Pour toute k-variété X projective, lisse, géométriquement intègre sur un
corps k disons de caractéristique zéro, i � 1 et j ∈ Z, on dispose des groupes
de cohomologie non ramifiée Hi

nr(k(X)/k,Q/Z(j)), à coefficients dans les ra-
cines de l’unité tordues j fois. Ces groupes sont des invariants k-birationnels,
réduits à Hi(k,Q/Z(j)) si X est stablement k-birationnelle à un espace pro-
jectif. On consultera [CT19] pour un rapport récent sur ces invariants. On a
H2

nr(k(X)/k,Q/Z(1)) = Br(X).

5.1. Unirationalité.

Problème 5.1. Soit k un corps infini. Soit X une k-variété projective et
lisse, rationnellement connexe. Supposons X(k) non vide.

(a) L’ensemble X(k) des points rationnels est-il Zariski dense dans X ?
(b) La k-variété X est-elle k-unirationnelle ?

C’est connu pour les surfaces cubiques lisses, mais ces questions sont
ouvertes pour les surfaces rationnelles quelconques. Pour ces surfaces, une
réponse affirmative découlerait d’une réponse affirmative à la question sui-
vante [CTSa80, §V] :
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Problème 5.2. Les torseurs universels [CTSa80, §II.C] sur les k-surfaces
rationnelles projectives et lisses sont-ils des k-variétés (stablement) k-ration-
nelles dès qu’ils possèdent un point rationnel ?

C’est connu pour les surfaces de Châtelet [CTSaSD87], et plus généralement
les sufaces fibrées en coniques sur P1

k avec au plus 4 fibres géométriques sin-
gulières, mais déjà le cas des surfaces de del Pezzo X de degré 4 avec groupe
de Picard Pic(X) de rang un est ouvert.

Une réponse affirmative à ce problème dans le cas k = C(P1) implique-
rait l’unirationalité sur C des variétés complexes de dimension 3 fibrées en
coniques au-dessus du plan projectif P2

C
, ce qui est une question ouverte bien

connue.

5.2. R-équivalence. Soit k un corps p-adique. Soit f : X → Y un k-
morphisme projectif et lisse de k-variétés lisses géométriquement intègres,
à fibres des variétés rationnellement connexes. C’est un théorème de Kollár
(1999) que pour m ∈ Y (k) l’ensemble Xm(k)/R associé à la fibre Xm est
fini, et que son cardinal est semi-continu supérieurement pour la topologie
p-adique sur Y (k) : pour m ∈ Y (k), en tout point n d’un voisinage ouvert
convenable de m, l’ordre de Xn(k)/R est au plus celui de Xm(k)/R [K04].

Problème 5.3. (Kollár) Sous les conditions ci-dessus, l’ordre de Xm(k)/R
est-il localement constant pour la topologie p-adique sur Y (k) ?

Problème 5.4. Soient k un corps parfait de dimension cohomologique 1 et
X une k-variété projective, lisse, (séparablement) rationnellement connexe.
Supposons X(k) �= ∅.

(a) L’ensemble X(k)/R est-il réduit à un point ?
(b) A-t-on A0(X) = 0 ?
(c) Ces propriétés valent-elles au moins si k est un corps C1 ?

Je renvoie à [CT11, §10] pour une discussion de divers cas concrets, tant
de corps que de types de variétés. La question (b) a une réponse affirmative
pour les surfaces rationnelles. La question (c) a une réponse affirmative pour
les intersections complètes lisses de deux quadriques dans Pn

k pour n � 4. Ici
encore, une réponse affirmative à la question (a) dans le cas k = C(P1), et
déjà la finitude de X(k)/R dans ce cas, impliquerait l’unirationalité sur C

des variétés complexes de dimension 3 fibrées en coniques au-dessus du plan
projectif P2

C
.

5.3. Rationalité des intersections de deux quadriques. Soit X ⊂ P
n
k

une intersection complète lisse de deux quadriques f = g = 0 sur un corps k.
Une telle variété est k-rationnelle si elle possède une droite P

1
k. Un théorème

d’Amer assure que X contient une droite P
1
k si et seulement si la quadrique

d’équation f + tg = 0 sur le corps k(t) (où t est une variable) contient un
P
1
k(t), i.e. si et seulement si la forme quadratique f + tg sur le corps k(t)

contient deux hyperboliques.
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Pour k algébriquement clos, on retrouve le fait que X ⊂ P
n
k contient une

droite si n � 4, et est rationnelle.
Pour k un corps C1, le corps k(t) est C2. Dans ce cas X ⊂ P

n
k contient une

droite si n � 6, et est donc k-rationnelle. C’est le meilleur résultat possible :
pour k = C(z) corps des fonctions rationnelles en une variable, Hassett et
Tschinkel [HT21] donnent un exemple de X ⊂ P

5
k qui n’est pas stablement

k-rationnelle.
Pour n = 5, sur un corps quelconque, un théorème récent [BW19], valable

sur tout corps, dit que la k-variété X est k-rationnelle si et seulement si elle
contient une droite P

1
k. On n’a pas par contre de critère pour la k-rationalité

stable.

Soit k un corps p-adique. Pour n � 8 on a X(k) �= ∅. Commençons par
raffiner certains des résultats de [CTSaSD87, Chap. 3]. C’est un théorème
[PS10, HB10, HHK09, L13, PS14] que toute forme quadratique en au moins
9 variables sur un corps de fonctions d’une variable sur un corps p-adique
est isotrope. Ainsi toute forme quadratique en au moins 11 variables sur k(t)
s’annule sur un vectoriel de dimension 2 sur k(t). Via le théorème d’Amer,
ceci implique que pour n � 10 toute intersection de deux quadriques X ⊂ P

n
k

contient une droite P1
k. Donc pour n � 10, si X est une intersection complète

lisse, elle est k-rationnelle.

Problème 5.5. Soit X ⊂ P
n
k une intersection lisse de deux quadriques sur

un corps p-adique k. Supposons X(k) �= ∅.
(a) Que peut-on dire sur la k-rationalité (stable) de X ⊂ P

n
k pour 6 � n �

9 ?
(b) On a X(k)/R = {∗} pour n � 7. Que peut-on dire pour n = 5, 6 ?
(c) Résultats et questions analogues pour le groupe A0(X) ⊂ CH0(X) des

classes de zéro-cycles de degré zéro.

Si p �= 2 et n = 6, on a A0(X) = 0 [PS95]. Par la méthode de spécialisation
[V15, CTP16] on devrait pouvoir donner des exemples d’intersections lisses
X de deux quadriques dans P5

k, avec X(k) �= ∅, qui ne sont pas stablement
k-rationnelles. Voir [CTP16, Thm. 1.21] et [HT21, §9, §10].

On peut aussi se poser la question de la rationalité sur le corps R des réels.

Problème 5.6. Soit X ⊂ P
n
R
, n � 4, une intersection complète lisse de deux

quadriques. Supposons que X(R) est non vide et connexe (pour la topologie
réelle). Ceci implique-t-il que X est (stablement) R-rationnelle ?

Pour n = 4, l’hypothèse implique que X est R-rationnelle. Pour n = 5,
Hassett et Tschinkel [HT21] ont montré que X est R-rationnelle si et seule-
ment si X contient une droite P

1
R
. Ainsi pour n = 5 on peut avoir X(R)

connexe non vide et X non R-rationnelle. La question de la R-rationalité
stable est ouverte. Pour n = 6, Hassett, Kollár et Tschinkel (2020) ont
montré que X(R) connexe non vide équivaut à X R-rationnelle. En dimen-
sions supérieures le problème est ouvert.
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5.4. Cohomologie non ramifiée. La question classique de la rationalité
(stable) des hypersurfaces cubiques lisses dans P

4
C

amène à considérer le
problème suivant, qui est lié à l’étude des cycles de codimension deux (voir
[V15, Thm. 1.10, 3.1, 3.3] et [CT15, Thm. 5.4, 5.6, 5.8]).

Problème 5.7. Soit X ⊂ P
n
C
, n � 4 une hypersurface lisse de degré d � n.

Soit K un corps contenant C. Pour n = 4, 5, l’application

H3(K,Q/Z(2)) → H3
nr(K(X)/K,Q/Z(2))

est-elle un isomorphisme pour tout corps K contenant C ?

Pour n � 6 et tout d � n, c’est connu [CT15, Thm. 5.6]. Pour n = 5 et
d = 3, la réponse est affirmative, cela résulte [CT15, Thm. 5.8] d’un théorème
de C. Voisin (2006). Pour n = 4 et d = 3, c’est un problème en général ouvert
[V15].

Soient F un corps fini et � un nombre premier différent de la caractéristique
de F. Soit X/F une variété projective et lisse géométriquement connexe de
dimension d. Le groupe H3

nr(F(X)/F,Q�/Z�(2)) est un analogue supérieur
de la partie �-primaire du groupe de Brauer Br(X) d’une variété X/F. C’est
une extension d’un groupe fini par un groupe divisible. Pour d = 2, i.e. X
une surface, on a H3

nr(F(X)/F,Q�/Z�(2)) = 0 (corps de classes supérieur).
A. Pirutka a donné des exemples de variétés géométriquement rationnelles
de dimension 5 avec H3

nr(F(X)/F,Q2/Z2(2)) �= 0. F. Scavia et F. Suzuki
viennent de donner un exemple de variété de dimension 4 pour laquelle ce
groupe est non nul.

Problème 5.8. Pour toute variété projective et lisse intègre X de dimension
3, le groupe H3

nr(F(X)/F,Q�/Z�(2)) est-il divisible ? Est-il nul ? Est-ce déjà
le cas pour les variétés rationnellement connexes ?

On sait l’établir pour quelques classes intéressantes de variétés : les variétés
fibrées en coniques au-dessus d’une surface [PS16], et les hypersurfaces cu-
biques lisses dans P4

F
. La question est liée à une forme forte de la conjecture de

Tate entière pour les 1-cycles sur les variétés de dimension 3 sur un corps fini,
et à la validité de la conjecture 4.2 ci-dessus pour les surfaces sur un corps
global de caractéristique positive [CT99, CTK13]. Le lien entre la conjec-
ture de Tate entière pour les 1-cycles sur les variétés sur un corps fini et la
conjecture 4.1 sur un corps global de caractéristique positive avait été fait
par S. Saito en 1989. On sait établir H3

nr(F(X)/F,Z/2) = 0 pour X ⊂ P
4
F

une hypersurface cubique lisse (car.(F) �= 2).

Problème 5.9. Soit F un corps fini, car(F) �= 2, et soit X ⊂ P
5
F
une hyper-

surface cubique lisse. A-t-on H3
nr(F(X)/F,Z/2) = 0 ?

6. Points rationnels et indice des variétés algébriques.

Problème 6.1. Soit X ⊂ P
n
k , n � 4, une intersection complète lisse de deux

quadriques sur un corps k de dimension cohomologique 1. Pour n = 5, a-t-on
X(k) �= ∅ ?
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Pour n � 6, c’est vrai et facile. Pour n = 4, la réponse est négative. La
démonstration repose sur la construction de très grands corps.

Soit C une courbe géométriquement intègre sur le corps des réels avec
C(R) = ∅, par exemple la conique d’équation homogène x2 + y2 + t2 = 0.
On sait que le corps R(C) est de dimension cohomologique 1. C’est une
question ouverte si c’est un corps C1. Plus généralement on demande s’il y a
un analogue du théorème de Graber, Harris et Starr :

Problème 6.2. Toute variété rationnellement connexe X sur le corps K =
R(C) a-t-elle un point rationnel ?

On ne sait déjà pas si pour toute variété projective et lisse rationnellement
connexe X sur R avec X(R) = ∅ il existe un R-morphisme de la conique sans
point vers X .

Problème 6.3. Existe-t-il un entier n � 4 tel que toute hypersurface cubique
lisse X ⊂ P

n
k sur un corps k de dimension cohomologique 1 possède un point

rationnel, ou du moins satisfasse I(X) = 1 ?

Les corps p-adiques ne sont pas des corps C2. On a cependant la question :

Problème 6.4. (Kato et Kuzumaki) Pour toute hypersurface X ⊂ P
n
k de

degré d sur un corps p-adique, si l’on a n ≥ d2, a-t-on I(X) = 1 ?

Ceci a été établi par Kato et Kuzumaki (1985) lorsque le degré d est un
nombre premier. C’est ouvert déjà pour d = 4.

Problème 6.5. (Cassels et Swinnerton-Dyer) Soient k un corps et X ⊂ P
n
k

une hypersurface cubique. Si l’on a I(X) = 1, a-t-on X(k) �= ∅ ?

D. Coray (1976) montra qu’il en est ainsi sur un corps p-adique. Pour
X ⊂ P

3
k une surface cubique lisse sur un corps quelconque, il montra que

l’hypothèse I(X) = 1 entrâıne l’existence sur X d’un point fermé de degré 1,
4 ou 10. La question si on peut éliminer 10 et 4 est restée ouverte. L’analogue
de la question pour les surfaces de del Pezzo de degré 2 a une réponse négative
(Kollár et Mella).

Problème 6.6. (Serre) Soient k un corps, G un groupe algébrique linéaire
connexe sur k, et E un espace principal homogène sous G. Si l’indice I(E)
est égal à 1, a-t-on E(k) �= ∅ ?

Pour les espaces homogènes non principaux, la propriété ne vaut pas, des
contre-exemples ont été construits par Florence et par Parimala.

Problème 6.7. Soient k un corps, car(k) = 0, et X ⊂ P
4
k une hypersurface

cubique lisse sans point rationnel, i.e. d’indice I(X) = 3. Soit Y/k une k-
variété projective lisse géométriquement connexe de dimension au plus 2. S’il
existe une k-application rationnelle de X vers Y , a-t-on I(Y ) = 1 ?

Par la classification k-birationnelle des surfaces géométriquement ration-
nelles, le problème se ramène au cas où Y est une surface cubique lisse k-
minimale. Ce cas semble résister aux formules de degré à la Rost [M03, Z10]
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qui avaient permis d’étendre le théorème d’Hoffmann [H95] restreignant les
dimensions possibles pour les couples de quadriques anisotropes admettant
une application rationnelle entre elles.

7. Groupes algébriques linéaires

Soit G un groupe algébrique linéaire réductif connexe sur un corps k.
L’ensemble G(k)/R est naturellement muni d’une structure de groupe. Tout
élément de ce groupe est d’ordre fini. Si K/k est une extension transcendante
pure, l’homomorphisme G(k)/R → G(K)/R est bijectif.

Soit D une algèbre centrale simple (de rang fini) sur un corps k. Soit
G = SL1,D ⊂ GL1,D le groupe algébrique des éléments de norme réduite 1.
C’est un k-groupe algébrique semisimple simplement connexe. Un théorème
de Voskresenskĭı utilisant un théorème de Platonov identifie dans ce cas
G(k)/R au groupe SK1(D) quotient du groupe des éléments de D× de norme
réduite 1 par le groupe [D×, D×] engendré par les commutateurs.

Des travaux de Platonov, Yanchevskĭı, Merkurjev, Chernousov ont identifié
le quotient G(k)/R pour beaucoup de groupes classiques, tant simplement
connexes qu’adjoints, et ont au passage établi sa commutativité. Le problème
général suivant reste cependant ouvert.

Problème 7.1. Soient k un corps et G un k-groupe algébrique réductif
connexe. Le groupe quotient G(k)/R est-il commutatif ?

Voskresenskǐı (1977) avait posé la question pour G linéaire connexe sur un
corps quelconque. Pour un groupe linéaire connexe non réductif, sur un corps
non parfait, F. Scavia (2021) a donné une réponse négative.

Pour les deux problèmes suivants, on consultera le rapport de P. Gille
[Gi07].

Problème 7.2. Soient k un corps et G un k-groupe réductif connexe. Si pour
tout corps K contenant k, le groupe G(K)/R est trivial, ceci implique-t-il que
G est facteur direct birationnel d’une k-variété k-rationnelle ?

Problème 7.3. Soit k un corps parfait de dimension cohomologique � 3. Si
G est un k-groupe semisimple simplement connexe, a-t-on G(k)/R = 1 ?

Ce problème est motivé par les travaux de Suslin sur le groupe SK1(D)
d’une algèbre simple centrale. On a un certain nombre de résultats lorsque
la dimension cohomologique est � 2.

Problème 7.4. Soit G un groupe algébrique linéaire connexe sur le corps R

des réels. La R-variété G est-elle R-rationnelle, i.e. le corps des fonctions de
G est-il transcendant pur sur R ?

Problème 7.5. Soit k un corps de type fini sur Q. Si G est un k-groupe
linéaire connexe, le quotient G(k)/R est-il fini ?
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C’est connu pour G un k-tore (Colliot-Thélène et Sansuc 1977) et pour k
un corps de nombres (P. Gille 1997). Pour G = SL1,D le k-groupe algébrique
des éléments de norme 1 dans une algèbre centrale simpleD sur k, le problème
se traduit ainsi :

Problème 7.6. Si D est une algèbre centrale simple sur un corps k de type
fini sur Q, le groupe SK1(D) est-il fini ?

Problème 7.7. Soit H/C un groupe linéaire connexe et G ⊂ H un sous-
groupe fermé connexe. Le quotient H/G est-il une variété rationnelle ?

C’est une question célèbre, déjà pour H = GLn,C et G = PGLm,C. Pour
traiter cette question, on peut essayer d’utiliser la cohomologie non ramifiée.

Soit k = C, et soit X une compactification lisse de GLn,C/G, avec G ⊂
GLn,C sous-groupe algébrique fermé connexe. Pour tout corps K contenant
C, et i = 1, 2 on sait que

Hi(K,Q/Z(i− 1)) = Hi
nr(K(X)/K,Q/Z(i− 1)).

Pour i = 2, ceci dit que le groupe de Brauer de X ×C K est réduit à l’image
de Br(K), énoncé essentiellement dû à Bogomolov. Dans une série d’articles,
Merkurjev [M17] et Sanghoon Baek [B21] ont établiH3

nr(C(X)/C,Q/Z(2)) =
0 pour de nombreuses classes de groupes réductifs G.

Problème 7.8. Dans chacun de ces cas, pour tout corps K contenant C, la
flèche H3(K,Q/Z(2)) → H3

nr(K(X)/K,Q/Z(2)) est-elle un isomorphisme ?

Avec les méthodes décrites dans [CT15, §5], on pourrait essayer de résoudre
ce problème via l’étude des cycles de codimension deux d’une bonne compac-
tification lisse de GLn,C/G.
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[B18] T. D. Browning, How often does the Hasse principle hold ? in Al-
gebraic geometry : Salt Lake City 2015, 89–02, Proc. Sympos. Pure
Math., 97.2, Amer. Math. Soc., Providence, RI, 2018.

[BLBS20] T. D. Browning, P. Le Boudec et W. Sawin, The Hasse
principle for random Fano hypersurfaces, prépublication, math
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Some Ideas in Need of Clarification
in Resolution of Singularities
and the Geometry of Discriminants
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concepts of many more. There is no way to run out of ideas in
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1 Problems Related to Resolution of Singularities

In his 1964 paper Hironaka introduced the general concept of embedded resolution
of a singular space X embedded in a non-singular variety Z. That is a birational
morphism b : Z′ → Z with Z′ non-singular, such that the strict transform of
X is non-singular and transversal in Z′ to the exceptional divisor of b, which is
mapped to the singular locus of X. Indeed, Hironaka’s proof builds Z′ as the result
of a sequence of blowing-ups with non-singular centers. If X is a toric variety
equivariantly embedded in a non-singular toric variety Z, it is more natural to seek a
birational toric morphism Z′ → Z of non-singular toric varieties such that the strict
transform of X is non-singular and transversal to the toric boundary of Z′. For toric
varieties over an algebraically closed field, this was proved to exist in [33, §6] and
[16]. The process is purely combinatorial and therefore blind to the characteristic
of the field.

If O is the local ring of a formal branch C over an algebraically closed field
k, its normalization is k[[t]] and the set of values which the t-adic valuation ν

takes on elements of O is a numerical semigroup 
 ⊂ N. It is finitely generated.
For tradition’s sake, we denote by g + 1 its minimal number of generators. The
associated graded ring grνO of the valuation ν restricted to O (see [29, 33, §2])
is isomorphic to the semigroup algebra k[t
] of 
 with coefficients in k and thus
corresponds to an affine toric variety C
 ⊂ Ag+1(k). If ξ1, . . . , ξg are elements
of O whose ν-values generate 
, the image of the formal embedding of C in the
affine space Ag+1(k) determined by the ξi can be degenerated to C
 inside Ag+1(k)

in such a way that some toric embedded resolutions of C
 ⊂ Ag+1(k) also give
embedded resolutions of C ⊂ Ag+1(k). All this is blind to the characteristic of the
field k. An instance of this, in the complex analytic world, first appeared in [15] and
recently the case of reduced plane curve singularities has been settled (and more) in
[12] and also in [10, Corollary 7.11].

An attempt to generalize this leads to the following, where k is an algebraically
closed field.

Problem A Let X ⊂ An(k) be a reduced affine algebraic variety over k. Do there
exist algebraic embeddings An(k) ⊂ AN(k) such that:

(1) The intersection of the image of X (resp. An(k)) with the torus of AN(k) is
dense in X (resp. An(k)).

(2) There exist birational equivariant maps π : Z → AN(k) of non-singular toric
varieties such that the strict transform Xπ of X (resp. the strict transform
of An(k)), which exists by (1), is non-singular and transversal to the toric
boundary of Z.

(3) The ideal in the ring OX(X) of the singular subspace of X is generated, up to
integral closure, by monomials in the coordinates of AN(k).

If the embedding X ⊂ An(k) ⊂ AN(k) satisfies the first two conditions, we call it a
torific embedding for X. For example, an isolated hypersurface singularity which is
non-degenerate with respect to its Newton polyhedron is torifically embedded in its
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ambient space. See [37] and [3] for generalizations. Tevelev has shown in [36] that
any embedded resolution diagram of irreducible projective varieties

can be embedded in a diagram:

P

where Z → PN is an embedding, the map � is a birational toric map of non-singular
varieties for a toric structure on PN , the images of Z and X have dense intersections
with the torus of PN , their strict transforms are the non-singular varieties Z′ and X′,
and they are transversal to the toric boundary of W ′.

In this sense, in characteristic zero where we have Hironaka’s theorem, and more
generally whenever embedded resolution can be proved, toric embedded resolutions
are cofinal among embedded resolutions of a given irreducible projective variety X.

Coming back to affine or local torific embeddings, the problem of course is to
prove the existence of torific embeddings without assuming embedded resolution,
in a way which hopefully would also work in positive characteristic. As a bonus,
torific embeddings should, as in the case of curves, contain important geometric
information on the singularities of X, which do not seem, in dimension ≥ 3, to be
legible in the resolution by blowing ups. To my knowledge there are two approaches
to this problem:

– Mourtada’s approach (see [24, 26]) is based on a deep vision of the relationship
between components of the exceptional divisor (divisorial valuations centered in
Z) of an embedded resolution of X and contact subvarieties of the jet schemes on
Z associated to the embedding X ⊂ Z. Suitable irreducible components of the
contact varieties mentioned above correspond to divisorial valuations centered
in An(k) and the equations of each one give an embedding An(k) ⊂ AN(k)

such that the divisorial valuation is the trace on An(k) of a monomial divisorial
valuation on AN(k). Then a tropical/toroidal argument explains how to produce
a torification. Anyway, that is the idea, and it proves extremely fruitful in spite of
the complexity of the computation of the equations of irreducible components.
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Mourtada realizes this program in a number of important cases, which I shall not
detail here.

– My approach is more directly inspired by the case of curves presented above.
As in Zariski’s approach, it begins with local uniformization of valuations. The
reason is that if OX,x is the local algebra of a singularity and ν is a rational1

valuation centered in OX,x , the associated graded algebra grνOX,x is again
isomorphic to the semigroup algebra k[t
] of the semigroup 
 of values taken
by ν on OX,x .

If 
 is finitely generated, then we have again an affine toric variety and we can
show that toric resolutions of this toric variety, which are blind to the characteristic,
provide local uniformization of the valuation after a suitable re-embedding of (X, x)

(see [29]).
However, the semigroup 
 is not at all finitely generated in general and

we have to think of Speck[t
] as being of infinite embedding dimension, this
embedding dimension being in fact an ordinal, see [29, corollary 3.10]. Such a
toric variety is defined by an infinite collection of binomials and does not have a
resolution so we have to show that a “finite partial” embedded resolution extends
to a local uniformization of ν. In order to do that we need equations for the
degeneration of OX,x to its graded algebra. This is something we can do for
complete equicharacteristic noetherian local domains.

Indeed, if the noetherian equicharacteristic local domain R is complete, there
exists for any rational valuation of R an embedding of the formal space correspond-
ing to R into the space where the generalized toric variety corresponding to grνR
resides; it is given by the Valuative Cohen Theorem of [29].

Since R is noetherian, the semigroup 
 is well ordered and combinatorially finite
in the sense that there are finitely many distinct expressions of an element of 
 as
a sum of other elements. As a consequence of being well ordered it has a unique
minimal system of generators (γi)i∈I , the index set I being an ordinal ≤ ωh(ν)

where h(ν) is the height, or rank, of the valuation, which is ≤ dimR. Taking
variables (ui)i∈I , one can consider the k-vector space of all formal sums �e∈Edeu

e

where E is any set of monomials in the ui and de ∈ k. Since the values semigroup 


is well ordered and combinatorially finite this vector space is in fact, with the usual
multiplication rule, a k-algebra ̂k[(ui)i∈I ] which we endow with a weight w by
giving ui the weight γi . Combinatorial finiteness means that there are only finitely
many monomials with a given weight, and we can enumerate them according to
the lexicographic order of exponents (see [29, §4]). Thus, we can embed the set of
monomials u ∗ m in the well ordered lexicographic product 
 × N. Combinatorial
finiteness also implies that the initial form of every series with respect to the weight
filtration is a polynomial so that the corresponding graded algebra of ̂k[(ui)i∈I ] is

1 This means that the inclusion R ⊂ Rν of R in the valuation ring of the valuation not only satisfies
mν ∩ R = mR for maximal ideals, but also there is no residual extension: k = R/mR = kν =
Rν/mν .
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the polynomial algebra k[(Ui)i∈I ] with Ui = inwui , graded by giving Ui the degree
γi .

The k-algebra ̂k[(ui)i∈I ] is endowed with a monomial valuation given by the
weight: w(�e∈Edeu

e) = minde �=0w(ue). This valuation is rational since all the
γi are > 0. Note that 0 is the only element with value ∞ because here ∞ is an
element larger than any element of 
. With respect to the “w ultrametric” given
by u(x, y) = w(y − x), the algebra ̂k[(ui)i∈I ] is spherically complete (see [31],
theorem 4.2) and has most of the properties of power series algebras, except for
noetherianity unless the set I is finite, in which case it is isomorphic to the usual
power series ring, with weights on the variables.

The γi are the degrees of a minimal set of homogeneous generators (ξi)i∈I of
the 
-graded k-algebra grνR. The first part of the valuative Cohen theorem asserts
that one can choose representatives (ξi)i∈I in R of the (ξi)i∈I in such a way that
ui �→ ξi determines a surjective continuous (with respect to the valuations) map of
k-algebras

π : ̂k[(ui)i∈I ] → R

whose associated graded map with respect to the filtrations associated to the
valuations is the surjective graded map of k-algebras

grπ : k[(Ui)i∈I ] → grνR, Ui �→ ξi .

If the valuation ν is of rank one or the set I is finite, any set of representatives (ξi)i∈I
of the (ξi)i∈I is eligible.

Since even when the set I is infinite the non-zero homogeneous components of
grνR are one-dimensional k-vector spaces, and in fact grνR is isomorphic to the
semigroup algebra k[t
] (see [33, Proposition 4.7]), the kernel of the map grπ is a
prime ideal generated by binomials (Um − λmnU

n)(m,n)∈M with λmn ∈ k∗, and the
second part of the valuative Cohen theorem states that the kernel of π is generated,
up to closure in the w ultrametric, by overweight deformations of those binomials:
series whose initial forms with respect to the weight are those binomials.

Geometrically this corresponds to equations defining the image of an embedding,
via the series ξi , of the formal germ corresponding to R in an infinite-dimensional
weighted affine space in such a way that the original valuation is the trace on R of a
monomial valuation on the ambient space.

In this infinite-dimensional space, our singularity can be degenerated in a
faithfully flat way to the “toric variety” defined by the binomials Um − λmnU

n

of k[(Ui)i∈I ] (see [33, Proposition 2.3]). However, if the number of variables is
infinite, there is no resolution of singularities for such a generalized toric variety.
It is truly “infinitely singular” and in fact for valuations centered in k[[x, y]] this
corresponds exactly to the “infinitely singular” case where the valuation is the order
of vanishing of a series on a very transcendental (non-Puiseux) curve in the plane
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whose strict transforms remains singular in infinitely many point blowing ups (see
[33, Examples 4.20 and 4.22]).

On the other hand, we know that for rational Abhyankar valuations (= of
rational rank equal to the dimension of R), one can prove that after a birational
modification of R to an R′ still dominated by the valuation ring of ν, we can obtain
that the semigroup of values of the valuation ν on R′ is finitely generated. For
this reason, rational Abhyankar valuations on an equicharacteristic excellent local
domain with an algebraically closed residue field can be uniformized (see [29], and
[19] and [6] for different approaches for algebraic function fields). This leads to
the following conjecture for non-Abhyankar valuations, whose semigroup cannot
be finitely generated (see also [34]):

Let R be a complete equicharacteristic local domain with algebraically closed
residue field and ν a rational valuation centered in R and of rational rank r <

dimR. Let (γi)i∈I be the minimal system of generators for the semigroup 
 of ν

on R. There exists a nested system of finite subsets Bα ⊂ I with
⋃

α Bα = I and
for each Bα a prime ideal Kα of R such that R/Kα is of dimension r and endowed
with an Abhyankar valuation να whose semigroup is generated by the (γi)i∈Bα . We
have

⋂
α Kα = (0) and for each x ∈ R we have ν(x) = να(x mod.Kα) for large

enough Bα . Finally each R/Kα is an overweight deformation of an affine toric
variety and for large enough Bα toric embedded uniformizations of the valuation
να also uniformize the valuation ν on R.

It is a convenient way to express that the valuation can be uniformized by
“finite partial” embedded toric resolutions of Speck[t
], an adapted form of torific
embedding for the valuation. The slogan is: Approximating a rational non-
Abhyankar valuation ν by rational Abhyankar semivaluations2 should provide
torific embeddings for ν.

In order to apply this to our algebraic situation we have to deduce a torific
embedding for an algebraic local ring from a torific embedding of a complete local
ring to which we can apply the valuative Cohen theorem. For that it suffices to solve
the following problem (see [33, *Proposition 5.19*] and [18]):

Problem B Given an excellent equicharacteristic local domain R and a valuation
ν centered in R, show that there exists a prime ideal H of the mR-adic completion
R̂ such that H ∩ R = (0) and ν extends to a valuation ν̂ of R̂/H with the same
value group.

This means that the graded inclusion grνR ⊂ grν̂ R̂/H is birational.
If the valuation is of rank one, the proof is in [18, Theorem 2.1]. For Abhyankar

valuations, the proof is in [29, 7.2].
Conjecture 9.1 in [18] to the effect that after a birational ν-modification R′ of R

one can even have that the semigroup of R̂′/H ′ is the same as that of R′ has been

2 A semivaluation of R is a valuation of a quotient of R by a prime ideal.
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disproved by Cutkosky in [5, Theorem 1.5, Theorem 1.6] even when completion is
replaced by henselization.

Since we assume that the residue field k is algebraically closed, local uniformiza-
tion of rational valuations entails local uniformization for all valuations (see [33,
Proposition 3.20]). By (quasi-)compactness of the Riemann–Zariski manifold, the
space of valuations centered in R is (quasi-)compact and therefore there are finitely
many valuations such that the collections of morphisms uniformizing them by
toric embedded uniformizations uniformizes all valuations centered in R. Now the
problem is to:

Problem C Prove that those torific embeddings can be combined into one embed-
ding for SpecR where a toric birational map will simultaneously uniformize all
valuations and thus provide a local embedded resolution of singularities for R.

One can find some inspiration in [12, §3] as well as in the local tropicalization
methods of [28] and [10].

2 Problems Related to the Geometry of Discriminants
of Miniversal Unfoldings

Let f (z1, . . . , zn) ∈ R{z1, . . . , zn} be a series without constant term and such
that it has an algebraically isolated critical point at the origin, which means that
dimRR{z1, . . . , zn}/( ∂f

∂z1
, . . . ,

∂f
∂zn

) < ∞. This dimension is the Milnor number
μ of the isolated critical point associated to the complexification of the series
f (z1, . . . , zn) (see [23]). A function with an algebraically isolated critical point
is finitely determined, so we may assume that f is a polynomial. Let us consider an
unfolding of the function f , say

F(z, t) = f (z1, . . . , zn)+
μ−1∑

k=1

tkgk(z1, . . . , zn),

which is miniversal (see [2, Chap. 8]) if the images of the functions 1, g1, . . . , gμ−1,
which again we may take to be polynomials, even monomials, form a basis of the
real vector space R{z1, . . . , zn}/( ∂f

∂z1
, . . . ,

∂f
∂zn

), which we shall henceforth assume.
This unfolding defines a germ of a stable map (see [13, Chap. III, Theorem 3.4]

or [25, Chap 5])

F = (F, t) : (Rn × Rμ−1, 0)→ (R× Rμ−1, 0)
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expressed in the natural coordinates (λ, t) = (λ, t1, . . . , tμ−1) on R× Rμ−1 by:

λ ◦ F =f (z1, . . . , zn)+
μ−1∑

k=1

tkgk(z1, . . . , zn),

tk ◦ F =tk for k = 1, . . . , μ− 1.

Because F is a stable map, it can be Thom-stratified (see [13, 21]) and there exist
“polycylinders” U = Bn × Bμ−1 ⊂ Rn ×Rμ−1 and V = B1 ×Bμ−1 ⊂ R×Rμ−1

such that F−1(V ) ∩ U is a neighborhood of 0 in which the critical locus C is non-
singular, and C ∩ (∂Bn × Bμ−1) = ∅. The only critical points which appear in
that neighborhood are those which tend to 0 as t → 0, and each fiber F−1(λ, t) for
(λ, t) ∈ V is transversal to ∂Bn × {t}. We shall freely assume that the closed balls
Be ⊂ Re are “small enough”.

Now recall that, assuming of course that 0 is a critical point, up to a change of
variables our function can be written as

f (z1, . . . , zn) =
q+∑

j=1

z2
i −

q++q−∑

j=q++1

z2
j + f̃ (zq++q−+1, . . . , zn),

where f̃ is of order ≥ 3 and has the same Milnor number as f .
Then the algebra R{z1, . . . , zn}/( ∂f

∂z1
, . . . ,

∂f
∂zn

) is naturally isomorphic to

R{zq++q−+1, . . . , zn}/( ∂f̃
∂zq++q−+1

, . . . ,
∂f̃
∂zn

). A miniversal unfolding F̃ of f̃ is

miniversal for f , the only difference between F and F̃ being a fixed difference of
indices between the Morse singularities appearing in the unfoldings.

From now on we shall assume that the order of f (z1, . . . , zn) is ≥ 3. Then we
may choose gi = zi for i = 1, . . . , n and gk of order ≥ 2 for k > n. The equations
for the critical locus C ⊂ Bn × Bμ−1 of the unfolding F are

∂F

∂zi
= ∂f

∂zi
+ ti +

μ−1∑

k=n+1

tk
∂gk

∂zi
= 0 for i = 1, . . . , n,

showing that C is non-singular and of dimension μ− 1.
Shrinking the balls Bn, Bμ−1 if necessary, we assume that the map ν : C →

B×Bμ−1 induced by F is finite by the Weierstrass preparation theorem (an analytic
map with a finite fiber is locally finite). Its image is the real part D of a complex
hypersurface, the discriminant D(C) of the complexification of the morphism F (see
[30, §5]). We have seen that C is non-singular, and the map ν : C → D is finite.
As image of C, and because all maps in sight are algebraic, the discriminant D is a
semialgebraic hypersurface in B1 × Bμ−1.
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A miniversal unfolding of an algebraically isolated singularity of hypersurface
is a versal deformation so that we can lift to D the properties of discriminants of
miniversal deformations, and in particular the product decomposition theorem of
[35, Chap. III, Théorème 2.1] and [30, Theorem 4.8.1, Cor. 4.8.2] which remains
true in real geometry and implies that non-singular points of D are the images of
Morse singularities in C. It also implies that at a general point of the codimension
one components of the singular locus of the complexification D(C), the singular
locus is locally isomorphic either to a cusp (y2 − x3 = 0) times Cμ−2 (cusp type)
or to a node (y2 ± x2 = 0) times Cμ−2 (node type).

Proposition 2.1 The zero set in the critical locus C of the hessian hz(F ) of F with
respect to the variables z1, . . . , zn is of codimension one.

Proof In the real space or in the complexification the image of the zero set of the
hessian is the part of the singular locus which is the closure of the set of points of
cusp type. The real part of a complex point of cusp type is a real point of cusp type,
locally isomorphic to a cusp times Rμ−2. ��

The singular locus of D is of codimension one and its image � in Bμ−1 is a
semialgebraic hypersurface containing the bifurcation locus � and the conflict strata
in the sense of bifurcation theory. Indeed, a point t = (t1, . . . , tμ−1) is in Bμ−1 \�
if and only if the corresponding function Ft = F(z, t) : Rn → R is an excellent3

Morse function in Bn, all of whose Morse singularities tend to 0 as t → 0. In
particular the Maxwell set, which corresponds to functionsFt attaining at least twice
their absolute minimum, is contained in � because it is the image of a singular
stratum of D (see [30, 5.4.1] and Michel Coste’s examples in [9]).

We know that the geometry of the complex discriminant hypersurface D(C)

contains important information on the geometry of the hypersurface of Cn defined
by f (z1, . . . , zn) = 0, its deformations and in particular its Milnor fiber (see [30]).
The geometry of the discriminant hypersurface is very special. For example, tangent
hyperplanes to the discriminant hypersurface at non-singular points tending to the
origin all have as limit the hyperplane λ = 0 (see [30, §5, Remark 3]) and as we
have seen a general plane section of D(C) has only cusps and nodes as singularities
(see [30, 4.8.2]).

The geometry of the discriminant D in the real case also contains important
information. I would like to state two problems concerning this geometry:

Given f (z1, . . . , zn) ∈ R[z1, . . . , zn] as above, Michel Herman asked, in the early
1990s, the following question:

If in a neighborhood of 0 the family of hypersurfaces f (z1, . . . , zn) = λ is
topologically trivial for |λ| small enough, do there exist a neighborhood U of 0
and an unfolding f (z1, . . . , zn) + sg(s, z1, . . . , zn) such that for s �= 0 and small
enough, the function f (z1, . . . , zn)+ sg(s, z1, . . . , zn) has no critical point in U?

3 Meaning Morse function with distinct critical values.
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The geometric translation of this statement is that under the hypothesis of
topological triviality, for a suitable representative of the germ F : (Rn×Rμ−1, 0)→
(R × Rμ−1, 0), the map p ◦ ν : C → Bμ−1 which we have seen above is not
surjective. Indeed, if that is the case the complement of the image of C being
semialgebraic we can find (see [4, Theorem 2.2.5]) in that complement a germ of a
semialgebraic arc t1(s), . . . , tμ−1(s) with tj (0) = 0, which will give the unfolding
we seek. The converse follows from the versality of the unfolding.

From the equations of the critical locus, we see that it can be endowed with
coordinates z1, . . . , zn, tn+1, . . . , tμ−1 and then the map p ◦ ν : C → Rμ−1 can be
written as follows:

tj ◦ (p ◦ ν) =−
( ∂f

∂zj
(z1, . . . , zn)+

μ−1∑

k=n+1

tk
∂gk

∂zj
(z1, . . . , zn)

)
for 1 ≤ j ≤ n,

tj ◦ (p ◦ ν) =tj for n+ 1 ≤ j ≤ μ− 1.

The Jacobian matrix of the map p◦ν is therefore related to the hessian matrix Hz(F )

of F with respect to the variables z1, . . . , zn as follows:

Jac(p ◦ ν) =
(
−Hz(F ) (− ∂gk

∂zj
)

0 Idμ−1−n

)

Taking determinants gives :

jac(p ◦ ν) = (−1)nhz(F ),

and considering signs gives, at each point of C where jac(p ◦ ν) �= 0,

sign(jac(p ◦ ν)) = (−1)n(−1)indexHz(F ).

For t ∈ Rμ−1 \�, let Ni(t) be the number of critical points of index i of the Morse
function Ft on Bn. Then by definition of the local topological degree (see [11]), we
have the equality

deg(p ◦ ν) = (−1)n
n∑

i=0

(−1)iNi(t),

which is independent of t ∈ Bμ−1 \�.
As t approaches the origin, the discriminant D flattens towards the hyperplane

λ = 0 (see [30, 5.5]). We shall only use the fact that for t ∈ p(D) the line (λ, t), λ ∈
R, has a maximum intersection point (λmax(t), t) and a minimum intersection point
(λmin(t), t) with D, which both tend to 0 with t , and D does not contain the λ axis.
If we denote by Xλ,t the fiber F−1(λ, t) ⊂ Bn × {t}, we note that since we may
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assume the Xλ,t meet ∂Bn × {t} transversally, all the fibers Xλ,t for λ > λmax(t)

(resp λ < λmin(t)) are diffeomorphic to Xλ,0 with λ > 0 (resp Xλ,0 with λ < 0).
By a direct application of Morse theory (see [14, Chapitre 13, exerc. 2.12] and

[1, Lemma]), we have for small enough ε > 0 the following relations between
Euler–Poincaré characteristics:

χ(Xλmax+ε,t )− χ(Xλmin−ε,t ) = 2
∑n

i=0(−1)iNi(t) if n is odd
χ(Xλmax+ε,t )− χ(Xλmin−ε,t ) = 0 if n is even.

One can verify that if the family f (z1, . . . , zn) = λ is topologically trivial for |λ|
small enough, so is the family f (z1, . . . , zn) + w2 = λ and as we saw, adding
squares of new variables does not change the geometry of the miniversal unfolding.

Topological triviality of the Xλ,0 implies χ(Xλmax+ε,t ) − χ(Xλmin−ε,t ) = 0, so
that we have:

Proposition 2.2 For all n the hypothesis of local topological triviality of the family
f (z1, . . . , zn) = λ implies that the local topological degree of the map p ◦ ν : C →
Bμ−1 is zero.

And what we want to prove is that this map is not surjective.
When n = 2 the result was proved by Gusein–Zade in [17] using an ingenious

argument to construct explicit unfoldings without critical points using induction on
the Milnor number and resolution of singularities of curves.

In [32] it was suggested to use elimination of critical points as in the proof
of the h-cobordism theorem (see [8, 22]). In other words, is the condition∑n

i=0(−1)iNi(t) = 0 sufficient to make it possible to eliminate all the critical points
of a Morse function Ft by moving t in Bμ−1? More generally, we wish to ask the
question:

Problem D Does the geometry of the discriminant D reflect the various configura-
tions of critical points of Morse functions which can appear in differential geometry:
For example, can one find values of t ∈ Bμ−1 such that all the critical points of the
same index of Ft are at the same level (have the same critical value)? Can one
describe the obstruction to performing elimination of critical points of the functions
Ft by movements of t ∈ Bμ−1?

For example, it is explained in [31] that if one can find values of t ∈ Bμ−1
such that all non-degenerate local minima of Ft (stable attractors) are at the same
level, one obtains a proof of Thom’s catastrophe-theoretic version of the Gibbs
phase rule. It states that the maximum number of local minima which a Morse
function Ft can have in Bn (the number of coexisting phases of the system) is at
most the codimension in Rμ−1 of the Thom stratum T0 of the origin, plus one.
Since along the Thom stratum the morphology does not vary, the coordinates of a
space transversal to T0 and of complementary dimension in Bμ−1 are the essential
parameters of the system.

There are some indications towards a possible proof in [32]. Since the hessian
matrix of F is a well defined matrix valued and very special function on the
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critical locus C, it may be that the study of its image in the Grothendieck–Witt
ring, as in [27], is useful. Geometrically, the question is whether the closures of
all the open sets of the discriminant hypersurface D which are the images by ν

of the sets of points of C where the index of Hz(F ) has a given value, have to
intersect and whether the closures of some other sets with different indices have to
meet in codimension one cusp-type components of the singular locus of D. Two-
dimensional slices of the discriminant transversal to such components correspond
to plane configurations studied by Jean Cerf (Cerf diagrams, see [7]).

From this viewpoint, we are interested in a dynamical version of Problem D: the
problem is to understand which among the deformations of functions that are used
in differential geometry, for example those used in the h-cobordism theorem (see
[22] and [8]), can be realized by the “small” movements of t in Bμ−1.
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Shifted Sheaves for Space-Time

Pierre Schapira

On the occasion of the retirement of Catriona Byrne, with my
sincere friendship

Personal Note
Books are of fundamental importance in Science, for the future, for the readers of
course and also for the authors: what better than a book to make your ideas spread?
I have a long history of publishing books with Springer, starting with LNM 126 in
1970! But my most significant experience was the publication of the book 292, with
Masaki Kashiwara, published in 1990. Catriona Byrne played a prominent role
in the process, making suggestions and corrections, offering criticism and, more
importantly, providing psychological support. Thank you Catriona!

The book mentioned above is about the microlocal theory of sheaves. Here,
three names have to be quoted: Jean Leray, who invented sheaf theory in the 40s,
when he was a prisoner of war; Alexander Grothendieck, who gave to this theory
its full strength by developing it in the framework of categories1 and emphasizing
the functorial point of view through “the six operations”; and Mikio Sato, who
introduced the microlocal point of view, showing that what we think of as “local” on
a manifold is in some sense global, it is the projection on the manifold of phenomena
occurring in the cotangent bundle. The book with Kashiwara mentioned above is a
formulation of this fundamental idea in the language of sheaves.

But what is sheaf theory? It is the mathematical treatment of the dichotomy
local/global. Some objects, or properties, are completely different when viewed
locally or globally. Some have no local existence, although they globally exist, and

1 We refer to [5] for a philosophical look at this theory.

P. Schapira (�)
Sorbonne Université, CNRS IMJ-PRG, Paris, France
e-mail: pierre.schapira@imj-prg.fr
http://webusers.imj-prg.fr/~pierre.schapira

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-M. Morel, B. Teissier (eds.), Mathematics Going Forward, Lecture Notes
in Mathematics 2313, https://doi.org/10.1007/978-3-031-12244-6_4

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12244-6_4&domain=pdf

 71 4110
a 71 4110 a
 
mailto:pierre.schapira@imj-prg.fr


-151 4125 a -151 4125 a
 
http://webusers.imj-prg.fr/~pierre.schapira

 480 4612 a 480 4612 a
 
https://doi.org/10.1007/978-3-031-12244-6_4


44 P. Schapira

others only exist locally. The Möbius strip is a popular mathematical illustration
of this fact: this strip may be locally oriented but traversing around it once, the
orientation is reversed. This dichotomy is present in many everyday phenomena,
especially in politics, where it is the source of strong conflicts.

And what does microlocal2 mean? If you are a point x on a real manifold
M , to be local means to observe everything in a small ball around you. But the
manifold admits a tangent bundle τM : TM → M and its dual, the cotangent bundle
πM : T ∗M → M . At x, roughly speaking, the tangent bundle TxM is the vector
space of all light rays passing through x and its dual T ∗x M is the space of all walls
passing through x that block the light. The tangent space is more intuitive but the
cotangent space, a symplectic manifold, is more important. It is the “phase space”
of the physicists. In a word, to be microlocal does not mean to replace M with
T ∗M but to work on M with T ∗M in mind. For example, the micro-support of a
sheaf F on M is the set of co-directions in which the sheaf F does not propagate.
The micro-support is co-isotropic for the symplectic structure of T ∗M , similarly
as the characteristic variety of a coherent D-module in the complex case.3 Indeed,
the micro-support of the sheaf of holomorphic solutions of a coherent D-module is
nothing but the characteristic variety of the D-module.

The smallest non-empty co-isotropic sets (assuming some weak regularity
condition such as, for example, being subanalytic) are the Lagrangian subvarieties.
The sheaves whose micro-support are Lagrangian are exactly the constructible
sheaves. A sheaf is constructible if there exists a stratification of M along which it
is locally constant. Constructible sheaves are of fundamental importance in various
branches of mathematics and also in physics. Generically, when it is smooth and the
rank of the projection πM is constant, a Lagrangian submanifold � is the conormal
bundle to its projection, a submanifold of M . But when the rank of the projection is
no longer constant, the projection becomes singular and caustics appear. In order to
calculate asymptotic expansions in a neighborhood of a caustic, Viktor Maslov [8]
introduced the index of a closed curve in a Lagrangian submanifold. The so-called
Maslov index was studied and reformulated by several authors, including [1, 6],
until Masaki Kashiwara gave a very simple and elegant description of it (see [4,
Appendix]).

When a “pure sheaf” F (a notion that we shall not explain here, referring to [4,
§ 7.5]) is microlocally supported by a smooth Lagrangian manifold �, at each point
p of � one can attach to F a half integer, called its shift at p, and this shift jumps
when the rank of the projection does so. This should be related to what is called
“phase transition” in physics.

Let us illustrate this point with space-time and the expansion of the universe (the
Big Bang). Of course, what will be written now is purely mathematical, is very
rough and does not have the pretension of corresponding to any physical reality. Let

2 See [11] for a detailed survey.
3 This is an important and difficult theorem of [10] later reformulated and proved purely
algebraically in [2].
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us represent the universe as a ball of dimension n (of course, for us n = 3) whose
radius R grows linearly with the time t so that we represent space-time as a closed
cone in R

4 with vertex at t = 0, similarly as a light cone in a Minkowski space. One
asks: what happens for t < 0? If one replaces the space-time with the constant sheaf
supported by it, the sheaf k{|x|≤t} (for a given field k), defined on t ≥ 0, we need to
extend it naturally for t < 0. The micro-support of this sheaf at the boundary is the
interior conormal. If we extend it naturally for t < 0 we get the exterior conormal
which is the micro-support of the constant sheaf on the open cone. In [3, Exa. 3.10,
3.11] we construct a “distinguished triangle”

k{|x|<−t}[n] → K → k{|x|≤t}
+1−→
ψ

and the micro-support of K outside the zero-section is the smooth Lagrangian
manifold associated with the Hamiltonian isotopy (x; ξ) �→ (x− tξ/|ξ |; ξ). Hence,
we get a sheaf K which corresponds to our intuition for t ≥ 0, and which is the
open cone shifted by the dimension for t < 0, the space at time t0 being more or less
the dual of the space at time −t0 (Fig. 1).

Fig. 1 Before the Big Bang

One can modify the Lorentzian case encountered above and consider a similar
situation on the n-dimensional unit sphere M = S

n (n ≥ 2) endowed with the
canonical Riemannian metric. In this case, the sheaf obtained has a shift which
jumps by the dimension minus one when t ∈ πZ.

What does it mean to be shifted? For sheaves this is a very common notion.
What is called “a sheaf” is indeed an object of the derived category, represented by a
complex of sheaves, and the shift of a complex is something familiar and elementary.
However, one would like the space at each time t to have a Riemannian structure and
the notion of shifted Riemannian structure, or that of shifted Lorentzian structure,
has not appeared in the literature, in contrast to what happens with symplectic
geometry. Shifted symplectic geometry is a part of what is called derived geometry,
based on the new language of ∞-categories.
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Conclusion
These two examples of a shift appearing in sheaf theory could suggest another point
of view on the Big Bang, a topic which should be treated with lot of care since it
attracts non-scientists and is the occasion of much nonsense. Nevertheless we can
mention the paper [7], and there is a vast physics literature on this subject, notably
under the impulse of Roger Penrose (see for example [9]).

Acknowledgements It is a pleasure to thank Stéphane Guillermou for his advice.
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The classical Lefschetz fixed point theorem states that the number of fixed points,
counted with multiplicity±1, of a smooth map f from a compact oriented manifold
M to itself can be calculated as the alternating sum

∑
(−1)k Tr f ∗|Hk(M) of the trace

of the induced homomorphism in cohomology.1 This alternating sum is called the
Lefschetz number L(f ) of the map f . As a corollary, if the Lefschetz number L(f )

is nonzero, then f has at least one fixed point.
In 1964, at the AMS Woods Hole Conference in Algebraic Geometry, Shimura

conjectured an analogue for a holomorphic map of the Lefschetz fixed point
theorem. Shimura’s conjecture got the people at the conference all excited, and
there was a workshop to prove it. At the end of the conference, there were two
proofs—an algebraic proof by Verdier, Mumford, Hartshorne, and others, along
more or less classical lines from the Grothendieck version of Serre duality, and an

1 Throughout this article H ∗(M) denotes de Rham cohomology [4] and the fixed points are
assumed to be nondegenerate.
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analytic proof by Atiyah and Bott. Grothendieck generalized the algebraic proof
in [9, Cor. 6.12, p. 131] and Atiyah and Bott generalized the analytic proof to the
Atiyah–Bott fixed point theorem for an elliptic complex in [1, Th. 1, p. 246] and [2,
Th. A, p 377].

There was a bit of controversy about this, because afterwards, Shimura’s name
disappeared from this theorem. It is now called the holomorphic Lefschetz fixed
point theorem and the more general version is the Atiyah–Bott fixed point theorem.
Shimura was quite upset about this. The principals in this story have all passed
away, Atiyah and Shimura in the last 2 years. Fortunately, while they were still
living, I was able to interview Michael Atiyah, Raoul Bott, Goro Shimura, and John
Tate about the holomorphic Lefschetz fixed point theorem and in 2015 I published
an article [13] in the hope of setting the history straight.

In Shimura’s recollection, he had conjectured more than the holomorphic
Lefschetz fixed point theorem. He said he had made a conjecture for an alge-
braic correspondence, which for a complex projective variety is the same as a
holomorphic correspondence, but he could not remember the statement nor did he
keep any notes. He believed that his conjecture for a holomorphic correspondence
should have number-theoretic consequences for a Hecke correspondence and
higher-dimensional automorphic forms. This article is an exploration of Shimura’s
forgotten conjecture, first for a smooth correspondence, then for a holomorphic
correspondence in the form of two conjectures, and finally an open problem
involving an extension to holomorphic vector bundles over two varieties and the
calculation of the trace of a Hecke correspondence.

The coincidence locus of two set maps f , g : N → M is the subset of N

on which they agree. A coincidence locus is sometimes the fixed-point set of a
correspondence and vice versa, but the two types of sets are not the same. In
Lefschetz’s original paper [11] he obtained a coincidence locus formula for two
continuous maps of manifolds. The fixed-point formula for a smooth correspon-
dence (Theorem 5.1) in this article agrees with Lefschetz’s coincidence formula
when the coincidence is a correspondence. Thus, Theorem 5.1 is essentially already
in Lefschetz [11]. It is also a special case of [5] for the trivial group action and
of [6, Theorem 4.7, p. 15] for the trivial sheaf. Since Lefschetz’s time, there have
been many generalizations and variants of his coincidence and fixed-point formulas
[5–7, 10, 12]. I offer this article in the hope that a simple-minded proof of a simple-
minded statement in the smooth case may spur some interest in the holomorphic
case.

At the end of the article, I include as historical documents some emails
concerning the conjecture from Shimura to Atiyah and me in 2013. I would like to
thank Jeffrey D. Carlson, Mark Goresky, Jacob Sturm, and the anonymous referee
for many helpful comments and suggestions.
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Fig. 1 A correspondence 


on X
Δ

Γ

X

X

1 Correspondences

Definition 1.1 Let X be a topological space. A correspondence on X is a subspace

 ⊂ X × X such that the two projections πi : 
 ⊂ X → X, i = 1, 2, are covering
maps of finite degree (Fig. 1).

A correspondence 
 on X may be viewed as the graph of a multivalued function
from X to X whose value at p ∈ X is the set π2π

−1
1 (p). By symmetry, it can also

be the multivalued function π1π
−1
2 .

We have defined a correspondence in the continuous category. Clearly, it can
also be defined in the categories of smooth manifolds and smooth maps, complex
manifolds and holomorphic maps, and algebraic varieties and regular maps.

2 Lefschetz Number of a Smooth Correspondence

Suppose π : N → M is a C∞ covering map of degree r . Denote by Ak(N) the
vector space of smooth k-forms on N . For ω ∈ Ak(N) and p ∈ M , define a k-
covector (π∗ω)p at p on M by

(π∗ω)p(v1, . . . , vk) =
∑

qi∈π−1(p)

ωqi (v
i
1, . . . , v

i
k),

where v1, . . . , vk ∈ TpM and vi
1, . . . , v

i
k are the unique tangent vectors in Tqi (N)

such that π∗vi
j = vj . As p varies over M , the k-covector (π∗ω)p becomes a k-form

π∗ω on M . This defines a pushforward map π∗ : Ak(N) → Ak(M) of smooth k-
forms on N . Since π∗d = dπ∗, the pushforward induces a linear map Hk(N) →
Hk(M) in cohomology, also denoted by π∗.

A smooth correspondence induces a linear map on the cohomology of the
manifold M by

π1∗π∗2 : H ∗(M)→ H ∗(M).
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Definition 2.1 The Lefschetz number L(
) of a smooth correspondence 
 is
defined to be the alternating sum of the traces of the linear map π1∗π∗2 on Hk(M):

L(
) =
n∑

k=0

(−1)k Tr π1∗π∗2 : Hk(M)→ Hk(M).

3 Fixed Points of a Smooth Correspondence

A fixed point of a smooth correspondence 
 on a manifold M is a point p in M

such that (p, p) ∈ 
 ∩� in M ×M , where � is the diagonal. The correspondence
is called transversal if 
 intersects � transversally in M×M . In this case, the fixed
points are said to be nondegenerate. Nondegenerate fixed points are isolated.

When the manifold M is oriented and the correspondence is transversal, we can
assign a multiplicity or index to each fixed point p in the usual way: ι
(p) = ±1
depending on whether the orientation on the tangent space T(p,p)(M×M) agrees or
disagrees with the orientation on the direct sum T(p,p)
⊕T(p,p)�. The intersection
number #(
,�) is then the sum

∑
ι
(p), where the sum runs over all fixed points

p of the correspondence 
. When the manifold M is compact, the number of
nondegenerate fixed points is finite and the intersection number is defined.

4 The Trace of a Smooth Correspondence

We show how to calculate the trace of a correspondence in terms of differential
forms.

Proposition 4.1 Let 
 ⊂ M × M be a smooth correspondence on a compact
oriented smooth manifold M , ψ1, . . . , ψm closed (n− k)-forms on M representing
a basis for Hn−k(M), and ψ∗

1 , . . . , ψ
∗
m closed k-forms representing the dual basis

for Hk(M). Then on Hk(M),

Tr π1∗π∗2 =
m∑

i=1

∫




π∗1 ψi ∧ π∗2 ψ∗
i .

Proof Let [ai
j ] be the matrix of the linear operator π1∗π∗2 on Hk(M):

π1∗π∗2 (ψ∗
j ) =

∑
ai
jψ

∗
i .
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Then

ai
j =
∫

M

ψi ∧ π1∗π∗2 ψ∗
j

= 1

r

∫




π∗1 ψi ∧ π∗1 π1∗π∗2 ψ∗
j

(

because
∫

M

τ = 1

r

∫




π∗1 τ
)

=
∫




π∗1 ψi ∧ π∗2 ψ∗
j

(
because ω ∧ π∗1 π1∗τ = rω ∧ τ

)
.

Therefore,

Trπ1∗π∗2 =
∑

i

ai
i =
∑

i

∫




π∗1 ψi ∧ π∗2 ψ∗
i . ��

5 The Lefschetz Fixed Point Theorem for a Smooth
Correspondence

Theorem 5.1 (Lefschetz Fixed Point Theorem for a Smooth Correspondence)
Suppose 
 is a transversal smooth correspondence on a compact, oriented smooth
n-manifold M . Then the Lefschetz number of 
 is

L(f ) =
∑

fixed points p

ι
(p).

Our proof largely emulates the approach of Griffiths and Harris in their account
of the Lefschetz fixed point formula for a smooth self-map [8, Chap. 3, Sec. 4,
pp. 419–422], but generalized to a smooth correspondence. The main idea is quite
simple. By Poincaré duality, the intersection number #(
,�) of the correspondence

 with the diagonal � can be calculated as the integral of the wedge product of
the differential forms representing their Poincaré duals. On the other hand, with the
trace formula of Proposition 4.1, the Lefschetz number of the correspondence
 can
also be calculated in terms of differential forms. The two expressions in differential
forms turn out to be equal.
Proof Let ψ1, . . . , ψs be closed forms on M representing a basis for H ∗(M), and
ψ∗

1 , . . . , ψ
∗
s closed forms representing the dual basis for H ∗(M). Note that the

forms ψi,ψ
∗
j run over all degrees, but ψi and ψ∗

i have complementary degrees in
n. By the Künneth formula, π∗1 ψi ∧ π∗2 ψj represent a basis for the cohomology
H ∗(M ×M). It is proven in [8, p. 420] that the Poincaré dual of the diagonal � is
given by

η� =
∑

i

(−1)degψ∗i π∗1 ψi ∧ π∗2 ψ∗
i .
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Then

L(
) =
∑

k

(−1)k Tr π1∗π∗2 |Hk(M)

=
∑

k

(−1)k
∑

degψi=n−k

∫




π∗1 ψi ∧ π∗2 ψ∗
i (Proposition 4.1)

=
∫




∑

i

(−1)degψ∗i π∗1 ψi ∧ π∗2 ψ∗
i (ψi runs over all degrees)

=
∫




η� (by the formula for η�)

=
∫

M

η
 ∧ η� (def. of the Poincaré dual η
)

= #(
 ·�) =
∑

fixed points p

ι
(p). ��

6 A Conjecture for a Holomorphic Correspondence

Let 
 be a holomorphic correspondence on a complex manifold M of complex
dimension n, that is, a complex submanifold of M×M such that the two projections
πi : 
 → M are holomorphic covering maps. As for a smooth correspondence,
a fixed point of the holomorphic correspondence 
 is a point p ∈ M such that
(p, p) is in the intersection 
 ∩ � in M × M , where � is the diagonal in M ×
M . The correspondence 
 is said to be transversal if 
 intersects the diagonal �
transversally in M ×M .

Denote by O the sheaf of holomorphic functions and Ap,q the sheaf of C∞
(p, q)-forms on M . Let 
(M,Ap,q) be the space of global sections of Ap,q ; these
are simply the C∞ (p, q)-forms on M . The sheaf O has an acyclic resolution

0 → O→ A0,0 ∂̄−→ A0,1 ∂̄−→ A0,2 ∂̄−→ · · ·

and the cohomology Hk(M,O) is the cohomology of the differential complex of
global sections


(M,A0,0)
∂̄−→ 
(M,A0,1)

∂̄−→ 
(M,A0,2)
∂̄−→ · · · .

(For background on sheaf cohomology, see [14].)
For a holomorphic covering map f : N → M , both the pullback f ∗ and the

pushforward f∗ of C∞ (0, k)-forms are cochain maps of the complexes 
(N,A0,•)
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and 
(M,A0,•). Since the projection maps π : 
 → M are holomorphic covering
maps, both the pullback π∗2 : H ∗(M,O) → H ∗(
,O) and the pushforward
π∗1 H ∗(
,O)→ H ∗(M,O) in cohomology are well-defined. Thus, the holomorphic
correspondence 
 induces linear maps of cohomology groups

π1∗π∗2 : Hk(M,O)→ Hk(M,O), k = 0, . . . , n.

The holomorphic Lefschetz number L(
,O) of 
 is defined to be an alternating
sum of traces as before:

L(
,O) =
n∑

k=0

(−1)k Tr π1∗π∗2 : Hk(M,O)→ Hk(M,O).

The holomorphic Lefschetz number is a global invariant. Next we define the
local contribution at each fixed point. Since a correspondence is a holomorphic
covering map of M via π1, locally it is the graph of a holomorphic function f . At a
fixed point p, let J (
) be the Jacobian matrix of the holomorphic function f with
respect to any holomorphic coordinate system.

Conjecture 6.1 If 
 is a transversal holomorphic correspondence on a compact
complex manifold M , then the holomorphic Lefschetz number of 
 is given by

L(
,O) =
∑

fixed points p

1

1− det J (
)p
.

I do not have any evidence for this conjecture other than that it specializes to
the correct formula when the correspondence 
 is the graph of a holomorphic map
f : M → M . Of course, the simplicity of the statement plays in its favor.

7 Extension to Holomorphic Vector Bundles

In their seminal paper on the fixed point theorem for elliptic complexes [3], Atiyah
and Bott extended, as a corollary of their general theorem, the Lefschetz fixed
point theorem to a holomorphic vector bundle for a self-map of a compact complex
manifold.

To get an idea of what needs to be generalized for a holomorphic correspondence,
we give here a brief summary of the Atiyah–Bott result for a holomorphic vector
bundle. For more details, consult [3, Section 4, pp. 455–459]. Let E be a
holomorphic vector bundle over a compact complex manifold M and f : M → M

a holomorphic map. Denote by 
(E) the vector space of C∞ sections of E over M
and by �p,q the C∞ vector bundle of (p, q)-covectors on M . The smooth sections
of E ⊗�p,q are the E-valued (p, q)-forms on M . The ∂̄-operator on (p, q)-forms
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extends to E-valued (p, q)-forms by acting as the identity on E and as ∂̄ on the
forms. There is then a differential complex


(E)
∂̄−→ 
(E ⊗�0,1)

∂̄−→ 
(E ⊗�0,2)
∂̄−→ · · · .

The cohomology H ∗(M,O(E)
)

of M with coefficients in E is defined to be the
cohomology of this complex of E-valued (p, q)-forms.

Now let F be a holomorphic vector bundle over the complex manifold M and let
f ∗F be its pullback under the holomorphic map f : M → M . The map f : M →
M induces a linear map of C∞ sections f ∗ : 
(F) → 
(f ∗F) by sending a section
s ∈ 
(F) to

(f ∗s)(x) = (s ◦ f )(x) = s
(
f (x)

) ∈ Ff (x) = (f ∗F)x, x ∈ M

where Ff (x) is the fiber of F at f (x). In order to obtain an endomorphism of 
(F),
Atiyah and Bott introduced the notion of a lifting of the map f to the bundle F . It
is a holomorphic bundle map ϕ : f ∗F → F over M . A lifting ϕ induces a linear
map ϕ∗ : 
(f ∗F) → 
(F) by composition: ϕ∗(s) = ϕ ◦ s. The holomorphic map
f : M → M and a lifting ϕ : f ∗F → F together define an endomorphism of 
(F):


(F)
f ∗−→ 
(f ∗F)

ϕ∗−→ 
(F).

Applied to F = E ⊗�0,k, this will then induce an endomorphism

(f, ϕ)∗ : H ∗(M,O(E)
)→ H ∗(M,O(E)

)

and the Lefschetz number of the triple (f, ϕ,E) is defined to be

L(f, ϕ,E) : =
n∑

k=1

(−1)k Tr (f, ϕ)∗
∣
∣
Hk(M,O(E))

, n = dimCM. (1)

Theorem 7.1 (Atiyah and Bott [3, Theorem 4.12, p. 458]) Let E be a holomor-
phic vector bundle over a compact complex manifold M , f : M → M a transversal
holomorphic self-map, and ϕ : f ∗E → E a holomorphic bundle map. Then

L(f, ϕ,E) =
∑

f (p)=p

Trϕp

det(1− f∗,p)
.

In this theorem, a transversal map is one whose graph intersects the diagonal
transversally in M ×M , ϕp : Ef(p) = Ep → Ep is a complex linear map, and f∗,p
is the differential of f on the holomorphic tangent space of M at p.

For a holomorphic correspondence 
 and a holomorphic vector bundle E over
M , the lifting of a self-map needs to be replaced by some notion of a lifting of the
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correspondence 
 to the bundle E, which should be a holomorphic bundle map over

. Then a plausible conjecture should have the same form as Theorem 7.1.

Conjecture 7.1 Let E be a holomorphic vector bundle over a compact complex
manifold M , 
 ⊂ M ×M a transversal holomorphic correspondence, ϕ a suitably
defined lifting of 
 to E, and L(
, ϕ,E) a suitably defined Lefschetz number. Then
the Lefschetz number L(
, ϕ,E) satisfies

L(
, ϕ,E) =
∑

f (p)=p

Tr ϕp

det
(
1− J (
)p

) ,

where J (
)p is the Jacobian matrix of 
 at (p, p).

In Shimura’s emails to Michael Atiyah and Loring Tu in June 2013 (see
Appendix), he actually claimed more. He said he had conjectured at Woods Hole in
1965 a Lefschetz fixed point formula for an algebraic correspondence between two
holomorphic vector bundles on two algebraic varieties of the same dimension. The
statement of this forgotten conjecture remains a mystery.

Stated more generally, Shimura’s intention might have been the following (as
formulated by Mark Goresky in a recent private communication):

Find and prove a holomorphic Lefschetz fixed point theorem that can be used to calculate
the trace of a Hecke correspondence on the holomorphic cohomology, coherent cohomol-
ogy, or ∂̄-cohomology, of a Hermitian locally symmetric space.

Appendix

Email from Goro Shimura to Loring Tu, June 13, 2013

Dear Loring,
It is nice to hear from you. I remember that you sent me your book in

collaboration with Bott. Here is my belated thanks for the book!
As for that fixed point formula I can say the following.
In the case of Riemann surfaces, Eichler’s result is quite general, and so it was

definitely meaningless to conjecture something only for Riemann surfaces.
What I conjectured was a formula for an algebraic correspondence, not just for a

map, between two algebraic varieties of the same dimension, so that it generalizes
Eichler’s formula. (Naturally, we have to (I had to) formulate it in terms of
holomorphic bundles.) I thought it might be applicable to automorphic forms on
the higher-dimensional spaces.

...
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As I understand it, the Atiyah–Bott formula deals with only a map, not a
correspondence, and so it does not include Eichler’s formula, nor does it prove my
conjecture. Therefore I think it is an open problem to prove it for a correspondence.
Am I wrong?

...

With best regards,
Goro Shimura

Email from Goro Shimura to Michael Atiyah, June 19, 2013

Dear Michael,

...

Frankly I am incapable of telling you what exactly my conjecture was. Probably
I made notes, but I don’t think I can find them.

I can tell you that it concerned an algebraic correspondence between two
holomorphic bundles on two base algebraic varieties of the same dimension,
consistent with an algebraic correspondence on the base varieties. I formulated it so
that it becomes Eichler’s formula in the one-dimensional case, and also it becomes
a special case of the Lefschetz fixed point formula when the bundles are trivial. I
was not considering real analyticity.

...

With very best regards,
Goro

Note Added in Proofs
Mark Stern proves both Conjectures 6.1 and 7.1 for compact Kähler manifolds in his
paper [15, Th. 3.4 and 3.11]. His lifting in Conjecture 7.1 Is a holomorphic bundle
map ϕ : π∗2 E → π∗1 E over the correspondence 
, where πi : 
 → M are the two
projections. Shimura’s conjecture on two holomorphic bundles on two varieties and
its number-theoretic applications remain open.
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Part II
Dynamical Systems

The article Vous avez dit qualitatif ? of Alain Chenciner is a fascinating mathemat-
ical, historical, epistemological and philosophical presentation of a large part of the
theory of dynamical systems.

The article A tale o’ pi by pelota of Ariel Amir and Tadashi Tokieda offers
a physical explanation of a result of Gregory Galperin stating that counting the
number of collisions between a large mass and a small mass sliding freely on a
floor, and a wall, also computes the decimals of pi.
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Vous avez dit “qualitatif” ?

Alain Chenciner

Pour Catriona

Les topologues sont les enfants de la nuit [38]

1 Introduction

Dans [22], Youri Iliashenko décrit joliment l’évolution de l’étude mathématique des
équations différentielles en distinguant trois périodes :

– celle de Newton : une équation différentielle est donnée. Résolvez-la !
– celle de Poincaré : une équation différentielle est donnée. Décrivez le comportement
qualitatif des solutions, sans la résoudre !
– celle d’Andronov : aucune équation différentielle n’est donnée. Décrivez les propriétés
qualitatives des solutions !

Dès la deuxième période, caractérisée par la considération de la figure que
forment les solutions d’une équation dans l’espace des phases, topologie et théorie
de la mesure jouent un rôle prépondérant. Dans la troisième, c’est l’espace formé par
un ensemble d’équations différentielles, et les structures algébrico – géométriques
engendrées par une équation “générique” (ou une famille générique d’équations),
qui devient la question, ce point de vue prenant toute sa force chez Thom qui en fait
une source de modèles.

Bien entendu, les choses ne sont jamais aussi tranchées : études de stabilité
des mécaniciens, théorie des perturbations des astronomes, espace des solutions de
Lagrange, théorème d’oscillation de Sturm, . . . mais l’irruption de la topologie dans
l’étude des équations différentielles (espace des phases, espaces fonctionnels) est
bien un phénomène majeur. Et je suis tenté de renverser la phrase de Thom mise en
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exergue et d’affirmer que, même si l’algèbre présente une transparence formelle et
une efficacité impressionnante, le sens, et donc la lumière, est plutôt du côté de la
topologie. La compréhension d’un phénomène peut-elle être autre que qualitative ?

N.B. Une première version de ce texte fut écrite à l’occasion d’un exposé au
séminaire de philosophie et mathématique de l’E.N.S. le 15 février 2016. Je me suis
inspiré librement de passages de [14, 16–18], recopiant même littéralement certains
d’entre eux.

2 En guise de hors-d’œuvre

Les trois périodes qu’Iliashenko identifie dans l’étude mathématique des équations
différentielles peuvent être déjà reconnues dans l’étude des équations polynomiales
à une variable :

– 1) un polynôme P (x) = ∑n
i=0 aix

i est donné. Trouver les racines réelles, i.e. les x ∈ R

tels que P (x) = 0 ;
– 2) un polynôme P (x) = ∑n

i=0 aix
i est donné. Décrire qualitativement l’application

P : P1(C)→ P1(C) et en particulier l’ensemble des racines ;
– 3) aucun polynôme n’est donné. Décrire qualitativement les racines et leurs bifurca-

tions lorsque les coefficients du polynôme varient.

La première période culmine dans la résolution explicite des équations de degré
inférieur ou égal à 4 (Cardan, Tartaglia), la deuxième dans la description de
l’application P comme revêtement ramifié de la sphère de Riemann sur elle-même
(Riemann. . .), la dernière dans l’étude de la géométrie des discriminants (Thom. . .)
et la description des bifurcations qui en découle (figure 1).

Fig. 1 Les trois périodes de l’étude des racines de polynômes

3 Intégrer une équation différentielle ?

Dès la découverte du calcul différentiel par Leibniz et Newton, on a ramené divers
problèmes de géométrie ou de dynamique à la recherche des fonctions x(t) =(
x1(t), x2(t), · · · , xn(t)

)
d’une variable t à valeurs dans R

n qui satisfont à une
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relation F
(
t, x, x ′, x ′′, · · · ) ≡ 0, où x ′, x ′′, · · · désignent les dérivées successives

de x. On dit que F est une équation différentielle (ou encore un système d’équations
différentielles).

A priori, rien que du calcul et en effet, si l’équation est par exemple linéaire
et autonome (i.e. F est indépendante de t), on sait “calculer” ses solutions : par
exemple, dans le cas scalaire (n = 1), les solutions des équations x ′ − 2x =
0, x ′′ = 0, x ′′ +ω2x = 0 sont respectivement ke2t , at+b, c sin ωt+d cosωt , où
k, a, b, c, d sont des constantes. Mais la solution de l’équation du pendule simple
x ′′ + ω2 sin x = 0 fait déjà intervenir des fonctions elliptiques . . . En l’absence
de formule explicite, ce qui est le cas général, on peut chercher, comme le faisait
Euler, une solution sous la forme x(t) = a0 + a1t + a2t

2 + · · · d’une série
dont les coefficients ai sont obtenus par identification terme à terme mais se pose
alors la question de la convergence : par exemple, la série divergente d’Euler∑+∞

i=0 (−1)ii!t i+1, est une solution formelle de l’équation différentielle t2x ′+x = t .
Lorsque l’équation peut être résolue par rapport à la dérivée d’ordre le plus

élevé, par exemple, dans le cas le plus important en physique et en mécanique des
équations d’ordre 2, si elle s’écrit x ′′ = f (t, x, x ′), on la ramène à une équation du
premier ordre en prenant comme inconnues les dérivées d’ordre non maximal, ce
qui donne dans l’exemple

(x ′, y ′) = (y, f (t, x, y)
)
.

Paradigme du déterminisme, le théorème général d’existence et d’unicité locale des
solutions est dû dans ce cas au baron Cauchy (qu’il faut accompagner des noms
de Lipschitz, Peano, Arzela). Il permet en retour de définir de nouvelles fonctions
(par exemple l’exponentielle) comme unique solution d’une équation différentielle
qui possède telle ou telle propriété. Mais il y a loin d’un théorème d’existence des
solutions ou même de leur explicitation sous la forme de développements en séries
à la compréhension de leur comportement. Un nouvel objet doit être introduit qui
sera le lieu privilégié d’une analyse qualitative des solutions.

4 L’espace des phases et ses habitants

C’est en transformant une équation différentielle en champ de vecteurs dans
l’espace des phases, c’est-à-dire en un (système d’) équation(s) du premier ordre,
que l’on commence à l’appréhender qualitativement. Dans l’exemple ci-dessus,
supposant que f ne dépende pas de t , il s’agit du champ sur Rn × R

n = R
2n défini

par

X(x, y) = (y, f (x, y)
)
,

qu’on interprète comme la donnée en chaque point (x, y) ∈ R
2n du vecteur

de coordonnées
(
y, f (x, y)

)
. Résoudre l’équation revient à tracer les courbes

intégrales
(
x(t), y(t)

)
ayant pour vecteur vitesse en chaque point (x, y) le vecteur
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Fig. 2 (a) L’équation du pendule ; (b) ses courbes intégrales

Fig. 3 Le véritable espace des phases du pendule (voir [10, 11])

X(x, y) (figure 2 pour l’équation du pendule, voir également [10]). Nul besoin de
calculer pour se faire une idée, certes encore grossière, des solutions.

La notion de champ de vecteurs se généralise immédiatement aux variétés
différentiables. Un exemple très simple est encore donné par le pendule, la nature
angulaire de la coordonnée x impliquant que le véritable espace des phases est un
cylindre (figure 3).

Remarque En représentant simultanément l’ensemble des solutions comme un
feuilletage de l’espace des phases, on rend en particulier visible le théorème
d’existence et d’unicité des solutions à ceci près que, l’équation considérée étant
autonome, chaque courbe intégrale correspond à une infinité de solutions ne
différant l’une de l’autre que par une translation correspondant aux différents choix
du point origine x(0). Pour des équations scalaires (n = 1), on peut rajouter le
temps et représenter les graphes des solutions qui sont alors complètement séparées
comme dans un cristal liquide cholestérique. La figure 4 illustre ceci sur l’équation
du second ordre autonome la plus simple ẍ = 0.
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Fig. 4 Séparation des graphes des solutions de x′′ = 0

Lecture Le début du livre [1] pour comprendre comment la simple représentation
géométrique de l’ensemble des configurations que peut présenter un système permet
de résoudre par la topologie un problème difficilement accessible au calcul.

5 Intégrer ou décrire ? Le problème des trois corps

On sait résoudre le problème des deux corps, qui se ramène à l’attraction par un
centre fixe ; par contre, la tension entre la “résolution” du problème des trois corps
par Sundman et la preuve de “non-intégrabilité” de ce problème par Poincaré illustre
de façon exemplaire la difficulté inhérente à la notion même de résolution d’une
équation différentielle et la nécessité d’une description qualitative des solutions.

5.1 Sundman

Le théorème de Sundman (articles de 1907 et 1909 reproduits dans [34] énonce la
possibilité d’écrire des développements convergents pour les solutions du problème
des trois corps dont le moment cinétique n’est pas nul. Sundman montre que
cette hypothèse proscrit toute collision triple, puis que les collisions doubles se
régularisent comme points de branchement. Une transformation algébrique et un
changement de temps lui permettent alors de construire la solution sous la forme
d’une série qui converge pour toutes les valeurs du nouveau temps. On peut certes
présenter ce résultat comme une “résolution du problème des trois corps”, mais d’un
point de vue pratique ces séries n’apportent rien, d’abord parce qu’elles convergent
très lentement, ensuite parce qu’aucun renseignement qualitatif sur la nature de la
solution n’est lisible sur la série qui la représente. Quant aux solutions voisines, elles
sont tout simplement absentes de la représentation.

Or ce sont justement ces solutions voisines qui sont importantes, non seulement
parce que les conditions initiales ne sont jamais connues exactement mais également
parce que c’est sur les équations aux variations que se lisent les exposants des
solutions périodiques et que c’est de la non nullité de ces derniers que Poincaré
fait découler la non intégrabilité.



66 A. Chenciner

5.2 Poincaré

Bruns [4] avait montré1 la non-existence d’intégrales premières du problème
newtonien des trois corps qui soient algébriques en les vitesses, autres que celles qui
sont conséquences des symétries du problème, à savoir énergie et moment cinétique.
Par une méthode complètement différente intimement reliée au comportement des
solutions périodiques, Poincaré montre dans les chapitres V et VI des Méthodes
nouvelles la non-existence dans le problème planétaire des trois corps de nouvelles
intégrales premières qui soient analytiques sur (une partie de) l’espace des phases,
mais également en les masses planétaires supposées suffisamment petites.

Comparant son résultat à celui de Bruns, il écrit :

Le théorème qui précéde est plus général en un sens que celui de M. Bruns, . . . Mais, en un
autre sens, le théorème de M. Bruns est plus général que le mien ; j’établis seulement, en
effet, qu’il ne peut pas exister d’intégrale algébrique pour toutes les valeurs suffisamment
petites des masses ; et M. Bruns démontre qu’il n’en existe pour aucun système de valeurs
des masses. ([30] , tome I, section 85)

Si les “solutions périodiques génériques” (i.e., les solutions dont les exposants
sont non nuls) étaient denses dans l’espace des phases, ou simplement si elles
formaient un “ensemble d’unicité”,2 cela impliquerait immédiatement la non-
intégrabilité. En effet, l’existence d’un ensemble complet d’intégrales premières
commutant deux à deux et presque partout indépendantes impliquerait que chaque
orbite périodique sur laquelle les intégrales premières sont indépendantes a tous
ses exposants nuls. Malheureusement, cette propriété de densité, bien que vrai-
semblable, n’est toujours pas prouvée, mais elle a manifestement guidé l’intuition
de Poincaré. La preuve donnée dans les Méthodes nouvelles repose sur une
délicate analyse de l’abondance des coefficients non nuls dans le développement
de Fourier de la fonction perturbatrice (qui s’annule avec les masses des planètes),
ce qui revient essentiellement à montrer la non nullité des exposants des solutions
périodiques et interdit donc à ces dernières de former des “tores résonants” (i.e. des
continua remplissant des tores invariants périodiques) comme elles le font dans le
cas “non perturbé” où les masses planétaires s’annulent (figure 5), en rapport étroit
avec le passage de la figure 4 (gauche) à la figure 2 (gauche) obtenu en ajoutant
à l’équation x ′′ = 0 une petite perturbation ω2 sin x : du continuum d’équilibres
y = 0 ne subsistent que les points x = 0 mod π, y = 0).

1 En fait, l’article de Bruns contenait une faute qui fut relevée et corrigée par Poincaré.
2 i.e., un ensemble tel qu’une fonction analytique s’annulant dessus est identiquement nulle.
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Fig. 5 Destruction de tores résonants (d’après [16])

5.3 Poser les bonnes questions

L’approche qualitative des problèmes est parfaitement exprimée par Poincaré dès
1881 dans l’introduction à la première partie de son Mémoire sur les courbes
définies par une équation différentielle ([28], voir aussi [14]) : le problème des
trois corps y apparaît déjà comme la motivation de son étude qualitative globale
des équations différentielles :

Prenons, par exemple, le problème des trois corps : ne peut-on pas se demander si l’un
des corps restera toujours dans une certaine région du ciel ou bien s’il pourra s’éloigner
indéfiniment ; si la distance de deux corps augmentera, ou diminuera à l’infini, ou bien si
elle restera comprise entre certaines limites ? Ne peut-on pas se poser mille questions de ce
genre, qui seront toutes résolues quand on saura construire qualitativement les trajectoires
des trois corps ? Et, si l’on considère un nombre plus grand de corps, qu’est-ce que
la question de l’invariabilité des éléments des planètes, sinon une véritable question de
géométrie qualitative, puisque, faire voir que le grand axe n’a pas de variations séculaires,
c’est montrer qu’il oscille constamment entre certaines limites. Tel est le vaste champ de
découvertes qui s’ouvre devant les géomètres.
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6 Stabilité dans le problème restreint

Transition vers la troisième période dans la description d’Iliashenko, le problème de
la stabilité, bien que concernant ici une équation précise (une lune de masse nulle
tournant autour d’une terre dont l’orbite serait plane et circulaire), ne fait appel qu’à
certaines propriétés qualitatives de celle-ci et non à sa forme exacte.

6.1 Hill

La figure 6 représente les régions de Hill dans le problème restreint circulaire plan
des trois corps.

Introduites par Hill [20] en 1878, un an avant la thèse de Poincaré, dans son étude
du mouvement de la lune, ces régions fournissent une preuve purement topologique,
indépendante de toute résolution des équations, d’une forme de stabilité dans le
problème ; si la constante de Jacobi – i.e. l’énergie du problème dans un repère
tournant qui fixe le soleil et la terre – est suffisamment négative, la lune reste
confinée à un disque centré sur la terre dont le bord est le contour apparent d’une des
composantes connexes de l’hypersurface d’énergie correspondante dans l’espace
des phases (de dimensions 4).

Fig. 6 Régions de Hill (d’après [16])
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6.2 Poincaré

Le résultat de Hill, bel exemple de cette théorie qualitative des équations différen-
tielles que Poincaré développera dans une série de travaux, n’exclut pas la possibilité
de collisions de la lune avec la terre. On sait (voir [16]) que Poincaré croira avoir
démontré l’impossibilité de telles collisions dans son Mémoire de 1889 Sur le pro-
blème des trois corps et les équations de la dynamique et, sa faute une fois reconnue,
ne prouvera dans le chapitre XXVI des Méthodes nouvelles de la mécanique céleste
qu’un résultat de stabilité en moyenne, qu’il appellera Stabilité à la Poisson. Il
faudra attendre la théorie KAM (acronyme de Kolmogorov, Arnold, Moser), initiée
en 1954 par Kolmogorov [23], pour disposer d’un résultat rigoureux d’existence de
solutions quasi-périodiques impliquant la stabilité dans le problème considéré, mais
entre temps, le résultat de Poincaré aura engendré la théorie ergodique, sorte de
compromis entre les approches purement topologique et purement analytique des
équations, dans laquelle ce ne sont plus les solutions individuelles que l’on cherche
à déterminer, mais des ensembles de solutions supports de mesures de probabilité
invariantes. Quant à l’erreur du mémoire de 1889, sa correction est à l’origine de la
compréhension des intersections homoclines et hétéroclines de variétés invariantes3

(voir [16] figures 18 et 21) et a donné naissance à la bien mal nommée “théorie du
chaos”. L’une des figures les plus connues attachées à ces phénomènes est celle
du fer à cheval de Smale (voir [10]) ; il est intéressant de rappeler que c’est en
étudiant un article de Cartwright et Littlewood montrant, contrairement à ce qu’il
avait conjecturé, l’existence d’équations dissipatives qui possèdent de façon robuste
une infinité de solutions périodiques, que Smale découvrit ce dernier. Bel exemple,
s’il en faut, de l’intrication du quantitatif et du qualitatif.

6.3 KAM

La vision géométrique de l’espace des phases joue un rôle particulièrement im-
portant dans la démonstration par Kolmogorov de la persistance sous l’effet d’une
perturbation suffisamment petite de solutions quasi-périodiques “suffisamment non
résonantes”. Le premier geste géométrique est de considérer non pas simplement
une solution quasi-périodique et le problème de Cauchy associé, mais son adhérence
dans l’espace des phases. On obtient ainsi un ensemble invariant dynamiquement
signifiant, un tore invariant lagrangien dont on peut chercher une fonction généra-
trice comme solution de l’équation de Hamilton-Jacobi ; c’est ce qui avait permis
à Poincaré de construire les séries de Lindstedt dont Lindstedt lui-même n’avait pu
construire que les premiers termes (voir [16]). On assiste bien ici au passage de

3 Celles attachées aux solutions périodiques hyperboliques ayant survécu à la perturbation.
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l’espace des phases comme pur lieu de calcul à l’espace de phases comme lieu à la
fois de topologie et de théorie de la mesure.4

7 Généricité

Hassler Whitney ayant démontré qu’étant donné un fermé quelconque F dans Rn,
il existe une fonction f : F → R

n de classe C∞ telle que f−1(0) = F , parler
de la forme d’une hypersurface de niveau d’une telle fonction est désespéré : la
différentiabilité n’est pas une restriction plus forte que la simple continuité. Par
contre, comme Poincaré, Thom sait bien que, si l’on accepte d’écarter les situations
trop singulières, une approche géométrique de tels objets redevient possible. Pour
le premier, c’est l’étude des singularités d’équations différentielles définies par
des polynomes “les plus généraux de leur degré”, l’introduction des probabilités
dans l’étude des systèmes dynamiques ou l’affirmation de l’imparité du nombre
de géodésiques fermées sur une surface convexe ; pour le second ce seront les
stratifications d’espaces fonctionnels et la théorie des singularités.

7.1 Le général et le particulier : mesure et catégorie

7.1.1 Poincaré

Dans sa thèse [31], Anne Robadey étudie l’usage des notions de “cas général”
et “cas particulier”, voire “exceptionnel”, dans la formulation et la démonstration
de certains “théorèmes” de Poincaré. Un exemple, vivement critiqué par Morse,
est l’affirmation que sur une surface convexe, le nombre de géodésiques fermées
plongées est impair. Cette affirmation, évidemment fausse pour la sphère ronde, est
cependant vraie “en général”. D’un autre côté, Poincaré a parfaitement compris que
dès qu’un système dynamique atteint un certain niveau de complexité, chercher à
décrire précisément toutes les solutions perd son sens et que l’on ne peut qu’essayer
de donner des propriétés de la plupart d’entre elles. La notion de probabilité semble
bien adaptée à ce but et Poincaré, nullement arrêté par les probabilités continues
qui effrayaient tant Joseph Bertrand5 développe des considérations profondes qui
donneront naissance à la théorie ergodique. Le théorème de récurrence, qu’il
démontre afin d’obtenir la forme de stabilité dans le problème restreint des trois
corps évoquée dans la section 6.2) en est l’exemple inaugural.

4 Partant d’un système complètement intégrable, on obtient en effet un ensemble de mesure positive
de tores invariants.
5 Poincaré comprend que c’est la notion d’ensemble de mesure nulle qui est bien définie,
indépendemment du choix d’une densité de probabilité pourvu que celle-ci ait une régularité
suffisante (voir [16] section 8.2, [31] section 3.5.3).



Vous avez dit “qualitatif” ? 71

7.1.2 Borel, Baire

De même qu’il est illusoire de chercher à décrire toutes les solutions d’une équation
différentielle donnée, il est naturel de chercher à décrire qualitativement non pas
toutes les équations mais un sous-ensemble assez “gros” et si possible “naturel” de
celles-ci. La notion de “cas général” ou, comme on dit aujourd’hui, de “propriété
générique” est multiforme, les points de vue topologique (ensemble maigre au sens
de Baire) et probabiliste (ensemble de mesure nulle) s’opposant le plus souvent
(voir [7, 8]). On peut voir là l’opposition entre qualitatif et quantitatif mais, comme
le montre le beau livre d’Oxtoby [26], la réalité est plus subtile : bien que définissant
des univers étrangers l’un à l’ autre, les deux principales notions de cas général –
reposent sur des théories (théorie de la mesure et théorie de la catégorie de Baire)
ayant beaucoup de similarités.

7.2 De la stabilité structurelle aux figures universelles de
bifurcations

7.2.1 Andronov, Pontryagin

Introduite en 1937 sous le nom de systèmes grossiers par Andronov et Pontryagyn
[2], la stabilité structurelle d’une équation, autrement dit le maintien des propriétés
qualitatives de ses solutions lorsqu’elle est légèrement perturbée (d’une manière
qu’il faut bien entendu préciser techniquement) semble être une condition nécessaire
à la pertinence d’une telle équation dans la description d’un phénomène. Si pour des
équations dans le plan cette propriété se révèle être générique, il n’en est plus du tout
de mème en dimension supérieure (voir [32]).

7.2.2 Thom

Chez Thom, cette exclusion des cas trop particuliers prend une forme très aboutie
dans l’étude des espaces de fonctions indéfiniment dérivables (C∞) sur une variété.
Si l’on accepte d’ignorer un sous-ensemble de codimension infinie (i.e. un sous-
ensemble que n’importe quelle famille de fonctions à un nombre fini de paramètres
pourra éviter au prix d’une éventuelle petite perturbation), on peut affirmer que
l’ensemble des zéros possède une structure donnant prise à une étude géométrique.
C’est la théorie des singularités6 (voir [9]) qu’à la suite de Morse et Whitney,
Thom développe à l’aide des deux outils techniques majeurs que sont le lemme de
transversalité dans les espaces de jets et la notion de stratification. La classification
des singularités de germes de fonctions C∞ de petite codimension est à l’origine de

6 et en particulier la notion de déploiement versel.
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la Théorie des catastrophes (voir [27]) dans laquelle ce sont les figures universelles
de bifurcation et non plus les équations particulières qui servent de modèles ; mais
l’échec d’une telle classification dans le cas des systèmes dynamiques, où aucune
relation d’équivalence n’est satisfaisante, fait qu’une description probabiliste qui
oublie les trajectoires exceptionnelles s’impose dans la plupart des cas.

8 Symétries

La notion de généricité que nous venons d’évoquer est très générale puisque
qu’elle porte sur l’espace de toutes les équations différentielles ou celui de tous
les difféomorphismes sur une variété.

Mais les équations provenant de la physique ou de la mécanique telles le
problème des n corps ont des symétries dont le rôle dans la nature qualitative
de leurs solutions est déterminant et ce sont donc les sous-espaces d’équations
différentielles ou de difféomorphismes déterminés par ces symétries qui, bien que
leur codimension soit infinie, sont seuls pertinents.

8.1 Symétries et intégrales premières : Noether

Ces équations sont en général les équations aux variations (ou équations d’Euler-
Lagrange) exprimant la stationnarité de l’ intégrale d’action

∫ b
a
Ldt associée à

un Lagrangien L qui, dans l’exemple du problème des n corps, est une fonction
des positions et des vitesses de chacun des corps. Un théorème justement célèbre
d’Emmy Noether (voir [24]) montre qu’à chaque champ de vecteurs sur l’espace
des configurations7 dont le flot local laisse invariant le Lagrangien est associée une
intégrale première, c’est-à-dire une fonction des positions et des vitesses qui reste
constante au cours d’un mouvement. Ainsi, l’invariance par les rotations implique
la conservation du moment cinétique, le caractère autonome, c’est-à-dire le fait que
le Lagrangien ne dépende pas du temps, implique la conservation de l’énergie.

8.2 Invariants intégraux : Poincaré, Cartan

Déjà présente chez Lagrange (voir [21]), la structure symplectique de l’espace des
phases8 prend également son origine dans la nature variationnelle des équations

7 i.e. l’espace des positions dans le cas du problème des n corps.
8 Techniquement, cette structure apparaît de façon naturelle du côté cotangent c’est-à- dire dans
l’espace des positions - impulsions.
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d’Euler-Lagrange. Impliquant en particulier la conservation de la mesure (théorème
dit de Liouville), cadre dans lequel prend sens le théorème de récurrence évoqué
dans la section 7.1.1, c’est l’exemple typique d’un invariant intégral : il faut
lire au début du troisième tome des Méthodes nouvelles ([30] chapitre XXII) la
manière superbe qu’a Poincaré d’introduire la notion d’invariant intégral comme
intégrale infinitésimale des équations aux variations le long d’une solution (voir
[16] paragraphe 8.1). Dans son premier livre [5] Elie Cartan généralisera l’invariant
intégral de Poincaré en y incluant le temps.

8.3 Minimiser l’action sous contrainte de symétrie

Un exemple de raisonnement de type topologique dont l’idée revient encore à
Poincaré (voir [15]) est la recherche de solutions du problème des n corps ayant
un comportement qualitatif prescrit. En particulier, la recherche des solutions
“les plus simples” ayant certaines propriétés de symétrie9 dans le sens où elles
minimisent l’action lagrangienne parmi les chemins ayant ces symétries, a conduit
à la découverte de nouvelles classes de solutions, les chorégraphies et les Hip-Hops
(voir [25]). Là encore, comme pour les solutions quasi-périodiques de Kolmogorov
évoquées dans la section 6.3, la résolution du problème de Cauchy serait inopérante,
la théorie étant incapable de déterminer a priori les conditions initiales de telles
solutions.

9 Images, formes, noms

9.1 La faune de la dynamique qualitative : Smale

Toute une zoologie (une botanique ?) s’est constituée, simultanément pour les équa-
tions différentielles et pour leur version discrète, les difféomorphismes : singularités,
solutions périodiques, solutions quasi-périodiques, ensembles invariants, leurs va-
riétés stables, instables ou centrales, points homoclines ou hétéroclines, dynamique
symbolique, attracteurs et leurs bassins, transitoires, mesures invariantes, entropies
métriques ou topologiques, . . . L’article-programme [32] que Smale publie en
1967 insiste en particulier sur l’itération des difféomorphismes, version à temps
discret (stroboscopie) des équations différentielles. Il met en place les notions (en
particulier l’ensemble non errant ou �-set, la no cycle condition, la �-stabilité) lui
permettant d’établir la classification d’un sous-ensemble de difféomorphismes qui,
s’il est générique en dimension deux, ne l’est plus du tout en dimension supérieure
où une classification raisonnable semble utopique. Je renvoie pour un panorama

9 il s’agit ici de symétries discrètes.
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du domaine en 1985 à mon article [10] de l’Encyclopædia Universalis. Depuis,
la théorie a certes évolué mais les bases conceptuelles sont restées dans une large
mesure celles établies par Poincaré. Les images, par contre, issues d’ordinateurs de
plus en plus puissants, sont devenues incomparablement plus riches et précises mais
il arrive souvent qu’une image plus grossière et délibérément déformée parle mieux
à l’imagination . . . et qu’une image trop fidèle nous trompe (le théorème de Cauchy
semble faux sur les portraits de phase de certaines équations comportant un très petit
paramètre).10

9.2 L’importance des images

Les premiers dessins de solutions d’une équation différentielle sous la forme de
courbes intégrales feuilletant un espace des phases semblent être ceux de Joukowski
et de Poincaré, tous deux dans le cas d’un espace des phases de dimension deux.
C’est là que sont répertoriés les divers types de points singuliers génériques, nœuds,
cols, foyers et que des théorèmes (Euler-Poincaré, Poincaré Bendixson) régissent
l’organisation globale de ces éléments. Bien entendu, dans leurs études de stabilité
linéaire de mouvements séculaires, Lagrange et Laplace calculaient déjà des valeurs
propres d’équations différentielles linéaires (avant même que la théorie spectrale
des matrices soit née) mais la représentation géométrique était absente.

Pour Thom, le choix radical est entre magie et géométrie :

(. . .) je ne suis pas sûr que dans un univers où tous les phénomènes seraient régis par un
schéma mathématiquement cohérent, mais dépourvu de contenu imagé, l’esprit humain
serait pleinement satisfait. Ne serait-on pas alors, en pleine magie ? Dépourvu de toute
possibilité d’intellection, c’est-à-dire d’interpréter géométriquement le schéma donné, où
l’homme cherchera à se créer malgré tout par des images appropriées une justification
intuitive au schéma donné, ou sombrera dans une incompréhension résignée que l’habitude
transformera en indifférence. En ce qui concerne la gravitation, il n’est pas douteux que
la seconde attitude a prévalu ; car nous n’avons, en 1968, pas moins de raisons de nous
étonner de la chute d’une pomme que Newton. Magie ou géométrie, tel est le dilemme
que pose toute tentative d’explication scientifique. De ce point de vue, les esprits soucieux
de compréhension n’auront jamais, à l’égard des théories qualitatives et descriptives, des
présocratiques à Descartes, l’attitude méprisante du scientisme quantitatif. [37]

Mais image ne s’oppose pas à schéma mathématique cohérent et souvent
elle guide ce dernier : le fer à cheval de Smale en témoigne superbement. Un
exemple tiré de [12] (voir un résumé dans [13]) concerne le comportement de
certaines familles à deux paramètres génériques de difféomorphismes de R

2 : pour
des valeurs des paramètres voisines d’une certaine courbe 
, les sous-ensembles

10 Rappelons qu’il est effectivement faux si la régularité de l’équation est plus faible que
lipschitzienne. Qu’alors l’unicité ne soit plus assurée est mis en avant par Joseph Boussinesq dans
[3] pour justifier de la nécessité de choix (divins ? une autre forme de qualitatif . . . voir l’analyse
de [40]) dans l’évolution des phénomènes vitaux.
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invariants, courbe, orbite périodique ou ensemble de Cantor, que possèdent les
difféomorphismes correspondants s’organisent au voisinage d’un paraboloïde dans
l’espace produit du plan des paramètres par le plan de phase. On peut, en première
approximation, considérer ce paraboloïde comme le déploiement dans la direction
de la courbe 
 d’un plan sur lequel agirait un difféomorphisme générique du disque
conservant les aires (figure 7).

L’image – imitant celle de la classique bifurcation de Hopf – est bien entendu
heuristique et ne participe aucunement à la démonstration qui nécessite d’envisager
un à un les divers sous-ensembles invariants, mais elle guide qualitativement la
recherche de ceux-ci : un difféomorphisme conservatif appartenant à un sous-
ensemble de codimension infinie de l’ensemble des difféomorphismes, on comprend
qu’il puisse rassembler les traits d’une infinité de difféomorphismes non conserva-
tifs ; par exemple, il existe au voisinage de 
 un ensemble de Cantor de valeurs
des paramètres pour lesquelles le difféomorphisme correspondant possède comme
seul ensemble invariant autre que le point fixe une courbe fermée invariante non
normalement hyperbolique sur laquelle il est conjugué à une rotation diophantienne,
alors que, le difféomorphisme conservatif générique possède un ensemble de Cantor
de telles courbes invariantes.11 De même, toute la complexité de la dynamique
conservative dans les zônes d’instabilité entre les courbes invariantes se retrouve
mais les différents éléments (orbites périodiques elliptiques ou hyperboliques,
orbites homoclines, orbites dont l’adhérence est un ensemble de Cantor, . . .)
apparaissent isolément pour différentes valeurs des paramètres appartenant à une
infinité de bulles (figure 10 de [13]).

Fig. 7 (d’après [12])

11 C’est le théorème de la courbe invariante de Moser, qui fait partie de la galaxie K.A.M..
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9.3 La convention du Nom

Finalement, ce qui est en jeu, c’est le langage, le problème des nominations.
Nommer exige l’oubli de détails mais la signification est à ce prix. Poincaré ne
disait pas autre chose dans [29] en montrant le caractère “conventionnel” de la
considération du groupe des déplacements dans la description des mouvements d’un
“solide” :

Quand l’expérience nous apprend qu’un certain phénomène ne correspond pas du tout
aux lois indiquées, nous l’effaçons de la liste des déplacements. Quand elle nous apprend
qu’un certain changement ne leur obéit qu’approximativement, nous considérons ce
changement, par une convention artificielle, comme la résultante de deux autres change-
ments composants. Le premier composant est regardé comme un déplacement satisfaisant
rigoureusement aux lois dont je viens de parler, tandis que le second composant, qui est
petit, est regardé comme une altération qualitative. Ainsi nous disons que les solides naturels
ne subissent pas seulement de grands changements de position, mais aussi de petites flexions
et de petites dilatations thermiques.

et en conclusion :

Tout comme la catégorie de l’espace représentatif, le concept général de groupe est une
forme de notre entendement et le groupe des déplacements relève d’une suite de décisions
conventionnelles qui adaptent, dans un équilibre réfléchi, notre expérience à la catégorie :
En résumé, les lois en question ne nous sont pas imposées par la nature, mais sont imposées
par nous à la nature. Mais si nous les imposons à la nature, c’est parce qu’elle nous permet
de le faire. Si elle offrait trop de résistance, nous chercherions dans notre arsenal une autre
forme qui serait pour elle plus acceptable.

De même, dans le domaine des équations différentielles, le fait qu’une forme
reconnaissable et descriptible n’apparaisse qu’au prix de l’exclusion d’équations
trop dégénérées était considéré par Thom comme le signe du caractère “naturel” de
la théorie :

Chez les Modernes, imbus de description mathématique, cette même distinction réapparaît
avec la distinction classique : “Signal-Bruit”. Il n’existe, c’est bien connu, aucun critère
intrinsèque permettant, dans un ensemble de données expérimentales, de séparer ce qui
va constituer le “Signal” (considéré comme objet scientifiquement recevable), du résidu
numérique, qu’on rejettera dans un “Bruit” rebelle à l’analyse. Le signal provient toujours
d’une nomologie préexistante, c’est-à-dire d’un ensemble de règles mathématiques censées
être valables pour la description des faits considérés. Déjà Aristote avait bien vu que la
science ne devait s’occuper que de phénomènes “naturels”, c’est-à-dire de phénomènes qui
se présentent “le plus souvent” (ωσ επι τo πoλυ) ; les autres phénomènes, relevant de
l’accident, en seront en principe exclus . . . [39]

Difficile enfin d’illustrer l’importance du Nom sans évoquer Alexandre Grothen-
dieck dont la démarche est opposée : il ne s’agit plus d’oublier des détails ou des
cas trop particuliers mais au contraire de rechercher dans une généralité maximale,
incluant des cas rejetés jusqu’alors comme pathologiques, le naturel12 d’une théorie.
Comme l’écrit Pierre Cartier, le nom précède ici la découverte :

12 à prendre ici au sens catégorique, c’est-à-dire au sens de morphisme de foncteurs.
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C’est un maître de la dénomination, il en use comme d’une de ses stratégies intellectuelles
majeures. Il a un talent particulier pour nommer les choses avant de se les approprier et de
les conquérir, et beaucoup de ses choix terminologiques sont remarquables. [6]

9.4 La variété infinie et joyeuse des formes

(. . .) il y a une certaine opposition entre géométrie et algèbre. Le matériau fondamental
de la géométrie, de la topologie, c’est le continu géométrique ; étendue pure, instructurée,
c’est une notion mystique par excellence. L’algèbre, au contraire, témoigne d’une attitude
opératoire fondamentalement “diaïrétique”. Les topologues sont les enfants de la nuit ; les
algébristes, eux, manient le couteau de la rigueur dans une parfaite clarté. ([38])

Pour Thom, qui a souvent affirmé que c’est dans les parties floues et mal
formalisées – mais génératrices de formes – des mathématiques qu’il se passe
quelque chose qui l’intéresse, le sens est “clairement” du côté de la nuit : s’accordant
mal avec la transparence, il ne se déploie que dans une certaine opacité riche
de formes rêvées, y compris dans des espaces de dimension supérieure à trois
(voir [17]), et ce bien que tout l’édifice des mathématiques semble reposer sur la
construction “évidente” des entiers. N’est-ce pas ce que suggère la phrase suivante,
qui clôt l’extrait dans lequel Thom affirme péremptoirement que “Tout ce qui est
rigoureux est insignifiant”, phrase que j’avais essayé de commenter dans [18] ?

Depuis la rupture galiléenne, le savant a toujours recherché le point faible de la nature ; il a
toujours essayé d’exploiter les automatismes, la “stupidité” de la nature : la physique est tout
entière fondée sur ce manque d’imagination têtu des forces naturelles. Mais de la répétition
indéfinie du même acte, l’addition de un, naissent les entiers naturels, l’arithmétique, d’où
émerge, en grande partie, la grandiose construction des mathématiques. Ceci nous montre
comment, d’un fond d’événements indistinguables, peut sortir la variété infinie et joyeuse
des formes. [35]

10 Conclusion

La difficulté qu’il y a à extraire de l’expression explicite d’une solution d’une
équation différentielle un renseignement utilisable était exprimée on ne peut plus
clairement par Sturm dès 1836 dans l’introduction de ([33]) :

[. . .] On ne sait les intégrer que dans un très petit nombre de cas particuliers hors desquels
on ne peut pas même en obtenir une intégrale première ; et lors même qu’on possède
l’expression de la fonction qui vérifie une telle équation, soit sous forme finie, soit en série,
soit en intégrales définies ou indéfinies, il est le plus souvent difficile de reconnaître dans
cette expression la marche et les propriétés caractéristiques de cette fonction. Ainsi par
exemple, on ne voit pas si dans un intervalle donné elle devient nulle ou infinie, si elle
change de signe, et si elle a des valeurs maxima ou minima. Cependant la connaissance
de ces propriétés renferme celle des circonstances les plus remarquables que peuvent offrir
les nombreux phénomènes physiques et dynamiques auxquels se rapportent les équations
différentielles dont il s’agit. S’il importe de pouvoir déterminer la valeur de la fonction
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inconnue pour une valeur isolée quelconque de la variable dont elle dépend, il n’est pas
moins nécessaire de discuter la marche de cette fonction, ou en d’autres termes, d’examiner
la forme et la sinuosité de la courbe dont cette fonction serait l’ordonnée variable, en prenant
pour abscisse la variable indépendante. Or on peut arriver à ce but par la seule considération
des équations différentielles en elles-mêmes, sans qu’on ait besoin de leur intégration.

Le surgissement d’une théorie qualitative des équations différentielles (ou plus
généralement des sytèmes dynamiques, i.e. des actions de groupe générales) était
donc inévitable mais on peut se demander si l’acception de cet adjectif a évolué de
Poincaré à Thom, Smale ou Arnold. Ne s’agit-il pas chez chacun d’une tentative de
description d’un espace des phases “qui fasse sens”, avec des outils topologiques,
géométriques, probabilistes, symboliques, mais également algébriques et analy-
tiques ? Ceci implique en général que, comme le rappelle Thom, on ne décrive pas
une équation isolée mais ce qu’ont en commun un ensemble d’équations et que l’on
peut alors nommer. Bien sûr, Poincaré, en particulier dans ses Méthodes nouvelles,
reste plus près des équations originales et des structures supplémentaires (intégrales
premières, invariants intégraux, symétries) qu’elles recèlent, mais il a déjà très
clairement la compréhension de la nécessité d’oublier les cas “trop particuliers”
si l’on veut tendre à des classifications. Quant à Thom, ce sont surtout les figures
universelles de bifurcations qui l’intéressent mais les catastrophes généralisées
qu’elles engendrent résistent souvent à la description.

Opposer qualitatif à quantitatif n’est ici guère pertinent car on calcule aussi
sur des classes d’homologie ou des lois de probabilité et identifier une forme
normale n’est après tout que chercher un “bon” changement de coordonnées, version
non linéaire de la diagonalisation d’une matrice. Et puis, quoi de plus résolu-
ment analytique que les problèmes de petits dénominateurs liés aux mouvements
quasi-périodiques, rencontrés par les astronomes dès l’origine de la théorie des
perturbations ? Or ces questions sont intimement liées au problème de la stabilité
et plus précisément à la généricité de la diffusion dans les perturbations de systèmes
hamiltoniens complètement intégrables à au moins trois degrés de liberté, toutes
questions dans lesquelles quantitatif et qualitatif se mêlent étroitement.

Finalement, tout sens n’est-il pas de nature qualitative et la théorie qualitative
des systèmes dynamiques, qui cherche à faire apparaître des structures identifiables,
n’est-elle pas simplement, comme le souhaitait Sturm, la théorie des équations diffé-
rentielles en ce qu’elles nous disent quelque chose sur les phénomènes qu’elles sont
censées représenter ? La discussion ci-dessous, sur laquelle Jean Petitot a attiré mon
attention, clôt l’article [36] et me servira de conclusion :

– Dr. Bodmer : What do you mean by a non-quantitative model ? You are still describing a
system of equations.
– Dr. Thom : No, I mean a geometric-algebraic structure.
– Dr. Bodmer : How is that defined except by a set of equations ?
– Dr. Thom : By a set of equations defined only up to a homeomorphism. It is a topological
configuration. Its study requires qualitative thinking instead of quantitative thinking. I am
sorry, but I don’t think that quantitative thinking is the answer for all things in nature. In
linguistics, it is certainly not the case.
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– Dr. Bodmer : I think the distinction between qualitative and quantitative is merely a matter
of quantity !
– Dr. Thom : No, No, No.

(Editor’s note : On this hopeful note of common agreement, the conference was ended.)

L’auteur remercie Jean-Michel Morel pour ses relectures constructives et le refe-
ree anonyme pour son impitoyable chasse aux coquilles, maladresses et références
manquantes.
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Tale o’ pi by pilota

Ariel Amir and Tadashi Tokieda

Take masses M,m, and slide M toward m along a frictionless floor ended by a wall;
all collisions, between mass m and mass M as well as between wall and mass m,
are elastic.

Denote by πd the total number of inter-mass and wall-mass collisions that
occur when M/m = 100d , for d = 0, 1, 2, . . . Gedankenexperiment when d =
0, M/m = 1: we would then witness collisions 1) m-M , then 2) wall-m, then 3)
m-M , after which M escapes to infinity and no more collisions occur. Thus π0 = 3.
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If d is large so that M/m � 1, then m busily rebounds back and forth in the
narrowing gap between the wall and the approaching M . After being hit by m many
times M begins to recede, the gap widens, and eventually the experiment finishes.

Data reveal

π0 π1 π2 π3 π4 π5 · · ·
3 31 314 3141 31415 314159 · · ·

Yes, πd/10d turns out to replicate exactly the leading d + 1 digits of π .
This result was discovered by Gregory Galperin [1]. In our little note we offer

a derivation which, though merely approximate, has the virtue of being physically
natural.

Per cycle

m slides toward wall, wall-m collide, m slides toward M , m-M collide

how do the velocities V, v of M,m change? It is intuitive that

V2 ≈ V0 and v2 − v0 ≈ 2V0 if M/m� 1

i.e. V hardly changes but v changes by 2V per 2 collisions: dv/d
(πd

2

)
≈ 2V or

dπd ≈ dv

V
.

The prudent among us may check the intuition by calculation. The conservations of
momentum and energy give for the wall-m collision

[
V1

v1

]

=
[

1 0
0 −1

] [
V0

v0

]

and for the m-M collision

[
V2

v2

]

= 1

M +m

[
M −m 2m

2M −(M −m)

] [
V1

v1

]

≈
[

1 0
2 −1

] [
V1

v1

]

if M/m� 1.
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Unsurprisingly these matrices represent reflections, hence have eigenvalues ±1.
They compose as

[
V2

v2

]

≈
[

1 0
2 −1

] [
1 0
0 −1

] [
V0

v0

]

=
[

1 0
2 1

] [
V0

v0

]

,

in particular v2 − v0 ≈ 2V0.

Now on the V v-plane, the phase point

[
V

v

]

hops alternately between the lower

plane
{
v < 0 |wall

m←− M
}

and the upper plane
{
v > 0 |wall

m−→ M
}
, while being

constrained on the ellipse

1

2
MV 2 + 1

2
mv2 = constant energy E.

Once

[
V

v

]

enters the ‘escape wedge’
{
V > 0 and |v| < |V |}, however, no more

collisions occur. On account of hopping,

[
V

v

]

traces the ellipse with density
1

2
.

Therefore

πd ≈ 1

2

∫

outside wedge

dv

V
.

Since M/m � 1, the ellipse becomes very tall and very thin, making the
integral outside the wedge practically equal to the integral along the whole ellipse.
Restricting it to the first quadrant and compensating with a factor of 4,

πd ≈ 1

2
· 4
∫ vmax=√2E/m

0

dv
√

2E −mv2

M

= 2 arcsin 1 ·
√

2E/m√
2E/M

= π ·√M/m.

The relation dπd ≈ dv/V , key to the derivation above, is deducible from
adiabatic invariance, too. Let w be the width of the gap between the wall and
M . We have V = −ẇ. The time it takes m to slide over w is w/v ≈ 1/π̇d ,
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inversely proportional to the rate of collision. As long as |V | � |v|, which holds if
M/m� 1,

adiabatic invariant vw ≈ constant �⇒ π̇d

v̇
≈ − wπ̇d

vẇ
≈ 1

V
.

Pilota in the title is a ball game, a sort of squash played in its rustic form
with palms of hands, popular throughout southern Europe; children hit the ball
against a wall, hit the rebounding ball again, etc. The word is Basque, a loan from
neighboring Romance languages (French pelote, Spanish pelota). And Hebrew
is read from right to left, whereas Japanese palindromes are reversed syllable by
syllable.
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Part III
Finance

Chris Rogers’ paper What next? is an excellent introduction to this part. In it, he
stresses the new fields opening to mathematics because “computational tools make
it so much easier to explore than before; new applications demand it; our capacity
to explore theoretical mathematical questions has not expanded to the same extent;
applications is where we will find new theoretical questions.” Even if, he says, “a
lot of this could as well be done by physicists, engineers, statisticians, or computer
scientists – and is”, the point is that the mathematical upbringing is irreplaceable.
The author ends up expanding on one class of problems on controlled Markov
processes where “it may possibly be that recent computational techniques may allow
progress”.

In Some remarks on enlargement of filtration and finance, Monique Jeanblanc
gives a short overview of enlargement (or expansion) of filtration, providing a survey
of recent important results, some open questions, and applications in mathematical
finance.

In Modern extreme value theory at the interface of risk management, Bayesian
networks and heavy-tailed time series, Paul Embrechts, Claudia Klüppelberg and
Thomas Mikosch present three very different examples of recent research from
the realm of modern extreme value theory, at the interface of risk management,
Bayesian networks and heavy-tailed time series.

The strong contribution Limits of limit-order books of Christopher Almost,
John Lehoczky, Steven Shreve and Xiaofeng Yu shows that the diffusion scaling
methodology developed to study heavy traffic limits of queueing systems can be
adapted to Poisson limit-order book models. The authors show that while the
Poisson model is infinite-dimensional with state recording the number of orders at
each tick on a doubly infinite price-tick grid, the diffusion limit is low dimensional.



What Next?

L. C. G. Rogers

When I was invited to contribute to this collection, the suggestion from Springer
was to try to address the question, “Where is mathematics going?” Well, prediction
is notoriously hard to do, especially when it concerns the future, so maybe some
reflections on how mathematics has developed in the past could inform where the
subject might be going.

When we start our mathematical education, it is easy to think that the lectures
we are attending present what mathematics is; it is only later that we realise that
what we learned was only what mathematics was at the time. For example, one
hundred years ago saw the publication of Watson’s definitive account of Bessel
functions [9], a work of great scholarship for sure, but a topic that features little
in contemporary research. Areas of mathematics open up, are worked for some
years, and in time pass into history, only the highlights becoming part of what all
students are taught. Most of us feel the necessity to work on subjects that interest
our colleagues, otherwise we will not be published or invited to conferences. To
stay relevant, we have to be constantly aware of how the subject is changing round
us.

New mathematics can come from pure curiosity; or from the needs of appli-
cations; or from changes in technology; but in my view it is the last of these
which has been most important in the past fifty years. The availability of powerful
laptop computing and easy-to-use packages have completely transformed how we
do mathematics. Where now is the art form of integration, which those of my
generation spent long hours mastering and practising? Coded up in symbolic math
packages. How about Watson’s Bessel function identities? The same. Why do
we need the painstaking drudgery of power-series expansions for special functions
when our packages can evaluate them rapidly and accurately? Even those who
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consider themselves pure mathematicians have to be familiar with computational
techniques, either to manage laborious symbolic calculations, or more simply to
generate random instances of mathematical structures to check whether a conjecture
about them might possibly be true.

The insistence on precise statements and correct proof is still the essence of
mathematics. This delivers us truths as absolute as humanly possible, as durable as
stone, and which can be put together to build structures of amazing beauty and great
strength, like great castles. If we stay inside our castles (as many of our colleagues
do) we can find endless interest, but we have limited influence on the world outside.
If we go outside, our focus shifts from the creation of mathematical results to the
use of mathematical methods to answer questions that matter. So for example, in
various stochastic algorithms, such as simulated annealing, Markov Chain Monte
Carlo, particle filtering, machine learning,. . . , the ideas of the algorithm can be very
simply explained—the mathematics here is not particularly deep. A basic program
can easily be written to implement the algorithm; however, your first attempt will
at best do moderately well on very simple cases, while whole communities of
academics spend their lives adapting and improving the algorithms to cope with
more and more challenging examples. It is my belief that mathematics in the next
fifty years will deal much more with applications than in the last fifty, because

• computational tools make it so much easier to explore than before;
• new applications demand it;
• our capacity to explore theoretical mathematical questions has not expanded to

the same extent;
• applications is where we will find new theoretical questions.

A lot of this could as well be done by physicists, engineers, statisticians, or
computer scientists—and is. Can the mathematical training bring something
different of value? I believe it can, particularly when things don’t work out with the
computations, for example. Here the insistence on accuracy pays off. Once coding
bugs are weeded out,1 a common reason the code is hitting problems is because
some of the numerical values being computed are either far too big, or far too small.
At this point, an understanding of asymptotics is often key to sorting out the issues,
and this is something that mathematicians are typically quite good at.2

And now let me offer you just one class of problems where I think it may possibly
be that recent computational techniques may allow progress . . .

1 As an aside, I remember vividly a talk given by a colleague whose code was still not working by
the time he had to give the talk; his immortal line was, “There’s just one bug left”.
2 So while we may not much need Watson [9] for Bessel functions identities, we may still need it for
asymptotic results, and these are beyond the scope of computation—one up for old mathematics!
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Controlled Markov Processes

Preliminaries

Informally, a Markov process3 is just a random process (X0,X1, . . .) with the
defining property that where it goes next depends only on where it is now, not on
how it got there. So in symbols

P(Xt+1 ∈ dy |X0 = x0, . . . , Xt = xt ) = P( dy | xt ) (1)

for some transition function P . A simple example is random walk (Xt)t≥0 in d

dimensions

Xt+1 = Xt + εt+1, t ≥ 0, (2)

where the εt are independent identically-distributed (IID) Rd -valued random vari-
ables, and X0 ∈ R

d is some initial position.
A controlled Markov process is like a Markov process, but at each time t you get

to choose a control at and where the process goes next depends on Xt and at :

P(Xt+1 ∈ dy |X0 = x0, a0 = α0, . . . , Xt = xt , at = αt ) = P( dy | xt , αt ). (3)

Of course, the control at chosen is random, because it will in general depend on the
history so far, but it cannot be anticipating, that is, it can only depend on information
known at time t , not on information to be revealed in the future.

But there is no point introducing controls if we do not at the same time introduce
some objective which is to be optimized by choice of those controls. A wide range
of examples fit into the framework of an additive objective, where the aim of the
controller is to achieve4

max
a0,...,aT−1

E

[ T−1∑

t=0

Rt(Xt , at )+ RT (XT )

]

, (4)

where T > 0 is some given time horizon, possibly infinite. The interpretation is
clear; you gain a reward Rt (x, a) at time t if Xt = x and you choose action at = a,
and at the final time you gain a reward which is a function of where you reached at
time T . Let’s suppose from now on that the objective we are given is of the form (4).

3 We just discuss discrete-time Markov processes, which is all that is needed here.
4 Of course, we should have sup instead of max in (4), but you understand we assume for ease of
exposition that the supremum is achieved.
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So we could turn the random walk (2) into a controlled Markov process by
allowing you to choose a control at so that

Xt+1 = Xt + at + εt+1, t ≥ 0. (5)

Given the dynamics (3) and the objective (4) for the problem, what we want
to do is to determine optimal controls a∗t = u∗t (Xt ) which achieve the maximum
objective (4). It has been known [3] for around seventy years how to answer this, by
solving the Bellman equations for the value function (Vt )

T
t=0:

Vt(x) = max
a

E

[

Rt (x, a)+ Vt+1(Xt+1)

∣
∣
∣
∣Xt = x

]

(t < T ) (6)

VT (x) = RT (x). (7)

So you start at the end, and work back one time-step at a time. The optimal control
a∗t is the value of a achieving the maximum in (6), which will of course in general
depend on x.

While the Bellman equations (6)–(7) solve the optimal control problem in
principle, in practice there are very few examples where the value function can
be found in closed form; so the issues are

(1) How can we determine numerically an approximation to the optimal policy?
(2) How can we establish bounds on the performance of an approximately optimal

policy?

It is impossible and unnecessary to survey here the enormous range of approaches
offered to answer these questions, but a few observations are in order:

• if we have found what we think is an approximation (ut )
T−1
t=0 to the optimal

control (u∗t )T−1
t=0 , we could always simulate what happens when we use this

control, and thereby obtain an lower bound5 for the objective;
• the value function (Vt ) is of secondary interest, but the Bellman equations require

us to calculate it in order to access the optimal policy;
• in high dimensions, characterizing the value function is numerically difficult;
• the Bellman equations do not give us an upper bound for the value;
• even for the very simplest class of problems, optimal stopping problems, these

issues persist.

5 . . . subject to simulation error . . ..
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Optimal Stopping Problems

In an optimal stopping problem, you are allowed to stop a Markov process at a time
of your choosing, and you get a reward at that time which depends on the time and
the place when you stop. So your actions have no influence on the dynamics of
X, you simply collect a reward g(τ,Xτ ) at the time τ you choose to stop. For an
optimal stopping problem, the Bellman equations become

Vt(x) = max
{
g(t, x), E

[
Vt+1(Xt+1)

∣
∣Xt = x

] }
(t < T ) (8)

VT (x) = g(T , x), (9)

and the value function can be expressed equivalently as

Vt(x) = max
τ∈T[t,T ]

E
[
g(τ,Xτ )

∣
∣Xt = x

]
, (10)

where T[t,T ] denotes the class of stopping times with values in {t, . . . , T }.
About fifty years after the start of dynamic programming, there came a re-

markable advance in the understanding of optimal stopping problems, discovered
independently and contemporaneously by Haugh and Kogan [6] and by me [7].
The result6 was that the characterization (10) of the value function for an optimal
stopping problem has an alternative dual characterization

Vt(x) = max
τ∈T[t,T ]

E
[
g(τ,Xτ )

∣
∣Xt = x

]

= inf
M∈M

E
[

sup
t≤s≤T

{ g(s,Xs)−Ms +Mt }
∣
∣Xt = x

]
, (11)

where M is the space of all martingales. Moreover, the infimum is achieved by
taking M to be the martingale M∗ of the Snell envelope of the supermartingale
Yt = Vt(Xt ):

�M∗
t ≡ M∗

t −M∗
t−1 = Vt(Xt)− E

[
Vt (Xt)

∣
∣Ft−1

]
, (12)

where Ft is the σ -field generated by the process X up to time t . This was an
important step for several reasons:

• the characterization (11) provides an upper bound for any martingale M;
• having chosen a martingale M , the expression (11) can be evaluated approxi-

mately by simulation;
• since it is not necessary to find the value function, the approach is less susceptible

to the curse of dimensionality than the standard primal approach (10).

6 . . . foreshadowed by work of Davis and Karatzas [4] . . . .
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Andersen and Broadie [1] quickly realised that a ‘good’ stopping time for an optimal
stopping problem could be used to generate a ‘good’ martingale to use in the dual
characterization (11), and the dual approach to optimal stopping problems has been
extensively studied in the past twenty years.

Unfinished Business

If there is a dual characterization of optimality for an optimal stopping problem, it is
natural then to ask whether there is a dual characterization of optimality for a more
general dynamic programming problem. And there is—see [8]. Though most of that
paper discusses the problem in the ‘weak’ formulation (which handles the effect of
controls on the evolution by considering the induced change of measure), in Sect.
4.3 of [8] the ‘strong’ formulation is given, which for the sake of completeness is
reproduced here now.

Suppose that the evolution of the controlled process can be specified in terms of
the control sequence (at ) by

Xt+1 = ξ(t,Xt , at , εt+1) (13)

for some function ξ , where the εt are IID U(0, 1) random variables; this is exactly
what happens when we simulate the evolution of the controlled process. If we are
given a sequence of functions (ht ), we define

Pht+1(x, a) = E ht+1( ξ(t, x, a, εt+1) ). (14)

The result Theorem 5 of [8] then says the following.

Theorem 1

V0(X0) = min
(ht )

E

[

sup
(at )

T−1∑

t=0

{
Rt (Xt , at )− ht+1(Xt+1)+ Pht+1(Xt , at )

} + RT (XT )

]

.

(15)

The minimum is achieved by taking ht = Vt .

How could we practically approximate the value function V in such a problem,
either using the Bellman equation characterization of V or using the characterization
of Theorem 1?

Of course, the theory takes us only a little way, what matters is how quickly and
accurately we can compute numerical values in examples. In recent years, advances
in machine learning have opened up new avenues for computation, and this has
been applied quite successfully to optimal stopping problems—see, for example,
the paper [2] of Becker et al. Machine learning learns from a large set of training
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examples a numerical approximation to some arbitrary function which maps inputs
to outputs, as in the classic ‘Hello World’ MNIST dataset7 of hand-written digits.
In that instance, the inputs are the bitmaps of the scanned hand-written digits, and
the outputs are the true values of the digits written.

A dynamic programming problem fits into this framework, as first observed by
Han [5]. If we think of an additive objective where we try to minimize the expected
sum of non-negative costs, then each training example would consist of an Nsim×T

array of values for ε, the function to be discovered is the map which takes state and
time to action, the output from the calculation would be the expectation of total cost,
and the target value would be zero in all cases.

Could this be used to discover approximately the value function using Theo-
rem 1? At the time of [8], I could see no computationally-feasible approach to (15).
The main obstacle was that if we were to try to evaluate the right-hand side of (15)
for a particular sequence (ht ) we would need to compute the supremum inside the
expectation. Now of course this can be done sample path by sample path, but for
each sample path we have in effect to solve a (deterministic) dynamic-programming
problem, which in general will be quite slow. And this calculation is having to be
done Nsim times for each sequence (ht ); and the search over sequences (ht ) will
require a large number of such calculations. So a slow calculation sits inside a loop
inside a loop . . .

Could machine learning be a way to a solution?8 The issues which make
evaluating (15) difficult persist, but there are at least well-developed infrastructures
for machine learning which gets one into an application quite quickly. On the
downside, generic methods rarely work well out of the box on a real example, so
we can expect that extensive modification will be needed. A further disadvantage of
machine learning in dynamic programming is that the number of timesteps typically
cannot be too large; in effect, the time required to solve for T timesteps will be
O(T 2), because evaluating the value function at time t requires us to call the values
of the value function at times s > t . Maybe Theorem 1 will remain a curiosity.

Our Catriona

And all these years as we have been going about our research, and attending
meetings around the globe, our paths have been intersecting with that unique
phenomenon of the mathematical world, Catriona Byrne. Whether the meeting is
in Oberwolfach, Exeter, Milan, Osaka, or Toronto, up she pops with a carry-on
bag of recent Springer titles and an order book, a briefcase of manuscripts under
consideration, darting here and there in the coffee breaks, or just chatting with the

7 https://deepai.org/dataset/mnist.
8 Remarkably, the numerical approach used by Haugh and Kogan [6] twenty years ago was based
on machine learning.
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delegates sitting out an uninteresting talk, sometimes earnest, sometimes laughing,
sometimes just talking about this and that, but always elegant and charming. I have
spent many a happy hour in her company, whether skipping a dull talk over coffee, or
elsewhere, and value her friendship. She is one of the very few mathematical editors
who really gets out into the community, and knows first-hand what is going on in the
subject at large; she has actually done mathematical research; her ability to stretch
Springer’s travel budget is almost relativistic—they will not find a comparable
replacement. The mathematical community will certainly miss her as she begins her
well-earned retirement, but hopefully we will keep in touch. I’ve suggested some
possible topics for my academic colleagues, but just in case Catriona is short of
ideas for the years ahead, maybe compile a good travel guide based on her extensive
experience? Or perhaps a novel about what mathematicians really get up to!? The
profession could do with some sympathetic promotion!

But whatever it is to be, dear Catriona, we all wish you a long and happy
retirement—though we will likely not meet up so often in the years ahead, the
pleasure will be greater when we do!
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Some Remarks on Enlargement
of Filtration and Finance

Monique Jeanblanc

Personal Note
It was a great pleasure to write this paper in honour of my friend Catriona, who
so efficiently manages her duties for Springer, providing useful editorial advice,
improving the quality of the first versions of submitted books, promoting Springer
volumes at many conferences, and contacting authors both old and new. Like many
of us, I met Catriona quite often in numerous mathematical workshops. The time
we spent together (too short) was always a pleasure. I will miss her during the
forthcoming meetings and wish her a pleasant retirement.

1 Introduction

The information about the world is different for all of us. Some of us are specialists
in history, others in philosophy and so on. The same is true of financial markets:
some of the agents have information, say, in US market, others in European market.
We restrict this general framework to the case where two groups of agents on the
market may have different information about the dynamics of the same traded asset.
If one of them has more information than the remaining ones, and if this new
information is useful, she can make profit or even arbitrages.
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Examples

• The Monty Hall problem is a well-known situation where you can make profit
from extra information:
Suppose you are on a game show, and you are given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No. 1,
and the host, who knows what’s behind the doors, opens another door, say No.
3, which has a goat. He then says to you, “Do you want to pick door No. 2?” To
increase your probability of winning, you have to change your choice.

• William Duer is widely considered the first to have used his privileged knowledge
in a scheme that involved speculating on bank stocks in 1789. Six months later,
he resigned from his position after it was discovered that he was taking advantage
of his access to confidential information in order to speculate on stocks and bonds
(see investopedia).

• Another example took place on 19th June 1815, the day after the battle of
Waterloo.
Nathan Rothschild, who knew about Napoleon’s defeat beforehand (thanks to a
spy or a carrier pigeon) went to the London Stock Exchange and proceeded to
sell his English stocks, causing others to do the same. The resulting Stock Market
crash (market impact) enabled Nathan Rothschild’s agents to then buy up these
assets.

The American Securities and Exchange Commission (the SEC) defines insider
trading as follows: An Insider is an officer, director, 10% stockholder or anyone who
possesses inside information because of his or her relationship with the Company
or with an officer, director or principal stockholder of the Company. Rule 10b-
5’s application goes considerably beyond just officers, directors and principal
stockholders. This rule also covers any employee who has obtained material non-
public corporate information, as well as any person who has received a tip from
an Insider of the Company concerning information about the Company that is
material and nonpublic, and trades (i.e., purchases or sells) the Companys stock
or other securities. This is illegal (see the SEC web page for recent cases and more
information).

One of the IFRS (International Financial Reporting Standard) rules is that an
entity need not undertake an exhaustive search of all possible markets to identify
the principal market or, in the absence of a principal market, the most advantageous
market.

In both cases, the notion of different information is advanced, and a goal is to try
to model the new information and its impact on the market. The new information
mainly concerns the behaviour of prices in the future, for example that the firm will
close a part of its activity next month. We assume that a group of agents has access
to the information described by a filtration F and we shall model some kinds of new
information. Then the insider can use the knowledge of this information to construct
a portfolio and have a better terminal wealth.
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Here, we do not distinguish “illegal” insider trading from trading with new
information. We are only trying to see the impact of new information on the
dynamics of prices.

2 Mathematical Facts

2.1 Problem of Enlargement of Filtration

At the beginning this problem was purely a mathematical problem. In the 70s, Itô
[24] underlined that, in the case of a Brownian motion B with natural filtration F,
in order to give a meaning to

∫ t
0 B1dBs , or more generally to

∫ t
0 θsB1dBs where

θ is an F-adapted process (note that the process � = (�t = B1, ∀t ≥ 0) is not
F-adapted) it is natural to enlarge the filtration F with the random variable B1 and
to obtain the decomposition of B as a semimartingale1 in this enlarged filtration
(this is known as the Brownian bridge). Recall that the set of semimartingales is
the larger space of processes which makes it possible to define a “good” stochastic
integration (Bitcheler–Dellacherie–Mokobodzki Theorem [3, Section 1.2.1]). At
the same time, independently of each other, P-A. Meyer and D. Williams asked the
question: what can be said about F-martingales when one introduces the smallest
filtration containing F and turns a given random time into a stopping time?

A first fact is that the martingale property is not stable under enlargement
of filtration. More precisely, if (�,G,P) is a probability space endowed with
two filtrations F and K with F ⊂ K (i.e., Ft ⊂ Kt , ∀t ≥ 0), and if X is a
(P,F)-martingale, X can fail to be a (P,K)-martingale. The general problem of
enlargement of filtration is the following one. Let K be a filtration larger than F:
under which conditions are all F-martingales K-semimartingales and obtain the K-
semimartingale decomposition of any F-martingale. The condition is called the
(H′)-hypothesis by Jacod [25] and many other authors. As usual, for a filtration K,
we denote by P(K) the predictable σ -algebra and by O(K) the optional σ -algebra
on �× R+.

Example 2.1 Let X be an F-martingale of the form Xt = E[X∞|Ft ] where X∞ ∈
F∞ is integrable, and Kt = F∞,∀t ≥ 0. Then E[X∞|Kt ] = X∞ �= Xt , and X is
not a K-martingale.

Example 2.2 Let F be the filtration generated by a Brownian motion B and Kt =
Ft+δ, ∀t ≥ 0, where δ > 0. In that case, B is not a K-semimartingale (see, e.g., [3,
Example 1.19]).

1 A semimartingale is the sum of a local martingale and a process with finite variation. When the
finite variation part can be chosen as a predictable process, the semimartingale is said to be special
and the decomposition with predictable part is unique.
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For financial purposes, semimartingales play an important role: Let S be the
F-adapted price process, (eventually d-dimensional) locally bounded and assume
that the riskless asset is constant (equal to 1). The fundamental theorem of asset
pricing claims that No Free Lunch with Vanishing Risk (NFLVR) holds in F if and
only if there exists a strictly positive F-martingale L such that SL is an F-local
martingale, or equivalently if there are no arbitrages (see, e.g., Björk [8, Chapter
10]). Another weaker result states that there is No Unbounded Profits with Bounded
Risk (NUPBR) if and only if there exists an F-strictly positive local martingale L

such that SL is an F-local martingale. These two characterisations require that asset
prices are semimartingales under historical probability. The (local) martingale L is
called a (local) deflator.

The financial definition of NFLVR and NUPBR is too long to be given in this
note, and would not be particularly useful. Instead we refer the reader to Delbaen
and Schachermayer [15] and Björk [8, Chapter 10] for NVLVR and Kabanov,
Kardaras and Song [31] for NUPBR.

Despite an extensive literature, very few cases are solved and very few concrete
examples are known (see a list of examples in [3] and [35]). Studies are mainly
concerned by

• Initial Enlargement: A filtration F being given and ζ being a random variable,
one sets F(ζ ) = F ∨ σ(ζ ) (this is the case in Itô, where ζ = B1). This problem
was solved in a quite general setting by Jacod [26]. We shall give a proof under
a restrictive condition and recall the general result, without proof.

• Progressive Enlargement: A nonnegative random variable τ is given. We denote
by A the indicator process At = 11{τ≤t} and by A = (At , t ≥ 0) its natural
filtration. A filtration F being given, one sets Gt = Ft ∨ At , ∀t ≥ 0 (up to a
regularization, so that G is continuous on right). In other words, G is the smallest
filtration containing F and turning τ into a stopping time. This corresponds to
the question of Meyer and Williams. The first mathematical study was done by
Barlow [7] for a specific class of random times, called honest times.

• Others: The new information can be the knowledge of a random variable at some
random time (see Corcuera and Valkeika [14]) or more generally, two filtrations
F and F̃ being given, one studies the enlargement of F with F̃, i.e., F ∨ F̃. This
general problem was intensively studied by Protter and various coauthors [32,
36].

Up until now, four lecture notes have been dedicated to enlargement of filtration:
Aksamit and Jeanblanc [3], Jeulin [29], Jeulin and Yor [30] and Mansuy and Yor
[35]. Chapter 20 of Dellacherie et al. [16] contains a very general presentation
of enlargement of filtration theory, based on fundamental results of the theory of
stochastic processes, developed in the previous chapters and books by the same
authors. Chapter X in Jacod [25] presents deep results in a general setting.
Chapter 12 in Yor [40] and the book of Mansuy and Yor [35] focus on the case
where all martingales in the reference filtration F are continuous (hypothesis (C)).
The paper of Nikeghbali [37] also assume hypothesis (C) and the fact that τ avoids
all F-stopping times (hypothesis (A)). A survey containing many exercises can be
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found in Mallein and Yor [34, Chapter 10]. Protter [38] and Jeanblanc et al. [28]
have devoted a chapter of their books to the subject. The lecture by Song [39]
contains a general study of the subject. The book of Hillairet and Jiao [23] contains
applications to portfolio optimization.

Quite surprisingly, applications of enlargement of filtration theory to finance
started only at the end of the 90s with the thesis of Amendinger [4] and indepen-
dently in the paper by Grorud and Pontier [21].

A basic example is that of point processes with bounded variation, hence the
compensated martingale exists in any filtration larger than its natural one. Of course,
the compensator depends on the filtration. See [1] and [17].

We shall need the notion of projections, that we recall now. If H is a filtration
satisfying H ⊂ K, and Y is a K-adapted process such that Yϑ11{ϑ<∞} is integrable
for any H-stopping time ϑ , the H-optional projection of Y is the H-optional process
o,HY such that E[Yϑ11{ϑ<∞}|Hϑ ] = o,HYϑ 11{ϑ<∞}, for any H-stopping time ϑ .

This optional projection satisfies E[Yt |Ht ] = o,HYt , for all t ≥ 0. If Y is a càdlàg
K-martingale, then o,HY is an H-martingale. See, e.g., [3, Section 1.3.1].

2.2 Particular Cases

2.2.1 Discrete Time

In discrete time, any integrable H-adapted process X is an H-special semimartin-
gale. Indeed Xn =Mn + Vn,∀n ≥ 0, where

Mn =Mn−1 +Xn − E[Xn|Hn−1], Vn = Vn−1 + E[Xn −Xn−1|Hn−1]

and M0 = X0, V0 = 0. The process M is a martingale, and V is predictable
with finite variation. Therefore, if X is an F-martingale and K a larger filtration,
X is a K-special semimartingale and its semimartingale decomposition reduces to
computation of the conditional expectations E[Xn|Hn−1]. See Choulli and Deng
[12] or Blanchet and Jeanblanc [9] for examples, as well as for initial enlargement
and progressive enlargement.

These authors also present the study of arbitrages due to the new information.
This is a difficult problem, and the proofs are similar to those in continuous time.

2.2.2 Immersion

Let F ⊂ K. Immersion holds between F and K if any F-local martingale is a K-
local martingale: this is equivalent to, for any t ≥ 0, the σ -fields F∞ and Kt being
conditionally independent given Ft , i.e., ∀ t ≥ 0, ∀Kt ∈ Kt ,∀F∞ ∈ F∞, both
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being square integrable

E[Kt F∞|Ft ] = E[Kt |Ft ]E[F∞|Ft ] .

This case (also called the (H)-hypothesis) was presented in Brémaud and Yor
[10] and this hypothesis is assumed in many studies, in particular for progressive
enlargement in a credit risk framework. Roughly speaking, it means that the new
information contained in Kt has no influence on the past information Ft . Note that
if F ⊂ K ⊂ G and F is immersed in G, then F is immersed in K (but K can fail to
be immersed in G). A nice property is that under immersion, NFLVR is preserved.
Indeed, if L is an F-deflator, it is a G-positive martingale as well and a G-deflator,
the process SL being an F and a G-local martingale.

Immersion is not stable under change of probability (see [13]).

Example An important example is the one introduced by Lando [33]. Given a
filtered probability space (�,G,F,P) and a non-negative F adapted process λ, as
well as a random variable #, independent of F with unit exponential law, one defines

τ = inf

{

t :
∫ t

0
λsds ≥ #

}

.

Then, since obviously F is immersed in F ∨ σ(#) (by independence) and F ⊂ G ⊂
F ∨ σ(#), where G is the progressive enlargement of F by τ , the filtration F is
immersed in G.

3 Initial Enlargement

A filtered probability space (�,G,F,P) and a G-measurable random variable ζ

being given, one sets F
(ζ ) = F ∨ σ(ζ ). We assume that F0 is trivial, and, if

necessary, we take the smallest right-continuous filtration containing F
(ζ ). Note

that F (ζ )
0 = σ(ζ ).

This is a generalisation of the problem studied by Itô, for which ζ = B1.
We now present two important results on measurability:
For any fixed t > 0, every F (ζ )

t -measurable random variable Y
(ζ)
t is of the form

Y
(ζ)
t = yt (ω, ζ(ω)) where yt (·, u) is, for any u, an Ft -measurable random variable.

Every F
(ζ )-predictable process Y (ζ) is of the form Y

(ζ)
t = yt(ω, ζ(ω)) where

(t, ω, u) �→ yt (ω, u) is a P(F)⊗ B(R)-measurable function [29, Lemma 3.13].
We shall now simply write yt (ζ ) for yt (ω, ζ(ω)). The result on predictable

processes cannot be extended in full generality to optional processes, but no
counterexample is known.
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3.1 Jacod’s Conditions

We start with a particular case, for which the proof is easy, found simultaneously by
Grorud and Pontier [21] and Amendinger [4]. Then, we shall state (without proof)
the general result of Jacod.

Assumption (E) The F-conditional law of ζ is equivalent to η, the law of ζ . More
precisely there exists a non-negative O(F) ⊗ B(R+)-measurable map (ω, t, u) →
pt(ω, u) càdlàg in t such that

• for every u, the process (pt (u))t≥0 is a strictly positive F-martingale,
• for every t ≥ 0, the measure pt(u)η(du) equals P(τ ∈ du |Ft ), in other words,

for any Borel bounded function h, for any t ≥ 0

E[h(ζ )|Ft ] =
∫

R

h(u)pt (u)η(du) .

Assumption (E) is also called Jacod’s equivalence assumption.

Lemma 3.1 Under Assumption (E), the process L defined as Lt = 1

pt (ζ )
, t ≥ 0 is

a (P,F(ζ ))-martingale. Let P∗ be the probability measure defined on F
(ζ ) as

dP∗|F (ζ)
t
= Lt dP|F (ζ)

t
. (1)

Under P∗, the random variable ζ is independent of Ft for any t ≥ 0 and, moreover

P
∗|Ft

= P|Ft
for any t ≥ 0, P

∗|σ(ζ ) = P|σ(ζ ).

Proof Obviously, one has L0 := 1
p0(ζ )

= 1. Setting Lt (u) := 1

pt(u)
, ∀t ≥ 0, for

any bounded Borel function h and any Fs-measurable bounded random variable Ks

and s ≤ t , one has

E[Lth(ζ )Ks] = E

[

Ks

∫

R

Lt (u)h(u)pt (u)η(du)

]

= E

[

Ks

∫

R

h(u)η(du)

]

= E[Ks ]
∫

R

h(u)η(du) = E[Ks]E[h(ζ )] .

For t = s, we obtain E[Lsh(ζ )Ks ] = E[Ks ]E[h(ζ )], hence E[Lth(ζ )Ks] =
E[Lsh(ζ )Ks]. Since h and Ks are arbitrary and generate F (ζ )

s , it follows that L

is an F
(ζ )-martingale. Thus, for each t ≥ 0, we can define the probability measure

P
∗ on F (ζ )

t by dP∗|F (ζ)
t
= Lt dP|F (ζ)

t
. The equivalence of P∗ and P on F (ζ )

t for

each t ∈ [0,∞) follows from the strict positivity of Lt . For any bounded Borel
function h, any Ft -measurable bounded random variable Kt , and denoting by E

∗
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the expectation under P∗, the above computations yield

E
∗ [h(ζ )Kt ] = E[h(ζ )]E[Kt ]. (2)

For h = 1 (resp. Kt = 1), one obtains E∗[Kt ] = E[Kt ] (resp. E∗[h(ζ )] = E[h(ζ )]
and the assertions P

∗|Ft
= P|Ft

and P
∗|σ(ζ ) = P|σ(ζ ) are proven. Thus the

identity (2) can be rewritten as E∗ [h(ζ )Kt ] = E
∗[h(ζ )]E∗[Kt ], which shows that

the random variable ζ and the σ -field Ft are independent under P∗. ��
Corollary 3.1 Under the probability measure P∗, F is immersed in F

(ζ ).

Proof Since under P∗, the random variable ζ and the σ -field F∞ are independent,
the assertion follows. ��

Under Assumption (E), we study a financial market (�,G,F,P, S) with null
interest rate. If the prices S are (P,F) martingales, then P

∗ defined above is an
equivalent martingale measure for the market (�,G,F(ζ ), S).

Note that if ζ satisfies (E) under P, it satisfies (E) under any probability measure
equivalent to P. If the financial market is such that there exists an F-equivalent
martingale measure Q, then, denoting by pQ(ζ ) the density of ζ under Q, it follows
that Q∗ is an equivalent probability measure where

Q
∗|F (ζ)

t
= 1

p
Q
t (ζ )

Q|F (ζ
t
. (3)

Proposition 3.1 Under Assumption (E), any (P,F)-local martingale X is a
(P,F(ζ ))-special semimartingale with decomposition

Xt = X
(ζ)
t +

∫ t

0

d〈X,p.(u)〉s |u=ζ

ps−(ζ )
,

where X(ζ) is a (P,F(ζ ))-local martingale.

Proof If X is a (P,F)-martingale, it is a (P∗,F(ζ ))-martingale. Indeed, since P

and P
∗ are equal on F, X is a (P∗,F) martingale, hence, using the fact that ζ is

P
∗ independent of F, it is a (P∗,F(ζ )) martingale. Noting that dP = pt (ζ )dP∗ on

F (ζ )
t , Girsanov’s theorem yields that the process X(ζ), defined by X

(ζ)
t = Xt −∫ t

0
d〈X,p.(u)〉s |u=ζ

ps−(ζ )
, is a (P,F(ζ ))-martingale. ��

The general result of Jacod [26] (proved 20 years before the equivalence result)
is the following

Theorem 3.1 Assume that there exists a non-negative O(F) ⊗ B(R)-measurable
map (ω, t, u) → pt(ω, u) càdlàg in t such that

• for every u, the process (pt (u))t≥0 is a non-negative F-martingale,
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• denoting by η the law of ζ , for every t ≥ 0, the measure pt (u)η(du) equals
P(τ ∈ du |Ft ), in other words, for any Borel bounded function h, for any t ≥ 0

E[h(ζ )|Ft ] =
∫

R

h(u)pt (u)η(du) .

Then, any (P,F)-local martingale X is a (P,F(ζ ))-special semimartingale with
canonical decomposition

Xt = X
(ζ)
t +

∫ t

0

d〈X,p.(u)〉s |u=ζ

ps−(ζ )
, (4)

where X(ζ) is a (P,F(ζ ))-local martingale.

The proof is more delicate, the process 1/p(ζ ) is well defined (since, from
Jacod [26, Corollaire 1.11], p(ζ ) > 0) but is no longer a martingale. Jacod [26]
mentioned (page 25) that it would be possible to use Girsanov-type results in the
absolute continuity condition (page 15), but that in any case, the difficulties are
due to measurability conditions in both approaches. The assumption of absolute
continuity is also called the (J )-assumption.

Under the (J ) hypothesis

(a) every F
(ζ )-optional process Y (ζ) is of the form Y

(ζ)
t (ω) = yt (ω, ζ(ω)) for some

F⊗ B(Rd)-optional process (yt (ω, u), t ≥ 0) (see Fontana [19]).
(b) Let Y (ζ)

T be an F (ζ )
T -measurable integrable random variable. Then, for s < T :

E
(
Y

(ζ)
T |F (ζ )

s

) = 1

ps(ζ )
E
(
yT (u)pT (u)|Fs

)∣
∣
u=ζ

.

(c) Characterization of (P,F(ζ ))-martingales in terms of (P,F)-martingales: The
process Y (ζ) is a (P,F(ζ ))-martingale if and only if, for any u, the process
y(u)p(u) is a (P,F) martingale.

We now present the propagation of the predictable representation property.
We assume that there exists a (P,F)-local martingale X such that any (P,F)-local

martingale Y can be represented as

Yt = Y0 +
∫ t

0
ϕsdXs (5)

for some ϕ ∈ P(F).
Then (see Fontana [19]), under the (J )-hypothesis, every (P,F(ζ ))-martingale

Y (ζ) admits a representation

Y
(ζ)
t = Y

(ζ)
0 +

∫ t

0
$sdX(ζ)

s , (6)
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where $ ∈ P(F(ζ )) and Y0 ∈ F (ζ )
0 . Here X(ζ) is the (P,F(ζ ))-martingale part (given

in (4)) of the (P,F(ζ ))-semimartingale X introduced in (5).

3.2 Brownian Bridge

The Brownian Bridge is obtained when studying the initial enlargement of a
Brownian filtration F (generated by the Brownian motion B) with the random
variable B1. Note that Jacod’s absolute condition is not satisfied at time 1.
Nevertheless, it is not difficult to prove (see Jeulin [29, Th. 3.23] or [3, Proposition
4.1]) that

B
(B1)
t := Bt −

∫ t∧1

0

B1 − Bs

1− s
ds, 0 ≤ t ≤ 1

is an F
(B1)-martingale, a first step being to prove the existence of the integral.

Then, using elementary computations, it is easy to prove that B(B1) is a martingale,
and by Lévy’s Theorem, it is a Brownian motion. This main example presents
another point of interest: even if B is a semimartingale, not all F-martingales are
G-semimartingales (see [10]).

Theorem 3.2 Let X be an F-local martingale with representation Xt = X0 +∫ t
0 ϕsdBs for an F-predictable process ϕ satisfying

∫ 1
0 ϕ2

s ds < ∞ a.s. Then, the
following conditions are equivalent:

(a) the process X is an F
(B1)-semimartingale;

(b)
∫ 1

0 |ϕs | |B1−Bs |
1−s

ds <∞ P-a.s.;

(c)
∫ 1

0
|ϕs |√
1−s

ds <∞ P-a.s.

If these conditions are satisfied, the F
(B1)-semimartingale decomposition of X is,

for t ≤ 1,

Xt =X0 +
∫ t∧1

0
ϕsdB(B1)

s +
∫ t∧1

0
ϕs

B1 − Bs

1− s
ds. (7)

This is an example where some F-martingales are F(B1)-semimartingales, but not all
of them.

Note that, in a Brownian filtration, Yor’s criterion [3, Section 4.3] is more general
than Jacod’s condition.

Application Consider a financial market with null interest rate and risky asset
dSt = St (bdt + σdBt), S0 = x, driven by a Brownian motion B and ζ = ST .
The arbitrage is obvious (no need for mathematics) and the conditional density
does not exist on [0, T ]. If one takes ζ = ST + ε, where ε is a discrete random
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variable, independent of F, Jacod’s absolute continuity assumption is satisfied (see
Amendinger et al. [5]).

4 Progressive Enlargement

Here F is a given filtration, τ a finite random time and G the progressive
enlargement: roughly speaking, Gt = Ft on t < τ and Gt = Ft ∨ σ(τ) after
τ .

There are typically two cases: before τ and after τ . Before τ , there is no new
information, except τ has not yet occurred. After τ , the time when τ has occurred
is known. This is easy to illustrate with a “financial” example. Let S be the price of
a risky asset (e.g., a Black and Scholes dynamic), and assume zero interest rate. Let
τ = inf{t : St = supu≤T Su}. If an agent has access to the progressive enlargement:
before τ she will buy the stock, say at time 0 at price S0, and wait till τ , when she
will sell the stock making arbitrage. She can also realize an arbitrage after τ : at time
τ , she short sells the stock at price Sτ and delivers it at price St < Sτ at any time t

after τ . This kind of random time is called an honest time (see below).
The F-dual optional projection Ao of A is the optional process such that for any

non-negative bounded F-optional process Y such that Yτ is integrable

E[Yτ ] = E

[∫

[0,∞)

YsdAo
s

]

.

The F-dual predictable projection Ap of A is the F-predictable process such that for
any non-negative bounded F-predictable process Y , such that Yτ is integrable,

E[Yτ ] = E

[∫

[0,∞)

YsdA
p
s

]

. (8)

Two processes are important: the optional projection of 1−A, denoted Z, and the
optional projection of 1−A−, denoted Z̃, i.e., Z = o(1−A), and Z̃ = o(1−A−).

Comment 4.1 One can prove (see, e.g., [3, Proposition 1.4]) that Z = m − Ao =
M − Ap, where m and M are F-martingales and that Z̃ = m − Ao−. The
decomposition Z = M − Ap is the Doob–Meyer decomposition of Z.

Note that

Zt = P(τ > t|Ft ), Z̃t = P(τ ≥ t|Ft ). (9)

Defining Z as in (9) can create some difficulties. Indeed the equality is valid a.s.
for any t , and (except if Z is continuous) prevents us for defining the process Z (the
union of negligible sets can fail to be negligible)
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4.1 Before τ

Lemma 4.1 For any Gt -measurable random variable YGt , there exists an Ft -

measurable random variable Y such that YGt 11{t<τ } = Yt11{t<τ }. If XT is integrable
and FT -measurable, one has

E[XT 11{T<τ }|Gt ] = 11{t<τ }
E[XT ZT |Ft ]

Zt

.

Proof By definition of G, the existence of Y is obvious. The uniqueness is not
granted. The second assertion follows from the first, taking conditional expectation
with respect to Ft the equality E[XT 11{T<τ }|Gt ) = 11{t<τ }Yt . Note that Z > 0 on
{t < τ }. See Elliott et al. [18, Section 3.1]. ��

The G-predictable processes can be described in terms of a family of F-
predictable processes:

Lemma 4.2 For any G-predictable bounded process YG, there exists a bounded
F-predictable process Y and a map y : R+×R

+×�→ R, which is B(R+)×P(F)-
measurable and bounded such that YGt = Yt11{t≤τ }+y(t, τ )11{τ<t}. (See Jeulin [29,
Lemma 4.4].)

The G-compensator of A is the G-predictable increasing process �G such that

M̃ := A−�G (10)

is a G-martingale; this process is flat after τ (i.e., �G
t∧τ = �G

t ). From Lemma 4.2,

there exists an F-predictable increasing process � such that �G
t = �t∧τ ,∀t ≥ 0.

Furthermore, �G
t 11{t≤τ } = 11{t≤τ }

∫ t
0

dAp
s

Zs− (see, e.g., Proposition 2.15, page 37 in
[3]). The process � is not uniquely defined after τ (except if Z− > 0) and, hereafter,
we choose

d�t = dAp
t

Zt−
11{Zt−>0}, ∀t ≥ 0, �0 = 0 . (11)

As an application of the above and by definition of dual projections, we obtain
the following result (see, e.g., Jeanblanc and Li [27]), which is useful for pricing
defaultable claims:

For any bounded F-predictable process K ,

E[Kτ11{τ≤T }|Gt ] = Kτ11{τ<t} + 11{τ≥t}
E[∫ T

t
KudAp

u |Ft ]
Zt

.
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For any bounded F-optional process K ,

E[Kτ11{τ≤T }|Gt ] = Kτ11{τ≤t} + 11{τ>t}
E[∫ Tt KudAo

u|Ft ]
Zt

.

Lemma 4.3 Under the two assumptions (A) and (C), any (càdlàg) (P,F)-local
martingale X stopped at time τ is a (P,G)-semimartingale with decomposition

Xt∧τ = XG
t +

∫ t∧τ

0

d〈X,M〉s
Zs−

,

where XG is a (P,G)-local martingale. Here M is the martingale part in the Doob–
Meyer decomposition of Z.

Proof Let YGs be a Gs -measurable random variable. There exists an Fs-measurable

random variable ys such that YGs 11{s<τ } = ys11{s<τ }, hence, if X is an F-martingale,
for s < t ,

E(YGs (Xt∧τ − Xs∧τ )) = E(YGs 11{s<τ }(Xt∧τ −Xs∧τ ))

= E(ys11{s<τ }(Xt∧τ −Xs∧τ ))

= E
(
ys(11{s<τ≤t}(Xτ −Xs)+ 11{t<τ }(Xt −Xs))

)
.

From the definition of Z and (8),

E
(
ys11{s<τ≤t}Xτ

) = −E
(

ys

∫ t

s

XudZu

)

.

From the integration by parts formula (taking into account the continuity of Z and
X)

∫ t

s

XudZu = −XsZs + ZtXt −
∫ t

s

ZudXu − 〈X,Z〉t + 〈X,Z〉s .

We have also

E
(
ys11{s<τ≤t}Xs

) = E (ysXs(Zs − Zt))

E
(
ys11{t<τ }(Xt −Xs)

) = E (ysZt (Xt − Xs))
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hence, from the martingale property of X,

E(YGs (Xt∧τ −Xs∧τ )) = E(ys(〈X,M〉t − 〈X,M〉s ))

= E

(

ys

∫ t

s

d〈X,M〉u
Zu

Zu

)

= E

(

ys

∫ t

s

d〈X,M〉u
Zu

E(11{u<τ }|Fu)

)

= E

(

ys

∫ t

s

d〈X,M〉u
Zτ

u

11{u<τ }
)

= E

(

ys

∫ t∧τ

s∧τ
d〈X,M〉u

Zu

)

.

The result follows. ��
The general case is more delicate. See, e.g., [16, Section 76] or [3, Theorem 5.1].

Theorem 4.1 Every càdlàg F-local martingale X stopped at time τ is a special
G-semimartingale with the canonical decomposition

Xτ
t = XG

t +
∫ t∧τ

0

d〈X,m〉s
Zs−

, (12)

where XG is a G-local martingale and m is as defined in Comments 4.1.

Arbitrages Before τ Introduce R̃ := R11{Z̃R=0<ZR−} + ∞11{Z̃R=0<ZR−}c , where
R := inf{t : Zt = 0}. The following conditions are equivalent.

(1) The F-stopping time R̃ is infinite.
(2) For any F-local martingale X, there exists a non-negative G-local martingale ζ

such that Xτ ζ is a G-local martingale, where Xτ is the stopped process (non-
arbitrage of the first kind).

See [3, Theorem 5.46] for a proof.

Arbitrages Under the (E) Hypothesis Under the (E) hypothesis, if discounted
prices are (P,F)-martingales, P∗ (defined in (1)) is an equivalent martingale measure
on G. Otherwise, if there exists an equivalent martingale measure Q for F-adapted
discounted prices, Q∗ defined in (3) is an equivalent martingale measure in G.

4.2 Some Facts on the Predictable Representation Property

We assume that the predictable representation property holds in the filtration F, i.e.,
there exists an F-local martingale X such that every F-local martingale Y can be
represented as Yt = Y0 +

∫ t
0 ϕsdXs for some ϕ ∈ P(F).

Under some conditions, the predictable representation property propagates to
G. For example, (see Fontana [19]) under the (J )-hypothesis (XG, M̃) has the
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predictable representation property in G where XG is the G martingale part of the
G-semimartingale X and M̃ is the G-martingale defined in (10).

We refer to [3, Section 5.6] for more information.
We now study the relationship between G-martingales and F-martingales ob-

tained in [11, proposition 2.2].

Proposition 4.1 Under the (J )-hypothesis, a G-optional process of the form
YG := ỹ11[[0,τ [[ + ŷ(τ )11[[τ,∞[[, where ỹ and ŷ(u) are F-optional processes, is a
G-martingale if and only if the following two conditions are satisfied

(a) for η-a.e u,
(
ŷt (u)pt (u), t ≥ u

)
is an F-martingale;

(b) the process y is an F-martingale, where

yt := E(Yt |Ft ) = ỹtZt +
∫ t

0
ŷt (u)pt (u)η(du) . (13)

Under the (J )-hypothesis, if the function (ω, u) → X(ω, u) is FT ⊗ B(R+)-
measurable and bounded, then

E[X(τ)|Gt ] =

11{t<τ }
1

Zt

E[
∫

]t,∞]
X(u)pT (u)η(du)|Ft ] + 11{τ≤t}

1

pt (τ )
E[X(u)pT (u)|Ft ],

for t ≤ T and

E[X(τ)|Gt ] = 11{t<τ }
1

Zt

∫

]t,∞]
X(u)pt (u)η(du)+ 11{τ≤t}X(τ),

for T < t (see e.g., [3, lemma 5.24]).

4.3 Immersion

Immersion is easily characterized in a progressive enlargement setting: F is
immersed in G if and only if, ∀t ≥ 0

P(τ > t|Ft ) = P(τ > t|F∞)

(see, e.g., [3, lemma 3.8]). This implies that Z is decreasing and Z = 1 − Ao (see
[3, Proposition 3.9]).

Many models of “default risk” are constructed as follows (see Gueye and
Jeanblanc [22]). Let F be a given filtration and K a càdlàg increasing F-adapted
process, and define

τ = inf{t : Kt ≥ #},



110 M. Jeanblanc

where # is a random variable independent of F with unit exponential law. Then
P(τ > t|Ft ) = e−Kt , and immersion holds between F and G. If K is continuous,
τ avoids F stopping times. If not, the jump times of K are the F-stopping times not
avoided by τ .

Comment 4.2 Let us point out a “technical” difficulty. Assume that K has no
jumps at constant time, which implies P(τ = t) = 0,∀t > 0. This does not imply
that Z = Z̃ (the equality meaning that the two processes are indistinguishable).
Indeed, Z = 1− Ao whereas Z̃ = 1− Ao−.

We have underlined that immersion is not stable under change of probability.
However, let us point out that if a price process S is given on (�,G,F,P) and the
interest rate is null, if the corresponding financial market satisfies NFLVR, and if
the (�,G,G,P, S) financial market satisfies NFLVR, then, under I-hypothesis, one
can choose a G-equivalent martingale measure such that immersion holds. If the
market (�,G,F,P) is complete and discounted prices are (P,F)-martingales, under
any G-equivalent martingale measure immersion holds.

4.4 Honest Times

Honest times were introduced by Barlow [7].

Definition 4.1 A random time τ is an F-honest time if, for every t > 0, there exists
an Ft -measurable random variable τt such that τ = τt on {τ < t}.

Fontana et al. [20] assume that τ is honest, and the following conditions (a), (b)
and (c)

(a) The restricted financial market (�,F,P, S) satisfies NFLVR.
(b) The random time τ avoids all F-stopping times (Condition (A)).
(c) The martingale part of the semimartingale S is a continuous F-local martingale

MS = (MS
t

)
t≥0 which has the F-predictable representation property in the

filtration F.

Then, they prove that the (F,P, S) market is complete and

(1) NUPBR holds in the enlarged market on the time horizon [0, τ ],
(2) there exists an explicit arbitrage opportunity in the enlarged market on the time

horizon [0, τ ] and on the interval [τ, ϑ] for an explicit G stopping time ϑ (see
[2, Theorem 3],

(3) NFLVR fails to hold in the enlarged market on the time horizon [0, τ ],
(4) NUPBR fails to hold in the enlarged financial market on the global time horizon

[0,∞].
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In the case of honest time, for a (P,F)-local martingale X

Xt = XG
t +

∫ t∧τ

0

1

Zs−
d〈X,m〉s −

∫ τ∨t

τ

1

1− Zs−
d〈X,m〉s ,

where XG is a (P,G)-local martingale.
Any G-optional process can be written

Y = L11[[0,τ ]] + J11[[τ,∞]] +K11[[τ,∞[[,

where L and K are F-optional processes and J is an F-progressively measurable
process.

Example 4.1 We recall Barlow’s counterexample given in [7, p. 319] to show that a
G-optional process cannot always be decomposed as L11[[0,τ [[ +K11[[τ,∞[[, where L

and K are F-optional processes. Let B be a Brownian motion, F its natural filtration
ϑ = inf{t : |Bt | = 1}, τ = sup{t ≤ ϑ : Bt = 0} and G the progressive enlargement
of F with τ . The process X defined as Xt = 11{t≥τ }sgn(Bϑ) is right-continuous and
G-adapted, hence G-optional. Moreover X is a G-martingale. Obviously, if the
pair (L,K) exists, then L = 0 and one can choose K to be F-predictable, since
O(F) = P(F). Then �Xτ = Kτ would be Gτ−-measurable, which contradicts the
G-martingale property of X.

Lemma 4.4 Assume that (�,F,P, S) is a complete market satisfying NFLVR on
the time horizon [0,T]. If τ is a finite honest time which satisfies (A), there are
classical arbitrages before τ for (�,G,P, S) and classical arbitrages after τ for
(�,G,P, S).

Proof See [3, Section 5.8.1] and the examples in [2]. ��

5 Information Drift

Assume that B is an F-Brownian motion and BK
t = Bt +

∫ t

0 ksds a K-Brownian
motion where F ⊂ K. When S is the F-adapted price of an asset, one has (in the
Brownian case)

dSt = St (btdt + σtdBt)

= St ((btσt + kt )dt + σtdBK
t ) .

The quantity k is called the information drift. See [6] or [5] for more information.
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In the case of portfolio optimisation, when the interest rate is null, denoting by X

the wealth associated to a self-financing portfolio, i.e., dXt = πtdSt , X0 = x, one
computes easily

sup
π∈F

E[ln(XT )] = ln x, sup

π∈FK
E[ln(XT )] = ln x + E

[∫ T

0
k2
t dt

]

.

6 Conclusion and Open Problems

We hope to have given a presentation of enlargement problems. As we mentioned at
the beginning, many problems remain to be solved. For example, solve an optimal
stopping problem in an enlarged filtration, compare the solution of a BSDE in two
filtrations, give the G-decomposition of any martingale when τ is a random time in
a Poisson filtration (see [2] for some examples). It would be interesting to provide
some tests to detect insider trading (as in [21]). The reverse problem of shrinkage
is to give the F-decomposition of the optional projection of a K-semimartingale and
has no general solution.

Acknowledgements The author thanks warmly the language editor for improving the English a
lot and the two referees for providing some help to improve the paper.
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Modern Extreme Value Theory at the
Interface of Risk Management, Bayesian
Networks and Heavy-Tailed Time Series

Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch

1 Introduction

In the summer of 2022, Dr. Catriona Byrne, Catriona to mathematicians all over the
world, will retire as Springer’s Editorial Director for Mathematics. We are delighted
to contribute to this written bouquet of thanks. Perhaps it sounds a bit easy to
say “life as a mathematician without Catriona will never be the same”. Perhaps
“easy” but “true”! We all have many lovely memories of meeting and discussing
with Catriona at numerous conferences, farewell lectures, academic festive events,
departmental visits,. . .. Over lunch or dinner, she always provided us with valuable
advice when it came to publishing a book or editing a journal under the umbrella of
Springer. However, what we will also sorely miss are the exchanges on societal
issues well beyond mathematical academia. Only on February 24, 2022, Paul
Embrechts, for instance, received such a lovely lunch-follow-up-e-mail from her.
We copy it here, in part, as it so much highlights Catriona’s wonderful personality:

“Dear Paul, Thank-you again for making time for Richard and myself yesterday
and for your invitation to a delicious lunch at the Dozentenfoyer (always a delight).
. . . Here is Matheus Grasselli’s [fiction] book with Izaias Almada: “The Venetian
Files: The Secret of Financial Crises”. . . . And today I received my copy of the
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Fig. 1 The different covers of [7]; the original first edition of 1997 (left) and a later printing (right).
The first edition appeared as volume 33 in the Springer Series “Applications of Mathematics:
Stochastic Modelling and Applied Probability”. For its first edition, the book was planned to appear
in the traditional yellow jacket. Claudia and Thomas visited the Springer-Verlag in Heidelberg and
discussed the possibility of adding a figure on the cover. We still appreciate Catriona’s support for
this, at the time, novel idea

book “Scotland and the Flemish people” (photos att.): it is interesting. I am looking
forward to reading it. Very best wishes, also to Gerda, Catriona.”

The personal attentions in that e-mail are the “Flemish” (as indeed Paul is) and
the “also to Gerda”, Paul’s wife.

Claudia and Thomas fondly recall their visit to the Springer-Verlag in Heidelberg
during which Catriona showed enthusiastic support for our project. When you look
at the two covers in Fig. 1, you surely notice that the subtitle for Insurance and
Finance appeared on the cover of the reprinted later edition(s) (right) but not on
the original first 1997 edition (left). This somehow reflects the fact that in the first
instance we indeed concentrated more on methodology, though very much with
applied interpretations and reader guidelines in mind. Before we decided to change
the cover by including the subtitle, we had an intensive discussion about whether
to write for or in. It became for as we clearly and academically honestly wanted
to convey the message that here is a theory, EVT, that has considerable promise for
applications in both insurance and finance but that the field still had to gain maturity
before it really could become an in in the title. In our negotiations with Springer-
Verlag, we also clearly stated that the appearance of finance in the title should not
lead to an increase in the sale-price. Not all publishers adhere to this principle.
Catriona very much understood and supported our concerns. On the occasion of
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Catriona’s 25 years anniversary at Springer-Verlag we wrote a thank-you poem. It
seems fit to include it here so it may reach a wider audience.

1.1 An Extremal ode to Catriona Byrne

Three from Zurich said “let’s write a book”
You cannot imagine how long that adventure took
As topic they choose to work on extremes
Not a bad choice among possible themes
For applications they considered insurance and finance
And discussed on and off with actuaries for guidance
One went to Groningen, the other to Mainz
The third to London? . . . No, he declines
Being away from Rösti and FIM
They ran into difficulties finishing the thing
Sitting in a boat merrily rowing about
One of them threatened to throw the others out
The project needs completion without delay
In comes an angel, if we may say
Dressed in yellow, with the crest of a horse
Catriona took charge and said “I endorse”
Under her wings extremes smoothed out
And brought the project in the hands of the crowd
Now it stands proud on so many a shelf
For the quality it can happily vow for itself
The authors went to places far away
To Munich, Copenhagen, but one said “I stay”
So did Catriona twenty-five years on
“I like it in yellow and do not want to be gone”
Give her your manuscript, let her bundle your thought
Into a book everyone wished they had bought

Dear Catriona, ad multos annos!
Paul, Claudia, Thomas
Zurich, Munich, Copenhagen
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Fig. 2 The three co-authors of [7], Paul, Thomas and Claudia, hard at work on the book during
a longer stay at the Mathematical Research Institute of Oberwolfach (MFO). This important stay
formed part of MFO’s Research in Pairs programme

1.2 New Aspects of Extreme Value Theory

In [7] we presented the state of the art of one-dimensional EVT for independent
identically distributed random variables and stationary time series in discrete-time
with applications to insurance and finance. Data were analysed and figures designed
with SPLUS, a licenced early version of the modern R-software. No comprehensive
extreme value package was available at that time. By now, a multitude of R-
packages for extreme value statistics exist; see https://cran.r-project.org.

In the mean time, EVT has grown in various directions, this both theoretically as
well as through its applications. Concerning the former, models for continuous-time
stochastic processes and random fields have been developed. Further, multivariate
EVT has reached maturity. More R-packages for extreme value statistics have been
written, and new EVT related programming tools, like for instance in MATLAB
or Python are available or on the way. We have witnessed a true explosion of
applications, and this in all areas of science. This growth in applications is no
doubt due to an increase risk awareness worldwide. An obvious example relates
to environmental concern and climate change. Further, the availability of large
amounts of data in the context of data science poses interesting challenges. These
developments are well documented in numerous textbooks, journal articles, and in
particular in the journal Extremes, also published by Springer; see https://www.
springer.com/journal/10687.
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In this paper we present three very different areas of EVT, where each of us
introduces their current research interests. Paul Embrechts presents some funda-
mental theorems of Quantitative Risk Management, where heavy-tailed models like
the multivariate t-distribution play an important role. Claudia Klüppelberg presents
some recent research on max-linear Bayesian networks allowing for a causal
analysis of risk events, and Thomas Mikosch browses through recent developments
on extremes for serially dependent sequences with marginal power-law tails.

2 The Fundamental Theorems of Quantitative Risk
Management (QRM) (by Paul Embrechts)

When [7] was published, EVT had already enjoyed numerous applications in
insurance, the world of finance however still very much believed in the bell
curve, the normal or Gaussian distribution. Events like the 1987 crash or the
1998 downfall of LTCM, a famous hedge fund, opened the eyes of many in the
finance profession that there indeed was life beyond the normal tail. Especially
the regulators for banking and insurance pressed for more realistic modelling
assumptions underlying the calculation of regulatory capital. In the mid-nineties
the estimation of high quantiles, far in the tail of a distribution became crucial. The
key concept became Value-at-Risk (VaR), a regulatory risk measure that became
legally mandatory to report on for the financial industry. The fact that quantiles
well beyond the 90% quantile had to be estimated called for EVT-based technology.
Though we were aware of these developments, [7] contains only one line on this
topic (p. 370): “In the context of risk management, RiskMetrics [543] forms
an interesting software environment in which various of the techniques discussed
so far, especially concerning quantile (VaR) estimation, are to be found.” The
“RiskMetrics [543]” refers to a document of JP Morgan for the calculation of
regulatory (risk) capital underlying the trading book of a bank. This one line
meanwhile has grown into thousands of publications, with a book like [13] solely
on the topic of VaR comprising 624 pages! Below we discuss some results from
this world of Quantitative Risk Management. They concern the First and Second
Fundamental Theorems of Quantitative Risk Management (1st FTQRM and 2nd
FTQRM).

The 1st FTQRM goes back to Section 3.4 in the publication [8]. These results
were first announced at the ETH Risk Day of 1998 in a talk by Daniel Straumann
with the title “Tempting fallacies in the use of correlation”; see https://www2.math.
ethz.ch/finance/ETH_Risk_Day.html. For further details, see Section 8.3 in [17].
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2.1 The 1st FTQRM

The ingredients of the 1st FTQRM are:

• The multivariate normal distribution
• Multivariate normal variance mixtures
• Spherical and elliptical distributions
• Two important risk measures: VaR and ES
• Stress tests and stress scenario sets

Definition 2.1 (Multivariate Normal Distribution) X = (X1, . . . , Xd)
$ has a

multivariate normal distribution if X
d= μ + AZ, where Z = (Z1, . . . , Zk)

$,

Zi ∼ N(0, 1) independent, A ∈ R
d×k, and μ ∈ R

d . Here
d= means equality in

distribution. We shall write

X ∼ Nd(μ,�), � = AA$.

��
The multivariate normal distribution has a very special property:

X ∼ Nd(μ,�) ⇐⇒ ∀a ∈ R
d : a$X ∼ N(a$μ, a$�a);

it yields a characterisation of multivariate Gaussianity through Gaussianity of all
one-dimensional projections.

In the following definition we go slightly beyond the multivariate normal by
allowing a common, multiplicative, independent stress factor on the components
of the matrix A and hence on those of the variance-covariance matrix �.

Definition 2.2 (Multivariate Normal Variance Mixtures) A random vector X has
a (multivariate) normal variance mixture distribution if

X d= μ+√WAZ,

where Z ∼ Nk(0, Ik) with Ik the k× k identity matrix, W ≥ 0 is a random variable
independent of Z, A ∈ R

d×k, and μ ∈ R
d . The vector μ is called the location

vector and � = AA$ the scale (or dispersion) matrix. ��
An important example is the following.

Example 2.1 Let X ∼ td (ν,μ,�) have a multivariate t-distribution with ν > 0
degrees of freedom and density

fX(x) = 
( 1
2 (ν + d))


(ν/2)(πν)d/2�1/2

(
1+ (x− μ)$�−1(x− μ)

ν

)−(ν+d)/2
, x ∈ R

d,
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where 
 is Euler’s Gamma function. Then X is a multivariate normal variance
mixture as in Definition 2.2, where W has an inverse gamma distribution with mean
E[W ] = ν/(ν − 1) (if ν > 1) and covariance matrix cov(X) = ν/(ν − 2)�
(if ν > 2). We shall write

X ∼Md(μ,�, F̂W ), F̂W (s) = E[e−sW ] , s ≥ 0.

It is not difficult to see that the contour surfaces of multivariate normal mixture
distributions are ellipsoids. In order to derive properties of these distributions, it
helps to formulate a slightly more general class of distributions. For this we base
the construction on the geometric definition of ellipticity.

Definition 2.3 (Spherical Distribution) A random vector Y has a spherical distri-
bution if for every orthogonal matrix U ∈ R

d×d (i.e. UU$ = U$U = Id ) we have

Y
d= UY (hence, Y is distributionally invariant under rotations and reflections). ��

Theorem 2.4 (Characterization of Spherical Distributions) Let ‖t‖ = (t2
1 +

· · · + t2
d )

1/2, t ∈ R
d . The following are equivalent:

(1) Y is spherical.
(2) There exists a function � : [0,∞) → R, called the characteristic generator,

such that E[eit$Y] = �(‖t‖2), t ∈ R
d .

(3) For all a ∈ R
d , a$Y

d= ‖a‖Y1 (linear combinations are of the same type).

We shall write Y ∼ Sd(�). ��
Theorem 2.5 (Stochastic Representation) The following representation holds:

Y ∼ Sd(�) ⇐⇒ Y
d= R S,

where the radial part R ≥ 0 is independent of the angular part

S ∼ U({x ∈ R
d : ‖x‖ = 1}).

Here U stands for the uniform distribution. ��
Definition 2.6 (Elliptical Distribution) A random vector X = (X1, . . . , Xd)

$ has

an elliptical distribution if for Y ∼ Sk(�),A ∈ R
d×k , X d= μ + AY with location

vector μ ∈ R
d and scale matrix � = AA$. ��

Remark 2.1 By Theorem 2.5, an elliptical random vector admits the stochastic
representation

X d= μ+ RAS, R,S as in Theorem 2.5.
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From Theorem 2.4 (2) it follows that the characteristic function of an elliptical
random vector X is

E[eit$X] = eit
$μ�(t$�t), t ∈ R

d .

We shall write X ∼ Ed(μ,�,�).

Recall from finance and insurance the two following risk measures, Value-at-Risk
(VaR) and Expected Shortfall (ES).

Definition 2.7 For 0 < α < 1 and X a random variable with distribution function
FX,

VaRα(X) = F−1
X (α) = inf{x ∈ R : FX(x) ≥ α}.

If E[X] <∞,

ESα(X) = 1

1− α

∫ 1

α

VaRδ(X)dδ

= E[X | X > VaRα(X)] ifFXis continuous.

��
Remark 2.2 Note that ESα is always subadditive, whereas in general, VaRα is not;
see Examples 2.25 and 2.26 in [17].

The importance of Theorems 2.4 and 2.5 becomes clear from the following result.

Theorem 2.8 (Subadditivity of VaR for Elliptical Models) Let Li = λ$i X, for
λi ∈ R

d, i = 1, . . . , n with X ∼ Ed(μ,�,�), then for 1/2 < α < 1:

VaRα

( n∑

i=1

Li

)
≤

n∑

i=1

VaRα(Li).

Proof Consider a generic L = λ$X
d= λ$μ + λ$AY for Y ∼ Sk(�). By

Theorem 2.4 (3),

λ$AY
d= ‖λ$A‖Y1,

so L
d= λ$μ + ‖λ$A‖Y1. By translation invariance and positive homogeneity of

VaRα we obtain

VaRα(L) = λ$μ+ ‖λ$A‖VaRα(Y1).
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Applying this result to L = ∑n
i=1 Li = (

∑n
i=1 λi )

$X and to each Li = λ$i X,
i = 1, . . . , n, we obtain

VaRα

( n∑

i=1

Li

)
=

n∑

i=1

λ$i μ+ ‖
n∑

i=1

λ$i A‖VaRα(Y1)

≤
n∑

i=1

λ$i μ+
( n∑

i=1

‖λ$i A‖
)

VaRα(Y1)

=
n∑

i=1

(λ$i μ+ ‖λ$i A‖VaRα(Y1))

=
n∑

i=1

VaRα(Li),

where we used the Cauchy–Schwarz inequality and the fact that for 1/2 < α < 1,
VaRα(Y1) ≥ 0. Taking λi = ei (i-th unit vector), we obtain the subadditivity

VaRα(

n∑

i=1

Xi) ≤
n∑

i=1

VaRα(Xi).

��
For the definition of a coherent risk measure ρ, see Definition 8.1 in [17]; in

particular, ESα is always a coherent risk measure. It follows from Theorem 2.8 that
VaRα is coherent for the class of elliptical random vectors (or distribution functions).

There is a link between the notion of coherence and stress testing. For this we
consider the set M of linear portfolios based on a fixed d-dimensional random
vector X:

M = {L : L = m+ λ$X,m ∈ R,λ ∈ R
d}.

For a positive-homogeneous risk measure ρ : M → R, we define a risk-measure
function rρ(λ) = ρ(λ$X),λ ∈ R

d . There is a one-to-one relationship between ρ

and rρ given by

ρ(m+ λ$X) = m+ rρ(λ).

Define the scenario set

S(ρ) = {x ∈ R
d : u$x ≤ rρ(u) ∀u ∈ R

d },
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hence Sρ is an intersection of half-spaces, so that Sρ is a closed convex set. The
precise form of Sρ depends on the distribution of X and on ρ. If ρ = VaRα ,
Sρ has the interpretation of a depth set in robust statistics. Also recall that a risk
measure ρ is law-invariant if for every random variable X, ρ(X) only depends on
the distribution function FX of X. Typical examples are VaR and ES.

We are now in the position to formulate the 1st FTQRM.

Theorem 2.9 (1st FTQRM) Let X ∼ Ed(μ,�,�) and ρ be any positive-
homogeneous, translation-invariant and law-invariant risk measure on M. Then
the following hold:

(1) For all L = m+ λ$X ∈M,

ρ(L) = m+ λ$μ+
√

λ$�λρ(Y1), Y1 ∈ S1(�).

(2) If ρ(Y1) ≥ 0, then ρ is subadditive on M. In particular, we obtain that in the
case of elliptical portfolios, VaR is coherent.

(3) If E[X] exists, then for all L = m+ λ$X ∈M and (ρij = P(�)ij with P(�)

the “correlation matrix” associated to �, see [17], p. 176),

ρ(L− E[L]) =

√
√
√
√
√

d∑

i=1

d∑

j=1

ρij λiλjρ(Xi − E[Xi ])ρ(Xj − E[Xj ]).

(4) If cov(X) exists and ρ(Y1) > 0, then for all L ∈M,

ρ(L) = E[L] + kρ
√

var(L)

for some kρ > 0 depending on ρ.
(5) If �−1 exists and ρ(Y1) > 0, then

Sρ = {x ∈ R
d : (x− μ)$�−1(x− μ) ≤ ρ(Y1)

2}.

��

2.2 Discussion

(1) For a proof, see [17], Theorem 8.28.
(2) Theorem 2.9 (1) yields an explicit form of ρ(L) as a function of the portfolio

structure and the defining factors of the underlying elliptical distributions.
(3) Theorem 2.9 (2) implies that, under fairly general conditions on the risk

measure ρ, we obtain subadditivity of ρ on M.
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(4) Theorem 2.9 (3) computes the overall portfolio stress loss ρ(L − E[L]) as
an aggregation of the individual stress factor contributions ρ(Xi − E[Xi]),
i = 1, . . . , d and forms the basis of the standard formula under the regulatory
guidelines Solvency 2 for insurance companies.

(5) Theorem 2.9 (4) has the important implication that in this case, the optimal
portfolio under ρ coincides with the Markowitz variance-minimizing portfolio.

(6) Theorem 2.9 (5) represents the scenario (stress) sets Sρ defined above as
ellipsoids.

Important Comment The 1st FTQRM holds true under the important condition
of ellipticity of the underlying risk factors. A special case corresponds to the
multivariate normal and the multivariate t . In such cases, QRM becomes a fairly
standard exercise. This brings us to the (much more) important “2nd FTQRM”. If
the conditions underlying the 1st FTQRM, in particular X ∼ Ed(μ,�,�), do not
hold, then the results (1)–(5) from Theorem 2.9 typically do not hold. Moreover, in
practice they may fail in a rather dramatic way!

Remark 2.3 We wrote “2nd FTQRM” above in quotation marks, indeed, as stated,
it is not a theorem, but more a summary statement on numerous results existing in
the literature. For an example, see e.g. Section 8.4.4 in [17].

3 Max-Linear Bayesian Networks (by Claudia Klüppelberg)

Graphical models can represent multivariate distributions in an intuitive way and,
hence, facilitate the statistical analysis of high-dimensional data. Such models are
usually modular so that high-dimensional distributions can be described and handled
by a careful combination of lower-dimensional factors. Furthermore, graphs are
natural data structures for algorithmic treatment. Conditional independence and
Markov properties are essential features for graphical models. The book by
Lauritzen [16] masterly describes the fundamental mathematical and statistical
theory of graphical models.

Moreover, graphical models can allow for causal interpretation, often provided
through a recursive system on a directed acyclic graph (DAG), and the max-linear
model (1) below is a specific example. The book by Pearl [18] provides a rich source
for the study of causality for statistical data.

We present below some conditional independence properties of max-linear
Bayesian networks, which emphasize their difference to linear networks.
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3.1 An Extremal Graphical Model

Max-linear Bayesian networks as introduced in [10] model causal dependence
between extreme events. It is specified by a random vector X = (X1, . . . , Xd),
a directed acyclic graph D = (V ,E) with nodes V = {1, . . . , d}, non-negative
coefficients cij ≥ 0 for i, j ∈ V (summarized in the coefficient matrix C = (cij )),
and independent random variables Z1, . . . , Zd . These, known as innovations, have
support R> := (0,∞) and have atom-free distributions. Then X is defined by the
recursive system

Xi =
∨

j∈pa(i)

cijXj ∨ Zi, i = 1, . . . , d, (1)

where pa(i) (parents of i) denotes the set of nodes j where there is a directed edge
from j to i. The equation system (1) has solution

Xi =
∨

j∈an(i)∪{i}
bijZj , i = 1, . . . , d, (2)

where an(i) (ancestors of i) denotes the set of nodes j where there is a directed
path from j to i, and bij is a maximum taken over all the products along such paths
(see [10], Theorem 2.2). Any such path that realizes this maximum is called max-
weighted under C.

Above we have used the following standard notation. A path in a DAG D is a
sequence of nodes i0, i1, . . . , ik such that i� → i�+1 or i�+1 → i� is an edge in D
for each � = 0, . . . , k. A directed path has edges i� → i�+1 for all �. A collider on
a path is a node i� in a path such that i�−1 → i� ← i�+1.

Whereas linear Bayesian networks are based on classical linear algebra, max-
linear Bayesian networks are based on tropical linear algebra in the max-times
semiring (R≥,), ·), defined by

a ) b := a ∨ b = max(a, b), a · b := ab for a, b ∈ R≥.

These operations extend to R
d≥ coordinate-wise and to corresponding matrix

multiplication for R ∈ R
m×n≥ and S ∈ R

n×p
≥ as

(R ) S)ij =
n∨

k=1

rikskj .

In tropical linear algebra, B = (bij ) is called the Kleene star matrix and a max-
weighted path is called a critical path.
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For max-linear Bayesian networks, X is Markov with respect to its DAG.
However, tropical linear algebra has various consequences concerning conditional
independence properties and statistical analysis of the model.

Fig. 3 Diamond graph (left)
and with the node K = {2}
being observed, as indicated
in red. If c42c21 ≥ c43c31, it
holds that X1⊥⊥X4 |X2
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3.2 Conditional Independence

Graphical models identify conditional independence relations through separation
criteria applied to a graph. The standard separation criteria is given by the following
definition.

Definition 3.1 Two nodes i, j ∈ V are d-connected given a set K ∈ V \ {i, j } if
there is a path π from j to i such that all colliders on π are in K ∪ an(K) and no
non-collider on π is in K . For three disjoint subsets I, J,K of the node set V , the
node set K d-separates I and J if no pair of nodes i ∈ I and j ∈ J is d-connected
relative to K .

It was observed already in [14] and investigated in detail in [1] that the
conditional independence properties for max-linear Bayesian networks are very
different from those in linear Bayesian networks. In particular, they are often not
faithful to their underlying DAG D. This means that the above d-separation criterion
on the DAG typically will not identify all valid conditional independence relations,
in contrast to the situation for most Bayesian networks based on discrete random
variables or linear structural equations.

We present three examples to explain some of the relevant issues and refer to [1]
for details.

Example 3.1 (Diamond) Consider the DAG in Fig. 3.
The path 1 → 2 → 4 is max-weighted if and only if c42c21 ≥ c43c31. If this is

the case, the joint distribution of (X1,X2,X4) has the representation

X1 = Z1, X2 = c21X1 ∨ Z2,
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and

X4 = c42X2 ∨ Z4 ∨ c43X3

= c42(Z2 ∨ c21Z1) ∨ Z4 ∨ c43(Z3 ∨ c31Z1)

= c42Z2 ∨ c42c21Z1 ∨ Z4 ∨ c43Z3 ∨ c43c31Z1

= c42Z2 ∨ c42c21Z1 ∨ Z4 ∨ c43Z3 since c42c21 ≥ c43c31

= c42X2 ∨ Z4 ∨ c43Z3

and hence we have X1⊥⊥X4 |X2, which does not follow from the d-separation
criterion. Here, the fact that 1 → 2 → 4 is max-weighted renders the path 1 → 3 →
4 unimportant for the conditional independence X1⊥⊥X4 |X2, even if 1 → 3 → 4
were also max-weighted (that is, even if c42c21 = c43c31).

In Example 3.1, the complicating issue was associated with paths being max-
weighted or not. However, this is not the only way standard d-separation fails. In
Example 3.2, the complications are associated with double colliders along a path.

Example 3.2 (Cassiopeia) A max-linear Bayesian network on the graph in Fig. 4
will satisfy X1⊥⊥X3 |X{4,5} for all coefficient matrices C. This can be seen from
the following calculations, where we assume that cji = bji = 1 for all edges in this
DAG and let xK = (x4, x5). Then Xi = Zi for i = 1, 2, 3 and

[
x4

x5

]

=
[
Z1 ∨ Z2 ∨ Z4

Z2 ∨ Z3 ∨ Z5

]

≥
[
Z4

Z5

]

and

[
x4

x5

]

≥
[
Z1 ∨ Z2

Z2 ∨ Z3

]

.

We have three situations for (x4, x5) corresponding to

x4 < x5, x4 > x5, x4 = x5

[
x4

x5

]

≥
[
Z1 ∨ Z2

Z3

]

,

[
x4

x5

]

≥
[

Z1

Z2 ∨ Z3

]

,

[
x4

x5

]

≥
[
Z1

Z3

]

and Z2 = x4 = x5.

Hence, all Zi are bounded in all three cases. Moreover, Z1 and Z3 never occur
together in any inequality, rendering X1⊥⊥X3 |X{4,5}. However, this conditional
independence statement does not follow from the d-separation criterion since the
path from 1 to 3 is d-connecting relative to {4, 5}.

Example 3.2 shows that max-linear Bayesian networks are often not faithful to
d-separation, but d-separation is also not complete for conditional independence in
these networks. That is, there are conditional independence statements which are
valid for any choice of coefficients C, but cannot be derived from d-separation.

Also, in contrast to standard results for linear Bayesian networks, some condi-
tional independence relations are highly context-specific, i.e. depend drastically on
the particular values of the conditioning variables, as in Example 3.3.
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Fig. 4 The Cassiopeia graph with observed nodes K = {4, 5}. Here it holds that X1⊥⊥X3 |X{4,5}
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Fig. 5 The left-hand figure displays what we call the tent DAG D. For all coefficients equal to
1, the source DAG C(XK = xK) when the observed nodes are K = {4, 5} with observed values
x4 = x5 = 2, is obtained from the left-hand figure by removing the edges 1 → 3 and 2 → 3,
which become redundant in the context {X4 = X5 = 2}

Example 3.3 (Tent) Consider the DAG D on the left in Fig. 5 with all coefficients
cji = 1. Let K = {4, 5} be the set of observed nodes; we seek all independence
relations conditionally valid in the context X4 = X5 = 2. Writing out the model (1)
we find

X1 = Z1, X2 = Z2, X3 = Z3 ∨X1 ∨X2,

X4 = Z4 ∨X1 ∨X2 = 2,

X5 = Z5 ∨X1 ∨X2 = 2.

Since Z1, . . . , Z5 are a.s. different when the innovations have atom-free distribu-
tions, it holds apart from a null-set that X1 ∨ X2 = Z1 ∨ Z2 = 2. This introduces
bounds on the innovations; we must have Z1, Z2, Z4, Z5 ≤ 2 and it also holds that
X3 ≥ 2. Further, we then have

X1 = Z1, X2 = Z2, X1 ∨X2 = 2, X3 = Z3 ∨ 2,

X4 = Z4 ∨ 2 = 2,

X5 = Z5 ∨ 2 = 2,

whence we conclude that X3⊥⊥ (X1,X2) |X4 = X5 = 2, since now the dependence
of X3 on X1,X2 has disappeared. This independence statement is reflected in the
lack of edges 1 → 3 and 2 → 3 in the source DAG C(X4 = X5 = 2), shown to the
right in Fig. 5. ��
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The paper [1] provides a complete description of valid conditional independence
statements for a given coefficient matrix C, conditional independence statements
that hold for all C supported on a given DAG D, as well as those that depend on
the specific values of the conditioning variables. This is achieved by introducing
three separation criteria. These are less restrictive than d-separation, as they focus
on paths that are max-weighted (as in Example 3.1), do not have multiple colliders
(as in Example 3.2), and, for a given context, refer to the source DAG, obtained by
removing edges that are redundant in the context (as in Example 3.3).

Definition 3.2 says that a ∗-connecting path is d-connecting with at most one
collider.

Definition 3.2 A path between nodes j and i in a DAG is ∗-connecting relative to
a given node set K if and only if it is one of the paths in Fig. 6. Conversely, K

∗-separates j and i if they are not ∗-connecting given K . For three disjoint subsets
I, J and K of the node set V , the node set K ∗-separates I and J if no pair of nodes
i ∈ I and j ∈ J is ∗-connected relative to K . ��

The characterization of conditional independence relations in a max-linear model
is based on ∗-separation in different graphs, corresponding to three situations. The
different graphs are derived from the so-called reachability graph D∗ of D, which
has an edge if and only if there is a path from j to i, or if j = i. Indeed, B = (bji)

as in (2) is a weighted reachability matrix.
In [1] we formulate three different theorems, exemplified by Examples 3.1, 3.2

and 3.3, to clarify conditional independence for max-linear Bayesian networks. All
three have the following structure, using ∗-separation (⊥∗) in appropriate derived
DAGs.

Theorem 3.3 Let X be a max-linear Bayesian network over a directed acyclic
graph D = (V ,E). Then for all I, J,K ⊆ V ,

I ⊥∗ J |K in D̃ �⇒ XI ⊥⊥XJ |XK.

The DAG D̃—derived fromD, C, and the specific context {XK = xK}—depends
on the situation. Their characterization is the main focus in [1], and we distinguish
the following three:

(1) D̃ = C(XK = xK): The coefficient matrix C is fixed and the context {XK =
xK } is specific, thus yielding conditional independence relations that are valid
for the particular values xK (as in Example 3.3).

(2) D̃ = D∗
K(C): The coefficient matrix C is fixed, which yields independence

relations that may depend on C which are valid for all possible contexts (as in
Example 3.1).

(3) D̃ = D∗
K : The coefficient matrix C is arbitrary with support included in D and

this yields conditional independence relations that are universally valid under
these conditions (as in Example 3.2).
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(a) (b) (c) (d) (e)

Fig. 6 Types of ∗-connecting paths between i and j . Nodes that are colored red are in K

3.3 Discussion

(1) In max-linear Bayesian networks there are more conditional independence
properties than in a linear Bayesian network. This can be seen e.g. from
Example 3.1, where the path 1 → 3 → 4 is d-connecting, but 1⊥⊥ 4 | 2.

(2) The above separation criteria follow the form of the moralization procedure for
establishing d-separation, where also separation is checked in a derived graph,
the moral graph.

(3) In Section 6 of [1] we give conditions for the above separation criteria to be
complete in the sense that they yield all conditional independence statements
that are valid under the specified conditions.

4 A Light History of Heavy Tails (by Thomas Mikosch)

There is no clear-cut definition of the notion of heavy-tailed distribution. In our 1997
book [7] we made an attempt to define different classes of heavy-tailed distributions
via certain properties they have in common. A large part of the monograph was
devoted to the subexponential class which we understood as the natural family of
univariate distributions for modeling risks in finance and insurance: a distribution F

on [0,∞) is subexponential if for iid random variables X1, . . . , Xn with distribution
F and any n ≥ 2 the tails of their sum Sn = X1 + · · · + Xn and maximum Mn =
maxi=1,...,n Xi are equivalent:

P(Sn > x)

P(Mn > x)
→ 1 , x →∞ , (3)

we also write P(Sn > x) ∼ P(Mn > x) for this equivalence. For example, if we
interpret Sn as the aggregated claim amount in an insurance portfolio and Mn as the
largest claim size in it, then the probability for Sn being extremely large is due to
Mn. In catastrophe insurance, Mn is something like a claim size caused by a 9/11
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or Fukushima event: a single event may lead to bankruptcy of the whole insurance
company.

Subexponential distributions are defined via the simple relation (3). However, (3)
does not tell us much about the structure of the distribution F of the Xi . The
tail structure of subexponential F was studied starting in the 1960s. It was well
understood already in the 1980s. It turned out that subexponential distributions
cover power-law tails (these distributions have certain infinite power-moments, i.e.,
they are very heavy-tailed), but also distributions like the lognormal, or Weibull
with tail F(x) = 1 − F(x) = exp(−xτ ), x > 0, for τ ∈ (0, 1), are subexponential.
The two latter distributions have all power-moments but no exponential ones, i.e.,
they have medium heavy tails. All subexponential distributions are popular in
insurance for modeling claim size distributions, and also in finance. For example,
the lognormal is the marginal distribution of the celebrated Black–Scholes model
for prices of speculative assets.

Major parts of our book [7] were devoted to distributions with power-law tails.
In mathematical terms, we dealt with the regularly varying distributions on [0,∞)

with tail index α > 0,

P(X > x) = x−α L(x) , x > 0 , (4)

where L is a slowly varying (flat) function compared to the power law x−α, i.e., for
arbitrarily small ε > 0 and sufficiently large x, L(x) can be sandwiched between
x−ε and xε. This function is an infinite-dimensional nuisance parameter which
makes the statistical analyses of the tails in (4) a nightmare, for example, the
estimation of α is a hard problem which gave rise to dozens of scientific articles
and book chapters.

The regularly varying distributions can easily be extended to the real line by
introducing a tail-balance condition: for some p+, p− ≥ 0 such that p+ +p− = 1,

P(|X| > x) = x−α L(x) and P(±X > x) ∼ p±P(|X| > x) , x →∞ . (5)

This means that X has a regularly varying radial part |X| and an angular part
X/|X| which determines the probability of the sign +1 or −1 of X given that |X|
is large. The extension (5) of a regularly varying random variable enabled us in
[7] to conduct an extreme value analysis of iid random variables (Xi) with such a
marginal distribution, but we were also able to derive extreme value theory (EVT)
for linear processes:

Xt =
∞∑

j=0

ψj Zt−j , t ∈ Z . (6)

This class contains the backbone of classical time series analysis: the causal
ARMA processes; see the textbook treatment by Brockwell and Davis [3]. Under
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summability conditions on the real sequence (ψj ) and regular variation of the
marginal distribution of the iid noise (Zt ) (in the sense of (5)) we could present
a theory for the extremes of (Xt) which completely parallels the theory for an iid
sequence with regularly varying marginals. This could be achieved by employing
the so-called single big jump principle: given we observe a large value of Xt

satisfying (6), this value is caused by a single big value of the Zt−j . Keeping this
principle in mind, it is rather easy to understand the asymptotic behavior of the
extremes of (Xt). A related EVT can also be derived for linear processes with more
general subexponential iid noise (Zt ). The single big jump principle is the heuristic
guide to success in this case too.

With the advancement of financial econometrics, starting in 1982 with the
introduction of Robert Engle’s [9] ARCH model for returns of speculative assets,
new interesting time series models entered the field. These models exhibit zero
autocorrelations, i.e., they are white noise—in agreement with real-life time series
of financial returns. EVT for a special case of these models (the ARCH(1),
autoregressive conditionally heteroscedatic process of order 1) was provided rather
early on: in the 1989 paper by de Haan, Resnick, Rootzén and de Vries [12].
Fortunately, some very qualified people had met and written this paper: Holger
Rootzén and Sid Resnick—two pioneers on extremes for time series, Laurens de
Haan—a classic of EVT, Casper de Vries—a financial econometrician who was
aware of Engle’s work, and all of them were aware of a forthcoming paper by
Charles Goldie [11] who had derived the marginal tails of the ARCH(1) which
turned out to be of power-law type (5) with a constant L(x).

The three authors of this paper had the pleasure to meet the aforementioned
researchers many times over the last 30 years, to discuss scientific matters with
them. In particular, Charles Goldie took the effort to read (and significantly improve
upon) our book [7] but also the 2016 Springer monograph [4], jointly written with
Ewa Damek and Darek Buraczewski. A main driving force for the latter book was
the goal to better understand the structure of ARCH-type models. These are highly
non-linear models, in their simplest form, the ARCH(1) is given by

Xt = σt Zt , σ 2
t = α0 + α1 X2

t−1 , t ∈ Z ,

for positive constants αi and an iid sequence (Zt ) with mean zero and unit variance.
In contrast to linear processes (6), the multiplicative structure of the recursion σ 2

t =
α0 + α1 σ 2

t−1 Z2
t−1 makes the analysis of the marginal tails of (Xt ) a very difficult

problem. In this case, no single big jump principle is available, i.e., it is not possible
to identify a single value Zt which is responsible for the largest values in the sample
X1, . . . , Xn. Still, the Markovian structure of ARCH(1) allowed the authors of [12]
to derive the EVT for this model.

When dealing with the extremes of time series, one needs to understand the
extremal dependence structure of this series. With the exception of Gaussian
time series, the extremes cannot be dealt with by covariances or correlations as
in classical time series analysis. Extremes happen in the very far out tails of the
distribution of the series. Due to dependence it is not enough to study the marginal
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tail behavior: typically, extremes of time series appear in clusters, in groups of
large positive or negative values roughly at the same time. We see these clumps in
financial return series in times of crises; see Fig. 7 for an illustration.

Therefore one needs to understand the simultaneous tails of a time series. This
means that we are seeking for the joint tail behavior of the lagged vectors Xh =
(X0, . . . , Xh), h ≥ 0 (here we only consider real-valued Xi , but the same problem
arises for vector-valued time series).

But how can one define a tail of a random vector X?

A guide to answering this question can be found in Resnick’s classical 1987
Springer book [19]. He dealt with multivariate EVT when the marginal distributions
are regularly varying in the sense of (5). In addition to the regular variation of the
radial part |X| of a random vector X ∈ R

d we also need to have control of its
angular part, i.e., of the likelihood of the directions X/|X|. A possible definition of
multivariate regular variation of X with index α > 0 is the following one: |X| is
regularly varying with index α > 0 and there exists a random vector � with values
on the unit sphere S

d−1 = {x : |x| = 1} of Rd such that for every r > 1 and “nice”
subsets of Sd−1,

P

(( |X|
x

,
X
|X|
)
∈ (r,∞)× S

∣
∣
∣ |X| > x

)
→ r−α

P(� ∈ S) , x →∞ . (7)

We observe that P(Y > r) = r−α, r > 1, defines a Pareto(α) distribution. Thus,
the limit relation (7) can be interpreted as follows: given that |X| is large the scaled
radial and angular parts |X|/x and X/|X| are asymptotically independent, i.e., the
limits Y and � are independent. The univariate case is already covered by the
tail-balance condition (5) with P(# = ±1) = p±: in this case we have only two
directions.

Now we can define a regularly varying time series: take a strictly stationary
sequence (Xt ) and require that (7) holds for every lagged vector X = Xh, h ≥ 0.
This idea can really be made to work. The first paper where this idea was exploited
was written by Davis and Hsing [5] in 1995. They paved the way for the extreme
value analysis of regularly varying time series in the aforementioned sense.

An elegant reformulation of the regular variation property of a strictly stationary
time series was provided by Basrak and Seghers [2] in 2009: the strictly stationary
sequence (Xt ) is regularly varying with index α > 0 if for every lagged vector Xh,
h ≥ 0, the following distributional convergence relation holds

P

(
x−1Xh ∈ ·

∣
∣ |X0| > x

) w→ P

(
Y (#0, . . . ,#h) ∈ ·

)
, x →∞ . (8)

Here Y is a Pareto(α)-distributed random variable independent of the sequence of
random variables (#t)t≥0, constituting the so-called spectral tail process. This
process describes how a large value |X0| at time zero propagates into the extreme
future of the time series. For example, the solution to the AR(1) equation Xt =
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Fig. 7 Top: the 1258 log-returns Xt = logPt − logPt−1 of the daily S&P 500 stock index’s
opening (left) and closing (right) prices Pt from the period 11 May, 2015, to 8 May, 2020. The
influence of the corona virus pandemic is clearly visible in the last 60 values of these time series.
Bottom: scatterplot of the closing against the opening log-returns of the same stock index time
series. The circles in the left graph have radii corresponding to the 80, 90, 95, 97, 98, 99, 99.5%
quantiles of the distances of the scatter points from the origin. The red dots outside these circles
may be interpreted as “extremes of different degrees”. In the right plot each point is connected
with two points, corresponding to the log-return time series on the previous and next days. It is
striking that a point with a large norm is typically connected with two points with large norms: this
is an indication of extremal clusters. This is particularly evident between 11 February, 2020, and 8
May, 2020: this part of the time series is colored by red points and lines

ϕ Xt−1 + Zt , t ∈ Z, for some ϕ ∈ (−1, 1) with regularly varying iid noise (Zt )

is regularly varying with spectral tail process #t = #0ϕ
t where P(#0 = ±1) =

limx→∞ P(±X0 > x)/P(|X0| > x), i.e., a shock to the AR(1) process at time zero
vanishes exponentially fast while the spectral tail process carries the sign #0 of this
shock into the future.

Over the last 10–15 years a group of researchers in EVT has focused one the
probabilistic and statistical analyses of regularly varying processes. These do not
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only include time series, but also graphical models, random fields, random sets,
max-stable structures, random recurrence equations, branching processes,. . . We
refer to the recent Springer book by Kulik and Soulier [15] for a state-of-the-art
overview.

One of the reasons for the popularity of regularly varying structures is that
univariate regular variation is extended to the multivariate case in a “very natural
way”. Efforts have been made to extend the entire univariate subexponential class
(including distributions which have all power-moments) to the multivariate case.
The paper by Samorodnitsky and Sun [20] gives an overview of the results achieved.
The authors indicate that the existing definitions of multivariate subexponentiality
are either trivial (requiring only subexponentiality of the marginal distributions
without any dependence assumptions between the components of the vector) or
too complicated to be of general practical use (i.e., these definitions depend on
particular applications like ruin probabilities, and correspond to some special
sets in R

d ). A possible reason for these observations may be that the classical
definition of a subexponental distribution is based on convolutions (the denominator
in (3) can be replaced by nF(x)—it is simply a suitable normalization of the tail
P(x−1Sn ∈ (1,∞)) corresponding to the set (1,∞)). In contrast, regular variation
is a natural domain of attraction condition both for partial sums and maxima in the
uni- and multivariate cases (a glance at (8) shows that this limit relation does not
depend on the structure of some underlying sets).
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Fig. 8 Top: Sample extremogram ρ̂+(h), h = 1, . . . , 20, of the extremogram ρ+(h) in (9) for a
stationary AR(1) process Xt = ϕ Xt−1 + Zt with iid student-t noise with 3 degrees of freedom.
Left: ϕ = 0.9 Right: ϕ = −0.9. The estimation is based on the sample size 100 000. The
blue dots and red vertical lines represent the theoretical values ρ+(h) and their estimators ρ̂+(h),
respectively

We conclude with an application of the regular variation property of a univariate
time series (Xt ) to some analysis of extremal dependence clusters: the extremogram.
This name was coined by Davis and Mikosch [6] for the following limiting function
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for h ≥ 1:

ρ±(h) = lim
x→∞P

(±Xh > x | X0 > x)

= lim
x→∞P

(± x−1Xh ∈ (1,∞) | X0 > x)

=P(±Y #h > 1,#0 = 1) . (9)

The latter relation is a direct consequence of the defining property (8) of the spectral
tail process (#t) and the continuous mapping theorem . The extremogram sequence
(ρ±(h))h≥0 constitutes an autocorrelation function for the extreme events that, given
|X0| is large, so are Xh or −Xh after h lags. We illustrate the extremogram and its
estimation for an AR(1) process in Fig. 8.
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Fig. 9 Sample extremograms of the absolute values of the opening (Xt ) (top left) and closing (Yt )

(bottom right) log-returns of the S&P 500 series; see Fig. 7 for a visualization of this series. Sample
cross-extremograms for {|Yh| > x} given {|X0| > x} (top right) and for {|Xh| > x} given {|Y0| >
x} (bottom left) are also shown. The thresholds x are the corresponding 90% empirical quantiles
of the absolute values of the data. The blue line indicates a 95% confidence band corresponding
to the iid case: if a vertical red line at lag h is outside these bands this is an indication of extremal
dependence between |X0| and |Xh|
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The extremogram can be defined in numerous other ways. We illustrate this
in Fig. 9. There we show the sample extremograms ρ̂+(h) (i.e., estimators of the
extremograms ρ+(h)) of the absolute values of the daily opening (Xt ) and closing
(Yt ) log-returns of the S&P 500 series from Fig. 7 but also the estimators of the
cross-extremograms

lim
x→∞P

(|Yh| > x | |X0| > x) and lim
x→∞P

(|Xh| > x | |Y0| > x) .
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Limits of Limit-Order Books

Christopher Almost, John Lehoczky, Steven Shreve, and Xiaofeng Yu

1 Introduction

1.1 Background

On electronic exchanges buyers and sellers of financial assets are matched by a
continuous double auction, whose operation is described below. Although some
agents submitting orders may be acting as market makers, posting both buy and
sell orders, these agents no longer have the favored position of floor specialists who
received orders and could either match those with other received orders or execute
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the orders for their own account. Instead, all agents place orders of essentially four
types,1 market buy orders, market sell orders, limit buy orders, and limit sell orders.

A limit buy/sell order specifies the number of shares to be bought/sold and the
price at which the transaction is to take place. Allowable prices are on a discrete
grid. The grid points are called ticks. If there is no limit sell/buy order in the book
that matches the price associated with an arriving limit buy/sell order, the arriving
limit order is queued at that price for later execution or cancellation. If there is a
matching limit order queued in the book, the arriving limit order is partially or fully
executed against the existing order, depending on the size of the existing order. Any
part of the arriving limit order not executed is queued.

In contrast, market buy/sell orders accept the best price available in the book, and
if the arriving order exhausts the limit orders queued at a particular price, it moves
on to the limit orders queued at the next best price. The “best price” at which a
market buy order executes is the lowest price at which a limit sell order is queued,
and this is called the best ask price, or simply the ask price. The “best price” at
which a market sell order executes is the highest price at which a limit buy order is
queued, and this is called the best bid price, or simply the bid price.

On most exchanges, when an order arrives that can execute against limit orders
queued at a particular price, the queued limit orders are executed in order of arrival
to the queue, the oldest being executed first. For this reason, limit orders are
often submitted to establish time priority in case the agent wants to later execute.
Exchanges permit submitting agents to cancel limit orders before they are executed,
and indeed most limit orders are canceled rather than being executed.

A zero-intelligence Poisson model of the limit-order book dynamics assumes
the market and limit buy and sell orders arrive at different prices according to
independent Poisson processes, where the intensity of the Poisson processes may
depend on the state of the limit-order book. “Zero-intelligence” denotes the fact
that there is no attempt to model the motivation of the individual agents who
are submitting the orders. In these models, orders are cancelled according to
independent exponential random variables. These limit-order book models are akin
to queueing models of telephone or computer communication traffic in which the
statistics of the traffic are modeled but not the reasons for the traffic. In Sect. 1.2,
we present a brief history of and the evidence for the efficacy of these types of
models.

1 Certain agents are permitted to place other types of orders, e.g., iceberg orders, which become
visible to other agents only gradually as they are executed. These are important if one is to study
strategic play among agents. That is not our goal, and thus to avoid unnecessary complications, we
restrict our attention to the four principal types of orders introduced here.
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1.2 Survey of the Literature

For general background on limit-order books, both empirical studies and models,
one may consult Biais et al. [9], Cont [13, 14], Gould et al. [27], Hautsch and
Huang [28], Parlour and Seppi [43], and Szabolcs and Farmer [46].

Poisson models of order arrivals have a long history, predating electronic
exchanges. Early models by Garman [23], Amihud and Mendelson [4] and
Mendelson [42] posit Poisson arrivals of buy and sell orders to a market that clears
periodically. In [23] and [4], this clearing is facilitated by a market maker.

In a step toward zero-intelligence models, Roşu [44] and Kruk [37] build models
with Poisson arrivals of buy and sell orders but with prices posted strategically by
the agents submitting the orders.

Cohen et al. [12] build a zero-intelligence model for a continuous double auction
with order queues only at the bid and ask prices. Domowitz and Wang [18], who
include a nice discussion of the operation of limit-order books, extend this model to
allow order queues at finitely many prices and compute the stationary distribution
for their model. Kelly and Yudovina [34] and Luckock [40] permit Poisson arrivals
to a continuum of prices and also compute stationary distributions. One of the few
papers in which arriving orders are not assumed to have constant size is Kruk [36],
in which arrivals are modeled by renewal processes and order sizes are randomly
distributed. Under a fluid scaling of time/volume, but not prices, a limiting evolution
for the order book is obtained.

Smith et al. [45] and Daniels, Farmer, Gillemot et al. [17] build a zero-
intelligence Poisson model and conduct extensive simulations together with dimen-
sional analysis and mean field approximations to obtain predictions about price
volatility, market depth, the size and variability of the bid-ask spread, the price
impact of submitting a market order, and the probability that a limit order is
filled. The orders are of constant size, but [45] reports that when comparing their
simulations to those with random order size, as long as the distribution of order size
has a thin tail, the same qualitative results are obtained. Farmer et al. [19] report
good agreement between the predictions in [45] and [17] and data from the London
stock exchange.

For an interesting experiment on the ability of zero-intelligence trading to achieve
price discovery, see [24].

By scaling price ticks as well as time and order volume, one can obtain limiting
models that are governed by partial differential equations in the case of fluid scaling
(see Gao and Deng [22], Horst and Kreher [29], and Horst and Paulsen [31]) and
by measure-valued stochastic differential equations or stochastic partial differential
equations in the case of diffusion scaling or multiple time scales (see Bayer et al. [7],
Horst and Kreher [30], Lakner et al. [39], and Lakner et al. [38]). Kirilenko et al.
[35] develop a model with three time scales and both fluid and diffusion scalings.
Maglaras et al. [41] build a fluid model from the outset, i.e., not obtained as the
limit of a stochastic model. Horst and Xu [32] introduce Hawkes random measures,
an extension of Hawkes processes that have been used to capture the clustering of
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arrivals observed in data. See the references in [32] for entry into the literature on
this use of Hawkes processes.

The literature on Markov models of limit-order books is too extensive to survey
here. We mention only Huang et al. [33], who build a two-time-scale model and fit
it to data, Gonzalez [25, 26], and the references therein.

Finally, a number of authors have used microstructure models based on Poisson
processes or more general processes to obtain macro models for price movement.
Among them, in addition to several papers already mentioned, are Abergel and
Jedidi [1], Bak et al. [6], Bayraktar et al. [8], Blanchet and Chen [10], Föllmer
and Schweizer [20] and Föllmer [21].

1.3 A Representative Model

In the remainder of this paper, we introduce diffusion modeling of limit-order
books by describing a particular model in some detail. This model is inspired
by Cont et al. [16], who construct a zero-intelligence Poisson model and use
Laplace transform analysis to obtain analytical conclusions about the stationary
distribution. The work of Cont, et. al. [16] raises the question of whether another
queueing theory methodology, determining heavy-traffic (diffusion) limits of zero-
intelligence Poisson models, is possible and useful. Steps in that direction have been
taken by Cont and de Larrard [15], Avellaneda et al. [5] and Chávez-Casillas and
Figueroa-Lopez [11], all of whom consider queues only at the bid and ask. When
one of these is depleted in [15], the system is reinitialized. In [5] the model of [15]
is extended to include “hidden liquidity” at the best prices. In [11] the depletion
of a best price leads to orders arriving between the new best prices to replenish
the system. In contrast to these works, in the model presented below, orders queue
outside the bid-ask spread and rules governing order arrivals and departures continue
to apply even when a best price queue is depleted.

2 Description of the Representative Model

In this section we present the diffusion limit of a sequence of zero-intelligence
Poisson models. We describe the model and principal results here, and refer to
Almost et al. [3] for proofs. This work is based on the PhD dissertations of Almost
[2] and Yu [47].

To demonstrate the viability of this approach we choose the simplest zero-
intelligence Poisson model in which the determination of this limit is nontrivial. In
our model, all orders are the same size. Market buy and sell orders arrive as Poisson
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processes with intensity λ0 > 0 and μ0 > 0, respectively. Limit buy orders arrive
at prices one and two ticks below the ask price as Poisson processes with intensities
λ1 > 0 and λ2 > 0, respectively. Limit sells arrive at prices one and two ticks above
the bid price as Poisson processes with intensities μ1 > 0 and μ2 > 0, respectively.
We build a sequence of models indexed by the positive integers n = 1, 2, . . . . The
six parameters λ0, λ1, λ2, μ0, μ1, μ2 are common to all these models and may be
chosen arbitrarily subject to the following condition:

Assumption 2.1 There are two numbers a > 1 and b > 1 satisfying a + b > ab

such that

aλ0 = bμ0,

λ1 = (a − 1)λ0,

λ2 = (a + b − ab)λ0,

μ1 = (b − 1)μ0,

μ2 = (a + b − ab)μ0.

In many cases in practice, the bid and ask prices are thousands of ticks away from
price zero. This permits us to avoid boundary conditions by assuming that the price
ticks are on a doubly infinite grid.

Buy orders that are two or more ticks below the bid price are subject to
cancellation at rate θb/

√
n > 0 (per order). Analogously, sell orders that are two

or more ticks above the ask price are subject to cancellation at rate θs/
√
n > 0 (per

order).
Because there are two types of queued orders, limit buys and limit sells, we

remove ambiguity by creating at each price tick a process that is the number of limit
buys queued at that tick if there are any and is the negative of the number of limit
sells queued at that tick if there are any. Obviously, there cannot be both limit buys
and limit sells queued at the same price. If at a generic price tick we denote this
process in the n-th model at time t by Qn(t), the sign of Qn(t) carries the order
type information. We illustrate this in Fig. 1, where the positive bars correspond
to queued buy orders and the negative bars correspond to queued sell orders at the
prices marked on the horizontal axis. Up arrows labeled λ0, λ1 and λ2 indicate the
price locations of the arriving buy orders at the rates indicated by the λ-labels, which
will build positive bars or, in the case of the market orders arriving at the ask price,
will shorten the negative bar at that price. Similarly, down arrows labeled μ0, μ1
and μ2 show the price locations of the arriving sell orders at the rates indicated by
the μ-labels, which will build negative bars or, in the case of market orders arriving
at the bid price, will shorten the positive bar at that price.

It is apparent in Fig. 1 that a large bid-ask spread cannot persist. In fact, the
typical limit-order book configuration in the n-th system has a one-tick spread,
as shown in Fig. 2, or a two-tick spread. In Fig. 2, we have labeled queue length
processes Un, V n, Wn, Xn, Yn and Zn, where the latter three are negative in the



146 C. Almost et al.

Fig. 1 Limit-order book
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figure. We denote by pu, pv, pw, px, py and pz the respective prices at which
the queues of orders Un, V n,Wn,Xn, Y n and Zn are posted. We define Qn :=
(Un, V n,Wn,Xn, Y n, Zn).

Fig. 2 Typical limit-order
book Bi

d

Ask

It turns out that under Assumption 2.1, in the n-th model the components of
Qn(nt) are either of size O(

√
n) or size o(

√
n). Thus we accelerate time by a factor

of n, divide the queue length by
√
n, and seek the limit of the scaled system as

n→∞. In other words, we define the scaled queued order process vector by

Q̂(n)(t) = 1√
n
Qn(nt), t ≥ 0,

and its individual components are denoted Û (n), V̂ (n), etc. We study limn→∞ Q̂(n).
Note that we do not scale the prices. We study the limiting process not just at
a single price tick, but rather consider the system of processes at all price ticks
simultaneously. This is potentially a countably-infinite-dimensional process, but
because of cancellations most components of this process are zero, and we can
restrict our attention at any time to the queues at only six price ticks.

To describe the limiting system, let us denote by

U∗(t), V ∗(t),W∗(t),X∗(t), Y ∗(t), Z∗(t)

the limit of the scaled number of orders at six adjacent price ticks at scaled time t ,
the ticks chosen so that

V ∗(t) > 0, Y ∗(t) < 0. (1)
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Condition (1) will remain in force until Theorem 7.2 of [3] below. Recall that
pu, pv, pw, px, py and pz are the respective prices at these six adjacent ticks. One
can show that there are always six adjacent price ticks with this property, although
this set of six ticks is not always uniquely determined. The bid price in the limiting
system is px if X∗(t) is positive, is pw if X∗(t) ≤ 0 and W∗(t) > 0, or is pv if both
X∗(t) ≤ 0 and W∗(t) ≤ 0. We call the bid price in the limiting system the essential
bid price in recognition of the fact that it may not be the limit of the bid prices in the
sequence of pre-limit models, as we discuss below. We adopt the same terminology
for the ask, calling the ask price in the limiting system the essential ask price.

Let us consider the case W∗(t) = 0 and X∗(t) < 0, in which the essential
bid is pv and the essential ask is px (see Fig. 3). This means in the pre-limit
sequence of models, at the same six price ticks, there are queue length processes
Un, V n,Wn,Xn, Y n, Zn with

V n(nt) = O
(√

n
)
> 0, Wn(nt) = o

(√
n
)
, Xn(nt) = O

(√
n
)
< 0. (2)

Let us assume further that

Un(nt) = O
(√

n
)
> 0, Y n(nt) = O

(√
n
)
< 0. (3)

In the n-th pre-limit model, Wn(nt) can be either positive, negative or zero. If
Wn(nt) is positive, pw is the bid, but if Wn(nt) is negative, pw is the ask. It is thus
possible that the bid in every pre-limit model is pw , even though the essential bid in
the limiting system is pv . Similarly, the ask in every pre-limit model could be pw ,
even though the essential ask in the limiting system is px

Fig. 3 Limiting system for
(2) and (3)
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In the limiting system, at Lebesgue almost every time, the essential ask and
essential bid differ by two ticks as in Fig. 3. On the zero-measure set of remaining
times, the essential ask and bid differ by three ticks. This limiting system, however,
is an approximation to pre-limit models in which the spread between ask and bid
prices is tighter. In fact, the limit of the fraction of time in which the spread is one



148 C. Almost et al.

tick in the pre-limit models is

2− a + b

ab
(4)

(see [3, Remark 4.11]), and these parameters can be chosen to correspond to
empirical observation. Indeed, Assumption 2.1 permits us to choose a = b = 1+ ε

for 0 < ε < 1, and as ε ranges over (0, 1), the expression in (4) also ranges over
(0, 1).

We return to the six limiting processes U∗, V ∗,W∗,X∗, Y ∗, Z∗ at adjacent price
ticks for an interval of time in which (1) prevails. During this time interval, we
designate V ∗ and Y ∗ the pair of bracketing processes and call the pair W∗ and X∗
the interior processes.

Definition 2.1 Let B be a standard Brownian motion, and define

PB± (t) :=
∫ t

0
I{±B(s)>0}ds, t ≥ 0,

to be the occupation times of the positive and negative half-lines. Let σ± be positive
numbers, and define

# := 1

σ 2+
PB+ +

1

σ 2−
PB− . (5)

We call the process

Z = B ◦#−1 (6)

a two-speed Brownian motion with speed σ 2+ when positive and speed σ 2− when
negative.

Properties of two-speed Brownian motion and its relation to skew Brownian
motion are developed in [3, Appendix A]. According to [3, Theorem 4.19], the
pair of interior processes (W∗,X∗) behaves like

(
max{Bw,x, 0},min{Bw,x, 0}), (7)

where Bw,x is a two-speed Brownian motion. This two-speed Brownian motion has
speed σ 2+ when it is positive and speed σ 2− when it is negative, where

σ+ =
√

2(λ0 + bλ1), (8)

σ− =
√

2(μ0 + aμ1). (9)
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The subscripts of Bw,x indicate that it arises when we take (W∗,X∗) to be the pair
of interior processes. In particular, W∗ is a Brownian motion with variance σ 2+
when Bw,x is positive, and is zero when Bw,x is negative. On the other hand, X∗
is a Brownian motion with variance σ 2− when Bw,x is negative, and is zero when
Bw,x is positive. During the interval of time in which (1) holds and we observe this
behavior by (W∗,X∗), we refer to (W∗,X∗) as a split Brownian motion.

When Bw,x is positive, the limiting system has a two-tick spread between the
essential ask at py and the essential bid at pw , as shown in Fig. 4.

Fig. 4 Limiting system when
Bw,x is positive

Es
se
nt
ia
l

Bi
d

Ask
Essential

*( ) *( ) *( )

*( ) *( ) *( )

When Bw,x is negative, the limiting system again has a two-tick spread, this time
between the essential ask at px and the essential bid at pv , as shown in Fig. 3. When
Bw,x is zero, the limiting system has a three-tick spread between the essential ask at
py and the essential bid at pv , as shown in Fig. 5.

Fig. 5 Renewal state
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We call this third configuration a renewal state for the limiting system.
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During an interval of time in which (1) holds and X∗ is negative (see Fig. 3), and
hence by (7), W∗ is zero, the combination of limit buy arrivals and cancellations
will cause U∗ to be frozen at the level

κL := λ2μ1

θbλ1
. (10)

In general, the queue one tick below the essential bid is frozen at κL. In particular,
when W∗ is positive, V ∗ is frozen at κL. Analogously, when X∗ is negative, Y ∗ is
frozen at

κR := −μ2λ1

θsμ1
. (11)

Because after reaching zero, Bw,x immediately crosses zero infinitely many times,
immediately after each renewal state, there are infinitely many renewal states with
V ∗ = κL,W

∗ = 0,X∗ = 0, Y ∗ = κR . The queues U∗ and Z∗ are frozen at κL and
κR , respectively. All other queues are zero.

During an interval of time in which (1) holds and X∗(t) is negative, U∗ is frozen
at κL. Therefore, we could regard U∗ and X∗ as the bracketing queues and regard
V ∗ and W∗ as the interior queues. Analogously to (7), during this time interval V ∗
and W∗ behave like

(
max{Bv,w, 0},min{Bv,w, 0}), (12)

where Bv,w is a two-speed Brownian motion different from Bw,x in (7). But
when (1) holds and X∗ is negative, W∗ is zero, so Bv,w is positive and V ∗ behaves
like a Brownian motion with variance σ 2+. On the other hand, according to (7), X∗
behaves like a Brownian motion with variance σ 2−. These Brownian motions have
constant correlation [3, Remark 5.16]

− ρ = λ1 + μ1√
(λ0 + bλ1)(μ0 + aμ1)

= 2(λ1 + μ1)

σ+σ−
, (13)

where −1 < ρ < 0. Because of our convention that sell orders are queued with
negative sign, the positivity of −ρ implies that the correlation ρ between the actual
number of orders at the essential bid and essential ask is negative.

We began this discussion under the assumption (1), but eventually either V ∗ or
Y ∗ will reach zero. The following theorem addresses the possibility that V ∗ reaches
zero, which it can do only when X∗ is negative.

Theorem 2.1 of [3] If at some time t0, V ∗(t0) = v1 > 0 and X∗(t0) = x1 < 0,
then the probability that V ∗ reaches zero before X∗ is θ0/α, where

α := − arctan

(

−1− ρ2

ρ

)

, θ0 := arctan

(
σ+
√

1− ρ2 |x1|
σ−v1 + σ+ρx1

)

∈ (0, α). (14)
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If the system is in the renewal state in which W∗ and X∗ are both zero, V ∗ is
positive, and Y ∗ is negative, then as discussed above, V ∗ will be forced to the value
κL and Y ∗ will be forced to the value κR . When Bw,x goes on a negative excursion,
so that X∗ goes on a negative excursion, V ∗ has a chance to reach zero. If it fails to
do so before the negative excursion of Bw,x ends, then V ∗ is “snapped back” to κL.
Similarly, when Bw,x goes on a positive excursion, so that W∗ goes on a positive
excursion, then Y ∗ has a chance to reach zero. During this time, W∗ behaves like
a Brownian motion with variance σ 2+, Y ∗ behaves like a Brownian motion with
variance σ 2−, and the correlation between W∗ and Y ∗ is−ρ. If Y ∗ fails to reach zero
before the positive excursion of Bw,x ends, then it is “snapped back” to κR .

Now consider an excursion of length � of X∗ away from zero. Just before the
beginning of this excursion, Bw,x was positive, so pv was one tick below the best
bid price and V ∗ was frozen at κL. During this excursion of X∗, V ∗ has a chance to
reach zero. Let pV∗(s, �) to be the density for the first passage time of V ∗ from κL
to 0 during an excursion of X∗ of length �. (The length of the excursion is relevant
because V ∗ and X∗ have correlation −ρ �= 0.) In [3, Lemma 7.4] there is the
explicit formula

pV∗(s, �)ds

:= P

{
τE
V∗ ∈ ds

∣
∣λ(E) = �

}

=
√

2π(1− ρ2)�3 π2σ+ sin α

2κLα3(�− s)
√
s(�− s cos2 α)

exp

(

− κ2
L

2σ 2+(1− ρ2)s
· �− s cos 2α

(�− s)+ (�− s cos 2α)

)

×
∞∑

n=1

(−1)n−1n2Inπ/(2α)

(
κ2
L

2σ 2+(1− ρ2)s
· �− s

(�− s)+ �− s cos 2α

)

ds, 0 < s < �.

Define

pV∗(�) =
∫ �

0
p(s, �)ds

to be the probability V ∗ transitions from κL to 0 during the excursion of X∗ of
length �. Similarly, define

pY∗(s, �)

:= P

{
τE
Y∗ ∈ ds

∣
∣λ(E) = �

}

=
√

2π(1− ρ2)�3 π2σ− sin α

2|κR |α3(�− s)
√
s(�− s cos2 α)

exp

(

− κ2
R

2σ 2−(1− ρ2)s
· �− s cos 2α

(�− s)+ (�− s cos 2α)

)

×
∞∑

n=1

(−1)n−1n2Inπ/(2α)

(
κ2
R

2σ 2−(1− ρ2)s
· �− s

(�− s)+ �− s cos 2α

)

, 0 < s < �,
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which is the density of the passage time of Y ∗ from κR to zero during an excursion
of W∗ of length �, and further define

pY∗(�) =
∫ �

0
pV∗(s, �)ds.

Finally, set

λ− := 1

σ−

∫ ∞

0

pV∗(�)d�√
2π�3

, λ+ := 1

σ+

∫ ∞

0

pY∗(�)d�√
2π�3

.

Theorem 2.2 of [3] Starting from the renewal state of Fig. 5, the probability that
V ∗ vanishes before Y ∗ (Fig. 6), and thus there is a downward price change is
λ−/(λ+ + λ−). The probability of an upward price change is λ+/(λ+ + λ−).

The characteristic function of the distribution of the time between renewal
state transitions conditioned on the direction of the transition is provided by [3,
Theorem 7.9].

Fig. 6 New renewal state
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Finally, we observe that although the limiting processes in our model behave
like Brownian motions for periods of time, they are actually more complicated than
Brownian motions. In fact, they are not semimartingales. To understand why this
is the case, consider the process V ∗. We have just seen that when Bw,x in (7) is
negative, so that W∗ is zero and X∗ is negative, then V ∗ behaves like a Brownian
motion. However, when Bw,x becomes positive, then W∗ is positive and pw is the
essential bid. In this case, V ∗, being one tick below the essential bid, is frozen at
κL. But immediately after it reaches zero, the Brownian motion Bw,x has infinitely
many changes of sign, which causes V ∗ to repeatedly diffuse and then jump back to
κL. The jumps in V ∗ are not absolutely summable, and this creates an unbounded
variation non-martingale component to V ∗. Fortunately, the squares of the jumps
are summable, which permits us to study V ∗ through the tool of Poisson random
measures.
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3 Conclusion

This work shows that diffusion scaling methodology developed to study heavy
traffic limits of queueing systems can be adapted to Poisson limit-order book
models. While the Poisson model is infinite dimensional with state recording the
number of orders at each tick on a doubly infinite price-tick grid, the diffusion limit
is low dimensional. In this work, the state of the diffusion limit is the volume at two
price ticks, the essential bid and essential ask, and the location of these price ticks.

While not addressed in this work, it is natural to consider optimal execution in
the limiting model. The arrival of a buy order of size O(

√
n) in the n-th model at the

essential bid is queued behind O(
√
n) other orders and will execute in O(

√
n) time.

The diffusion scaling accelerates times by the factor n, and hence in the limiting
model this order will execute instantaneously. On the other hand, a buy order placed
one tick below the essential bid must wait until this tick becomes the essential bid,
and then will execute instantaneously. These instantaneous executions eliminate
the need to keep track of an order’s priority at its price tick, and consequently the
optimal execution problem in the limiting model is low dimensional.

There are many ways the model of this paper can be generalized. To move toward
a more realistic model, the most important generalization is to allow cancellations
at and near the best bid and ask price. Other generalizations are to allow arrivals at
more price ticks, time-dependent or volume-dependent arrival rates, random order
sizes, and renewal rather than Poisson arrival processes.
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Part IV
Geometry

Jean-Pierre Bourguignon’s article Spinors in 2022 skillfully presents a short history
of spinors, an exposition of their use in Physics, the differential operators connected
to them, their use in differential geometry and their connection to fundamental
theorems such as the Atiyah–Singer index theorem. The paper ends with a well
supported advocacy for “a true spinorial geometry”.

Carles Casacuberta’s article Cohomological localizations and set-theoretical
reflection studies the problem of cohomological localization of spaces and spectra.
While homological localizations are a fundamental tool in algebraic topology, the
existence of cohomological localizations is connected to problems of set theory, in
particular the existence of large cardinals.

Parvadeh Joharinad and Jürgen Jost’s article Geometry of data explores a
viewpoint on metric geometry, in particular curvature and convexity, motivated
by data analysis which of course deals with finite sets of points. It offers very
interesting perspectives on the simplicial complexes associated with a covering of a
topological space, such as the Čech complex.

Vitali Milman’s article A chapter about Asymptotic Geometric Analysis: Iso-
morphic position of centrally symmetric convex bodies concerns inequalities on the
volumes of various convex bodies in n-dimensional Euclidean space associated in
various ways, such as slicing, with a given one and its images (called positions)
by non-degenerate endomorphisms of the ambient space. The goal is to find
inequalities involving only constants that are independent of the dimension.

Ieke Moerdijk’s article A mysterious tensor product in topology proposes an
alternative to the tensor product of operads defined by Boardman and Vogt, which
does not have all the desirable invariance features. The properties of this alternative
definition and its relation to that of Boardman and Vogt are sources of open
problems.
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In the first two decades of the twenty-first century, spinors have continued to
be omnipresent in Physics, and they attracted a lot of attention in Mathematics
too. Some aspects that were discussed in the 1995 Postface (cf. [5]) have further
developed but new ones have appeared. Between 1998 and 2022, arXiv lists 1879
articles containing the word spinor in their title. Even the very restrictive expression
Spinorial Geometry appears 16 times in arXiv in the same period and several
comprehensive surveys or books have appeared dealing with spinors (cf. [6], [19]
and [8]).

Here is an outline of the topics that are covered in the article:

1. The Initial and Persistent Strangeness of Spinors;
2. The Unabated Importance of Spinors in Physics;
3. The Role of Natural Differential Operators on Spinor Fields;
4. Towards a True Spinorial Geometry?

1 The Initial and Persistent Strangeness of Spinors

Spinors appeared in 1913 as an exotic representation of the orthogonal group in the
classification work of Élie Cartan (cf. [10] and [11] for the real case that appeared
in 1914). The construction was completed in 1935 by Richard Brauer and Hermann
Weyl (cf. [9]).
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As we will discuss in the next section, it is the relevance of spinors in the context
of Quantum Physics that made them fundamental objects in this science.

Still, the fact that, to make sense of them, a bilinear form, most of the time a
non-degenerate one, has to be chosen has made their use in Differential Geometry
somewhat problematic if one insists on using general coordinates. This is precisely
the last statement one finds in Élie Cartan’s book La théorie des spineurs (cf.
[12]) published in 1935. It is very clear for him though that the difficulty can be
easily overcome by using moving frames, one of his favourite tools. Of course the
development of Bundle Theory in the middle of the twentieth century allowed the
situation to be clarified. The book [15] by Claude Chevalley has been an important
reference from the algebraic point of view.

This is why, in their book Spin Geometry (cf. [30]), that has played an important
role in the development of the subject, H. Blaine Lawson and Marie-Louise
Michelsohn consider that, in some sense, Michael F. Atiyah and Isadore M. Singer
had to reinvent spinors for mathematical purposes in connection with their work on
the Index Theorem.

It is a fact that, in spite of their evidence and importance, some fundamental
questions related to spinors remained open for a long time. This was the case for the
dependence of spinors on the metric for which erroneous statements appeared in the
Physics literature. After an initial contribution by Ernst Binz and Regina Pferschy
(cf. [4]), Paul Gauduchon and I provided a full solution to this question in 1992 (cf.
[7]). A simpler approach to deal with this issue has been developed by Christian
Bär, Paul Gauduchon and Andrei Moroianu in 2003 (cf. [3]) that also allows one to
deal with the case of Lorentzian metrics, an important extension.

More fundamentally, the fact that spinors are difficult to comprehend continues
to be perceptible. Lecturing in 2013 at the conference at IHÉS on the occasion of
my leaving the directorship, Sir Michael Atiyah entitled his talk “What is a spinor?”
and claimed at the beginning of his presentation that “I spent most of my life working
with spinors in one form or another and I do not know what a spinor is”. Therefore,
it appeared natural to me to give the same title to the Atiyah lecture I gave in January
2021, the first in the series. Indeed, in this lecture, I discussed some of the peculiar
features of spinors that make them difficult to comprehend.

2 The Unabated Importance of Spinors in Physics

The introduction of spinors in Physics goes back to the early development of
Quantum Physics. Two articles are usually quoted in this respect: one by Wolfgang
Pauli (cf. [38]) and one by Paul Adrien Maurice Dirac (cf. [16]). The second one
introduces the Dirac equation, that is fundamental in Quantum Mechanics. It is
first order in the field and invariant under the Lorentz group, while the Schrödinger
equation cannot be since it involves taking one derivative in the time variable and
two derivatives in the space variables. In Minkowski space, the solution comes from
taking a square root of the D’Alembertian. In doing that, there is one price one has
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to pay, namely the initial equation on ordinary functions has to be replaced by one
on spinor fields, on which the Dirac operator acts.

Further developments involved taking this approach systematically, with the
introduction of two fundamentally different types of particles: fermions, particles
with half-integral spins represented by spinor-type fields subject to the Pauli
exclusion principle, and bosons, having integral spins represented by tensor fields.
In [39], Roger Penrose also showed how to formulate General Relativity using
spinors.

In the 1990s the idea of having physical theories that would admit supersym-
metries, i.e. transformations mixing the two types of particles became very hot. It
had in particular a considerable impact in the research in relation with the Standard
Model of Elementary Particles. Underpinning these developments was of course
the possibility of having a Supergeometry, a point of view that I considered from a
general mathematical point of view in the postface Spinors in 1995 (cf. [5]).

Of course today spinors are more than ever at the heart of the developments
in Physics, even though the results of the experiments obtained in 2012 at the
Light Hadron Collider at CERN in Geneva, which concluded the search for the
Higgs Boson, did not lead to a confirmation of a role for supersymmetric particles.
Nevertheless, publications dealing with supersymmetry continue to flourish with
more than 500 articles in arXiv containing the word supersymmetric in their title
since January 2021.

Although a number of results on this topic were already available in 1995, in
the Postface I did not address Killing Spinors, which are special spinor fields
representing infinitesimal supersymmetries. As they involve another fundamental
operator on spinor fields, the Penrose operator, I leave the discussion on them to the
next section dedicated to natural differential operators on spinor fields. They also
have a major role from a purely mathematical point of view in relation to holonomy.

3 The Role of Natural Differential Operators on Spinor
Fields

As mentioned in the previous section, the Dirac operator played a key role in turning
spinors into central objects in Mathematics and in Physics.

Actually, there are only two universally defined differential operators on spinor
fields: the Dirac operator, a first order self-adjoint operator mapping spinor fields
into themselves, and the Penrose operator, also a first order operator mapping
spinor fields to differential 1-forms tensored with spinor fields. Full definitions
can be found on pages 61–70 of the book A Spinorial Approach to Riemannian and
Conformal Geometry (cf. [8]).

When the reference metric used to define spinors is Riemannian, the Dirac
operator is a square root of the Laplace-Beltrami operator, hence elliptic. Its
key role in the Index Theorem comes from the fact that, in a specific sense, its
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symbol generates all symbols from a topological point of view. This was Atiyah
and Singer’s main motivation to consider it. To prove the Index Theorem for it is
sufficient to establish the general theorem provided one uses homotopy arguments.

Spinor fields annihilated by the Penrose operator (this equation is sometimes
called the twistor equation) and eigenspinors for the Dirac operator are called
Killing spinors (their equation can be found on page 131 of [8]). They satisfy
an over-determined system with the consequence that metrics admitting a Killing
spinor have to be rather special: their Ricci curvature is a multiple of the metric (the
metric is called an Einstein metric) and their curvature tensor has a special form.
The vector field dual to the 1-form component of their square is a Killing vector
field, and the fact that they are often viewed as square roots of Killing fields, hence
their name.

It is worth noting that the concept was introduced by Roger Penrose with a
completely different objective. He was indeed looking into ways to generate first
integrals for the geodesic flow of the Kerr metric (cf. [40]).

For some time, a description of metrics admitting Killing spinors eluded. It was
Christian Bär (cf. [2]) who, in 1993, came up with the appropriate construction,
namely a cone endowed with a cone metric over the manifold admits a parallel
spinor, connecting the situation with special holonomy. This situation mimics what
happens for the round sphere embedded in Euclidean space: on the sphere the spinor
bundle is trivialised by Killing spinors induced by constant (hence parallel) spinor
fields in the flat Euclidean space.

Killing spinors also appear in relation with the limiting case of the Friedrich
inequality (cf. [17]) on eigenvalues of the Dirac operator (cf. page 131 of [8]). The
connection with conformal geometry is also underpinning a refined version of this
inequality, called the Hijazi inequality (cf. [24]).

4 Towards a True Spinorial Geometry?

Let us start by recalling the status of a question whose connection with spinors
does not appear at first sight, namely whether a given manifold admits a metric
with positive scalar curvature. In the end, the answer, not yet fully complete as I
will explain, is rather subtle, going quite deeply into the differential topology of the
manifold and, to establish it, spinorial data play a key role.

In 1975, Jerry L. Kazdan and Frank Warner proved that, for n ≥ 3, all n-
dimensional manifolds admit metrics with negative scalar curvature (cf. [28]).
The analogous statement for metrics with positive scalar curvature is not true, in
spite of the weakness of the scalar curvature as a Riemannian invariant. In the
last 60 years, understanding this phenomenon mobilised efforts by many people.
We will concentrate here on closed manifolds (i.e. compact without boundary),
although the question for non compact manifolds or manifolds with boundary has
recently attracted a lot of attention.
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The initial key remark was made in 1963 by André Lichnerowicz in [31] to the
effect that, on a spin manifold endowed with a metric with positive scalar curvature,
non-vanishing harmonic spinors (i.e spinors annihilated by the Dirac operator)
cannot exist. This follows directly from the formula, due to Erwin Schrödinger and
rediscovered by André Lichnerowicz, establishing that the difference between the
square of the Dirac operator and the connection Laplacian applied to spinor fields is
the scalar curvature up the positive factor 1

4 . One just has to integrate the formula
against the harmonic spinor. The Index Theorem implies that some spin manifolds
must have non-trivial harmonic spinors, e.g. 4k-dimensional manifolds with non-
vanishing Â-genus. The result has been refined by Nigel Hitchin in 1974 (cf.
[25]) using a more involved Dirac operator and more sophisticated KO-invariants
introduced by Atiyah whose non-vanishing obstructs the existence of metrics with
positive scalar curvature.

Since these important initial contributions going back to the 1970s, there has
been a large number of articles dealing with many aspects of the problem.

First of all, sticking to spin manifolds, Misha Gromov and H. Blaine Lawson
showed in 1980 (cf. [22]) that, for simply connected manifolds of dimension n ≥ 5,
the answer depends only on the Spin-bordism class of the manifold. In the same
article, they prove that all simply connected non-spin manifolds of dimension at
least 5 admit metrics with positive scalar curvature. The fact that the Lichnerowicz-
Hitchin obstructions form a complete set for simply connected spin manifolds was
established by Stephan Stolz in 1992 (cf. [43]).

For non simply connected manifolds, Gromov and Lawson introduced in [21]
original constructions of new obstructions to the existence of a metric with positive
scalar curvature.

Later, many refinements to deal with the presence of a fundamental group have
been obtained so that many names should be listed. Here, I will limit myself
mentioning Jonathan Rosenberg and Stephan Stolz (cf. [41] et [42]), who have
substantially and repeatedly contributed to the subject. Stolz just produced a
comprehensive report (cf. [44]) stating in great detail where the problem stands
with still many new results continuing to be obtained.

Let me sum up what this special question reveals. On a manifold, for a spin
structure to exist a topological constraint has to be satisfied, namely the vanishing
of the second Stiefel-Whitney class. This allows us to consider globally defined
spinor fields and, among them, harmonic spinors play a special role. In some
sense, they are analogous to harmonic forms which, as we know from the De Rham
theory, detect the cohomology. In some sense, what is for the moment missing in
our situation is how a local invariant such as the scalar curvature affects the way
harmonic spinors can develop over the manifold with the consequence that their
mere existence forces the scalar curvature to be negative somewhere.1

1 To lift any ambiguity, let us recall that the global existence of a harmonic spinor on a closed
manifold ensures that there is a point where its norm achieves its maximum; at this point, its
Hessian is non-positive, hence its Laplacian non-negative. If, at such a point, one considers the
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Let me now address some other issues and explain further why, in my opinion,
the role of spinors to deal with Riemannian questions has not yet reached its full
potential. As just alluded to, the first key remark is that we may be missing an
appropriate geometric picture for spinors. Hence, we are back to the question “What
is a spinor?”!

Before discussing new developments since 1995, let us come back to topological
constraints related to spin structures. The broader class of manifolds admitting a
spinc-structure, that includes all complex manifolds, has been considered; for a
spinc structure to exist, the topological condition is that the second Stiefel-Whitney
class is the mod 2 reduction of an integral class, the first Chern class. Some
geometric results on them have been obtained by Andrei Moroianu (cf. [35, 36])
and Roger Nakad (cf. [37]).

Let us review some recent results concerning various objects connected to spinors
since their study has continued:

• Several generalisations of Killing spinors have been considered, e.g. by Friedrich
and E.C. Kim (cf. [20] for example) and by Marc Herzlich and Andrei Moroianu
(cf. [23]) for spinc manifolds; another variation on the notion of Killing spinor
has been used in [1] by Ilke Agricola, Simon G. Chiossi, Thomas Friedrich, and
Jos Höll to investigate SU3- and G2-manifolds; this involves using results from
hypersurface theory and the building of conical manifolds;

• Spinors have been used to study hypersurfaces by several authors, in particular
for the representations of surfaces by Robert Kusner and Nick Schmitt (cf. [29])
and Friedrich (cf. [18]), but also for more general hypersurfaces notably by
Andrzej Trautmann (cf. [45]), Sebastian Montiel (cf. [32]) and Bertrand Morel
(cf. [33]);

• A new (and interesting) functional combining spinor fields and maps from
surfaces to Riemannian manifolds has been introduced by Qun Chen, Jürgen Jost,
JiaYu Liu and GuoFang Wang in 2004 (cf. [13]). One of its important features
in two dimensions is its conformal invariance. Its critical points are called
Dirac-harmonic maps. It is naturally inspired by supersymmetric considerations
coming from Theoretical Physics. Some regularity results concerning Dirac-
harmonic maps have been obtained. including a removability of singularities
theorem (more recent results can be found in [14]);

• Other considerations inspired by the energy-momentum right hand side of the
Einstein equations in General Relativity have also led to several articles, often
in relation with generalisations of Killing spinors; here we can quote [34] by
Bertrand Morel;

scalar product of the two sides of the Schrödinger-Lichnerowicz formula applied to the harmonic
spinor and performs the usual manipulation making the Laplacian of its square norm appear, one
gets three terms whose sum must vanish: the Laplacian of the square norm, the square norm of
its covariant derivative and the product of the scalar curvature by its square norm. This is only
possible if the scalar curvature is non-positive.
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• So far, mathematicians focused their attention on spinor fields of spin 1
2 ; spinors

with spin 3
2 should be investigated with the analog of the Dirac operation,

the Rarita-Schwinger operator, that acts on them; a link with infinitesimal
deformations of Einstein metrics has been suggested by Bernard Julia (cf. [27])
(for a recent contribution by Yasushi Homma and Uwe Semmelmann, one can
consult [26]).
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Cohomological Localizations
and Set-Theoretical Reflection

Carles Casacuberta

Personal Note
This article is dedicated to Dr. Catriona Byrne on her retirement, with warm thanks
for three decades of friendly collaboration and, above all, for her lifelong support
of the mathematical community.

Introduction

The technique of computing homotopy groups of spaces one prime at a time was
pioneered by Serre [30]. A remarkable result derived from Serre’s work states that
for every prime p the homotopy groups πk(S

n) of the n-sphere with n ≥ 2 contain
nonzero p-torsion elements for infinitely many values of k.

In 1961 Adams discovered that spheres can be embedded into CW-complexes
with countably many cells in such a way that homology groups and homotopy
groups are transformed into their p-local versions, and furthermore he proved that
odd-dimensional spheres localized in this sense at primes p ≥ 5 become homotopy
associative H -spaces [2]. Subsequently, localization of 1-connected spaces at
primes was thoroughly developed by several authors, including Bousfield–Kan
[10], Hilton–Mislin–Roitberg [17], Mimura–Nishida–Toda [24], Sullivan [32], etc.
Among many achievements, this technique opened the way into rational homotopy
theory [28, 33].
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From a category-theoretical point of view, localizing spaces at a prime p is
equivalent to inverting up to homotopy the collection of all maps X → Y that induce
isomorphisms Hn(X;Z(p)) ∼= Hn(Y ;Z(p)) for all n, where Hn denotes singular
homology and Z(p) are the integers localized at p. Adams designed a convenient
machinery for this purpose, involving idempotent monads, categories of fractions,
and Brown representability, and showed that his construction of homological
localizations was feasible for arbitrary representable homology theories. However,
his presentation of results in [3, 4] contained a set-theoretical inaccuracy which was
later repaired by Bousfield in [7]. We explain this in more detail in Sect. 1.

Bousfield extended his approach to spectra [8], and it was in the realm of stable
homotopy where homological localizations were best understood and most useful,
especially towards the study of chromatic phenomena [29]. Every finite p-local
spectrum X is the homotopy inverse limit of its chromatic tower of localizations
LE(n)X, where LE(0) is rationalization and LE(1) is localization with respect to
p-local complex K-theory. The homology theories E(n)∗ were defined by Johnson
and Wilson [20] after earlier work of Brown–Peterson [12] and Morava. This
result, known as the chromatic convergence theorem, opened the way to impressive
advances in the calculation of homotopy groups of spheres.

Bousfield also showed that the Kan–Quillen model structure on the category
of simplicial sets [27] can be modified by incorporating E∗-equivalences into the
collection of weak equivalences for some spectrum E, and the fibrant spaces in
the resulting model structure are the E∗-local Kan complexes. This idea was
broadly generalized in what is nowadays called Bousfield localizations of model
categories, and has found applications in various mathematical disciplines. By an
E∗-equivalence we mean a map X → Y inducing isomorphisms En(X) ∼= En(Y )

for all n.
In an unpublished paper [9], Bousfield considered localizations with respect

to cohomology theories, in which case one seeks to invert up to homotopy the
E∗-equivalences for a spectrum E, i.e., the maps X → Y inducing isomorphisms
En(Y ) ∼= En(X) for all n. He never supplied a proof of the existence of arbitrary
cohomological localizations, although he showed that in many examples the class
of E∗-equivalences coincides with the class of F∗-equivalences for some homology
theory F∗. This was worked out further by Hovey in [18], where he conjectured
that every cohomological Bousfield class is indeed a homological Bousfield class.
While this is still an open problem in the category of spectra, a counterexample was
found by Stevenson in the derived category of a non-Noetherian ring [31].

Although the lack of examples of cohomological Bousfield classes that are not
homological Bousfield classes has diminished the practical interest of constructing
cohomological localizations in homotopy theory, the problem of whether the
existence of cohomological localizations can be proved or not using the ZFC axioms
of set theory has remained as a challenging logical problem.
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A first step was made in [13] by showing that Vopěnka’s principle from set
theory implies the existence of localizations with respect to arbitrary cohomology
theories on simplicial sets. This result was based on previous knowledge of locally
presentable and accessible categories, where it had been shown that Vopěnka’s
principle implies the existence of localizations onto limit-closed subcategories [1].

Using other methods, Przeździezcki proved in [26] that an E∗-localization can
be constructed in ZFC if each of the spaces constituting E is a homotopy retract
of a compact space. Another step came in [6] by showing that if arbitrarily large
supercompact cardinals exist, then E∗-localization exists for all spectra E.

The existence of supercompact cardinals cannot be proved in ZFC, since they
are inaccessible. They have an important place in the large-cardinal hierarchy
[21], where Vopěnka’s principle also belongs (much higher up). Large cardinals
appear naturally in several areas of mathematics. For example, the existence
of Grothendieck universes—an assumption very often made to justify the use of
“small” sets—is equivalent to the existence of inaccessible cardinals.

The general form of the reflection principle in set theory says informally that
every property of the universe of all sets is shared by some set. This principle can
be formalized in different ways, some of which are related to large-cardinal axioms.

The concept of structural reflection was introduced by Bagaria and discussed
in detail in [5]. It states that for a class C of structures of the same type there
is a cardinal κ such that every X ∈ C has a logically equivalent substructure of
cardinality smaller than κ and isomorphic to some Y ∈ C. This assertion is implied
by the Löwenheim–Skolem theorem if the class C is defined by an upward absolute
formula—that is, a formula whose truth in a transitive model implies its truth in
every larger model. For classes defined by formulas of higher complexity, structural
reflection requires the existence of large cardinals.

In our case, the class of E∗-equivalences for a spectrum E can be defined by
an upward absolute formula with E as a parameter. Consequently, the existence of
arbitrary E∗-localizations can be proved in ZFC. Although this was of course known
since [7], we emphasize that a proof can be given by means of a basic set-theoretical
argument; see Theorem 2.1 below.

However, the complexity of defining E∗-equivalences seems to be higher in the
Lévy hierarchy, since no upward absolute formula has been found for this purpose.
The difficulty is that, in order to formalize the statement that a space X is E∗-acyclic,
the collection of all functions from X to E has to be considered in some way, and
sets of functions (for example, 2N) are not upward absolute in general.

While it is conceivable that a proof of the existence of cohomological localiza-
tions can be given in ZFC, it is unreasonable to expect an explicit counterexample
in ZFC, since such a counterexample would invalidate most of the large-cardinal
hierarchy. In fact, the statement that arbitrary cohomological localizations exist is
perhaps equivalent to some large-cardinal principle.
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1 Homology Theories and Cohomology Theories

By a homology theory we mean a generalized homology in the sense of the
Eilenberg–Steenrod axioms [15], and similarly for a cohomology theory. We only
consider homology and cohomology theories that are reduced (i.e., vanishing on
a point) and representable, that is, defined by a spectrum as follows. A spectrum
E is a collection of pointed spaces Ek for k ≥ 0 together with structure maps
S1 ∧ Ek → Ek+1, where Sn denotes the n-sphere and ∧ is the smash product,
i.e., A ∧ B is obtained by collapsing the one-point union A ∨ B within the product
A×B for pointed spaces A and B. Every spectrum E yields a homology theory E∗
by defining

En(X) = colimk [Sn+k, Ek ∧X]

for n ∈ Z and every pointed space X, where [−,−] denotes pointed homotopy
classes of maps, and a cohomology theory E∗ as

En(X) = colimk [Sk ∧X,En+k]

for n ∈ Z as well. For convenience we assume that E is an �-spectrum, that is,
the adjoint maps Ek → �Ek+1 of the structure maps of E are weak homotopy
equivalences, where � denotes loops. Then En(X) ∼= [X,En] for n ≥ 0.

Note that X appears in the target of maps Sn+k → Ek ∧ X for homology while
it appears in the source of maps Sk ∧X → En+k for cohomology. This fact implies
covariance of E∗ but contravariance of E∗, a fundamental difference.

A map X → Y of spaces is called an E∗-equivalence if it induces isomorphisms
En(X) ∼= En(Y ) for all n, and it is called an E∗-equivalence if it induces
isomorphisms En(Y ) ∼= En(X) for all n. An E∗-localization of a space X is a
terminal E∗-equivalence going out of X, that is, an E∗-equivalence ηX : X → LEX

such that for every E∗-equivalence f : X → Y there is a map g : Y → LEX such
that the composite g ◦ f is homotopic to ηX, and g is unique up to homotopy with
this property. An E∗-localization is defined analogously.

1.1 Categories of Fractions

The approach undertaken by Adams in [3, 4] to construct E∗-localizations for every
homology theory E∗ is summarized in this section. He worked in the category H
whose objects are CW-complexes with basepoint and whose morphisms are pointed
homotopy classes of maps. We write f - g to denote that f and g are homotopic.
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If S denotes either the class of E∗-equivalences or the class of E∗-equivalences
for a spectrum E, then S admits a calculus of left fractions as defined by Gabriel–
Zisman in [16] as follows:

(i) S is closed under compositions.
(ii) For every pair of maps s : W → X and f : W → Y where s ∈ S there are

maps g : X → Z and t : Y → Z with t ∈ S such that g ◦ s - t ◦ f .
(iii) For every map s : W → X in S and every pair of maps f, g : X → Y with

f ◦ s - g ◦ s there is a map t : Y → Z in S such that t ◦ f - t ◦ g.

Condition (ii) is satisfied by choosing a homotopy pushout of f and s, and condition
(iii) holds using a homotopy coequalizer of f and g, with a Mayer–Vietoris
argument in both cases; cf. [7, Lemma 3.6]. In addition to (i), for composable maps
s and t , if two of s, t and t ◦ s are in S then the third is also in S.

The category of fractions S−1H has the same objects as H and morphisms from
X to Y are equivalence classes of zig-zags

X
f−→ Z

s←− Y

where s ∈ S, and two zig-zags (f, s) : X → Z ← Y and (f ′, s′) : X → Z′ ← Y

are defined to be equivalent if there is a space Z′′ equipped with maps g : Z → Z′′
and g′ : Z′ → Z′′ in S such that g′ ◦ f ′ - g ◦ f and g ◦ s - g′ ◦ s′. Composition
is defined using (ii), and it is well defined thanks to (iii).

In the category S−1H each map s : X → Y in S has an inverse, namely the zig-
zag (id, s) : Y → Y ← X. Moreover, there is a canonical functor Q : H → S−1H
sending every map f : X → Y to (f, id) : X → Y ← Y , and Q is universal among
functors from H sending all maps in S to isomorphisms; see [16, Proposition 2.4].

However, there is a famous difficulty with the category S−1H, namely we need
to prove that it is locally small, i.e., it has only a set of morphisms between any two
objects (not a proper class). As explained in the next subsection, this is feasible if
S is the class of E∗-equivalences for a spectrum E, yet it is still an open problem
(in ZFC) when S is the class of E∗-equivalences.

Once this difficulty is solved, Brown’s representability theorem [11] ensures the
existence of a right adjoint R : S−1H → H to Q : H → S−1H, i.e., for all spaces
X and Y there is a natural bijective correspondence

S−1H(QX, Y ) ∼= H(X,RY ).

In order to use Brown representability, it is necessary that, for a fixed space Y , the
functor sending each space X to S−1H(QX, Y ) be set-valued rather than class-
valued. This is the reason why we need that the category S−1H be locally small.

The adjoint pair Q,R yields an idempotent functor LE : H → H, namely the
composite RQ equipped with the unit η of the adjunction. This idempotent functor
is an E∗-localization on H. Indeed, for every X the map ηX : X → LEX is in S,
and it is a terminal map in S going out of X, as desired.
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The properties of E∗-localization of spaces are analogous to those of the
passage from abelian groups to Q-vector spaces by formally inverting nonzero
integers. In fact, if we choose E∗ = H∗(−;Q) as our homology theory (hence
S is the class of singular homology equivalences with rational coefficients), then
the resulting idempotent functor on the homotopy category H of pointed CW-
complexes extends Sullivan’s rationalization of 1-connected spaces [33]. This was
one of the motivations of Adams’ work, although the behaviour of H∗(−;Q)-
localization on arbitrary spaces is much more difficult to describe than in the case
of 1-connected spaces.

We next address the problem of proving that S−1H is locally small.

1.2 Solution-Set Conditions

A standard way to prove that a category of fractions is locally small is to impose the
existence of a cofinal subset of the class {s : Y → Z | s ∈ S} for every fixed Y . This
cofinality condition was stated as Axiom 3.4 in [4] and also considered by Deleanu
in [14], and reads as follows:

(A) For every space Y there is a subset A = {sα : Y → Zα} of S such that for every
map s : Y → Z in S there is a map sα : Y → Zα in A and a map g : Z → Zα

such that g ◦ s - sα .

This condition ensures that each zig-zag (f, s) : X → Z ← Y represents the
same morphism in S−1H as (g ◦ f, sα) : X → Zα ← Y for some α, and there is
only a set of those. Consequently, S−1H(X, Y ) is a set for all X and Y , as wanted.

Unfortunately, there seems to be no way to check a priori that condition (A)
holds for E∗-equivalences nor for E∗-equivalences. This is the reason why Adams’
approach was not considered to be conclusive at that moment.

However, as observed by Fiedorowicz in [4, § 8], the fact that S−1H is locally
small can also be inferred from the following solution-set condition, which is much
more useful than (A):

(B) For all spaces X and Y there is a set of zig-zags B = {(fα, sα) : X → Zα ← Y }
with sα ∈ S such that for every (f, s) : X → Z ← Y with s ∈ S there exists
(fα, sα) ∈ B and a map g : Zα → Z such that g ◦ fα - f and g ◦ sα - s.

In other words, condition (B) imposes that the category of zig-zags from X to Y

where the backward arrow is in S has a weakly initial small subcategory. This
ensures that each (f, s) represents the same morphism as (fα, sα) for some α, and
hence it follows again that S−1H(X, Y ) is a set for all X and Y .

Condition (B) holds for the class S of E∗-equivalences if E is any spectrum. The
following argument is a rewriting of [4, Lemma 8.3] or [7, Lemma 11.3].

Theorem 1.1 (Existence of Homological Localizations: Topological Proof)
E∗-localization exists for every spectrum E.
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Proof In order to prove that E∗-localization of CW-complexes exists for every
spectrum E it is sufficient to prove that condition (B) does hold for the class of
E∗-equivalences.

Given X and Y , let κ be an infinite cardinal bigger than the cardinality of
the sets of cells of X and Y and bigger than the cardinality of the abelian group
E∗(S0). It then follows by means of the Atiyah–Hirzebruch spectral sequence that
the cardinality of E∗(X) and E∗(Y ) is smaller than κ , and therefore the cardinality
of E∗(X ∨ Y ) is also smaller than κ , since E∗(X ∨ Y ) ∼= E∗(X)⊕ E∗(Y ).

Let B be a set of representatives of all homeomorphism classes of zig-zags
(fα, sα) : X → Zα ← Y where Zα has less than κ cells and sα is an E∗-equivalence.
Suppose given (f, s) : X → Z ← Y where s is an E∗-equivalence. If W0 denotes
the image of the map X ∨ Y → Z induced by (f, s), then the homomorphism
ϕ0 : E∗(W0)→ E∗(Z) induced by the inclusion W0 ⊂ Z is an epimorphism. Since
E∗ commutes with filtered colimits, every homology class in kerϕ0 vanishes on
some subcomplex of Z obtained by adding finitely many cells to W0. Hence we can
choose a subcomplex W1 of Z with less than κ cells such that W0 ⊂ W1 ⊂ Z and
the homomorphism E∗(W0) → E∗(W1) sends all the elements of kerϕ0 to zero.
The inclusion W1 ⊂ Z induces again an epimorphism on E∗-homology and we can
iterate the same construction in order to obtain a nested sequence of subcomplexes
Wn such that if W = ∪∞n=1 Wn then W still has less than κ cells and the inclusion
W ⊂ Z is now an E∗-equivalence. Moreover, the composite map X ∨ Y → W

yields maps g : X → W and t : Y → W whose composites with the inclusion
W ⊂ Z are equal to f and s respectively. Hence (g, t) is homeomorphic to an
element of B, and condition (B) is fulfilled. ��

In this proof, the fact that E∗ is a covariant functor that commutes with filtered
colimits is essential. Thus, while this approach works well for homology theories,
there seems to be no way to check in ZFC that condition (B) holds in the case
of cohomology theories. Nevertheless, as we explain in Sect. 2, condition (B) does
hold for the class of E∗-equivalences for any spectrum E if we assume the existence
of sufficiently large cardinals—indeed, too large to be available in ZFC.

2 Set-Theoretical Reflection

2.1 Cardinality and Rank

In ZFC set theory, no set can be an element of itself and no descending sequence for
the membership relation can be infinite. The rank of a set X is defined inductively
as the smallest ordinal greater than the ranks of all the elements of X. In particular,
the rank of every ordinal is equal to itself.

Cardinality and rank are different concepts. For example, the set R of real
numbers has rank ω + 1 (where ω is the first infinite ordinal) but uncountable
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cardinality, and the set {R} has cardinality 1 but rank ω + 2. In what follows, the
cardinality of a set X will be denoted by |X|.

A set X is called transitive if every element of X is also a subset of X, that is,
if X has the property that whenever a ∈ X and b ∈ a then b ∈ X. The cumulative
hierarchy of sets is defined by transfinite recursion as V0 = ∅, Vα+1 = P(Vα)

where P denotes power set, and Vλ = ∪α<λ Vα if λ is a limit ordinal. It follows
by induction that each Vα is transitive and Vα ⊂ Vβ if α < β. Every set X is
a member of some set in this hierarchy [19, Lemma 6.3], and the rank of X is
the smallest ordinal α such that X ∈ Vα+1. Hence Vα is the set of all sets of rank
smaller than α. The union V = ∪αVα is the set-theoretical universe or von Neumann
universe. If κ is an inaccessible cardinal then Vκ is a model for ZFC set theory, and
|Vκ | = rank(Vκ) = κ .

2.2 Structures

A summary of terminology and basic facts about languages, structures and theories
can be found in [1, Ch. 5], [6, § 1] or [19, Ch. 12], among many other places.

For a regular cardinal λ and a set S, a λ-ary S-sorted signature consists of a set
of operation symbols, a set of relation symbols and an arity function that assigns to
each operation symbol an ordinal α < λ, a sequence of input sorts 〈si | i < α〉
and an output sort s ∈ S (then we denote the corresponding operation symbol by
�i<α si → s), and to each relation symbol an ordinal β < λ and a sequence of sorts
〈sj | j < β〉. An operation symbol of arity 0 is called a constant.

A σ -structure for a signature σ is an S-sorted set X = {Xs | s ∈ S} equipped
with an interpretation of σ , that is, a function �i<α Xsi → Xs for each operation
symbol �i<α si → s (including a distinguished element in Xs for each constant
of sort s) and a relation on X for each relation symbol. A homomorphism of
σ -structures is an S-sorted function that preserves operations and relations.

The language of a λ-ary signature σ is made of a set of variables of cardinality λ

and formulas involving variables, operations and relations in σ , equality, negation,
implication, conjunctions and disjunctions of cardinality smaller than λ, and finitely
many quantifiers over sets of variables of cardinality smaller than λ. Languages
with λ = ℵ0 are called finitary. For example, the language of ZFC set theory
is one-sorted and finitary with a binary relation symbol ∈, which is interpreted as
membership.

Variables that appear unquantified in a formula are called free. Formulas without
free variables are called sentences, and a set of sentences is called a theory.

For each language, a satisfaction relation is defined inductively for formulas
with an assignment for their free variables. Thus, for a formula ϕ(xi)i∈I with free
variables xi , we say that the sentence ϕ(ai)i∈I holds in a σ -structure X if ai ∈ X

for all i ∈ I and ϕ is satisfied in X under the variable assignment xi �→ ai .
A σ -structure X is called a model for a set of formulas if each of these formulas
holds in X under any variable assignment.
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For example, the signature of the theory of pointed simplicial sets is ω-sorted
with unary operations dn

i of sorts n → n − 1 (faces) and sni of sorts n → n + 1
(degeneracies) for 0 ≤ i ≤ n, and a constant of sort 0 (the basepoint), and the
axioms of this theory are the simplicial identities [23]. Homomorphisms between
models are basepoint-preserving simplicial maps.

A parameter in a formula is a set which is fixed in every variable assignment.
Every formula ϕ of the language of ZFC set theory with a parameter p defines a
class C = {X | ϕ(X,p)}, meaning that C consists of all sets X for which ϕ(X,p)

holds in V . A formula ϕ with a parameter p is called absolute for a set or a proper
class M with p ∈ M if ϕ holds in V if and only if it holds with its quantifiers
relativized to M; then one also says that M is elementary for ϕ.

An elementary embedding between σ -structures is a function f : X → Y that
preserves and reflects truth, that is, for every formula ϕ(xi)i∈I of the language of σ
with free variables xi , and for all ai ∈ X, the sentence ϕ(ai)i∈I holds in X if and
only if ϕ(f (ai))i∈I holds in Y . Thus, every elementary embedding X → Y is, in
particular, an injective homomorphism of σ -structures.

2.3 Reflection Principles

The Löwenheim–Skolem theorem is a central result in first-order logic. Its simplest
form states that every infinite model for a countable language has a countable
elementary submodel [19, Theorem 12.1]. More generally, for every infinite σ -
structure X and every infinite cardinal κ ≥ |σ |, if κ < |X| then there exists an
elementary substructure Y ⊂ X of cardinality κ (downward version) and if κ > |X|
then there exists an elementary extension X ⊂ Y of cardinality κ (upward version).

Another version specializes to a finite set of formulas (or equivalently one
formula) and reads as follows. Given any formula ϕ of ZFC set theory and given an
infinite cardinal κ , there is a set M of cardinality κ which is elementary for ϕ.
Moreover, M can be chosen as an extension of any given set of cardinality κ ,
and it can be chosen transitive if we remove the restriction on its cardinality [19,
Theorem 12.14]. In this situation, one says that the formula ϕ is reflected by M .
This is called the reflection principle and it is usually referred to by saying that
every formula that holds in V already holds in Vα for some α; see [5] for more
details and a historical perspective.

The following variant, called structural reflection, was used in [5, 6]. A class
C of σ -structures closed under isomorphic images is reflected by a cardinal κ if
every X ∈ C has an elementary substructure Y ∈ C of cardinality smaller than κ .
The Löwenheim–Skolem theorem implies that every isomorphism-closed class of
σ -structures defined by a formula that is absolute for transitive classes is reflected
by any uncountable cardinal larger than |σ |. In fact it is sufficient that the formula
be upward absolute, in a sense that we next discuss.
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2.4 The Lévy Hierarchy

The existence of a cardinal reflecting a class C depends on the Lévy complexity [22]
of a formula defining C. A formula ϕ is called �0 or �0 if it does not contain
unbounded existential quantifiers ∃ nor unbounded universal quantifiers ∀, that is,
all quantifiers in ϕ are of the form ∃ x ∈ a or ∀x ∈ a where a is some set. For
n ≥ 1, a formula is called �n if it has the form ∃ x ϕ(x) where ϕ is �n−1, and it is
called �n if it has the form ∀x ϕ(x) where ϕ is �n−1.

One of the consequences of the reflection principle is that for every n there exist
arbitrarily large cardinals α such that Vα is a �n-elementary substructure of V , that
is, a �n formula with parameters in Vα holds in Vα if and only if it holds in V .

Every �0 formula is absolute for transitive classes; see [19, Lemma 12.9].
Likewise, �1 formulas are upward absolute while �1 formulas are downward
absolute. The reason is that if in a transitive model M there exists a set x with
a property expressed by a �0 formula, then every model containing M also has a
set x with that property (in fact, the same x), and if every x in M has a property
expressed by a �0 formula then the same holds in each transitive submodel of M .

As an example, the clause a ⊆ b is formalized by the �0 formula ∀x ∈ a (x ∈ b),
which is absolute between two models M ⊂ N if M is transitive and a, b ∈ M (we
need transitivity to ensure that x ∈ a implies x ∈ M). The claim “a is the set of all
subsets of b” can be formalized with the �1 formula ∀x (x ∈ a ↔ x ⊆ b), and its
truth is not preserved upwards, since the set P(N) of all subsets of N is countable in
any countable transitive model of ZFC but uncountable in V .

As another example, the claim “x is finite” can be formalized with a �1 formula
stating that there is a bijection between x and some finite ordinal, and the assertion
that “a is the set of finite subsets of b” can be expressed as follows:

x ∈ a ↔ ∃ n < ω ∃ f (f is a function from n to b with image x). (1)

Moreover, (1) can be rewritten by stating that there is a transitive model of a
sufficiently large finite fragment of ZFC containing a and b in which at least the
pairing and union axioms hold and in which (1) is true, as in [6, Example 2.3]. This
is a �1 statement. Consequently, quantifying over finite subsets of some given set b
can be done by means of �1 formulas with b as a parameter.

2.5 Existence of Localizations

For fixed simplicial sets X and Y , a simplicial set Z equipped with pointed maps
X → Z and Y → Z can be viewed as a model of a theory over an ω-sorted signature
σXY consisting of unary operations n→ n− 1 for n ≥ 1 and n→ n+ 1 for n ≥ 0
plus a constant of sort 0 (to be interpreted as faces, degeneracies, and basepoint
in Z) and, in addition, for all n, a constant of sort n for each element of Xn and
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another constant of sort n for each element of Yn, to be interpreted as images in
Z of the simplices of X and Y . This signature σXY need no longer be countable
but |σXY | = |X| + |Y |. The axioms are the simplicial identities for Z together
with a statement that the functions f : X → Z and s : Y → Z determined by
the constants are simplicial maps, and we need to add as another axiom that the Kan
condition holds for the simplicial set Z. Our choices guarantee that homomorphisms
g : Z → Z′ of σXY -structures satisfy g ◦ f = f ′ and g ◦ s = s′, since constants are
preserved by homomorphisms.

Theorem 2.1 has the same statement as Theorem 1.1, but a very different proof.
It has been written using and adapting results from [6].

Theorem 2.1 (Existence of Homological Localizations: Set-Theoretical Proof)
E∗-localization exists for every spectrum E.

Proof Our aim is to infer that condition (B) from Sect. 1 holds for the class EXY

of Kan simplicial sets Z equipped with pairs of pointed maps f : X → Z and
s : Y → Z, where X,Y are fixed simplicial sets and s is an E∗-equivalence. For
this, we view each such Z as a σXY -structure for the signature σXY defined above.

All the terms in a definition of EXY are absolute, except for a formula stating the
fact that s is an E∗-equivalence, which we next analyze following [6, Theorem 9.2].
A map is an E∗-equivalence if and only if its cofibre is E∗-acyclic, and a space
A is E∗-acyclic if and only if the spectrum E ∧ A is weakly contractible, i.e., all
its homotopy groups vanish. As detailed in the proof of [6, Proposition 9.1], this
fact can be expressed with formulas that contain quantifiers involving finite sets of
simplices of the spaces En ∧ A, where {En} is the set of constituents of E and
fibrant replacements are used when needed. Hence we can write a �1 formula ϕ

with p = {X,Y,E} as a set of parameters such that EXY = {Z | ϕ(Z, p)}.
Pick an uncountable cardinal κ larger than the ranks of X, Y and E and such that

|Vκ | = κ . Given any Z ∈ EXY , the reflection principle ensures that there is a regular
cardinal λ > κ such that Z ∈ Vλ and ϕ(Z, p) holds in Vλ. By the Löwenheim–
Skolem theorem, there is an elementary submodel N ⊂ Vλ with |N | < κ such that
Z ∈ N and the transitive closure of {X,Y,E} is also in N . By elementarity, ϕ(Z, p)

holds in N . However, Z need not be a subset of N , since N is not transitive.
Now let π : N → M be the unique isomorphism where M is transitive—this uses

the Mostowski collapse; see [19, Theorem 6.15] for details—and let j : M → N be
the inverse isomorphism. If we pick z = π(Z), then z is also a σXY -structure since
j is an isomorphism and j (σXY ) = σXY because the transitive closure of {X,Y }
is in N , and z ∈ Vκ since z ⊂ M and |M| < κ . Moreover, ϕ(z, p) holds in M

because ϕ(j (z), j (p)) holds in N , as j (p) = p since the transitive closure of p is
in N . Using the fact that �1 formulas are upward absolute, we infer that ϕ(z, p)
holds in V , which means that z ∈ EXY . Moreover, the restriction j |z : z → Z is an
elementary embedding of σXY -structures. This means that there is an injective map
z → Z with z ∈ EXY ∩ Vκ , so condition (B) holds. ��
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In the case of formulas of higher Lévy complexity, the Löwenheim–Skolem
theorem is not sufficient to ensure reflectivity. Instead, elementary embeddings from
the universe V into convenient models are needed [5].

The critical point of an elementary embedding j : V → M is the smallest
cardinal κ such that j (κ) �= κ . Then all sets of rank smaller than κ are fixed by j ,
and j (κ) > κ . The existence of nontrivial elementary embeddings of V cannot be
proved in ZFC, since if there is one then its critical point is a measurable cardinal.
Indeed, many kinds of large cardinals are defined as critical points of elementary
embeddings V → M with suitable conditions on M .

A cardinal κ is called supercompact if for every ordinal λ there exists an
elementary embedding j : V → M with M transitive and with critical point κ

such that j (κ) > λ and M is closed under sequences of length λ; see [19, 21].
As evidenced by the following result, which is based on [6, Theorem 5.2],
supercompact cardinals yield structural reflection for �2 formulas.

Theorem 2.2 (Existence of Cohomological Localizations) E∗-localization exists
for every E if arbitrarily large supercompact cardinals exist.

Proof Now we aim to prove that condition (B) from Sect. 1 holds for the class EXY

of Kan simplicial sets Z with pairs of pointed maps f : X → Z and s : Y → Z,
where X,Y are simplicial sets and s is an E∗-equivalence.

For this, we need to prove that the class of E∗-equivalences for a spectrum E

can be defined by means of a �2 formula. This was done in [6, Theorem 9.3] and
it is summarized as follows. A map of pointed simplicial sets is an E∗-equivalence
if and only if its cofibre A is E∗-acyclic, and this means that the function spaces
map(A,En) are weakly contractible for all n, where E = {En} and we assume that
E is an �-spectrum without loss of generality. In order to formalize the fact that
map(A,En) is weakly contractible for all n, we write the following �2 statement:
“A is a simplicial set and there exists a function f with domain N such that, for all
n ∈ N, f (n) is a simplicial set and, for every x and every k ∈ N, x is a k-simplex
of f (n) if and only if x is a simplicial map A ∧�[k]+ → En, and f (n) is weakly
contractible”. Here �[k]+ denotes a standard k-simplex with a disjoint basepoint.

Thus, let ϕ denote a �2 formula defining the class EXY with p = {X,Y,E} as
a set of parameters, and let κ be a supercompact cardinal larger than the rank of p.
Given Z ∈ EXY , pick a regular cardinal λ bigger than κ such that Z ∈ Vλ and Vλ is
�2-elementary in V (here we use again the reflection principle). Let j : V → M be
an elementary embedding with M transitive and critical point κ such that j (κ) > λ

and M is closed under sequences of length λ. This implies that M contains Vλ.
Next, observe that Vλ is �1-elementary in M , since every �1 formula that holds

in M also holds in V , and Vλ is �2-elementary in V . Consequently, �2 formulas
are upward absolute between Vλ and M . Since ϕ is a �2 formula, ϕ(Z, p) holds
in Vλ and hence it holds in M . Since Z and j (Z) are in M and Z ∈ Vλ and M is
closed under λ-sequences, the restriction j |Z : Z → j (Z) is in M . Furthermore, Z
is a σXY -structure in M since j (σXY ) = σXY , and j |Z is an elementary embedding
of σXY -structures.
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We have that rank(Z) < λ < j(κ) in V and also in M , since M contains Vλ.
Therefore, as witnessed by Z, in M there exists a σXY -structure z of rank smaller
than j (κ) for which ϕ(z, j (p)) holds, and there is an elementary embedding z → Z.
By elementarity of j , the corresponding statement is true in V ; that is, there exists
a σXY -structure z of rank smaller than κ and ϕ(z, p) holds in V , and there is an
elementary embedding z → Z. In other words, every Z ∈ EXY has a substructure
in EXY ∩Vκ . Hence the elements of EXY ∩Vκ form a solution set, and condition (B)
holds, as needed. ��

If no bound is imposed on the complexity of a formula defining a class C, then
the existence of a cardinal reflecting C follows from the Vopěnka principle. We omit
the details of this claim and refer to [6].

3 Conclusions

In practice, in order to construct localizations with respect to proper classes of maps,
sometimes one assumes the existence of Grothendieck universes, and moves to a
higher universe whenever the construction of a category of fractions requires it.
However, the assumption that for each set X there exists a Grothendieck universe U
with X ∈ U is equivalent to the assumption that for each cardinal κ there exists an
inaccessible cardinal λ > κ .

What we have proved in Theorem 2.2 is that, if there is a supercompact cardinal
larger than a given spectrum E and larger than two given simplicial sets X,Y , then
S−1H(X, Y ) is a set (not a proper class), where H is the homotopy category of
pointed simplicial sets and S−1H denotes the category of fractions for the class S
of E∗-equivalences. In consequence, we obtain an E∗-localization functor without
having to “pass to a higher universe”, since the categoryS−1H happens to be locally
small, which was the only pending requirement for Adams’ argument in [4] to work.
It is also remarkable that Adams’ construction of E∗-localizations could have been
made precise at that time by just using the reflection principle and the Löwenheim–
Skolem theorem to infer that S−1H(X, Y ) is a set for all X and Y (Theorem 2.1).

In conclusion, what is the situation now? We know that the existence of a proper
class of supercompact cardinals ensures the existence of arbitrary cohomological
localizations, but we do not know the precise logical strength of the claim that
cohomological localizations exist. There are two possibilities:

(1) It can be proved in ZFC that cohomological localizations exist.
(2) The claim that cohomological localizations exist is itself a large-cardinal

principle.

We do not consider the possibility that somebody may find a counterexample in
ZFC, since this would imply that the existence of a proper class of supercompact
cardinals is inconsistent with ZFC. This would make inconsistent an enormous
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segment of the large-cardinal hierarchy. Although this is not impossible, it is
extremely unlikely.

Possibility (1) cannot be discarded, although this has remained a challenge for
almost fifty years. Hence, possibility (2) seems the most plausible one.

One approach to try to prove that possibility (1) is the winning one would be to
verify Hovey’s conjecture [18], according to which for every spectrum E there is
another spectrum F such that the class of E∗-equivalences is equal to the class of
F∗-equivalences. If this were true, then the existence of cohomological localizations
would be provable in ZFC by Theorem 2.1 above.

However, a solution of Hovey’s conjecture seems still out of reach, in spite of the
fact that it has been shown to be false in derived categories of rings [31]. It is not
even known whether the collection of cohomological Bousfield classes of spectra is
a set or a proper class, while it has been known since Ohkawa’s work in [25] that
there is only a set of distinct homological Bousfield classes.

Acknowledgements I thank Joan Bagaria for revising and correcting the set-theoretical content
of the manuscript.
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Personal Note of Jürgen Jost
I first met Catriona Byrne at the Arbeitstagung in Bonn in June 1982, that is,
40 years ago. She had just started to work at Springer a few months before. I
remember that encounter quite well, as it led to my first book project, a volume in
the Lecture Notes in Mathematics, with the title Harmonic Maps between Surfaces.
Thus, it is very fitting that this tribute to her work will appear in the Lecture Notes
in Mathematics series.

Over those 40 years, several more book projects were successfully guided by her
and her colleagues. More than that, mutual understanding and trust on publishing
books and editing journals developed, and a frequent exchange of advice was both
helpful and enjoyable. In particular, she successfully implemented the inauguration
and the start of the Journal of the European Mathematical Society, of which I
became the founding editor-in-chief.

Her competence, her energy, and her dedication to high quality mathematical
publishing will be profoundly missed after her retirement.

1 Introduction

Many data sets come with a basic geometric structure, distances between data
points. It is therefore natural to use geometric methods to analyze such data. The
deepest geometric concepts, however, were developed in the nineteenth century for
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smooth manifolds, more precisely Riemannian manifolds, and the most fundamental
concept there is curvature. In the twentieth century, notions of curvature were
successfully generalized to more general classes of spaces. Still, those spaces, like
geodesic length spaces, are typically not discrete, in contrast to data sets. Thus,
we have found it desirable to rethink fundamental geometric concepts from a more
abstract perspective that also naturally includes discrete spaces. Of course, there
are ideas and approaches that we can build upon, most importantly those pioneered
by Gromov [21, 22]. From such a perspective, the distinction between discrete and
connected spaces is partly one of scale. From a large scale perspective, spaces from
those two classes may look alike.

Such a large scale perspective is still quantitative, hence geometric, and is
therefore different from a qualitative topological approach. Nevertheless, as we
shall see, there are important links between the two. In particular, we can look
at the successful topological data analysis method of persistent homology from a
geometric perspective.

Topological data analysis asks when balls in a metric space (X, d) intersect. This
is a qualitative concept, but the data analysis method of persistent homology makes
this quantitative through the dependence on the radii of the balls. Geometric data
analysis, as we conceive it in this contribution, asks how much balls have to be
enlarged to intersect. And as we shall see, this is captured by a suitable concept
of curvature. And curvature, from a general perspective as adopted here, quantifies
convexity. Therefore, convexity and its strengthening as hyperconvexity will be our
basic concepts.

We thank the referee for useful comments.

2 Preliminaries from Metric Geometry

Let (X, d) be a metric space. x, y, . . . will be points in X, and they thus have a
distance d(x, y). A continuous path c : [0, 1] −→ X with x = c(0), y = c(1) has
length

l(c) := sup
i=n∑

i=1

d(c(ti), c(ti−1)).

The supremum here is taken over all partitions of [0, 1], with t0 = 0, tn = 1. (X, d)

is called a length space if for all x, y,

d(x, y) = inf{l(c) : c is a path between x and y}.
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A length space (X, d) is called geodesic if this infimum is always realized, that is,
any x, y ∈ X can be connected by a shortest path c : [0, 1] −→ X, i.e.

d(x, y) = l(c).

Thus, the distance between x and y is realized by some curve, a shortest geodesic.
Every complete locally compact length space is a geodesic space. However,

there is another way to determine whether a complete metric space is a geodesic
(resp. length) space by checking the existence of mid-points (resp. approximate
midpoints).

Definition 2.1 m ∈ X is a midpoint between x, y if

d(x,m) = d(m, y) = 1

2
d(x, y).

We may also say that a pair of points x, y ∈ X has approximate midpoints if for
every ε > 0 there exists an mε ∈ X with

max{d(mε, x), d(mε, y)} ≤ 1

2
d(x, y)+ ε.

We observe

Lemma 2.1 Every pair of points in a geodesic space (resp. length space) has at
least one midpoint (resp. approximate midpoints).

The converse is true provided that the metric space is complete. �
In the sequel,

B(x, r) := {y ∈ X : d(x, y) ≤ r}

will always be the closed ball centered at x with radius r ≥ 0.

Definition 2.2 (X, d) is totally convex if for any x1, x2 ∈ X, r1, r2 > 0 with

r1 + r2 ≥ d(x1, x2),

we have

B(x1, r1) ∩ B(x2, r2) �= ∅.

Any radii ri will be > 0 in the sequel.
Again, an easy lemma

Lemma 2.2 Geodesic spaces are totally convex. �
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Length spaces are not necessarily totally convex, as they need not be complete. An
example is R2 \ 0 with the length structure induced by the Euclidean distance. But
even when a length space is complete, it need not be totally convex. For instance,
we can take the metric space consisting of two points and countably many intervals
connecting them, the nth interval having length 1+ 1

n
.

Let us formulate Definition 2.2 as

Principle 2.1 Two balls that can intersect do intersect.

We shall now introduce a fundamental quantity. For

r1 + r2 ≥ d(x1, x2)

we put

ρ((x1, x2), (r1, r2)) := inf
x∈X max

i=1,2

d(xi, x)

ri
, (1)

ρ(x1, x2) := sup
r1,r2

ρ((x1, x2), (r1, r2)). (2)

If ρ(x1, x2) = 1 for each pair of points x1, x2 ∈ X, then the existence of
approximate midpoints is guaranteed, and X is a length space provided that it is
a complete metric space. If, moreover, the infimum is attained for each pair by
some x0 ∈ X, then X is a geodesic space provided that it is complete.

Another obvious

Lemma 2.3 When X is complete the supremum in (2) is realized by r1 = r2 =
1
2d(x1, x2), that is

ρ(x1, x2) = inf
x∈X max

i=1,2

2d(xi, x)

d(x1, x2)
. (3)

Moreover, ρ(x1, x2) = 1 is achieved for some x when

d(x1, x)+ d(x2, x) = d(x1, x2),

that is, when x is a midpoint of x1, x2. �
Thus, we want to find points between two points x1 and x2, and quantify to what

extent that can fail.
Therefore, in the realm of complete metric spaces, the more (2) deviates from 1

the less is the chance to approximate distances by lengths of connecting paths.
A key idea now is to extend this to three points.
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3 Tripod Spaces

Definition 3.1 A geodesic length space (X, d) is a tripod space if for any three
points x1, x2, x3 ∈ X, there exists a median, that is, a point m ∈ X with

d(xi,m)+ d(xj ,m) = d(xi, xj ), for 1 ≤ i < j ≤ 3.

We note that for a median, we have

d(x1, x2)+ d(x2, x3)+ d(x3, x1) = 2(d(x1,m)+ d(x2,m)+ d(x3,m)).

1 2

3

Most metric spaces are not tripod spaces. For instance, Riemannian manifolds of
dimension > 1 do not satisfy the tripod property. Nevertheless, there are examples
that will be important for us:

• Metric trees;
• L∞-spaces; and more generally,
• hyperconvex spaces (to be defined shortly).

If such a median exists it will be a minimizer for the sum of the distances to the
corresponding triple x1, x2, x3. Such a point is called a Fermat point.

Our strategy will then be to quantify the deviation from the tripod property.
We get the existence of tripods if the following more general condition is

satisfied. For any x1, x2, x3 ∈ X which do not lie on a geodesic, and ri + rj ≥
d(xi, xj ), 1 ≤ i < j ≤ 3,

3⋂

i=1

B(xi, ri ) �= ∅.
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This leads to

Principle 3.1 Three balls that can intersect do intersect.

To explore this principle, and the deviation from it, we shall now introduce a 3-point
analogue of (1), (2). For x1, x2, x3 ∈ X and ri + rj ≥ d(xi, xj ),

ρ((x1, x2, x3), (r1, r2, r3)) := inf
x∈X max

i=1,2,3

d(xi, x)

ri
, (4)

ρ(x1, x2, x3) := sup
ri+rj≥d(xi,xj ),i �=j

ρ((x1, x2, x3), (r1, r2, r3)). (5)

This is uniquely solved by the Gromov products

r1 = 1

2
(d(x1, x2)+ d(x1, x3)− d(x2, x3)),

r2 = 1

2
(d(x1, x2)+ d(x2, x3)− d(x1, x3)),

r3 = 1

2
(d(x1, x3)+ d(x2, x3)− d(x1, x2)). (6)

Remark It is obvious that ρ((x1, x2, x3), (r1, r2, r3)) ≥ 1. Moreover, this quantity
is bounded from above by 2 if X is complete.

If (with r1, r2, r3 defined by (6)) ρ(x1, x2, x3) = 1 and the infimum is attained
by some m, then we have a tripod construction or equivalently a Fermat point. This
implies that there exists an intermediate point through which each pair xi, xj can be
connected.

Definition 3.2 The point m attaining the infimum in (4) is called a weighted
circumcenter.

A weighted circumcenter solves an optimization problem in R
3 with respect to the

l∞ norm. The larger the value of ρ(x1, x2, x3) is, the less optimal the weighted
circumcenter as the interconnecting point will be.

We observe here

Lemma 3.1 Weighted circumcenters exist and are unique for triangles in CAT (0)
spaces (Alexandrov’s generalization of Riemannian manifolds of sectional curvature
≤ 0).

4 Hyperconvexity

We shall now extend the above principle to arbitrary numbers of points.
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Definition 4.1 (X, d) is hyperconvex if for any family {xi}i∈I ⊂ X and ri + rj ≥
d(xi, xj ) for i, j ∈ I ,

⋂

i∈I
B(xi , ri ) �= ∅.

In a totally convex metric space, ri + rj ≥ d(xi, xj ) can be replaced by B(xi, ri ) ∩
B(xj , rj ) �= ∅ for all i, j ∈ I . Thus, when balls intersect pairwise, they also have a
common intersection.

This leads to our final

Principle 4.1 Balls that can intersect do intersect.

We observe

Lemma 4.1 Hyperconvex spaces are tripod spaces. �
We list some important properties of hyperconvex spaces.

Theorem 4.1

(a) Hyperconvex spaces are complete and contractible to each of their points [5].
(b) X is hyperconvex iff every 1-Lipschitz map from a subspace of any metric space

Y to X can be extended to a 1-Lipschitz map over Y [5].
(c) Every metric space is isometrically embedded in a hyperconvex space, called

its hyperconvex hull. The hyperconvex hull of a compact space is compact and
that of a finite space is a simplicial complex. [16, 29]

We now describe the isometric embedding in part (c) and the construction of the
hyperconvex hull, in order to understand the specific choice of radii in (1) and (4).
By Kuratowski embedding, every bounded metric space (X, d) is isometrically
embedded in the space of bounded functions on X equipped with the supremum
norm, i.e. l∞(X), via the map x �→ d(x, ·), which we denote by x �→ dx for
simplicity.

l∞(X) contains the subspace E(X) consisting of all functions f that are minimal
subject to the relation

f (x)+ f (y) ≥ d(x, y), ∀x, y ∈ X. (7)

It has been shown in [16, 29, 35] that E(X) is a hyperconvex space containing the
image of X under the Kuratowski embedding isometrically, and E(X) is minimal in
the sense that it is isometrically embeddable in any other such hyperconvex space.

The radii in (1) and (4) are functions on a 2-point space and a 3-point spaces
respectively, satisfying (7).

If X is a finite metric space with |X| = n, the space of all functions satisfying (7)
is a polyhedron in the finite vector space R

n obtained by the intersection of the
closed half spaces fi + fj ≥ d(xi, xj ) for 1 ≤ i < j ≤ n. Therefore, the
interior of every face S of this polyhedron is the intersection of some hyperplanes
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fi + fj = d(xi, xj ). We can then define a graph G(S) with vertex set X,
corresponding to the symmetric relation defined by that face. More precisely, xi
is connected to xj with an edge in G(S) if for f ∈ S◦ we have fi + fj = d(xi, xj ).
Now, E(X) is the union of compact faces of this polyhedron and moreover the
graph corresponding to each such face is a spanning graph, that is, every vertex
is connected to at least one other vertex in this graph. This construction was
first introduced in [16], where a combinatorial dimension for finite metric spaces
was defined as the maximal dimension of a face in its hyperconvex hull. The
hyperconvex hull of finite metric spaces was studied further in [6, 17] and from
a different perspective in [14, 40] to obtain the metric fan of a finite set. In [40] a
software tool was presented to visualize these hyperconvex hulls. The problem of
finding faces of E(X), when X is finite, as a linear programming problem was also
studied in [15, 28].

In the special case X = {x1, x2}with distance d12 = d(x1, x2), the corresponding
polyhedron is the half plane f1+f2 ≥ d12 cut by the coordinate planes fi = 0, i =
1, 2, which has only one compact face, the line segment f1 + f2 = d12 connecting
(d12, 0) to (0, d12), i.e., [dx2, dx1]. Every point in this polyhedron can be reached
through a ray passing this line segment and the midpoint of this segment, that is
1
2 (d12, d12) is the corresponding radius function in (3). The space of all such radius
functions is illustrated in Fig. 1(a).

Similarly, one can see that for X = {x1, x2, x3}, using the same notation dij , 1 ≤
i, j ≤ 3 for pairwise distances, the corresponding polyhedron is the intersection of
the half-spaces

fi + fj ≥ dij , 1 ≤ i < j ≤ 3 (8)

and the coordinate half spaces fi ≥ 0 for i = 1, 2, 3. Moreover, the hyperconvex
hull, colored in blue in Fig. 1(b), is the union of three segments each of which
connect a distance function dxi to the function r = (r1, r2, r3) defined in (6).
For the analysis of discrete metric spaces, some variants of the notion of hyper-
convexity are well suited, c.f [20, 23, 24, 33].

Definition 4.2 (X, d) is δ-hyperbolic (δ ≥ 0) if for any family {B(xi, ri )}i∈I with
ri + rj ≥ d(xi, xj ),

⋂

i∈I
B(xi , δ + ri ) �= ∅. (9)

Definition 4.3 (X, d) is λ-hyperconvex (λ ≥ 1) if for every family {B(xi, ri )}i∈I
with ri + rj ≥ d(xi, xj ),

⋂

i∈I
B(xi , λri) �= ∅. (10)
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Fig. 1 (a) The yellow area is the set of all possible radius functions on 2 points and the line
segment colored in blue refers to the minimal ones. (b) The three dimensional polyhedron is the
set of all possible radius functions on 3 points and the tripod consisting of three line segments
colored in blue refers to the minimal ones

Of course, 0-hyperbolicity and 1-hyperconvexity are simply hyperconvexity. For
large radii, δ becomes insignificant, and the concept of δ-hyperbolicity is therefore
good for asymptotic considerations. In contrast, λ-hyperconvexity is invariant under
scaling the metric d , and it can therefore capture scaling invariant properties of a
metric space.

The preceding concepts allow for a quantification of the deviation from hyper-
convexity. The following results are known.

Theorem 4.2 Hilbert spaces are
√

2-hyperconvex. Reflexive and dual Banach
spaces are 2-hyperconvex. Therefore, for a measure space (X,μ), Lp(X,μ), 1 <

p < ∞, are 2-hyperconvex, and if X is finite, L1(X,μ) is also 2-hyperconvex.
L∞(X,μ) is hyperconvex [20, 33].

5 Relation with Topological Data Analysis (TDA)

Definition 5.1 For a family (xi)i∈I in a metric space (X, d) and r > 0, we define
the Čech complex Čr ((xi),X) containing a q-simplex whenever

⋂

i=1,...,q+1

B(xi, r) �= ∅.
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Here (xi)i∈I is called the landmark set and X is the witness set. When the witness
set coincides with the landmarks, we thus define a non-empty intersection inside the
sample set (xi)i∈I as the criterion for a simplex. We also define the Vietoris–Rips
complex VRr((xi),X) containing a q-simplex whenever

B(xi, r) ∩ B(xj , r) �= ∅ for all i, j ∈ I.

The two structures are not as different as they might appear, as the difference
between the criteria for spanning a simplex is whether the vertex set is contained in
a ball of radius or of diameter r .

The principle of the important topological data analysis scheme of persistent
homology then is to record how the homology of these complexes varies as a
function of r . [12, 18, 19, 42].

Of course, every simplex of the Čech complex is also a simplex of the Vietoris–
Rips complex, but not necessarily conversely unless for each simplex at least one of
the balls of diameter r containing the vertex set of that simplex has a center in the
witness set.

Deviation from hyperconvexity lets the Vietoris–Rips complex contain more
simplices than the Čech complex, or conversely

Lemma 5.1 In a hyperconvex space, all simplices that are filled in the Vietoris–Rips
complex are also filled in the Čech complex. In particular, there is no contribution
to local homology from unfilled simplices. �
For instance, we can take a sample (xi)i∈I from a geodesic metric space (X, d)

and compare VRr((xi),X) with Čr ((xi), E(X)). For the latter complex, we
take the hyperconvex hull of X, i.e. E(X), as the witness set. It is clear that
Čr ((xi), E(X)) ⊂ VRr((xi),X), as X is a geodesic space and hence totally convex.
Conversely, every simplex in VRr((xi),X) is defined according to the criterion that
balls of radius r around its vertices intersect pairwise, which by hyperconvexity of
E(X) implies the existence of a common point between them in E(X). In other
words, the Vietoris–Rips complex of a metric family ((xi)i∈I , d) coincides with its
Čech complex but with different witness sets. This natural principle has been used
in [36] to study the metric thickening of S1 in its hyperconvex hull. A thorough
study of the Čech and the Vietoris–Rips filtration of S1 can be found in [1, 2].

If X is a closed Riemannian manifold, for small-enough radius r depending on
the injectivity radius and a curvature bound, VRr(X) is homotopy equivalent to
X by a well known theorem of Hausmann [27]. On the other hand according to
Nerve lemma, whenever X is a paracompact space and the family of open balls
around sample points (xi)i∈I with radius r > 0 define a cover such that the non-
empty intersections of any finite number of them is contractible, the Čech complex
Č<r ((xi),X) is homotopy equivalent to the original space X, cf. [26]. Although
Hausmann’s theorem is restricted to the case where the original space, from which
the sample is taken, is a Riemannian manifold, both constructions at some point
reveal the topology of the space. However, the Vietoris–Rips filtration ignores
the geometry of the space beyond the pairwise relations. The extent to which
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higher order relations are overlooked by considering Vietoris–Rips complexes can
be quantified by computing the deviation from hyperconvexity of different orders.
This measures how much one must expand balls to obtain a simplex in the Čech
complex of (xi) with witness set X after that simplex is observed in the Čech
complex of (xi) with witness set E(X). The upper bound 2 for this scale is usually
stated in the TDA literature, but this bound is not sharp.

For instance, let us consider equilateral triangles of perimeter 3a in the Euclidean
plane, in a circle and in a metric tree. That is, (x1, x2, x3), (x ′1, x ′2, x ′3) and
(x̄1, x̄2, x̄3) are comparison triangles in the Euclidean plane, a circle and a hyper-
convex space, respectively. As noted in (6), r = a

2 is the radius at which each of
these triples forms a simplex in the corresponding Vietoris–Rips complex. However,
we only need the upper bound of 2 in the case of (x ′1, x ′2, x ′3), where the point are
sampled from a circle which has the highest deviation from hyperconvexity, for
expanding the balls to obtain the simplex in the Čech complex, cf. [31].

One can also more generally let the radii of the balls be different. That is, for a
vertex set (xi)i∈I and a corresponding non-negative radius function r , we define the
Čech complex containing a q-simplex x1, . . . , xq+1 whenever

⋂

i=1,...,q+1

B(xi, r(xi)) �= ∅.

The Vietoris–Rips complex is defined in a similar way. And one can then look at
the resulting constructions for all such radius functions simultaneously [31].

6 Curvature

We can use the preceding concepts to compare spaces with each other, or with
reference spaces, like Euclidean space. In geometry, such a comparison is quantified
by the concept of curvature. From our abstract perspective, curvature relates
intersection patterns of balls to convexity properties of distance function.

As pointed out by Klingenberg [34], the beginning of the theory of spaces
of negative curvature can be dated to the work of von Mangoldt [41] in 1881
who showed that on a complete simply connected surface of negative curvature,
geodesics starting at the same point diverge and can never meet again. This
implies that the exponential map is a diffeomorphism. Apparently unaware of von
Mangoldt’s work, Hadamard [25] in 1898 proved further results about geodesics
on surfaces of negative curvature. E. Cartan [13] later considered negatively
curved Riemannian manifolds of any dimension. For our purposes, non-positive,
as opposed to negative, curvature is the appropriate concept, as we are interested in
comparison theorems.

Let us first recall a by now classical concept of non-positive curvature, introduced
by Alexandrov [4].
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Definition 6.1 The geodesic space (X, d) is a CAT (0)-space if for all geodesics
c1, c2 : [0, 1] −→ X with c1(0) = c2(0)

d(c1(t), c2(s)) ≤ ‖c̄1(t)− c̄2(s)‖, ∀ t, s ∈ [0, 1] (11)

where c̄1, c̄2 : [0, 1] −→ R
2 are the sides of the Euclidean comparison triangle in

R
2 with the same side lengths as the triangle

�
(c1(0), c1(1), c2(1)).

According to this definition, triangles in CAT (0)-spaces are not thicker than
Euclidean triangles with the same side lengths, cf. [3, 9, 10, 32].

There is another important concept of non-positive curvature, introduced by
Busemann [11].

Definition 6.2 A geodesic space (X, d) is a Busemann convex space if for every
two geodesics c1, c2 : [0, 1] −→ X with c1(0) = c2(0), the distance function
t �→ d(c1(t), c2(t)) is convex.

Geodesics in a Busemann space diverge at least as fast as in Euclidean space.
Every CAT (0) space is Busemann convex but not conversely. For complete

simply connected Riemannian manifolds, however, the two definitions agree and
are equivalent to non-positive sectional curvature in the sense of Riemann. In the
non-simply connected case, one needs appropriate local formulations, but we do not
go into that aspect here.

Several generalizations of these definitions to metric spaces that are not neces-
sarily geodesic have been proposed, for instance [3, 7, 8]. We now present our
definition from [30].

Definition 6.3 The metric space (X, d) has non-positive curvature if for each triple
(x1, x2, x3) in X with the comparison triangle

�
(x̄1, x̄2, x̄3) in R

2, one has

ρ(x1, x2, x3) ≤ ρ(x̄1, x̄2, x̄3),

where ρ(x̄1, x̄2, x̄3) is analogously defined by

ρ(x̄1, x̄2, x̄3) := min
x∈R2

max
i=1,2,3

‖x − x̄i‖
ri

.

Again, for simplicity, we present here only the global aspect which in the case of
Riemannian manifolds, for instance, applies when the manifold is simply connected.
Here, we do not explore local versions of our curvature condition.

According to this definition, the circumcenter of a triangle in a non-positively
curved space is at least as close to the vertices as in the Euclidean case. In other
words, there is a chance of finding a better intermediate point for each triple of
points in such a space than in Euclidean plane.

For any triple of closed balls {B(xi, ri ); i = 1, 2, 3} with pairwise intersections,⋂
i=1,2,3 B(xi, ρri ) is non-empty whenever B(x̄i , ρri), i = 1, 2, 3, have a common
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point. Thus, balls do not need to be enlarged more than in Euclidean case to get
triple intersection. Thus, we can again formulate a

Principle 6.1 Balls intersect at least as easily as in Euclidean space.

Examples:

• Tripod spaces have non-positive curvature in the sense of Definition 6.3, because
there, ρ = 1, which is the smallest possible value.

• Complete CAT (0) spaces have non-positive curvature in the sense of Defini-
tion 6.3. The converse is not true; in fact, our spaces need not be geodesic, nor
have unique geodesics.

• An approximate version applies to discrete spaces. This is obviously important
for questions in data analysis, and this in fact constitutes one of the motivations
for Definition 6.3.

We also have

Theorem 6.1 A complete, simply connected Riemannian manifold (N, g) has non-
positive curvature iff it has non-positive sectional curvature, cf. [30].

Obviously, with the same concepts and constructions, one can also define other
curvature bounds than 0, by comparison with suitably scaled 2-spheres or hyperbolic
planes.

7 Conclusions

The Čech construction assigns to a cover U = (Ui)i∈I of X a simplicial complex
�(U) with vertex set I and a simplex σJ whenever

⋂
j∈J Uj �= ∅ for J ⊂ I .When

all intersections are contractible, the homology of �(U) equals that of X (under
some rather general topological conditions on X). When (X, d) is metric space,
we can use covers by (open or closed) distance balls. Now, when (X, d) is a
hyperconvex metric space, and if we use a cover U by distance balls, then whenever

⋂

j∈J \{j0}
Uj �= ∅ for every j0 ∈ J, (12)

then also

⋂

j∈J
Uj �= ∅. (13)

In another words, whenever �(U) contains all the boundary facets of some simplex,
it also contains that simplex itself. It even satisfies the stronger condition that
whenever �(U) contains all the boundary faces of dimension 1 of some simplex,
it also contains that simplex itself. This means that �(U) is a flag complex.
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Thus, there are no holes of the type of unfilled simplices, and no corresponding
contributions to homology groups.

As hyperconvex spaces are contractible, then whenever non-trivial homology
groups arise in Čech filtrations, the space cannot be hyperconvex, but only λ-
hyperconvex for some λ > 1, since every complete metric space is λ-hyperconvex
for some 1 ≤ λ ≤ 2, cf. [24]. In the discrete case, one might work also with
δ-hyperbolicity for δ > 0.

From that perspective, hyperconvex spaces are the simplest model spaces, and
homology can be seen as a topological measure for the deviation from such a
model. However, this geometric interpretation has been dismissed in topological
data analysis, by considering the Vietoris–Rips filtration instead of Čech, for the
benefit of reducing computational complexity. Still, it is possible to infer topological
information about a space from the Vietoris–Rips filtration, based on Hausmann’s
theorem. However, when one samples a metric space, this depends on how dense
the sample is and the results are accurate only for small radii. For instance, the
Vietoris–Rips complexes of S1 admit holes of dimension larger than 1 as the radius
increases, cf. [1].

Homology groups and Betti numbers as integer invariants are fundamental
topological invariants. Geometry can provide more refined real valued invariants.
And after Riemann [38, 39], the fundamental geometric invariants are curvatures.
In our framework, the essential geometric content of curvature can be extracted for
general metric spaces. The basic class of model spaces for curvature is given by the
tripod spaces, a special class containing hyperconvex spaces. From that perspective,
the geometric content of curvature in the abstract setting considered here is the
deviation from the tripod condition. Euclidean spaces only have a subsidiary role,
based on a normalization of curvature that assigns the value 0 to them.

Considering Euclidean spaces as model spaces is traditionally justified by the
fact that spaces whose universal cover has synthetic curvature ≤ 0 in the sense of
Alexandrov are homotopically trivial in the sense that their higher homotopy groups
vanish. In technical terms, they are K(π, 1) spaces, with π standing for the first
homotopy group. The perspective developed here, however, is a homological and
not a homotopical one, and therefore, our natural comparison spaces are tripods.
We have started the investigation of these spaces in [30, 31]. A more systematic
investigation of their properties should be of interest.

In order to get stronger topological properties, like those of hyperconvex spaces,
which are homologically trivial, we might need conditions involving collections of
more than three points.

In fact, according to [37, Theorem 4.2], if X is a tripod Banach space on
which every collection of four closed balls {B(xi, ri )}4i=1 with non-empty pairwise
intersection has a non-void intersection, then every finite family of closed balls with
non-empty pairwise intersection has also a non-trivial intersection. In this case, the
Vietoris–Rips and Čech complexes coincide.

One can also think about higher order relations and how they can be obtained
from sub-relations (that is from the relations existing in all subsets of some smaller
size). For instance, in some metric spaces, a family of n balls has a common point if
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every subfamily of size k in it has a non-empty intersection. [37] calls this property
the (n, k)-intersection property. For instance, Helly’s theorem says that Euclidean
space Rd has the (n, d + 1)-intersection property for n ≥ d + 2. For a given metric
space, one can compute the deviation from such a property.

From the perspective of Čech complexes, this deviation could be quantified
by the scaling parameter needed to fill an (n − 1)-simplex after all the faces of
dimension k − 1 are filled. The quantitative measure we introduced provides us
with the scaling function to fill a 2-simplex after its 1-dimensional boundary faces
are filled.
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A Chapter About Asymptotic Geometric
Analysis: Isomorphic Position
of Centrally Symmetric Convex Bodies

Vitali Milman

Personal Note
In 1985 Joram Lindenstrauss and I started a new project. We began to collect and
publish notes from our Israeli seminar on Geometric Aspect of Functional Analysis,
GAFA in short. This was the reason why I first met a young, clever, energetic woman,
Catriona Byrne. I think she had just started working for Springer. It would have
been very difficult to organize and start publishing these notes without someone’s
help, and cooperation with a young energetic person ready to help turned out to be
decisive for the success of the project.

By the way, the nickname GAFA was suggested by my then PhD student Haim
Wolfson, a recently retired very famous professor in Computer Science. The actual
name of the seminar (Geometric Aspect of Functional Analysis) was created to fit
this nickname GAFA. Subsequently, the same nickname moved to GAFA journal,
but with a different interpretation of this abbreviation (Geometric And Functional
Analysis). The impact of this series turned out to be huge. To date, 13 volumes
of this series have been released under the auspices of Springer, and three more
under some other publishers. Under the influence and tutelage of GAFA Seminar
Notes, a new direction within Functional Analysis arose, which turned into a new
direction in mathematics, Asymptotic Geometric Analysis, abbreviated to AGA, but
the publication of articles on this topic continued under the same traditional name
GAFA Seminar Notes. For example, 50 works coauthored by Jean Bourgain were
published in this series.

I thank Catriona Byrne most sincerely for helping to create and support this very
important forum.
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A Few Words on Asymptotic Geometric Analysis

Asymptotic Geometric Analysis (AGA) studies properties of geometric objects,
such as normed spaces, convex bodies, or convex functions on finite-dimensional
domains, when the dimensions of these objects increase to infinity. The asymptotic
approach reveals many very novel phenomena which influence other fields in
mathematics, especially where a large data set is of main concern, or the number of
parameters becomes uncontrollably large. One of the important features of this rel-
atively new theory is in developing tools which allow one to study high-parametric
families. Among the tools developed in this theory are measure concentration,
thin-shell estimates, stochastic localization, the geometry of Gaussian measures,
volume inequalities for convex bodies, symmetrizations, and functional versions of
geometric notions and inequalities (see [1] and [2]).

This field started on the border between geometry and functional analysis in the
80s and 90s. In this field, isometric problems that are typical for geometry in low
dimensions are substituted by an “isomorphic” point of view, and an asymptotic
approach (as dimension tends to infinity) is introduced. Geometry and analysis
meet here in a non-trivial way. One central theme of this subject is the interaction of
randomness and pattern. At first glance, life in a high dimension seems to mean the
existence of multiple “possibilities”, so one may expect an increase in the diversity
and complexity as dimension increases. However, the concentration of measure
and effects caused by convexity show that this diversity is compensated, and order
and patterns are created for arbitrary convex bodies in the mixture caused by high
dimensionality.

I will present now one recent development from AGA.

Isomorphic Position of a Convex Body

For simplicity of the exposition I will consider only centrally symmetric convex
bodies in n-dimensional real space, i.e. convex compact K such that K = −K and
with non-empty interior. Of course, we may think of such K as the unit ball of
some normed space X and, to emphasize this, we will write K := K(X). For any
non-degenerate linear map u in R

n, of course, uK is the unit ball of isometrically
the same normed space. However, geometrically it is a different body in R

n. We
call such a body a position of K . To every K there is associated with it a family
of very interesting ellipsoids, which reflect, actually, different hidden symmetries
in K . For example, there is a maximum volume ellipsoid inscribed in K (we
call it John’s ellipsoid), or a minimal volume ellipsoid containing K (the so-called
Löwner’s ellipsoid). There are also two ellipsoids of inertia, Legendre and Binet
ellipsoids, and many others. See, e.g. [1]. We say that K is considered in John
position if the John’s ellipsoid is the standard Euclidean ball of the space. Similarly,
we use the terminology of Löwner position of K , and if the Legendre ellipsoid of
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K is the Euclidean ball we call such a position the isotropic position of K . In the
asymptotic study of normed spaces and convex bodies, by increasing dimension to
infinity the role of selected positions is crucial. Different remarkable properties of
convex bodies (one may call them hidden symmetries) are recovered by considering
them in different positions specially selected for different goals. We understand this
part of the theory very well now.

However, many very central problems of the Asymptotic Geometry of high-
dimensional convex bodies are still open and I would suggest here an additional
“step of freedom” in attacking them. These reflections are inspired by two results.
One of them has been known for a relatively long time. This is the result of Klartag
from 2006. Another result is by Emanuel Milman and is very recent.

To solve some specific problem (let us call it Problem X) of the Asymptotic
Theory, we will ask if there is a universal constant C such that for every dimension
n and every convex body K (from our family) in R

n one may find another body
T (from the family, i.e. centrally symmetric convex body) and the Banach–Mazur
distance at most C from K and such that the Problem X would have a solution for
T . Such a T we will call now the isomorphic position of K .

Isomorphic Version of Bourgain’s Slicing Problem

Now we will discuss the remarkable result of Klartag from 2006. We use the survey
[15], which we suggest the reader should consult for more details. The problem
under discussion is the following

Problem 1 Let K,T ⊆ R
n be centrally-symmetric convex bodies such that

Voln−1(K ∩ θ⊥) ≤ Voln−1(T ∩ θ⊥) for all θ ∈ Sn−1. Does it follow that
Voln K ≤ C · Voln T for some universal constant C?

The assumption of central-symmetry is not very essential, however, for simplicity
of presentation we will assume it in all results. Problem 1 is in fact equivalent to the
following:

Problem 2 Let K ⊂ R
n be a convex set of volume one. Does there exist a

hyperplane H ⊂ R
n such that

Voln−1(K ∩H) > 1/C

for some universal constant C > 0, independent of the dimension n?

This is known as Bourgain’s slicing problem (from 1985, see [3]). A positive
answer would have important consequences in convex geometry. In some sense
the slicing problem, also called the hyperplane conjecture, is the “opening gate”
to a better understanding of uniform measures in high dimensions. The problem
is still open. Bourgain [4] provided the estimate Cn(1/4) logn (instead of just C),
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then Klartag [12] improved it to Cn(1/4) and only recently Chen [8] improved it to
C(ε)nε for any ε > 0.

However, Klartag found another approach to the problem, slightly modifying the
question. To formulate Klartag’s result we introduce the isotropic constant of the
body K . Let K ⊂ R

n be a convex body. Denote by Cov(K) the covariance matrix
of a random vector that is distributed uniformly in K . The isotropic constant of K

is defined as

LK = det(Cov(K))
1

2n

Voln(K)
1
n

.

Is it true that LK < C, for some universal constant C > 0, independent of the
dimension? This question is equivalent to Problem 2. Klartag proved the following
theorem, the so-called isomorphic version of the slicing problem:

Theorem 1 (B. Klartag (2006)) Let K ⊂ R
n be a convex body and 0 < ε < 1.

Then there exists a convex body T ⊂ R
n such that

(i) (1− ε)T ⊆ K ⊆ (1+ ε)T .
(ii) LT < C/

√
ε, where C > 0 is a universal constant.

Later, in 2018, Klartag additionally proved that the body T from the theorem can
be assumed to be a projective image of K [13].

So, the problem has a positive solution but in an isomorphic sense: there is an
isomorphic position for which Problem 1 is solved.

Isomorphic Version of Log-Brunn–Minkowski Inequality

We will move now to another recent result about the Problem due to K.J. Böröczky,
E. Lutwak, D. Yang, and G. Zhang (BLYZ for short). In this section we heavily use
the article by Emanuel Milman [20], and also his help in composing the following
text.

One important question in contemporary Brunn–Minkowski theory is that of
existence and uniqueness in the Lp-Minkowski problem for p ∈ (−∞, 1): given
a finite non-negative Borel measure μ on the Euclidean unit-sphere S = Sn−1,
determine conditions on μ which ensure the existence and/or uniqueness of a convex
body K in R

n so that:

SpK := h
1−p

K SK = μ. (1)

Here hK and SK denote the support function and surface-area measure of K ,
respectively. When hK ∈ C2(S),

SK = det(D2hK)m,
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where m is the induced Lebesgue measure on S, D2hK = ∇2
S
hK + hKδS and

∇S is the Levi-Civita connection on S with its standard Riemannian metric δS.
Consequently, (1) is a Monge–Ampère-type equation.

The case p = 1 above corresponds to the classical Minkowski problem of finding
a convex body with prescribed surface-area measure; when μ is not concentrated
on any hemisphere and its barycenter is at the origin, existence and uniqueness
(up to translation) of K were established by Minkowski, Alexandrov and Fenchel–
Jessen. The extension to general p was put forth and publicized by E. Lutwak
[17] as an Lp-analog of the Minkowski problem for the Lp surface-area measure
SpK = h

1−p
K SK which he introduced. Existence and uniqueness in the class of

origin-symmetric convex bodies, when the measure μ is even and not concentrated
in a hemisphere, was established for n �= p > 1 by Lutwak [17] and for p = n

by Lutwak–Yang–Zhang [19]. A key tool in the range p ≥ 1 is the prolific Lp-
Brunn–Minkowski theory, initiated by Lutwak [17],[18] following Firey [10], and
developed by Lutwak–Yang–Zhang and others, which extends the classical p = 1
case. Recall that the Lp-Minkowski sum a ·K0+p b ·K1 of K0,K1 ∈ K (a, b ≥ 0)
was defined by Firey for p ≥ 1 [10], and extended by Böröczky–Lutwak–Yang–
Zhang [5, 6] to all p ∈ R, as the largest convex body (with respect to inclusion) L
so that:

hL ≤
(
ah

p

K0
+ bh

p

K1

)1/p

(with the case p = 0 interpreted as ha
K0

hb
K1

when a + b = 1). Note that for p ≥ 1
one has equality above, that the case p = 1 coincides with the usual Minkowski
sum, and that for p < 1 the resulting convex body a ·K0+p b ·K1 is the Alexandrov
body associated to the continuous function on the right-hand-side.

The case p < 1 turns out to be more challenging because of the lack of
an appropriate Lp-Brunn–Minkowski theory. Existence, (non-)uniqueness and
regularity under various conditions on μ were studied by numerous authors when
p < 1 (from either side of the critical exponent p = −n). The case p = 0 is of
particular importance as it corresponds to the log-Minkowski problem for the cone-
volume measure

VK := 1

n
hKSK = 1

n
S0K,

obtained as the push-forward of the cone-measure on ∂K onto S via the Gauss map,
and having total mass V (K), the volume of K . Being a self-similar solution to the
isotropic Gauss curvature flow, the case p = 0 and μ = m of (1) describes the
ultimate fate of a worn stone in a model proposed by Firey.

Let K denote the collection of convex bodies in R
n containing the origin in

their interior, and let Ke denote the subset of origin-symmetric elements. In
[6], Böröczky–Lutwak–Yang–Zhang showed that an even measure μ is the cone-
volume measure VK of an origin-symmetric convex body K ∈ Ke if and only if it
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satisfies a certain subspace concentration condition, thereby completely resolving
the existence part of the even log-Minkowski problem. As put forth by Böröczky–
Lutwak–Yang–Zhang in their influential work [5, 6] and further developed in [16],
the uniqueness question is intimately related to the validity of a conjectured L0- (or
log-)Brunn–Minkowski inequality for origin-symmetric convex bodies K,L ∈ Ke,
which would constitute a remarkable strengthening of the classical p = 1 case.

Specifically, the following equivalence may be shown by combining the results
of [5, 7, 16]. We denote by K2,α

+,e the subset of Ke having C2,α-smooth boundary
and strictly positive curvature.

Theorem 2 (After Böröczky–Lutwak–Yang–Zhang, Kolesnikov–Milman and
Chen–Huang–Li–Liu) The following statements are equivalent for any fixed p ∈
(−n, 1):

(1) For any q ∈ (p, 1), uniqueness holds in the even Lq -Minkowski problem for
any K ∈ K2,α

+,e:

∀L ∈ Ke , SqL = SqK ⇒ L = K. (2)

(2) The even Lp-Brunn–Minkowski inequality holds:

∀λ ∈ [0, 1] ∀K,L ∈ Ke V ((1− λ) ·K +p λ · L)

≥
(
(1− λ)V (K)

p
n + λV (L)

p
n

) n
p
. (3)

The case p = 0, called the even log-Brunn–Minkowski inequality, is interpreted
in the limiting sense as:

V ((1− λ) ·K +0 λ · L) ≥ V (K)1−λV (L)λ.

(3) The even Lp-Minkowski inequality holds:

∀K,L ∈ Ke

1

p

∫

S

h
p

LdSpK ≥ n

p
V (K)1− p

n V (L)
p
n . (4)

The case p = 0, called the even log-Minkowski inequality, is interpreted in the
limiting sense as:

1

V (K)

∫

S

log
hL

hK

dVK ≥ 1

n
log

V (L)

V (K)
.

Using Jensen’s inequality in formulation (4) (or (3)), it is immediate to check that
the above (equivalent) statements become stronger as p decreases. The restriction to
origin-symmetric bodies is natural, and necessitated by the fact that no Lp-Brunn–
Minkowski inequality nor uniqueness in the Lp-Minkowski problem can hold for
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general convex bodies when p < 1. Even when restricting to origin-symmetric
bodies, it is easy to show that (3) or (4) are false for any p < 0, and that uniqueness
in (2) does not hold for general K,L ∈ Ke and q = 0, as may be verified by testing
two different centered parallelepipeds with appropriately chosen parallel facets.

Conjecture 1 (Böröczky–Lutwak–Yang–Zhang, “Even log-Brunn–Minkowski
Conjecture”) Any (and hence all) of the above statements hold for origin-
symmetric convex bodies in the “logarithmic case” p = 0 (and hence for all
p ∈ [0, 1) as well).

A confirmation of this conjecture would constitute a dramatic improvement
over the classical Brunn–Minkowski theory for the subfamily of origin-symmetric
convex bodies, which had gone unnoticed for over a century. The conjecture is
known to hold in the plane [5], but remains open in general for n ≥ 3.

Various partial results are known regarding the BLYZ conjecture (see e.g.
[16, 20]). The main result in [16] confirmed the local uniqueness in the even Lp-
Minkowski problem (2) for all K ∈ K2,α

+,e and p ∈ (p0, 1) for p0 := 1 − c

n3/2 . In
[7], Chen–Huang–Li–Liu established a local-to-global principle for the uniqueness
question, and deduced (2) and (4) for all K ∈ K2,α

+,e and p ∈ (p0, 1). In fact, thanks
to recent progress on the KLS conjecture due to Y. Chen [8], the estimate from [16]
immediately improves to p0 = 1− cε

n1+ε for any ε > 0.
In [20], the following isomorphic version of the conjecture regarding uniqueness

in the even log-Minkowski problem was resolved by E. Milman. We denote
by dG(K,L) the geometric distance between two origin-symmetric bodies K,L,
namely dG(K,L) := inf{ab > 0 ; 1

b
K ⊂ L ⊂ aK}.

Theorem 3 (E. Milman, Isomorphic Log-Minkowski) For any K̄ ∈ Ke, there
exists a K̃ ∈ K∞+,e with:

dG(K̄, K̃) ≤ 8,

so that for any T ∈ GLn, the even log-Minkowski problem for K = T (K̃) has a
unique solution:

∀L ∈ Ke , VL = VK ⇒ L = K,

and the even log-Minkowski inequality holds for K:

∀L ∈ Ke
1

V (K)

∫

S

log
hL

hK

dVK ≥ 1

n
log

V (L)

V (K)
,

with equality if and only if L = cK for some c > 0.

The constant 8 obtained in the isomorphic version above is the worst case
behavior for a general K̄ ∈ Ke, when D = dBM(K̄, Bn

2 ) may be as large as John’s
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upper bound
√
n. However, whenever D � √

n, a slightly finer analysis yields
an isometric version of the above results, where one only perturbs K̄ by at most

γ = 1+ ε, with ε = C
√
D

4√n
.

Theorem 3 is a remarkable result about the existence of an isomorphic position
in a localized version of the log-Brunn-Minkowski inequality problem of BLYZ
(Conjecture 1 above). At the same time Emanuel Milman does not know if the
following problem has a positive solution:

Problem 3 (E. Milman) There is a universal constant C such that for every convex
compact body K there is an isomorphic version K ′ such that dG(K,K ′) < C and
such that for any two bodies K and L their isomorphic version K ′ and L′ satisfy
inequalities (3) for p = 0, i.e. the log-Brunn–Minkowski inequality.

More Isomorphic Versions of Well-Known Problems of AGA

In the article by B. Klartag and V. Milman [15] we listed a number of problems
which are connected with the slicing problem of Bourgain and either follow from it,
in the case of a positive solution, or imply it if they could be positively solved. In
each of these problems one may ask if their isomorphic versions are true. Let me
list some of them:

(i) the thin shell conjecture would imply the hyperplane conjecture (see [9]);
(ii) the Kannan, Lovasz, Simonovich (KLS) isoperimetric conjecture [11];

(iii) Mahler’s conjecture on the low bound for the product of the volumes of the
convex body and its polar (see [13] for connections with the slicing problem);

(iv) problems on “quick Steiner symmetrizations” (see [14])

I will not introduce these problems here. I refer the reader to [15] for their exact
formulations and to the books [1] and [2] for detailed discussions of these major
problems of the theory. As an example, let me just formulate some of these problems
in their isomorphic form.

(ii) Isomorphic KLS Problem: Do universal constants C and C′ exist such that for
every centrally-symmetric convex body K there exist another centrally-symmetric
body K ′ such that Banach–Mazur distance d(K,K ′) < C and KLS conjecture is
true for K ′ with a constant C′ ?

(iii) Isomorphic Mahler problem: Does a universal constant C exist such that for
any centrally-symmetric convex body K there is a body K ′ such that d(K,K ′) < C

and the Mahler volume of K ′ is greater than (or equal) to the Mahler volume of the
cube (of the same dimension).

Many other problems of AGA may be reformulated the same way, and all of
them, besides what is written above, are open.
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My deep thanks to Boaz Klartag and Emanuel Milman for providing me their
advice and written TeX texts on their results and to Miriam Hercberg for her help in
editing the English of this article and her TeX typing.
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A Mysterious Tensor Product in Topology

Ieke Moerdijk

The students of my generation had to survive without the internet and mobile
phones, and depended on books and real paper to write on. As undergraduates
in mathematics, we were always carrying yellow books around, and Springer-
Verlag had a big part in our mathematical development. A little later, when I
was a PhD student, two Springer Lecture Notes had a lasting influence on my
own mathematical work: Homotopy Invariant Algebraic Structures on Topological
Spaces by Boardman and Vogt [1] and The Geometry of Iterated Loop Spaces by
Peter May [6]. These two books together shaped the foundation of the theory of
operads about which I will write below.

My contacts with Catriona go back to the preparation and publishing of “Sheaves
in Geometry and Logic” with Saunders MacLane in the early 1990s. This period
was also the beginning of the use of e-mail, and it is interesting and entertaining to
see how e-mail customs and etiquette have changed over the years. I had my first
e-mails to Catriona typed by a secretary, and Catriona had several people working
for her who wrote on her behalf, all using an e-mail account and address under the
name “Byrne”. A few years after that, together with Albrecht Dold, Catriona helped
me to get SLN 1616 into publishable shape. In more recent years, she remained
most helpful in several matters, and I wish to thank her for that.

Now I would like to come back to Boardman and Vogt, and May, and talk about
some mathematics. To begin with, let me remind you that a (coloured) operad P

consists of a set C = colours(P ) of colours, and for each sequence (c1, . . . , cn; c) of
elements of C (where n � 0) a set of operations P(c1, . . . , cn; c), to be thought of
as taking inputs of “types” c1, . . . , cn, respectively, to an output of type c. Moreover,
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P is equipped with several structure maps for symmetry and composition, such as

P(c1, c2; c) ∼→ P(c2, c1; c)

P (c1, c2; c)× P(d1, d2, d3; c1)× P(e1, e2; c2)→ P(d1, d2, d3, e1, e2; c)

1

1 2 3

2

1 2

and a unit element 1c ∈ P(c; c) for each colour c. These are to satisfy several
natural conditions, such as an associativity law for composition. If P(c1, . . . , cn; c)
is empty unless n = 1, this simply defines the notion of a (small) category. And
if C consists of just one element ∗, one calls P uncoloured and writes P(n) for
P(c1, . . . , cn; c) where each ci and c are necessarily ∗.

For a coloured operad P , a P -algebra A is a family of sets {Ac : c ∈ C} equipped
with maps

P(c1, . . . , cn; c)× Ac1 × · · · ×Acn → Ac,

(for all sequences of colours c1, . . . , cn, c), compatible with the structure of P

mentioned above (symmetry, associativity, units). For example, if P is the
uncoloured operad for which each P(n) consists of a single point, a P -algebra is
simply a commutative monoid, and one usually writes Comm for this operad. The
collection �n, n � 0 of symmetric groups also has the structure of an operad; the
composition �n×�k1×· · ·×�kn → �k for k = k1+. . .+kn is defined by replacing
the non-zero entries in an n×n permutation matrix representing an element of �n by
the permutation matrices representing given elements of �k1 , . . . , �kn respectively,
thus yielding a k×k-permutation matrix. An algebra for this operad is an associative
monoid, and one usually writes Ass for this operad (although � would obviously
have been a good name as well).

These P -algebras form a category Alg(P ), or Alg(P,Sets) to emphasize that
we consider algebras in the category of sets. One can similarly define a category
Alg(P, E) of algebras in any category with products, as long as expressions like
“P(c1, . . . , cn; c)×Ac1 ×· · ·×Acn” occurring in the definition of P -algebra make
sense in E . (This is the case, for example, when it is possible to view the set
P(c1, . . . , cn; c) as an object of E through a suitable embedding of sets as “discrete
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objects” in E .) So, if Q is another operad with set of colours D = colours(Q), one
can construct a category Alg(P,Alg(Q,Sets)). This category is itself a category of
algebras over a new operad P ⊗Q with set of colours C ×D; in other words,

Alg(P ⊗Q,Sets) = Alg(P,Alg(Q,Sets)).

This operad P ⊗Q is known as the “Boardman–Vogt tensor product” of P and Q

and was first introduced in SLN [1]. It is possible to describe P ⊗Q explicitly by
generators and relations. In particular, if P and Q are free operads defined by trees
S and T , i.e. P = Free(S) and Q = Free(T ), then P ⊗ Q is defined by glueing
free operads Free(R) together, where R ranges over all the shuffles of the two trees
S and T . A minimal example can be pictured as follows:

= Free( ) = Free( )

P ⊗Q = Free(R1) ∪ Free(R2) ∪ Free(R3)

See [5] for details. The case of categories (viewed as operads with unary operations
only, as above) corresponds to shuffling linear trees. For two trees with n and m

vertices, respectively, there are
(
n+m
n

)
such shuffles, as everybody who encountered

products of simplicial complexes will be aware of. However, it seems impossible to
find a nice closed formula for the number of shuffles of trees that aren’t linear (see
loc. cit.)

Turning to operads in topological spaces, the most famous ones are probably the
(uncoloured) operads Cd of “little d-cubes” (for d � 1 the dimension of the cubes
involved). Specifically, Cd (n) is the space of sequences of n rectilinear embeddings
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of a d-dimensional cube into the unit cube [0, 1]d , with disjoint interiors. Here is a
picture of a point in the space C2(3):

By composing such embeddings, one obtains maps

Cd(n)× Cd(k1)× · · · × Cd(kn)→ Cd(k)

for k = k1 + . . . + kn, representing the composition operation of the operad Cd .
These operads derive their fame from the fact that Cd -algebras (in spaces) describe
d-fold loop spaces, as discussed in detail in [6]. Since the d-fold loop space of a
space which is itself an e-fold loop space is evidently a (d + e)-fold loop space,
it is natural to expect that Cd ⊗ Ce is closely related to Cd+e. This is indeed the
case, as these two operads have been proved to be equivalent up to homotopy, a
result known as Dunn’s additivity theorem [3]. Although a positive result, Dunn’s
additivity theorem show at the same time that the tensor product of topological
spaces behaves rather badly under weak homotopy equivalence. For example, there
is a map C1 → Ass or operads, assigning to a point in C1(n), i.e. a sequence of
n numbered disjoint intervals in the unit interval, the permutation representing the
order in which there intervals occur:

This map is weak homotopy equivalence of operads, i.e. each C1(n) → Ass(n) =
�n is one of spaces. On the other hand, Ass ⊗ Ass = Comm by the Eckmann–
Hilton trick, while C1 ⊗ C1 - C2 describes double loop spaces and is very different
from Comm.

There are variations of the operad Cd which also describe d-fold loop spaces up
to homotopy, leading to a notion of “Ed -operad”: An operad P is said to be an
Ed -operad if it can be related to Cd by a zigzag of weak homotopy equivalences
between operads,

Cd ← · → · ← · → . . .← P.

These Ed -operads often arise as combinatorial versions of Cd , for example the one
used by McClure and Smith in their proof of the Deligne conjecture [7, 8]. From a
mathematical point of view, however, the notion of an Ed -operad is a rather unusual
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one, as it does not give any structural properties for an operad to be an Ed -operad.
This becomes particularly awkward when one considers the tensor product of Ed -
operads, since the tensor product is not invariant under weak equivalence, as we
have just seen. So one may ask for which particular “models” of Ed -operads the
additivity of Dunn holds. This is problem to which Rainer Vogt devoted much of
his work (see e.g. [4]), but which remains largely unsolved.

An alternative approach is to replace the Boardman–Vogt tensor product of
topological operads by a “derived” one which is invariant under weak equivalence.
Denoting such a derived tensor product by ⊗̂, one way to construct it explicitly is
as the pushout

Here P and Q are topological operad with sets of colours C and D, say, and
P ∨ Q denotes the coproduct in the category of operads with C × D as set of
colours (where we first pull P and Q back along the two projections). Furthermore,
the adjoint functors w! and w∗ are the ones establishing a Quillen equivalence
between topological operads and dendroidal sets [2]. The symbol⊗ in the diagram
refers to the tensor product of dendroidal sets. Since this tensor product is much
better behaved, especially for “closed” operads like Cd where there is a unique
nullary operation (of each colour), one can prove that P ⊗̂Q is invariant under
weak equivalence in each variable separately, at least for operads with free �n-
action on P(n) (respectively Q(n)), for each n; see [2]. So P ⊗̂Q describes quite
a good tensor product, from the point of view of topology. It comes equipped with
a map P ⊗̂Q → P ⊗ Q expressing that P ⊗̂Q is a “thick” version of the original
Boardman–Vogt tensor product. It would be interesting to know for which operads
this derived tensor product is equivalent to the original one of Boardman and Vogt.
(This is the case for “cofibrant” operads P and Q, but cofibrant operads are hard to
come by and rarely occur naturally.) It would also be interesting to know whether
this derived tensor product ⊗̂ satisfies Dunn’s additivity property for certain types
of models of Ed -operads.

Thus, natural as the tensor product may seem from the point of view of
algebra (remember the equation Alg(P,Alg(Q,Sets)) = Alg(P ⊗Q,Sets)), it is
surrounded by many unanswered questions: combinatorial ones about the number
of shuffles, questions about invariance under weak equivalence, and questions about
additivity.
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Part V
Groups

Martin R. Bridson’s article Profinite rigidity and free groups offers an insightful
and reader-friendly presentation of results and problems related to profinitely
rigid groups, those which are determined up to isomorphism by their profinite
completion.

Toshiyuki Kobayashi’s article Conjectures on reductive homogeneous spaces
addresses some conjectures and problems to which the author has no solution
in the areas of: Discrete series for non-symmetric homogeneous spaces G/H ;
discontinuous groups for G/H beyond the Riemannian setting; and analysis on non-
Riemannian locally homogeneous spaces.

The article On the algebraic K-theory of Hecke algebras of Arthur Bartels and
Wolfgang Lück concerns totally disconnected groups G which contain a normal
compact open subgroup L such that G/L is cyclic. It explains how to compute the
algebraic K-groups of the Hecke algebra of G from those of L, thus confirming in
that case a conjecture of Farrel–Jones.

The article of Mark Pollicott and Polina Vytnova Groups, drift, and harmonic
measure gently but firmly takes the reader from the definition of Fuchsian groups to
random walks on their Cayley graphs and the associated harmonic measure on the
unit circle. The authors’ aim is to lead the reader to the question of the absolute
continuity of such harmonic measures with respect to Lebesgue measure. This
question is connected to the Hausdorff dimension of these measures, which in turn
is related to their Avez random walk entropy.

The article Groupes de Coxeter finis: centralisateurs d’involutions of Jean-Pierre
Serre is an exemplary study in the theory of finite groups. It is a description of the
centralizers of involutions of finite Coxeter groups.



Conjectures on Reductive Homogeneous
Spaces

Toshiyuki Kobayashi

1 Introduction

I have worked on various parts of mathematics, and “Symmetry” is a key word to
create new interactions among these different disciplines.

It was when I was an undergraduate student that Springer opened an office in
Tokyo within walking distance of our mathematics building. In 1989 Catriona
visited Japan for seven weeks to promote editorial activities in Japan, including
the forthcoming publication of the Proceedings of ICM 90 Kyoto, though I was not
aware of it at that time. In 2006, the Mathematical Society of Japan relaunched
the 3rd series of Japanese Journal of Mathematics (JJM) and started to collaborate
with Springer as a global partner. Since then, as the founding Editor, I have been
indebted to Springer’s staff, whom Catriona mentored. She frequently visited the
Takagi Lectures, and we talked about various topics over coffee. Each time, I
was impressed by how much she cared about what mathematicians think really
important. Her work created new interactions among mathematicians from different
disciplines. I admire her for all her invaluable contributions to the mathematics
community over the years.

In this paper, I would like to address some conjectures and problems in the area
of “analysis of symmetries” in which I have been deeply involved, but to which I do
not have a complete answer.

(1) Discrete series for non-symmetric homogeneous spaces G/H ;
(2) Discontinuous groups 
 for G/H beyond the Riemannian setting;
(3) Analysis on non-Riemannian locally homogeneous spaces 
\G/H .
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These three topics are discussed in Sects. 3–5, respectively, using a common
setting which is explained in Sect. 2 with simple examples.

2 Basic Setting

Throughout this paper, our basic geometric setting will be as follows.

Setting 2.1 G is a real reductive linear Lie group, H is a closed proper subgroup
which is reductive in G, and X := G/H .

A distinguished feature of this setting is that the manifold X carries a pseudo-
Riemannian structure with a ‘large’ isometry group, namely, the reductive group
G acts transitively and isometrically on X. Such a pseudo-Riemannian structure
is induced from the Killing form B if G is semisimple. For reductive G, one can
take a maximal compact subgroup K of G such that H ∩K is a maximal compact
subgroup of H , and a G-invariant symmetric bilinear form B on the Lie algebra g
of G such that the Cartan decomposition g = k+ p is an orthogonal decomposition
with respect to B and that B is negative definite on k and is positive definite on p.
Then B induces a G-invariant pseudo-Riemannian structure of signature (p, q) on
X, where p + q = dimX and q = dimK/H ∩K .

Very special cases of homogeneous spaces in Setting 2.1 include:

Example 2.1 (Semisimple Coadjoint Orbits) For a reductive Lie group G, one can
identify the Lie algebra g with its dual g∗ via B. The coadjoint orbit Oλ :=
Ad∗(G)λ is called semisimple, elliptic, hyperbolic, or regular if the element in
g corresponding to λ has that property. We write g∗ss, g

∗
ell, g

∗
hyp, or g∗reg for the

collection of such elements λ, respectively. By definition, g∗ell, g
∗
hyp ⊂ g∗ss. The

isotropy subgroup of λ is reductive if λ ∈ g∗ss, hence any semisimple coadjoint orbit
Oλ gives an example of Setting 2.1.

For compact G, one has g∗ell = g∗ss = g∗ and Oλ is a generalized flag variety for
any λ ∈ g∗; Oλ is a full flag variety iff λ ∈ g∗reg.

The subclass {Oλ : λ ∈ g∗ss} in Setting 2.1 plays a particular role in the unitary
representation theory. The orbit philosophy due to Kirillov–Kostant–Duflo–Vogan
suggests an intimate relationship between the set g∗/Ad∗(G) of coadjoint orbits
and the set of equivalence classes of irreducible unitary representations of G (the
unitary dual Ĝ):

g∗/Ad∗(G) � Ĝ, Oλ ↔ πλ. (1)

We recall that any coadjoint orbit carries a canonical symplectic form called the
Kirillov–Kostant–Souriau form. Then the correspondence Oλ �→ πλ is supposed to
be a “geometric quantization” of the Hamiltonian G-manifold Oλ if such πλ exists.
This philosophy works fairly well for λ ∈ g∗ss satisfying an appropriate integral
condition: loosely speaking, πλ is obtained by a unitary induction from a parabolic
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subgroup (real polarization of the para-Hermitian manifold Oλ) for λ ∈ g∗hyp, in a
Dolbeault cohomology space on the pseudo-Kähler manifold Oλ as a generalization
of the Borel–Weil–Bott theorem (complex polarization of Oλ) or alternatively by
a cohomological parabolic induction (e.g., Zuckerman’s derived functor module
Aq(λ)) for λ ∈ g∗ell, and by the combination of these two procedures for general
λ ∈ g∗ss, although there are some delicate issues about singular λ and also about “ρ-
shift” of the parameter, see [14, Chap. 2] for instance. The resulting “quantizations”
πλ of semisimple coadjoint orbits Oλ give a “large part” of the unitary dual Ĝ.

Example 2.2 (Symmetric Spaces, Real Spherical Spaces) Let σ be an automor-
phism of a reductive Lie group G of finite order, Gσ the fixed point subgroup of σ ,
and H an open subgroup of Gσ . Then H is reductive and the homogeneous space
G/H provides another example of Setting 2.1. In particular, if the order of σ is
two, G/H is called a (reductive) symmetric space. Geometrically, it is a symmetric
space with respect to the Levi-Civita connection of the pseudo-Riemannian structure
in the sense that all geodesic symmetries are globally defined isometries. This is
a subclass of Setting 2.1 for which the L2-analysis has been extensively studied
over 60 years. Group manifolds (G ×G)/ diag(G), Riemannian symmetric spaces
G/K and irreducible affine symmetric spaces such as SL(p + q,R)/SO(p, q) are
examples of reductive symmetric spaces. More generally, in Setting 2.1, one has

{symmetric spaces} ⊂ {spherical spaces} ⊂ {real spherical spaces},

where we say G/H is spherical if a Borel subgroup of the complexification GC

has an open orbit in GC/HC, and G/H is real spherical if a minimal parabolic
subgroup of G has an open orbit in G/H . See Kobayashi–T. Oshima [20] for the
roles that these geometric properties play in the global analysis on G/H . When H

is compact, G/H is spherical if and only if it is a weakly symmetric space in the
sense of Selberg.

The model space of non-zero constant sectional curvatures in pseudo-
Riemannian geometry is a special case of reductive symmetric spaces:

Example 2.3 (Pseudo-Riemannian Space Form, See [32]) The hypersurface

X(p, q) := {x ∈ R
p+q+1 : x2

1 + · · · + x2
p+1 − x2

p+2 − · · · − x2
p+q+1 = 1}

in R
p+1,q := (Rp+q+1, ds2 = dx2

1 + · · · + dx2
p+1− dx2

p+2− · · · − dx2
p+q) carries a

pseudo-Riemannian structure of signature (p, q) with constant sectional curvature
1. Equivalently, we may regard X(p, q) as a space of constant sectional curvature
−1 with respect to the pseudo-Riemannian metric of signature (q, p). If q = 0,
p = 0, q = 1, or p = 1, then X(p, q) is the sphere Sp, the hyperbolic space Hq , the
de Sitter space dSp+1, or the anti-de Sitter space AdSq+1, respectively. For general
(p, q), the generalized Lorentz group O(p+1, q) acts transitively and isometrically
on X(p, q), and one has a diffeomorphismX(p, q) - O(p+1, q)/O(p, q), giving
an expression of X(p, q) as a reductive symmetric space of rank one.



220 T. Kobayashi

3 Problems on Discrete Series for G/H

The ‘smallest units of symmetries’ defined by group actions may be

irreducible representations if the action is linear, and
homogeneous spaces if the action is smooth on a manifold.

The objects of this section are irreducible subrepresentations in L2(X) for
homogeneous spaces X, that is, discrete series representations for X (Definition 3.2
below), which are the building blocks in global analysis on X. For instance,
when X is a reductive symmetric space, parabolic inductions of discrete series
representations for subsymmetric spaces yield the full spectrum in the Plancherel
formula of L2(X), see [3] for instance.

This section elucidates the following problem in the generality of Setting 2.1 by
using simple examples, and addresses some related conjectures.

Problem 3.1 Find all discrete series representations for G/H .

Let us fix some notation. Suppose a Lie group G acts continuously on a manifold
X. Then one has a natural unitary representation (regular representation) of
G on the Hilbert space L2(X) of L2-sections for the half-density bundle L :=
(∧dimXT ∗X ⊗ orX)

1
2 of X where orX stands for the orientation bundle.

Definition 3.2 An irreducible unitary representation π of G is said to be a discrete
series representation for X if there exists a non-zero continuous G-homomorphism
from π to the regular representation on L2(X). In other words, discrete series
representations for X are irreducible subrepresentations realized in closed subspaces
of the Hilbert space L2(X).

We denote by Disc(X) the set of discrete series representations for X. It is a
(possibly, empty) subset of the unitary dual Ĝ of the group G.

Hereafter, suppose we are in Setting 2.1. Then there is a G-invariant Radon
measure μ on the homogeneous space X = G/H , hence L is trivial as a G-
equivariant bundle and L2(X) may be identified with L2(X, dμ).

If G/H is spherical (see Example 2.2), then the ring

D(G/H) := {G-invariant differential operators on G/H }

is commutative and the multiplicity of irreducible representations π of G in the
regular representation on C∞(G/H) is uniformly bounded, and vice versa [20]. In
this case, the disintegration of the regular representation L2(X) into irreducibles (the
Plancherel-type theorem) is essentially equivalent to the joint spectral decomposi-
tion for the commutative ring D(G/H), and Problem 3.1 highlights point spectra in
L2(G/H).

Classical examples trace back to Gelfand–Graev (1962), Shintani (1967),
Molchanov (1968), J. Faraut (1979), R.S. Strichartz (1983) and some others on
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the analysis of the space form X(p, q), which we review from some modern
viewpoints, see [19, Thm. 2.1] and references therein.

Example 3.1 Let (G,H) = (O(p + 1, q),O(p, q)) and X = G/H as in
Example 2.3. Then the ring D(G/H) is generated by the Laplacian �X, which
is not an elliptic differential operator if p, q > 0. We set

L2(X)λ := {f ∈ L2(X) : �Xf = λf in the weak sense}.

Then L2(X)λ is a closed subspace in L2(X), and the resulting unitary representation
of G on L2(X)λ is irreducible whenever it is non-zero. Conversely, any discrete
series representation for X is realized on an L2-eigenspace L2(X)λ for some
eigenvalue λ. In particular, one has the equivalence:

Disc(G/H) = ∅ ⇐⇒ there is no point spectrum of �X in L2(X)

⇐⇒ p = 0 and q ≥ 1.

Thus there exists a point spectrum of the Laplacian �X in L2(X) unless X =
X(p, q) is a hyperbolic space Hq ≡ X(0, q). The description of the eigenspace
L2(X)λ for q = 0 is the classical theory of spherical harmonics on the sphere
Sp ≡ X(p, 0). For p, q ≥ 1, one has

L2(X)λ �= 0 iff λ = λk for some k ∈ Z with − 1

2
(p + q − 1) < k,

where λk := −k(k+p+q−1). The resulting irreducible unitary representation on
L2(X)λk is isomorphic to a ‘geometric quantization’ of an elliptic coadjoint orbit of
minimal dimension, or alternatively in an algebraic language, it is the unitarization
of Zuckerman’s derived functor module Aq(k) with the normalization as in [30].
This algebraic description involves delicate questions for finitely many exceptional
parameters, i.e., those for k < 0, see Problem 3.4 below.

In the generality of Setting 2.1, we may divide Problem 3.1 into two subprob-
lems:

(A) a characterization of the pairs (G,H) for which G/H admits at least one
discrete series representation (Problem 3.3);

(B) a description of all discrete series representations for X.

We address Conjectures 3.1 and 3.2 as subproblems for (A), and formulate
Conjecture 3.3 and Problem 3.4 for (B).

Problem 3.3 Find a characterization of the pairs (G,H) such that G/H admits a
discrete series representation.

Similarly to the classical fact that there is no discrete spectrum of the Laplacian
�
R

n on R
n and that there is no continuous spectrum of the Laplacian �

T
n on the
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n-torus T
n, the Riemannian symmetric space G/K does not admit any discrete

series representation if it is of non-compact type and does not admit any continuous
spectrum in the Plancherel formula if it is of compact type. The answer to
Problem 3.3 is known for reductive symmetric spaces by the rank condition:

Disc(G/H) �= ∅ ⇐⇒ rankG/H = rankK/H ∩K. (2)

The equivalence (2) was proved by Flensted–Jensen for ⇐ and Matsuki–Oshima
for ⇒. It generalizes the Riemannian case G/K as well as Harish-Chandra’s rank
condition for a group manifold, see [24] and references therein.

Beyond symmetric spaces, several approaches (e.g., branching laws [12, 16], the
wave front set [5], etc.) have been applied to find new families of (not necessarily,
real spherical) homogeneous spaces G/H that admit discrete series representations.
It is more involved to prove the converse, i.e., to prove Disc(G/H) = ∅ for non-
symmetric spaces, and very little is known so far, except for certain families of
spherical homogeneous spaces. For instance, one has:

Example 3.2 (Real Forms of SL(2n + 1,C)/Sp(n,C), [12]) Disc(G/H) = ∅ if
G/H = SL(2n+ 1,R)/Sp(n,R), whereas # Disc(G/H) = ∞ for other real forms
of GC/HC, i.e., SU(2p, 2q + 1)/Sp(p, q) or SU(n, n + 1)/Sp(n,R).

An optimistic solution to Problem 3.3 may be a combination of the following
two conjectures:

Conjecture 3.1 ([14, Conj. 6.9]) In Setting 2.1, one has the equivalence:

Disc(G/H) �= ∅ ⇐⇒ # Disc(G/H) = ∞.

Conjecture 3.2 In Setting 2.1, one has the following equivalence:

# Disc(G/H) = ∞ ⇐⇒ h⊥ ∩ g∗ell contains a non-empty open set of h⊥.

Both of the conjectures are true for reductive symmetric spaces G/H . In fact,
Conjecture 3.2 is a reformulation of the rank condition (2) in the spirit of the orbit
philosophy.

There are counterexamples for the implication ⇒ of an analogous statement to
Conjectures 3.1 and 3.2 if we drop the assumption that H is reductive, for instance,
they fail when H is a parabolic subgroup and a cocompact discrete subgroup of
G with rankG > rankK , respectively. The implication ⇐ in Conjecture 3.2 has
recently been proved in Harris–Y. Oshima [5] without the reductivity assumption on
H .

Remark 3.1 Similarly to Conjecture 3.2, one might expect the equivalence:

L2(G/H) is tempered ⇐⇒ h⊥ ∩ g∗reg is dense in h⊥.
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This is proved in Benoist–Kobayashi [1] for complex homogeneous spaces for any
algebraic subgroup H without the reductivity assumption.

Once we know Disc(G/H) �= ∅, we may wish to capture all elements of
Disc(G/H). We divide this exhaustion problem into two questions: one is
geometric (Conjecture 3.3), and the other is algebraic (Problem 3.4).

Conjecture 3.3 Any π ∈ Disc(G/H) is obtained as a geometric quantization of
some elliptic coadjoint orbit that meets h⊥.

Problem 3.4 Find a necessary and sufficient condition for cohomologically
parabolic induced modules Aq(λ) not to vanish outside the good range of
parameter λ.

Conjecture 3.3 strengthens Conjecture 3.2, and one can verify it for reductive
symmetric spaces X, see [14, Ex. 2.9]. To be more precise, by using Matsuki–
Oshima’s theorem [24] and by using an algebraic characterization of Zuckeman’s
derived functor modules, one can identify any discrete series representation for
G/H as a “geometric quantization” πλ of an elliptic coadjoint orbit Oλ that meets
h⊥, with the normalization of “quantization” as in [14]. For “singular” λ, the above
πλ may or may not vanish. A missing part of Problem 3.1 in the literature for
symmetric spaces is the complete proof of the precise condition on λ such that
πλ �= 0, which is reduced to an algebraic question, that is, Problem 3.4. The
algebraic results in [11, Chaps. 4,5] and [29] give an answer to Problem 3.4 for
some classical symmetric spaces.

We examine Problem 3.4 by X = X(p, q) with p, q ≥ 1. As we saw in
Example 3.1, the underlying (g,K)-modules (see [31, Chap. 3] for instance) of
the L2-eigenspace L2(X)λk are expressed by Aq(k). Then there are finitely many
exceptional parameters k ∈ Z satisfying − 1

2 (p + q − 1) < k < 0, i.e., lying
“outside the good range” for which the general algebraic representation theory
does not guarantee the irreducibility/non-vanishing for the cohomological parabolic
induction. This is the point that Problem 3.4 is concerned with.

4 Problems on Discontinuous Groups for G/H

The local to global study of geometries was a major trend of twentieth century
geometry, with remarkable developments achieved particularly in Riemannian
geometry. In contrast, in areas such as pseudo-Riemannian geometry, familiar to
us as the space-time of relativity theory, and more generally in manifolds with
indefinite metric tensor of arbitrary signature, surprisingly little is known about
global properties of the geometry. For instance, the pseudo-Riemannian space form
problem is unsolved, which asks the existence of a compact pseudo-Riemannian
manifold M with constant sectional curvature for a given signature (p, q), see
Conjecture 4.3 below.
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When we highlight “homogeneous structure” as a local property, “discontinuous
groups” are responsible for the global geometry. The theory of discontinuous groups
beyond the Riemannian setting is a relatively “young area” in group theory that
interacts with topology, differential geometry, representation theory, and number
theory, among other subjects. See [13] for some background on this topic at an
early stage of its development. This theme was also discussed as a new topic
of future research by Kobayashi [17] and Margulis [23] on the occasion of the
“World Mathematical Year 2000”. For over 30 years, there have been remarkable
developments which have made use of various methods ranging from topology and
differential geometry to representation theory and ergodic theory, however, some
important problems are still unsolved, which we illustrate in this section by using
simple examples.

Beyond the Riemannian setting, we highlight a substantial difference between
“discrete subgroups” and “discontinuous groups”, e.g., [10].

Definition 4.1 Let G be a Lie group acting on a manifold X. A discrete subgroup

 of G is said to be a discontinuous group for X if 
 acts properly discontinuously
and freely on X.

The quotient space X
 := 
\X by a discontinuous group 
 is a (Hausdorff)
C∞-manifold, and any G-invariant local geometric structure on X can be pushed
forward to X
 via the covering map X → X
 . Such quotients X
 are complete
(G,X)-manifolds in the sense of Ehresmann and Thurston.

A classical example is a compact Riemann surface �g with genus g ≥ 2,
which can be expressed as X
 where 
 - π1(�g) (surface group) and X -
PSL(2,R)/PSO(2) by the uniformization theory. More generally, any complete
affine locally symmetric space is of the form 
\G/H where 
 is a discontinuous
group for a symmetric space G/H .

Remark 4.1 The crucial assumption in Definition 4.1 is proper discontinuity of the
action, and freeness is less important. In [13, Def. 2.5], we did not include the
freeness assumption in the definition of discontinuous groups, allowing X
 = 
\X
to be an orbifold.

We discuss the following problems in the generality of Setting 2.1, cf. [17,
Problems B and C].

Problem 4.1 Determine all pairs (G,H) such that G/H admits cocompact discon-
tinuous groups.

Problem 4.2 (Higher Teichmüller Theory for G/H ) Describe the moduli of all
deformations of a discontinuous group 
 for G/H .

In the classical case where H is compact, a theorem of Borel answers Prob-
lem 4.1 in the affirmative by the existence of cocompact arithmetic discrete
subgroups in G, whereas the Selberg–Weil local rigidity theorem tells us that
Problem 4.2 makes sense for a cocompact 
 in a simple Lie group G only if
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g - sl(2,R), and in this case the deformation of discontinuous groups gives rise
to that of complex structures on the Riemann surface.

Such features change dramatically when H is non-compact: some homogeneous
spaces may not admit any discontinuous group of infinite order (the Calabi–
Markus phenomenon [2]), showing an obstruction to the existence of cocompact
discontinuous groups for G/H . On the other hand, discontinuous groups for pseudo-
Riemannian manifolds G/H tend to be “more flexible” in contrast to the classical
rigidity theorems in the Riemannian case. For instance, some irreducible symmetric
spaces of arbitrarily higher dimension admit cocompact discontinuous groups which
are not locally rigid [7, 15], providing wide open settings for Problem 4.2.

As we mentioned, the notion “discontinuous group for G/H ” is much stronger
than “discreteness in G” when H is non-compact. For instance, a cocompact
discrete subgroup 
 of G never acts properly discontinuously on G/H unless H

is compact. Thus the existence of a lattice in G does not imply that G/H admits a
cocompact discontinuous group.

We examine some related questions and conjectures to Problem 4.1. First, by
relaxing the “cocompactness” assumption of 
 in Problem 4.1, one may ask the
following:

Problem 4.3 Find a necessary and sufficient condition for G/H in Setting 2.1 to
admit a discontinuous group 
 for G/H such that

(1) 
 - Z;
(2) 
 -a surface group π1(�g) with g ≥ 2.

Problem 4.3 (1) was solved in [10] in terms of the real rank condition rankRG >

rankRH , which revealed the Calabi–Markus phenomenon [2] in the generality of
Setting 2.1. Problem 4.3 (2) was solved by Okuda [26] for irreducible symmetric
spaces, but is unsolved in the generality of Setting 2.1.

Cocompact discontinuous groups for G/H are much smaller than cocompact
lattices of G, for instance, their cohomological dimensions are strictly smaller
[10]. A simple approach to Problem 4.1 is to utilize a ‘continuous analog’ of
discontinuous groups 
:

Definition 4.2 (Standard Quotients 
\G/H [8, Def. 1.4]) Suppose L is a reduc-
tive subgroup of G such that L acts properly on G/H . Then any torsion-free discrete
subgroup 
 of L is a discontinuous group for G/H . The quotient space 
\G/H is
called a standard quotient of G/H .

If such an L acts cocompactly on G/H , then G/H admits a cocompact
discontinuous group 
 by taking 
 to be a torsion-free cocompact discrete subgroup
in L, which always exists by Borel’s theorem. We address the following conjecture
and a subproblem to Problem 4.1.

Conjecture 4.1 ([17, Conj. 4.3]) In Setting 2.1, G/H admits a cocompact
discontinuous group only if G/H admits a compact standard quotient.
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If Conjecture 4.1 were proved to be true, then Problem 4.1 would be reduced to
the following one:

Problem 4.4 Classify the pairs (G,H) such that G/H admits a compact standard
quotient.

This problem should be manageable because one could use the general theory
of real finite-dimensional representations of semisimple Lie algebras and apply the
properness criterion and the cocompactness criterion in [10, Thms 4.1 and 4.7]. See
[28] for some developments.

Remark 4.2

(1) Conjecture 4.1 does not assert that any cocompact discontinuous group is a
standard one. In fact, there exist triples (G,H,
) such that 
 is a cocompact
discontinuous group for G/H and that the Zariski closure of 
 does not act
properly on G/H , see [4, 7, 15].

(2) An analogous statement to Conjecture 4.1 fails if we drop the reductivity
assumption on the groups G, H and L.

(3) An analogous statement to Conjecture 4.1 is proved in Okuda [26] for semisim-
ple symmetric spaces G/H if we replace the “cocompactness” assumption with
the condition that 
 is a surface group π1(�g).

Special cases of Conjecture 4.1 include:

Conjecture 4.2 SL(n,R)/SL(m,R) does not admit a cocompact discontinuous
group for any n > m.

Conjecture 4.3 (Space Form Conjecture [17, Conj. 2.6], [21, Conj. 2.5.1])
There exists a compact, complete, pseudo-Riemannian manifold of signature (p, q)

with constant sectional curvature 1 if and only if (p, q) is in the list of Example 4.1
(4) below.

A criterion on triples (G,H,L) of reductive Lie groups for L to act properly
on X = G/H was established in [10], and a list of irreducible symmetric spaces
G/H admitting proper and cocompact actions of reductive subgroups L was given
in [21]. Tojo [28] worked with simple Lie groups G and announced that the list
in [21] exhausts all such triples (G,H,L) with L maximal, giving a solution to
Problem 4.4 for symmetric spaces G/H with G simple.

A number of obstructions to the existence of cocompact discontinuous groups
for G/H with H non-compact have been found over the last 30 years. One of the
recent developments includes the affirmative solution to the “rank conjecture” raised
by the author in 1989: it was proved in the case rankG = rankH by Kobayashi–
Ono (1990), and has been proved recently in the general case by Morita [25] and
Tholozan [27], independently.

Conjecture 4.4 ([13, Conj. 4.15]) If G/H admits a cocompact discontinuous
group, then rankG+ rank(H ∩K) ≥ rankH + rankK.
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Whereas the idea of standard quotients 
\G/H is to replace a discrete subgroup

 with a connected subgroup L (Definition 4.2), one may consider an “approxima-
tion” of Problem 4.1, by taking the tangential homogeneous space Xθ = Gθ/Hθ

in replacement of X = G/H , where Gθ := K � p is the Cartan motion group
of the real reductive group G = K exp p and similarly for Hθ . If G/H admits a
compact standard quotient, then the tangential homogeneous space Gθ/Hθ admits
a cocompact discontinuous group. The group Gθ is a compact extension of the
abelian group p, and has a much simpler structure. We ask the following digression
of Problem 4.1:

Problem 4.5 ([21]) For which pairs (G,H) in Setting 2.1 does Gθ/Hθ admit a
cocompact discontinuous group?

This problem is unsolved even for symmetric spaces in general, but has a
complete answer in some special settings, e.g., Example 4.1 (6) below.

We end this section with a brief summary of the state-of-art for these problems
and conjectures by taking the space form X(p, q) as an example.

Example 4.1 (See [2, 6, 7, 13, 15, 21, 22, 25–27]) Let (G,H) =
(O(p + 1, q),O(p, q)), and X = X(p, q) = G/H the pseudo-Riemannian
space form of signature (p, q) as in Example 2.3.

(1) X(p, q) admits a discontinuous group of infinite order iff p < q .
(2) X(p, q) admits a discontinuous group which is isomorphic to a surface group

iff p + 1 < q or p + 1 = q ∈ 2N.
(3) If X(p, q) admits a cocompact discontinuous group, then p = 0 or “p < q and

q ∈ 2N”.
(4) X(p, q) admits a cocompact discontinuous group if (p, q) is in the list below.

(The converse assertion was stated as Conjecture 4.3.)

p N 0 1 3 7

q 0 N 2N 4N 8

(5) If (p, q) = (0, 2), (1, 2), or (3, 4), then X(p, q) admits a cocompact
discontinuous group which can be deformed continuously into a Zariski dense
subgroup of G by keeping proper discontinuity of the action. For (p, q) =
(1, 2n) (n ≥ 2), the anti-de Sitter space X(1, 2n) admits a compact quotient
which has a non-trivial continuous deformation as standard quotients.

(6) The tangential homogeneous space Gθ/Hθ admits a cocompact discontinuous
group if and only if p < ρ(q) where ρ(q) is the Radon–Hurwitz number, or
equivalently, if and only if (p, q) is in the following list:

p N 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
q 0 N 2N 2N 4N 8N 8N 8N 8N 16N 32N 64N 64N · · ·
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5 Spectral Analysis for Pseudo-Riemannian Locally
Homogeneous Spaces �\G/H

This section briefly discusses a new direction of analysis on pseudo-Riemannian
locally homogeneous spaces 
\G/H .

Suppose we are in Setting 2.1. Let 
 be a discontinuous group for X = G/H .
Then any G-invariant differential operator D ∈ D(G/H) induces a differential
operator D
 on the quotient X
 := 
\G/H via the covering X → X
 . We think
of the set D(X
) := {D
 : D ∈ D(G/H)} as the algebra of intrinsic differential
operators on the locally homogeneous space X
 .

Example 5.1

(1) In Setting 2.1, X
 inherits a pseudo-Riemannian structure from X, and the
Laplacian �X
 belongs to D(X
).

(2) For X = X(p, q), D(X
) is a polynomial ring in the Laplacian �X
 for any
discontinuous group 
.

We address the following problem:

Problem 5.1 (See [8, 9]) For intrinsic differential operators on X
 = 
\G/H ,

(1) construct joint eigenfunctions on X
;
(2) find a spectral theory on L2(X
).

In the same spirit as in Sect. 3, we highlight the “discrete spectrum”.

Definition 5.1 We say λ ∈ HomC-alg(D(X
),C) is a discrete spectrum for intrinsic

differential operators on X
 if L2(X
)λ �= {0}, where we set

L2(X
)λ := {f ∈ L2(X
) : Df = λ(D)f ∀D ∈ D(X
)}.

We write Specd(X
) for the set of discrete spectra.

A subproblem to Problem 5.1 (1) includes:

Problem 5.2 Construct joint L2-eigenfunctions on X
 .

In relation to Problem 4.2 about the deformations of a discontinuous group 
 for
G/H , one may also ask the following:

Problem 5.3 Understand the behavior of Specd(X
) under small deformations of

 inside G.

These problems have been studied extensively in the following special settings
for X
 = 
\G/H :

(1) (H = K). When H is a maximal compact subgroup K of G, i.e., X
 is a
Riemannian locally symmetric space, a vast theory has been developed over
several decades, in particular, in connection with the theory of automorphic
forms when 
 is arithmetic.
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(2) (
 = {e}). This case is related to the topic in Section 3. In particular,
Problem 5.1 has been extensively studied in the case where G/H is a reductive
symmetric space and 
 = {e}.

(3) G = R
p,q , 
 = Z

p+q , and H = {0}. In this case, Specd (X
) is the set of
values of indefinite quadratic forms at integral points, see [18] for a discussion
on Problem 5.3 in relation to the Oppenheim conjecture (proved by Margulis)
in Diophantine approximation.

The situation changes drastically beyond the classical setting, namely, when H

is no longer compact and 
 �= {e}. New difficulties include:

(1) (Representation theory) Even when 
\G/H is compact, the regular represen-
tation of G on L2(
\G) has infinite multiplicities, as opposed to a classical
theorem of Gelfand–Piatetski–Shapiro.

(2) (Analysis) In contrast to the Riemannian case where H = K , the Laplacian
�X
 is not an elliptic differential operator anymore.

As we saw in Sect. 4, if H is not compact, then not all homogeneous spaces
G/H admit discontinuous groups of infinite order, but fortunately, there exist a
family of reductive symmetric spaces G/H that admit “large” discontinuous groups

, e.g., such that X
 = 
\G/H is compact or of finite volume. Moreover, there
also exist triples (G,H,
) such that discontinuous groups 
 for G/H can be
deformed continuously. These examples offer broad settings for Problems 5.1 and
their subproblems.

For Problem 5.3, we consider two notions for stability:

Definition 5.2

(1) (stability for proper discontinuity) A discontinuous group 
 is stable under
small deformations if the group ϕ(
) acts properly discontinuously and freely
on X for all ϕ ∈ Hom(
,G) in some neighbourhoodU of the natural inclusion

 in G.

(2) (stability for L2-spectrum) We say λ ∈ HomC-alg(D(X
),C) is a stable

spectrum if L2(Xϕ(
))λ �= {0} for any ϕ ∈ Hom(
,G) in some neighbourhood
U of the natural inclusion 
 in G.

Conjecture 5.1 Suppose that 
 is a finitely generated discontinuous group for
G/H having non-trivial continuous deformations (up to inner automorphisms) with
stability of proper discontinuity. Then the following conditions on the pair (G,H)

are equivalent.

(i) There exist infinitely many stable spectra on L2(
\G/H).
(ii) Disc(G/H) �= ∅.

See [8] for some results in the direction (ii) ⇒ (i), which also treat the case
vol(
\G/H) = ∞.

The last section has been devoted to a “very young” topic, though special cases
trace back to rich and deep classical theories. I expect this topic will create new
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interactions with different subjects of mathematics, and this is why I have included
it as part of my article for Mathematics Going Forward.
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Profinite Rigidity and Free Groups

Martin R. Bridson

Personal Note
Many of the results that I am about to describe rely on the modern understanding
of groups that act by isometries on spaces of negative and non-positive curvature,
a central theme of my book with André Haefliger [10]. The success of that
book project owed a great deal to the patient and thoughtful stewardship of
Dr Catriona Byrne. It is with great pleasure and gratitude, therefore, that I dedicate
this essay to her on the occasion of her retirement.

1 Introduction

Groups are the mathematical objects that encode symmetry in all contexts: no matter
what category of objects X one may be studying, and no matter what sort of maps
one may be allowing, the invertible maps from X to itself (i.e. the automorphisms
of X) form a group. Thus, in all manner of contexts, one finds reasons to study
groups of automorphisms Aut(X) in order to elucidate the nature of the underlying
object X. According to one’s nature, one might also be drawn to the study of groups
themselves. When this is case, it is natural to reverse the passage from X to Aut(X):
given a group 
, one seeks objects X such that 
 acts as a group of automorphisms
of X; one hopes to illuminate the nature of 
 by observing it in action. Actions
on different kinds of objects provide different insights into the nature of 
, and one
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quickly learns that the quality of the insights that one gains depends heavily on the
nature of both the group and the object on which it is acting.

In all contexts, the groups that have the most unconstrained range of actions are,
as the name suggests, free groups: associated to any set S one has the free group
F(S) whose elements are finite products of the elements of S (and formal inverses)
subject to no constraints other than the axioms of a group. Free groups will play a
central role in our discussion.

When exploring the symmetries of an object X that interests you, it is natural to
grasp at a description of Aut(X) by seeking (i) a set S of elementary operations that,
when performed in suitable combinations, account for all of the symmetries of X,
and (ii) a set of rules R describing how different combinations of these elementary
operations are related: this leads to the notion of a presentation of a group 
 = 〈S |
R〉. One can regard a presentation as a concise description of how 
 can be realised
as a quotient of the free group F(S). At the beginning of the twentieth century,
mathematicians, foremost among them Max Dehn, realised that it is extremely hard
to unravel the nature of a group by examining a presentation of it in isolation, even
if both of the sets S and R are finite. This insight brings us back to the search
for actions: rather than struggling to understand a group 
 as a quotient of a free
group described by a finite presentation, one should try to unravel the nature of 


by exploring how it can act on different kinds of objects.
The most primitive objects to consider are finite sets. Actions on finite sets

capture only the finite images of groups, so the power of such actions to explain the
nature of 
 is limited by the answer to the fundamental question: to what extent is 


determined by its set of finite quotients? This compelling question has re-emerged
with different emphases throughout the history of group theory, and in recent years it
has been animated by a rich interplay with geometry and low-dimensional topology.

The finite images of 
 are encoded in its profinite completion 
̂, a compact
topological group that is the inverse limit of the directed system of finite quotients
of 
: if N < M then 
/N → 
/M . For finitely generated groups 
 and �, the set
of finite images of 
 will be the same as the set of finite images of � if and only if
�̂ and 
̂ are isomorphic as topological groups; the reader unfamiliar with profinite
groups will therefore lose little by reading the statement �̂ ∼= 
̂ as an equality of
sets of finite quotients.

If 
 has elements that do not survive in any finite quotient (see Sect. 4 for
examples), then one cannot hope to recover 
 by studying 
̂. Thus it is natural
to restrict attention to residually finite groups, i.e. groups where every finite subset
injects into some finite quotient. The most basic recognition question then becomes:
which finitely generated, residually finite groups 
 are profinitely rigid in the sense
that if � is finitely generated and residually finite, then �̂ ∼= 
̂ implies � ∼= 
.

It is obvious that finite groups are profinitely rigid and is easy to see that finitely
generated abelian groups are as well, but one quickly struggles to find further
examples. The study of groups that are not profinitely rigid owes much to a
paper of Serre [25] from 1964. He constructed pairs of smooth complex projective
varieties that are Galois conjugate but are not homeomorphic. The fundamental
groups in each pair are not isomorphic, but the profinite completions of these groups
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(being the étale fundamental group of their common scheme) are the same. Other
illuminating examples come from the work of Stebe [26]: he described pairs of
integer matrices ϕ1, ϕ2 ∈ SL(2,Z) that are not conjugate but do have conjugate
images in SL(2,Z/m) for every positive integer m; from this it follows easily that
the mapping tori Z2

�ϕ1 Z and Z
2
�ϕ2 Z are not isomorphic but their profinite

completions are. The essence of these examples was stripped down to its bare
essentials by Baumslag [5] who showed that profinite rigidity can fail even for finite
extensions of Z (see Sect. 4).

These examples are sobering and cause one to reflect on the proof that Zr is
profinitely rigid. The key to this argument is the observation that if 
 satisfies a
group law—in this case the law ∀x, y (xy = yx)— then �̂ ∼= 
̂ will imply that �
satisfies the same law, provided it is residually finite. In such cases, the question of
absolute profinite rigidity reduces to a question of relative profinite rigidity, where
one asks if 
̂ distinguishes 
 from all other groups in a restricted class, for example
the class of groups that satisfy a given law or a more geometric condition. Once
one has manouevred into such a relative context, one might use a classification of
groups in that class to identify examples of profinitely rigid groups: for example,
the free nilpotent group of fixed class on a fixed number of generators is profinitely
rigid (although many other nilpotent groups are not).

The pursuit of relative profinite rigidity theorems has provided a focal point for
a rich body of research in recent years, particularly in geometric contexts [24].
This includes many settings in which the groups are full-sized in the sense that
they contain non-abelian free subgroups and hence do not satisfy a law. Thus, for
example, a finitely generated free group can be distinguished from any other lattice
in a connected Lie group [8], or from any other residually-free group [8, 29], by
its finite quotients. But such relative theorems do not lead to absolute profinite
rigidity, because in the absence of a group law it is extremely difficult to rule out
the possible existence of an utterly exotic �, finitely generated and residually finite,
with �̂ ∼= 
̂. One has to contend with the possibility that � shares few of the
familiar characteristics of 
: even if 
 is familiar to you as a group of matrices, say,
why should � have such a representation? This is a much wilder context than that
considered by Grothendieck [16], who considered pairs of residually finite groups
ι : H ↪→ G such that H is not isomorphic to G but ι nevertheless induces an
isomorphism Ĥ → Ĝ—see Sect. 4.

The paucity of our knowledge about (absolute) profinite rigidity is illustrated
most starkly by the fact that the following fundamental challenge remains open.

Conjecture 1.1 If a finitely generated, residually finite group 
 has the same finite
quotients as a free group of rank r , then 
 is a free group of rank r .

As far as I am aware, the first person to ask explicitly whether free groups are
profinitely rigid was Remeslennikov [20, Question 5.48]. This remains the central
challenge in the field, but in recent years there has been significant progress on
related matters. In the following sections I shall describe a sample of this progress,
staying close to Conjecture 1.1 and highlighting some related open problems.
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2 Full-Sized Groups that Are Profinitely Rigid

The group of orientation-preserving isometries of real hyperbolic space is iso-
morphic to PSL(2,R), in dimension 2, and PSL(2,C) in dimension 3. Thus the
lattices in these Lie groups are the fundamental groups of finite-volume, orientable
hyperbolic orbifolds in these dimensions; the orbifold is compact if the lattice
is cocompact, and the orbifold is a manifold if the lattice has no non-trivial
elements of finite order. The proof of the following theorem, which I proved with
McReynolds, Reid and Spitler, relies on many aspects of the modern understanding
of such orbifolds, including the arithmetic naturally associated to them and various
consequences of the work of Agol and Wise showing that lattices in PSL(2,C)

act nicely on CAT(0) cube complexes (see [1]): more precisely, these groups are
virtually special in the sense of [18]. Among other things, this last theorem implies
that finitely generated, discrete subgroups of PSL(2,C) are good in the sense of
Serre, an important property in many results concerning profinite rigidity: 
 is
good if for any finite Z
-module M , the map H ∗(
̂,M) → H ∗(
,M) induced
by 
 ↪→ 
̂ is an isomorphism.

Theorem 2.1 ([11, 12]) There exist arithmetic lattices in PSL(2,C) and PSL(2,R)

that are profinitely rigid in the absolute sense.

For the moment, only finitely many lattices in PSL(2,C) and PSL(2,R) are
known to be profinitely rigid. Each of the examples in PSL(2,R) is a triangle
group, i.e. the group of symmetries �(p, q, r) of a tiling of the hyperbolic plane
by geodesic triangles with vertex angles π/p, π/q, π/r . The least-area example
to which the current techniques apply is �(2, 3, 8). The examples in PSL(2,C)

include both cocompact and non-cocompact lattices; some of the cocompact
examples have torsion and some do not. The cocompact examples include the
fundamental group of the Weeks manifold, the unique compact hyperbolic 3-
manifold of smallest volume. The non-cocompact examples include the Bianchi
group PSL(2,Z[ω]), where ω is a primitive cube root of unity, and the non-
cocompact lattice of minimal covolume.

Conjecture 2.1 All lattices in PSL(2,C) and PSL(2,R) are profinitely rigid in the
absolute sense.

For lattices 
1, 
2 < PSL(2,R) we know that 
̂1 ∼= 
̂2 implies 
1 ∼= 
2, since
relative profinite rigidity has been established in this context [8]. For lattices in
PSL(2,C) this is unknown but Liu [21] proved that for each lattice 
, only finitely
many other lattices can have the same profinite completion as 
, up to isomorphism:
in the terminology of [17], the profinite genus of 
 among lattices in PSL(2,C) is
finite. It is unknown if the genus of 
 among all finitely generated (or finitely
presented) residually finite groups is finite (a weaker form of Conjecture 2.1). The
profinite completion distinguishes the fundamental groups of 3-manifolds that are
hyperbolic from those which are not [30]. Many non-hyperbolic 3-manifolds can
be distinguished from all others by the profinite completions of their fundamental
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groups (e.g. [28]), but the examples of Stebe described above Z2
�ϕ Z show that not

all 3-manifold groups enjoy this property.
Important elements of the proof of Theorem 2.1 extend to lattices in other Lie

groups (cf. [22]), but other aspects, particularly the control on finitely generated
subgroups, do not. Correspondingly, it is unknown whether groups such as SL(3,Z)
are profinitely rigid, and profinite rigidity is known to fail for certain lattices in other
semisimple Lie groups [2], even in rank one [27].

3 Restrictions on the Nature of Profinitely-Free Groups

As we discussed earlier, a basic challenge that one faces when trying to settle a
challenge such as Conjecture 1.1 is that one starts out knowing essentially nothing
about the nature of 
 if 
̂ ∼= F̂r . This challenge is fertile because it forces one to find
ways of extracting information about free groups from their finite quotients alone.
For example, one might ask if 
 must be finitely presented, or hyperbolic (in the
sense of Gromov), or linear, or residually-free? None of these properties is known.
On the other hand, one can prove that 
 must have the same nilpotent quotients as
Fr , that it must satisfy a version of the Freiheitsatz, and that it cannot have a finitely
generated normal subgroup of infinite index other than {1}; see [13]. A theorem
proved recently by Jaikin-Zapirain [19] is particularly intriguing because it is the
first to place 
 in a class of groups where there is a reasonable hope of establishing
a classification theorem that might allow one to resolve Conjecture 1.1: he proves
that a finitely generated, residually finite group 
 with 
̂ ∼= F̂r must be residually
nilpotent, hence parafree in the sense of Baumslag [4]. He also proves that any
finitely generated, residually finite group with the same profinite completion as a
surface group must be residually nilpotent.

4 Failure of Profinite Rigidity Close to Free Groups

The relatives of free groups that we consider here are virtually free groups,
hyperbolic groups, direct products of free groups, and 3-manifold groups.

It is easy to see that if N is finite then N × Z is profinitely rigid. Examples of
Baumslag [5] show that this rigidity fails if one replaces N × Z with a semidirect
product. Moreover, as explained in [14], one can modify Baumslag’s construction to
exhibit pairs of non-isomorphic groupsH1 and H2 that have the same finite quotients
and have the same finite index in a group N × Z with N finite. To see this, we
consider G1 = (Z/25) �α Z and G2 = (Z/25) �β Z, where, in multiplicative
notation, α ∈ Aut(Z/25) is α(x) = x6 and β(x) = x11. Noting that α and β

generate the same cyclic subgroup of order 5 in Aut(Z/25), one can prove by direct
argument that G1 �∼= G2 but Ĝ1 ∼= Ĝ2.
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Let N = (Z/25) �α (Z/5) = 〈x, y〉, where x generates the first factor and the
generator y in the second factor acts as α. Let t be a generator for the second factor
of N × Z. Then H1 = 〈x, yt〉 and H2 = 〈x, y2t〉 both have index 5 in N × Z, and
H1 ∼= G1 while H2 ∼= G2.

By taking free products of copies of these groups, we see that there are virtually
free groups of every finite rank that are not profinitely rigid (cf. [17]). In contrast,
Conjecture 2.1 posits that free products of finite cyclic groups are profinitely rigid.
Also, if Conjecture 1.1 is true, every finitely generated, residually finite group with
the same finite images as a virtually free group must itself be virtually free.

Free groups are hyperbolic and 1-dimensional. Thus, when exploring the limits
of Conjecture 1.1, one might wonder about hyperbolic groups of dimension 2.
To explain why Conjecture 1.1 fails in this setting, we need a supply of finitely
presented groups that are infinite but do not map onto any non-trivial finite group.
There are various ways to construct such groups. To be explicit, we consider the
following family from [9]; one knows that these groups are infinite because they are
amalgamated free products of groups that have infinite abelianisation.

Bp = 〈a, b, α, β | ba−pb−1ap+1, βα−pβ−1αp+1, [bab−1, a]β−1, [βαβ−1, α]b−1〉.

By applying the Rips construction to this presentation ([10, p. 224]), we obtain
a short exact sequence 1 → N → 
 → Bp → 1 with N finitely generated
and 
 a residually finite, hyperbolic group with a 2-dimensional classifying space.
It is easy to imagine that B̂p = 1 might imply that N̂ ∼= 
̂, and using the fact
that H2(Bp,Z) = 0 one can prove that this is indeed the case (see [9]). With [7,
Theorem A] in hand, one can modify this argument to prove the following result,
in which I emphasise that hyperbolicity is in the sense of Gromov, in contrast to
Conjecture 2.1.

Theorem 4.1 There exist residually finite, (Gromov) hyperbolic groups 
 of
dimension 2 with uncountably many non-isomorphic subgroups ιH : H ↪→ 
 such
that ι̂H : Ĥ → 
̂ is an isomorphism. Moreover, one can arrange for infinitely many
of these subgroups to be finitely generated.

Because the second homology group H2(Bp,Z) is trivial, Bp can also serve as
Q in the following criterion, which originates in the work of Platonov and Tavgen
[23] and was adapted in [3] and [9].

Proposition 4.2 ([23]) Let f : G → Q be an epimorphism of groups, with G

finitely generated and Q finitely presented. Suppose that Q̂ = 1 and H2(Q,Z) = 0.
Then, the fibre product P = {(g, h) | f (g) = f (h)} < G×G is finitely generated

and P ↪→ G×G induces an isomorphism P̂
∼=→ Ĝ×G.

By applying the above criterion to epimorphisms F → Q from a free group,
Platonov and Tavgen showed that the direct product of two non-abelian free groups
is not profinitely rigid, the second part of the following theorem. The first part can
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be proved by applying a similar template of proof to suitable sequences of quotients
F → Q1 → Q2 → . . . . The third part follows from the fact that a finitely
presented subgroup of F ×F must be of finite index if it maps onto both factors and
intersects each non-trivially [6].

Theorem 4.3 Let F be a finitely generated, non-abelian free group.

(1) There exist uncountably many non-isomorphic groups H such that H ↪→ F×F

induces an isomorphism Ĥ ∼= F̂ × F ;
(2) infinitely many of these groups H are finitely generated.
(3) There does not exist a finitely presented subgroup H �= F × F such that H ↪→

F × F induces an isomorphism Ĥ ∼= F̂ × F .

I deliberately phrased this result in a way that emphasizes the importance of
finiteness properties in the context of profinite rigidity. For the moment, it is unclear
what role finiteness properties might play in Conjecture 1.1. In particular, it is
possible that the conjecture is false for finitely generated groups but true if one
assumes that 
 is finitely presented. In this vein, Alan Reid, Ryan Spitler and
I recently proved [15] that there exist finitely presented, residually finite groups
that are profinitely rigid amongst all finitely presented, residually finite groups, but
have infinite genus among finitely generated, residually finite groups. Our examples
are direct products G × G where G is the fundamental group of a certain type
of Seifert fibre space (a 3-manifold foliated by circles); the centre of G is infinite
cyclic and G/Z(G) is isomorphic to one of the triangle groups � < PSL(2,R)

covered by Theorem 2.1. With this recent result in mind, the reader should compare
Theorem 4.3 with:

Conjecture 4.1 Let F and F ′ be finitely generated free groups. If a finitely
presented, residually finite group 
 has the same finite quotients as F × F ′, then 


is isomorphic to F × F ′.

Acknowledgements I thank my longstanding collaborator Alan Reid for the many insights that
he has shared with me during our exploration of the topics discussed here, and I acknowledge with
gratitude my debt to the late Fritz Grunewald, who enticed me into this field.
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1 Introduction

Let G be a td-group, i.e., a locally compact second countable totally disconnected
topological Hausdorff group. Our ultimate goal is to compute the algebraic K-
groups and in particular the projective class group of the (standard) Hecke algebra
H(G) of G, which is defined in terms of locally constant functions with compact
support from G to the real or complex numbers and the convolution product. We
want to show that the canonical map

colimK∈SubCop(G)K0(H(K))
∼=−→ K0(H(G)) (1)

is bijective. Here SubCop(G) is the following category. Objects are compact open
subgroups K of G, a morphism f : K → K ′ is a group homomorphism, for which
there exists g ∈ G satisfying f (k) = gkg−1 for all k ∈ K , and we identify two such
group homomorphisms f : K → K ′ and f ′ : K → K ′ if they differ by an inner
automorphism of K ′. In particular, the obvious map

⊕

K

K0(H(K))→ K0(H(G)) (2)

is surjective, where K runs through the compact open subgroups of G.
Dat [7, Theorem 1.6 and Corollary 4.22] showed, following ideas of Bernstein,

that the map (2) is rationally surjective for a reductive p-adic group G. He used
for the proof the Hattori–Stallings rank and input from the representation theory
of reductive p-adic groups. Dat also asked the question whether the map (2) is
surjective without rationalizing, see the sentence after [8, Proposition 1.10] and the
formulation of the weaker conjecture [8, Conjecture 1.11].

The projective class group K0(H(G)) is interesting for the study of smooth
G-representations, since every finitely generated smooth G-representation has a
finite projective resolution and hence defines elements in it, see for instance [5,
Theorem 29 on page 97 and Proposition 32 on page 60], [17], [18], [19], [20].

If G is discrete, the family Cop of compact open subgroups reduces to the family
F in of finite subgroups of G and the bijectivity of the map (1) reduces to the
bijectivity of the canonical map

colimF∈SubF in(G) K0(CF)
∼=−→ K0(CG), (3)

which follows from the K-theoretic Farrell–Jones Conjecture for CG.
Our ultimate and long term goal is to the prove the version of the K-theoretic

Farrell–Jones Conjecture for the Hecke algebra of td-groups for any closed
subgroup G of any reductive p-adic group. It predicts the bijectivity of the assembly
map

HG
n (ECop(G);K∞

H)
∼=−→ HG

n (G/G;K∞
H) = Kn(H(G)) (4)
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for every n ∈ Z. Here the source is a smooth G-homology theory, which digests
smooth G-CW -complexes and satisfies HG

n (G/H ;K∞
H) = Kn(H(H)) for open

subgroups H ⊆ G, and the smooth G-CW -complex ECop(G) is a model for the
classifying space of the family of compact open subgroups, or, equivalently the
classifying space for smooth proper G-actions in the realm of G-CW -complexes.
This map will be constructed in [3], where a formulation of the K-theoretic Farrell–
Jones Conjecture is given for Hecke categories, which generalize the notion of a
Hecke algebra.

We will not prove the K-theoretic Farrell–Jones Conjecture for Hecke categories
in this paper. At least we present a direct proof of it in the special case that G is
covirtually infinite cyclic, i.e., G contains a normal compact open subgroup L such
that the quotient G/L is the discrete group Z. Then the conjecture boils down to
Theorem 9.1, which says that there is a Wang sequence, infinite to the left,

· · · K2(i)−−−→ K2(H(G))
∂2−→ K1(H(L))

id−K1(ϕ)−−−−−→ K1(H(L))

K1(i)−−−→ K1(H(G))
∂1−→ K0(H(L))

id−K0(ϕ)−−−−−→ K0(H(L))

K0(i)−−−→ K0(H(G))→ 0,

where ϕ : L→ L is the automorphism given by conjugation with some preimage of
the generator of the infinite cyclic group G/L under the projection G → G/L and
i : L→ G is the inclusion, and that we have

Kn(H(G)) = 0 for n ≤ −1.

So in this paper we can confirm the Farrell–Jones Conjecture for covirtually infinite
cyclic td-groups. One may say that this paper plays the same role for the Farrell–
Jones Conjecture for Hecke algebras as the papers by Farrell–Hsiang [9] and
Pimsner–Voiculescu [15] did for the Farrell–Jones Conjecture for discrete groups
and the Baum–Connes Conjecture. To our knowledge this paper presents the first
instance of a version of the Farrell–Jones Conjecture for non-discrete groups.

One application of this paper will be that the bijectivity of (4) implies the
bijectivity of (1). Moreover, Theorems 7.2 and 10.1 will be key ingredients in the
part of the forthcoming proof of the Farrell–Jones Conjecture, where we will reduce
the family Cvcy of (not necessarily open) covirtually cyclic subgroups to the family
Cop.

We mention that we will look at more complicated Hecke algebras than the
standard ones. We will allow other rings than R or C. Moreover, we take a G-
action on R by ring automorphisms and a normal character, which is an obvious
generalization of a central character, into account. In the sequel papers we will
replace the Hecke algebras by the more general notion of a Hecke category, since
allowing more general coefficients will ensure the desirable inheritance to closed
subgroups of the Farrell–Jones Conjecture. This is interesting in the case of
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reductive p-adic groups, since important subgroups such as the Borel subgroup are
in general not open.

One ingredient for the main results of this paper is the Bass–Heller–Swan
decompositions for additive categories and the presentation of criteria for the
vanishing of the Nil-term, see Sect. 6, and [2, 13]. The second is the analysis of
the filtration of the Hecke algebra of a compact td-groups in terms of approximate
units, see Sect. 7.

1.1 Conventions and Notations

• A td-group is a locally compact second countable totally disconnected topologi-
cal Hausdorff group. Note that for any td-group its unit has a neighborhood basis
consisting of compact open subgroups.

• A subgroup is always assumed to be closed.
• A group homomorphism has closed image and is an identification onto it.
• We denote by R an associative ring, which is not necessarily commutative and

does not necessarily have a unit. If a ring has a unit, it is called a unital ring. In
almost all cases we will require for a unital ring R that Q ⊆ R holds, i.e., for
every integer n ≥ 1 the element n · 1 = 1 + 1 + · · · + 1 has a multiplicative
inverse in R.

• In a ring the unit is denoted by 1. In a group the unit is denoted by e.
• For an epimorphism p : S → S′ of sets, a transversal T is a subset T ⊆ S such

that the restriction of p to T yields a bijection p|T : T
∼=−→ S′. If S is a group, we

always assume that the unit is in T .

2 Hecke Algebras

In this section we slightly generalize the notions of a Hecke algebra by implement-
ing a normal character. An introduction to Hecke algebras can be found for instance
in [5, 6, 10].

2.1 Basic Setup

Let R be a (not necessarily commutative) associative unital ring with Q ⊆ R. Let G
be a td-group with a normal (not necessarily open or central) subgroup N ⊆ G. Put

Q = G/N . Then we obtain an extension of td-groups 1 → N → G
pr−→ Q→ 1.
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Consider a group homomorphism ρ : G→ aut(R), where aut(R) is the group of
automorphism of the unital ring R. We will assume throughout the paper that the
kernel of ρ is open, in other words, G acts smoothly on R.

We write gr = ρ(g)(r) for g ∈ G and r ∈ R. With this notation we get er = r ,
g1 = 1, (g1g2)r = g1(g2r), g(r1r2) = (gr1)(gr2) and g(r1 + r2) = gr1 + gr2 for
g, g1, g2 ∈ G, r, r1, r2 ∈ R, and the units e ∈ G and 1 ∈ R.

A normal character is a locally constant group homomorphism

ω : N → cent(R)×

to the multiplicative group of central units of R satisfying

ω(gng−1) = ω(n) (5)

for all n ∈ N and g ∈ G. Note that ker(ω) is an open subgroup of N and a normal
subgroup of G. We will need the following compatibility condition between the
normal character and the G-action ρ on R, namely for n ∈ N , g ∈ G, and r ∈ R

gω(n) = ω(n); (6)

nr = r. (7)

Let μ be a Q-valued Haar measure on Q, i.e., a Haar measure μ on Q such that
for any compact open subgroup K ⊆ Q we have μ(K) ∈ Q

>0. Given any Haar
measure μ on Q, we can normalize it to a Q-valued Haar measure by choosing a
compact open subgroup L0 ⊆ Q and defining μ′ = 1

μ(L0)
· μ.

2.2 The Construction of the Hecke Algebra

An element s in the Hecke algebra H(G;R, ρ,ω)μ is given by a map s : G → R

with the following properties

• The map s : G→ R is locally constant.
• The image of its support supp(s) := {g ∈ G | s(g) �= 0} ⊆ G under pr : G→ Q

is a compact subset of Q.
• For n ∈ N and g ∈ G we have

s(ng) = ω(n) · s(g); (8)

s(gn) = s(g) · ω(n). (9)
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Definition 2.1 Let Pρ,ω the set of compact open subgroups K ⊆ G satisfying

kr = r for k ∈ K, r ∈ R; (10)

ω(n) = 1 for n ∈ N ∩K. (11)

We abbreviate P = Pρ,ω if ρ and ω are clear from the context.
We call an element K ∈ P admissible for s : G→ R if for all g ∈ G and k ∈ K

we have

s(kg) = s(g); (12)

s(gk) = s(g). (13)

Note that the existence of an admissible element K ∈ P is equivalent to the
condition that s is locally constant, since we assume that the image of the support
s under the projection G → Q is compact and the kernel of the normal character
is open in N , and there exists a neighborhood basis of the unit of G consisting of
compact open subgroups. Moreover, for K ∈ P , which is admissible for s, every
open subgroup K ′ ⊆ K is also admissible.

Remark 2.1 (Redundancy) Note that condition (9) follows from conditions (5)
and (8) by the following calculation

s(gn) = s(gng−1g)
(8)= ω(gng−1) · s(g) (5)= ω(n) · s(g) ω(n)∈cent(R)= s(g) · ω(n).

Analogously condition (8) follows from conditions (5) and (9).

The sum of two elements s, s′ in H(G;R, ρ, ω)μ is defined by

(s + s′)(g) := s(g)+ s′(g) for g ∈ G. (14)

In order to define the product, choose K ∈ P which is admissible for s and
admissible for s′, and a transversal T for the projection p : G → G/NK , where
NK is the subgroup of G given by {nk | n ∈ N, k ∈ K}. Define the product s · s′
by

(s · s′)(g) := μ(pr(K)) ·
∑

g′∈T
s(gg′) · gg′s′(g′−1). (15)

Note that K may depend on s, but not on g, whereas T can depend on both s and
g. The independence of the transversal follows from the following computation for
g, g′ ∈ G, n ∈ N and k ∈ K

s(g(g′nk)) · g(g′nk)s′((g′nk)−1)

= s((gg′n)k) · (gg′n)ks′(k−1n−1g′−1)
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(12), (13)= s(gg′n) · (gg′n)ks′(n−1g′−1)

(10)= s(gg′n) · gg′ns′(n−1g′−1)

(8), (9)= s(gg′) · ω(n) · gg′n(ω(n−1) · s′(g′−1))

= s(gg′) · ω(n) · gg′nω(n−1) · gg′ns′(g′−1)

(6), (7)= s(gg′) · ω(n) · ω(n−1) · gg′s′(g′−1)

= s(gg′) · ω(n · n−1) · gg′s′(g′−1)

= s(gg′) · ω(e) · gg′s′(g′−1) = s(gg′) · gg′s′(g′−1).

We leave the elementary proof to the reader that the definition of the product (15)
is independent of the choice of K and that we do get the structure of a (non-
unital) ring on H(G;R, ρ,ω)μ. A more general setting including all proofs will
be presented in detail in [3]. Moreover, one easily checks.

Lemma 2.2 Consider two elements s, s′ ∈ H(G;R, ρ,ω)μ and compact open
subgroups K,K ′ of G. Suppose that K is admissible for s and K ′ is admissible
for s′.

Then K ∩K ′ is admissible for the product s′ · s.

2.3 Functoriality in Q

Let G, N , Q, R, ρ, ω, and μ be as in Sect. 2.1. In particular we can consider the
Hecke algebra H(G;R, ρ,ω)μ see Sect. 2.2.

Consider a (not necessarily injective or surjective) open group homomorphism
ϕ : G′ → G of td-groups. Let N ′ ⊆ G′ be a normal subgroup satisfying

ϕ(N ′) = N. (16)

Denote by pr′ : G′ → Q′ := G′/N ′ the projection. Let ϕ : Q′ → Q be the open
group homomorphism induced by ϕ. Define a group homomorphism ρ′ : G′ →
aut(R) and a normal character ω′ : N ′ → cent(R)× by

ρ′ = ρ ◦ ϕ; (17)

ω′(n′) = ω(ϕ(n′)) for n′ ∈ N ′. (18)

Choose a Q-valued Haar measure on μ′ on Q′. Then we can consider the Hecke
algebra H(G′;R, ρ′, ω′)μ′ . Next we want to construct a homomorphism of rings

ϕ∗ : H(G′;R, ρ′, ω′)μ′ → H(G;R, ρ,ω)μ. (19)
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Consider an element s′ : G′ → R in H(G′;R, ρ′, ω′)μ′ . Choose K ′ ∈ Pρ′,ω′ ,
which is admissible for s′. Then ϕ(K ′) ∈ Pρ,ω . Fix g ∈ G. Consider g′ ∈
ϕ−1(gϕ(N ′K ′)). Then ϕ(g′)−1g belongs to ϕ(N ′K ′). Choose n′ ∈ N ′ and k′ ∈ K ′
with ϕ(g′n′k′) = g. Put

s̃′(g′, g) := s′(g′) · ω(ϕ(n′)) ∈ R. (20)

One easily checks that this definition is independent of the choice of n′ ∈ N ′ and
k′ ∈ K ′. Obviously we have s̃′(g′, ϕ(g′)) = s′(g′) for g′ ∈ G′. Choose a transversal
T ′ of the projection G′ → G′/N ′K ′, which is allowed to depend on s′. Put T ′(g) =
T ′ ∩ ϕ−1(gϕ(N ′K ′)). Then we define

ϕ∗(s′)(g) = μ′(pr′(K ′))
μ(pr(ϕ(K ′)))

·
∑

g′∈T ′(g)
s̃′(g′, g). (21)

This is a well-defined element in H(G;R, ρ, ω)μ, which is independent of the
choice of T and K ′. One easily checks

Lemma 2.3

(1) We have supp(ϕ∗(s′)) ⊆ ϕ(supp(s′)).
(2) If K ′ ∈ P ′

ρ′,ω′ is admissible for s′, then ϕ(K ′) is admissible for ϕ∗(s′).
(3) Suppose that ϕ is injective. Then we get

ϕ∗(s′)(g) =
{

μ′(pr′(K ′))
μ(pr(ϕ(K ′))) · s(g′) if ϕ(g′) = g for some g′ ∈ G′

0 g′ /∈ im(ϕ)

and

suppG(ϕ∗(s′)) = ϕ(suppG′(s′)).

(4) The map ϕ∗ : H(G′;R, ρ′, ω′)μ′ → H(G;R, ρ,ω)μ is a homomorphism of
(non-unital) rings.

2.4 Approximate Units

Definition 2.4 (Rings with Approximate Units) An approximate unit for a ring R

is a subset {ei | i ∈ I } of elements ei ∈ R indexed by some directed set I such that
ei · ej = ei = ej · ei holds for i ≤ j and for every element r ∈ R there exists an
index i ∈ I with ei · r = r = r · ei .
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The ring R has an approximate unit if and only if there is a directed system of
subrings {Ri | i ∈ I } indexed by inclusion such that each Ri is unital and R =⋃

i∈I Ri . Obviously a unital ring has an approximate unit.
Note that the ring H(G;R, ρ, ω)μ has a unit if and only if G is discrete. If G

is not discrete, H(G;R, ρ, ω)μ has at least an approximate unit by the following
construction.

Lemma 2.2 implies for K ∈ P that the subset

H(G//K;R, ρ, ω)μ ⊆ H(G;R, ρ,ω)μ (22)

consisting of those elements, for which K is admissible, is closed under addition and
multiplication and hence is a subring. Define an element 1K in H(G//K;R, ρ,ω)μ
by

1K(g) =
{

1
μ(pr(K))

· ω(n) if g ∈ NK, g = nk for n ∈ N, k ∈ K;
0 otherwise.

(23)

Lemma 2.5 The element 1K is a unit in H(G//K;R, ρ, ω)μ. Moreover

H(G//K;R, ρ,ω)μ ⊆ H(G//K ′;R, ρ,ω)μ if K ′ ⊆ K;
H(G;R, ρ,ω)μ =

⋃

K

H(G//K;R, ρ,ω)μ,

where K runs through the elements of P .

2.5 Discarding μ

In the sequel we omit the subscript μ in the notation of the Hecke algebra, since
for two Q-valued Haar measures μ and μ′ on G/N there is precisely one rational
number r satisfying r > 0 and μ′ = r · μ, and the map

H(G;R, ρ, ω)μ′
∼=−→ H(G;R, ρ,ω)μ, s �→ r · s

is an isomorphism of rings.
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3 Z-Categories, Additive Categories and Idempotent
Completions

A Z-category is a not necessarily unital category A such that for every two objects
A and A′ in A the set of morphisms morA(A,A′) has the structure of a Z-module
and composition is Z-bilinear. If G is a group, a G-Z-category A is a Z-category
with a left G-action by automorphisms of Z-categories. Note that we do not require
that A has identity morphisms. However, if A has identity morphisms, the G-action
is required to respect them. Given a ring R, we denote by R the Z-category with
precisely one object, whose Z-module of endomorphisms is given by R with its
additive structure and composition is given by the multiplication in R. Obviously R

is unital if and only if R is unital.
An additive category A is a Z-category with finite direct sums. Given a ring

R, the category R-MODfgf of finitely generated free R-modules carries an obvious
structure of an additive category. Note that we do not require that A has identity
morphisms. If it does, we call it unital.

Given a Z-category A, let A⊕ be the associated additive category whose objects
are finite tuples of objects in A and whose morphisms are given by matrices of
morphisms in A (of the right size) and the direct sum is given by concatenation of
tuples and the block sum of matrices, see for instance [13, Section 1.3]. If A is
unital, A⊕ is unital.

Let R be a unital ring. Then the obvious inclusion of unital additive categories

R⊕
-−→ R-MODfgf (24)

is an equivalence of unital additive categories.
Given an additive categoryA, its idempotent completion Idem(A) is defined to be

the following additive category. Objects are morphisms p : A → A in A satisfying
p ◦ p = p. A morphism f from p1 : A1 → A1 to p2 : A2 → A2 is a morphism
f : A1 → A2 in A satisfying p2 ◦ f ◦ p1 = f . Note that Idem(A) is always unital,
regardless of whether A is unital or not. The identity of an object (A, p) is given by
the morphism p : (A, p) → (A, p).

If A is unital, then there is an obvious embedding

η(A) : A→ Idem(A)

sending an object A to idA : A → A and a morphism f : A → B to the
morphism given by f again. A unital additive category A is called idempotent
complete if η(A) : A→ Idem(A) is an equivalence of unital additive categories, or,
equivalently, if for every idempotent p : A→ A in A there are objects B and C and

an isomorphism f : A ∼=−→ B ⊕ C in A such that f ◦ p ◦ f−1 : B ⊕ C → B ⊕ C
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is given by

(
idB 0
0 0

)

. The idempotent completion Idem(A) of a unital additive

category A is idempotent complete.
Let R be unital ring. Let R-MODfgp be the unital additive category of finitely

generated projective R-modules. We obtain an equivalence of unital additive

categories Idem(R-MODfgf)
-−→ R-MODfgp by sending an object (F, p) to im(p).

It and the functor of (24) induce an equivalence of unital additive categories

θR : Idem
(
R⊕
) -−→ R-MODfgp. (25)

Let A be an additive category. Let $ : A → A be an automorphism of additive
categories. Define the additive category A$[t, t−1], called the $-twisted finite
Laurent category, as follows. It has the same objects as A. Given two objects A

and B, a morphism f : A → B in A$[t, t−1] is a formal sum f = ∑i∈Z fi · t i ,
where fi : $i(A)→ B is a morphism in A from $i(A) to B and only finitely many
of the morphisms fi are non-trivial. If g =∑j∈Z gj ·tj is a morphism in A$[t, t−1]
from B to C, we define the composite g ◦ f : A→ C by

g ◦ f :=
∑

k∈Z

( ∑

i,j∈Z,
i+j=k

gj ◦$j(fi)

)

· tk.

If A is unital, then A$[t, t−1] is unital again.

Let R be a (not necessarily unital) ring with an automorphism ϕ : R ∼=−→ R of
rings. Let Rϕ[t, t−1] be the ring of ϕ-twisted finite Laurent series with coefficients

in R. We obtain from ϕ an automorphism $ : R ∼=−→ R of Z-categories. There is an
obvious isomorphism of Z-categories

R$[t, t−1] ∼=−→ Rϕ[t, t−1]. (26)

If R is unital, then we obtain equivalences of unital additive categories

(R⊕)$[t, t−1] -−→ Rϕ[t, t−1]-MODfgf;
Idem

(
(R⊕)$[t, t−1]) -−→ Rϕ[t, t−1]-MODfgp. (27)

4 The Algebraic K-Theory of Z-Categories

Let A be a unital additive category. A construction of the non-connective K-
theory spectrum K∞(A) of a unital additive category can be found for instance
in [11] or [14]. We get from the canonical embedding η(A) : A → Idem(A) a
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weak homotopy equivalence K∞(η(A)) : K∞(A) → K∞(Idem(A)) on the non-
connective K-theory, see for instance [2, Lemma 3.3 (ii)].

Definition 4.1 (Algebraic K-Theory of (Not Necessarily Unital) Z-Categories)
We will define the algebraic K-theory spectrum K∞(A) of the (not necessarily
unital) Z-category A to be the non-connective algebraic K-theory spectrum of the
unital additive category Idem(A⊕). Define for n ∈ Z

Kn(A) := πn(K∞(A)).

Note that Definition 4.1 extends the definition of the non-connective K-theory
spectrum of unital additive categories to not necessarily unital Z-categories.

A functor F : A→ A′ of (not necessarily unital) Z-categories induces a map of
spectra

K∞(F ) : K∞(A) → K∞(A′). (28)

If the (not necessarily unital) Z-category A is the directed union of (not
necessarily unital) Z-subcategories Ai , then the canonical map

hocolimi∈I K∞(Ai )
-−→ K∞(A) (29)

is a weak homotopy equivalence and for every n ∈ Z the canonical map

colimi∈I Kn(Ai )
∼=−→ Kn(A) (30)

is a bijection. We conclude (29) and (30) for instance from [11, Corollary 7.2].
If R is an associative ring (not necessarily with a unit), we define the non-

connective K-theory spectrum K∞(R) to be K∞(R) and Kn(R) := πn(K∞(R))

for n ∈ Z. If R has an approximate unit, then our definition of Kn(R) agrees
with the usual definition of Kn(R) for a ring without unit by the kernel of the map
Kn(R+) → Kn(Z), where R+ is the ring with unit associated to R. Because of
Lemma 2.5 this applies to the Hecke algebra H(G;R, ρ, ω).

5 Covirtually Z Groups

Let G, N , Q, R, ρ, P , ω, and μ be as in Sect. 2.1. In particular, we can consider the
Hecke algebra H(G;R, ρ,ω), see Sect. 2.2. Assume, furthermore, that we have a
normal open subgroup L ⊆ G satisfying:

• G/L is isomorphic to Z;
• N ⊆ L;
• M := L/N is compact.
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Note that we get exact sequences of td-groups 1 → L → G → Z → 1 and
1 → M → Q → Z → 1, where Z is considered as discrete group and M is
compact.

Let g0 ∈ G be any element which represents in G/L a generator. Let ϕ : L→ L

be the automorphism of L given by conjugation with g0. Denote by L�cg0
Z the td-

group given by the semi-direct product of L with the discrete group Z with respect
to cg0 . Then we get an isomorphism of td-groups

α : L�cg0
Z

∼=−→ G; ltn �→ lgn
0 ,

if t ∈ Z is a fixed generator. It also induces an isomorphism β : M �cq0
Z

∼=−→ Q, if
we put q0 = pr(g0). In the sequel we identify G = L �cg0

Z and g0 with eLt for
eL ∈ L the unit and Q = M �cq0

Z and g0N with eQt for eQ ∈ Q the unit.
Since L ⊆ G is open, the Q-valued measure μ on G defines a Q-valued measure

on L by restriction, which we will denote by μ again. Note that we can consider the
Hecke algebra H(L;R, ρ|L, ω).

Next we check that the automorphism cg0 : L → L induces an automorphism of
rings

ϕ : H(L;R, ρ|L, ω)
∼=−→ H(L;R, ρ|L, ω) (31)

by sending s ∈ H(L;R, ρ|L, ω) given by a function s : L → R to the element given
by the function

ϕ(s) : L→ R, l �→ ts(t−1lt). (32)

Note that this is not just (19) applied to cg0 , condition (17) is not satisfied for cg0 .
So we have to check that ϕ is well-defined and a homomorphism.

First we check that ϕ(s) defines an element in H(L;R, ρ|L, ω). Obviously the
image of the support of ϕ(s) under L → L/N is compact, since this is true for
supp(s) and supp(ϕ(s)) = t supp(s)t−1.

Suppose that K ∈ P is admissible for s. Then tKt−1 is admissible for ϕ(s) by
the following calculation for l ∈ L and k′ ∈ tKt−1, if we write k′ = tkt−1 for
k ∈ K

ϕ(s)(k′l) = ts(t−1k′lt) = ts(t−1tkt−1lt) = ts(kt−1lt)
(12)= ts(t−1lt) = ϕ(s)(l),

and

ϕ(s)(lk′) = ts(t−1lk′t) = ts(t−1ltkt−1t) = ts(t−1ltk)
(13)= ts(t−1lt) = ϕ(s)(l).
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The following calculation shows that condition (8) is satisfied.

ϕ(s)(nl) = ts(t−1nlt) = ts(t−1ntt−1lt)
(8)= t
(
ω(t−1nt) · s(t−1lt)

)

= tω(t−1nt) · ts(t−1lt)
(5), (6)= ω(n) · ts(t−1lt) = ω(n) · ϕ(s)(l).

Recall that the condition (9) holds automatically, see Remark 2.1. Hence ϕ is well-
defined.

It is obviously compatible with the addition. It is compatible with the multipli-
cation by the following calculation for two elements s, s′ ∈ H(L;R,P |L, ω) and
l ∈ L, where K ∈ P is admissible for both s and s′, and T is a transversal for the
projection L → L/NK , and pr : L → M = L/N is the projection. We will use
the fact that tT t−1 is a transversal for the projection L → L/NtKt−1 and tKt−1

is admissible for ϕ(s) and ϕ(s′). Moreover, we have

[M : pr(K)] = [tMt−1 : t pr(K)t−1] = [M : pr(tKt−1)]. (33)

We compute

ϕ(s · s′)(l) = t (s · s′)(t−1lt)

(15)= t

⎛

⎝μ(pr(K)) ·
∑

g′∈T
s(t−1ltg′) · t−1ltg′s′(g′−1)

⎞

⎠

= μ(pr(K)) ·
∑

g′∈T
ts(t−1ltg′) · ltg′s′(g′−1)

= μ(M)

[M : pr(K)] ·
∑

g′∈T
ts(t−1ltg′t−1t) · ltg′t−1ts′(t−1tg′−1t−1t)

(33)= μ(M)

[M : pr(tKt−1)] ·
∑

g′′∈tT t−1

ts(t−1lg′′t) · lg′′ts′(t−1g′′−1t)

= μ(pr(tKt−1)) ·
∑

g′′∈tT t−1

ϕ(s)(lg′′) · lg′′ϕ(s′)(g′′−1)

(15)= (ϕ(s) · ϕ(s′))(l).

Lemma 5.1 There is a natural isomorphism of (non-unital) rings

� : H(L;R, ρ|L, ω)ϕ[t, t−1] ∼=−→ H(G;R, ρ, ω).
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Proof Consider an element s ∈ H(L;R, ρ|L, ω) and an element n ∈ Z. Then
�(stn) is defined to be the element in H(G;R, ρ,ω) given by

G→ R, (ltm) �→
{
s(l) if m = n;
0 otherwise.

(34)

Obviously the image of the support of �(stn) under pr : G → Q is compact, as it
is a closed subset of tnM and M ⊆ Q is compact. Suppose that the compact open
subgroup K ⊆ L is admissible for s. Then K ∩ t−nKtn ⊆ L ⊆ G is admissible for
�(stn) by the following calculation for l ∈ L and k ∈ K ∩ t−nKtn

�(stn)(kltn)
(34)= s(kl)

(12)= s(l)
(34)= �(stn)(ltn),

and

�(stn)(ltnk) = �(stn)(ltnkt−ntn)
(34)= s(ltnkt−n)

(13)= s(l)
(34)= �(stn)(ltn)

and the observation that we have �(stn)(ltmk) = �(stn)(kltm) = �(stn)(ltm) = 0
for m ∈ Z with m �= n. Next we verify condition (8). We get for z ∈ N and m ∈ Z

with m �= n that �(stn)(zltm) = 0 = �(stn)(nltm) and

�(stn)(zltn)
(34)= s(zl)

(8)= ω(z) · s(l) (34)= ω(z) ·�(stn)(ltn)

hold. Recall that the condition (9) holds automatically, see Remark 2.1. Thus we
have shown that �(stn) is a well-defined element in H(G;R, ρ,ω).

Define the image under � of an arbitrary element in H(L;R, ρ|L, ω)ϕ[t, t−1]
given by a finite sum

∑
n∈Z snt

n to be the element
∑

n∈Z �(snt
n) in H(G;R, ρ,ω).

Obviously � is compatible with the addition. In order to show that � is compatible
with the multiplication, it suffices to show for s, s′ ∈ H(L;R, ρ|L, ω), l ∈ L, and
m′, n, n′ ∈ Z

(
�(stn) ·�(s′tn′ )

)
(ltm) = �(stn · s′tn′ )(ltm).

Fix a compact open subgroup K ⊆ G such that K is admissible for both �(stn)

and �(s′tn′) and tnKt−n is admissible for both s and ϕn(s). Consider a transversal
T ′ for the projection L → L/NK . Then T = {tm′ l′ | m′ ∈ Z, l′ ∈ T ′} is a

transversal for the projection G → G/NK and the map Z × T ′
∼=−→ T sending
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(m′, l′) to tm
′
l′ is a bijection. Moreover, tnT ′t−n is a transversal for the projection

L→ L/NtnKt−n. We have

μ(pr(tnKt−n)) = μ(tn pr(K)t−n)

= μ(M)

[M : tn pr(K)t−n]
(33)= μ(M)

[M : pr(K)] = μ(pr(K)). (35)

We compute

(
�(stn) · �(s ′tn′)

)
(ltm)

(15)= μ(pr(K)) ·
∑

g′∈T
�(stn)(ltmg′) · ltmg′�(s ′tn′)(g′−1)

= μ(pr(K)) ·
∑

l′∈T ′

∑

m′∈Z
�(stn)(ltmtm

′
l′) · ltmtm

′
l′�(s ′tn′)((tm′ l′)−1)

= μ(pr(K)) ·
∑

l′∈T ′

∑

m′∈Z
�(stn)(ltm+m′ l′t−m−m′ tm+m′) · ltm+m′ l′�(s ′tn′)(l′−1t−m′)

(34)= μ(pr(K)) ·
∑

l′∈T ′

∑

m′∈Z
m+m′=n,−m′=n′

s(ltm+m′ l′t−m−m′) · ltm+m′ l′s ′(l′−1)

=
{
μ(pr(K)) ·∑l′∈T ′ s(ltnl′t−n) · ltnl′s ′(l′−1) m = n+ n′

0 m �= n+ n′

=
{
μ(pr(K)) ·∑l′∈T ′ s(ltnl′t−n) · ltnl′t−ntns ′(t−ntnl′−1t−ntn) m = n+ n′

0 m �= n+ n′

(32)=
{
μ(pr(K)) ·∑l′∈T ′ s(ltnl′t−n) · ltnl′t−nϕn(s ′)(tnl′−1t−n) m = n+ n′

0 m �= n+ n′

(35)=
{
μ(tnKt−n) ·∑l′′∈tnT ′t−n s(ll′′) · ll′′ϕn(s ′)(l′′−1) m = n+ n′

0 m �= n+ n′

(15)=
{
(s · ϕn(s ′))(l) m = n+ n′

0 m �= n+ n′

(34)= �(s · ϕn(s ′) · tn+n′)(ltm)

= �(stn · s ′tn′)(ltm).
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Obviously � is injective. It remains to show that � is surjective. Any element
in H(G;R, ρ,ω) can be written as a sum of elements s′ for which the support is
contained in Ltn for some n ∈ Z. Hence it suffices to show that such s′ is in the
image. Define s : L → R by s(l) = s′(ltn). Choose K ∈ P such that both K and
t−nKtn are admissible for s′. Obviously K ⊆ L and t−nKtn ⊆ L. We have for

l ∈ L and k ∈ K the equality s′(kltn) (12)= s′(ltn), which implies s(kl) = s(l). We

also have s′(lktn) = s′(ltnt−nktn)
(13)= s′(ltn) which implies s(lk) = s(l). Hence

K is admissible for s. Condition (8) follows from the calculation for z ∈ N .

s(zl) = s′(zltn) (8)= ω(z) · s′(ltn) = ω(z) · s(l).

Recall that the condition (9) holds automatically, see Remark 2.1. We conclude
that s defines an element in H(L;R, ρ|L, ω) with �(stn) = s′. This finishes the
proof of Lemma 5.1. ��
Lemma 5.2 Let A be a (not necessarily unital) additive category which is the

directed union A = ⋃i∈I Ai of unital additive categories. Let $ : A ∼=−→ A be
an automorphism of (non-unital) additive categories.

There is an equivalence of unital additive categories

F : Idem
(

Idem(A)Idem($)[t, t−1]) -−→ Idem
(
A$[t, t−1]).

Proof Recall that an object in Idem(A) is given by a pair (A, p), where A is an
object in A and p : A → A is a morphism in A with p ◦ p = p. Moreover, a
morphism f : (A, p) → (A′, p′) in Idem(A)Idem($)[t, t−1] is given by a finite sum
f = ∑j∈Z fj · tj , where fj : Idem($)j (A, p) := ($j (A),$j (p)) → (A′, p′) is

a morphism in Idem(A). Hence each fj is given by a morphism fj : $j(A) → A′
satisfying fj = p′◦fj◦$j(p). We conclude that a morphism f : (A, p)→ (A′, p′)
in Idem(A)Idem($)[t, t−1] is the same as a morphism f : A → A′ in A$[t, t−1]
satisfying (p′ · t0) ◦ f ◦ (p · t0) = f , since we get in A$[t, t−1]

(p′ · t0) ◦ f ◦ (p · t0) =
∑

j∈Z
(p′ · t0) ◦ fj · tj ◦ (p · t0) =

∑

j∈Z

(
p′ ◦ fj ·$j(p)

) · tj .

Now an object in Idem
(

Idem(A)Idem($)[t, t−1]) is given by
(
(A, p), q

)
, where A

is an object in A, p : A→ A is a morphism in A with p ◦p = p, and q : (A, p)→
(A, p) is a morphism in Idem(A)Idem($)[t, t−1] satisfying q ◦q = q . The morphism
q is the same as a morphism q : A→ A in A$[t, t−1] satisfying (p·t0)◦q◦(p·t0) =
q and q ◦ q = q . Hence we can define F on objects by

F((A, p), q) = (A, q).
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Consider two objects ((A, p), q) and ((A′, p′), q ′). A morphism f : ((A, p), q)→
((A′, p′), q ′) in Idem

(
Idem(A)Idem($)[t, t−1]) is the same as a morphism

f : (A, p)

→ (A′, p′) in Idem(A)Idem($)[t, t−1] satisfying q ′ ◦ f ◦ q = f and therefore the
same as a morphism f : A→ A′ in A$[t, t−1] satisfying (p′ · t0) ◦ f ◦ (p · t0) = f

and q ′ ◦ f ◦ q = f .
Hence we can define F on morphisms by sending the morphism f : ((A, p), q

)→
(
(A′, p′), q ′

)
in Idem

(
Idem(A)Idem($)[t, t−1]) to the morphism (A, q)→ (A′, q ′)

in Idem
(
A$[t, t−1]) given by the morphism f : A→ A′ in A$[t, t−1]. One easily

checks that F is compatible with composition and sends identity morphisms to
identity morphisms.

Next we show that the map induced by F

morIdem(Idem(A)Idem($)[t,t−1])
(
((A, p), q), ((A′, p′), q ′)

)

→ morIdem(A$[t,t−1])
(
(A, q), (A′, q ′)

)

is bijective. Obviously it is injective. In order to show surjectivity, we have to
show for a morphism f : (A, q) → (A′, q ′) in Idem(A)Idem($)[t, t−1] satisfying
q ′ ◦ f ◦ q = f that (p′ · t0) ◦ f ◦ (p · t0) = f holds. This follows from the
following computation using (p · t0) ◦ q ◦ (p · t0) = q , q ◦ q = q , p ◦ p = p,
(p′ · t0) ◦ q ′ ◦ (p′ · t0) = q ′, q ′ ◦ q ′ = q ′, and p′ ◦ p′ = p′,

(p′ · t0) ◦ f ◦ (p · t0) = (p′ · t0) ◦ q ′ ◦ f ◦ q ◦ (p · t0)

= (p′ · t0) ◦ (p′ · t0) ◦ q ′ ◦ (p′ · t0) ◦ f ◦ (p · t0) ◦ q ◦ (p · t0) ◦ (p · t0)

= (p′ · t0) ◦ q ′ ◦ (p′ · t0) ◦ f ◦ (p · t0) ◦ q ◦ (p · t0) = q ′ ◦ f ◦ q = f.

Finally we show that F is surjective on objects. Consider any object (A, q) in
Idem

(
A$[t, t−1]). In order to show that (A, q) is in the image of F , we have

to construct a morphism p : A → A in A such that p ◦ p = p holds in A and
(p · t0) ◦ q ◦ (p · t0) = q holds in A$[t, t−1].

We can write q as a finite sum q =∑j∈Z qj · tj for morphisms qj : $j(A)→ A

in A. Since A is the directed union
⋃

i∈I Ai of the unital subcategories Ai , we
can find an index i0 ∈ I such that for each j ∈ Z with qj �= 0 and hence for all
j ∈ J the morphisms qj and $−j (qj ) belong to Ai0 . Let p ∈ Ai0 be the identity
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morphism of the object A in Ai0 . Then we get p ◦ p = p, p ◦ qj = qj , and
$−j (qj ) ◦ p = $−j (qj ) in A for all j ∈ Z. Now we compute

(p · t0) ◦ q ◦ (p · t0) = (p · t0) ◦
⎛

⎝
∑

j∈Z
qj · tj

⎞

⎠ ◦ (p · t0)

=
∑

j∈Z
(p · t0) ◦ (qj · tj ) ◦ (pt0) =

∑

j∈Z
(p ◦ qj ·$j(p)) · tj =

∑

j∈Z
(qj ·$j(p)) · tj

=
∑

j∈Z
$j($−j (qj ) · p) · tj =

∑

j∈Z
$j($−j (qj )) · tj =

∑

j∈Z
qj · tj = q.

This finishes the proof of Lemma 5.2. ��
The next lemma allows us to reduce the computation of the algebraic K-theory

of the non-unital ring H(G;R, ρ,ω) to the calculation of the algebraic K-theory
of a unital additive category given by the twisted finite Laurent category of an
automorphism of a unital additive category. The main advantage will be that for
such a category Bass–Heller–Swan decompositions will be available.

Lemma 5.3 There is a weak equivalence

K∞( Idem(H(L;R, ρ|L, ω)⊕)Idem(ϕ⊕)[t, t−1]) -−→ K∞(H(G;R, ρ,ω)
)
.

Proof Recall that for a unital additive category B the obvious map K∞(B) →
K∞(Idem(B)) is a weak homotopy equivalence. We can apply Lemma 5.2 to
A = H(L;R, ρ|L, ω)⊕ and the automorphism ϕ⊕ because of Lemma 2.5. Hence
we obtain a weak equivalence

K∞( Idem(H(L;R, ρ|L, ω)⊕)Idem(ϕ⊕)[t, t−1])

-−→ K∞( Idem
(
(H(L;R, ρ|L, ω)⊕)ϕ⊕[t, t−1])).

The (non-unital) additive category (H(L;R, ρ|L, ω)⊕)ϕ⊕[t, t−1] is isomorphic to

the (non-unital) additive category
(
H(L;R, ρ|L, ω)ϕ[t, t−1])⊕ by (26), and hence

by Lemma 5.1 to the (non-unital) additive category H(G;R, ρ,ω)⊕. Hence we
obtain a weak homotopy equivalence

K∞( Idem
(
(H(L;R, ρ|L, ω)⊕)ϕ⊕[t, t−1])) -−→ K∞( Idem

(
H(G;R, ρ,ω)⊕

))
.

��
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6 A Review of the Twisted Bass–Heller–Swan Decomposition
for Unital Additive Categories

In this section additive category always means a small unital additive category and
functors are assumed to respect identity morphisms. The same is true for rings.

The following definitions are taken from [2, Definition 6.1].

Definition 6.1 (Regularity Properties of Rings) Let l be a natural number.

(1) We call R Noetherian if any R-submodule of a finitely generated R-module is
again finitely generated.

(2) We call R regular coherent if every finitely presented R-module M is of type
FP.

(3) We call R l-uniformly regular coherent if every finitely presented R-module M

admits an l-dimensional finite projective resolution, i.e., there exists an exact
sequence 0 → Pl → Pl−1 → · · · → P0 → M → 0 such that each Pi is
finitely generated projective.

(4) We call R regular if it is Noetherian and regular coherent.
(5) We call R l-uniformly regular if it is Noetherian and l-uniformly regular

coherent.

These notions are generalized to additive categories in [2, Section 6] in such
a way that they reduce in the special case A = R to the ones appearing in
Definition 6.1. Therefore the precise definitions for additive categories are not
needed to comprehend the material of this paper.

The following result follows from [2, Theorem 6.8 and Theorem 9.1].

Theorem 6.2 (The Non-connective K-Theory of Additive Categories) Let A be
an additive category. Suppose that A is regular. Consider any automorphism

$ : A ∼=−→ A of additive categories.
Then we get a weak homotopy equivalence of non-connective spectra

a∞: TK∞($−1)

-−→ K∞(A$[t, t−1]),

where TK∞($−1) is the mapping torus of the map of spectra K∞($) : K∞(A) →
K∞(A) induced by $.

7 Hecke Algebras Over Compact td-Groups and Crossed
Product Rings

Let G, N , Q := G/N , pr : G→ Q, R, P , ρ, ω, and μ be as in Sect. 2.1 and denote
by H(G;R, ρ,ω) the Hecke algebra which we have introduced in Sect. 2.2. Our
main assumption in this section will be that Q is compact.
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Definition 7.1 We call a subgroup N ⊆ G locally central if the centralizer CGN

of N in G is an open subgroup.

The main result of this section is

Theorem 7.2 Suppose that Q is compact and N is locally central. Let l be a
natural number. Let R be a unital ring with Q ⊆ R such that R is l-uniformly
regular or regular respectively.

Then the additive category Idem
(
H(G;R, ρ, ω)[Zm]⊕

)
is (l + 2m)-uniformly

regular or regular respectively for all m ≥ 0.

For the purpose of this paper we need the conclusion of Theorem 7.2 only for the
property regular, but for later applications it will be crucial to consider the property
l-uniformly regular as well. The point will be that the property l-uniformly regular
is compatible with infinite products of additive categories, in contrast to the property
regular.

7.1 Existence of Normal K ∈ P

Lemma 7.3 Suppose that Q is compact and N is locally central.
Then for every compact open subgroup K ⊆ G there exists a compact open

subgroup K ′ ⊆ G such that K ′ ⊆ K , K ′ ⊆ CGN , and K ′ is normal in G.

Proof Put L = K ∩ CGN . Then L is a compact open subgroup of G satisfying
L ⊆ K and L ⊆ CGN . Choose a transversal T of the projection G → G/NL =
Q/ pr(L). Define K ′ = ⋂t∈t tLt−1. Since pr is open, Q/ pr(L) is compact and
discrete and hence finite. This implies that the set T is finite. Hence K ′ ⊆ G is
again compact open. We get for n ∈ N and l ∈ L

(tnl)L(tnl)−1 = tnlLl−1n−1t−1 = tnLn−1t−1 L⊆CGN= tLt−1.

This implies K ′ = ⋂g∈G gLg−1. Hence K ′ ⊆ G is a compact open normal
subgroup and obviously satisfies K ′ ⊆ K and K ′ ⊆ CGN . ��

7.2 Crossed Products Rings of Finite Groups and Regularity

Let R be a unital ring and D be a (discrete) group. Recall that a crossed product ring
R ∗ D is a unital ring which is a free left R-module with an R-basis {bd | d ∈ D}
indexed by the elements in D such that be is the unit in R ∗D, for d1, d2 ∈ D there
is a unit w(d1, d2) ∈ R× satisfying bd1d2 = w(d1, d2) · bd1 · bd2 , and for r ∈ R

and d ∈ D there exists cd(r) ∈ R with cd(r) · bd = bd · (r · be), where ce(r) = r

is required for r ∈ R. In particular each element bd has an inverse b−1
d in R ∗ D
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(which is not given by bd−1 in general) and there is an inclusion of rings R → R∗D
sending r to r · be.

The notion of crossed product ring is a generalization of the notion of a twisted
group ring, which is the special case where w is trivial. For more details we refer
for instance to [1, Section 4] or [4, Section 6].

Lemma 7.4 Let R be a ring with Q ⊆ R and D be a finite group. Let R ∗D be a
crossed product ring.

(1) Let M be any R ∗D-module. Let j : R → R ∗D be the canonical inclusion of
rings. Then we obtain R ∗D-homomorphisms

i : M → R ∗D ⊗R j∗M, x �→
∑

d∈D

1

|D| · bd ⊗ b−1
d · x;

p : R ∗D ⊗R j∗M → M, u⊗ y �→ u · y,

satisfying p ◦ i = idM , where b−1
d denotes the inverse of bd in R ∗D.

(2) If R is regular, then R ∗D is regular.
(3) If R is l-uniformly regular, then R ∗D is l-uniformly regular.
(4) If R is semi-simple, then R ∗D is semi-simple.

Proof

(1) We check that i is R ∗ D-linear. Obviously i is compatible with addition, it
remains to treat multiplication. Consider r ∈ R and d0 ∈ D. Note for the
sequel that the element b−1

d · r · bd0 · bd−1
0 d

in R ∗ D belongs to R. Hence we

get for x ∈ M , r ∈ R and d0 ∈ D

i(r · bd0 · x)

=
∑

d∈D

1

|D| · bd ⊗ b−1
d · (r · bd0 · x)

=
∑

d∈D

1

|D| · bd ⊗ (b−1
d · r · bd0 · bd−1

0 d
) · (b

d−1
0 d

)−1 · x

=
∑

d∈D

1

|D| · bd · (b
−1
d · r · bd0 · bd−1

0 d
)⊗ (b

d−1
0 d

)−1 · x

=
∑

d∈D

1

|D| · r · bd0 · bd−1
0 d

⊗ (b
d−1

0 d
)−1 · x

= r · bd0 ·
1

|D| ·
∑

d∈D
b
d−1

0 d
⊗ (b

d−1
0 d

)−1 · x
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= r · bd0 ·
1

|D| ·
∑

d ′∈D
bd ′ ⊗ (bd ′)

−1 · x

= r · bd0 · i(x).

Obviously p is a well-defined R ∗D-homomorphism satisfying p ◦ i = idM .
(2) Since R is regular, R is in particular Noetherian. Since R ∗ D is a finitely

generated R-module, R ∗D is Noetherian as well.
It remains to show that a finitely presented R ∗ D-module M is of type FP.

Since R is regular and the R-module i∗M is finitely presented, i∗M is of type
FP. Since R∗D is free as R-module and hence the functor sending an R-module
N to the R∗D-module R∗D⊗RN is flat and sends finitely generated projective
R-modules to finitely generated projective R ∗D-modules, the R ∗D-module
R ∗D⊗R i∗M is of type FP. Since a direct summand in a module of type FP is
of type FP again, the R ∗D-module M is of type FP.

(3) The proof is analogous to assertion (2), since all the statements about finite-
dimension remain true if one inserts l-dimensional everywhere.

(4) A ring R is semisimple if all its modules are projective. Hence assertion (4)
follows from assertion (1). This finishes the proof of Lemma 7.4.

��

7.3 The Hecke Algebra and Crossed Products

In this subsection we will assume that Q is compact.
Consider a compact open normal subgroup K of G satisfying K ∈ P . Since both

K and N are normal in G, the subgroup NK of G is also normal. Put

D := G/NK = Q/ pr(K). (36)

Note that D is a finite discrete group. We want to show

Lemma 7.5 Suppose that Q is compact. Consider a compact open normal
subgroup K of G satisfying K ∈ P .

Then the unital ring H(G//K;R, ρ, ω) is a crossed product ring R ∗D.

Proof We begin by showing that H(G;R, ρ,ω) is a left R-module. Namely, define
for s ∈ H(G;R, ρ,ω) the new element r · s by (r · s)(g) := r · s(g). One easily
checks that r · s is well-defined.
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Fix a set-theoretic section σ : D → G of the projection p : G → D = G/NK

satisfying σ(eD) = eG. In the sequel we denote by T the transversal of p given by
T := {σ(d)−1 | d ∈ D}. For d ∈ D define bd ∈ H(G//K;R, ρ,ω) by the function

bd : G→ R,

g �→
{

1
μ(pr(K))

· ω(n) if p(g) = d and g = nkσ(d) for n ∈ N, k ∈ K;
0 p(g) �= d.

(37)

This is independent of the choice of n ∈ N and k ∈ K , since for n0, n1 ∈ N and
k0, k1 ∈ K with n0k0 = n1k1 we have n−1

1 n0 = k1k
−1
0 ∈ N ∩K and we compute

ω(n1) = ω(n1) · ω(n−1
1 n0)

(11)= ω(n1) · 1 = ω(n0). (38)

We have to check that the required transformation formulas (12) and (13) for
g ∈ G and k ∈ K are satisfied. If p(g) �= d , then bd(kg) = bd(g) = bd(gk) = 0
and the formulas hold. It remains to treat the case p(g) = d . This follows from the
calculations for g = nkσ(d) for n ∈ N , k ∈ K and k′ ∈ K using σ(d)k′σ(d)−1 ∈
K

bd(k
′g) = bd(k

′nkσ(d)) = bd((k
′nk′−1)(k′k)σ (d))

(37)= 1

μ(pr(K))
· ω(k′nk′−1)

(5)= 1

μ(pr(K))
· ω(n)

(37)= bd(g),

and

bd(gk
′) = bd(nkσ(d)k′) = bd(n(kσ(d)k′σ(d)−1)σ (d))

(37)= 1

μ(pr(K))
· ω(n)

(37)= bd(g).

The verification of (8) and (9) is left to the reader. This finishes the proof that bd is
a well-defined element in H(G//K;R, ρ,ω).

Consider any element s ∈ H(G//K;R, ρ, ω). Then we get

s =
∑

d∈D
μ(pr(K)) · s(σ (d)) · bd (39)
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by the following calculation for g ∈ G with g = nkσ(d) for n ∈ N and k ∈ K

s(g) = s(nkσ(d))
(8),(12)= ω(n) · s(σ (d))

ω(n)∈cent(R)= μ(pr(K)) · s(σ (d)) ·
(

1

μ(pr(K))
· ω(n)

)
(37)= μ(pr(K)) · s(σ (d)) · bd(g).

We conclude from (39) that {bd | d ∈ D} is an R-basis for the left R-module
H(G//K;R, ρ,ω).

For d1, d2 in D, define an element

w(d1, d2) := ω(n) ∈ R× (40)

if σ(d1d2)σ (d2)
−1σ(d1)

−1 = nk for n ∈ N and k ∈ K . This is independent of the
choice of n ∈ N and k ∈ K by (38). Next we want to show

bd1 · bd2 = w(d1, d2) · bd1d2 . (41)

Consider d1, d2 ∈ D and g ∈ G. Choose elements n ∈ N and k ∈ K satisfying
σ(d1d2)σ (d2)

−1σ(d1)
−1 = nk. If p(g) = d1d2, we fix n0 ∈ N and k0 ∈ K

satisfying g = n0k0σ(d1)σ (d2). We compute

(bd1 · bd2)(g)

(15)= μ(pr(K)) ·
∑

d∈D
bd1(gσ(d)−1) · gσ(d)−1bd2(σ (d))

(37)= μ(pr(K)) ·
∑

d∈D,p(σ(d))=d2

bd1(gσ(d)−1) · gσ(d)−1bd2(σ (d))

= μ(pr(K)) · bd1(gσ(d2)
−1) · gσ(d2)

−1bd2(σ (d2))

(37)= μ(pr(K)) · bd1(gσ(d2)
−1) · gσ(d2)

−1
(

1

μ(pr(K))
· ω(e)

)

= bd1(gσ(d2)
−1) · (gσ(d2)

−1 · 1
)

= bd1(gσ(d2)
−1)

(37)=
{

1
μ(pr(K))

· ω(n0) if p(g) = d1d2;
= 0 if p(g) �= d1d2.

(42)

Suppose for g ∈ G that p(g) = d1d2. We can write

g = n0k0σ(d1)σ (d2) =
(
n0k0k

−1n−1(k0k
−1)−1)(k0k

−1)σ(d1d2)
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and have n0k0k
−1n−1(k0k

−1)−1 ∈ N and k0k
−1 ∈ K . We compute

w(d1, d2) · bd1d2(g)

(40)= ω(n) · bd1d2(g)

(37)= ω(n) · 1

μ(pr(K))
· ω(n0k0k

−1n−1(k0k
−1)−1)

= ω(n) · 1

μ(pr(K))
· ω(n0) · ω(k0k

−1n−1(k0k
−1)−1)

(5)= ω(n) · 1

μ(pr(K))
· ω(n0) · ω(n−1)

ω(n0)∈cent(R)= 1

μ(pr(K))
· ω(n) · ω(n−1) · ω(n0)

= 1

μ(pr(K))
· ω(n0). (43)

Since w(d1, d2) ·bd1d2(g) = 0 if p(g) �= d1d2, we conclude (41) from (42) and (43).
We compute for d ∈ D, r ∈ R and d ′ ∈ D using the fact that {σ(d ′′)−1 | d ′′ ∈ D}

is a transversal for G→ G/NK = D and σ(eD) = eG

(
bd · (r · beD)

)
(σ (d ′))

(15)= μ(pr(K)) ·
∑

d ′′∈D
bd(σ (d ′)σ (d ′′)−1) · σ(d ′)σ (d ′′)−1((r · beD)(σ (d ′′))

)

(37)= μ(pr(K)) ·
∑

d ′′∈{eQ}
bd(σ (d ′)σ (d ′′)−1) · σ(d ′)σ (d ′′)−1((r · beD)(σ (d ′′))

)

= μ(pr(K)) · bd(σ (d ′)e−1
G ) · σ(d ′)e−1

G

(
(r · beD)(eG)

)

(37)= μ(pr(K)) · bd(σ (d ′)) · σ(d ′)
(

1

μ(pr(K))
· r · 1

)

= bd(σ (d ′)) · σ(d ′)r

(37)=
{

1
μ(pr(K))

· σ(d)r if d ′ = d;
0 otherwise.
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This implies for d ∈ D, r ∈ R, and g ∈ G

(
bd · (r · beD)

) (39)=
∑

d ′∈D
μ(pr(K)) · bd · (r · beD)(σ (d ′))bd ′

= μ(pr(K)) ·
(

1

μ(pr(K))
· σ(d)r

)

· bd = σ(d)r · bd. (44)

Recall from Lemma 23 that H(G//K;R, ρ,ω) has a unit, namely beD .
We conclude from (41) and (44) that the unital ring H(G//K;R, ρ, ω) is the

crossed product ring R ∗D associated to (w, c) for w defined in (40) and cd(r) :=
(ρ ◦ σ(d))(r). ��

7.4 Filtering the Hecke Algebra of a Compact Group
by Normal Compact Open Subgroups

Consider a sequence G = K0 ⊇ K1 ⊇ K1 ⊇ K2 ⊇ · · · of normal compact open
subgroups of G with

⋂
n≥0 Kn = {1} such that Kn ∈ P holds for n ∈ N. It exists

by Lemma 7.3 as we assume throughout this section that Q is compact and N is
locally central. Let 1Kn be the element in H(G;R, ρ,ω) defined in (23). Then 1Kn

is central in H(G;R, ρ,ω), since Kn is normal in G. We have 1Kn · 1Km = 1Kn =
1Km · 1Kn for m ≤ n. For every s ∈ H(G) there exists a natural number n ∈ N

satisfying 1Kn · s = s = s · 1Kn . In the sequel we sometimes abbreviate 1n = 1Kn ,
H(G) = H(G;R, ρ,ω) and H(G//Kn) = H(G//Kn;R, ρ, ω) and put 1−1 = 0.
The elementary proof of the next lemma is left to the reader.

Lemma 7.6 We have the subrings

1nH(G)1n = H(G//Kn) and (1n − 1n−1)H(G)(1n − 1n−1)

of H(G), which have 1n and (1n − 1n−1) as unit. We get an obvious identification
of rings (without unit)

⊕

m≥0

(1m − 1m−1)H(G)(1m − 1m−1) = H(G),

and for n ≥ 0 of rings with unit

n⊕

m=0

(1m − 1m−1)H(G)(1m − 1m−1) = 1nH(G)1n.
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Recall that a sequence A0
f0−→ A1

f1−→ A2 in an additive category A is called
exact at A1 if f1 ◦ f0 = 0 and for every object A and morphism g : A → A1 with
f1 ◦g = 0 there exists a morphism g : A→ A0 with f0 ◦g = g. For information on
how this notion is related by the Yoneda embedding to the usual notion of exactness
for modules we refer to [2, Lemma 5.10 and Lemma 6.3]. A functor F : A→ A′ of

additive categories is called faithfully flat, provided that a sequence A0
f0−→ A1

f1−→
A2 in A is exact, if and only if the sequence F(A0)

F (f0)−−−→ F(A1)
F (f1)−−−→ F(A2) in

A′ is exact.

Lemma 7.7 Let S and T be unital rings. Let pr : S × T → S be the projection,
which is a homomorphism of unital rings. Let i : S → S × T be the inclusion
sending s to (s, 0), which is a homomorphism of rings (without units). Then

(1) There exists a diagram of unital additive categories commuting up to natural
equivalence of unital additive categories

where the vertical arrows are the equivalences of unital additive categories
of (25) and pr∗ is restriction with pr.

(2) The functor Idem(i⊕) : Idem(S⊕) → Idem(S × T ⊕) has a retraction, namely
Idem(pr⊕) : Idem(S × T ⊕)→ Idem(S⊕).

(3) The functor Idem(i⊕) : Idem(S⊕)→ Idem(S × T ⊕) is faithfully flat.

Proof

(1) Next we construct for every object ([l], p) in Idem(S⊕) an isomorphism in S ×
T -MODfgp

T ([l], p) : pr∗ ◦ #S([l], p)
∼=−→ #S×T ◦ Idem(i⊕)([l], p).

Let A be the (l, l)-matrix over S, for which p : [l] → [l] is given by A. If
i(A) is the (l, l)-matrix over S × T given by applying i to each element in A,
then θS×T ◦ i⊕(p) is the S × T -homomorphism ri(A) : (S × T )l → (S × T )l

given by right multiplication with i(A). Let il : Sl → (S × T )l be the map
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sending(x1, x2, . . . , xl) to (i(x1), i(x2), . . . , i(xl)). We obtain a commutative
diagram of abelian groups

Now il
′

induces a homomorphism of abelian groups.

T ([l], p) : im(rA)→ im(ri(A)).

It is injective, since i and hence il is injective. Next we show that T ([l], p)
is bijective. Let y be an element of the image of ri(A). Choose x =(
(s1, t1), . . . , (sl , tl)

)
in (S × T )l with ri(A)(x) = y. Define x ′ ∈ S by

x ′ = (s1, . . . , sl). Then ri(A) ◦ il(x ′) = ri(A)(x) = y. Hence il sends rA(x) to
y. This finishes the proof that T ([l], p) is an isomorphisms of abelian groups.
One easily checks that it is an isomorphism of S × T -modules.

We leave it to the reader to check that the collection of the isomor-
phisms T ([l], p) defines a natural equivalence of functors Idem(S⊕) → S ×
T -MODfgp from pr∗ ◦ θS to θS×T ◦ Idem(i⊕).

(2) This follows from pr ◦i = idS .
(3) Since restriction is faithfully flat, the claim follows from assertion (1).

��
We record for later purposes

Lemma 7.8 Suppose that Q is compact. Consider normal compact open subgroups
K and K ′ of G satisfying K ′ ⊆ K and K,K ′ ∈ P . Let

i : H(G//K;R, ρ,ω) → H(G//K ′;R, ρ, ω)

be the inclusion of rings. Let m ≥ 0 be an integer. Denote by

i[Zm] : H(G//K;R, ρ, ω)[Zm] → H(G//K ′;R, ρ,ω)[Zm]

the inclusion of the (untwisted) group rings induced by i.
Then the functor

Idem(i[Zm]⊕) : Idem
(
H(G//K;R, ρ, ω)[Zm]⊕

)

→ Idem
(
H(G//K ′;R, ρ,ω)[Zm]⊕

)

has a retraction and is faithfully flat.
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Proof This follows from Lemma 7.7 and the the decomposition of unital rings

H(G//K ′;R,ρ,ω) = H(G//K;R,ρ,ω)⊕ (1K ′ − 1K)H(G//K ′;R,ρ, ω)(1K ′ − 1K),

cf. Lemma 7.6. ��

7.5 Proof of Theorem 7.2

Lemma 7.9 Let Ai be a collection of additive categories. Then
⊕

i∈I Ai is
l-uniformly regular or regular respectively if and only if each Ai is l-uniformly
regular or regular respectively.

Proof This is a consequence of the observations following from [2, Lemma 5.3],
that for an object A ∈⊕i∈I Ai there exists a finite subset J ⊆ I with A ∈⊕i∈J Ai

and we have the identifications

mor⊕
i∈I Ai

(?, A) = mor⊕
i∈J Ai

(?, A);
Z(
⊕

i∈J
Ai )-MOD =

∏

i∈J
ZAi -MOD.

More details of the proof can be found in [2, Section 11]. ��
Consider a sequence G = K0 ⊇ K1 ⊇ K1 ⊇ K2 ⊇ · · · of normal compact open

subgroups of G with
⋂

n≥0 Kn = {1} such that Kn ∈ P holds for n ∈ N. We get
from Lemma 7.6 for every natural number d identifications of additive categories

⊕

m≥0

Idem
(
(1m − 1m−1)H(G)(1m − 1m−1)⊕[Zd ]) = Idem

(
H(G)⊕[Zd ]);

n⊕

m=0

Idem
(
(1m − 1m−1)H(G)(1m − 1m−1)⊕[Zd ]) = Idem

(
H(G//Kn)⊕[Zd ]).

Hence by Lemma 7.9 it suffices to show that Idem
(
H(G//Kn)⊕[Zd ]) is (l + 2m)-

uniformly regular or regular respectively for every n ∈ N.
The unital ring H(G//Kn) is l-uniformly regular or regular respectively, since

R is l-uniformly regular or regular respectively by assumption and we have
Lemmas 7.4 and 7.5. Hence Idem

(
H(G//Kn)⊕[Zd ]) is (l+2m)-uniformly regular

or regular respectively by [2, Corollary 6.5 and Theorem 10.1]. This finishes the
proof of Theorem 7.2.
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8 Negative K-Groups and the Projective Class Group
of Hecke Algebras Over Compact td-Groups

Let G, N , Q := G/N , pr : G→ Q, R, P , ρ, ω, and μ be as in Sect. 2.1 and denote
by H(G;R, ρ,ω) the Hecke algebra which we have introduced in Sect. 2.2. Our
main assumption in this section will be that Q is compact.

Lemma 8.1 Suppose that Q is compact and N is locally central. Suppose that the
unital ring R is regular and satisfies Q ⊆ R. Then:

(1) Let K be the set of compact open normal subgroups K ⊆ G with K ∈ P

directed by K ≤ K ′ ⇐⇒ K ′ ⊆ K .
Then we get for n ∈ Z

Kn

(
H(G;R, ρ,ω)

) = colimK∈K Kn

(
H(G//K;R, ρ,ω)

)
.

(2) We get

Kn

(
H(G;R, ρ, ω)

) = 0 for n ≤ −1.

Proof

(1) We conclude from Lemmas 2.5 and 7.3

H(G;R, ρ,ω) =
⋃

K∈K
H(G//K;R, ρ,ω).

Now apply (30).
(2) For K ∈ K the unital ring H(G//K;R, ρ, ω) is regular by Lemma 7.4 (2)

and Lemma 7.5. Hence Kn

(
H(G//K;R, ρ, ω)

) = {0} for n ≤ −1, see [16,
page 154]. Now apply assertion (1).

��

Remark 8.1 Suppose that Q is compact and N is locally central. Because of
Lemma 7.3 we can choose a nested sequence of elements in K

K0 ⊇ K1 ⊇ K2 ⊇ K3 ⊇ · · ·

satisfying
⋂∞

i=0 Kn = {1}. Then for every K ∈ K there is a natural number
i with Ki ⊆ K . Abbreviate H(G//Ki) = H(G//Ki;R, ρ,ω). Then the
inclusion H(G//Ki) → H(G//Ki+1) induces a split injection Kn(H(G//Ki))→
Kn(H(G//Ki+1)) for i ∈ N and n ∈ Z by Lemma 7.8. Lemma 8.1 (1) implies that
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there is an isomorphism

Kn(H(G;R, ρ,ω))

∼= Kn(H(G//K0))⊕
⊕

i≥0

cok
(
Kn(H(G//Ki))→ Kn(H(G//Ki+1))

)

and cok
(
Kn(H(G//Ki))→ Kn(H(G//Ki+1))

)
is isomorphic to a direct summand

of Kn(H(G//Ki+1)).
Now suppose additionally that R is semisimple. Then H(G//Ki) is semisimple

and hence the abelian group K0(H(G//Ki)) is finitely generated free for i ∈ N by
Lemma 7.4 (4) and Lemma 7.5, Hence the abelian group K0(H(G;R, ρ,ω)) is free
and in particular torsionfree.

9 On the Algebraic K-Theory of the Hecke Algebra
of a Covirtually Z Totally Disconnected Group

Consider the setup of Sect. 5. In particular Q is covirtually cyclic. Denote by
TK∞(ϕ−1) the mapping torus of the map

K∞(ϕ−1) : K∞(H(L;R, ρ|L, ω))→ K∞(H(L;R, ρ|L, ω))

of non-connective K-theory spectra.

Theorem 9.1 (Wang Sequence) Suppose that the unital ring R is regular and
satisfies Q ⊆ R. Assume that N is locally central. Then:

(1) There is a weak homotopy equivalence of non-connective spectra

a∞: TK∞(ϕ−1)

-−→ K∞(H(G;R, ρ,ω)).

(2) We get a long exact sequence, infinite to the left

· · · K2(i)−−−→ K2(H(G;R, ρ,ω))
∂2−→ K1(H(L;R, ρ|L, ω))

id−K1(ϕ
−1)−−−−−−−→ K1(H(L;R, ρ|L, ω))

K1(i)−−−→ K1(H(G;R, ρ,ω))

∂1−→ K0(H(L;R, ρ|L, ω))
id−K0(ϕ

−1)−−−−−−−→ K0(H(L;R, ρ|L, ω))

K0(i)−−−→ K0(H(G;R, ρ,ω)) → 0.
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(3) We get for n ≤ −1

Kn(H(G;R, ρ,ω)) = 0.

Proof

(1) This follows from Lemma 5.3 and Theorem 6.2 applied to the additive
category A = Idem

(
H(L;R, ρ|L, ω)⊕

)
after we have shown that the

additive category Idem
(
H(L;R, ρ|L, ω)⊕

)
is regular. This has already

been done in Theorem 7.2.
(2) and (3) These follow from the Wang sequence associated to the left-hand

side of the weak homotopy equivalence appearing in assertion (1) and
Lemma 8.1 (2).

��

10 Some Input for the Farrell–Jones Conjecture

Our ultimate goal is the proof and the application of the K-theoretic Farrell–Jones
Conjecture for the Hecke algebra of a closed subgroup of a reductive p-adic group.
For this purpose we will need Theorem 7.2 and the following Theorem 10.1 in
forthcoming papers.

Consider the setup of Sect. 2.1. For the remainder of this subsection we will
assume that the td-group Q is compact and N is locally central. Let i : Q′ → Q be
the inclusion of a compact open subgroup of Q. Put G′ = pr−1(Q′). Let i : G′ → G

be the inclusion. The construction in Sect. 2.3 yields a ring homomorphism

H(i) : H(G′;R, ρ′, ω) → H(G;R, ρ,ω)

where ρ′ = ρ ◦ i, μ′ is obtained from μ by restriction with i, and we take N ′ = N

and ω′ = ω. The image H(i)(s) of an element s ∈ H(G′;R, ρ′, ω), which is given
by an appropriate function s : G′ → R, is specified by the function H(i)(s) : G →
R sending g to s(g), if g ∈ G′, and to 0, if g /∈ G′, see Lemma 2.3 (3).

Theorem 10.1 Suppose that Q is compact and N is locally central. Then the
functor of unital additive categories

Idem
(
H(i)⊕[Zm]) : Idem

(
H(G′;R, ρ ′, ω)⊕[Zm])→ Idem

(
H(G;R, ρ, ω)⊕[Zm])

is faithfully flat.
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Proof Let K′ be the directed set of normal compact open subgroups of Q which
satisfy K ⊆ Q′, and K ∈ P , where we put K ≤ K ′ ⇐⇒ K ′ ⊆ K . Note that for
any compact open subgroup L of Q there exists K ∈ K′ with K ⊆ L by Lemma 7.3.

In the sequel we abbreviate

H(G) := H(G;R, ρ,ω);
H(G//K) := H(G//K;R, ρ,ω),

and analogously for G′. Next we want to show that the functor

Idem
(
jK⊕[Zm]) : Idem

(
H(G//K)⊕[Zm])→ Idem

(
H(G)⊕[Zm])

is faithfully flat for K ∈ K′, where iK : H(G//K) → H(G) is the inclusion.
Consider morphisms f0 : A0 → A1 and f1 : A1 → A2 in Idem

(
H(G//K)⊕[Zm])

with f1 ◦ f0 = 0. Note that we can consider them also as morphisms in
Idem

(
H(G)⊕[Zm]). We have to show that it is exact in Idem

(
H(G//K)⊕[Zm])

if and only if it is exact in Idem
(
H(G)⊕[Zm]).

Suppose that A0
f0−→ A1

f2−→ A2 is exact in Idem
(
H(G//K)⊕[Zm]). In order to

show that it is exact in Idem
(
H(G)⊕[Zm]), we have to find for any object A and

any morphism g : A → A1 in Idem
(
H(G)⊕[Zm]) with f1 ◦ g = 0 a morphism

g : A → A0 in Idem
(
H(G)⊕[Zm]) with f0 ◦ g = g. We can choose an element

K ′ ∈ K′ with K ≤ K ′ such that A and g live already in Idem
(
H(G//K ′)⊕[Zm])

by Lemma 2.5 and the first paragraph of this proof. Since the inclusion

Idem
(
H(G//K)⊕[Zm])→ Idem

(
H(G//K ′)⊕[Zm])

is faithfully flat by Lemma 7.8, we can find g : A → P0 with f0 ◦ g = g in
Idem

(
H(G//K ′)⊕[Zm]) and hence also in Idem

(
H(G)⊕[Zm]).

Suppose that A0
f0−→ A1

f2−→ A2 is exact in Idem
(
H(G)⊕[Zm]). In order to

show that it is exact in Idem
(
H(G//K)⊕[Zm]) we have to find for any object A

and any morphism g : A → A1 in Idem
(
H(G//K)⊕[Zm]) with f1 ◦ g = 0 a

morphism g : A→ A0 in Idem
(
H(G//K)⊕[Zm]) with f0 ◦ g = g. At any rate we

can find such g : A → A1 in Idem
(
H(G)⊕[Zm]). We conclude from Lemma 2.5

that there exists K ′ ∈ K′ with K ≤ K ′ such that g : A → A1 lies already in
Idem

(
H(G//K ′)⊕[Zm]). Recall from Lemma 7.8 that there is a retraction of the

inclusion

Idem
(
H(G//K)⊕[Zm])→ Idem

(
H(G//K ′)⊕[Zm]).
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If we apply it to g, we get a morphism g′ : A → A1 in Idem
(
H(G//K)⊕[Zm])

satisfying f1 ◦ g′ = g in Idem
(
H(G//K)⊕[Zm]). This finishes the proof that

functor Idem
(
jK⊕[Zm]) is faithfully flat. Analogously one shows that the functor

Idem
(
j ′K⊕[Z

m]) : Idem
(
H(G′//K)⊕[Zm]) → Idem

(
H(G′)⊕[Zm]) is faithfully

flat for the inclusion j ′K : H(G′//K)→ H(G′).
We have the following commutative diagram of functors of additive categories

whose two left vertical arrows are faithfully flat. We conclude from Lemma 2.5 that
it suffices to show that the lower vertical arrow in the diagram above is faithfully
flat.

We have identified H(G//K) and H(G′//K) respectively as a crossed product
ring R ∗ F and R ∗ F ′ respectively for the finite group F = G/K and F ′ =
G′/K respectively in Lemma 7.5. Moreover the inclusion H(G//K)[Zm] →
H(G′//K)[Zm] corresponds under these identifications to the inclusions R ∗
F [Zm] → R ∗ F ′[Zm] coming from the inclusion of finite groups F ′ → F . The
lower horizontal arrow Idem(H(i//K)⊕[Zm]) becomes under the equivalences of
categories of (25) and (27) the functor

F : R∗F ′[Zm]-MODfgp → R∗F [Zm]-MODfgp, P �→ R∗F [Zm]⊗R∗F ′[Zm]P.

There is a commutative diagram

whose vertical arrows are given by restriction from R ∗ F [Zm] or R ∗ F ′[Zm] to

R[Zm] and whose lower vertical arrow is given by P �→ ⊕[F :F ′]
i=1 P . Since the

vertical arrows and the lower horizontal arrow are obviously faithfully flat, the upper
vertical arrow is faithfully flat. This finishes the proof of Lemma 10.1. ��
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11 Characteristic p

We have assumed Q ⊆ R, or in other words that any natural number n ≥ 1 is
invertible in R. One may wonder what happens if one drops this condition, for
instance, if R is a field of prime characteristic. The following condition appearing
in [6, page 9] suffices to make sense of the Hecke algebra.

Condition 11.1 There exists a compact open subgroup K in Q such that the index
[K : K0] of any open subgroup K0 of K is invertible in R.

Let Q be a reductive p-adic group. Then Condition 11.1 is satisfied if p is
invertible in R, see [6, page 9].

However, this does not mean that the assertion of the Farell–Jones Conjecture or
Theorem 9.1 remains true integrally. Our arguments would go through if for every
compact open subgroup K in Q the index [K : K0] of any open subgroup K0 of K
is invertible in R, which is stronger than Condition 11.1.

One may hope that under Condition 11.1 the Farrell–Jones Conjecture or
Theorem 9.1 remain true rationally. Let us confine ourselves to the setup of
Sect. 5 and Theorem 9.1. Then we get from [13, Theorem 0.1] a weak homotopy
equivalence, where we abbreviate H(G) := H(G;R, ρ,ω) and analogously for L

TK∞(Idem(ϕ)−1) ∨ NK∞(Idem(H(L)⊕)Idem(ϕ⊕)[t])
∨ NK∞(Idem(H(L)⊕)Idem(ϕ⊕)[t−1])

-−→ K∞(H(G;R, ρ, ω)).

So we need to show that the homotopy groups of the Nil-terms all vanish rationally.
If L is finite, this is known to be true, see [12, Theorem 0.3 and Theorem 9.4].
Under the strong condition that there is a sequence L ⊇ L1 ⊇ L2 ⊇ L2 · · · of in L

normal compact open subgroups such that
⋂

i≥0 Li = {1} and ϕ(Li) = Li holds for
i ≥ 0, this implies that the homotopy groups of the Nil-terms all vanish rationally.
Without this strong condition we do not have a proof.
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Groupes de Coxeter finis :
centralisateurs d’involutions

Jean-Pierre Serre

À Catriona Byrne, en souvenir d’une vieille amitié

Introduction.

Soit G un groupe de Coxeter fini, soit u une involution de G et soit
Gu le centralisateur de u dans G. Dans certains cas, par exemple quand u
est une réflexion, le groupe Gu est engendré par des réflexions de G ; en
particulier, c’est un groupe de Coxeter. Il n’en est pas de même en général,
mais c’est “presque” le cas. Notre but est de préciser cet énoncé (cf. th.1.1 ci-
dessous), et de décrire explicitement certains invariants de Gu, pour chaque
type An, Bn, ..., I2(m).

1. Premiers énoncés.

Rappelons d’abord quelques notations et quelques définitions.

Soit V un R-espace vectoriel de dimension finie, et soit G un sous-groupe
fini de GL(V ) engendré par des réflexions, i.e. par des éléments d’ordre 2
fixant un hyperplan. Nous dirons, comme dans [Se 22], 1.1, que le couple
(V,G) est un couple de Coxeter. Sauf mention expresse du contraire (cf. §4
ou 5), on supposera que V est réduit, c’est-à-dire ne contient aucun élément
�= 0 fixé par G ; cela revient à demander que dimV est égal au rang rg(G) de
G.

Soit H un sous-groupe de G. On dit que H est un C -sous-groupe de G
s’il est engendré par des réflexions, i.e. si (V,H) est un couple de Coxeter.
On dit que H est parabolique s’il existe une partie X de V telle que H soit
l’ensemble des éléments de G qui fixent X ; on sait que cela entrâıne que H
est un C -sous-groupe, cf. [Se 22], 1.5.
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Collège de France, Paris
email : jpserre691@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-M. Morel, B. Teissier (eds.), Mathematics Going Forward, Lecture Notes
in Mathematics 2313, https://doi.org/10.1007/978-3-031-12244-6 20

279

https://doi.org/10.1007/978-3-031-12244-6_20


280 J.-P. Serre

Soit u une involution de G, autrement dit un élément de G de carré 1.
On note V

+

u le sous-espace vectoriel de V fixé par u, et V
−
u celui fixé par −u.

On a V = V
+

u ⊕ V
−
u . Le degré de u est défini par deg(u) = dimV

−
u ; c’est la

multiplicité de −1 comme valeur propre de u ; on le note souvent d.

Théorème 1.1. Le centralisateur Gu de u dans G est engendré par des
involutions de degré 1 et 2.

Dans le cas particulier où u est une involution de degré maximal, c’est le
cor.3.18 de [Se 22].

Soit G1
u le sous-groupe de Gu engendré par les éléments de Gu qui sont

des réflexions de G. C’est le plus grand C -sous-groupe de Gu. Il est normal
dans Gu. Notons Γu le quotient Gu/G

1
u ; ce groupe précise dans quelle mesure

Gu n’est pas engendré par des réflexions. Le th.1.1 équivaut à dire que Γu

est engendré par les images des involutions de degré 2 de Gu.

Réduction au cas irréductible.
Supposons que V soit réduit. On sait (cf. [Bo 68], V3.7) que V se décompo-

se de façon unique en une somme directe V = ⊕Vi de représentations irréducti-
bles non triviales de G, et que G =

∏
Gi, avec Gi ⊂ GL(Vi). Les Gi sont

les composantes irréductibles de G. On a Gu =
∏

Gui , où les ui sont les
composantes de u. Il y a des décompositions analogues pour G1

u,Γu, etc. En
particulier, il suffit de démontrer le th.1.1 lorsque G est irréductible, donc de
l’un des types A,B, ..., I ; c’est ce que nous ferons dans la suite.

Théorème 1.2. (a) Si G est irréductible non de type Dn (n � 5), le groupe
Γu est isomorphe à un groupe symétrique.

(b) Si G est irréductible de type Dn, Γu est isomorphe, soit à un groupe
symétrique, soit au produit d’un groupe symétrique par un groupe d’ordre 2.
[Par exemple, quand G est de type D5, il existe une involution u de G telle que Γu

soit abélien élémentaire de type (2, 2).]

Notation. Dans le cas (a), si Γu �= 1, nous noterons γu l’unique entier r > 1
tel que Γu � Symr. Lorsque Γu = 1, nous écrirons tantôt γu = 1 et tantôt
γu = 0, suivant le contexte.

Les théorèmes 1.1 et 1.2 seront démontrés dans les §§3-12 par une analyse
cas par cas, qui donnera la structure de Γu, ainsi que celle des groupes de
Coxeter G

+

u , G̃
+

u , G
−
u , G̃

−
u définis ci-dessous. Nous verrons également que l’on

peut choisir l’isomorphisme Γu → Symγu
du théorème 1.2 (a) de telle sorte

que toute transposition de Symγu
soit l’image d’une involution de degré 2 de

Gu ; il y a un énoncé analogue dans le cas du type Dn, cf. §6.

2. Les groupes G
+

u , G
−
u , G̃

+

u , G̃
−
u .

L’action de Gu sur V respecte la décomposition V = V
+

u ⊕ V
−
u . On a

donc Gu ⊂ GL(V
+

u )×GL(V
−
u ), ce qui permet de définir les quatre groupes

suivants :
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G
+

u = Gu ∩GL(V
+

u ),

G
−
u = Gu ∩GL(V

−
u ),

G̃
+

u = image de Gu dans GL(V
+

u ) par la première projection,

G̃
−
u = image de Gu dans GL(V

−
u ) par la seconde projection.

Noter que u appartient à G
−
u ; il s’identifie à l’élément −1 de GL(V

−
u ).

On a les inclusions :

G
+

u ⊂ G̃
+

u , G
−
u ⊂ G̃

−
u et G

+

u ×G
−
u ⊂ Gu ⊂ G̃

+

u × G̃
−
u .

Proposition 2.1 (a) G
+

u et G
−
u sont des sous-groupes paraboliques de G.

(b) G1
u = G

+

u ×G
−
u .

(c) G
−
u est engendré par les cubes de G d’extrémité u.

[Rappelons que G1
u est le sous-groupe de Gu engendré par les réflexions de G qui

commutent à u, cf. §1. Un cube C de G est un sous-groupe abélien engendré par des

réflexions ; on appelle extrémité de C l’unique élément de C de degré maximum, cf.

[Se 22], 4.1.]

Démonstration.

Les groupes G
+

u et G
−
u sont des fixateurs de parties de V ; cela entrâıne

que ce sont des sous-groupes paraboliques ; d’où (a). En particulier, ils sont
engendrés par des réflexions. D’après la définition de G1

u, on a donc G1
u ⊃

G
+

u ×G
−
u .

D’autre part, si s ∈ Gu est une réflexion de G, on a s ∈ G
+

u si deg(us) =

deg(u)+1 et s ∈ G
−
u si deg(us) = deg(u)−1 ; le groupe G

+

u est donc engendré

par les réflexions du premier type, et G
−
u par celles du second type. Toute

réflexion de Gu est donc contenue dans G
+

u × G
−
u ; comme G1

u est engendré

par de telles réflexions, cela démontre l’inclusion G1
u ⊂ G

+

u ×G
−
u . D’où (b).

Si C est un cube de G d’extrémité u, les réflexions appartenant à C sont
du second type, donc appartiennent à G

−
u , d’où C ⊂ G

−
u . Inversement, toute

réflexion de G
−
u appartient à un cube maximal de G

−
u ; un tel cube a pour

extrémité u, puisque u est l’élément “−1 ” de G
−
u . D’où (c).

Corollaire 2.1. (V
+

u , G
+

u ) et (V
−
u , G

−
u ) sont des couples de Coxeter.

Démonstration. D’après (a), (V,G
+

u ) est un couple de Coxeter. Comme V =

V
+

u ⊕ V
−
u et que G

+

u opère trivialement sur V
−
u , il en est de même du couple

(V
+

u , G
+

u ). Le cas du couple (V
−
u , G

−
u ) se traite de manière analogue.

Proposition 2.2. ([FV 05], prop.7 et [DPR 13], prop.2.2) Le normalisateur

de G
−
u dans G est égal à Gu.

Démonstration. Il est clair que G
−
u est normal dans Gu. Inversement, soit g

un élément de G normalisant G
−
u . Comme u est l’unique involution de G

−
u de

degré deg(u), elle est fixée par l’automorphisme intérieur défini par g, d’où
g ∈ Gu.



282 J.-P. Serre

Remarque. L’énoncé analogue avec G
−
u remplacé par G

+

u n’est pas toujours

vrai ; il se peut même que G
+

u = 1 et Gu �= G ; c’est le cas si G est de type
A2 et u est une réflexion.

Proposition 2.3. La suite exacte 1 → G1
u → Gu → Γu → 1 est scindée.

(Autrement dit, il existe un sous-groupe Xu de Gu tel que Gu = G1
u ·Xu

et G1
u ∩Xu = 1.)

Démonstration. Cela résulte du lemme 2 de [Ho 80], appliqué au groupe de
Coxeter G1

u. De plus, la démonstration de [Ho 80] donne une méthode pour
construire un groupe Xu : on choisit une chambre C de G1

u dans V , et on
lui associe le sous-groupe HC de GL(V ) formé des éléments qui normalisent
G1 et qui stabilisent C . Le normalisateur de G1

u dans GL(V ) est le produit
semi-direct G1

u.HC . On prend alors Xu = G1
u ∩HC .

Passons maintenant aux groupes G̃
+

u et G̃
−
u définis plus haut :

Proposition 2.4. On a des suites exactes :

(a) 1 → G
−
u → Gu → G̃

+

u → 1 et 1 → G
+

u → Gu → G̃
−
u → 1.

(b) 1 → G
−
u → G̃

−
u → Γu → 1 et 1 → G

+

u → G̃
+

u → Γu → 1.

Les suites (b) sont scindées.

Démonstration. Le noyau de Gu → GL(V
+

u ) est G
−
u ; cela entrâıne la première

suite exacte de (a) ; la seconde se prouve de la même manière.

D’après (a) on peut identifier G̃
−
u à Gu/G

+

u . L’homomorphisme Gu → Γu

est trivial sur G
+

u . Il définit donc un homomorphisme G̃
−
u → Γu qui est

surjectif, et dont le noyau est G1
u/G

+

u = G
−
u , cf. prop. 2.1 (b). Cela donne la

première des suites exactes (b) ; la seconde se prouve de manière analogue.
Le fait que ces suites soient scindées résulte du fait analogue pour la suite

exacte 1 → G
+

u ×G
−
u → Gu → Γu → 1, cf. prop.2.4.

Remarque. Les constructions ci-dessus sont des cas particuliers de celles du
lemme de Goursat ([Se 16], 1.4) qui décrit la structure d’un sous-groupe
d’un produit de deux groupes dont les projections sur les deux facteurs sont
surjectives. Ici les deux groupes sont G̃

+

u et G̃
−
u ; le sous-groupe est Gu.

Corollaire 2.2. Dans la suite d’inclusions G
+

u × G
−
u ⊂ Gu ⊂ G̃

+

u × G̃
−
u ,

chaque groupe est d’indice |Γu| dans le suivant.

Cela résulte des suites exactes (b).

Remarque. Le plus petit des trois groupes du cor.2.6 est normal dans les deux
autres. Par contre le groupe du milieu Gu est normal dans le grand seulement
si Γu est abélien. En effet, après passage au quotient par le petit groupe, on
obtient l’inclusion diagonale 1 ⊂ Γu ⊂ Γu × Γu. Or la diagonale n’est un
sous-groupe normal que si le groupe est abélien.

Revenons à la première suite exacte (b) : 1 → G
−
u → G̃

−
u → Γu → 1.

L’action de G̃
−
u sur G

−
u par conjugaison donne un homomorphisme G̃

−
u →

Aut(G
−
u ). L’image de cet homomorphisme est contenue dans le sous-groupe
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Autc(G
−
u ) de Aut(G

−
u ) formé des automorphismes qui transforment réflexions

en réflexions. Notons Outc(G
−
u ) le quotient de Autc(G

−
u ) par le sous-groupe

des automorphismes intérieurs . Par passage au quotient, on obtient un ho-
momorphisme de Γu = G̃

−
u /G

−
u dans Outc(G

−
u ).

Proposition 2.5. L’homomorphisme Γu → Outc(G
−
u ) est injectif.

Démonstration. On utilisera le lemme suivant :

Lemme 2.1. Soit (E,W ) un couple de Coxeter tel que −1 ∈ W. Tout élément
d’ordre fini de GL(E) qui centralise W appartient à W .

Démonstration du lemme. Soit −1 =
∏

i si une décomposition de −1 en
produit de réflexions de W deux à deux distinctes et commutant entre elles.
Soit Di la droite de E sur laquelle si opère par −1. On a E = ⊕iDi. Soit
g ∈ GL(E) d’ordre fini et centralisant W . Puisque g commute aux si, il
stabilise les Di. Sa restriction à chaque Di est une homothétie x 
→ εix, avec
εi ∈ R× d’ordre fini, donc égal à 1 ou −1. Il en résulte que g est égal au
produit des si tels que εi = −1. En particulier, on a g ∈ W .

Fin de la démonstration de la prop.2.7. Soit γ un élément de Γu → Outc(G
−
u ),

et soit g un représentant de γ dans G̃
−
u . Supposons que l’image de γ dans

Outc(G
−
u ) soit 1. Cela signifie qu’il existe z ∈ G

−
u tel que gxg−1 = zxz−1 pour

tout x ∈ G
−
u . L’élément z−1g centralise G

−
u . D’après le lemme 2.8, appliqué

au couple (V
−
u , G

−
u ), on a z−1g ∈ G

−
u , d’où g ∈ G

−
u , i.e. γ = 1.

Remarque. On définit de façon analogue un homomorphisme Γu → Outc(G
+

u ).
Cet homomorphisme est injectif si −1 ∈ G : cela résulte de la prop.2.7,
appliquée à −u ; si −1 /∈ G, il peut ne pas être injectif.

Théorème 2.1. Si le théorème 1.1 est vrai pour (V,G), les couples (V
+

u , G̃
+

u )

et (V
−
u , G̃

−
u ) sont des couples de Coxeter.

En particulier, G̃
+

u et G̃
−
u sont des groupes de Coxeter.

(Cela répond positivement à une question posée dans [Se 22], 3.15.)

Démonstration.

Faisons la démonstration pour G̃
+

u ; le cas de G̃
−
u est analogue. Soit H le

sous-groupe de G̃
+

u engendré par les V
+

u -réflexions. Nous devons montrer que

H = G̃
+

u . Comme ce dernier groupe est un quotient de Gu, le théorème 1.1

dit qu’il est engendré par les images dans GL(V
+

u ) des involutions de degré
1 ou 2 dans G. Si g est une involution de Gu, notons g+ son image dans
GL(V

+

u ), et g− son image dans GL(V
−
u ). On a deg(g) = deg(g+) + deg(g−).

Si deg(g) � 2, on a, soit deg(g+) � 1, soit deg(g−) = 0. Dans le premier cas,

g+ est, soit 1, soit une réflexion dans GL(V
+

u ), donc appartient à H . Dans

le second cas, on a g− = 1, i.e. g fixe V
−
u , donc g+ appartient à G

+

u , qui est

contenu dans H , on l’a vu. Cela prouve que H = G̃
+

u .

1. Autre interprétation de Outc(G
−
u ) : c’est le groupe des automorphismes du graphe

de Coxeter de G
−
u .
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Remarque. Le théorème 2.9 était essentiellement connu, mais dans une for-
mulation différente. On peut le déduire d’un théorème de R.B. Howlett ([Ho
80]) sur les normalisateurs de sous-groupes paraboliques, théorème qui est
applicable à G1

u d’après la prop.2.3. Je dois cette remarque à G. Röhrle ; c’est
également lui qui m’a indiqué la prop.2.3.
La démonstration de [Ho 80], comme celle donnée ici, est une vérification cas
par cas. Il serait intéressant d’avoir une démonstration directe.

§3. Détermination des groupes G
+

u .

Les groupes G
+

u s’obtiennent par une récurrence sur deg(u) qui permet
de passer d’un groupe de Coxeter à un autre de rang inférieur. On se ramène
ainsi au cas où u est une réflexion.

De façon plus précise :

Réduction au cas où u est une réflexion.

Proposition 3.1. Soient v, w deux involutions de G, commutant entre elles
et telles que deg(vw) = deg(v) + deg(w). Alors G

+

vw = (G
+

v )
+

w = (G
+

w)
+

v .

Démonstration. Les hypothèses faites sur v, w équivalent à V
−
vw = V

−
v ⊕ V

−
w .

Un élément de G appartient à G
+

vw si et seulement si il fixe V
−
v et V

−
w . D’où

la proposition.

Corollaire 3.1. Soit u une involution de degré d, et soient s1, ..., sd des
réflexions, commutant deux à deux, telles que u = s1 · · · sd. Soit G(i) (i =
0, ..., d) la suite de sous-groupes de G définie par G(0) = G et G(i) = G(i −
1)

+

si . On a G
+

u = G(d).

Démonstration. Cela résulte de la prop. 3.1 en raisonnant par récurrence sur
d.

Le cas où u est une réflexion et où G est cristallographique.
[Rappelons (cf.[Bo 68], VI.2.5) queG est dit cristallographique s’il stabilise

un réseau de V ; cela équivaut à dire que G est le groupe de Weyl d’un système
de racines de V .]

Supposons queG .soit cristallographique et irréductible. SoitR un système
de racines de V dont G est le groupe de Weyl, soit S = {α1, ..., αn} une base
de R et soit X le graphe de Dynkin correspondant (celui dont l’ensemble des
sommets est S).

Soit α0 = −α̃ l’opposée de la plus grande racine deR et soitX0 = X∪{α0}
le graphe de Dynkin complété (cf. [Bo 68], VI.4.3). Soit Y le sous-graphe de
X obtenu en supprimant les sommets {αi} de X liés à α0 dans X0. Alors :

Proposition 3.2. Soit s0 la réflexion associée à α0. Le groupe G
+

s0 est égal
au sous-groupe parabolique GY de G de base Y .

Démonstration. Le groupe G
+

s0 est engendré par les réflexions sα corres-
pondant aux racines positives orthogonales à α0 (pour un produit scalaire
défini positif et G-invariant, noté x·y). Si l’on écrit α comme

∑
miαi, on a
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α·α0 =
∑·miαi ·α0. Les mi sont � 0 et les αi ·α0 sont � 0 ([Bo 68], VI.1.8,

prop.8). On a donc α ·α0 = 0 si et seulement si mi = 0 pour tout i tel que
αi ·α0 �= 0, autrement dit pour tout i tel que αi /∈ Y ; cela revient à dire
que α est une réflexion de GY , cf. [Bo 68], VI.1.7, cor.4 à la prop.7. D’où la
proposition.

Corollaire 3.2. Supposons que G soit de type impair. Soit s une réflexion
de G. Le groupe G

+

s est un conjugué du groupe GY de la prop.3.3.

[Rappelons, cf. [Se 22] 1.13, que G est dit de type impair si tous les produits de

deux réflexions sont, soit d’ordre 2, soit d’ordre impair. C’est le cas si G est de l’un

des types A, D, E.]

Démonstration. Les réflexions d’un groupe de type impair sont conjuguées
entre elles. Donc s est conjuguée de la réflexion s0 de la prop.3. D’où le
corollaire.

Exemples.

Voici trois exemples, qui seront utilisés dans les §§10, 11, 12 ; les notations
sont celles des Tables de [Bo 68], VI.

(a) Type E6.

(a1) Le cas deg(u) = 1. Dans le graphe de Dynkin étendu, le sous-
diagramme Y de la prop.3.3 a pour sommets α1, α3, α4, α5, α6. Il est de type
A5. On a donc G

+

u � A5.

(a2) Le cas deg(u) = 2. Ecrivons u comme produit de deux réflexions s1
et s2, commutant entre elles. D’après (a1), le groupe H = G

+

s1 est de type

A5 ; il contient s2. D’après le cor.3.2, on a G
+

u = H
+

s2 . Comme toutes les
réflexions de H sont conjuguées, on en déduit que toutes les involutions de
degré 2 de G sont conjuguées. En appliquant à H le cor.3.4 (ou en raisonnant

directement), on voit que H
+

s2 est de type A3, et il en est donc de même de

G
+

u .

(a3) Le cas deg(u) = 3. Un argument analogue donne à la fois le fait que

toutes les involutions de degré 3 sont conjuguées et que le groupe G
+

u est de
type A1.

(a4) Le cas deg(u) = 4. Même argument : les involutions de degré 4 sont

conjuguées, et le groupe G
+

u est 1.

On peut résumer ce qui précède par une châıne : E6 −→ A5 −→ A3 −→
A1 −→ 1.

(b) Type E7.

La même méthode donne la châıne E7 −→ D6 −→ A1 × D4, et montre
qu’il y a une seule classe de conjugaison d’involutions de degré 2. Comme
un groupe de type A1 ×D4 a deux types de réflexions, cette châıne a deux
prolongements possibles, l’un par D4, l’autre par (A1)

4 ; ils correspondent
aux deux classes d’involutions de G de degré 3.

(c) Type E8
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Le début de la châıne est E8 −→ E7 ; d’après (b), elle se prolonge par D6,
puis par A1 ×D4, et puis, soit par D4, soit par (A1)

4.

4. Les types A1, I2(m), H3 et H4.

On suppose que le type deG estA1, I2(m), H3 ouH4. Soit u une involution
de G. On se propose de démontrer les théorèmes 1.1 et 1.2 pour le couple
(G, u), et de déterminer les groupes Gu,Γu, G

+

u , ..., G̃
−
u correspondants.

Type A1.

Ici, G est d’ordre 2 ; l’involution u est, soit 1, soit −1. On a Gu = G ; si
u = 1, on a G

+

u = G̃
+

u = G et G
−
u = G̃

−
u = 1 ; si u = −1, on a G

+

u = G̃
+

u = 1

et G
−
u = G̃

−
u = G. Dans les deux cas Γu = 1. Nous résumons ceci dans le

tableau ci-dessous :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 2 1 1 A1 A1 1

1 2 A1 A1 1 1 1

Type I2(m),m impair.

Le groupe G est diédral d’ordre 2m,m impair. Toute involution u �= 1 est
une réflexion et son centralisateur est {1, u}. D’où le tableau :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 2m 1 1 I2(m) I2(m) 1

1 2 A1 A1 1 1 1

Type I2(m),m pair.

Le groupeG est diédral d’ordre divisible par 4. Il contient -1. Ses réflexions
forment deux classes de conjugaison, permutées par un automorphisme extérieur ;
le centralisateur d’une réflexion est le groupe de type (2, 2) engendré par
cette involution et l’élément −1. On en déduit le cas deg(u) = 1 du tableau
ci-dessous. Le cas où deg(u) = 0 (resp. 2) est immédiat, puisqu’alors u = 1
(resp. −1).

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 2m 1 1 I2(m) I2(m) 1

1 4 A1 A1 A1 A1 1

2 2m I2(m) I2(m) 1 1 1

Type H3.
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Ici, G = Alt5 ×{1,−1}. C’est un groupe de rang 3, contenant −1 ; il y a
une seule classe d’involutions pour chaque degré� 3. On a le tableau suivant :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 233.5 1 1 H3 H3 1

1 23 A1 A1 (A1)
2 (A1)

2 1

2 23 (A1)
2 (A1)

2 A1 A1 1

3 233.5 H3 H3 1 1 1

Les lignes correspondant à deg(u) = 0 ou 3 sont évidentes. Lorsque deg(u) =

1, le groupe Gu est d’ordre 23. On a G
−
u = A1 et G

+

u = A1 × A1 ; comme le
produit de leurs ordres est égal à celui de Gu, cela montre que G1

u = Gu d’où
Γu = 1. Le cas deg(u) = 2 se ramène au précédent en remplaçant u par −u,
ce qui permute les signes “+ ” et “−”.

Type H4.

C’est un groupe de rang 4, contenant −1, d’ordre 263252. On l’obtient par
“dédoublement” à partir de Alt5, cf. [Se 22], 5.10 et 6.12. Cette construction
montre que, pour d = 0, 1, 2, 3, 4, le nombre des involutions de degré d est
respectivement 1, 60, 450, 60, 1, et ces involutions forment une seule classe de
conjugaison. On a le tableau suivant :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 263252 1 1 H4 H4 1

1 243.5 A1 A1 H3 H3 1

2 25 (A1)
2 B2 (A1)

2 B2 2

3 243.5 H3 H3 A1 A1 1

4 263252 H4 H4 1 1 1

Les cas deg(u) = 0 et deg(u) = 4 sont évidents. Le cas deg(u) = 1 résulte
de ce que le centralisateur d’une réflexion est de type H3 ; en remplaçant u
par −u, cela donne le cas deg(u) = 3.

Lorsque deg(u) = 2, les groupes G
+

u et G
−
u sont de type A1×A1, car sinon

ce seraient des groupes diédraux d’ordre 2m, avec m pair � 4, contrairement
au fait queH4 est un groupe de type impair, au sens de [Se 22], 1.13 (variante :
utiliser le cor.3.4 pour se ramener au type H3).

Comme |Gu| = 263252/60 = 25, et que Gu/G
−
u � G

+

u , on a |G−
u | =

8, d’où |Γu| = 2. Cela justifie la ligne deg(u) = 2 du tableau ci-dessus.
L’homomorphisme Gu → Γu � Sym2 est donné par l’action de Γu sur les
deux réflexions de produit u. Il reste à montrer qu’il existe une involution g
de Gu, de degré 2, dont l’image dans Γu est non triviale. Cela résulte d’un
énoncé plus général, démontré au §8. On peut aussi faire un calcul explicite :
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Notons a, x, y, z des réflexions de G réalisant le diagramme de Coxeter

5
H4 : ◦——◦——◦——◦ .

a x y z

On a xz = zx, xyx = yxy, yzy = zyz. Soient u = xz et g = yuy. Ce sont
des involutions de degré 2. On a gxg = z ; en effet, gxg = yu.yxy.uy =
yu.xyx.uy = yzyzy = y.yzy.y = z. Ainsi, la conjugaison par g échange x et
z, donc fixe u. On a g ∈ Gu, et l’image de g dans Γu est non triviale.

5. Type An−1.

Dans le cas du type A, il est plus commode de décrire An−1 que An. Soit
X un ensemble fini à n éléments et soit VX un R-espace vectoriel de base X .
Le groupe G = SymX des permutations de X opère de façon fidèle sur VX ;
on obtient ainsi un couple de Coxeter (VX , G) de type An−1 ; les réflexions
sont les transpositions de X .

L’espace “V ” standard associé à G est l’hyperplan de VX engendré par
les x− x′ avec x, x′ ∈ X .

Soit u ∈ G une involution, autrement dit une permutation de X de carré
1. Soit d son degré. Soit Z = Xu l’ensemble des points fixes de u ; le groupe
{1, u} opère librement sur X Z. Décomposons X Z en deux parties dis-
jointes Y, Y ′ telles que Y ′ = uY . On a d = |Y | = |Y ′| et n = a + 2d, où
a = |Z|.

Tout élément g de Gu respecte la décomposition de X en deux parties :
Z et Y ∪ Y ′, donc définit une permutation g1 de Z et une permutation g2
de Y ∪ Y ′ commutant à u. Inversement, si l’on se donne g1, g2 vérifiant ces
conditions, il lui correspond un élément de Gu. Le groupe formé par les g1
est SymZ ; il est de type Aa−1. Celui formé par les g2 est de type Bd, cf. §6.
On a donc :

Proposition 5.1. Gu est isomorphe à un groupe de Coxeter de type Aa−1 ×
Bd.

Soient x, x′ deux éléments distincts de X . La transposition trx,x′ appar-
tient à Gu si et seulement si l’on a, soit x, x′ ∈ Z, soit x, x′ ∈ Y et x′ = ux.
Le groupe engendré par les x, x′ du premier type est SymZ ; celui engendré
par les x, x′ du second type est le produit de d groupes à 2 éléments. Comme
les transpositions en question engendrent G1

u, on en déduit :

Proposition 5.2. Le groupe G1
u est de type Aa−1 × (A1)

d.

Comme Bd/(A1)
d � Symd, cela entrâıne :

Corollaire 5.1. On a Γu � Symd.

Il reste à expliciter les groupes G
−
u , ..., G̃

+

u . Si y ∈ Y , posons y+ = y + uy
et y− = y − uy ; soit Y + (resp. Y −) l’ensemble des y+ (resp. des y−). Alors
V

+

u a pour base Z ∪ Y + et V
−
u a pour base Y −. De plus :
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(i) Les réflexions de Gu qui fixent V
+

u sont les transpositions du type try,uy,

avec y ∈ Y ; le groupe G
−
u qu’elles engendrent est de type (A1)

Y � (A1)
d.

(ii) Les réflexions de Gu qui fixent V
−
u sont les transpositions de Z ; le groupe

G
+

u qu’elles engendrent est SymZ � Syma, qui est de type Aa−1.

(i′) Les réflexions de V
−
u qui sont les restrictions d’un élément de Gu sont de

deux types :
celles de (i), qui changent de signe les y− ;
celles de la forme sy1,y2 = try1,y2 truy1,uy2 , avec y1, y2 ∈ Y , qui échangent

y−1 et y−2 .
Ces réflexions engendrent un sous-groupe H de G̃

−
u qui est de type Bd,

donc d’ordre 2dd!, cf. §6. Comme |G̃−
u | = |G−

u | · |Γu| = 2dd!, on a H = G̃
−
u .

Cela montre que (V
−
u , G̃

−
u ) est un couple de Coxeter de type Bd, et cela

montre aussi que Γu est engendré par les images des sy1,y2 , donc par des
images d’involutions de degré 2 de Gu. Cela achève la démonstration des th.
1.1 et 1.2 pour G.

(ii′) Les réflexions de V
+

u qui sont les restrictions d’un élément de Gu sont
celles de (ii), et aussi celles de la forme sy1,y2 , cf. (i

′), qui échangent y+1 et

y+2 . On en déduit que G̃
+

u est isomorphe à SymZ × SymY + , donc de type
Aa−1 ×Ad−1.

On obtient ainsi le tableau :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

d 2dd!a! (A1)
d Bd Aa−1 Aa−1 ×Ad−1 d

[Rappelons que G est de type An−1 et que a est le nombre de points fixes de u.]

Remarque. Pour certaines valeurs de d, on peut avoir d−1 = −1 ou n−2d = −1, ce

qui introduit des facteurs A−1 dans G
+

u et G̃
+

u ; on les interprète en convenant que

A−1 = A0 = 1, ce qui est naturel puisque le groupe des permutations d’un ensemble

à 0 ou 1 élément est égal à 1. Dans les tableaux relatifs aux types Bn et Dn, on

rencontre aussi B0, B1, D0, D1 ; on convient que B0 = 1, B1 = A1, D0 = D1 = 1.

6. Type Bn.

Soit n un entier > 0. (On pourrait même supposer n > 2, car B1 = A1 et
B2 = I2(4), et ces cas ont été traités au §4.)
Rappels.

Soit Z est un ensemble fini à 2n éléments, et soit ε une permutation de
Z de carré 1 sans point fixe. Soit Y le quotient de Z par l’action du groupe
C = {1, ε}. On a |Y | = n. Soit G = SymZ,Y le groupe des permutations de
Z commutant à ε, autrement dit le groupe d’automorphismes du diagramme
Z → Y . On a une suite exacte

1 → CY → G → SymY → 1,



290 J.-P. Serre

où CY est le groupe des applications de Y dans C (i.e. un produit de n copies
de C indexées par Y ). Cette suite est scindée. On a |G| = 2nn! .

Soit VZ un R-espace vectoriel de base Z. Le groupe G opère sur VZ ,
et stabilise le sous-espace formé des éléments invariants par ε, espace qui
s’identifie à VY ; soit V = (1 − ε)VZ l’espace formé par les anti-invariants de
ε ; on a VZ = VY ⊕ V . L’action de G sur V est fidèle. Le couple (V,G) est un
couple de Coxeter de type Bn.

Il y a deux classes de réflexions : les courtes qui sont des transpositions de
la forme trz,εz, avec z ∈ Z, et les longues qui sont de la forme trz,z′ trεz,εz′ ,
avec z, z′ ∈ Z et z′ �= z, εz. Les premières sont des permutations impaires de
Z, et les secondes sont des permutations paires. Avec les notations de [Bo
68], VI.4.5, ces réflexions correspondent aux racines ±εi et ±εi ± εj (i �= j).

Remarque. Le groupe G, vu comme sous-groupe de SymZ n’est pas engendré
par des transpositions si n > 1 ; mais il est engendré par des transpositions
et des produits de deux transpositions, autrement dit par des involutions de
GL(VL) de degré 1 ou 2.

Les groupes Gu, G1
u et Γu associés à une involution u.

Soit u une involution de G, autrement dit une permutation de Z de carré
1 qui commute à ε. Lorsque u = 1 ou u = ε, on a Gu = G. Supposons que
u �= 1, ε. Soit Δ = 〈u, ε〉 le groupe d’ordre 4 engendré par u et ε. L’action de
Δ sur Z donne une partition de Z en trois sous-ensembles :

Zu = ensemble des z ∈ Z tels que uz = εz ;

Z ′
u = ensemble des z ∈ Z tels que uz = z ;

Z ′′
u = ensemble des z ∈ Z tels que uz �= z, εz.

Ces ensembles sont stables par Δ, donc par ε ; soient Yu, Y
′
u, Y

′′
u leurs images

dans Y : on obtient ainsi une partition Y = Yu ∪ Y ′
u ∪ Y ′′

u . L’ensemble des
points de Y fixés par u est Yu∪Y ′

u. Le groupe {1, u} opère librement sur Y ′′
u ;

soit Tu le quotient de Y ′′
u par cette action. Cela donne le diagramme :

Z = Zu ∪ Z ′
u ∪ Z ′′

u

↓ ↓ ↓
Y = Yu ∪ Y ′

u ∪ Y ′′
u

↓
Tu.

Posons a = |Yu|, a′ = |Y ′
u|, b = |Tu| = 1

2 |Y ′′
u |. On a n = a + a′ + 2b et

deg(u) = a + b. Les entiers a et b caractérisent la classe de conjugaison de
l’involution u, et peuvent être donnés arbitrairement pourvu que a+2b � n.

Le quadruplet (Z, ε, Y, u) est réunion disjointe de trois quadruplets cor-
respondant aux trois composantes de Y que l’on vient de définir. Cette
décomposition est stable par le groupe Gu. Plus précisément, Gu est pro-
duit direct de trois facteurs :
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(i) Le premier facteur est SymZu,Yu
est d’ordre 2aa! ; sa contribution à

G
−
u et à G̃

−
u est SymZu,Yu

; celle à G
+

u et à G̃
+

u est 1 ; celle à Γu est 1.

(ii) Le second facteur est SymZ′
u,Y

′
u
est d’ordre 2a

′
a′! ; sa contribution à

G
−
u et à G̃

−
u est 1 ; celle à G

+

u et à G̃
+

u est SymZ′
u,Y

′
u
; celle à Γu est 1.

(iii) Le troisième facteur est le groupe SymΔ(Z
′′
u) des permutations de Z ′′

u

qui commutent à l’action de Δ. Il est produit semi-direct des deux groupes
suivants :

• le groupe ΔTu des applications de Tu dans Δ ; c’est un sous-groupe
normal d’ordre 4b ;

• le groupe des Δ-automorphismes de Z ′′
u qui stabilisent une partie S

rencontrant chaque fibre de Z ′′
u → Tu en un point et un seul ; il est isomorphe

à SymTu
.

On peut donc écrire le troisième facteur sous la forme ΔTu. SymTu
. Son

ordre est 4bb! . Si b > 1, ce n’est pas un groupe de Coxeter.

En résumé :

Proposition 6.1. On a Gu = SymZu,Yu
× SymZ′

u,Y
′
u
×ΔTu. SymTu

.

Les deux premiers facteurs de Gu sont engendrés par des réflexions ; ils
sont donc contenus dans G1

u. Il n’en est pas de même du troisième facteur si
b > 1 :

Proposition 6.2. On a G1
u ∩ΔTu. SymTu

= ΔTu .

Démonstration. Il suffit de montrer que toute réflexion s de Gu qui fixe Z
et Z ′ appartient au groupe ΔTu . Soit Is l’ensemble des points de Z ′′ qui ne
sont pas fixés par s ; c’est un ensemble à 2 ou à 4 éléments, on l’a vu. Or Is
est stable par Δ, et les orbites de Δ dans Z ′′ sont d’ordre 4. Donc Is est une
orbite de Δ, ce qui entrâıne que s appartient à ΔTu .

Proposition 6.3. (a) L’action de Gu sur Tu définit par passage au quotient
un isomorphisme de Γu sur SymTu

.
(b) Toute transposition de SymTu

est image d’une involution de Gu de
degré 2.

Démonstration de (a). Cela résulte des prop. 6.1 et 6.2 puisque Γu = Gu/G
1
u.

Démonstration de (b). Soient t, t′ ∈ Tu, avec t �= t′, et soient z, z′ des
représentants de t, t′ dans Z ′′

u . Soient g, h les réflexions de G données par
g = trz,z′ trεz,εz′ et h = truz,uz′ trεuz,εuz′ . Ces réflexions commutent, et l’on
a ugu = h. On a gh ∈ Gu et l’image de gh dans SymTu

est la transposition
trt,t′ . D’où (b).

Corollaire 6.1. Les théorèmes 1.1 et 1.2 sont vrais pour G.

C’est clair.

On peut résumer les résultats obtenus de la façon suivante :

Proposition 6.4. On a :

Gu = SymZu,Yu
× SymZ′

u,Y
′
u
× ΔTu. SymTu

� Ba ×Ba′ ×Δb. Symb ;

G1
u = SymZu,Yu

× SymZ′
u,Y

′
u
× ΔTu � Ba ×Ba′ ×Δb ;
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Γu = SymTu
� Symb ; γu = |Tu| = b.

Les groupes G
+

u , G̃
+

u , G
−
u , G̃

−
u associés à u.

La décomposition deG en produit de trois facteurs entrâıne une décomposi-
tion du même type pour les groupes G

+

u , ..., G̃
−
u . Nous avons donné plus haut

le cas des deux premiers facteurs. Pour le troisième facteur, on a :

Lemma 6.1. Les troisièmes facteurs des groupes G
+

u et G
−
u sont de type

(A1)
b. Ceux des groupes G̃

+

u et G̃
−
u sont de type Bb.

Démonstration. Puisque cet énoncé ne concerne que le troisième facteur, on
peut supposer que les deux premiers sont triviaux, i.e. que a = a′ = 0 et
Z = Z ′′

u . Dans ce cas, les involutions u et εu sont conjuguées, ce qui entrâıne

que G
+

u � G
−
u et G̃

+

u � G̃
−
u . Notons ces groupes H et H̃ . D’après la prop.6.2,

on a H ×H � Δb, ce qui entrâıne que H est un groupe abélien élémentaire
d’ordre 2b ; comme c’est un groupe de Coxeter, il est isomorphe à (A1)

b. Un

argument analogue montre que H̃ × H̃ � Δb. Symb. En particulier H̃ est
d’ordre 2dd!. Or, il contient H comme sous-groupe normal. Cela entrâıne que
c’est un groupe de Coxeter de type Bb, en vertu du lemme suivant :

Lemme 6.2. Soit (E,H) un couple de Coxeter. Soit e = dimE. Supposons
que H soit de type (A1)

e. Soit H ′ un sous-groupe fini de GL(E) qui normalise
H et qui est d’ordre 2ee! . Alors (E,H ′) est un couple de Coxeter de type
Be.

Démonstration du Lemme 6.8. L’action de H décompose E en somme directe
de droites D1, ..., De. Comme H ′ normalise H , il permute les Di. Soit 〈x·y〉
un produit scalaire défini positif sur E invariant par H ′, et soit Z l’ensemble
des z ∈ D1∪ ...∪De tels que 〈z·z〉 = 1. On a |Z| = 2e, et l’application z 
→ −z
est une permutation ε d’ordre 2 de Z sans point fixe. Le groupe H ′ stabilise
Z et commute à ε. On obtient ainsi un homomorphisme injectif de H ′ dans
le groupe de Coxeter de type Be défini par (Z, ε) ; comme les deux groupes
ont le même ordre, cet homomorphisme est un isomorphisme.

On obtient finalement le tableau :

invariants |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

a, a′, b 2na!a′!b! Ba × (A1)
b Ba ×Bb Ba′ × (A1)

b Ba′ ×Bb b

7. Type Dn.

Conservons les notations (Z, ε, Y ) du §6. Soit G′ = BZ,Y et soit G = DZ,Y

le sous-groupe d’indice 2 de G′ formé des éléments g qui sont des permutations
paires de Z, i.e. sgnZ(g) = 1. Le couple (VZ,Y , G) est un couple de Coxeter de
type Dn. Les réflexions de G sont les réflexions longues de G′.

Soit u une involution de G, et soient a, a′, b ses invariants au sens du §6.
Le fait que u appartienne à G équivaut à a ≡ 0 (mod 2). Deux involutions de
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mêmes invariants sont conjuguées, sauf dans le cas a = a′ = 0 où il y a deux
classes de conjugaison.

Le groupe Gu est le sous-groupe d’indice � 2 de G′
u formé des éléments x

tels que sgnZ(x) = 1. La décomposition de G′
u donnée dans la prop. 6.1 est :

G′
u = SymZu,Yu

× SymZ′
u,Y

′
u
×AutΔ(Z ′′

u).

Les éléments de AutΔ(Z ′′
u ) sont de signature 1. La condition sgnZ(x) = 1

ne porte donc que sur les deux premières composantes de x. D’où :

Proposition 7.1. Soit Hu le sous-groupe de SymZu,Yu
× SymZ′

u,Y
′
u
formé des

couples (g, g′) tels que sgnZu
(g) = sgnZ′

u
(g′). On a Gu = Hu × AutΔ(Z ′′

u ).

[Rappelons que Δ = 〈u, ε〉.]
Il y a quatre possibilités pour (a, a′) :

(i) a = a′ = 0, i.e. 2b = n. On a alors Hu = 1 et Gu = AutΔ(Z ′′
u ) = G′

u.

L’ordre de Gu est 2nb!, on a Γu = SymTu
et γu = b. Les groupes G

−
u et G

+

u sont

isomorphes à ATu
1 ; les groupes G̃

−
u et G̃

+

u sont de type Bb.

(ii) a = 0, a′ > 0. Le premier facteur de Hu est 1 ; le second est D(Z ′
u, Y

′
u),

qui est de type Da′ . On a Gu = D(Z ′
u, Y

′
u) × AutD(Z ′′

u). La situation est la
même que pour G′, avec Ba′ remplacé par Da′ . On a Γu = SymTu

et γu = b.

(iii) a > 0 et a′ = 0 : comme dans le type (ii), avec a et a′ permutés, ainsi
que (Z,Z ′) et (Y, Y ′). Ici encore Γu = SymTu

et γu = b.

(iv) a > 0 et a′ > 0. Soit H1
u = DZu,Yu × DZ′

u,Y
′
u
. C’est un sous-groupe

d’indice 2 deHu qui est engendré par des réflexions. Inversement, toute réflexion
de Hu appartient à H1

u car c’est transposition de Yu ∪ Y ′
u qui stabilise à la fois

Yu et Y ′
u, donc qui est une transposition, soit de Yu, soit de Y ′

u. D’autre part,
le groupe engendré par les réflexions de AutΔ(Z ′′

u ) est le groupe ΔTu . On en
conclut que G1

u = H1
u ×ΔTu et que le groupe Γu = Gu/G

1
u) est égal au produit

de SymTu
par Hu/H

1
u qui est d’ordre 2. C’est le cas, mentionné dans le th. 2.2,

où Γu n’est pas un groupe symétrique (sauf si b = 0 ou 1).

La détermination des groupes G
−
u , G

+

u , ... résulte de celle des groupes corres-
pondants pour le type Bn. Plus précisément :

Les composantes dépendant de l’invariant “b ” sont les mêmes que pour le
type Bn ; dans les autres, certains groupes Ba ou Ba′ sont remplacés par Da ou
Da′ respectivement.

On obtient ainsi le tableau :

invariants |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0, 0, b 2nb! (A1)b Bb (A1)b Bb b

0, a′, b a′ > 0 2n−1a′!b! (A1)b Bb Da′ ×(A1)b Da′×Bb b

a, 0, b a > 0 2n−1a!b! Da×(A1)b Da ×Bb (A1)b Bb b

a, a′, b aa′ > 0 2n−1a!a′!b! Da×(A1)b Ba ×Bb Da′ ×(A1)b Ba′×Bb b, 2
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8. Résultats auxiliaires sur les groupes G
−
u et G̃

−
u .

Ces résultats seront utilisés dans les trois sections suivantes. On note d le
degré de l’involution u. On suppose que le type de G est H4, E6, E7 ou E8. On
s’intéresse aux deux propriétés suivantes :

(i) u est l’extrémité d’un seul cube, i.e. sa décomposition en produit de d

réflexions est unique, à permutation près. Cela équivaut à G
−
u � (A1)

d.

(ii) Il existe un C -sous-groupe H de G de type A tel que u ∈ H.

Proposition 8.1. Si les propriétés (i) et (ii) sont satisfaites, les théorèmes

1.1 et 1.2 sont vrais pour le couple (G,u), alors le groupe G̃
−
u est de type Bd, le

groupe Γu est isomorphe à Symd et il est engendré par les images des involutions
de Gu de degré 2.

Démonstration. Soit H un sous-groupe de G satisfaisant à (ii). D’après le §5,
la prop.8.5 est vraie si G = H. On va se ramener à ce cas. D’après (i), on a

G
−
u = H

−
u . Le groupe G̃

−
u contient H̃

−
u , qui est de type Bd. Cela montre que

Γu contient un sous-groupe isomorphe à Symd. D’autre part Γu est isomorphe

à un sous-groupe de Outc(G
−
u ) � Outc((A1)

d) � Symd, cf. prop.2.7. On a donc

G̃
−
u = H̃

−
u , ce qui démontre la proposition.

Proposition 8.2. Les propriétés (i) et (ii) sont satisfaites pour d � 2 lorsque
G est de type H4 et pour d � 3 lorsque G est de type E6, E7 ou E8. La propriété
(ii) est satisfaite pour d � 4 lorsque G est de type E8.

Démonstration. L’hypothèse (i) est satisfaite puisque les seuls groupes de Coxe-
ter de rang � 3, de type impair, et contenant −1, sont des puissances de A1.

Pour (ii), et G de type H4, on remarque que le diagramme de G contient un
sous-diagramme de type A3. Or un groupe de type A3 contient des involutions
de tout degré � 2. Comme les involutions de G de même degré sont conjuguées
entre elles, cela entrâıne (ii).

Le même argument s’applique à G de type E6, car son diagramme contient
un sous-diagramme de type A5 ; il s’applique aussi au type E8, ainsi qu’à E7 si
d � 2.

Dans le cas de E7, pour d = 3, il y a deux classes d’involutions, cf. [Se 22],
7.5 : celles de type triangle et celles de type droite. Pour les traiter, choisissons
des réflexions s1, ..., s7 correspondant au diagramme de Coxeter de E7 :

s1 s3 s4 s5 s6 s7
◦——-◦——◦——-◦——◦——◦

|
◦ s2

Posons u = s3s5s7 et u′ = s2s5s7 ; ce sont des involutions de degré 3. D’après
[Se 22], loc.cit., un produit sasbsc est du type triangle si et seulement si il existe
m 	= a, b, c tel que sm soit adjacent à un et un seul des sa, sb, sc . Dans le cas

2. Dans [Se 22], cette condition est exprimée en termes des racines αa, αb, αc associées
à sa, sb, sc : le produit sasbsc est du type triangle si et seulement si 1

2
(αa + αb + αc)

n’appartient pas au réseau des poids.
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de u, l’entier m = 1 répond à cette condition ; dans le cas de u′, aucun m n’est
possible ; ainsi, u est du type triangle et u′ du type droite. Il suffit donc de
vérifier la condition (ii) pour u et pour u′. Pour u, on prend le sous-groupe
de type A5 engendré par s3, s4, s5, s6, s7 ; pour u

′, on prend celui engendré par
s2, s4, s5, s6, s7.

Le cas de E8 est analogue au précédent. Il y a deux classes d’involutions de
degré 4, celles de type rectangle et celles de type tétraèdre. On les distingue de
la manière suivante : on écrit l’involution u comme produit de quatre réflexions
commutant deux à deux, et correspondant à des racines x, y, z, t. Alors u est
de type rectangle si x + y + z + t ∈ 2R, où R désigne le réseau des racines ;
sinon, u est de type tétraèdre. Soient s1, ..., s8, s0 des réflexions correspondant
au diagramme étendu de E8 (s0 correspondant à la plus grande racine) :

s1 s3 s4 s5 s6 s7 s8 s0

◦——-◦——◦——-◦——◦——◦——◦——◦
|
◦ s2

Prenons u = s2s5s7s0 et u′ = s1s3s5s7. On vérifie par la même méthode
que pour E7 que u est du type rectangle et u′ du type tétraèdre. Il suffit donc
de vérifier (i) pour u et pour u′ : pour u (resp. pour u′) on prend le sous-groupe
de type A7 engendré par les si, i 	= 1, 3 (resp. i 	= 0, 2).

9. Type E6.

C’est un groupe de rang 6 qui ne contient pas −1. Il y a une seule classe de
conjugaison d’involutions pour chaque degré d � 4. Le tableau correspondant
est :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 27345 1 1 E6 E6 1

1 25325 A1 A1 A5 A5 1

2 263 (A1)
2 B2 A3 A1 ×A3 2

3 253 (A1)
3 B3 A1 A1 ×A2 3

4 2732 D4 F4 1 A2 3

Vérification du tableau.

Les cas d = 0 et d = 1 sont immédiats.

Pour d = 2 ou 3, les prop.8.1 et 8.2 montrent que le th.1.1. et le th.1.2 sont

vrais pour (G,u), que G
−
u � (A1)

d, G̃
−
u � Bd et que Γu � Symd.

Dans le cas d = 2, l’ordre de Gu est 263 et l’on a vu au §3 que G
+

u est de

type A3. Le groupe G̃
+

u contient G
+

u comme sous-groupe d’indice 2 ; de plus c’est
un groupe de type cristallographique ; la seule possibilité est qu’il soit de type
A1 × A3.
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Dans le cas d = 3, un raisonnement analogue montre que l’ordre de G
+

u est

2, donc que ce groupe est de type A1 ; quant à G̃
+

u , c’est un groupe de rang � 3
et d’ordre 223, qui normalise un groupe de type A1 ; son type est donc A1 ×A2.

Le cas d = 4 est traité dans [Se 22], 3.19 (et c’est lui qui est à l’origine du
présent travail).

10. Type E7.

Il y a une seule classe d’involutions de degré 0, 1, 2, 5, 6, 7, deux classes de
degré 3 et deux classes de degré 4 ; ces dernières sont notées 3, 3′, 4, 4′ dans le
tableau ci-dessous. Rappelons comment on caractérise les deux classes de degré
3, cf. [Se 22], 7.5. Notons R le réseau des racines de E7, P le réseau des poids,
et V6 le F2-espace vectoriel R/2P ; cet espace est muni d’une forme bilinéaire
alternée non dégénérée. Les réflexions de E7 correspondent bijectivement aux
éléments non nuls de V6. Soit une involution de degré 3 ; décomposons u en
produit de trois réflexions s, s′, s′′ commutant entre elles (ce qui est unique, à
permutation près) ; ces réflexions donnent trois éléments non nuls x, x′, x′′ de
R/2P , deux à deux orthogonaux. Si la somme x+ x′ + x′′ est 0, u est du type
droite ; si elle ne l’est pas, u est du type triangle. Il n’est pas difficile de compter
combien il y a d’involutions de chaque type : pour le cas des droites, il y a 26−1
possibilités pour x, 25 − 2 possibilités pour x′ et une seule possibilité pour x′′.
Comme chaque u est obtenu 6 fois, le nombre des involutions du type droite
est (26 − 1)(25 − 2)/6 = 325.7 et Gu est d’ordre 210345.7/325.7 = 21032 : c’est
le type 3 du tableau ci-dessous. Un calcul analogue montre que le nombre des
involutions de type triangle est (26 − 1)(25 − 2)(24 − 22)/6 = 22335.7 et que Gu

est d’ordre 283 ; c’est le type 3′ du tableau. Si u est de degré 4 (resp. 4′), on dit
que u est de type 4 si −u est de type 3 (resp. 3′).

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 210345.7 1 1 E7 E7 1

1 210325 A1 A1 D6 D6 1

2 2103 (A1)
2 B2 A1 ×D4 A1 × B4 2

3 21032 (A1)
3 B3 D4 F4 3

3′ 283 (A1)
3 B3 (A1)

4 A1 × B3 3

4 21032 D4 F4 (A1)
3 B3 3

4′ 283 (A1)
4 A1 × B3 (A1)

3 B3 3

5 2103 A1 ×D4 A1 × B4 (A1)
2 B2 2

6 210325 D6 D6 A1 A1 1

7 210345.7 E7 E7 1 1 1

Vérification du tableau.

Soit d = deg(u). Comme G contient −1, il nous suffit de traiter les cas où
d � 3 ; les autres s’en déduisent en remplaçant u par −u ; noter que, si u est de
type 3 (resp. 3′), −u est de type 4 (resp. 4′).
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Les cas d = 0 et d = 1 sont immédiats.
Lorsque d = 2 , les prop.8.1 et 8.2 entrâınent que G

−
u est de type (A1)

2, G̃
−
u

est de type B2 et Γu � Sym2. Le groupe G
+

u est de type A1 ×D4 d’après le §3 ;
comme G̃

−
u contient G

+

u avec indice 2, il est de type A1 ×B4.
Supposons que d = 3. Comme ci-dessus, les prop.8.1 et 8.2 entrâınent que

G
−
u est de type (A1)

3, G̃
−
u est de type B3 et Γu � Sym2.

Quant u est de type 3, le même argument que pour d = 2 montre que G
+

u

est d’ordre 263, donc de type D4. Comme c’est un sous-groupe normal de G̃
+

u ,

et que G̃
+

u/G
+

u est isomorphe à Sym3, on en déduit que G̃
+

u est de type F4.

Quand u est de type 3′, G
+

u est d’ordre 24, donc de type (A1)
4, alors que

G̃
+

u est d’ordre 253, et le contient comme sous-groupe normal d’indice 6 ; cela

entrâıne que G̃
+

u est de type A1 ×B3. Noter que le facteur A1 est contenu dans

le noyau de la surjection G̃
+

u → Sym3, donc est engendré par une G-réflexion ;

c’est l’un des facteurs de G
+

u .

11. Type E8.

Pour d = 0, 1, 2, 3 et d = 5, 6, 7, 8 il y a une seule classe d’involutions de degré
d. Pour d = 4, il y en a deux : celle appelée du type rectangle dans [Se 22], 5.8, et
celle appelée du type tétraèdre ; dans le tableau ci-dessous, elles correspondent
aux lignes 4 et 4′.

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 21435527 1 1 E8 E8 1

1 211345.7 A1 A1 E7 E7 1

2 212325 (A1)
2 B2 D6 B6 2

3 21132 (A1)
3 B3 A1 ×D4 A1 × F4 3

4 21333 D4 F4 D4 F4 3

4′ 2113 (A1)
4 B4 (A1)

4 B4 4

5 21132 A1 ×D4 A1 × F4 (A1)
3 B3 3

6 212325 D6 B6 (A1)
2 B2 2

7 211345.7 E7 E7 A1 A1 1

8 21435527 E8 E8 1 1 1

Vérification du tableau.

On peut se borner au cas d � 4 puisque G contient −1. La méthode est la même
que pour le type E7. Les cas d = 0 et d = 1 sont immédiats. Lorsque d = 2 ou

3, les prop.8.1 et 8.2 entrâınent que G
−
u est de type (A1)

d, que Γu � Symd, que

G̃
−
u est de type Bd, et que Γu est engendré par les images des involutions de Gu

de degré 2.

Pour d = 2, on a vu au §3 que G
+

u est de type D6 ; comme G̃
+

u le contient

avec indice 2, il est de type B6. On a |Gu| = |G−
u | · |G̃

+

u | = 22 · 266! = 212335.
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Pour d = 3, un argument analogue montre que G
+

u est de type A1×D4, que

G̃
+

u est de type A1 × F4, et que |Gu| = 21132.

[Noter que l’inclusion de E7 dans E8 transforme une involution v de type 3 de

H = E7 en une involution u de G de degré 3 ; le groupe H̃
+

v est donc contenu dans

G̃
+

u , ce qui entrâıne que G̃
+

u contient F4.]

Pour d = 4, on a vu au §3 que G
+

u est, soit de type D4, soit de type (A1)
4,

et que les deux cas sont possibles. C’est le premier cas que nous avons choisi de
noter 4 dans le tableau ci-dessus, le second étant noté 4′. Dans les deux cas, u
et −u sont conjuguées (cela résulte de la description de ces classes donnée dans

[Se 22], 5.6) ; d’où G
−
u � G

+

u .

Si u est de type 4′, la prop.8.1 montre que G̃
−
u est de type B4. On a |Gu| =

|G−
u | · |G̃

−
u | = 24 · |B4| = 2113, et Γu = Sym4, ce qui justifie la ligne (4′) du

tableau. De plus, une comparaison avec le tableau de E7 montre que l’involution
u provient, par l’injection E7 → E8, d’une involution de E7 de type 4′.

Supposons que u est de type 4. Cette involution provient d’une involution

de type 4 de E7. On en déduit que G̃
−
u contient un sous-groupe de type F4,

donc que Γu contient un sous-groupe isomorphe à Sym3. Or la prop.2.7 montre

que Γu est isomorphe à un sous-groupe de Outc(G
−
u ) � Outc(D4) � Sym3. On

en conclut que G̃
−
u � F4. [Autre démonstration : utiliser le fait que F4 est un

sous-groupe fini maximal de GL4(Q), cf. [Da 65], (4.3).] On déduit de là que
|Gu| = 21333 et que Γu � Sym3, ce qui justifie la ligne 4 du tableau. De plus, cet
argument montre que les éléments d’ordre 2 de Γu sont des images d’involutions
de degré 2 de Gu.

Il reste à prouver que les involutions de type 4 (resp. 4′) sont des rectangles
(resp. des tétraèdres) au sens de [Se 22], 5.6. Il suffit de le faire pour le type
4, et sur un exemple explicite. Avec les notations de la fin du §8, choisissons
u = s2s5s7s0, qui est de type rectangle, on l’a vu. Posons v = s2s5s7 ; c’est une
involution de E7 de type droite, cf. §8. Soit e l’élément −1 de E7 ; le produit ev
est une involution de E7 de type 4. Son image dans E8 est aussi de type 4. Mais
l’image de e dans E8 est −s0 ; celle de ev est donc égale à −u. On en conclut
que −u est de type 4, et la même chose est vraie pour u, puisque u et −u sont
conjuguées.

12. Type F4.

Ce groupe contient −1. Pour d = 1, 2, 3, il y a deux classes de conjugaison
d’involutions de degré d.

Les réflexions de chacune des deux classes (notées L et C : “longues” et
“courtes”) engendrent un sous-groupe normal de G, qui est de type D4 ; le quo-
tient de G par ce sous-groupe est isomorphe à Sym3. Les trois sous-groupes
d’ordre 2 de Sym3 correspondent à trois sous-groupes d’indice 3 de G, qui sont
des C -sous-groupes de type B4. Les classes C et L sont permutées par un auto-
morphisme d’ordre 2 de G (par exemple celui qui est évident sur le diagramme
de Coxeter). Chaque classe a 12 éléments.
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Le groupe G
+

u associé à une réflexion u est de type B3 ; lorsque u est de type
L, cela résulte de la prop.3.3, car u est conjuguée de la réflexion notée s0 dans
cette proposition ; le cas où u est de type C résulte du précédent en appliquant
un automorphisme de G qui permute C et L.

Les deux classes d’involutions de degré 2, notées 2 et 2′, ont les propriétés
suivantes :

Une involution u de type 2 se décompose de deux façons différentes en pro-
duit de deux réflexions s et s′ ; dans l’une de ces décompositions, s et s′ appar-
tiennent à la classe C ; dans l’autre décomposition, s et s′ appartiennent à la

classe L. Le groupe G
−
u est de type B2. Le nombre de telles involutions est 2.32.

Une involution u de type 2′ s se décompose de façon unique en u = ss′, où
s est une réflexion de type C et s′ est une réflexion de type L. Le groupe G

−
u

est de type A1 ×A1. Le nombre de ces involutions est 2232.

[Ces propriétés se démontrent, soit en utilisant les plongements D4 ⊂ B4 ⊂ F4, soit

en utilisant la construction de G par dédoublement à partir de Sym4, cf. [Se 22],

6.12.]

On a le tableau suivant :

deg(u) |Gu| G
−
u G̃

−
u G

+

u G̃
+

u γu

0 2732 1 1 F4 F4 1

1 et 1′ 253 A1 A1 B3 B3 1

2 26 B2 B2 B2 B2 1

2′ 24 A1 ×A1 A1 ×A1 A1 × A1 A1 ×A1 1

3 et 3′ 253 B3 B3 A1 A1 1

4 2732 F4 F4 1 1 1

Vérification du tableau.

On peut se borner au cas d � 2 puisque G contient −1. Les deux cas d = 0, 1
sont immédiats.

Lorsque u est de type 2, on a vu que G
−
u est de type B2. Or u et −u

sont conjugués (puisque leurs centralisateurs ont le même ordre). Le groupe

G
+

u est donc aussi de type B2. Comme G̃
−
u = Gu/G

+

u , l’ordre de ce groupe est

26/23 = 23 ; puisqu’ il contient G
−
u , qui est d’ordre 23, il lui est égal. On a donc

Γu = 1.

Le cas du type 2′ est analogue : les groupes G
−
u et G

+

u sont de type A1×A1 ;

l’ordre de G̃
−
u = Gu/G

+

u est 24/22 = 22, d’où G̃
−
u = G

−
u et Γu = 1.

Cette vérification termine la démonstration des énoncés du §1.
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Groups, Drift and Harmonic Measures

Mark Pollicott and Polina Vytnova

1 Introduction

An intriguing problem in modern geometric measure theory is the study of the
harmonic measure on the unit circle which arises from a random walk on a Fuchsian
group. The existing approach combines several areas of pure mathematics, such as
Ergodic Theory, Probability Theory, Hyperbolic Geometry, and rigorous Numerical
Analysis.

We will first recall some background. Afterwards we introduce one of the
quantifiable characteristics of random walks called the drift and explain how it is
related to properties of the harmonic measure, in particular, its Hausdorff dimension.
Finally, we will draw a connection to a popular conjecture of Kaimanovich and Le
Prince on the nature of the harmonic measure associated to a random walk on a
Fuchsian group.

Although there are a number of partial results in special cases the general
conjecture still remains open. We will offer a new perspective which covers both
some known examples and some new cases. Finally, we will illustrate the question
using the example of a (4, 4, 4)-triangle group which can be traced back to the works
of Gauss from 1805.

M. Pollicott (�)
Department of Mathematics, Warwick University, Coventry, UK
e-mail: masdbl@warwick.ac.uk

P. Vytnova
Department of Mathematics, University of Surrey Guildford, Surrey, UK
e-mail: P.Vytnova@surrey.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.-M. Morel, B. Teissier (eds.), Mathematics Going Forward, Lecture Notes
in Mathematics 2313, https://doi.org/10.1007/978-3-031-12244-6_21

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12244-6_21&domain=pdf

 71 3973
a 71 3973 a
 
mailto:masdbl@warwick.ac.uk

 71 4263
a 71 4263 a
 
mailto:P.Vytnova@surrey.ac.uk

 480 4612 a 480 4612 a
 
https://doi.org/10.1007/978-3-031-12244-6_21


302 M. Pollicott and P. Vytnova

Wahrlich1 es ist nicht das Wissen, sondern das Lernen, nicht das Besitzen sondern das
Erwerben, nicht das Da-Seyn, sondern das Hinkommen, was den grössten Genuss gewährt.

Carl Friedrich Gauß to Wolfgang Bolyai [8].

2 Preliminaries

In this section we collect together some background knowledge we need to properly
formulate the problem.

2.1 Hyperbolic Geometry

We will treat Fuchsian groups as groups of isometries acting on the hyperbolic
plane H. For our considerations it will be convenient to consider the so-called
Poincaré disk model of H.

Fig. 1 The Poincaré disk
where geodesics are either
circular arcs which meet the
boundary circle orthogonally
or diameters

γ4

γ3

γ1

γ2

This is a representation of the hyperbolic plane as an open unit disk D = {z =
x + iy : |z| < 1} equipped with the Poincaré metric

ds2 = 4
dx2 + dy2

(1− (x2 + y2))2 .

The geodesics are the extrema of the distance functional with respect to this metric.
They are precisely the Euclidean diameters and circular arcs which are orthogonal
to the boundary circle ∂D, as shown in Fig. 1.

1 “It is not knowledge, but the act of learning, not possession but the act of getting there, which
grants the greatest enjoyment.”
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The orientation preserving isometries of H in this model are linear fractional
transformations of the form

g(z) = az+ b

b̄z+ ā
, where a, b ∈ C and |a|2 − |b|2 = 1.

As a group the orientation preserving isometries are isomorphic to the group
consisting of 2×2 real matrices with determinant 1 up to multiplication by± ( 1 0

0 1

)
.

Namely this is the group PSL(2,R) = SL(2,R)/{±I }.

2.2 Geometric Group Theory

In the present paper we want to consider finitely generated groups of isometries
of H. We call the group 
 non-elementary if it is not isomorphic to Z. If 
 is finitely
generated, then the orbit 
0 = {g0 : g ∈ 
} of 0 ∈ D is a countable set of points in
the unit disk.

Definition 2.1 We call a non-elementary group 
 a Fuchsian group if 
0 is a
discrete set with respect to the Poincaré metric ds2 introduced above.

In particular, if 
 is Fuchsian then all accumulation points with respect to the
Poincaré metric must lie on the unit circle ∂D = {z ∈ C : |z| = 1}.

Let us denote the set consisting of generators and their inverses by 
• =
{g±1

1 , · · · , g±1
d }. We can associate to 
• the Cayley graph of 
. This is an infinite

graph in which the vertices can be realised as the points of 
0 = {g0 : g ∈ 
} and
two vertices g0 and h0 are connected by an edge if and only if gh−1 ∈ 
•.

2.3 Random Walks and the Drift

We can now introduce our main tool. Given a set of generators and their inverses 
•
we can consider a random walk on the Cayley graph where we allow a transition
from a vertex g0 to a neighbouring vertex h0 with probability 1

2d . (Here we assume
that #
• = 2d , as above.)

Definition 2.2 Given a specific set of generators 
• we can associate the drift (or
the rate of escape) defined by

� = �(
•) = lim
n→+∞

1

(2d)n
∑

gj1 ,...,gjn∈
•

d(gj1 · · · gjn0, 0)

n
.

The limit always exists by a standard subadditivity argument and quantifies the rate
at which typical points gj1 · · · gjn0 escape towards the boundary circle ∂D.
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3 Some Examples

Let us now turn to specific examples of Fuchsian groups. For basic results on
hyperbolic polygons we refer the reader to an excellent book by Beardon [3].

3.1 Regular Octagon Tilings

Let P ⊂ H be a regular octagon with angles π
4 and sides of equal length which

are geodesics as shown in Fig. 2. We can consider groups of isometries generated
by four transformations which identify the sides of the regular octagon. In this
case the images of the octagon under the group action tile the hyperbolic plane,
so that 
P = H. There are four different identifications which yield a surface
of genus 2 as factor space H/
 [15]. This property implies, in particular, that
the group 
 generated by these identifications is discrete. We will consider only
two identifications which lead to well-known surfaces: the Bolza surface and the
Gutzwiller surface.

The Gutzwiller group [11] 
G = 〈g1, g2, g3, g4〉 is generated by four isometries
which identify the alternating sides of the regular pentagon P . They satisfy the
identity g1g

−1
2 g1g

−1
2 g3g

−1
4 g4g

−1
3 = I (see Fig. 2, Left).

The Bolza group [5] 
B = 〈g1, g2, g3, g4〉 is generated by four isometries which
identify the opposite sides of the regular pentagon P . They satisfy the identity
g1g

−1
2 g3g

−1
4 g−1

1 g2g
−1
3 g4 = I (see Fig. 2, Right).

g2

g1
g3

g4
g1

g2

g3g4

Fig. 2 Left: generators of the Gutzwiller group identify alternating sides of the regular octagon;
Right: Bolza group generated by isometries identifying opposite sides of the regular octagon

It turns out the drift doesn’t depend on the identification chosen, in particular,
these two examples share the same value for the drift �.
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Theorem 3.1 With the choice of generators specified above, the drift � for the Bolza
group 
B and for the Gutzwiller group 
G is the same and satisfies

1.690771 < � < 1.691313.

The method we use for estimating � involves looking at the action of 
 on ∂D

and computing the maximal Lyapunov exponent. This is achieved by obtaining
estimates on the spectral radius of transfer operators acting on the space of α-
Hölder continuous functions Lt : Cα(∂D) → Cα(∂D) defined by [Lt f ](z) =
1

2n

∑
g∈
• |g′(z)|t f (gz) for t close to 1 and suitably small α > 0. A more detailed

exposition of the technical computer-assisted argument will appear elsewhere.

3.2 Hyperbolic Triangle Groups

Another class of interesting examples is perhaps the class of Coxeter groups
generated by reflections in the sides of a hyperbolic triangle, the so-called triangle
groups. It is easy to see that the group is discrete if and only if all angles of the
triangle are rational multipliers of π . We will restrict our considerations to the case
when triangle has angles π

k
, π

l
and π

m
where k, l and m are integers. Recall that sum

of the angles of the hyperbolic triangle is strictly less than π , and therefore k, l,m

should satisfy the inequality 1
k
+ 1

l
+ 1

m
< 1.

Fig. 3 Left: a triangle in D with boundaries which are geodesics with respect to the Poincaré
metric and internal angles π

k
, π

l
and π

m
, containing the centre of the disk in its interior. Right:

hyperbolic triangles with different shape

Definition 3.2 The (k, l,m)-triangle group is a group generated by reflections in
the three sides of a hyperbolic triangle with angles π

k
, π

l
and π

m
.
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It follows from the properties of reflections, that the generators g1, g2, g3 of the
(k, l,m)-triangle group, shown in Fig. 3 satisfy the following relations

g2
1 = g2

2 = g2
3 = I and (g1g2)

k = (g2g3)
l = (g3g1)

m = I.

These are the defining relations in the sense that any group with three generators
which satisfy these condition is the (k, l,m)-triangle group. Evidently, this group
is also cocompact. Furthermore, similarly to the case of the regular octagon, the
images of the original triangle with respect to the group form a tessellation of the
hyperbolic plane.

The study of the groups generated by reflections with respect to the sides of
curvilinear triangles can be traced back to the works of Gauss. Bolyai, commenting
on Gauss’ work, suggests that in a drawing from “Cereri Palladi Junoni Sacrum”
dated February 1805 Gauss introduced the idea of reflection with respect to the
circle. A copy of the drawing, taken from [9, p. 104], is shown in Fig. 4 on the left.
On the right we see a tessellation of the hyperbolic plane generated by the (4, 4, 4)-
triangle group. The difference between the two drawings is due to the choice of the
location of the original triangle. In Gauss’ drawing the centre of the disk is one of
the vertices. In our drawing, the centre of the disk is the barycentre of the triangle.
Despite the appearance of a tessellation of the Poincaré disk in Gauss’ drawing it
was written 49 years before the birth of Poincaré! Lobachevsky laid the foundations
of the hyperbolic geometry in 1823 (see, e.g. [16], chapter 18).

x0

x1

x2x3

x4

g1

g2

g3

Fig. 4 Left: an original drawing by Gauss of a part of the (4, 4, 4)-triangle group tessellation;
Right: an orbit of a random walk corresponding to the (4, 4, 4)-triangle group: x1 = g1x0, x2 =
g1g2x0, x3 = g1g2g1x0, and finally x4 = g1g2g1g3x0

Using the same machinery as in the case of the regular octagon we can estimate
the drift. In Table 1 we list different examples of triangle groups and give upper
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and lower bounds on the associated drift. In a special case of the (4, 4, 4)-triangle
group, we have the following result.

Theorem 3.3 The drift of the random walk on the (4, 4, 4)-triangle group with the
choice of generators specified above satisfies

0.1282273 < � < 0.1282264.

Table 1 Upper and lower
bounds on the drift for some
(k, l,m)-hyperbolic triangle
groups

k l m Lower bound on � Upper bound on �

3 7 2 0.009936413804542 0.009974294432083

3 8 2 0.016242376981342 0.016295700460901

3 9 2 0.020422904820936 0.020508218335138

4 5 2 0.024263195172778 0.024341830945392

4 6 2 0.037765501277040 0.037870175386186

4 8 2 0.050724918174930 0.050934249274956

5 5 2 0.046019792084900 0.046155635941842

5 6 2 0.058159239428682 0.058334985605960

5 7 2 0.065329026703739 0.065563197936118

6 6 2 0.069559814745121 0.069846131636394

4 3 3 0.046694831446660 0.046816105401585

5 3 3 0.069435926662536 0.069689191304812

6 3 3 0.081515978567027 0.081925767935374

7 3 3 0.088431558608918 0.089059709051931

3 4 4 0.088752444507380 0.088919437571219

3 6 6 0.148515148139248 0.149179933451390

4 4 4 0.128086862380309 0.128344145942091

5 5 5 0.182618423778876 0.183286144055414

6 6 6 0.209779208475952 0.211031605163552

7 7 7 0.224864828238411 0.228908301867331

8 8 8 0.232248419011566 0.238574707256068

9 9 9 0.236782098913020 0.247054233672500

10 10 10 0.240409132283172 0.252180931190328

4 Two Problems

After a brief discussion of the groups we are concerned with we continue by
introducing one of the central objects of the theory—the harmonic measure.
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4.1 The Harmonic Measure on the Unit Circle

As we have seen already, a typical orbit of the random walk associated to a Fuchsian
group converges to a point on the boundary circle with respect to the Euclidean and
the hyperbolic metric. The distribution ν of the limit points on the boundary ∂D

defines a probability measure. More precisely, given a generating set 
• of a
Fuchsian group we can define a family of probability measures on D by

νn =
(

1

2d

)n ∑

gj1 ,··· ,gjn∈
•
δgj1 ···gjn0,

where δgj1 ···gjn0 is the Dirac measure supported at gj1 · · ·gjn0. The measures νn
converge in the weak star topology (on the closed unit disk) to a probability
measure ν on ∂D.

Definition 4.1 The measure ν is called the harmonic measure or the hitting
measure.

We can denote by � ⊂ ∂D the support of this measure (i.e., the smallest closed
set of the full measure). It is known that either � = ∂D or � � ∂D is a Cantor set.

4.2 Singularity of the Harmonic Measure

The following natural question was posed by Kaimanovich and Le Prince [12]:

Question 4.1 Can we characterise Fuchsian groups for which the associate
harmonic measure is absolutely continuous with respect to the Lebesgue
measure?

Of course, if the support of the harmonic measure is a Cantor set then the measure
is singular with respect to Lebesgue measure. Therefore, we will only consider the
case that � = ∂D. In the special case when one of the generators in 
• is parabolic
it was shown by Gadre, Maher, and Tiozzo that the harmonic measure is always
singular [7].

Furthermore, there are examples of non-discrete groups due to Bourgain for
which ν is absolutely continuous [6] (see also [2]). In the more general setting
when the weights in the random walk differ the measure ν may be singular [12].

In the setting of the surface groups, this question has been intensively studied [13,
14]. One set of examples is Fuchsian groups generated by isometries identifying the
sides of hyperbolic polygons. However, many of the examples with more than four
sides have harmonic measures that are singular (see [13, Theorem 1]).
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4.3 Dimension of the Harmonic Measure

An important quantitative characteristic of the measure is its Hausdorff dimension.

Definition 4.2 The Hausdorff dimension of the measure is the infimum of Haus-
dorff dimensions of sets of the full measure:

dimH(ν) = inf{dimH(X) | X ⊂ ∂D Borel and ν(X) = 1}.

There is a useful result due to Tanaka which relates the question of absolute
continuity of the harmonic measure to the numerical value of its Hausdorff
dimension [17].

Proposition 4.3 (Tanaka) The harmonic measure ν is absolutely continuous if and
only if dimH(ν) = 1.

This leads to the following stronger version of Question 21.1.

Question 4.2 Assuming the harmonic measure is not absolutely continuous
with respect to Lebesgue measure, can we estimate its Hausdorff dimension?

We now return to our examples.
It follows from the result of Kosenko [13, Theorem 1.2] (see also [14]) that the

harmonic measure νB associated to the Bolza group 
B is singular. We can improve
on this result.

Theorem 4.4 The dimension of the harmonic measure νB for the Bolza group
satisfies

dimH(νB) ≤ 0.86116.

The dimension of the harmonic measure νG for the Gutzwiller group 
G satisfies

dimH(νG) ≤ 0.86317.

In particular, the harmonic measure νG is also singular.

In order to explain the proof, we need one extra ingredient.

4.4 Relation to the Avez Entropy

We introduce another numerical characteristic of the random walk which is com-
monly used to estimate the dimension of a measure.
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Definition 4.5 We can associate to a harmonic measure ν the Avez random walk
entropy defined by

hA(ν) = lim
n→+∞

1

n
H(ν∗n)

where H(·) is the usual Shannon entropy function and ν∗n denotes the n-fold
convolution [1].

The limit always exists by subadditivity. The dimension, entropy and drift are
related using the following identity [4, 10, 17].

Proposition 4.6 For the harmonic measure ν we have that dimH(ν) = hA(ν)/�(ν).

Now we are ready to prove Theorem 4.4.

Proof of Theorem4.4 Combining Propositions 4.3 and 4.6 we see that in order to
establish that the harmonic measure is singular it is sufficient to show that h(ν) ≥
�(ν). In particular, we need to establish an upper bound on the entropy and a lower
bound on the drift. For the Gutzwiller group an estimate on the entropy is given
in a beautiful paper [10]. Even the most basic bound they give in Example 2.3
h(νB) ≤ 1.46 in combination with the estimate on the drift �(νB) from Theorem 3.1
allows us to deduce that the measure in singular. In the case of the Bolza group, we
can use the estimate on the drift �(νG) from Theorem 3.1 and the upper bound on
the entropy of h(νG) ≤ 3

4 log 7 coming from the free group on four generators. ��

4.5 Final Remarks

Should one wish to apply the same approach to show that the harmonic measures
for the triangle groups are singular it will be necessary to obtain an effective
upper bound on the Avez entropy. Unfortunately, the naive bound of 1

3 log 2 ≈
0.231049 . . . corresponding to the Avez entropy of the random walk on the free
product Z2 × Z2 × Z2 isn’t quite low enough to show that the measure is singular
for most of triangle groups listed in Table 1. Nevertheless in the case of (8, 8, 8),
(9, 9, 9), and (10, 10, 10)-triangle groups we may conclude that the measure is
singular. It is reasonable to suggest that the drift for (k, k, k)-triangle group is
monotone increasing as k → ∞. This would imply that the harmonic measure
is singular for k ≥ 8.
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Part VI
History of Mathematics

This part presents three very different aspects of the historical viewpoint on
mathematics.

The article Some Problems in the modern history of mathematics by Jeremy Gray
begins with a concise, critical, and insightful presentation of the historiography
of modern mathematics in the West. The author then proposes five fundamental
projects for going forward: a socio-historical book on the history of mathematics, a
book on the history of applied mathematics, a history of differential equations, and
a book on mathematics of the eighteenth century. The motivations for each are of
course of great interest even for non-historians. The same is true of the paragraph
making the case for a new philosophical perspective in the history of mathematics.

Norbert Schappacher’s article Mathematics going backwards? A logological
encounter between mathematics and archeology begins with a description of
Borromean links appearing in mosaics on the floor of the Villa del Casale in Sicily.
It continues with a vivid description of the relationship between mathematicians
and archeologists centered around knots and links and ends with a meditation on
the possible use of links as symbols of cohesion in mathematics.

David Rowe’s text Max Dehn as a historian of mathematics presents a fascinating
example of a mathematician deeply versed in the history of his discipline. It
explains how this fits in with Dehn’s view of mathematics as an important part of
human culture, and with the activities of his very influential seminar. The article
also points to the differences between Dehn’s approach to mathematics and that
of the Göttingen school and more generally details Dehn’s interactions with his
mathematical environment. Finally there are insightful presentations of Dehn’s
work on the history of geometry and on the Newton–Leibniz controversy.



Some Problems in the History
of Modern Mathematics

Jeremy Gray

Personal Note
It is a great pleasure to take this opportunity to thank Catriona Byrne for the many
ways she has helped the history of mathematics community, and for the numerous
encouraging conversations I have had with her over the years, which have helped
shape how I have thought about mathematics and its history. Of particular note is
the work she did to bring about Springer’s contribution to the Prize awarded by the
European Mathematical Society. More personally, I thank her for helping to open
Springer’s doors to what became my four volumes on the history of mathematics in
the SUMS series, which are now ably looked after by Remi Lodh.

1 A Brief Historiography

I shall restrict my attention to mathematics in the West in the period from 1600
to 2000 (the modern period). The word ‘mathematics’ in this essay will always
mean the mathematics of those four centuries. Before addressing my main theme of
problems for future historians of mathematics, I would like briefly to set the context
with a few historiographical remarks.

Science and technology had played a hugely significant role on both the Allied
and Axis sides in the second World War and then throughout the Cold War, with
implications and opportunities that needed to be understood. In the English-
speaking world there was a boom in history and philosophy of science, and in logic,
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often focussed on what the key ingredients of progress might be: what was special
about science, what was science anyway? Enthusiasm and funding eventually
waned, but two books stand out as survivors: Tom Kuhn’s [38] The Structure of
Scientific Revolutions and Imré Lakatos’s [39] Proofs and Refutations. Whatever
their strengths or weaknesses, they both offered a point of view that many outside
the field could relate to; Kuhn’s paradigm shifts and Lakatos’s monster barring
and other ideas seemed much fresher than a trudge through the names and dates
of the great scientists and mathematicians, or raking over the coals of formalism,
intuitionism, and logicism.

The return to original research in the history of mathematics based on archival
documents was quieter. In the U.K. there were the examples of Ivor Grattan-
Guinness [23] and Tom Whiteside [57]; in the USA Carl Boyer and Morris Kline
[36]; in France René Taton [55]. In East and West Germany there were a number
of long-standing Chairs in the subject, and in the Soviet Union there were some
good links between mathematicians and historians of mathematics (for example,
Kolmogorov and Youschkevitch [37]), doubtless complicated by a desire of the
communist system to produce Marxist ‘history’. However, the English-speaking
world also saw a growing separation between history of mathematics and history
of science, as historians of science sought to orient their work more closely with
historians of other topics, in whose department they worked. Scientific rationality
and the experimental method became only a part of arguments about status, social
acceptability, funding, and national priorities. This was not a fertile ground for
historians of mathematics of any kind, for whom there are aspects of mathematics
already pointed out by philosophers of the 1950s and by Leo Corry more recently
in lectures, which make the writing of interesting history of mathematics difficult;
chiefly, what can be said in mathematics is very tightly constrained by the standards
of rigour of its time. But nor, with a few exceptions, did philosophers of
mathematics sustain an interest in history, preferring set-theoretic reductionism.

Where is the history of modern mathematics today? There is no consensus
about research in the field, nor should there be. Among the substantial editorial
achievements that have altered our picture of modern mathematics, the most
significant for the early twentieth century is the ten volumes of Hausdorff’s Werke
[31]. For the nineteenth century there have been a number of well-researched
biographies, and Thomas Hawkins’s exceptional book [32] Emergence of the Theory
of Lie Groups. For the eighteenth century there is the creation of the online
Euler Archive, and for the seventeenth century I would single out Henk Bos’s [3]
Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern
Concept of Construction, which taught us how to read Descartes with fresh eyes,
and Niccolò Guicciardini’s Isaac Newton on Mathematical Certainty and Method,
which does the same for Newton. A recent, two-volume, source-based account for
students by June Barrow-Green et al. [2] may serve as an introduction to much of
this material and more.

Although there has been a welcome turn towards historiographical studies
(Guicciardini [28], Remmert, Schneider, and Sørensen [46]) and a methodological
stiffening, most openly in the groups around Catherine Goldstein and Karine
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Chemla in Paris, the history of modern mathematics can too easily project a sense
of worthiness that shades into seeming insignificance. That should be set against
the fact that science, especially physics, celestial mechanics, and mathematics are
inextricable; that on many occasions philosophy has turned to mathematics and
mathematical physics to renew its pursuit of its own questions; that mathematics
is a key element in the educational systems of the modern world, and that modern
mathematics can be seen as a species of modernism (Gray [24]). Without detracting
at all from anything that has been done, historians of mathematics might profitably
reassert where their work stands at the nexus of several vital concerns in the shaping
of the modern world in the last four or more centuries. Perhaps surprisingly, a way
forward might begin by considering what would be involved in a social-historical
approach (so often a domain bereft of serious mathematics).

2 The Problems

2.1 Write a Social-Historical Book in the History
of Mathematics

We currently lack a book in the history of mathematics rooted in its contemporary
social developments, although the forthcoming six-volume Bloomsbury Cultural
History of Mathematics edited by J.W. Dauben and D.E. Rowe should be an
excellent resource for many audiences (full disclosure, I have an essay in volume 5).
What does it mean that mathematics was the province of a few gifted individuals in
the seventeenth century, often outside the small university world? Or that these
small numbers persisted into the eighteenth century, the age of the Academies
and the Republic of Letters? Or that matters then passed to the ever-expanding
universities of the nineteenth and twentieth centuries, concurrent with the rise of
modern capitalism, and the number of mathematicians grew by perhaps a factor
of 50? Soon, reform of the school educational system became a feature of every
country that aspired to advanced mathematics, but there is no recent study of the
connection between the rise of the universities after 1800 and any truly interesting
account of the effect this had on mathematics, although there was a flurry of
interest in neohumanism in Germany (see e.g. Pyenson [45]), there have been close
studies of mathematics in nineteenth century Cambridge (Craik [9] and (Warwick
[56]), and more recently there have been arguments about the first century of the
École Polytechnique. Rowe’s [48], a look at the Göttingen tradition, grounded in
archival sources, offers a fresh indication of how things could be done, as do the
dense and valuable books by Reinhard Siegmund-Schultze (for example, his [51]
Mathematicians Fleeing from Nazi Germany: Individual Fates and Global Impact).
Even if there are no significant connections between advanced pure mathematics
and any social need, that would be a valuable part of the story (see Harris [30]).
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It is time for the history of statistics to be integrated with the rest of the history of
mathematics, despite the fact that in many universities mathematics and statistics
remain in different departments. There are two good books on the history of
statistics (Porter [44], Stigler [52]), but right now the subject seems to be lying
fallow. There are two books on measure theory and the axiomatic approach to
probability of Kolmogorov and others (Hochkirchen [33], von Plato [43]). Measure
theory went in two directions, one towards probability (in the work of Doob) and
the other towards functional analysis and ultimately also quantum mechanics. We
now live at a time when probabilistic thinking is enriching several domains of
analysis (notably number theory and partial differential equations) and while it
would be absurd to imagine writing a history of such a fast-moving field today
this might create the opportunity for a fresh look at the history of probabilistic
thinking in mathematics. A start could be made with a fresh look at the history
of thermodynamics.

2.2 Write a Book on the History of Applied Mathematics

Most fundamentally, we need to rethink the term ‘applied mathematics’, not just
because it has various meanings in different countries even today, but because it
emerged as a term only at the start of the nineteenth century; previously there
had been a division into pure and mixed mathematics. Truesdell spoke of the
rational mechanics of the eighteenth century, referring to the striking absence of
experimental work in science in the period and the reliance on untested mathematics
(inevitable, of course, in the dominant field of celestial mechanics). If it is true that
experimental physics only took off at the start of the nineteenth century, perhaps
with the study of electricity, and theoretical physics only came later (see Jungnickel
and McCormmach [34]), there still needs to be a historical investigation of the
associated mathematics in this context.

We lack a book on the complicated relationship between modern mathematics
and modern physics, although it is widely believed that this was strangely attenuated
in the early years of quantum mechanics. There is much we know about each
side, see (Schneider [50]) and e.g., from an enormous literature on Einstein, (Renn
[47]), but less on the interaction between the fields. There has been no shortage
of solid work in the history of applied mathematics, much of it concentrated on
the nineteenth century, and much of it in the form of biographies. We also have the
pioneering books by Olivier Darrigol on electrodynamics [10], hydrodynamics [11],
and optics [12]. More recently there has been at least two books on mathematics and
the first world war (Aubin and Goldstein [1], Royle [49]), and books on mathematics
and the early history of flight. But, for example, we still lack a book on the major
British applied mathematicians that Klein so appreciated in his [35] Vorlesungen
über die Entwicklung der Mathematik im 19. Jahrhundert (1928). From the physics
side, we have Buchwald’s [6] and [7] concerning responses to Maxwellian physics
and the rise of the wave theory of light.
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Any such book would have to consider such topics as Maxwell’s equations,
the Einstein field equations, Schrödinger’s equation and other partial differential
equations, which underlines the importance of the next problem.

2.3 A History of Differential Equations

There is a number of accounts of one or another equation, and an extensive
mathematical folklore, but my attempt to say something in a book (Gray [25]) aimed
at final-year students convinced me that there is a need for a more thorough history
with a more sophisticated methodology and less constrained by mathematical
difficulty. It seems very likely that a good treatment of the subject will change our
ideas about the growth of mathematical analysis, and move it away from an over-
emphasis on rigour towards what might be called rigour for good reasons. A history
of partial differential equations would be particularly valuable, especially if it could
engage with the fundamental changes introduced by 1920. After that, the field
becomes highly diverse and complicated and may defy historians for some time (see,
however, Lützen [40]). Two topics that I had to omit stand out: Maxwell’s equations
(but see Buchwald [6]) and perturbation theory, so important in celestial mechanics
and other fields. The twentieth century also saw the introduction, following ideas
of Poincaré, of an abstract theory of flows, probabilistic ideas, and the ergodic
theorems of Birkhoff and von Neumann.

A few isolated equations aside, theories of ordinary and partial differential
equations began with Euler, Laplace, Lagrange, and Monge in the eighteenth
century, and that leads into the next problem.

2.4 A Book on the History of Mathematics in the Eighteenth
Century

Researching the history of mathematics in the eighteenth century sits uneasily
between the preferences of mathematics and history of science departments. Two
intertwined themes are the advances in celestial mechanics, and the reformulations
of the calculus. Laplace’s intimidating Mécanique Céleste was widely taken
to have removed all doubts about the workings of the solar system, but the
history of planetary astronomy still needs to be properly included in the history
of mathematics, despite Gillispie’s [22] Pierre-Simon Laplace 1749–1827 and the
work of Curtis Wilson; see, e.g. his [58] and [59]. The Euler Archive is a valuable
initiative in this direction.

Scholarship on calculus in the century is almost bracketed by Guicciardini’s two
books [26, 27] on Newton and various studies of aspects of Cauchy’s rigorization of
analysis. In between, Euler brought about a shift in the foundations of the subject
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by successfully introducing the concept of a function, in whatever limited a form
(see Ferraro [16]), but attempts by Lagrange to provide rigorous foundations of the
calculus failed, as Ferraro and Panza [17] have shown. Another figure on whom
scholarship has just begun, is Johann Heinrich Lambert, a member of every section
of the Académie Royale des Sciences in Berlin, who wrote on many subjects and
about whom we have several fragmented accounts.

Recently, Andrea del Centina (see e.g. his paper of 2020 [8]), and Jean-Yves
Briend and Marie Anglade (see a series of papers starting with their paper [4] in
2017), have been revising our understanding of what falls under the heading of
projective geometry in the seventeenth century. But we lack recent accounts of ge-
ometry in the eighteenth century, although there is (Bruneau [5]) on MacLaurin, and
De Risi’s innovative work on the foundations of geometry and attitudes to Euclid’s
Elements, much of which is still to appear (but for an early yet valuable work see
his [14]). Presently, it seems as if, books by Euler and Cramer notwithstanding,
geometry went into something of a decline. There was, for example, surprisingly
little differential geometry of surfaces in the eighteenth century.

Historians and other intellectuals have given the idea of a progressive Enlighten-
ment a rough time in the last 20 years, but apart from Hankins’ book [29] there has
been very little written on the involvement of mathematicians in the Enlightenment
project and, for example, the production of the great Encyclopédie. As one example
to be integrated into the history of mathematics, there is the controversy between
d’Alembert, Rameau, and Rousseau about the new theory of music. This is only
one reason for a fresh examination of mathematics of the age of the Academies.

2.5 The History of Mathematics from a New Philosophical
Perspective

Such were the crises of mathematics around 1900 that Hilbert was driven to say
that to solve their problems mathematicians had to become philosophers. The
highest standards were required of the rigour, reliability, and perhaps meaning of
mathematics, and three families of ideas emerged: intuitionism, formalism, and
logicism. More than anyone else, Gödel and Tarski answered many of the questions
raised at the start of the twentieth century. More recently, the idea that mathematics
is about axiomatically defined structures in various inter-relations (structuralism)
has been a rival to a feeling that, at base, mathematics is an outgrowth of set
theory and logic, a view that leaves most mathematicians cold. In the last 10
years, however, in the work of Mancosu [41, 42], Tappenden, in his [53] and [54]
(to appear), and others, attempts have been made to engage philosophically with
questions that mathematicians do ask themselves: What makes an idea fruitful?
What is the right definition of a new concept? What is meant by purity of method
and why is it valuable? What characterises a ‘right’ proof? How does advanced
mathematics emerge from the seemingly incontrovertible elementary arithmetic,
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and with what consequences (here, see Ferreirós [19])? We now have a variety
of sophisticated tools, such as Epple’s epistemic objects (Epple [15]).

All this refocuses history of mathematics on how are discoveries made, which
has a weakness of assuming too easily that some discoveries just get made, as if
they were ordained in advance. There is a need for histories of mathematics that
deliberately play down the eventual successes in favour of the seeking after new
results, and recent developments in the philosophy of mathematical practice may
provide the tools for such a thing.

It is time to take seriously the questions of why mathematics matters and why
it is convincing, as opposed to taking these questions for granted. From a social
perspective, and for the nineteenth century, a lot might hang on the opinions
of astronomers and certain kinds of physicists, but the question is worth asking
philosophically. To what extent is rigour a spur to mathematical discovery? This
raises the question of what various mathematicians have been trying to do, why,
under what constraints, and with what success. Such a book would be more
Lakatosian than Kuhnian. Ultimately, we need a methodological approach to the
mathematics of the previous centuries that is not a survey of results that reads like
Mathematics Reviews for the past, and a philosophy of mathematical practice may
well offer such a thing. Aside from the books mentioned above, one could also draw
inspiration from Ferreirós’s [18], and two books [20, 21] by Marcus Giaquinto.

3 Concluding Remarks

I heard recently of a 600-page history of modern Germany that mentioned Bach
precisely once. This was not to find fault, but merely to indicate how much
necessarily gets left out of such a book, never mind how Bach’s legacy remains
more alive than a lot of what was included. I haven’t been able to check, but I doubt
if Euler’s name was mentioned at all in the book, and that is the problem of the
history of mathematics, as it is of music and art. The challenge is to find places
to stand, and organising principles, that make the history of mathematics not only
accessible but vital.1
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Mathematics Going Backward?
A Logological Encounter Between
Mathematics and Archaeology

Norbert Schappacher

I dedicate these freewheeling reflections to Catriona Byrne. We have met time
and again over the years, usually at mathematical conferences. There were always
exciting book projects to discuss. Catriona also participated at the Strasbourg IMU
meeting that triggered my logological thoughts.

1 The Archaeologist and the Mathematician

The story goes back to May/June 2019. My partner and I toured the center and the
Western part of Sicily, starting with the famous Roman villa in the Casale district
of Piazza Armerina. As good, grateful tourists, we were duly overwhelmed by the
opulent mosaic floors, especially the lavish hunts and the cute scenes with children.

On the next day we met the Canadian archaeologist Roger J. Wilson from
Vancouver and his wife at an active excavation site near Gerace, not far from Piazza
Armerina. Wilson is the author of a book about the Villa del Casale [9], which
appeared some time ago. However, when we met in 2019, we only talked about
some of his more recent findings and publications.

Little did I know at the time that my Strasbourg colleague Thomas Delzant and
his wife were also touring Sicily at about the same time, naturally visiting the
Roman Villa del Casale on their trip as well. Being a staunch mathematician,
Thomas Delzant stopped in the small Room 18, in the North wing of the ancient
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Roman villa,1 before moving on to its well-known mosaic highlights. Only part
of the mosaic floor in Room 18 has survived. It is purely decorative, without any
representative element. What made him pause here—in spite of all the lush scenes
that he knew were waiting for him in the other parts of the complex—was a very
neat representation of the so-called Borromean rings—see Fig. 1. This brings us
back to the IMU logo (Fig. 2).

Fig. 1 The Borromean link in the mosaic floor of Room 18 of the Roman Villa del Casale near
Piazza Armerina, Sicily. On the left, overview of Room 18; photographer Tyler Bell. On the right,
detail; photographer Thomas Delzant

Thomas told me about his discovery during the IMU event staged in Strasbourg
in September 2021.2 He also asked me whether this mosaic might be the earliest
occurrence of the Borromean rings in history. I replied with the usual caution
about “earliest occurrences” that every historian of mathematics—and indeed every
historian—is familiar with: not only is priority often hard to prove, but the
fuss about priority tends to obscure historically meaningful nuances and contexts
that distinguish recurring occurrences of “the same” phenomenon. Nevertheless,
Thomas’s discovery prompted me to start an email exchange with Roger Wilson.
This is how I learnt about the archaeological sources presented below.

1 We stick to the numbering of the rooms originally proposed by Gino Vinicio Gentili and followed
in [9]. Brigitte Steger uses a different numbering in [8], for reasons probably best known to her.
2 See https://imucentennial.math.unistra.fr (consulted 22 March 2022).
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Fig. 2 The logo of the IMU (Courtesy IMU)

2 The Mathematician and the Archaeologist

Mathematicians like to know precisely what they are talking about. To achieve this
they are even prepared, at least since the late nineteenth century, to replace concrete
objects by ways of talking about them. Thus they may pass, for instance, from
permutations or symmetries to group theory.

Thomas Delzant stopped in Room 18 of the Villa del Casale because he
encountered the shape of a Brunnian link: the three closed curves, or loops, shown in
the design are inseparably linked, but if any one of them is cut open and removed, the
remaining two curves are no longer entangled; they can be separated from each other
without cutting. Our “Borromean rings”—so called because such a configuration,
wrongly suggesting it could be made of three flat rings, occurs more than a thousand
years later in the code of arms of the House of Borromeo from Milan—are the
simplest non-trivial example of a Brunnian link.

The name alludes to Hermann Brunn (1862–1939), a geometer and Arabist from
Munich, who thought about knots and links between 1887 and 1897 and published
four texts, the last one being the talk he gave at the very first International Congress
of Mathematicians (ICM) held in Zürich in 1897. These papers contain little more
than various suggestions to measure the complexity of a given knot.3 Brunn’s
enthusiasm for knots and links may have been fanned by memories of his father,
who was an archaeologist—a fact that incidentally explains why Brunn was born in
Rome.

Independently of the concept of Brunnian link that orients the mathematician’s
appraisal of the pattern and sees it as a variant of the IMU logo, the mosaic in
Room 18 is in the first place a concrete piece of craftsmanship, and a fine one
indeed. As such, every detail of its execution matters in principle: the precise
contours, the structure of each loop, the colors, the octagonal frame, the uniform
background, brightly colored, and so forth. The mosaics at the Villa del Casale
were in all likelihood composed in the second quarter of the fourth century CE
by North African specialists from the Carthage region.4 The particular motif that

3 See the discussion of Brunn’s work in [2], pp. 180–182.
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drew Thomas Delzant’s attention was evidently part of their repertoire. We know
nothing about the significance it may have had for them, or for those who may have
specifically ordered it.

This being said, there are (at least) two respects in which the craftsmanship
of decorative mosaic floors differs from other pictorial art forms—think of Rem-
brandt’s paintings, for example—where each individual tableau stands alone as a
unique, valuable original work of its master, which is irreplaceable.

The first difference is particularly easy to explain to mathematicians: Contrary
to a painting, any pixelization of which can be reasonably claimed to be inadequate,
a mosaic pattern is basically a discrete object—even if the precise shape of the
individual stones, and certain nuances of their colors, may be said to require very
fine scales. In other words, any mosaic can in principle be coded as a finite sequence
of data listing the pieces (stones) it consists of, their properties and their positions
with respect to a given geometrical framework. In this sense, mosaics could provide
an intriguing example of a hybrid art form situated somewhere between notational
and non-notational arts in the sense of Nelson Goodman [3]. The catch with this
observation, which renders it rather philosophical, is that nothing much seems to be
known about the usage of such coding practices for mosaics, especially in antiquity.

The second difference—potentially more relevant for our purpose—is that one
may try and catalogue standard patterns occurring repeatedly, say, in non-represent-
ational, decorative mosaic pavements from various parts of the Roman Empire
throughout its long history. Such a project grew out of French initiatives proposed
by archaeologists since the 1960s, and was finally published in two impressive
volumes [1]. The thousands of black-and-white drawings catalogued there were
painstakingly executed by hand in a coherent style, by Richard Prudhomme for the
first volume, and after his death by Marie-Pat Raynaud for the second. Most of them
are based on specific archaeological sites, which are duly indicated in footnotes. Yet,
the drawings go a long way towards reducing the information to a basic discrete code
underlying the concrete pavement in question, as envisaged above.

For example, the frame pattern in which our Brunnian link appears in Room 18
of the Villa del Casale is listed in Plate 177, motif e of [1], vol. I—see Fig. 3 below.
The source given for this framework pattern is a pavement from Djemilla, Algeria.

However, the choice of the editors of this momentous work [1] is to order all
these patterns, and to classify them in terms of labels that are formulated in a
semi-terminological language. These descriptions are given first in French, and
then translated into English, German, Italian, and Spanish. This produces rather
elaborate descriptions. The floor patterns d and e shown in Fig. 3, for instance, are
described in English like this:

d. Polychrome orthogonal pattern of eight-pointed stars of two interlaced squares of simple
guilloche, tangent at one angle, the cross-shaped interspaces bearing an inscribed eight-
lozenge star (forming squares).

4 This excludes the so-called bikini girls mosaic, which was installed later.
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Fig. 3 R. Prudhomme’s drawing of framepatterns, Plate 177, patterns d through f. Sample e is the
type encountered in Fig. 1. Source: [1], vol. I, p. 275

e. Polychrome variety of d, the cross-shaped interspaces consisting of a central poised
square ensconced in the angles, between four pairs of adjacent lozenges (creating the effect
of an orthogonal pattern of adjacent octagons).

Such elaborate descriptions of mosaic patterns raise high expectations for the
treatment that the authors reserve for our favorite Brunnian link in the second
volume of [1], which is dedicated to “centered ornaments” (décors centrés). Alas,
these expectations are frustrated because the early predecessor of the IMU’s logo
is listed on p. 43 of vol. II of [1] as one of the very last “elementary motifs.”
This whole list of elementary motifs is made up of 89 “simple” [1, pp. 34–38]
and 132 “complex motifs” [1, pp. 38–43]. Setting such allegedly elementary
motifs apart at the very beginning of the volume, the authors take the freedom
of depicting them more like plain geometric patterns, rather than insisting on the
mosaic texture. Accordingly, no indication of existing pavement sites is given
where these elementary motifs can be found. Also the frequency of their respective
occurrences is not discussed—see Fig. 4.

Furthermore, the Brunnian link is addressed there as a “knot of three figures
of eight.” This is devastating for the mathematician, whose whole appreciation of
the motif is naturally based on three simple loops entangled in three-space in a
particular way, whereas a single figure 8 is already the union of two loops. Testing
a few friends (non-mathematicians), I did encounter the same confusion between a
simple loop and a figure 8 when I showed them Fig. 1. Still, the least one can say
is that introducing our way of writing the number eight introduces an anachronistic
element into the description of this ancient motif from a Roman mosaic pavement.
On the positive side, the description proposed in [1], vol. II, does recognize our link
as a kind of knot.

Various other archaeologists have tried to improve on the formal classification
of all those motifs. One of the co-authors of [1], Anne-Marie Gumier-Sorbets,
independently proposed a computer-based classification of mosaic ornaments in
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Fig. 4 The last seven from the list of elementary motifs: [1], vol. II, p. 43

her thesis. Klaus Schmelzeisen in his thesis [7] tried to be more formal than his
various predecessors. It was written with a view to accounting for a fixed corpus of
Roman mosaics from North Africa. Schmelzeisen invented a new system, in which
our Brunnian logo received the label 14L.03. We refer the interested reader to this
thesis and to the literature cited there.
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3 A Link That Everyone Recognizes as a Knot

A peculiarity of the Brunnian link that I noticed when I showed Fig. 1 to people, lies
in the fact that it is not immediately seen by everyone as a knot.5 As far as links
represented in ancient mosaics are concerned, a rewarding comparison is provided
by what has been known for centuries as Salomon’s Knot, its variants and some
of its generalizations. Salomon’s Knot has just two loops—they may be drawn as
circles or slightly deformed, sometimes into shapes with vertices—that are doubly
interlocked, so that it is virtually impossible to form it with a finger and the thumb
of each of one’s hands. See Fig. 5 for several versions of this motif. It is present
over the centuries and in many civilizations, possibly starting with a Mesopotamian
clay tablet from Shurukapp dated to about 2600 BCE, where the knotted strings are
represented as snakes, and continuing well beyond the Roman Empire.6

Eventually, not only the symbol but also its name must have been so well-known
that it entered world literature as the emblematic representative of whatever is tightly
tangled. Thus it is referred to in Dante Alighieri’s Tenzone exchange of voluntarily
insulting sonnets with his childhood friend Forese Donati. The first text, proposed
by Forese, describes how its author had seen, the night before, Dante’s (already
dead) father tied up in a “knot of which I don’t know the name; was it Salomon’s or
that of another sage. . . ” In his riposte, Dante picks up this image: Ben ti faranno il
nodo Salamone . . . , to explain that what was going to tie up and ruin Forese were in
fact the partridge breasts and other yummy things he was devouring. Indeed, Forese
will reappear in Dante’s Divine Comedy on the sixth terrace of the Purgatory, where
the emaciated gluttonous are punished with the repeated craving for delicacies that
is stirred by the trickling of water on a tree and the odour of a blossom.7

The twofold link in Salomon’s Knot is the fundamental difference between this
motif and our logo. This difference is basic, both from the mathematical point
of view and when it comes to describing things plainly. Given any two of the
three loops in Fig. 1, they cross over each other four times, and each time it is the
same loop which passes above, and the same which slips underneath the other. In
Salomon’s Knot, however, the relative position of the two components alternates
from one crossing to the next.

5 Just as the archaeological books quoted above, I use here the colloquial meaning of the word
‘knot’, not the mathematical term, which would signify the continuous image in space of a single
line. The colloquial usage does not differentiate between knots and links.
6 Cf. the introductory chapters of [5], especially pp. 23–31. Trying to deal with the ubiquitous
presence of the motif, this book attempts to interpret it as a deeply rooted “symbol and archetype
of the idea of union”, by appealing for instance to Jungian psychoanalysis as well as to many other
ideas, from ethnology to art history.
7 See Dante’s Divine Comedy, Purgatory, Canto 23; see also Canto 24.
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Fig. 5 Variations of Salomon’s Knot, from the list of elementary motifs: [1], vol. II, p. 42



Mathematics Going Backward? A Logological Encounter Between. . . 333

Given the wide circulation of Salomon’s Knot, especially in Roman mosaics
from various periods and parts of the Empire, could this concrete mathematical
difference between the two designs explain the relative rarity of our Brunnian link
and logo? In our email exchange, Roger Wilson pointed to three occurrences in
mosaics from Jordan, which date from the sixth, resp. the fourth century CE.8

Each of these altogether four mosaic representations of our pattern, from Sicily and
Jordan, predate the earliest occurrences that have made it into Wikipedia so far: the
triangular Viking version of the link from Lärbro, Sweden, and the Christian usage
of a ring arrangement to represent the Holy Trinity.9

4 The Brunnian Link and the Pomegranate

The most difficult question regarding our pattern is asked last: What does our motif
signify, for those who created and those who commissioned these mosaics at the
time, and what does it mean for us today? On the IMU website quoted above,
we read that the new IMU logo “represents the interconnectedness not only of the
various fields of mathematics, but also of the mathematical community around the
world.” This is certainly well intentioned. It also remains rather vague. And one
immediately wonders how to read the salient feature of the Brunnian link, which is
the reason why mathematicians are fascinated by it: that it suffices to cut just one
loop in order to make it fall apart.

Maybe one should interpret each loop as a separate path of promoting interna-
tional cohesion in mathematics. Then one loop could stand for the history of the
International Congresses of Mathematicians (ICMs), which started as early as 1897
in Zürich. Another loop would represent the IMU, which was first founded in 1920
and fell apart shortly afterwards, as a consequence of the Bologna ICM in 1928.10

The new IMU founded at the beginning of the 1950s still exists today and has
successfully established itself as the dominating actor of the global mathematical
community, controlling the ICMs as well as the procedures to choose the winners
of the Fields Medals and several other prizes.

8 See [4], No. 136 (p. 125) from the crypt of Saint Elianus in Madaba, Jordan (see Fig. 6 below);
No. 566 (p. 295) from the Church of Bishop Isaiah at Jerash, Jordan; and No. 684 (p. 328) from the
Byzantine baths at Gadara, Jordan. The last one is the one among these three mosaics that dates
from the fourth century.
9 See https://en.wikipedia.org/wiki/Borromean_rings (consulted 25 April 2022); cf. [5], Fig. 143
(p. 119) and Fig. 196 (p. 164).
10 See [6], Sec. 4.4.3.
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And the remaining third loop would reflect the structural evolution of the
sciences at large, and mathematics in particular, which has made the functioning
of the international community possible. This includes the professionalization
of mathematics in the universities during the nineteenth century, the growth and
structural evolution of the mathematical publications, but also, for instance, the
influence of American philanthropy, especially through the Rockefeller Foundation,
for international connections in the field of mathematics in the 1920s and 1930s.
Only when all three axes are active is the link intact.

But what can we learn from looking back? The Brunnian link in Room 18
of the Villa del Casale—at least if we just look at this motif, and not at the
ambient pavement—seems as pure and crystalline as possible, not suggesting
any significance beyond the intertwining of the three differently colored loops.
Compared to this, the version from the crypt of Saint Elianus in Madaba, Jordan,
shown in Fig. 6 is much more generous: it places various fruits in the open spaces
left by the design, with a pomegranate proudly placed in the center. The whole
motif now looks rather like a basket full of fruit, braided with the Brunnian link as
its basic element.

The pomegranate has a long history as a symbol with many meanings. Thus it
happened, for instance, at the end of the last century that the “pomegranate was
chosen as the logo for the Millennium Festival of Medicine from a shortlist that
included DNA, the human body, and a heart beat. Not only has the pomegranate
been revered through the ages for its medicinal properties but it also features in the
heraldic crests of several medical institutions involved in the organisation of the
festival.”11

Avoiding such vindications that refer to other logos, and sticking to the pictorial
evidence of old mosaics, I would like to suggest that the Brunnian link in its
version from Madaba should be understood as a delicate structure that holds together
valuable fruits, i.e., results obtained, as well as ever more seeds for further growth.

11 See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1118911/ (consulted 27 April 2022).
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Fig. 6 Pavement from the crypt of Saint Elianus in the Church of the Prophet Elias at Madaba,
Jordan. Source: [4, p. 125]



336 N. Schappacher

References

1. C. Balmelle, M. Blanchard-Lemée, J. Christophe, J.-P. Darmon, A.-M. Gumier-Sorbets,
H. Lavagne, R. Prudhomme and H. Stern. Le décor géométrique de la mosaique romaine. Vol.
I: Répertoire graphique et descriptif des compositions linéaires et isotropes. Vol. II Répertoire
graphique et descriptif des décors centrés. Picard Paris (1985) (vol. I), (2002) (vol. II).

2. M. Epple. Die Entstehung der Knotentheorie. Kontexte und Konstruktionen einer modernen
mathematischen Theorie. Vieweg Braunschweig (1999).

3. N. Goodman. Languages of Art. An Approach to a Theory of Symbols. The Bobbs-Merrill Co.
Indianapolis & New York (1968).

4. M. Piccirillo, P.M. Bikai and T.A. Dailey. The Mosaics of Jordan. American Center of Oriental
Research, Amman (1993).

5. U. Sansoni. Il nodo di Salomone. Simbolo e archetipo d’alleanza. Electa Milan (1998).
6. N. Schappacher. Framing Global Mathematics. The International Mathematical Union Between

Theorems and Politics. Springer Cham (2022). https://doi.org/10.1007/978-3-030-95683-7
7. K. Schmelzeisen. Römische Mosaiken der Africa Proconsularis. Studien zu Ornamenten,

Datierungen und Werkstätten. Peter Lang Frankfurt (1992).
8. B. Steger. Piazza Armerina : la villa romaine du Casale en Sicile. Antiqua 17. Picard Paris

(2017).
9. R.J.A. Wilson. Piazza Armerina. Grafton London (1983).


 1255 1200 a 1255 1200
a
 
https://doi.org/10.1007/978-3-030-95683-7


Max Dehn as Historian of Mathematics

David E. Rowe

Personal Note
It gives me pleasure to dedicate this paper to Catriona Byrne for her many years of
engagement on behalf of mathematics and its history.

1 Introduction: Biography and History

Compared with nearly any other field of knowledge, mathematics has an extraordi-
narily long and rich history. From time to time scholars have also avidly studied the
mathematics of the past, and in some cases they took inspiration from it to invent
something novel. A particularly striking example came about after 1588 when the
eight books of the Collection of Pappus of Alexandria were published in Venice
in the Latin edition prepared by Federigo Commandino. Pappus lived around 300
A.D., so some 500 years after the high water mark of ancient Greek mathematics
and, as Thomas Little Heath remarked, his compendium was “obviously written
with the object of reviving classical Greek geometry” [17, 2: 357]. Aside from the
major works of Euclid, Archimedes, and Apollonius, the Collection is the most
important mathematical text we possess from the ancient classical world. Indeed,
without this text and its commentaries historians would never have been able to
imagine the scope of the Greek tradition of geometrical problem solving. Pappus, to
be sure, was not an inventive mathematician on the level of his predecessors; in fact,
it would be more apt to think of him as an early historian of mathematics. Several of
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those who read him, on the other hand, were very formidable mathematicians, two
of them being Descartes and Newton. To immediately appreciate the significance of
Pappus’s Collection for the flourishing of European mathematics in the seventeenth
century, one needs only to read Henk Bos’s insightful study of Descartes’s La
Géométrie [1].

During the early twentieth century, a resurgence of interest in history of
mathematics came to fruition within the German mathematical community. Otto
Neugebauer, who largely managed Richard Courant’s Mathematics Institute in Göt-
tingen, undertook pioneering research on Babylonian mathematics and astronomy.
He and Otto Toeplitz, who taught in Kiel before moving to Bonn, founded the
Springer journal Quellen und Studien zur Geschichte der Mathematik Astronomie
und Physik in 1929. Meanwhile, in Frankfurt, Max Dehn was running a weekly
seminar that studied ancient and early modern mathematical texts in their original
languages. These sorts of studies took place during the short-lived era that saw
the flowering of Weimar culture, which ended all too abruptly in 1933 when Hitler
came to power. Neugebauer, Toeplitz, and Dehn all fled Nazi Germany, the latter
two under threat to their lives. Historical research in mathematics continued in
Germany, but much of it was thereafter colored by a nationalist or even explicitly
racist agenda, led by the efforts of the Berlin mathematician Ludwig Bieberbach
(Segal [39, pp. 334–417]). Although he lost all his positions after the fall of the
NS-regime, Bieberbach maintained certain connections with influential figures who
shared his interest in promoting historical studies of mathematics in Germany.

During the postwar era, the heyday of Bourbaki, a new wave of historical interest
arose in the West. Axiomatization, rigor, purism, structuralist concepts—these
watchwords of modern mathematics deeply affected the way mathematicians came
to see but also to judge the mathematics of the past. The Bourbaki project itself
had modest beginnings, but with time its goal was to canonize the fundamental
structures in those theories which the group considered the established core theories
of modern mathematics. In this sense, Bourbaki was only incidentally interested to
look backward and identify when these ideas first arose. It would appear doubtful
that the historical notes, which Bourbaki included in the volumes of Éléments de
mathématique [2] and which were later gathered together in [3], generated great
interest among mathematicians or historians of mathematics. Their intent, after all,
was essentially just to provide a larger account of the intellectual context connected
with the topics covered in the Éléments. For students of mathematics with a
modicum of interest in the subject as intellectual history, many of these notes are
still well worth reading today. That goes without saying, of course, for André Weil’s
history of number theory [47].

By the 1970s, though, a handful of scholars who pursued history of mathematics
from other perspectives began to publish work that Weil, in particular, found
distasteful or worse. Those partisan battles from long ago need not concern us here,
but one aspect has real significance for the theme of this essay. Bourbaki represented
a purist movement that hoped to canonize a certain body of mathematics, which
contemporary mathematicians—or those who considered themselves to be well-
rounded—would acknowledge as core knowledge. Jean Dieudonné described this
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objective very clearly in a lecture he delivered in 1968, later translated in [11].
This canonization naturally lent itself to a highly selective view of the past, a
style of historiography that Ivor Grattan-Guinness called “the royal road to me.”
In that respect, it is worth noting that Dieudonné thought quite highly of Klein’s
lectures on nineteenth-century mathematics [24], as did Neugebauer and others
(Rowe [34, pp. 32–33]). They generally lauded his account, in particular Klein’s
strikingly subjective remarks laced with autobiographical anecdotes. The contrast
with the dry factual information in Bourbaki [3] is striking, but of course the name
index in the back of that volume reveals a very clear Bourbakian image of the
history of mathematics. To exaggerate only a little, this style of historiography
judged the past almost exclusively from the standpoint of the present. Moreover,
the names that appeared throughout were those credited with an important new
idea or result. History of mathematics was thus reduced to a certain impressive
chain of disembodied ideas. Who produced those ideas and why they put them
into circulation were questions that went largely unasked, and these “mathematical
people” never emerged from the shadows. Otto Neugebauer, I’m quite sure, thought
that serious history of mathematics had nothing to do with the personal lives of
mathematicians, but all that began to change in the 1970s.

It was also during that decade that three editors at Springer—Alice and Klaus
Peters and Walter Kaufmann-Bühler—launched a newsletter they called “The Math-
ematical Intelligencer” (on its history, see Senechal [40]). The world of mathematics
was still rather small in those days, but large enough that Springer’s mailing list put
“The Old Intelligencer” (as it was later called) into the hands of a few thousand
mathematicians. The rest, as they say, is history, and today’s glossy magazine bears
practically no resemblance to those early issues. Throughout its nearly 50-years,
MI has kept pace with new trends, emerging and older communities, subcultures,
crossovers with the arts and sciences, etc., etc. History and biography played a
large part as well, all part of a complex unfolding of varied interests in the realm of
mathematical culture.

Here I’d like to offer some brief reflections on the life and work of Max Dehn
(1878–1952), stressing, in particular, his interests in the history of mathematics.
Dehn was remembered often in the pages of The Mathematical Intelligencer,
beginning with an essay about the man and his work written by his former
student, Wilhelm Magnus [27]. In the 1980s, John Stillwell translated Dehn’s most
important papers and published these with commentary in [10]. Since that time,
Dehn’s name and fame have only grown. This essay is adapted from parts of a
forthcoming book, Max Dehn: A Polyphonic Portrait (Lorenat et al. [26]).

2 Dehn in Frankfurt

In 1921, following complex negotiations, Max Dehn assumed the professorship
formerly held by Ludwig Bieberbach in Frankfurt. Founded in 1914 as a privately
endowed institution (Stiftungsuniversität), Frankfurt University hired many more
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scholars of Jewish background than nearly all the older German universities.
In mathematics, Frankfurt’s senior mathematician, Arthur Schoenflies, took full
advantage of this situation during the first years of the Weimar Republic. When
Dehn joined the faculty as its second full professor in mathematics, three others
held positions as associate professors: Ernst Hellinger (appointed in 1914), Otto
Szász, and Paul Epstein. These five Frankfurt mathematicians were all ethnic Jews,
though after Schoenflies’s retirement in 1922 his chair went to Carl Ludwig Siegel,
the only non-Jew in this tightly-knit group.

In 1924, Dehn became head of the Frankfurt Mathematics Seminar, a post
he held up until 1935 when his position was terminated, forcing him into early
retirement. What unfolded under his leadership was a community of scholars who
worked together in an atmosphere largely free from the competition and rivalries
typical at other leading universities. In Frankfurt, the watchwords were cooperation
and harmony. Those idyllic years were later memorialized by Carl Siegel, the
community’s last surviving member in [42], a lecture he delivered on 13 June 1964
in the Frankfurt Mathematics Seminar.

Soon after his arrival, Dehn decided to launch a private reading circle, a Lese-
kränzchen, that would long be remembered by all who attended. This group devoted
its attention to the study of classical mathematical texts in their original languages,
in particular Greek and Latin works written by, among others, Euclid, Bombelli,
Cavalieri, Kepler, Roberval, Wallis, Huygens, Barrow, Newton, Leibniz, and Euler.
The entire mathematics faculty took part in these gatherings as a truly communal
undertaking, even though Dehn was its acknowledged spiritus rector.

Shortly before the Nazi Party came to power, Dehn gave a lecture to the German
Mathematical Society, “Problems in Post-Secondary Teaching of Mathematics” [8].
This gave him the opportunity to speak about some of the unique features of the
Frankfurt program, in particular its history of mathematics seminar. Among its
several qualities, he laid stress on a humanistic virtue, namely, the sense of humility
one gains through a deeper appreciation of the intellectual achievements of one’s
forebears. “Studying the development of mathematics, steadily, deeply, and without
haste together with close colleagues,” he wrote, “makes every mathematician more
mature and fills him with a more human love of his science.” At the same time,
Dehn had no illusions about the effectiveness of this special seminar as a teaching
tool. Most students lacked the necessary linguistic skills, but even more, the
intellectual patience required to delve into difficult texts. He also noted very aptly
that mathematical and historical thinking tend to run in opposite directions. Over the
course of 10 years, he doubted whether more than a half-dozen students had gained
anything of lasting value from the seminar. This telling remark clearly suggests that
its true purpose was Fortbildung, i.e., cultural enrichment for the faculty and a few
older teachers from the surrounding community.

Students were naturally encouraged to participate in the Frankfurt historical
seminars as well, though not many possessed the requisite language skills to do so.
Dehn thought only a rare few truly profited from the experience. A young astronomy
student named Willy Hartner, who later founded Frankfurt’s Institute for History of
Science, recalled in 1981 how much he regretted never having participated regularly
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in Dehn’s seminar. Hartner possessed the necessary prerequisites—that unusual
mixture of philological and mathematical talents—but he admitted that in 1922, the
year he first met Dehn, he had not yet discovered his interest in history (he was only
17 at the time). Nevertheless, he shared some vivid memories of the contrasting
styles of Dehn and Hellinger as teachers:

Anyone who, like me, ever heard Ernst Hellinger’s differential and integral calculus and
other lectures will have remembered well into old age his almost unequaled mastery. Today
educational methods are very much in fashion, but I am sure Hellinger never bothered with
such theories; with him it was as if a friendly fairy had put that in his cradle.

Max Dehn embodied a completely different type of brilliance. In contrast to Hellinger,
he loved to improvise and abandon himself to the overflow of thoughts storming through
him. With all due acknowledgment of his mastery, this proved a bit difficult for us, his
inexperienced listeners. Feeling very despondent, I asked him for a brief interview. It lasted
a good two hours spent in the professors’ cafeteria, where one drank miserable inflationary
coffee at a price of about a billion marks a cup. I was pleasantly surprised that Dehn
responded to my request without any sign of annoyance. The rest of the conversation was
about very different things—art, music, languages, classical and modern, about history, and
finally also about the political situation. It was the beginning of a lifelong friendship that
we preserved in even more difficult times. (Burde, Schwarz and Wolfart [4, pp. 23–24])

Among the students who regularly attended this mathematics history seminar,
one in particular stood out from all the rest—Adolf Prag, whose later career in some
ways mirrored Dehn’s. Not only did Prag’s life crisscross with those of Max Dehn
and his two daughters, Eva and Maria, but he also went on to play a singular role in
historical studies devoted to the mathematics of the seventeenth century.

Prag was born in 1906 in a small village on the edge of the Black Forest, but soon
thereafter his family moved to Frankfurt, where he attended the humanistic Goethe
Gymnasium. There he acquired a solid grounding in classical languages that he
would cultivate throughout his life. From 1925 to 1929 he studied mathematics at
Frankfurt University, where he became a mainstay in Dehn’s history of mathematics
seminar. As Christoph Scriba later imagined the situation:

Dehn, with his wide historical and philosophical interests, must have sparked a congenial
vein in Prag. In addition, the outstanding linguistic abilities of this student, who was able
to translate Latin and even Greek texts fluently into the German language, were a welcome
asset for the discussions of this circle. [38, p. 410]

During this time, a lifelong friendship developed between Prag and two of Dehn’s
best students, Ruth Moufang and Wilhelm Magnus.

After completing his studies, Prag still needed to pass the state examination for
teaching candidates and submit a thesis ( Staatsexamensarbeit). For a topic he went
to Dehn, who suggested that he write about the Oxford mathematician John Wallis,
whose work Prag had studied in the seminar. The resulting thesis was so impressive
that Dehn sent it to Otto Neugebauer, who published it in his new series Quellen und
Studien zur Geschichte der Mathematik [31].1 Years later, Christoph Scriba took up

1 The published version, however, omitted a chapter on the Pell equation.
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research on Wallis, a project that led to a close personal connection with Prag (see
below).

As a Jew, Prag had no chance of gaining a position at a state-run school, so in
1931 he accepted a post at a private Jewish school in Herrlingen (Württemberg) run
by Anna Essinger, a remarkable educator. Sensing early on that her undertaking
had no future in Germany, she obtained support from Quaker organizations in 1933
to move the school to Kent, England. There at Bunce Court, a large house near
Faversham, Prag continued teaching, and he later became deputy head of the school.
The two daughters of Max and Toni Dehn attended this same school, where their
father also taught from January to April 1938. In the spring of 1937, Frede Warburg,
daughter of the well-known art historian Aby Warburg, joined the school staff, and
the following year she and Adolf Prag wed. They survived the difficult times that
lay ahead and died only months apart 65 years later in 2004. In the final section,
I will briefly discuss Prag’s singular role in the historiography of early modern
mathematics.

Occasionally, visitors attended the Frankfurt historical seminar, one being André
Weil, who vividly recalled the impression Dehn left on him:

A humanistic mathematician who saw mathematics as one chapter—certainly not the least
important—in the history of human thought, Dehn could not fail to make an original
contribution to the historical study of mathematics, and to involve his colleagues and
students in the project. This contribution, or rather this creation, was the historical
seminar of the Frankfurt mathematics institute. Nothing could have seemed simpler or
less pretentious. A text would be chosen and read in the original, with an effort to follow
closely not only the superficial lines but also the thrust of the underlying ideas. . . . It was
only later that I attended it, on subsequent visits to Frankfurt, a place I made a point of
visiting as often as I could. I am not sure whether it was already in the summer semester
of 1926 that, during a seminar session devoted to Cavalieri, Dehn showed how this text had
to be read from the viewpoint of the author, taking into account both what was commonly
accepted in his lifetime and the new ideas that Cavalieri was trying to the best of his ability
to implement. Everyone participated in the discussion, contributing what he could to the
group effort. [46, p. 52]

Weil was also very struck by the radically different atmosphere in Richard
Courant’s Göttingen [46, pp. 52–53]. He recalled, in particular, how he learned
very little in conversations with those in Courant’s own group. Nearly every time he
got talking with one of them, the exchange would end rather abruptly with a remark
like, “sorry, I have to go write a chapter for Courant’s book” [46, p. 51]. There
was a distinct awareness in Göttingen that Max Dehn and Carl Ludwig Siegel, both
of whom thought of mathematics as an art form, were cultivating an approach to
research in Frankfurt that stood in conscious opposition to the Göttingen model.
Siegel’s main hobby during these years was painting, especially impressionistic
landscapes. After coming to Frankfurt, he lived at first with the painter Fritz
Wucherer and his family in Kronberg, a wealthy town in the idyllic Taunus region
northwest of Frankfurt. Wucherer owned an impressive villa and belonged to an
artists’ colony in Kronberg. He was well known for his landscape paintings, and for
some time Siegel took lessons from him.

Otto Neugebauer, who served as Courant’s “floor manager” at the Mathematics
Institute in Göttingen, was certainly sensitive to the implicit criticism coming from
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Frankfurt.2 Neugebauer played a central role in designing the institute’s new
quarters, built with funding from the Rockefeller Foundation. When it opened
in December 1929, Hermann Weyl delivered a lecture honoring Felix Klein, who
had long dreamed of housing mathematics in such a building. Neugebauer, on
the other hand, was eager to describe the physical arrangements as an inviting
place for teaching staff and students to gather and meet. “We hope and believe,”
he wrote, “that the new mathematics institute will not provide new impetus for
the “mechanization” of science, as so often prophesied, . . . but rather will offer a
workplace, where one can enjoy teaching and learning and, above all, the pursuit of
pure science” [29, p. 4].

Courant’s Göttingen was a multi-faceted enterprise, but at its heart flourished
a “publish or perish” culture that stood as the antithesis of the one cultivated in
Frankfurt. Indeed, one of the striking features of the latter was how little Dehn and
Siegel chose to publish once they began working together. This hardly meant that
they were unproductive, however; nor did they lack ambition. In fact, their decision
to withdraw from this arena stemmed from a shared understanding that “more was
not better”—real progress would take place outside the “mathematical factories,”
which were for producing and disseminating such an abundance of new results that
contemporary mathematicians found themselves drowning in their own literature.

André Weil remembered Dehn invoking just this image when he visited Frankfurt
around Christmas of 1926. Mathematics, Dehn told him,

was in danger of drowning in the endless streams of publications; but this flood had its
source in a small number of ideas, each of which could be exploited only up to a certain
point. If the originators of such ideas stopped publishing them, the streams would run dry;
then a fresh start could be made. To this purpose, Dehn and his colleagues refrained from
publishing. (Weil [46, p. 53])

This view probably comes closer to Siegel’s attitude than to Dehn’s, if only
because the latter was a born teacher and collaborator, famous for his generosity
in sharing fresh ideas to help others.

Dehn’s seminar proved to be deeply inspirational for Siegel, whose singular abil-
ity to attack truly formidable problems in number theory was becoming legendary
(Yandell [51, p. 208]). He was surely long intrigued with the mysterious results
Riemann had communicated in his 8-page paper on the zeta-function, which no one
had been able to unravel. With the assistance of his friend, Erich Bessel-Hagen,
he set to work studying Riemann’s unpublished notes related to the distribution of
primes, a question that Riemann’s teachers, Gauss and Dirichlet, had studied before
him. Siegel worked on this topic, off and on, for several years.

On 6 November 1927, he composed a 10-page manuscript that dealt with
Riemann’s ideas, though he clearly never intended this text for publication. Instead,
he gave it to Max Dehn, no doubt as a birthday present, as Dehn turned 49 on 13
November of that year. At the end of the manuscript, he even added a humanistic
touch to fit the occasion. Figure 1 shows Siegel’s portrait of Riemann along with

2 On Neugebauer’s early career, see Rowe [34].
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some lines from a famous poem, “Friede mit der Welt” (Peace with the World) by
Friedrich Rückert,3 which he found among Riemann’s notes:

Fig. 1 The final page from Siegel’s manuscript on Riemann’s unpublished work on the zeta-
function. Dehn Papers, Dolph Briscoe Center for American History, University of Texas at Austin

3 Rückert’s poetry was set to music by numerous famous composers; best known among these
works are the “Kindertotenlieder” in the composition by Gustav Mahler.
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Lebe von der Welt geschieden,
Und du lebst mit ihr in Frieden.
Willst du dich mit ihr befassen,

Höre, was dir widerfährt!
Du musst lieben oder hassen;

Keines ist der Mühe wert.

(Live apart from the world,
And you live with her in peace.

Should you want to engage with her,
Hear, what shall befall you!

You must love or hate;
Neither is worth the effort.)

Siegel’s research project eventually led to his reconstruction of the Riemann-
Siegel Formula, published in Quellen und Studien [41]. H.M. Edwards summed up
his accomplishment with these words:

The difficulty of Siegel’s undertaking could scarcely be exaggerated. Several first-rate
mathematicians before him had tried to decipher Riemann’s disconnected jottings, but all
had been discouraged either by the complete lack of explanation for any of the formulas, or
by the apparent chaos in their arrangement, or by the analytical skill needed to understand
them. One wonders whether anyone else would ever have unearthed this treasure if Siegel
had not. [12, p. 136]

In January 1928, Max Dehn addressed a large audience at Frankfurt University
when he spoke about “The Mentality of the Mathematician” [6], a speech Abe
Shenitzer later translated for readers of Mathematical Intelligencer [9]. Dehn spoke
on a ceremonial occasion, namely the annual celebration of the founding of the
modern German nation in January 18, 1871. Since he had to approach this topic
from some higher plane, though, he chose to illustrate what he hoped to convey by
appealing to history, even going back to ancient times.

Certainly the views Dehn expressed in “The Mentality of the Mathematician”
cast considerable light on the speaker’s own quite unique way of thinking. His
first and most immediate task was to assure his listeners that mathematicians were
engaged in a creative activity. For “the layman often thinks that mathematics is
by now a closed science, and gives little thought to the origin of the discipline
he is familiar with from school.” Dehn spoke of the sense of divine inspiration
that ancient Greek mathematicians felt after making a profound discovery, and how
“Eratosthenes and Perseus, in the manner of winners in an Olympic competition,
made votive offerings out of joy at attaining their goals.” Turning to early modern
times, he talked about Cardano’s wild urge to work out all the various types
of solutions of cubic equations in his Ars Magna, but he also made clear that
mathematical knowledge had to be clarified and communicated to have a decisive
impact. This was particularly evident in the case of Descartes, who fashioned
himself as having made a great new discovery—a method for systematically solving
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geometrical problems by reducing them to algebraic equations—when, in fact, he
had mainly brought forth a known method with exceptional clarity.

Dehn’s admiration for Descartes’ accomplishments did not extend to his person,
however, as this great French thinker was extremely impressed by his own sense of
superiority and gloated over what he had accomplished. For Max Dehn, Gerolamo
Cardano was a far more sympathetic figure, as can be seen from this passage:

Cardano, who died in 1576 at the age of 75, was a typical man of the Renaissance. In view of
our present topic—the creative power of the mathematician—Cardano is of special interest
to us. His productivity was unbelievably extensive. Ninety years after his death, ten large
folios of his work appeared, and the publisher assured readers that this was only half of what
Cardano had written. There is no area between heaven and earth that he left untreated. He
wrote about all the natural sciences, medicine, astrology, theology, philosophy and history.
His autobiography—which Goethe compared to Benvenuto Cellini’s—has great charm. In
it he describes with touching ingenuousness a life afflicted with manifold misfortunes. At
times we are strongly reminded of Rousseau’s Confessions. Goethe writes at length about
Cardano in his history of the science of color—about his talent, his passion, his wild and
confused state that always comes to the fore . . . . [9, p. 20]

Turning to Dehn’s seminar, one can easily see that the choice of texts was
largely confined to classical antiquity and the period in early modern Europe
leading up to the emergence of the calculus in the works of Newton and Leibniz.4

Siegel thus recalled spending a number of semesters studying works by Euclid
and Archimedes. Another block of texts dealt with developments in algebra and
geometry from Leonardo of Pisa and Cardano to Viète, Descartes, and Desargues.
Finally, the seminar looked carefully at texts documenting the emergence of
infinitesimal calculus over the course of the seventeenth century, especially key
authors associated with the British tradition: Wallis, Gregory, Barrow, and Newton.
This overall plan was thus entirely conventional; yet even so, knowing in advance
what one expected to find in an older mathematical text was usually of little help
when it came to reading and actually understanding such works in detail.

Some three decades later, when Carl Siegel returned to Frankfurt to speak about
the times he shared with his former colleagues there, he had this to say about their
history of mathematics seminar:

As I look back now, those communal hours in the seminar are some of the happiest
memories of my life. Even then I enjoyed the activity which brought us together each
Thursday afternoon from four to six. And later, when we had been scattered over the globe,
I learned through disillusioning experiences elsewhere what rare good fortune it is to have
academic colleagues working unselfishly together without thought to personal ambition,
instead of just issuing directives from their lofty positions. [42, p. 226]

4 Protocol books from Dehn’s seminar are in the possession of the Frankfurt University Archives.
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3 Dehn on the History of Geometry

Max Dehn’s contributions to the literature on history of mathematics came mainly
in the form of essays and occasional articles. His single most impressive piece
was a six-part appendix to the third edition of Moritz Pasch’s classic monograph
Vorlesungen über die neuere Geometrie [30]. The second edition of Pasch’s book,
published by Teubner in 1912, had long been out of print. During the postwar era,
after Springer assumed Teubner’s former role as the leading German publisher of
mathematical texts, Courant’s “yellow series” often published older standard works
in an updated form. Pasch was already approaching 80, so he was in no position
to produce a substantially new edition, but Courant was surely more than pleased
when Dehn agreed to write an appropriate supplementary appendix.

Some 5 years later, Courant turned once again to Dehn to request a supplement
for a new edition of Arthur Schoenflies’ textbook on analytic geometry [35]. Dehn’s
six appendices to [7, pp. 298–411] not only offered an overview of foundations and
a modern treatment of linear algebra, it also contained a brief historical overview
as well as a section on still unsolved problems in analytic geometry. In short, this
material made the book far more than simply an elementary textbook. Here, as well
as in the case of Pasch’s book, Dehn drew on material he had developed for his
courses in Frankfurt. This circumstance is reflected in his preface to Pasch [30],
where he wrote: “The appendix corresponds approximately to a two-hour, one-
semester lecture course, in which the instructor reports on what he considers to be
all the more important questions, discussing the most important problems in detail,
and above all seeking to stimulate independent study and the reading of classical
works” [5, p. viii].

Among the classics in the history of geometry that Dehn had in mind, two were
preeminent: Euclid’s Elements and Hilbert’s Grundlagen der Geometrie [18], which
in 1922 was published in a 5th edition containing several new supplements. As for
the significance of Pasch’s original text from 1882, Dehn described this as marking
the end of a quest to derive projective geometry from purely elementary principles,
formulated in a complete system of axioms that avoids appealing to congruence
properties or notions of continuity, such as the Axiom of Archimedes [5, p. 188].
Hilbert’s axiom system, on the other hand, stood closer to the original system of
Euclid, which made it possible to analyze which parts of geometry were susceptible
to an elementary treatment and which were not.

Dehn’s approach in this survey was largely systematic, though he added footnotes
containing brief historical remarks coupled with references. The first question he
raises is the role of the parallel postulate in ancient Greek geometry, a problem
compounded by philological difficulties. In most of the extant manuscripts this
postulate appears under the “common notions,” which textbook authors usually
referred to as axioms to distinguish these from the strictly geometrical postulates.
The “parallel postulate” was then given as Axiom 11 in these texts (in the English
tradition, following Robert Simson, it was Axiom 12). The Danish historian of
mathematics Johann Heiberg argued that this was due to the editorial intervention
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of Theon of Alexandria who, according to Heiberg, had removed the fifth postulate
from its original position and placed it under the “common notions.” In preparing
the modern Greek/Latin edition, Heiberg restored the postulate to what he believed
was its original place. He found it listed as the fifth postulate in an older non-
Theonine manuscript housed in the Vatican Library, which he took as his principal
Urtext in preparing the modern edition. The English translation published afterward
by T.L. Heath [17] follows Heiberg’s edition almost without exception. In Dehn’s
day, these were very recent events, though today few realize that the parallel
postulate has only been called Euclid’s fifth for little more than a century. In several
places, when discussing Greek mathematics, Dehn made similar comments about
difficulties arising from a dearth of historical source material.

The logical or mathematical status of the parallel postulate long remained one of
the most famous of all geometrical mysteries. Pasch’s work put the last touches on
projective geometry, a theory in which the properties of parallel lines play no role.
Alongside those developments, however, more subversive thinkers—Lobachevsky
and Bolyai—staked out arguments for a new theory of geometry in which parallel
lines no longer satisfy Euclid’s fifth postulate. Although it took several decades
for mathematicians to embrace non-Euclidean geometry, once they did so, the
contingent status of the parallel postulate became clear: Euclidean geometry was
only a special case. Indeed, among the infinitely many possible spaces of constant
curvature, Euclidean geometry was the one in which that constant was zero. Dehn’s
discussion took up the connection between non-Euclidean geometries and projective
geometry, an insight Felix Klein recognized once he learned about the possibility
of obtaining a general projective metric, a technique Arthur Cayley used to derive
Euclidean geometry. Dehn also briefly noted how Riemann’s notion of a manifold
with local curvature properties led to the natural question of the various possible
global extensions, a problem that led to Clifford–Klein space forms.

Dehn sketched these various topics quite rapidly before turning to problems
underlying the foundations of projective geometry. Here he focused on the difficulty
of providing a logically sound and complete construction of coordinate systems in
projective geometry. Dehn distinguished between an older, more intuitive approach
that depended on the Archimedean axiom and the purely projective methods
developed by Pasch. From Desargues theorem—which follows immediately from
the incidence axioms for points, lines, and planes in space—one can easily generate
a network of rational points in the plane by iterating the construction of a fourth
harmonic point for every triple. Pasch then found a way to extend this construction
to irrational points by invoking a projective substitute for the Archimedean axiom.

These brief remarks then led over to Dehn’s main topic, which begins with
a modernized account of Hilbert’s approach to segment arithmetic based on the
two lines theorem of Pascal (Pappus’s theorem) and the theorem of Desargues.
His treatment of these, however, draws on elementary group theory for geometric
transformations, leading to a proof that the fundamental theorem of projective
geometry entails both theorems, Pascal as well as Desargues. Dehn also gave a proof
of Hessenberg’s theorem, namely that the planar theorem of Desargues follows
from Pascal’s. The individual achievements of others (Staudt, Wiener, Hilbert)
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are only mentioned in a footnote, and Dehn caps off this section with a schematic
chart providing an overview of the relative dependence of the various axioms and
fundamental theorems. All of this reflects Hilbertian interests, except for the appeal
to group theory, where for details he points to Schwan [37]. The author of this study
was a Gymnasium teacher in Düsseldorf, who went on to write his dissertation under
Max Dehn.5

Following this overview, Dehn presents a section containing proofs of the key
theorems. He emphasizes that one must first prove Pascal’s theorem without
recourse to continuity, and he begins with a synopsis of the original proof given
by Friedrich Schur in [36]. This proof made essential use of a beautiful idea first
discovered by Germinal Pierre Dandelin in connection with conics that lie on a
hyperboloid of one sheet, thus a quadric surface generated by two systems of lines.
Dandelin showed that a spatial hexagon obtained by connecting 6 points along
corresponding generators, as these alternate between the two families, leads to a
so-called Brianchon point, the common intersection point of the 3 diagonals.6 The
dual incidence relation follows as well, and taking a plane section of the quadric
then leads to a conic with an inscribed hexagon that satisfies Pascal’s theorem. Dehn
not only credited Hermann Wiener with having brought out the significance of the
theorems of Desargues and Pascal for foundations of geometry, he also emphasized
how Schur’s proof of Pascal’s theorem was inspired by Dandelin’s older ideas.
These enabled Schur to prove the two-line version of Pascal’s theorem, the case
required for a commutative segment arithmetic (Dehn [5, pp. 228–232]).

Turning back to his earlier discussion of Euclid’s Elements, Dehn underscored
what Schur had achieved, namely the very first purely synthetic introduction of
a segment arithmetic without any appeal to continuity or the parallel postulate.
He thought this work, and not Saccheri’s, could more fittingly have borne the
title “Euclidis ab omni naevo vindicatus” (Euclid freed of every flaw). A century
earlier, the English mathematician Henry Saville had pointed out two major flaws
in the classical presentation: the opaque use of the parallel postulate in Book I
and the glaring break in Book V, where Euclid inserted a general theory of ratio
and proportion before applying it to develop the theory of similar rectilinear figures
in Book VI. The cornerstone concept in Book V was the famous Definition V.5
that provides a theoretical criterion for determining when two ratios will be equal.
Euclid merely needed to invoke that definition once, in the first proposition of Book
VI, after which everything fell easily into place.

Dehn seemed to be saying that this historical development—from Saville to
Saccheri and Lambert, passing through the discovery of non-Euclidean geometry
and Pasch’s grounding of projective geometry, and then the rigorous coordinati-
zation of elementary synthetic geometry with Schur’s work—represents a story
that was already essentially closed when Hilbert stepped onto the scene. What

5 Wilhelm Schwan, “Extensive Größe, Raum und Zahl,” Diss. Frankfurt University, 1923.
6 Pictures illustrating this argument for this case of Brianchon’s theorem can be found in Hilbert
and Cohn-Vossen [19, pp. 92–93].
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he wrote immediately afterward, though, fully clarifies why Hilbert’s Grundlagen
der Geometrie occupies such a significant place in this chain of developments.
Indeed, in surveying what had transpired up until 1899, Dehn described the series
of highways and byways that led to important stations, but in such a complicated
fashion that one could hardly view these as more than a collection of significant
results that fell well short of constituting a unified theory. Hilbert, on the other
hand, was the first to recognize the validity of “exotic geometries,” as for example,
plane geometries in which the theorem of Desargues fails to hold. This finding went
hand in hand with one of his central insights: The validity of the plane theorem of
Desargues is the necessary and sufficient condition for deciding whether the plane
can be embedded in space. Schur’s proof of the Pascal theorem made essential use
of spatial geometry, whereas Hilbert sought to reveal the possibilities for building
a theory of geometry in the plane by exploiting the power of the parallel postulate.
After spelling out this motivation, Dehn proceeded to give Hilbert’s planar proof of
Pascal’s theorem.

In the closing section on projective geometry, Dehn describes some of the simple
consequences of arithmetization, illustrating the theorems of Desargues and Pascal
by means of incidence configurations for points and lines in the plane. Hilbert
sometimes called these closure theorems, since they lead to closed figures that
lie in special position in the plane. The Desargues theorem leads to a (10, 3)
configuration, whereas Pascal is a (9, 3) (thus 9 points and 9 lines that are incident
in triples). In the first case, one has 30 linear equations, three for each of the 10 lines
whose equations are satisfied by substituting the coordinates of the 3 points that lie
on them. But since these linear relations are not independent, translating the theorem
into algebra leads to the result that one can deduce the final relation from 29 of
them. Similarly for the Pascal theorem, as both are examples of Schnittpunktsätze,
as Hilbert described in Grundlagen der Geometrie. In this setting, duality follows
immediately from the fact that point and line coordinates enter symmetrically in
systems of linear equations.

In the remaining parts of his survey, Dehn took up several topics closely related
to Hilbert’s researches as well as his own. He addressed here the problem of
proving the absolute consistency of an axiomatic system, as Hilbert long claimed
must be possible. Like Henri Poincaré before him, Dehn doubted that the principle
of complete induction could ever be reduced to a consistency argument (Dehn
[5, pp. 260–262]). The focal point of the Hilbert–Bernays program to formalize
mathematics was their effort to prove the consistency of the axioms for arithmetic.
Hilbert regarded this as the first step toward solving his second Paris problem,
which required doing the same for the real numbers. Thus, by the mid-1920s,
Dehn publicly doubted the feasibility of Hilbert’s formalist program. At the time he
spoke in Frankfurt, L.E.J. Brouwer was trying to topple formalism, while pressing
for a new approach to foundations based on his philosophy of intuitionism. Only 2
years later, Kurt Gödel would demonstrate the power of Hilbert’s proof theory by
using it to demonstrate that the consistency of arithmetic was a formally unprovable
proposition.
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Pasch had no time to study Dehn’s essay in any detail when he received the
page proofs; his failing eyesight likely hindered him from doing more that glancing
through the text. Still, he sent his congratulations to Dehn, while expressing his
delight over the sheer volume of material his survey contained as well as the careful
handling of it.7 He only added his wish that Dehn somewhere mention the term
“Pasch’s Axiom” in his text, since several writers had used this terminology. Hilbert
himself had acknowledged in a footnote that Axiom II.4, the last among his axioms
of order, was first introduced by Pasch in 1882.

Dehn’s survey was intended as an overview of historical developments from
antiquity to modern times, not, of course, as a detailed historical study. In all
likelihood, he wrote this text without having to undertake any substantial amount
of research. After all, this topic had long been an integral part of his own
teaching and research. As noted earlier, he viewed the Frankfurt reading circle as a
vehicle for intellectual enrichment, not as a training ground for future historians of
mathematics. One of his star students, though, continued in that direction, a largely
unknown story with some surprising wrinkles.

4 Historical Studies on Leibniz and Newton

Adolf Prag never lost his passion for history of mathematics, and in some symbolic
sense one could say that Prag played an important role in resolving one of the most
contentious issues in the history of mathematics. This concerned the famous priority
dispute over the invention of the calculus between the followers of Newton and
Leibniz.8 In fact, this was only one of an entire series of conflicting issues that
divided Newton and Leibniz, who held starkly opposing views regarding God’s
place in the world He created. Leaving all else aside, it remains difficult to
say whether Prag took great interest in the calculus controversy, which was both
prolonged and vicious. Like Max Dehn, he took a deep interest in the British
tradition, but there seems to be no evidence that the Frankfurt seminar paid close
attention to the latest iteration of the Newton vs. Leibniz squabble in contemporary
revisionist literature. Prag only entered this story through a back door decades after
World War II. To appreciate the context, though, requires glancing further backward
to the years after the First World War.

First, though, a few words about the circumstances that led to this controversy.
Newton was a secretive and mistrustful personality, so very few knew anything
about his early mathematical work from the mid-1660s, including those parts
related to the calculus. This was still the case when Leibniz visited London in

7 Moritz Pasch to Max Dehn, 7 July 1926, Dehn Papers, Dolph Briscoe Center for American
History, University of Texas at Austin.
8 To be sure, historians have continued to grapple with the issues at stake in this conflict up to the
present day. A particularly thoughtful analysis can be found in Guicciardini [15, pp. 329–384].
See also Westfall’s account in [48].
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the mid-1670s. After he heard something about this work, Leibniz made inquires,
which Newton answered in two letters. These passed through the hands of Henry
Oldenburg, secretary of the Royal Society, and they would later be used as evidence
against Leibniz. He and Newton never personally met, so this incidental exchange
evidently went unnoticed at the time.

A decade later in 1684, when Leibniz published the basic rules for the differential
calculus, he made no mention of Newton’s mathematical work, which still remained
unpublished. Three years later, Newton published his Principia, which required
mathematical methods rooted in calculus. Newton could have derived some of
the main results using his theory of fluxions, but if he did so, he left no trace of
this in the text. Instead, he dressed up all his results in a geometrical garb, which
avoided infinitesimals by invoking the method of first and last ratios. However, hints
that Newton might have anticipated Leibniz’s invention began to surface in the late
1690s. Around that time, insiders gradually learned that Sir Isaac claimed ownership
of the essential methods Leibniz had put into print. These rumors eventually turned
into charges of foul play, and in 1712 a committee of the Royal Society, under
Newton’s presidency, undertook an investigation of the matter. Its report (prepared
essentially by Newton himself) concluded, not surprisingly, that Leibniz stole the
calculus from Newton and later pretended that he alone had invented it. Since the
events surrounding this whole story have been dealt with many times and are far too
complicated to describe here, let me skip over them entirely in order to describe a
later chapter in this controversy, one which has only rarely been discussed in the
historical literature.9

Interest in the conflict between Newton and Leibniz had much to do with the
fact that partisans for the two sides drenched the matter in blatantly nationalistic
rhetoric. This aspect was hardly forgotten when the old debate broke forth in a
new form soon after the Great War ended. In 1920, the English mathematician J.M.
Child leaped into the fray after undertaking a careful study of the work of Isaac
Barrow, who preceded Newton as the first Lucasian Professor of Mathematics at
Trinity College, Cambridge. Since most of the relevant texts from the period were
in Latin, Child published English translations in [25], together with critical remarks
directed at the commentaries written by Carl Immanuel Gerhardt, the nineteenth-
century editor of Leibniz’s mathematical writings. Gerhardt discovered Leibniz’s
own account of his path to the calculus, “Historia et origo calculi differentialis,”
which he published already back in 1846. This marks the beginning of Gerhardt’s
efforts to reclaim Leibniz’s place in the history of mathematics, work that Child
sharply criticized. Whereas Newton and his acolytes had charged Leibniz with
appropriating Newtonian methods, Child disagreed with this claim, arguing that the
brilliant German had instead obtained his main ideas from Isaac Barrow.10 Child’s

9 For a detailed account of the original controversy, see Hall [16].
10 An attempt to support the case of Barrow was made in Feingold [13]. For an analysis of more
recent scholarship relating to the possibility that Leibniz was influenced by Barrow’s work, see
Probst [32].
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translations of the “Historia et origo” and other texts relating to Leibniz’s early
works received praise in the English-speaking world, although David Eugene Smith
made a point of condemning the polemical manner in which Child defended his
claims in support of Barrow [43].

In Germany, on the other hand, leading scholars associated with the ongoing
Leibniz Edition in Hannover sought to refute Child’s claims, some of which were
based on speculation. To a large extent, Child was forced to argue in the dark, owing
to the fact that he had no knowledge of Leibniz’s writings beyond those contained
in Gerhardt’s publications. The latter had alluded to notes Leibniz had made in
his copy of Barrow’s Lectiones Geometricae, but Child had no access to this book
when he published [25]. Heinrich Wieleitner recovered Leibniz’s copy of Barrow’s
Lectiones along with a number of other manuscripts that Gerhardt had overlooked.
Wieleiter urged Dietrich Mahnke, then a young philosopher who had studied under
Husserl and Hilbert in Göttingen, to investigate these sources. This led to Mahnke’s
Habilitationsschrift, published as [28], which contained a lengthy rebuttal of Child’s
claims. One year later, Wieleitner habilitated in history of mathematics at Munich
University. One of the theses he proposed to defend at that time read: “It is totally
unjustified to accuse our Leibniz of untruthfulness (or even only forgetfulness) in
regard to the reporting about the course of his invention of the differential and
integral calculus” (Hofmann [20, p. 211]).

At his death in 1716, Leibniz left behind a vast collection of writings and
correspondence. As part of an effort to organize these documents for publication,
the Berlin Academy established a Leibniz Commission with leading figures from
a variety of fields, including the physicist Max Planck, the mathematician Ludwig
Bieberbach, and the philosopher Nicolai Hartmann. Mahnke and Conrad Müller
were appointed as mathematical editors. Shortly before the outbreak of the war,
however, the Academy aligned itself with the government by appointing Theodor
Vahlen, a high-level Nazi mathematician, as its president (Thiel [44]). Vahlen was
a natural choice, owing to his close alliance with Ludwig Bieberbach, secretary of
the Academy’s Mathematics and Natural Sciences Division.

Three years earlier, Bieberbach had founded the journal Deutsche Mathematik
with the support of government funds. Both he and Vahlen took considerable
interest in promoting Leibniz’s mathematical reputation. After Mahnke was killed
in a car accident in 1939, Bieberbach invited Joseph Ehrenfried Hofmann to take
Mahnke’s place in the project. Vahlen even appointed him head of the entire work
group in Berlin, thereby signaling that publication of Leibniz’s mathematical work
and correspondence held highest priority. Soon thereafter, Hofmann published an
essay in Deutsche Mathematik setting forth his approach to history of mathematics
[21].

Together with his wife Josepha, Hofmann worked on the Leibniz papers up until
1943, when their house in Berlin was destroyed in a bombing raid. Thereafter, they
moved to the small town of Ichenhausen in the Swabian region of Bavaria. Hofmann
lost most of his private library, but not the manuscript material in his possession.
After the war, the Berlin Academy terminated Hofmann’s position with the Leibniz
Edition, though he refused to accept this decision or to cooperate with the new
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staff charged with editing Leibniz’s mathematical papers and correspondence. With
exclusive access to this material, Hofmann began writing a monograph that gave
the first detailed account of Leibniz’s early mathematical journey during the years
1672–1676. Although completed in 1946, this text was first published 3 years later
in [22]. Seen against the backdrop of earlier events, this book represents the (almost)
final response of German historians of mathematics to charges that Leibniz owed a
major intellectual debt either to Newton or to Barrow. It takes little imagination to
realize, however, that practically no one living in Germany in the year 1949 would
have been interested to read about such arcane matters. Later, though, following the
resurgence of interest in history of mathematics in the 1960s and 70s, Hofmann’s
work found many readers, thanks in large part to the efforts of Adolf Prag. Through
his translation of [22] into the updated English edition [23], Prag played a major
role in making this story available to a wider audience.

After the war ended, Hofmann maintained his ties with Bieberbach, who lost his
professorship in Berlin. As a notorious spokesman for Nazi principles, Bieberbach’s
fate was sealed the moment his case came up during the denazification procedures.
Others, on the other hand, came away unscathed. Freiburg’s Wilhelm Süss, who
had assumed a leadership role in the German mathematical community during the
Nazi era, was quickly reinstalled in his former professorship. During the period
under French occupation, he converted his former center for war-related research
in the Black Forest into a conference center, today the internationally renowned
Mathematics Research Institute in Oberwolfach. Hofmann enjoyed good relations
with Süss, who in the wake of the war invited him to spend several months in
Oberwolfach writing his book on Leibniz’s mathematical development [22]. He
also supported Süss’s main project at the time, namely preparation of a volume on
pure mathematics for the series FIAT Reviews of German Science (Remmert [33,
pp. 142–145]).

Beginning in 1954, Hofmann organized yearly workshops on the history of
mathematics in Oberwolfach. Many who attended these were senior mathematicians
or teachers at secondary schools, but they also attracted young historians. One of
these was Christoph J. Scriba, who eventually became Hofmann’s collaborator and
later his successor as a workshop organizer. Scriba also served as a key figure
for building bridges to England, where he spent 2 years as a post-doc in Oxford
during the early 1960s. During his stay, he struck up a warm friendship with
Adolf Prag. Since Scriba’s research project was devoted to studying the papers and
correspondence of John Wallis, he clearly had good reason to make this personal
connection, having read Prag’s paper on Wallis [31]. In 1965, he invited Prag to
attend a workshop on history of mathematics in Oberwolfach, and in subsequent
years Adolf Prag was often among those who participated at these events. During
one of these meetings in the 1960s, he and Hofmann discussed a plan to bring out
an English translation of [22].

After his retirement from teaching in 1966, Prag lived in Oxford, which gave
him the chance to work in the Bodleian Library. He had already struck up a friendly
cooperation with Tom Whiteside, who was beginning work on his voluminous
edition of Newton’s mathematical papers. Prag had served as an external examiner
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for Whiteside’s Cambridge doctoral exam, which took place in 1959. The latter’s
thesis on “Patterns of Mathematical Thought in the Later Seventeenth Century” [49]
fell directly into the field of studies that Prag first took up more than three decades
before in Frankfurt under Max Dehn. He now began to play an important supporting
role in Whiteside’s work, which led to the publication of The Mathematical Papers
of Isaac Newton in eight volumes [50].11

When the first volume appeared in 1967, Prag brought a copy with him to
Oberwolfach, just as he did in 1981 when he spoke there about the eighth. In the
preface to that final volume, Whiteside wrote:

It is wholly just that my old friend and colleague Adolf Prag endures to share the title-page
of this final volume of Newton’s mathematical papers with me. In his seventies he remains
the ever-willing, near omniscient helper that he has always been, and without his furnishing
and correction of a wide spectrum of matters literary, technical and historical this edition
would have been much the poorer in its detail. (Scriba [38, pp. 409–410])

Whiteside’s former mentor, Michael Hoskin, played a major part in lining up
funding for this Newton project, but also in persuading Cambridge University Press
to publish it. Once it was underway, he perhaps also had a hand in the delicate
negotiations with CUP over the translation of Hofmann’s biography of Leibniz. This
was only completed the year after Hofmann died in 1973. Thus, Adolf Prag not only
served as a kind of ambassador for Whiteside’s Newton during his trips to Germany,
his translation [23] gave the English-speaking world a full account of what German
scholarship had to say about Leibniz’s early mathematical career.

André Weil, one of those who read it very carefully, had also attended Max
Dehn’s Frankfurt seminar in the 1920s. When he reviewed the book for the
American Mathematical Society, however, his words of praise were mixed with a
general sense of disappointment. For Weil, the charges leveled against Leibniz had
been refuted long ago, which left him puzzled why Hofmann wrote at such length
about the priority debate:

Perhaps the reader of this volume would have been spared a great deal of dull material if
the author, at the outset, had made up his mind whether to write the “grand synthesis” he
seemed to promise us or to appear as the lawyer for the defense in the absurd prosecution
for plagiarism launched against Leibniz in the early years of the eighteenth century by Sir
Isaac’s sycophants and eventually by Sir Isaac himself. Even if there could ever have been
a case against Leibniz, C.I. Gerhardt’s excellent publications seemed to have closed it long
ago. But we find Hofmann constantly on the defensive . . . [45, p. 680]

Naturally, Weil took no interest in the nationalistic motives on both sides of this
controversy, but how else can one explain all the ink various writers have spilled
over a peculiar priority dispute? In the book’s preface, Hofmann indicated how he
realized, after Prag and Whiteside had approached him with idea of preparing a
translation, “that the original text would require thorough revision” [23, p. ix]. Yet,
as Weil rightly pointed out in his review, the text itself is virtually identical to [22],

11 In his obituary for D.T. Whiteside, Niccolò Guicciardini duly noted Prag’s importance for the
success of this momentous undertaking [14, p. 5].
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the original German version. André Weil clearly preferred Max Dehn’s approach to
history, which took a loftier view of earlier mathematical accomplishments rather
than dwelling on petty squabbles over intellectual property rights.
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Part VII
Information Theory

In Multiterminal statistical inference: An unsolved problem, Shun-ichi Amari
describes a remarkably simple statistical inference problem involving two correlated
signals and integrating information theory and statistics, on which more than 40
years have passed without significant progress. The problem is elucidated with
simple examples.

Lampros Gavalakis and Ioannis Kontoyiannis’ article Information in probability:
Another information-theoretic proof of a finite de Finetti theorem is a really original
contribution matching both requirements that were made for this volume. First,
there is a neat and very complete review of the rich use of information-theoretic
arguments in other fields, particularly dynamical systems and probability theory.
The second section provides an illustration with an original proof of De Finetti’s
theorem using information theoretical tools.



Multiterminal Statistical Inference:
An Unsolved Problem

Shun-ichi Amari

1 Introduction

I have worked on various subjects in the mathematical sciences, including infor-
mation geometry and mathematical neuroscience (the theory of artificial neural
networks). When working on these subjects it is important to be acquainted with
a wide range of methods and topics.

It was in the middle of the 1980s when Catriona Byrne visited me at the
University of Tokyo. We had lots of pleasant discussions concerning current trends
and methods. From her, for example, I studied wavelet analysis, which was not yet
popular in Japan at that time. She helped to open my eyes to the world. She is a
guardian, not only encouraging but also fostering mathematical scientists. Due to
her long years of encouragement and support, I authored a monograph, Information
Geometry and Its Applications [5], and took the initiative to inaugurate a new
journal, Information Geometry. I have no sufficient words to thank her.

In this short paper, I would like to present a problem which I have been deeply
involved in, but cannot solve. It looks like a simple problem concerning the
estimation of correlations between two random variables x and y (for simplicity’s
sake, let them be binary). There are n repeated iid observations x = (x1, . . . , xn)

and y = (y1, . . . , yn). However, x and y are observed at different terminals, so
they should be sent to a common terminal, where statistical inference takes place.
When there are rate restrictions on information transmission, say only rn bits of
information are sent, 0 < r < 1, among n bits each of x and y, we need to encode x

and y into nr-bit codewords cX(x) and cY (y), respectively. What is the optimal
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encoding scheme that maximizes the Fisher information included in cX(x) and
cY (y), which characterizes the quality of statistical inference? This problem, which
connects multiterminal information theory and statistical inference, was proposed
by T. Berger [7] more than 40 years ago. Since then many first-class information
scientists have attempted to solve the problem [1–4, 6, 8–14], but without significant
success.

We analyze the problem by using a simple but typical model and present
interesting intuitive ideas for its solution.

2 Formulation of the Problem

We illustrate the problem with a simple example.
Let (x, y) be a pair of random variables. We assume x and y are binary variables,

taking values 0 and 1. A sequence of iid pairs (xi, yi) , i = 1, . . . , n, are observed.
However, the x’s and y’s are observed at different terminals X and Y , respectively,
which might be separated by a long distance. Let

M = {p(x, y; θ)}

be a family of probability distributions specified by the parameter θ . We consider
the situation when the marginal distributions p(x, θ) and p(y, θ) do not depend on
θ , so we cannot estimate θ from x = (x1, . . . , xn) only or y = (y1, . . . , yn) only,
without knowing the other. The parameter θ represents the intensity of correlation
between x and y. We consider the case when the probability distributions are given
by

p(x, y; θ) = 1

2

{
θδxy + (1− θ)

(
1− δxy

)}
,

where δxy is the Kronecker delta. The expectations of x and y are both 1/2. The
Fisher information given by

G(θ) = E

[(
∂ logp(x, y, θ)

∂θ

)2
]

,

where E is expectation, represents how well we can perform statistical inference
concerning θ , for example, its estimation or statistical hypothesis testing: θ = θ0.

When we observe all data x and y, the problem reduces to ordinary statistical
inference. The multiterminal situation assumes that X and Y are separated and we
cannot combine x and y. Instead, we send the observed data to a common receiving
terminal R, where statistical inference takes place. However, there are restrictions
on the transmission channels, and only rn bits of information can be sent from X to
R and Y to R. See Fig. 1.
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Fig. 1 Scheme of multiterminal statistical inference

Let cX(x) and cY (x) be codewords into which x and y are encoded. The
transmitted signals are cX(x) and cY (y). Because of the rate restrictions, the
cardinalities of the sets of codewords CX = {cX(x)} and CY = {cY (y)} are limited
to

|CX| = |CY | = 2rn.

The Fisher information included in the random variables cX(x) and cY (y) is
calculated from the probability of messages cX(x) and cY (y),

p {cX, cY , θ} =
∑

x∈CX,y∈CY

p(x, y, θ),

where

p(x, y, θ) =
n∏

i=1

p (xi, yi, θ) .

The problem is to find the optimal encoding scheme that maximizes the Fisher
information.

A trivial encoding scheme is to pick out first rn bits of x and y, respectively.
Then, the codewords are simply

cX = x1 · · · xrn,
cY = y1 · · · yrn.

The Fisher information is

GC(θ) = r

n
G(θ),

where G(θ) is the Fisher information included in a pair (x, y). An interesting
problem is if there exist encoding schemes better than the trivial one.

To focus on the problem, we consider a very special case where only one bit of
information is allowed to be sent, that is, both cX(x) and cY (y) are binary. This
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encoding scheme divides the sets {x} and {y} into two parts CX and its complement
C̄X (CY and C̄Y ), respectively, such that

CX = {x |cX(x) = 1 } , CY = {y |cY (y) = 1 } .

That is, cX(x) = 1, when x ∈ CX and 0, otherwise. Similarly for cY (y).
The trivial encoding scheme is just to choose any i, i = 1, . . . , n, and put

cX(x) = xi,

cY (y) = yi.

Since xi is correlated to yi and independent of other yj ’s (j �= i), our intuition
suggests that there are no encoding schemes better than the trivial one.

Obviously, it is difficult to estimate θ from only one bit of each of cX(x) and
cY (y). However, we use a local encoding scheme such that cX(x) depends only
on the first s bits x1 · · · xs of x. (Similarly for cY (y).) In such a case, we divide
the entire n series x into n/s blocks, each block including s letters. We encode
each block in this manner. Then, we have n/s independent observations of cX(x)’s.
Similarly for y. The entire Fisher information is n/s times the Fisher information G

per bit of the original problem. However, note that this strategy is possible only for
r < 1/2. We search for the optimal s for this encoding scheme, which may depend
on θ . When s = 1, this reduces to the trivial encoding scheme. Interestingly, there
exist encoding schemes which are better than the trivial one. Amari [4] proved
that, when θ is in a small neighborhood of θ = 1/2, that is, x and y are nearly
independent, the trivial scheme is the best. But when θ takes much larger or smaller
values than 1/2, there exist better schemes. We describe two types of promising
encoding schemes.

The first is the s-parity encoding scheme given by

cX(x) = x1 ⊕ · · · ⊕ xs,

cY (y) = y1 ⊕ · · · ⊕ ys.

We can calculate the Fisher information Gs(θ) for this scheme. Let s∗ be

s∗(θ) = arg max
s

Gs(θ).

Then we have the local s∗-parity encoding, which depends on θ . Even though this
depends on θ , it is useful for hypothesis testing: θ = θ0 or not. For estimation,
if we know an approximate p̂, s∗

(
p̂
)

encoding is useful. K. Kobayashi (private
communication) showed that this scheme is optimal for s = 1, . . . , 5 by an
exhaustive search.
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A second encoding scheme is s-majority encoding. Let

a(x) =
s∑

i=1

xi.

We define

cX(x) =
{

1, when a(x) > s
2 ,

0, when a(x) < s
2 ,

where we assume that s is odd for simplicity. We use the same s-majority encoding
for y. We can analyze this scheme, giving a promising Fisher information of
G

maj
s (θ), where s is chosen such that it maximizes G

maj
s (θ), given θ .

The parity encoding gives a good achievable lower bound of the optimal Fisher
information, although we cannot yet prove that it is the best among those that
summarize s bits into a 1 bit encoding scheme. However, it cannot be used for
r > 1/2.

The problem is seemingly simple, but still unsolved.

Conclusions

We have described a problem connecting multiterminal information theory and
statistical inference. Elucidating the problem by using a simple model, we presented
a number of local encoding schemes, showing that there exist non-trivial encoding
schemes better than the trivial one which give achievable lower bounds. However,
the general problem remains unsolved.
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Information in Probability: Another
Information-Theoretic Proof of a Finite
de Finetti Theorem

Lampros Gavalakis and Ioannis Kontoyiannis

1 Entropy and Information in Probability

Shannon’s landmark 1948 paper [76] founded the field of information theory and
ignited the fuse that led to much of the subsequent explosive development of
communications theory and engineering in the twentieth century. At the same
time, it also led to a wave of applications of information theory to numerous other
branches of science. Of those, some, e.g. those in bioinformatics and neuroscience,
were successful, while some others, despite Shannon’s “bandwagon” warning [77],
much less so.

Within mathematics, information-theoretic ideas have had a major impact along
several directions, perhaps most notably (although certainly not exclusively) in
connection with probability theory. For our present purposes, the most relevant
line of work is based on the idea of utilising information-theoretic tools and ideas in
order to prove core probabilistic results. Over the past 55 years, a great number of
such proofs have appeared. These are often accompanied by new interpretations
and rich intuition, thus providing new ways of understanding why fundamental
probabilistic theorems are true, and sometimes also giving stronger versions of the
original results.

In the rest of this introduction we describe some of the main landmarks along
this path, and we indicate directions of current and likely near-future activity. This
brief survey is necessarily incomplete and biased, due to our own subjective taste
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and bounded knowledge. Then in Sect. 2 we state and prove a new finite version of
de Finetti’s classical representation theorem for finite-valued exchangeable random
variables.

The first appearance of information-theoretic ideas in the proof of a genuinely
probabilistic result was in 1958, when Hájek [41, 42] proved that the laws μ and ν

of any two Gaussian processes are either absolutely continuous with respect to each
other, or singular. Hájek exploited the implications of D(μ‖ν) + D(ν‖μ) being
finite or infinite, where D(μ‖ν) denotes the relative entropy or Kullback–Leibler
divergence between μ and ν,

D(μ‖ν) :=
{∫

log dμ
dν dμ, if dμ

dν exists

+∞, otherwise.
(1)

[Throughout, log denotes the natural logarithm.] In the same year, Kolmogorov [56]
introduced entropy in ergodic theory. He provided a way to calculate the entropy
of a transformation to conclude that Bernoulli shifts of different entropies are not
metrically isomorphic. The importance of entropy in ergodic theory was also
highlighted more than a decade later, when Ornstein [70–72] proved that Bernoulli
shifts with the same entropy are necessarily isomorphic.

The following year, 1959, Linnik [63] gave an information-theoretic proof of
the central limit theorem (CLT), showing that the law of the standardised sum
Sn = (1/σ

√
n)
∑n

i=1 Xi of n independent and identically distributed (i.i.d.)
random variables X1, . . . , Xn with variance σ 2 (or, more generally, of independent
random variables satisfying the Lindeberg condition) converges in distribution to
a Gaussian. Linnik’s connection between the CLT and information-theoretic ideas
was the first in a long series of works, along a path that remains active until today.
Indeed, in a sequence of papers, including works by Shimizu [78], Brown [13],
Barron [5], Johnson [48], Artstein et al. [2], Tulino and Verdú [82], and Madiman
and Barron [65], it was shown that the differential entropy h(Sn) of the standardised
sums in fact increases with n, and its limiting value is the entropy h(Z) of the
standard Gaussian Z ∼ N(0, 1). This monotonic convergence in combination with
the fact that the Gaussian has maximum entropy among all random variables with
variance σ 2, presents an appealing analogy between the CLT and the second law of
thermodynamics.

In the above discussion, the differential entropy of a continuous random variable
X with density f is given by h(X) = h(f ) = − ∫ f log f , and the relative entropy
between two probability measures μ, ν on R with densities f, g is D(μ‖ν) =
D(f ‖g) = ∫ f log(f/g). A simple computation shows that the “entropic CLT”
just described can equivalently be stated as, D(fn‖ϕ) ↓ 0 as n → ∞, where fn is
the density of Sn and ϕ the standard normal density. This convergence in the sense
of relative entropy implies convergence in L1: Pinsker’s inequality, established by
Csiszár [21], Kullback [59] and Kemperman [54], states that:

D(μ‖ν) ≥ 1

2 log 2
‖μ− ν‖2

1. (2)
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Subsequent work along these lines includes Carlen and Soffer’s dynamical
systems approach [17], Johnson’s convergence to Haar measure on compact
groups [53], Johnson and Barron’s rates of convergence in the entropic CLT [51],
Bubeck and Ganguly’s entropic CLT for Wishart random matrices [15], and, most
recently, an information-theoretic CLT for discrete random variables [36].

A year after Linnik’s paper made the first entropy-CLT connection, in 1960,
Rényi [74] examined the convergence of Markov chains to equilibrium from an
information-theoretic point of view, thus initiating another path of information-
theoretic investigation in probability. Rényi showed that the relative entropy
D(Pn‖π) between the time-n distribution Pn of a finite-state chain with an all-
positive transition matrix and its unique invariant distribution π , decreases to
zero as n → ∞. Similar and slightly more general results were established
independently by Csiszár [20] in 1963, who also employed Rényi’s notion of f -
divergence, an important generalisation of relative entropy. In the same year,
Kendall [55] extended Rényi’s techniques and results, to include certain countable
state space chains. A significant advance came with Fritz’s 1973 work [35], where
he studied the asymptotic behavior of reversible Markov kernels and established
their weak convergence to equilibrium. Barron in 2000 [7] extended Fritz’s result
to convergence in relative entropy, and in 2009 Harremoës and Holst [44] used
ideas related to information projections to further extend and generalise those earlier
results.

The problem of Poisson approximation and convergence was first examined
through the lens of information theory around 20 years ago, leading to a de-
velopment analogous to that of the entropic CLT. Harremoës in 2001 identified
the Poisson as the maximum entropy distribution among all laws that arise from
sums of independent Bernoulli random variables with a fixed mean [43]. This
characterisation was extended in 2007 by Johnson [50] to the class of ultra log-
concave laws on the nonnegative integers. Meanwhile, in 2005 Kontoyiannis
et al. [57] derived convergence results and nonasymptotic Poisson approximation
bounds using entropy-theoretic methods. Interestingly, some of those results were
based, in part, on a discrete modified logarithmic Sobolev inequality for the entropy
established by Bobkov and Ledoux [11]. In a related direction, Harremoës et
al. [45, 46] obtained Poisson approximation results under the thinning operation.

A similar program was carried out in the case of compound Poisson approxima-
tion. Compound Poisson laws on the integers were again given a natural maximum-
entropy interpretation by Johnson et al. [52] and Yu [89], and compound Poisson
approximation bounds and convergence results were established via information-
theoretic techniques by Madiman et al. [66] and Barbour et al. [4]. Interestingly, in
some cases the resulting nonasymptotic bounds give the best results to date.

The Method of Types and Large Deviations Suppose {Xn} are i.i.d. random
variables with common probability mass function (PMF) Q on a finite alphabet
A of size m = |A|. The type P̂n of a string xn

1 = (x1, . . . , xn) ∈ An is simply the
empirical PMF induced by xn

1 on A. Let Pn denote the collection of all n-types on
A, namely, all PMFs that arise as types of strings of length n. Then, e.g., we have
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the obvious bound,

|Pn| ≤ (n+ 1)m, (3)

and direct computation also shows that, for any xn
1 ∈ An,

Qn(xn
1 ) = e−n[H(P̂n)+D(P̂n‖Q)]. (4)

Here, H(P) := −∑x∈A P(x) logP(x) is the (discrete Shannon) entropy of
a PMF P on A, and the definition (1) of the relative entropy D(P‖Q) be-
tween two PMFs P,Q on the same discrete alphabet becomes D(P‖Q) =∑

x∈A P(x) log[P(x)/Q(x)]. Slightly more involved calculations lead to interest-
ing and useful bounds. For example, for an n-type P , let T (P ) denote the type class
of P , consisting of all xn

1 ∈ An with type P . Then the cardinality and probability of
T (P ) satisfy,

(n+ 1)−menH(P ) ≤ |T (P )| ≤ enH(P ) (5)

(n+ 1)−me−nD(P‖Q) ≤ Qn(T (P )) ≤ e−nD(P‖Q). (6)

The method of types is a collection of combinatorial estimates for probabilities
associated with discrete i.i.d. random variables and memoryless channels, of which
the examples in (3)–(6) above are the starting point. Based in part on preliminary
ideas of Wolfowitz [88], the method of types was fully developed in 1981 by Csiszár
and Körner [28]. As described in Csiszár’s review [25], the method of types has been
employed very widely and with great success in numerous information-theoretic
problems arising from different communication-theoretic scenarios.

Based in part on the method of types, and also building on ideas from related
work by Groenebook et at. [38], Csiszár was able to establish a series of important
results in large deviations. In 1975 [22] he identified the exponent in Sanov’s
theorem [75] as an extremum of relative entropies, and in 1984 [23] he proved a
general, strong version of Sanov’s theorem, by a combination of the method of
types, discretisation arguments, and a general Pythagorean inequality for the relative
entropy established by Topsøe [81]. He also gave a simpler proof along the same
lines in his 2006 paper [26].

Moreover, in the same paper [23] Csiszár established a version of the Gibbs
conditioning principle (also know as the conditional limit theorem) using the same
tools. This was further extended by Csiszár et al. in 1987 [27] to the case of Markov
conditioning, and by Algoet et al. in 1992 [1] to Markov types.

The method of types and the Gibbs conditioning principle will both play an
important role in our proof of the finite de Finetti theorem in Sect. 2.

Exchangeability Suppose {Xn} are i.i.d. random variables, and let E denote the
exchangeable σ -algebra, that is, the sub-σ -algebra of σ({Xn}) that consisting
of those events that are invariant under finite permutations of the indices in the
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sequence {Xn}. In 2000, O’Connell [69] gave a beautiful, elementary information-
theoretic proof the Hewitt-Savage 0-1 law [47]: E is trivial, in that all events in E
have probability either zero ore one.

Another aspect of exchangeability comes up in connection with de Finetti’s
theorem. Let {Xn} be an exchangeable sequence of random variables with values
in the same finite alphabet A. Here, exchangeability means that, for any n

and any permutation π on {1, 2, . . . , n}, the distribution of the random variables
(Xπ(1), Xπ(2), . . . , Xπ(n)) is the same as that of (X1,X2, . . . , Xn). De Finetti’s
theorem [30, 31] states that {Xn} is exchangeable if and only if it is a mixture of i.i.d.
sequences, that is, if and only if there is a measure μ̄ on the simplex P of probability
distributions on A, such that, for any k ≥ 1 and any xk

1 = (x1, . . . , xk) ∈ Ak,

P(Xk
1 = xk

1 ) = Mμ̄,k(x
k
1) :=

∫

P
Qk(xk

1)dμ̄(Q). (7)

De Finetti’s theorem plays an important role in the foundations of subjective
probability and Bayesian statistics, see, e.g., the discussions in [8, 33]. But
arguments about its practical relevance are limited by the fact that, as is well
known [34], the representation (7) fails in general if it is only assumed that a
finite collection of random variables (X1, . . . , Xn) is exchangeable for some fixed
n. Nevertheless, approximate versions of (7) remain valid in this case [33, 34]. Such
a ‘finite’ version of de Finetti’s theorem for binary random variables was recently
established in [37], using information-theoretic ideas: It was shown that there is
a mixing measure μ on P such that, for any 1 ≤ k ≤ n, the distribution Pk of
(X1, . . . , Xk) is close to Mμ,k in the precise sense that:

D(Pk‖Mμ,k) ≤ 5k2 logn

n− k
. (8)

A different information-theoretic proof of a different finite version of de Finetti’s
theorem is given in Sect. 2.

Further Connections There are numerous other directions along which
information-theoretic methods have been employed to establish either known or
new probabilistic results. We briefly mention only a few more from the long list of
relevant works, some of which go beyond probability theory. The interested reader
may also consult Barron’s reviews of information-theoretic proofs and connections
with statistics and learning [6, 7], Csiszár’s review of information-theoretic methods
in probability [24], and Johnson’s text [49].

A natural and powerful connection has been drawn between information theory
and concentration of measure inequalities, through what has come to be known as
the entropy method. Often attributed Herbst [29], the entropy method was primarily
developed by Ledoux [60–62]. Marton’s 1996 work [68] had an early and significant
influence in this direction as well. Entropy also appears naturally in connection with
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related work on transportation theory [10, 83]. Book-length accounts of measure
concentration and related inequalities, including the entropy method, are given
in [12] and [73].

A fascinating and multifaceted series of connections between information-
theoretic ideas and functional inequalities started with Shannon’s entropy power
inequality (EPI), stated in his original 1948 paper [76] and later proved by Stam [79]
and Blachman [9]. Much of the relevant literature up to 1991 is summarised
in Dembo et al.’s review [32], including the connection with Gross’ celebrated
Gaussian logarithmic Sobolev inequality [39]. This paper also contains an early
discussion of the strong ties between entropy inequalities and high-dimensional
convex geometry, starting with Costa and Cover’s 1984 observation [18] that the
Brunn–Minkowski inequality can be viewed as a special case of a generalised EPI.

Building on the technical ideas of Stam and Blachman, Bakry and Émery in a
very influential 1985 paper [3] derived an important representation of the derivative
of the relative entropy D(Pt‖Qt) of the time-t distributions of a diffusion with
different initial conditions. Under appropriate assumptions, strong connections
were established with logarithmic Sobolev inequalities, generalising the earlier
connection between the EPI and Gross’ Gaussian logarithmic Sobolev inequality,
and facilitating the study of the long-term behaviour of the underlying diffusion.
An important observation, independently re-discovered by Barron [6], is that this
derivative can be expressed as a “relative” Fisher information, which also admits
an interpretation as a minimum mean squared error. This interpretation had been
promoted earlier in work by Brown, see e.g. [14], and it was re-framed in more
information theoretic terms by Guo et al. in 2005 [40], leading to a variety of
subsequent developments.

More recently, a remarkable equivalence between the subadditivity property of
entropy and the classical Brascamp–Lieb inequality was pointed out by Carlen and
Cordero-Erausquin [16], and a unified information-theoretic treatment was given
by Liu et al. [64]. In yet another direction, Tao in 2010 [80] developed a series
of discrete entropy inequalities motivated by sumset and inverse sumset bounds in
additive combinatorics, also leading to a discrete version of the EPI. More recent
work in this direction includes [58, 67].

Finally, we mention that a natural analog of the entropy in free probability was
introduced in a series of papers by Voiculescu [84–87], where several properties
of the free entropy are established, including a free version of the EPI. In related
work, convergence results to maximum free entropy distributions is considered by
Johnson in [49, Chapter 8].
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2 Information-Theoretic Proof of a Finite de Finetti Theorem

Suppose Xn
1 = (X1, . . . , Xn), for some fixed n, are exchangeable, discrete random

variables, with values in a finite alphabet A of m = |A| elements. Let P̂Xn
1

denote

the (random) type of Xn
1 , and let the measure μ = μn denote the law of P̂Xn

1
on the

probability simplex P . In this section we provide an information-theoretic proof of
the following:

Theorem 2.1 (Finite de Finetti Theorem) For any 1 ≤ k ≤ n, let Pk denote the
distribution of Xk

1 = (X1, . . . , Xk) and Mμ,k denote the mixture-of-i.i.d.s:

Mμ,k(x
k
1) =

∫

P
Qk(xk

1 )dμ(Q), xk
1 ∈ Ak.

For any 1 ≤ k ≤ (n/100)1/3, we have,

D(Pk‖Mμ,k) ≤ ε(n, k) := 2δ + ke−
n
k
δ
(n

k
+ 1
)2mk

logn, (9)

with α = αn,k =
[ 2k√

n

( 1+2k√
n
+ 1
)]1/2

and δ = δn,k = α log(mk/α).

Before giving the proof of the theorem, some remarks are in order:

(1) It can be seen from (9) that, if k stays bounded as n →∞, then:

ε(n, k) = O(δn,k) = O
(( k√

n

)1/2
log

n

k

)
→ 0.

Moreover, in order for ε(n, k) to vanish, k can grow at most logarithmically with
n. This is, at least asymptotically, weaker than the bound (8) given in [37] for
the binary case m = 2. What’s more, the proof of (9) given below is longer and
more involved that the corresponding proof of (8) in [37]. So why bother? The
reason is that the proof given here follows a completely different information-
theoretic path than that in [37], and that path consists of an appealing sequence
of steps making interesting connections. So we first present a heuristic outline,
and then give the actual proof. In fact, as will be seen from the proof (especially
Lemma 2.2), it is easy to improve the bound ε(n, k), but our purpose here is to
illustrate the ideas rather than to obtain optimal results.

(2) We have cheated slightly in the statement of the theorem, in that the proof below
is only given for the case when n is a multiple of k. However, this is only a minor
technical inconvenience; for example, we can replace n with an integer multiple
of k which is no less than n− k, leading to the same bound with ε(n− k, k) in
place of ε(n, k).
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(3) De Finetti’s original theorem (7) easily follows from (9) by an application of
Pinsker’s inequality (2) and a standard weak convergence argument.

Heuristic Proof of de Finetti’s Theorem (7)
Step 1: Since the sequence {Xn} is exchangeable it is also stationary, therefore,

by the ergodic theorem P̂Xn
1

converges as n → ∞ a.s. to a (random) P on A. Let
μ̄ denote the law of P , and let {Yn} be i.i.d. random variables uniformly distributed
on A. Then, by exchangeability, we clearly have for any n, any k ≤ n, any n-type
Qn, and any ak

1 ∈ Ak,

P(Xk
1 = ak

1 |P̂Xn
1
= Qn) = P(Y k

1 = ak
1 |P̂Y n

1
= Qn). (10)

Step 2: Choose and fix any one of the almost all realisations {Qn} along which
P̂Xn

1
converges to some Q as n→∞. By (10) and symmetry we have,

P(X1 = a|P̂Xn
1
= Qn) = E

(
I{Y1=a}

∣
∣
∣P̂Y n

1
= Qn

)
= E

(1

n

n∑

i=1

I{Yi=a}
∣
∣
∣P̂Y n

1
= Qn

)
,

so that,

P(X1 = a|P̂Xn
1
= Qn) = E

(
P̂Y n

1
(a)

∣
∣
∣P̂Y n

1
= Qn

)
= Qn(a),

for any a ∈ A, and letting n→∞ yields,

lim
n→∞ P(X1 = a|P̂Y n

1
= Qn) = Q(a). (11)

Step 3: Next we generalise (11) to blocks of random variables. As before, choose
and fix any one of the almost all realisations {Qn} of the random P̂Xn

1
such that

Qn → some Q as n → ∞. Define a new sequence of i.i.d. random variables
Zn = (Y2n−1, Y2n), n ≥ 1, so that each Zn is uniformly distributed on A×A. From
(10), taking k = 2 and an arbitrary even n = 2�,

P
(
(X1,X2) = (a1, a2)

∣
∣P̂X2�

1
= Q2�

) = P
(
Z1 = (a1, a2)

∣
∣P̂Z�

1
∈ E(Q2�)

)
, (12)

where E(Q) denotes the set of probability distributions W on A × A with the
property that the average of the two marginals W1 and W2 of W equals Q,

E(Q) =
{
W on A× A : W1 +W2

2
= Q
}
.

If we write U for the uniform distribution on A × A, it is easy to check that the
distribution W∗

� that uniquely achieves the minW∈E(Q) D(W‖U) is simply Q ×Q.
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At this point, we would wish to apply the conditional limit theorem [19] to the i.i.d.
process {Zn}, to obtain that,

lim
�→∞ P

(
Z1 = (a1, a2)

∣
∣P̂Z�

1
∈ E(Q2�)

) = lim
�→∞W∗

� (a1, a2)

= lim
�→∞Q2�(a1)Q2�(a2)

= Q(a1)Q(a2),

and combining this with (12) would yield:

P
(
(X1,X2) = (a1, a2)

∣
∣P̂X2�

1
= Q2�

)→ Q(a1)Q(a2), �→∞.

The same argument can be used without difficulty to show that for any k ≥ 1 and
any ak

1 ∈ Ak,

lim
�→∞P(Xk

1 = ak
1 |P̂Xk�

1
= Qk�) = Qk(ak

1). (13)

Step 4: Since (13) holds for almost every sequence {Qn}, letting �→∞, by the
bounded converge theorem we have,

P(Xk
1 = ak

1) = E

(
P(Xk

1 = ak
1 |P̂Xk�

1
)
)
→
∫

P
Qk(ak

1)dμ̄(Q),

as required. ��
The only problem with the above argument is that the set E(Q) has an empty

interior so that the conditional limit theorem is not directly applicable. Nevertheless,
in the next section where we take a finite-n approach, we are able to ‘imitate’ the
proof of the conditional limit theorem and replace the step where the non-empty
interior assumption is used with a different argument.

2.1 Proof

Recall the notation and terminology for types described in the Introduction. Let μ =
μn denote the law of P̂Xn

1
on P , and let {Yn} be i.i.d. random variables uniformly

distributed on A. For any k ≤ n, any n-type Qn, and any ak
1 ∈ Ak,

P(Xk
1 = ak

1 |P̂Xn
1
= Qn) = P(Y k

1 = ak
1 |P̂Y n

1
= Qn).

Foe k = 1 and any a ∈ A, by symmetry we have,

P(X1 = a|P̂Xn
1
) = P̂Xn

1
(a),
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and taking the expectation of both sides with respect to μ shows that in fact P1 =
Mμ,1.

For general 1 ≤ k ≤ n with n = k�, for any n-type Q we have,

P(Xk
1 = ak

1 |P̂Xk�
1
= Q) = P(Z1 = ak

1 |P̂Z�
1
∈ Ek(Q))

= E
(
P̂Z�

1
(ak

1)
∣
∣P̂Z�

1
∈ Ek(Q)

)
,

where now {Zn} is a sequence of i.i.d. random variables uniformly distributed on Ak ,
and Ek(Q) consists of all probability distributions W on Ak with the property that
the average of the k one-dimensional marginals of W equals Q. Taking expectations
with respect to P̂Xk�

1
= P̂Xn

1
∼ μ = μn,

P(Xk
1 = ak

1) =
∫

E
(
P̂Z�

1
(ak

1)
∣
∣P̂Z�

1
∈ Ek(Q)

)
dμ(Q),

and by the joint convexity of relative entropy,

D(Pk‖Mμ,k) = D
( ∫

E
(
P̂Z�

1

∣
∣P̂Z�

1
∈ Ek(Q)

)
dμ(Q)

∥
∥
∥

∫

Qk dμ(Q)
)

≤
∫

D
(
E
(
P̂Z�

1

∣
∣P̂Z�

1
∈ Ek(Q)

)∥∥
∥Qk
)

dμ(Q)

≤
∫

E

(
D(P̂Z�

1
‖Qk)

∣
∣
∣P̂Z�

1
∈ Ek(Q)

)
dμ(Q). (14)

We will obtain an explicit bound for the relative entropy in (14). First, we
construct a joint �-type W with desirable properties. Let P� denote the set of �-
types on Ak.

Lemma 2.2 For any � > k ≥ 1 and any n-type Q, there is a W ∈ Ek(Q) ∩ P�

with:

max
ak

1

|W(ak
1)−Qk(ak

1)| ≤M :=
[

2

�
+ 4k

�
+ 2

√
k

�

]1/2

.

Moreover, for 2 ≤ k ≤ √�/10,

|H(W)−H(Qk)| ≤ −M log
M

mk
.
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Proof Let xk�
1 ∈ Ak� have type Q, let V k�

1 be a random permutation of xk�
1 , and let

Ŵ denote its (random) �-type. Obviously we have that Ŵ ∈ Ek(Q) by construction,
and we will also show that Ŵ satisfies the statement of the lemma with positive
probability. Taking any k ≤ � and γ > 0 arbitrary,

P

(
max
ak

1

|Ŵ(ak
1)−Qk(ak

1)| > γ
)

≤
∑

ak
1

P

(
|Ŵ (ak

1)−Qk(ak
1)| > γ

)

≤
∑

ak
1

γ−2
E

[(
Ŵ(ak

1)−Qk(ak
1)
)2]

= γ−2
∑

ak
1

[
ρ2(a

k
1)− 2Qk(ak

1)ρ1(a
k
1)+Qk(ak

1)
2
]
, (15)

where ρ2(a
k
1) = E

[
Ŵ (ak

1)
2
]

and ρ1(a
k
1) = E

[
Ŵ (ak

1)
]
.

Now we find appropriate bounds so that the above probability is < 1. To get an
upper bound on ρ1(a

k
1) for some fixed ak

1 note that,

ρ1(a
k
1) = P(V k

1 = ak
1) ≤

k∏

i=1

n(ai)

�k − i + 1
,

where n(ai) is the number of appearances of ai in xk�
1 , and hence,

ρ1(a
k
1) ≤

k∏

i=1

n(ai)

�k

�k

�k − i + 1

≤ Qk(ak
1)
( �k

�k − k

)k

≤ Qk(ak
1)
(

1− 1

�

)−k

≤ Qk(ak
1)(1+ k/�),

since (1 − x)−k ≤ 1 + kx for x ∈ [0, 1). Similarly, writing ak
1 ∗ ak

1 for the
concatenation of ak

1 with itself, we can estimate,

P(V 2k
1 = ak

1 ∗ ak
1) ≤ Qk(ak

1)
2(1+ 4k/�),
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so that,

ρ2(a
k
1) = �

1

�2 ρ1(a
k
1)+ �(�− 1)

1

�2P(V
2k
1 = ak

1 ∗ ak
1)

≤ (1/�)(1+ k/�)Qk(ak
1)+ (1+ 4k/�)Qk(ak

1)
2

≤ (2/�)Qk(ak
1)+ (1+ 4k/�)Qk(ak

1)
2. (16)

Substituting the bound (16) in (15) we have,

P

(
max
ak

1

|W(ak
1)−Qk(ak

1)| > γ
)

≤ γ−2
∑

ak
1

Qk(ak
1)
[2

�
+
(

2+ 4k

�

)
Qk(ak

1)− 2ρ1(a
k
1)
]

≤ γ−2 max
ak

1

[2

�
+
(

2+ 4k

�

)
Qk(ak

1)− 2ρ1(a
k
1)
]
. (17)

Finally, we get a lower bound on ρ1(a
k
1). In the case where for some β > 0 (to be

chosen later), Q(ai) > β for all ai , we have,

ρ1(a
k
1) ≥

k∏

i=1

n(ai)− i + 1

�k − i + 1
≥

k∏

i=1

n(ai)− k + 1

�k
≥ Qk(ak

1)

k∏

i=1

(
1− 1

�Q(ai)

)
,

so that,

ρ1(a
k
1) > Qk(ak

1)
(

1− 1

�β

)k ≥ Qk(ak
1)
(

1− k

�β

)
, (18)

assuming β ≥ 1/2�, since (1 − x)k ≥ 1 − kx for all k ≥ 1 and all x ∈ [0, 2]. For
all such ak

1, using (18) we can bound the expression in the maximum in (17) by

[2

�
+
(

2+ 4k

�

)
Qk(ak

1)− 2ρ1(a
k
1)
]
<

2

�
+ 4k

�
+ 2k

�β
.

And in the case when at least one ai has Q(ai) ≤ β, simply omitting the negative
term and noting that Qk(ak

1) ≤ β we bound the same term above by,

[2

�
+
(

2+ 4k

�

)
Qk(ak

1)
]
≤ 2

�
+
(

2+ 4k

�

)
β.
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Combining the last three bounds,

P

(
max
ak

1

|W(ak
1)−Qk(ak

1)| > γ
)
≤ γ−2

[2

�
+max

{2k

�

(
2+ 1

β

)
,
(
2+ 4k

�

)
β
}]

,

where the inequality is strict when the first term dominates the maximum. To obtain
a good bound we take for β a value approximately equal to the minimiser of the
above expression: We set β∗ = √

k/�. Note that for this β∗ it can be easily verified
that the first term strictly dominates the maximum, giving,

P

(
max
ak

1

|W(ak
1)−Qk(ak

1)| > γ
)
< γ−2

[2

�
+ 4k

�
+ 2

√
k

�

]
,

and taking γ = M as in the lemma, completes the proof of the first statement.
For the second part, noting that for 2 ≤ k ≤ √�/10 we have M < 1/2, the result

follows from [28, Lemma 2.7]. ��
Next we obtain an upper bound on the conditional expectation in (14).

Lemma 2.3 Suppose n = �k, with 2 ≤ k ≤ √�/10. For any n-type Q we have:

E

(
D(P̂Z�

1
‖Qk)

∣
∣
∣P̂Z�

1
∈ Ek(Q)

)
≤ ε(n, k).

Proof We follow the same steps as in the proof of the conditional limit theorem
in [19]. Recall that if we write Uk for the uniform distribution on Ak , then the W∗

k

that uniquely achieves D∗ = minW∈Ek(Q) D(W‖Uk) is W∗
k = Qk . We partition

Ek(Q) into B2δ and C = Ek(Q)−B2δ, where B2δ = {W ∈ Ek(Q) : D(W‖Uk) ≤
D∗ + 2δ}, with δ = δn,k . Then, writing ν� for the distribution of P̂Z�

1
,

ν�(C|Ek(Q)) = ν�(C ∩ Ek(Q))

ν�(Ek(Q))
≤ ν�(C)

ν�(B2δ)
.

Next we bound the above numerator and denominator. For the numerator, writing
again P� for the set of �-types on Ak ,

ν�(C)
(a)=

∑

W∈C∩P�

U�
k (T (W))

(b)≤
∑

W∈C∩P�

e−�D(W‖Uk)

(c)≤ |Ek(Q) ∩ P�|e−�(D∗+2δ)

(d)≤ (�+ 1)m
k

e−�(D∗+2δ),
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where T (W) in (a) denotes the type class of all strings of length � in Ak with type
W , (b) is a standard property [19], (c) follows from the definition of C and the
fact that Ek(Q) ∩ P� ⊂ Ek(Q), and (d) follows from the standard observation that
|Ek(Q) ∩ P�| ≤ |P�| ≤ (� + 1)m

k
. Similarly, letting W0 denote the type from

Lemma 2.2,

ν�(B2δ) ≥ ν�(Bδ)

=
∑

W∈Bδ∩P�

U�
k (T (W))

≥ U�
k (T (W0))

≥ (�+ 1)−mk

e−�D(W0‖U)

≥ (�+ 1)−mk

e−�(D∗+δ).

Combining these bounds, we obtain,

P
(
P̂Z�

1
∈ C
∣
∣P̂Z�

1
∈ Ek(Q)

) ≤ (�+ 1)2mk

e−�δ,

or,

P

(
D(P̂Z�

1
‖Uk) > D∗ + 2δ

∣
∣
∣P̂Z�

1
∈ Ek(Q)

)
≤ (�+ 1)2mk

e−�δ.

Since the set Ek(Q) is closed and convex, we may apply the Pythagorean identity
for relative entropy [19] to conclude that:

P

(
D(P̂Z�

1
‖Qk) > 2δ|P̂Z�

1
∈ Ek(Q)

)
≤ (�+ 1)2mk

e−�δ.

Thus,

ED(P̂Z�
1
‖Qk)

∣
∣P̂Z�

1
∈ E�(Q) ≤ (�+ 1)2mk

e−�δ max
P∈Ek(Q)

D(P‖Qk)+ 2δ.

The claimed bound now follows by Lemma 2.4 on taking � = k/n. ��

Lemma 2.4 For any n-type Q, maxW∈Ek(Q) D(W‖Qk) ≤ k logn.

Proof If ak
1 ∈ Ak is such that Qk(ak

1) =
∏k

i=1 Q(ai) = 0, then Q(ai0) = 0

for some i0. Since Q(ai0) = 1
k

∑k
j=1 Wj(ai0), we must have W1(ai0) = · · · =

Wk(ai0) = 0, which implies that W(ak
1) = 0.



Information in Probability 381

On the other hand, if Qk(ak
1) > 0 then Qk(ak

1) ≥ 1
nk . Thus, for any W ∈ Ek(Q),

D(W‖Qk) =
∑

ak
1∈Ak

W(ak
1) log

W(ak
1)

Qk(ak
1)

≤
∑

ak
1∈Ak

W(ak
1) log

W(ak
1 )

( 1
n
)k

= k logn−H(W)

≤ k logn,

as required. ��
Theorem 2.1 follows from (14) combined with Lemma 2.3.
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Part VIII
Logic

It would seem that the title of Angus Macintyre’s article Between the rings Z/pn
Z

and the ring Zp: Issues of axiomatizability, definability and decidability says it all.
However, one can add that it is also a historical and insightful introduction to a
fundamental area of the intersection of logic and arithmetic.



Between the Rings Z/pn
Z and the Ring

Zp: Issues of Axiomatizability,
Definability and Decidability

Angus J. Macintyre

1 Introduction

This paper is about the metamathematics of the rings Z, Z/pn
Z, and Zp, the p-adic

completion of Z. The mathematical study of the first two rings goes back to the
early days of our subject, and flourishes still. The definition of Zp, by Hensel, at the
very end of the nineteenth century, has enriched more and more of mathematics in
the intervening 120 years (John Tate’s thesis being an example of great beauty).

Metamathematics did not exist when Zp was introduced, and it took a long time
for its central ideas, namely axiomatisation, definability and decidability, to become
attractive to a variety of mathematicians. However, from the beginning exceptional
mathematicians began to contribute (for example Hilbert, Skolem, von Neumann,
Gödel, Tarski), and by the 1930s Tarski had established marvellous results on the
metamathematics of the real field R, which would prove in the ensuing century to
generalise to methods extremely powerful in diophantine geometry. However, for Z
the analysis initiated by Gödel in the 1930s revealed barriers to our understanding
of the metamathematics of Z, and the culminating result in 1970 (when Matjasevic
completed a daring programme of Davis, Putnam and Robinson) is beyond doubt
one of the supreme achievements of mathematical logic, showing the unsolvability
of Hilbert’s 10th problem.

The present paper concerns the metamathematics of the Zp, uniformly in p as far
as possible. Some 6 years before Matjasevic, independent work by Ax and Kochen,
and Ersov, solved positively the axiomatisation and decidability problems. The
definability problems were solved by combination of ideas of Paul Cohen, Denef
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and Macintyre. Uniformity problems, including decidability, were solved by Ax.
But many problems remain concerning the computational complexity of Zp. These
matters are all described in the paper.

Finally, the metamathematical issues for the class of all Z/pn
Z are discussed.

For an individual Z/pn
Z the issues are trivial, as these are explicitly given finite

rings. But to understand the situation as either the n or the p, or both, vary, is a
very substantial matter. If we fix n = 1 and let p vary, Ax solved all the problems,
using major results from number theory. But if p is fixed and n varies, the analysis
is hard, and depends on refined analysis of the Zp case. This is an example of the
always fascinating situations where uniformities in finite settings get understood by
passing to some kind of completion.

1.1 The Diagrams and Some Axioms Connected to Them

The title refers to the diagrams of commutative rings with 1:

ℤ/pz ℤ/pnℤ/p

ℤp

ℤ

ℤ/pn+1 ℤ/pn+2

Lrings is the standard first-order language for ring theory, with primitives
+, ·,−, 0, 1 [34]. The structures in the diagram above are all models of the axioms
(in Lrings) for commutative rings with 1. All but Z are local rings. The class of local
rings is axiomatizable by a single sentence of Lrings (see the very lucid [40]). The
residue field is uniformly interpretable [12]. In the diagram(s) above it is Fp. This
property is also given by an axiom, but not uniformly in p. In the above diagram all
the maximal ideals are principal, and this can be said by a single sentence uniformly
for local rings. Finally, a first-order property common to all the local rings above is
that the set of principal ideals is linearly ordered by reverse inclusion (i.e. the rings
are so-called chain rings), with order < given by

(1) ⊂ (p) ⊂ (p2) · · · ⊂ (0)

This chain will be crucial below, in particular in showing that we have no need to
appeal to any language for valued rings. Note that in the diagram Zp and Z/pZ are
the only local domains. Some of the most outstanding work in so-called “applied
model theory” has been concerned been concerned with uniformities in p for these
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structures [1–4, 22]. The present paper is concerned with neglected issues, and I
have studied those issues in much joint work both with Paola D’Aquino and with
Jamshid Derakhshan [16, 21].

1.2 Tarski’s Legacy

One may fairly credit Tarski [38] with founding a deep mathematical theory of truth,
satisfaction, definability and (with the arrival of computability theory) decidability.
His work on the field R ([37], but with publication long delayed by war) is a
masterpiece with decisive and inspirational results on axiomatization, structure of
definable sets, and decidability. Combined with later, quite different, work by
Abraham Robinson and Anatoli Malcev on similar issues for a variety of classical
(and also novel) structures, this provided the basic repertoire for people entering
“applied model theory” from the late 1950s onward. This paper is concerned with
issues arising in the 1960s work of Ax–Kochen and Ersov on Henselian fields.
In real settings, a shift of emphasis on the structure of definable sets in higher
dimension by van den Dries, in the late 1970s, led to the beautiful and amazingly
fertile notion of o-minimality [39], and Wilkie’s proof of o-minimality of the
real exponential field initiated an astonishing ongoing interaction between logic,
real analytic geometry and diophantine geometry [42]. As regards decidability,
Wilkie and I in [33] proved the decidability of the real exponential field, under
the assumption that Schanuel’s Conjecture is merely true (some assumption of
this kind seems to me unavoidable). I want to point out that our “algorithm” is
not very informative, involving a standard “wait and see” procedure in which two
recursive enumerations are at work. Alas, often this is all we get when we look for
decidability. The “wait and see” method allows us to show that the structure under
analysis is not Gödelian, but cannot be expected to yield much detailed algorithmic
knowledge. I return to this later in Sect. 3.3.

1.3 Metamathematics of Z

The theory Th(M) of an L-structure M is defined as the set of L-sentences true in
M . ≡, elementary equivalence, is the relation (between L-structures) of having the
same theory.

Th(Z) is only dimly understood. Z is the fundamental Gödelian ring, and has an
undecidable theory. In particular, Z has no computable complete set of axioms, and
the set of polynomials over Z solvable in Z is not computable [17].

The definable relations over Z, the so-called arithmetic sets, have a beautiful
hierarchical structure, in which more and more quantifier alternations are needed to
exhaust all definitions, but most of the individual arithmetic sets have no intelligible
structure. This is in total contrast to what Tarski [37] showed for R, where the
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definable sets need no quantifiers if < is taken as a primitive. Another contrasting
result is that of Wilkie [42] for the real exponential, where only existential formulas
are needed.

1.4 Metamathematics of PA

PA is a natural recursive set of axioms [28] true in Z, basically saying that any
nonempty definable set bounded below has a least element (there are some isolated,
simple axioms needed too). PA is incomplete by Gödel (and even for sentences
expressing unsolvability of diophantine equations, but it is nevertheless very
powerful, and it is notoriously hard to find mathematically interesting sentences true
in Z but not provable in PA. I will look later at the strength of PA in connection with
the structures in the main diagram. For example, I will connect the theory of class
of quotient rings M/q , where M is a nonstandard model of PA and q is a (possibly)
nonstandard prime power in M , and the theory of {Z/pn

Z : p, n varying }. The
moral will be that Gödel Incompleteness fades away in residue rings. This will be
discussed in Sect. 3.

2 Classes C of L-Structures

Although one is often dealing with an individual structure, like R, Z or Zp, there
are times when one has to deal with classes of structures, with a view to uniformity
results. Of special importance for the present paper are the classes

(i) {Zp : p prime }
(ii) {Fp : p prime }

(iii) For fixed p, {Z/pn : n = 0, 1, 2...}
(iv) {Z/pn

Z : p, n varying }
Thus one is led to define Th(C) as

⋂
M∈C Th(M).

For fixed p, the individual Z/pn
Z, for n ≥ 0 are not interesting since they are

finite, finitely axiomatizable and decidable. The structure of definable relations is
more subtle, but then we look for uniformity in n. Thus we look at Cp defined as
the class of all Z/pn

Z for n ≥ 0. Now serious mathematics comes in when we ask
about axioms for Th(Cp), decidability, and the fine structure of definability.

2.1 Let p Vary

Now let p, n vary, and let C be the union of all the Cp. The problems set in the
preceding subsection become much more demanding.
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2.2 Ax

Most important of all the classes here are two classes of fields:

(1) Cprime , the class of all Z/p
(2) CFin, the class of all finite fields.

Note that fields which are not prime do not occur in the diagram.
Ax’s work [1] gave us our fundamental understanding of axioms, and decidability

in models of the theories of the two classes just defined. Ax used ideas around two
great theorems of number theory, Weil’s Riemann Hypothesis for curves over finite
fields, and Cebotarev’s Theorem on decomposition groups of primes in number
fields [1]. They fit marvellously with the metamathematical task Ax set himself.

3 The Metamathematical Analysis of Zp

In the mid 1960s Ax and Kochen [2–4] and Ersov [22] established a new research
area, the model theory of Henselian fields, which has expanded greatly in the
subsequent 60 years, and has led to significant interaction between model theory
and number theory. There are currently some hopes that this work can link to recent
profound work in p-adic Hodge Theory, due to Fargues and Fontaine [23].

The logic component of the research is very lucidly explained in van den Dries’
Cetraro Notes [40]. These notes are mainly concerned with Henselian valued fields
with residue field of characteristic 0, and with finitely ramified mixed characteristic
Henselian fields.

In this paper I work with the valuation rings OK of such fields K . Thus I work
with Zp rather than Qp. Since Qp is interpretable in Zp uniformly in p, and Zp is
definable in Qp uniformly in p (even by a low complexity formula) [12], the two
formulations are equivalent.

Zp is natural in this paper, since we want to connect the metamathematics of the
finite Z/pn

Z to that of the projective limit of the Z/pn
Z, i.e. Zp. Note that Z/pZ

and Zp are domains, but the remaining Z/{Z/pn} are not.

3.1 The Axioms for Zp

The following is an adaptation of what was given in [3], but here formulated in
Lrings. To avoid taking a primitive for valuation, we work with the chain 
 of
nonzero principal ideals 〈x〉 (cf. Sect. 1). This carries the structure of an ordered
semigroup via

〈x〉 ⊕ 〈y〉 = 〈xy〉.
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Define v(x) as 〈x〉, even when x = 0 , and treat 〈0〉 as ∞, greater than any element
of 
.

Now we formulate the Axioms for Zp, en bloc, assuming the preceding notation.

AXIOMS R is a local domain, of characteristic 0, with maximal ideal generated
by p, and residue field of cardinality p. The set of nonzero principal ideals forms a
chain 
 under reverse inclusion. With respect to the⊕ introduced above, 
 becomes
an ordered semigroup which is naturally isomorphic to the nonnegative part of a
model of Presburger arithmetic. If we adjoin 〈0〉 as ∞, and define v as above, then
v is a valuation on 
. 〈p〉 is the least positive element of 
. R is henselian with
respect to v.

Theorem 3.1 AXIOMS is a complete set of axioms for Zp. Zp is decidable.

The reader may well prefer the more standard axiomatizations in the literature. The
point of the version above is that it adapts well to axiomatizations for the Z/pn

Z.

Note The axiomatization is entirely explicit, analogous to Tarski’s. But the
decidability proof is lacking in any explicit information, and merely shows that Zp

is not Gödelian. I turn now to the issue of definable sets, where deep results have
been obtained.

3.2 Definable Sets

Though [2–4] and [22] obtained useful information about definable sets in both Qp

and Zp, they did not get far enough to obtain a clear picture of the landscape of
definable sets. In 1974 [31], by reflecting on Tarski’s Elimination for R, and on
the solvability of the absolute Galois group of Qp, I found an Elimination Theorem
which nearly a decade later combined beautifully with ideas of Paul Cohen [13] and
Jan Denef [18] allowing Denef to make dramatic advances in our understanding of
p-adic Poincaré series.

Tarski had used, and needed, a primitive for > to get his quantifier-elimination.
> is of course definable in R in Lrings, via

x > 0 ⇐⇒ x �= 0 ∧ (∃y) (y2 = x).

In any ring R we can define Pn(x) as

x �= 0 ∧ (∃y) (yn = x).

Tarski used P2.
I proved that for either Qp or Zp one has quantifier-elimination in the definitional

extension got by enriching Lrings by new predicate symbols P2, P3, ......, Pk... , for
k > 1.
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Note that some writers use Pn simply for the nth powers, rather than for the
nonzero nth powers. We stick with the convention given above. Of course the two
formalisms are equivalent for definability results.

It is to be noted that the elimination is not uniform in p. In addition, even for a
single p, it is known to be computable (since one already had decidability forQp and
one could appeal to a “wait and see” argument) but no one has convincingly pushed
the algorithm down to elementary recursive. However, Weisspfenning has given a
primitive recursive elimination [41]. But in general primitive recursive procedures
do not give useful bounds.

Note that one can deduce that in either the compact ring Zp, or in the locally
compact Qp, definable sets are Haar measurable. Denef used his method to prove
rationality results (in p−s ) for integrals of the form

∫

A

|f (x̄)|sdx̄

where A is a definable subset of Qn or Zn, f is a definable function on A, | · | is
the standard p-adic absolute value, and s is a real number chosen in a suitable range
[18].

A standard procedure allows these rationality results to be used to prove
rationality in T of a huge variety of formal power series

∞∑

n=0

cnT
n

arising in number theory, publicized by Borevich and Shafarevich [8].
Denef’s original work did not yield any kind of uniformity in p, in situations

where one might hope for this, e.g. when A and f are defined over Q or Z. But
later Denef, Pas and I proved substantial uniformity results [19, 32, 36], giving
complicated proofs. Some aspects of this work were later given a much deeper
analysis, in the superb work of Denef and Loeser [20] on motivic integration. I use
the uniformities of Denef, Pas and myself to get explicit axioms for Th(Cp), and I
know no other way to do this. It remains mysterious to me that one may need the
much more sophisticated uniform p-adic analysis to get axioms for the Cp, whose
members are very accessible and congenial to beginners in number theory. Our
analysis also gives axioms for Th(C) where both p and n vary. It also leads to
axioms for Th(Z/mZ) via [15].

3.3 Decidability

Both [2–4] and [22] proved the decidability of Zp and Qp, but by different methods.
Ax and Kochen [2–4] went via a complete, computable axiomatization, proved
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using infinitistic methods involving ultraproducts, and Ersov [22] used methods of
Abraham Robinson. Neither method is constructive.

Paul Cohen, in 1969 [13], gave a primitive recursive decision problem , using
a cell-decomposition method proved by a brilliant and ingenious induction, using
Hensel’s Lemma only (and no fancy model theory). His bare-hands method was
preceded by an analogous proof for the real case (also published in [13]). Cell-
decomposition in o-minimality had not yet emerged, though real geometers were
already involved with related special cases. In the p-adic case, Cohen’s cell-
decomposition was transformed by Denef [20] into a central technique of p-adic
definability.

It remains a very challenging problem to get better bounds for the complexity of
Zp and Qp. I believe that there should be elementary recursive bounds (towers of
exponentials) for the central constructions such as cell-decompositions, quantifier-
eliminations and the like. Such bounds have been found in the real case, where there
is an extensive literature and deep results [5]. For the real field there are double-
exponential upper bounds (in the appropriate parameters), for which I advise the
reader to consult the literature. For Presburger arithmetic there are lower bounds
which are greater than the upper bounds for the ordered field R [24]. From this it
follows that the basic decision procedures for the p-adic case are strictly harder than
for the real case.

I have made two serious attempts (once with Lavinia Egidi, and once with Raf
Cluckers) to get elementary recursive bounds, but neither succeeded. I believe that I
have now been able to reach the final goal, but this is not yet published. The reader
may wish to consult Scott Brown’s [10] for a striking iterated exponential bound
arising from the original Ax–Kochen transfer principle.

One should establish bounds for Denef’s version of Cell-Decomposition. My
1989 paper on uniform bounds [32] does quite a bit in this direction, and Denef and
Pas have excellent uniformities without explicit bounds.

4 Ax on Finite Fields and p-Adic Uniformities

4.1 CFin

The problem of decidability of the class CFin had been around for a long time,
until in 1968 Ax in [1] solved it positively in a tour de force. He used, as well as
the kind of model theory used in [2] (ultraproducts, for example), major twentieth
century results from number theory, around Weil’s Riemann Hypothesis for curves
over finite fields [35] and Cebotarev’s Theorem on the distribution of primes [11].
Weil was relevant mainly for axiomatization, and Cebotarev for definability and
uniformities in p. The method which puts these together was devised a bit later by
Fried and Sacerdote [25], and called “Galois Stratification”. It gives an Elimination
Method much better than general recursive.
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A general strategy of Abraham Robinson is to begin any analysis of any Th(C)

by looking at systems of equations and inequations

∑
(x̄, α̃) (α̃ parameters)

and finding tractable conditions #(α̃) on the α̃ such that the α̃ satisfying # in some
R ∈ C are the α̃ for which the system is solvable in R.

This admits numerous variations, e.g. involving definitional expansions of Lrings,
as in the quantifier-eliminations of Tarski and me.

What to do when C is the class of finite fields? Ax uses the Lang–Weil estimates
[35] for the number of Fq -points on an absolutely irreducible variety V over Fq .
(There may be none, but there are notions of the complexity of V such that if q >

complexity of V then there are points). It then follows that any infinite ultraproduct
K of finite fields satisfies:

(PAC) If V is an absolutely irreducible variety over K then V has a K-valued
point.

In fact, any PAC field (pseudo-algebraically closed field) has to be infinite, but
need not be algebraically closed. An infinite ultraproduct of finite fields is never
algebraically closed, since every finite field satisfies the set of elementary conditions
saying that it has a unique extension of dimension n for all n. Moreover, these
ultraproducts are perfect, since all finite fields are, and this can be expressed by an
infinite set of axioms, one for each prime p.

4.2 Pseudofinite Fields

Definition 4.1 K is pseudofinite if and only if K is PAC, perfect, and has a unique
extension of each degree.

This is a set of first-order conditions, consistent by the preceding ultraproduct
arguments. None of the K constructed in this way is algebraic, but Jarden [27]
showed that:

{σ ∈ Gal(Q) : Fix(σ ) is pseudofinite} has measure 1 in the usual

Haar measure on Gal(Q).

Here Gal(Q) is Aut(Qalg|Q, where Qalg is the algebraic closure of Q.
For much nice detail on PAC fields one should consult [26].
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4.3 How Does Pseudofinite Relate to Finite?

Here are some of Ax’s main theorems from the first part of [1]. The proofs of all
these results, except Theorem 4.4, are in [1].

Theorem 4.2 K is pseudofinite iff K ≡ L , where L is an infinite ultraproduct of
finite fields.

Note that K can be of characteristic 0.

Theorem 4.3 A pseudofinite field K is characterized up to elementary equivalence
by

{f ∈ Z[x] : f has a root in K}.

This is a special case of an Elimination Theorem, involving “solvability for-
mulas” long familiar in the model theory of fields. These are the formulas
Soln(x1, ....xn)), defined as

(∃y) (xn + c1x
n−1 + · · · + cn = 0).

Note that these include the members of the set {f ∈ Z[x] : f has a root in K}.
Theorem 4.4 ([29]) Uniformly for all pseudofinite fields any formula is equivalent
to a Boolean combination of Soln formulas.

Theorem 4.5 A pseudofinite field K is determined up to elementary equivalence by
a conjugacy class of procyclic subgroups of the absolute Galois group of the prime
subfield of K .

Theorem 4.6 A sentence θ holds in all pseudofinite fields iff θ holds in all but
finitely many finite fields.

And, finally, a startling one, deeply related to Cebotarev’s Theorem.

Theorem 4.7 A pseudofinite field of characteristic 0 is elementarily equivalent to
an (infinite) ultraproduct of finite prime fields.

All these theorems are relevant for the analysis of the class of all Z/pn
Z as p, n

vary.
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5 Towards Decidability Uniform in p

The main ideas here relate to Cebotarev’s Theorem. A central notion, with no
reference to infinite fields, is the Ax Boolean algebra. To any sentence θ of Lrings

one associate the set

�(θ)

defined as the set of prime powers pn such that θ ∈ Th(Fpn).
In Section 9 of [1] a conventional argument from algebraic number theory, which

is not merely computable but even elementary recursive, allows one to decide,
except for finitely many primes p, the structure of �(θ) for θ a solvability sentence.
In addition it computes, in an elementary recursive way, the finite set of exceptional
primes, and the contribution their powers make to �(θ). The structure is given
very explicitly in terms of arithmetic progressions, and hints at periodicities such
as those occurring in the theory of recurrence relations [6, 9]. The argument
extends to Boolean combinations of solvability sentences explicitly given, and still
in an elementary recursive way. BUT it is not an elementary recursive algorithm
if our data is given as an arbitrary sentence. The reason is that the elimination
argument that shows every sentence is equivalent to a Boolean combination of
solvability sentences is merely computable, and not obviously elementary recursive.
The Turing computability comes from a standard “wait and see” argument, which
typically yields no specific algorithmic information.

The preceding use of Cebotarev leads, in a fairly straightforward way, to several
major decidability results, namely:

Theorem 5.1

(1) The theory of pseudofinite fields is decidable,
(2) The theory of pseudofinite fields of specified characteristic is decidable.
(3) The theory of the class of all fields Fp is decidable.
(4) The theory of all finite fields is decidable.

Clearly the proof of (4) comes from that of (1) by taking account computably of
finite exceptional sets of primes as in Ax’s use of Cebotarev.

Note In none of the four cases does Ax give an elementary recursive decision
procedure. To my knowledge, the only improvement, say for (4), obtained in the
last 50 years is that of Fried–Sacerdote [25], where primitive recursive bounds are
sketched via Galois stratification.

However, the situation is much better for Axiomatization. In all cases there exists
an elementary recursive axiomatization, using bounds in the Riemann Hypothesis
for curves [16, 31].
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6 Uniformity for the Zp

Ax readily combined his work on ultraproducts of finite fields with the earlier work
on Henselian fields ([2–4] and [22] ) to get both axiomatizability and decidability
results uniformly for the fields Qp and the rings Zp. We will use the latter case. For
definability one has to work harder, putting Kiefe’s work into the mix, and we do
not pursue this here.

The main result, for our purposes is:

Theorem 6.1 The class of all Zp is decidable, and has an elementary recursive
axiomatization.

This result is in [1], but in reference to elementary recursive axiomatisation.

Notes

1. The results of the preceding theorem do not modify routinely, because of
problems with characteristic of the residue field.

In Theorem 5.1 one has not yet done better than a computable axiomatization.
2. In Theorem 5.1 one does have an elementary recursive axiomatization in

characteristic 0.
3. It is not immediately obvious that one can replace “decidable” in Theorem 5.1

by “primitive recursive”.

We are finally ready to look at the issues for the class of all Z/pn
Z , both for

fixed p and varying n, and for p and n both varying.

7 What Do We Know About the Z/pn
Z?

7.1 Some Uninformative Decidability Results

For now we fix p. The Z/pn
Z are the Zp/〈x〉 where x is a nonzero element of Zp.

The case x = 1 (i.e. n = 0) is of course uninteresting, and we just ignore it. Now,
the family of all the Zp/〈x〉 is interpretable in Zp and so we get instantly

Theorem 7.1 The theory of the class of all Z/pn
Z is decidable.

Proof Zp is decidable, by Ax. ��
Note This is far short of what we want to know. The proof provides no explicit
algorithm. All we get is that we are not in a Gödelian situation, and given the
importance of these residue rings we expect to get a lot more positive information.
Also, we want an explicit axiomatization (and we do not get one simply from
the explicit axiomatization of Zp!), and some normal form for definitions. Before
turning to this, we state another easy theorem, related to the preceding.
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Theorem 7.2 The set of sentences true in all but finitely many Z/pn
Z is decidable.

Proof This also comes from the interpretation, since the order on the set of principal
ideals in Zp is interpretable via divisibility. ��
Note The “algorithm” is again uninformative.

7.2 Generalizing “Pseudofinite”

One can use the theorem (or rather its proof) to develop some work on ultraproducts
of the Z/pn

Z, and on generalizations of the notion of “pseudofinite” in the style of
Ax, but I leave this for another occasion.

7.3 Digression on PA

It is natural to ask if there is any trace of the Gödel phenomenon in modular
arithmetic. This leads one to look at modular arithmetic in models M of PA. Because
of the proof of unsolvability of Hilbert’s 10th Problem one knows a wide range
of pathology concerning diophantine equations in such M . However, no trace of
Incompleteness concerning residue rings was found.

Ax showed that the set of finite systems of polynomials � over Z solvable in all
residue rings Z/nZ is decidable (and this was also a folklore result in the number
theory community). Ax’s result was not trivial even modulo the big results in the
main part of his paper, and he left as an open problem whether or not the theory of
the class of all Z/nZ is decidable. Many years later Jamshid Derakhshan and I gave
a positive answer, using serious results on definability in the ring of adeles over Q
[21].

All this raises the question as to how much can be done in PA. In 1978 [31]
I studied the structure of residue rings of models M of PA modulo prime elements
and (even nonstandard) powers of such primes. The nonstandardM are not principal
ideal domains, but definable ideals are principal. The standard primes p of Z

remain prime in M and have quotients Fp, but if M is nonstandard there are
always nonstandard p. By using Bombieri’s elementary proof of Weil’s Riemann
Hypothesis for curves [7] and rewriting it in PA I showed

Theorem 7.3 The following are equivalent:

(1) K is a pseudofinite field of characteristic 0 or a field Fp, p in Z

(2) K is elementarily equivalent to some M/rM , where M is a model of PA and r

is a prime in M .
(3) K is elementarily equivalent to an ultraproduct of prime finite fields.
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Much more recently, Paola D’Aquino and I [16] extended the analysis to q which
are prime powers in a model M of PA, obtaining

Theorem 7.4 The following are equivalent:

(1) R is elementarily equivalent to some M/qM , where M is a model of PA and q

is a prime power in M .
(2) R is elementarily equivalent to an ultraproduct of rings Z/pn (so p, n standard)

where p and n vary.
(3) Either R is a chain ring, with residue field either a standard Fp, and maximal

ideal 〈p〉 (i.e. R unramified), elementarily equivalent to some S/〈α〉, where S

is elementarily equivalent to Zp and α is not 0,

or

R is elementarily equivalent to a proper quotient by a principal ideal of the
valuation ring of some Henselian valued field with residue field pseudofinite of
characteristic 0 and value group a Presburger group.

One moral from these theorems is that PA is as strong as Th(Z) as far as the
basic algebra of the residue rings is concerned, so that there is no obvious Gödelian
phenomenon in this area.

8 How to Get at Axioms for the Z/pn
Z

Fix p for now. Let R be one of the Z/pn
Z. We know that R is a local ring, a chain

ring, with residue field Fp and maximal ideal 〈p〉. R is Henselian. The valuation
structure of R is interpreted in ring theory via the chain of principal ideals. Any
ultraproduct J of the Z/pn

Z has the preceding properties, and the chain of principal
ideals is what is called a Presburger TOAG in [14]. This is an initial segment (with
last element) of a model of Presburger arithmetic. From the theorems quoted in
the preceding subsection, and inspection of the [4] proof for Qp one can readily
prove that the elementary theory of J is determined by the Presburger type of the
penultimate element γ of the TOAG, and by quantifier elimination for Presburger
that type is determined by the truth values of each of

γ = 0, γ = 1, γ = 2, . . . and γ ≡ k (mod m), for m = 1, 2, ... and k < m.

Here our addition is ⊕.
Any Presburger type as above arises from a J as above. The infinite J get

characterized up to elementary equivalence merely by the congruence conditions
(and so the elementary types are classified by the quantifier-free Presburger types).
The finite J are each characterized by a single γ = k.

Note that the TOAG of a model R of Cp satisfies first-order induction for the
corresponding TOAG for any predicate definable in R. This is an axiom a bit
more explicit than one expressing mere decidability, but it is definitely not too
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illuminating qua axiom. We are looking for much more explicit “algebraic” axioms,
and more “algebraic” definability theory.

8.1 Definability Theory for the Z/pn
Zp

As usual for now, p is fixed. In [16] one proves decidability for the theory of
Cp via a uniform interpretability in Zp (and the result holds even in the setting
of primes in models of PA). Ax had, long before in [1], proved th decidability
of Cp. As remarked earlier, this result has little detail per se. But what about
consequences of the method of [16] for definability? We will see that there is an
interesting quantifier elimination here, but with the defect that we do not know if it
is elementary recursive.

Let # be a sentence of ring theory. Consider the formula (x,#) in the free
variable x which expresses in a model R of Th(Zp) that x �= 0 and # is true in
R/〈x〉.

Recall that 〈x〉 is the principal ideal generated by x. We construe 〈x〉 as an
element of the TOAG (or value semigroup) of R.

Now, by my quantifier-elimination [30], (x,#) is equivalent in Zp to a Boolean
combination of formulas of the form

Pnj ((gnj )(x))

for polynomials gnj in x with coefficients in Z.
This leads us to consider some basic preservation properties for the projection

R → R/〈a〉,

where as before R is a model of Th(Zp), and a �= 0.
We are interested in formulas of the form Pn(g(x)), where g ∈ Z[x].

8.1.1 The Simplest Case

Assume g is a constant m ∈ Z, and g �= 0 in R.
Then g = pk · r where r is prime to p. In R, g is an nth power iff n divides k and

r is an nth power modulo p2v(n)+1. The latter clause comes from Hensel–Rychlik.
Note that g will be 0 in R/〈a〉 iff a divides g in R iff v(a) ≤ v(g) iff v(a) ≤ k).

So, our assumption that g �= 0 in R is equivalent to k > v(a).
Collecting the above remarks, we have:

Lemma 8.1 Let R be a model of Th(Zp), and let S be R/〈a〉 for a nonzero element
a of R. Let n, g be positive integers, with g �= 0 in S. Suppose g = pk · r , where r
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is prime to p. Then g satisfies Pn in R iff n divides k and r is an nth power modulo
p2v(n)+1.

So we have proved that if v(a) > 2v(n)+ 1, and k > v(a), and n divides k then
Pn(g) holds in R iff it holds in S. The constraint that r is an nth power modulo
p2v(n)+1 is a blemish that we will now remove (or, rather, formulate internally in S).

About S we know that it is isomorphic to R/〈a〉 for some R elementarily
equivalent to Zp. For standard n (and p fixed), v(n) is independent of R and so
the finite residue ring R/p2v(n)+1R is independent of R. Moreover, it is naturally
isomorphic to the ring of remainders modulo p2v(n)+1 in Z. So, in addition for
integers r prime to p, and arbitrary m, the condition that r be an mth power in the
ring of remainders is independent of R.

We now have the prototype for a basic definability result.

Lemma 8.2 Let R be a model of Th(Zp), and let S be R/〈a〉 for a nonzero and
noninvertible element a of R. Let n, g be positive integers, with g �= 0 in S. Suppose
g = pk · r , where r is prime to p. Then g satisfies Pn in R iff g satisfies Pn in S.

8.2 Quantifier Elimination

We will sketch a quantifier elimination for the class of all Z/pk
Z, or equivalently for

all the S in the preceding analysis. The preceding analysis involving g was intended
as a warm-up for the technical work we must now do.

We fix a formula ψ of ring theory, with free variables y0, ..., yl , and we consider
the sets it defines in the various S as above. We fix S, and an R, as in the preceding
discussion. As usual S is R/〈a〉, which is neither 0 nor a unit of R. The variables y

are intended to range over R, but, because of the natural definable surjection from
R to S, we will also construe the y as ranging over R (in some sense replacing y by
y + 〈a〉, or when a starts to vary, as x, by y + 〈x〉). The point is to transform the
formula ψ(y+〈x〉), and what it defines in S, to an R formula ψ∗, with the y and the
single x as its free variables, so that ψ∗(y, x) expresses in R exactly what ψ(y+〈x〉)
expresses in R/〈x〉. This is completely routine, an exercise in interpretability.

Now we can apply to ψ∗(y, x) my quantifier elimination for Zp, to get
(even primitive recursively by Weisspfenning’s [41]) a Boolean combination of
formulas of the form Pn(g(y, x), with the g polynomials over Z, with that Boolean
combination being equivalent to ψ∗(y, x) over R. Now we want to replace (as we
did for the illustrative special case above) Pn(g(y, x) by an equivalent “Macintyre
language formula” over S. As remarked earlier the y will be used interchangeably
with the y+〈x〉, and the x in the polynomial g(y, x) will be replaced by 0. The first
thing to sort out is when g(y, 0) is 0 in S. The answer is obvious when x divides
g(y, 0) in R, and this is equivalent to v(x) ≤ v(g(y, 0)). We are going to work
under the assumption that g(y, 0) �= 0 in R, and that is equivalent to assuming that
v(x) > v(g(y, 0)).
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Now we continue along the lines of the argument given earlier for sentences.
Clearly if v(x) > v(g(y, 0)), then if Pn(g(y, x)) holds in R then Pn((g(y, 0)) holds
in S. Conversely, still assuming v(x) > v(g(y, 0)) in R, let g(y, 0) = pky · ry ,
where ry is a unit of R. Then Pn((g(y, 0)) holds in § iff n divides ky and ry is an
nth power in S. Now we reach the Hensel–Rychlik argument used in the special
case done earlier. ry will be an nth power in R iff ry is a nth power modulo p2v(n)+1

in R. So there is a finite set of standard integers En so that ry is an nth power in R

iff ry is congruent modulo p2v(n)+1 to an element of En. So we have

Lemma 8.3 Suppose g(y, x) is a polynomial over Z, and a is a nonzero nonunit of
R. Let n be a positive integer, and suppose v(a) > v(g(b, 0) for some b in R. Let S
be R/〈a〉. Then Pn(g(b, 0) holds in S iff Pn(g(b, a)) holds in R.

If v(g(b, 0)) ≥ v(a) then Pn(g(b, a)) fails in S since g(b, 0) = 0. But
Pn(g(b, a)) may still hold in R.

Note We do not pursue this argument further. It will be elaborated in forthcoming
work with Paola D’Aquino.

9 Axioms for the Class of All Z/pn
Z

This is a surprisingly tricky business, and is connected to the issue of possible
iterated exponential bounds in some natural algorithmic problems in the analysis.
The axioms we will produce are probably not optimal, but our methods give
uniformity in p and a basic periodicity result for truth of sentences.

Let α be a sentence of ring theory “defined over Z” (so that it makes sense over
any Zp or Zp/p

n
Zp. Let cn,p(α) = 1 , if α holds in Zp/p

n
Zp, and = 0 if α is false

in Zp/p
n
Zp. Then for fixed p the Poincaré series

∑
cn,p(α) · T n

is a rational function P(p, α, T )/Q(p, α, T ) over Z in T . The discussion in 7.6 of
Denef’s 1984 paper [18] allows one to extract from this a useful linear recurrence
for the cn,p(α), from which we will reach the axioms we seek.

A rather difficult result (using Denef’s fundamental work [18]) shows that
there are integers BP (α) and BQ(α), independent of p, bounding the degrees
of P(p, α, T ) and Q(p, α, T ) respectively. The coefficients of numerator and
denominator do depend on p.

We now apply some of the basic algebra of recurrence relations, and we find it
suffices to refer to [6, 9]. We will give only a hint of what we do, as Paola D’Aquino
and I plan to use that material in [16].
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Let k = BP (α)+ 1. Then k > BP (α), and then the general theory of recurrence
relations gives us

forn ≥ k, cn,p(α) = a1 · cn−1,p(α)+ · · · + akCn−k,p(α)

where

Q(p, α, T ) = 1− a1T − · · · − akT
k.

We then use Bright’s paper [9] on modular recurrence (modulo 2), and the fact that
our Poincaré series has all coefficients either 0 or 1, to get nonnegative integers
λ > 0 and μ ≥ 0, so that λ+ μ ≤ 2k < 2BP (α)+1, and for all j ≥ μ.

For each 0 ≤ m ≤ k, α holds in Zp/p
j+m

Zp iff α holds in Zp/p
j+λ+mZp.

Choose the lexicographically minimal (μ, λ) satisfying this periodicity. If we fix
p we write μp, λp, kp for the corresponding μ, λ, k. Since we have to consider
rings different from the standard finite Zp/p

n
Zp , we define for a general R

satisfying Th(Zp/p
n
Zp) for some (p, n), and for a nonzero x in R

cx(α) = 1 if α holds in R/〈x〉, and = 0 if α is false in R/〈x〉.
Now we consider the class of all ultraproducts of the Zp/p

n
Zp. D’Aquino and

Macintyre [16] listed various axioms for these, namely:
Commutative chain rings, where the chain, under reverse inclusion, is a model of

the nonnegative part of a model of Presburger arithmetic, and v(x) = 〈x〉. They are
local rings, with residue fields a model of FinPrim, well known axioms for the theory
of finite prime fields [1, 16]. The maximal ideal is principal, and if the residue field
is finite it is Fp for a prime p and in that case p generates the maximal ideal. The
TOAG satisfies a first-order version of induction with respect to a definable subset
of the ring. If R/μ is finite of characteristic p, then R is (naturally) isomorphic to a
unique Zp/p

n
Zp.

Now we come to the remaining axioms for the class of R elementarily equivalent
to such ultraproducts. Mainly there will be an axiom for each α, and it will typically
involve data like BQ(α). We will simplify the notational demands by writing dα for
this. (Note that this is independent of p.)

Axiom 1 for α

If the TOAG of R has at least 2dα elements, then there are

μ,μ+ λ ≤ 2dα

in the TOAG such that λ > 0 and cμ+m(α) = cμ+λ+m(α), for each 0 ≤ m ≤ 2dα ,
i.e. α has the same truth value in R/μ+m and R/(μ+λ+m) for each 0 ≤ m ≤ 2dα
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Note

• This is true by an argument in [9].
• When the TOAG is finite, and n < 2dα then, by the preceding remarks about

axioms listed by D’Aquino and me, a finite set of “numerical” conditions
enumerates what happens.

Axiom 2 for α

If the TOAG of R has at least 2dα elements, and μ is the least element for which
there exists λ as in Axiom 1, then if λ0 is the least such λ, then for all δ ≥ μ, α has
the same truth value in R/δ +m and R/(δ + λ0 +m), for all 0 ≤ m ≤ 2dα

Note

• This is also true by an argument in [9].

Axiom 3 for α

If 〈x〉 ≥ 2dα , and D = lcm(j ≤ 2dα) , then

R/〈x〉 |� α ⇐⇒ R/〈x ·D〉 |� α.

Note

• This is the real periodicity.
• What if 〈x〉 < 2dα? Assume first R/μ is of characteristic p. Then it is easily

proved that 〈x〉 = m for some standard m, and R/mR is naturally isomorphic to
Z/pm and so the truth or falsity of α is determined by m, and p

Next assume R/μ is of characteristic 0. Just replace p by any generator t of
the maximal ideal. Then it is easily seen that 〈x〉 = m as in preceding paragraph,
and so 〈x〉 = 〈tm〉. But then R/〈tm〉 is elementarily equivalent [1] to an infinite
ultraproduct of various Fp[[t]]/pm. Now the truth of α is determined by the
ultrafilter.

10 Conclusion

I do not give here the proof that the axioms listed above (all evidently true in all
Z/pn

Z) prove all sentences true in all Z/pn
Z. The proof will go into [16]. The

periodicity plays a crucial role. The axioms form a primitive recursive set, by [41].
To get an equivalent iterated exponential (Kalmar elementary) bound one has to
get the uniform degree bounds elementary recursive. This is a daunting task of
unwinding in Kreisel style. But I am optimistic.

What I wanted to stress here is how hard it seems to be merely to get an
explicit set of axioms, and how wide-open is the problem of elementary recursive
axiomatization. Very little has been achieved in this direction in the last 50 years.
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Part IX
Mathematical Models

In his programmatic essay Mathematical biology: Looking back and going forward,
Phillip Maini describes how “mathematical biology has grown over the past 50
years from a niche subject, pursued by a small number of visionary pioneers, to
a core subdiscipline of mathematics that is becoming increasingly inter- and intra-
disciplinary, and playing a key role in many areas within ecology, epidemiology
and the life and medical sciences”. Citing Joel E. Cohen, he concludes that
“Mathematics is biology’s next microscope, only better; Biology is mathematics’
next physics, only better”.

In Kermack and McKendrick models on a two-scale network and connections
to the Boltzmann equations Stephan Luckhaus and Angela Stevens deliver casual
notes about a famous epidemiological model, stressing the fact that it was inspired
by Boltzmann, yet its study might bring back some new insight on Boltzmann’s
equations. They explain a paradox: lockdown measures in a pandemic can actually
have the opposite effect in a first phase.

Ivar Ekeland’s contribution The Pygmalion syndrome, or how to fall in love
with your model is a philosophical dream about how mathematics could be used
more critically in economic theory. It concludes with the statement of a theorem
(Ekeland’s variational principle), epitomizing the author’s love of pure mathematics.

Morel’s title Can we teach functions to an artificial intelligence by just showing
it much “ground truth” is self-explanatory and addresses one of the major pitfalls
of artificial intelligence, which is currently identified with deep neural networks.



Mathematical Biology: Looking Back
and Going Forward

Philip K. Maini

Personal Note
I would like to start by thanking Catriona Byrne for all the work she has done for
mathematics. In particular, I am most grateful for the help and support that she,
and Ute McCrory, gave me during my time as Editor for the Springer Lecture Notes
in Mathematics Subseries, Biology.

1 What Is Mathematical Biology?

Mathematical biology is the name given to the study of biological phenomena
through the use of mechanistic mathematical models. Here, the term “biology”
includes ecology, epidemiology and medicine, and “mechanistic” is used to dis-
tinguish this field from purely statistical and data analysis approaches, such as
bioinformatics. While the latter discover correlations between phenomena, the
former is the study of why things happen. While such a mechanistic approach
yields a deeper understanding of the science and is potentially more powerful than
statistical/bioinformatics approaches, the latter are more tractable at present. But
that is changing.
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2 How Has Mathematical Biology Changed?

Mathematical biology has always moved with the data. In the early days, data
were largely very coarse-grained and at a macroscopic level—for example, simple
visual observations such as the stripes on a zebra, or spatially-averaged temporal
data, such as the number of people infected by a disease. Accordingly, models
tended to be composed of coupled systems of discrete or ordinary/partial differential
equations that would generate large scale dynamics, such as patterns resembling
those observed on animal coats, or predictions of the temporal evolution of a disease
through a population, to name but a few examples (see, for example [3, 7, 9, 12–16]).
This allowed us to move to testing (and generating) hypotheses for systems which,
due to their complexity, are not understandable by verbal reasoning alone. In many
cases, the models were built with analytical tractability in mind, and results were
generated that agreed, by visual inspection, with the data available. Of course, this
is only the first step in model validation but further progress was usually hampered,
partly due to limitations in biotechnology, but also to the fact that it was uncommon
for theoreticians and experimentalists to work together.

The 1990s saw major advances in biotechnology, generating data at the gene
level as well as across scales (cell and tissue level) and, together with increasing
computational power, the sub-disciplines of bioinformatics and systems biology (in-
cluding multiscale modelling) were born. While the former focussed on statistical
approaches for correlation analysis, the latter continued the mechanistically-driven
approach that is at the core of mathematical biology. Released from the constraints
of analytical tractability, mathematical models became increasingly complex, not
only in terms of the number and nonlinear complexity of equations, but also in
the form models took. Thus, to bridge across scales, hybrid agent-based models
were used, in which some variables are modelled discretely, others as continua. In
this way, intracellular dynamics could feed into intercellular interactions, leading
to macroscopic level behaviour (see, for example, [6]). While, in the case
of epidemiology, multi-scale models allowed us to couple within-host infection
dynamics with population level spread [11]. Other mathematical approaches also
came into use, for example, Boolean algebra, topology, graph and network theory
[2] to analyse large, complex interaction networks (for example, gene regulatory
networks); stochastic modelling to account for the effects of noise and small
numbers, when the continuum limit breaks down, came increasingly into focus [8].

These more complex models typically “outgrew” the experimental observations
on which they were built in the sense that it was unusual to be able to fully,
and accurately, parametrise them with data and then make testable experimental
predictions.
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3 Going Forward

We have now reached another critical step-change in the field of mathematical
modelling, as ever-increasing amounts of dynamical data (time series, spatial
dynamics) are now becoming available. For certain cases, sufficient data are
available for machine learning (ML) and artificial intelligence (AI) approaches but,
for other cases, data are too sparse and/or noisy. The challenges now are: can
we use a mathematical biology approach to mechanistically understand the results
from ML and AI [1, 4] and, in the cases where ML and AI cannot be used, how do
we leverage sufficient information from the data, in terms of parameter estimation,
identifiability etc? At the same time, it is being increasingly recognised by biologists
that mathematics can be used to help, not only in identifying correlations, but
in understanding mechanism. This is now leading to interdisciplinary research
in which biological hypotheses are being translated into mathematical models,
allowing us to generate predictions which are then tested experimentally, enabling
us to refine our models and continue on the predict-test-refine-predict cycle. This
leads to the challenge of which summary statistics are most informative for our
modelling, requiring advances in statistics and in pure mathematics, such as
topological data analysis.

Another major challenge in the field consists of bringing together mechanics [10]
and biochemistry. These fields have, in the past, developed separately, but it is clear
that in biology, these processes are intrinsically coupled through the phenomena of
mechanotransduction, growth, geometry etc.

We all knew that biology was complicated but now we are on the verge of having
the tools, both experimental and theoretical, necessary to dig deeper than ever before
into acquiring a mechanistic understanding of this complexity. This will require
bringing these tools together through research that is not only interdisciplinary, but
also, intradisciplinary. For example, in mathematics, this means bringing together
the sub-disciplines of mathematical modelling, applied analysis, stochastic analysis,
numerical analysis and computation, network and graph theory, topology, algebra
and statistics etc. This leads to a team science approach where the complexity of
biology defines new problems that will require technical advances in these sub-
disciplines, as well as finding creative and original ways of combining tools from
across a large spectrum of mathematics to solve problems driven by the science.
This, in turn, will lead to new biology. To borrow the title of Joel E. Cohen’s
2004 paper [5] “Mathematics is biology’s next microscope, only better; Biology
is mathematics’ next physics, only better”.



416 P. K. Maini

References

1. M. Alber, A.B. Tepole, W.R. Cannon, S. De, S. Dura-Bernal, K. Garikipati, G. Karniadakis,
W.W. Lytton, P. Perdikaris, L. Petzold and E. Kuhl. Integrating machine learning and multiscale
modeling – perspectives, challenges, and opportunities in the biological, biomedical, and
behavioral sciences. npj Digital Medicine 2, 115 (2019). https://doi.org/10.1038/s41746-019-
0193-y

2. R. Albert and H.G. Othmer. The topology of the regulatory interactions predicts the expression
pattern of the segment polarity genes in Drosophila melanogaster. Journal of Theoretical
Biology 223, 1–18 (2003).

3. R.M. Anderson and R.M. May. Infectious Diseases of Humans: Dynamics and Control. Oxford
University Press (1992).

4. J.E. Baker, J.-M. Peña, J. Jayamohan and A. Jérusalem. Mechanistic models versus machine
learning, a fight worth fighting for the biological community? Biology Letters 14, 20170660
(2018). https://doi.org/10.1098/rsbl.2017.0660

5. J.E. Cohen. Mathematics is biology’s next microscope, only better; Biology is mathematics’
next physics, only better. PLoS Biology 2(12), e439 (2004). https://doi.org/10.1371/journal.
pbio.0020439

6. J.C. Dallon and H.G. Othmer. A discrete cell model with adaptive signalling for aggegration
of Dictyostelimu discoideum. Philosophical Transactions of the Royal Society London B
352(1351), 391–417 (1997).

7. L. Edelstein-Keshet. Mathematical Models in Biology. Classics in Applied Mathematics,
SIAM (2005) (First published by Random House, New York, NY, 1988).

8. R.E. Erban and S.J. Chapman. Stochastic Modelling of Reaction-Diffusion Processes.
Cambridge University Press (2020).

9. A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge University Press
(1997).

10. A. Goriely. The Mathematics and Mechanics of Biological Growth. Springer (2017).
11. W.S. Hart, P.K. Maini, C.A. Yates and R.N. Thompson. A theoretical framework for

transitioning from patient-level to population-scale epidemiological dynamics: influenza A
as a case study. Journal of the Royal Society Interface 17, 20200230 (2020). https://doi.org/10.
1098/rsif.2020.0230

12. J. Keener and J. Sneyd. Mathematical Physiology I: Cellular Physiology (2nd Edition).
Springer (2009).

13. J. Keener and J. Sneyd. Mathematical Physiology II: Systems Physiology (2nd Edition).
Springer (2009).

14. H. Meinhardt. The Algorithmic Beauty of Sea Shells. Springer-Verlag, Berlin-Heidelberg
(1995)

15. J.D. Murray. Mathematical Biology I: An Introduction (3rd Edition). Springer (2002).
16. J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical Applications (3rd

Edition). Springer (2003).


 1582 453 a 1582 453 a
 
https://doi.org/10.1038/s41746-019-0193-y
https://doi.org/10.1038/s41746-019-0193-y

 181 1200 a 181 1200 a
 
https://doi.org/10.1098/rsbl.2017.0660

 1730 1366 a 1730 1366 a
 
https://doi.org/10.1371/journal.pbio.0020439
https://doi.org/10.1371/journal.pbio.0020439

 2108 2528 a 2108 2528
a
 
https://doi.org/10.1098/rsif.2020.0230
https://doi.org/10.1098/rsif.2020.0230


Kermack and McKendrick Models
on a Two-Scale Network and Connections
to the Boltzmann Equations

Stephan Luckhaus and Angela Stevens

Dedicated to Catriona Byrne by two friends

On this special occasion, we consider it befitting to refer to a
Scottish hero of applied mathematics. Actually, Anderson Gray
McKendrick was not a mathematician at all, but a doctor in the
Indian Medical Service.

1 Introduction

In 1914 McKendrick [12], inspired by L. Boltzmann, came up with a method to
describe the evolution of statistical distributions in an—in principle continuous—
parameter space, also for the life sciences and for the social sciences. The method
was developed in the von Mises framework and it leads to partial differential
equations. One has to discretize the parameters, and time too, use the law of large
numbers, and when refining the discretization, one has to assume some form of
uniform convergence for the transition probabilities.

The invention of measure theory by Lebesgue [8], Carathéodory [1], and
Kolmogoroff [6] was a huge step forward mathematically. But in practical terms, if
one wants to determine transition probabilities, one still has to discretize parameter
space and count transition frequencies. Therefore, the statistical problem of balanc-
ing the coarseness of the discretization with the number of available observations
is not overcome. We mention this, though we do not deal in this paper with the
derivation of kinetic equations as a hydrodynamic limit of stochastic processes. This
was done independently already by Feller [3], who was not aware of McKendrick’s
work at the time. McKendrick’s ideas were not limited to applications in medicine,
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but have gained interest lately, not least because of the Covid-19 pandemic. That is
also true for the authors. The link to a series of lectures dealing with Covid-19 data
specifically can be found among the references (Luckhaus [9]).

Often the Kermack–McKendrick models are misinterpreted solely as the well-
known SIR-ODE-system for the dynamics of susceptibles, infectious and removed
during an epidemic (Kermack and McKendrick [4, 5], Diekmann [2]). But
McKendrick’s equations are by far more general. Here we explain

• how his systems can be adapted to cover a small world-large world scenario,
where the small world has a different infection mechanism,

• how they can be adapted to several variants of viruses competing, and
• how even the classical Boltzmann equations can be written in McKendrick form.

Mathematically, already in the ODE-systems one observes a difference between
a system with mass action law for the infection and a system with more general types
of infection mechanisms. One probably has to look at such more general infection
mechanisms also for Covid, instead of laws of mass action. After all, for any aerosol
infection the probability of getting infected depends in a sigmoidal fashion on the
amount of virus inhaled.

The contact process model of infections leads to a mass action law, but this does
not explain the threshold phenomena that were observed for Covid. For instance, in
Switzerland, in April 2020, there was a sizeable epidemic wave in Geneva, whereas
in Zurich there wasn’t. In a mass action type law for infections both regions should
have behaved identically. Either one is in a stable situation, so that the imported
infections are amplified by a finite rate, or there is a (small) positive probability that
one single infection will cause an epidemic. In real life it seems that in order for
the Covid epidemic to really take off, a certain not so small incidence of infections
is needed. Such a metastability phenomenon does not occur for a pure mass action
law. To describe it one has to modify the infection rates, working for example with
two rates, a lower rate below a certain threshold for the incidence of infections and
a higher rate above.

Mass action laws have the crucial advantage that one can derive invariants
for the respective equations. These invariants are the only chance to estimate
the global behavior of an epidemic as opposed to its local behavior. In kinetic
Kermack–McKendrick equations, also for structured populations, determining
where heteroclinic trajectories end is purely a question of the invariants (Luckhaus
[10, 11], Rass and Radcliffe [15]). The local behavior, on the other hand, is always
a question for the linearized equations and not for the full system. Introducing an
infection rate depending on i, the incidence of infections, in a piecewise constant
way could be seen as a minimal modification, retaining invariants, but with jumping
weights, to cover metastability.

The next big difference appears, when looking at an SIR or an SI model with or
without recovery, i.e. when removed individuals can or cannot re-enter the class of
susceptibles again. Like in the ODE-system, also the full McKendrick equations
without recovery have a Krasnoselsky monotone (or order preserving) structure
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(Krasnoselsky [7]), which is lost once you have recovery. In many cases it is
possible to rewrite the system with recovery as a system without recovery, simply
by introducing more variables. This way of representing the equations is illustrated
in Sect. 5 in the case of the Boltzmann equations which of course have recovery
but can artificially—by counting the number of collisions—be written as a system
without recovery.

Whether the McKendrick representation is useful also in the Boltzmann system
itself is not so clear. But it might be that it allows us to decouple the effect of the
free flight and the mixing properties of the collision.

Here we will concentrate on the application of McKendrick’s method to epidemi-
ology, as it was described in his papers [13, 14].

2 The Basic Kermack–McKendrick Equation

Suppose we are given an average evolution of infectiousness α(a) of an infected
individual. Here a denotes the time elapsed since infection, and a0 denotes the
maximal duration of infectiousness. Let β(a) denote a removal probability by
death or quarantine measures. Then the basic Kermack–McKendrick equations for
susceptibles, infected, and removed read

∂t s(t) = −i(0, t) = −s(t)

∫ a0

0
α(a)i(a, t) da

(∂t + ∂a)i(a, t) = −β(a)i(a, t)

∂t r(t) = i(a0, t)+
∫ a0

0
β(a)i(a, t) da.

This system of equations has the structure of an integral operator equation, whose
linearization is a Krasnoselsky monotone operator (order preserving operator), a
property widely used in population dynamics, see e.g. Thieme [16, 17]. It ensures,
for example, that the leading eigenvalues of stationary points are real. There are
also two invariants, namely

I1 = s(t) +
∫ a0

0
i(a, t) da + r(t) and

I2 = log s(t)+
∫ a0

0
i(a, t)μ(a) da + r(t)μ(a0) where

μ(a) =
∫ a0

0
α(σ) exp

(

−
∫ σ

0
β(τ)dτ

)

dσ −
∫ a0

a

α(σ ) exp

(

−
∫ σ

a

β(τ )dτ

)

dσ.
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The evolution of s(t) and the infection rate i(0, t) is identical to that of the following
s-ĩ-system, with ĩ(a, t) = exp

( ∫ a
0 β(τ) dτ

)
i(a, t), namely

∂t s(t) = −i(0, t) = −ĩ(0, t) = −s(t)

∫ ∞

0
ᾱ(a) ĩ(a, t) da

(∂t + ∂a)ĩ(a, t) = 0 where

ᾱ(a) = exp

(

−
∫ a

0
β(τ) dτ

)

α(a) if a < a0 and ᾱ(a) = 0 otherwise.

Now the reason for Krasnoselsky monotonicity is that in this model there is no
recovery, i.e. the individuals progress from one stage to the next, but not back.
Already for the ODE-SIR-system with recovery, i.e. ε > 0,

∂t s = −αis + εr

∂t i = αis − βi (1)

∂t r = βi − εr

this monotonicity property is lost. The stable stationary point has a complex
eigenvalue with negative real part.

The reason for the existence of invariants, on the other hand, is the mass action
law αis for infection. For the ODE-system without recovery

∂t s = −sf (i)

∂t i = sf (i)− βi

∂t r = βi

one retains monotonicity but loses the invariants, if f is non-linear, e.g. a sigmoidal
function.

The classical model (1) without recovery, i.e. ε = 0, is almost explicitly solvable.
First we can rewrite the equations as

∂t (s + i + r) = 0 , ∂t i = i(αs − β) , ∂t

(
log s + α

β
r
)
= 0 .

There are two invariants: s + i + r = 1 and ∂t

(
log s − α

β
s − α

β
i
)
= 0.

As a consequence everything reduces to a single equation

−αis = ∂t s = −β s log s + α s2 + β γ (0) s ,

where β γ (0) = β log s(0)− α s(0)− α i(0) .
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If s(0) ≤ β/α, since s is decreasing, i is also decreasing, and no epidemic outbreak
happens. If s(0) > β/α, then i initially increases, until s has decreased to β/α,
and an epidemic outbreak happens with maximum at s = β/α. Finally i → 0 for
t →∞.

What is the final size of the epidemic in this setting?
The asymptotic limit for large times, t = ∞, is just given by the identities

i(∞) = 0 and β log s(∞)− α s(∞) = β log s(0)− α s(0)− α i(0) ,

with the additional information, that ∂s
(

log s − α
β
s
)
(∞) = 1

s(∞)
− α

β
≥ 0, since

s and i will both eventually decrease. So all depends on the simple curve β log s −
αs = φ(s), which is strictly concave with global maximum at s = β/α.

Starting with any s(0), i(0) > 0 for large times, the fraction of removed will
approach the unique solution of β log s − αs = β log s(0) − αs(0) − α i(0) with
s <

β
α

. This value β
α

is called herd immunity. It has two interpretations:

1. The maximal possible ratio of the population which has escaped the infection
during the whole course of the epidemic.

2. The value of the ratio of susceptibles in the population at which the number of
infected starts to decrease.

Within the context of this simple model, the message for disease control is
equally simple. Suppose the epidemic starts with small i(0) and s(0) >

β
α

, and
suppose you are able, but only temporarily, to decrease the infection rate α. How
far should you decrease α? Well, you know in any case, that s(∞) ≤ β

α
eventually.

So to get there quickly and in order not to overshoot, the optimal choice is

α̃ = αβ
logβ − logα − log s(0)

β − α[s(0)+ i(0)] .

Reducing the contact ratio more will get you only to an s(T ), i(T ) at the time T

of lifting the temporary restrictions, which is the starting point of a new epidemic.
Such new epidemic waves were observed in Europe in the fall/winter season of
2020/2021.

3 The Two-Scale s-i-Model

The main idea of this paper is to explain the following phenomenon, which has been
observed for example during the Covid epidemic. When lockdowns were imposed,
the effect on the overall number of infections was minimal, because the infections
in small closed groups increased, thus partially offsetting the reduced infection risk
in public transport, pubs, concerts, etc. If one wants to describe this effect in an
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epidemiological model, the in-group infection rate must be modeled explicitly. Here
we present models which do that. They have a two-scale structure.

In our first model we start from the Kermack–McKendrick equations in its s-
i-formulation but replace individuals by finite size groups. In terms of a contact
graph this corresponds to a finite size complete graph with finite contact probability

attached to the vertices of a large scale complete graph with an O
(

1
n

)
contact

probability. Individuals get infected only once. But the groups have suffered k

infections at different times. For an illustration see Fig. 1.

Fig. 1 Example of a two scale contact graph. Grey edges represent possible contacts within a
group of size km = 4 and black edges and curves the possible contacts between the 6 different
groups

What we get is ∂t s(t) = −s(t)
∑

l

∫

�l

α0,l(6b)il(6b, t) d6b

(∂t + ∂6a) ik(6a, t) = −ik(6a, t)
[
∑

l

∫

�l

αk,l(6b)il(6b, t) d6b + βk(6a)
]

ik(0, a2, . . . , ak, t) = − [(∂t + ∂6a)ik−1] (a2, . . . , ak, t).

Here 6a ∈ �k = {(a1, a2, . . . , ak) | 0 ≤ a1 ≤ a2 ≤ . . . ≤ ak} denotes the time
elapsed since the successive k infections within the population of groups, who have
suffered k infections, and ∂6a :=

∑k
j=1 ∂aj . Further, ik denotes the percentage of

these groups among all groups. Here βk are the rates of infection within the groups
having already undergone k infections. The αk,l(6b) are the rates depending on the
times b1, . . . , bl elapsed since infection with which the l infectious in the groups
having suffered l infections infect another individual in the groups having suffered
k infections, and k is less than or equal to km, the group size. Again there are two
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invariants. The obvious one

s(t)+
∑

k

∫

�k

ik(6a, t) d6a ,

and the additional logarithmic one

log(s(t))+
∑

k

∫

�k

μk(6a)ik(6a, t) d6a ,

where the weights μk can be obtained as follows.
The identity obtained by integration by parts

∑

k

∫

�k

μk(6a)∂t ik(6a, t) d6a =
∑

k

∫

�k

∂6aμk(6a)ik(6a, t) d6a

+
∑

k

∫

�k−1

μk(0, 6b)ik(0, 6b, t) d6b +
∑

k

∫

�k

μk(6a)(∂t + ∂6a)ik(6a, t) d6a

leads to the equations

∂6aμk(6a) = α0,k(6a) , μk(0, 6b) = μk−1(6b) , μ0 = 0 ,

μk(a1, . . . , ak) = μk−1(a2 − a1, . . . , ak − a1)+
∫ a1

0
α0,k(a1 − t, . . . , ak − t) dt .

So far we have only one additional invariant, not more, and μk does not depend on
βk . The influence of βk is indirect. If βk is large, that feeds back into log s(t) via
the difference μk(a1, . . . , ak) − μk−1(a2 − a1, . . . , ak − a1). This can be used to
estimate the influence of in-group infections. The s− i-models formally do not have
stationary points. To describe the possible endpoints of an epidemic, one has to split
again

ik = ik χa1<a0 + rk

and linearize at all points

ik χa1<a0 ≡ 0 ,

where a0 is chosen as the maximal time of infectiousness. If βk is large, this
entails an explicit estimate of

∫
�k

rk by
∫
�k

ik, and so an estimate of
∫
�k

rk by
r := ∫�km

rkm , where km is the maximal k, the group size. It is no longer true
that one has a simple equation determining (s∞, r∞) in terms of (s(0), r(0)), but
one has estimates.
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4 More General Models of McKendrick Type with Several
Competing Infectious Agents

Even if individuals can be infected several times, one can artificially represent the
process as a process without recovery, by keeping track of the successive infections.
As in dynamic programming or in normal-form game representation, this leads to a
rooted tree whose vertices are the discrete infection stages. An example is given at
the end of this section.

For each l let Tl be a rooted tree, Vl be the collection of its vertices, El be the
collection of its directed edges, and v0l be its root. Then

Tl = (v0l , Vl, El) , El ⊂ {(v, v′) | v, v′ ∈ Vl} , v0l ∈ Vl.

The edges represent infections, the vertices the infection states. As in the previous
section, to each vertex v (except the root) one has associated a number kv and the
domain �v = {0 ≤ a1 ≤ . . . ≤ akv }, with the property that kv′ = kv + 1 for
(v, v′) ∈ El , and a differential equation

(∂t + ∂6av )iv(6av, t) = −iv(6av, t)
m∑

j=1

∑

e=(v,v′)∈El

fje(I (t, .)).

Here j = 1, . . . ,m are the indices of m meeting places, and fje(I (t, .)) is the
probability for an individual (or group) in the lth subpopulation to progress from
stage v to stage v′ by an infection at the place j .

I (t, .) is a map from �∪(Vl\v0l ) �v → R
+ with product structure

I (t, (6av)v) = �v iv(6av, t) and fje is an integral operator.
The initial condition for the PDE is again

iv′(0, 6av, t) = iv(6av, t)
∑

j

fje(I (t, .)) , for e = (v, v′) ∈ El.

The system is still monotone in the sense of Krasnoselsky, and if f , i.e. the matrix
of integral operators fje, is linear, there exist again logarithmic invariants, one for
each tree. But this last property is lost in the case of typical threshold dynamics
for f , and it seems that we observe such a dynamic for human to human aerosol
infections such as COVID-19.

To give an example of such a tree model, suppose an individual can be infected
by two variants of SARS-CoV-2. That means, it can progress from the state of
susceptibility first to an infection with the first variant, then to the state where it
has undergone both infections, or first to an infection with variant two. The five
vertices would be denoted by (0), (1), (2), (1, 2), (2, 1), and the four directed edges
by [(0), (1)], [(1), (1, 2)], [(0), (2)], [(2), (2, 1)].
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5 Boltzmann’s Equation in McKendrick Form

As a curiosity we write down the Boltzmann system in the McKendrick form. One
does this by introducing a memory of past collisions.

Let fk(t, x, v, a1, . . . , ak,w1, . . . , wk) denote the density of particles which
underwent k collisions at times t − a1, . . . , t − ak and whose velocities were wl

in the interval of time (t − al−1, t − al). If K(w,w′, v) denotes the Boltzmann
kernel, giving the probability of a particle with velocity w to change its velocity to
v, after colliding with another particle of velocity w′, the equations read

(∂t + ∂6a + v∂x) fk(t, x, v, 6a, 6w) = −fk(t, x, v, 6a, 6w)

∫

K̃(v,w′)F (t, x,w′)dw′,

where fk : R+ × R
3 × R

3 ×�k × R
3k → R

+ with initial conditions

fk(t, x, v, 0, 6a, 6w,wk) = fk−1(t, x,wk, 6a, 6w)

∫

K(wk,w
′, v)F (t, x,w′) dw′

for 6a ∈ �k−1, and 6w ∈ R
3(k−1).

Here F(t, x,w′) =
∑

k∈N

∫

�k×R3k
fk(t, x,w

′, 6a, 6w) d 6w d6a

and K̃(w,w′) =
∫

K(w,w′, v) dv.

We get the same type of invariants, including the logarithmic one, as we have ob-
tained for the two-scale Kermack–McKendrick model. Let us repeat the calculation.

(∂t + v∂x)

∫

R3×�k×R3k
μk(v,w, 6a, 6w)fk(t, x,w, 6a, 6w) d 6w d6a dw

= J1,k + J2,k − J3,k

J1,k =
∫

R3×�k×R3k
∂6aμk(v,w, 6a, 6w)fk(t, x,w, 6a, 6w) d 6w d6a dw

J2,k =
∫

R3×�k−1×R3k
μk(v,w, 0, 6b, 6w)fk(t, x,w, 0, 6b, 6w) d 6w d6b dw

J3,k =
∫

R3×�k×R3k×R3
μk(v,w, 6a, 6w)fk(t, x,w, 6a, 6w)K̃(w,w′)F (t, x,w′) dw′ d 6w d6a dw

for k ≥ 1

(∂t + v∂x) log f0 = −
∫

R3
K̃(v,w′)F (t, x,w′)dw′.
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So again, in order to balance

∑

k

J1,k

one has to set

∂6aμk(v,w, 6a, 6w) = K̃(v,w).

And to arrive at

∑

k≥1

J2,k =
∑

k≥0

J3,k

one has to set

μk(v,w, 0, 6a, 6w,wk) = μk−1(v,wk, 6a, 6w)

for all (6a, 6w) ∈ �k−1 × R
3(k−1), k ≥ 1 and μ0 = 0.

It should be noted that this logarithmic invariant is not connected to the loga-
rithmic entropy of Boltzmann, which is the logarithmic entropy w.r.t. an invariant
measure. Here the evolution is fk → 0 for all k.

Whether the McKendrick representation is useful for the Boltzmann system is
not so clear. But it might make it possible to decouple the effect of the free flight
and the mixing properties of the collision.
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The Pygmalion Syndrome, or How to Fall
in Love with Your Model

Ivar Ekeland

1 A Missed Opportunity?

Two years ago I was approached by a colleague—let us call him Prospero—who
suggested we write a book together (doubtless to be published by Springer Verlag,
with some help by Catriona Byrne). The title was still to be found, but the
book was to describe how, in half a century, mathematics had progressed from
describing the natural world to describing the social world. Modern science had
begun with Galileo, modern mathematics with Descartes, Newton and Leibniz.
Prospero claimed that our generation, the one that started working after WWII, had
the enormous privilege of extending the scope of mathematics to the social order
and the human mind itself. Economists, using mathematical models, had turned
Adam Smith’s vague intuitions about an invisible hand into a global market which
at the present time rules the world, and financiers had created an enormous industry
from an abstruse mathematical formula related to the heat equation. Is it not an
incredible achievement, which shows that the power of mathematics extends far
beyond the physical world, into the inner recesses of the human mind?

Our experience as teachers and researchers supported this view. When I was
recruited at the recently created Université de Paris-Dauphine in 1970, we had to set
up a mathematics department in a university where there were no natural sciences,
no physics, no chemistry, no biology. This was a predicament, because mathematics
is a language, and language must be about something. Traditionally, it was
about the natural sciences: mathematicians went to mechanics and physics to find
problems, and the major outlet for mathematical education (aside from teaching)
was engineering. But in 1970 the situation had changed, and mathematical models
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had entered economics and management: Arrow and Debreu had solved the major
problems of general equilibrium [1], and firms were starting to use optimization
methods in management. This was the heyday of linear programming, and of
all the optimization methods which went under the generic name of operations
research. So we decided to create a mathematics curriculum where the students
would learn no natural sciences, but economics, finance, statistics, and, crucially,
computer science. We never looked back. Today, business, insurance and banking
have replaced engineering as the major outlet for mathematical degrees.

This transformation of mathematics was made possible by the development of
economic theory, and its expansion into a general theory of human behaviour. There
are of course several schools of thought in economics, and Adam Smith has more
than one heir. Marx and Keynes still have followers, but the second half of the
twentieth century witnessed the triumph of the neoclassical school, led by Friedrich
von Hayek and Milton Friedman, and epitomized in the classical textbook of Paul
Samuelson, Economics, first published in 1948, which is now in its 19th edition and
has sold four million copies worldwide. Samuelson considered mathematics to be
the natural language of economics, as it is in the natural sciences, and popularized
a mathematical model of human behaviour which is known as homo oeconomicus.
In this model, men (and women, and children) are born optimizers: they classify
linearly all options available to them, and they pick the best one subject to budget
constraints. There is no limit to the scope of this model, which goes far beyond
economics, understood as the study of the production, exchange and consumption of
material goods: it is no less than a general theory of human behaviour. This program
was stated explicitly by Gary Becker [2] and he carried in through in studying social
institutions, such as the family [3], racial discrimination [4], crime [5], and addiction
[6]. In later years, others followed, developing formal theories of just about every
institution, firms, churches or states, and every social norm, from witch-burning in
Africa to sumo competitions in Japan.

In 1973, Fischer Black and Myron Scholes published a paper entitled The pricing
of options and corporate liabilities. An option on a stock is a bet on the price of
the stock at some future date, and the paper did exactly what the title said, that is,
Black and Scholes gave a formula for pricing the option simply by looking at the
past performance of the stock. This was a revolution. One would have thought
that to evaluate the odds one would have to go into the past performance and the
future outlook of the issuing company, but Black and Scholes showed that one
could be content with looking at the past performance of the stock. This formula,
together with the arrival of computers powerful enough and fast enough to store
the information and perform the calculations, was the birth of the global financial
industry as we know it today. Of course, to extend the Black and Scholes idea to
other situations, where more complex assets were to be priced, more mathematics
was needed, and the community was happy to provide them. Stochastic analysis
turned out to be the right tool, another illustration of the classical miracle, whereby
some piece of mathematics developed for purely theoretical purposes turns out to
be the right tool to solve some practical problem.
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Where will it all stop, asked Prospero? We are on the way of building a
mathematical theory of society from the mathematical theory of the individual,
as our predecessors built (or are trying to build) a mathematical theory of solids
from the mathematical theory of atoms and molecules. And as our predecessors
have proved their worth by building machines or instruments, automobiles or lasers,
contemporary mathematicians have created an enormous institution, more powerful
than states, the global financial market. Of course, the complexities of building a
global model are enormous, so much so in fact that certain phenomena can emerge
at the macro level which have no equivalent at the micro level, but in principle it is
possible, perhaps by a deeper mind than ours and more computing power than we
can ever manage. All the information is there, in the basic model of the individual or
of the atom, just waiting to be developed. The twentieth century has set mathematics
on course to explore the human world, just as the 16th had set it on course to conquer
the natural world. We should really write a book about it!

2 Testing Microeconomic Theory

I declined. Prospero builds castles in the air. Physicists and biologists try to
understand a hard reality that would continue to exist if mankind disappeared from
this planet. Economists and social scientists study the rules of games in which they
participate. To quote the anthropologist David Graeber, The ultimate, hidden truth
of the world is that it is something that we make and could just as easily make
differently. This is certainly not true about the natural world, there is no way we
could change the laws of gravitation if we tried, but it just as certainly is for the
social world: in the span of a human life, laws, religions, tastes and state boundaries
seem as immutable as the laws of physics, but at the scale of millennia they come
and go with bewildering speed. The change can be sudden, precipitated by the
action of a few activists, as was the case with the French Revolution, or the outcome
of a long process of decay, with little or no human agency, as for the fall of the
Roman Empire. Willingly or not, consciously or not, the rules of the games change
with time, and it is extremely hard to believe that there would be a universal theory
of human behaviour, independent of the particular game these humans would be
engaged in. To be precise, the economic approach to human behaviour, as advocated
by Gary Becker and the utilitarian school, applies at best to individuals schooled in
modern capitalistic societies, where the market rules with the help of a powerful
state

Let me give an example. The basic assumption of neoclassical microeconomics,
is that individuals have the ability to order linearly, from better to worse, all options
open to them, and that they choose the best one. There are a few others, to deal
with situations when the outcomes are uncertain, or deferred, but this is really the
fundamental fact about homo oeconomicus. But is it true?

According to Popper, a theory is scientific if and only if one can devise an
experiment, the result of which is different according to whether the theory is true
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(that is, correctly predicts the outcome) or not. If such an experiment does not
exist, the theory is outside science. If it exists, and the result is negative (that is,
the outcome is not the one predicted by the theory), the theory is disproved and
should be discarded. If the result is the one predicted, the theory is not disproved,
which does not mean that it is true (more experiments would be needed to assert
that conclusion), but that it can be relied upon until some new experiment is devised
that disproves it. The typical example is the famous experiment of Michelson and
Morley (1887), which disproved the aether theory of light and led eventually to
Einstein’s special relativity.

Does there exist such an experimentum crucis in economic theory? There is,
and it has been known for a long time, even though it has only been understood
and performed very recently. Let us first restate the basic assumption, namely the
fact that every individual can order linearly all the options open to him/her and
chooses the best one. We represent these options as points in R

n. With a few minor
assumptions, such as continuity, the individual preferences can be represented by
a function u : Rn → R, in the sense that the individual prefers x to y if and only
if u (x) > u (y). An individual going shopping with an amount w to spend, and
observing the prevailing prices (good i has price pi , 1 ≤ i ≤ n), will choose
the quantities xi ≥ 0 in order to maximise u

(
x1, . . . , xn

)
subject to the budget

constraint
∑

xipi ≤ w

maxu (x) (P)

px ≤ w

Problem (P) is known as the consumer’s problem in microeconomics. To make
sense, it is necessary that the solution is unique: indeed, if there were several
solutions, the decision problem would still be open, that is, the theory would not
tell us what the consumer actually chooses. For this reason, it is assumed that the
consumer’s utility function is strictly concave, and even that it is C2 with u′′ (x)
positive definite. We can then restate our basic question: is it true that individuals
have a strictly concave utility function, and choose their consumption by solving
problem (P)?

Note that we are not asking whether mathematicians have a concave utility
functions, but whether truckers, rockers, teenagers, housewives and nurses, who
probably never have heard of a function, concave or not, have a concave utility
function. Very improbable, is it not? We cannot ask them: we would be laughed out
of court, and anyway the utility function cannot be observed, even a mathematician
cannot tell what his utility function is. The only thing which is observable is what
people actually buy, that is, the solution x (p) of problem (P). Hence the idea of
the experimentum crucis: observe x (p), that is, observe how consumption changes
with prices, and deduce information on u.
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Note that x (p) is a map from Rn into itself. Introduce the following matrix:

Sij = ∂xi

∂pj

−
∑

pn
∂xi

∂pn

xj

It was first established by Antonelli (1886), then forgotten, and later rediscovered
by Slutsky (1915), that:

Proposition 2.1 There is a function u (x) such that x (p) solves problem (P) if and
only if the matrix S is symmetric:

Sij = Sji (E)

Some comments are in order. The result is local in x, of course, and if you want
u (x) to be concave there are some positivity conditions on S to be satisfied, which
we are not going into. The function u (x) is not unique: if u describes a certain set
of preferences, so does h◦u for any increasing function h : R→ R. To get a feeling
for the condition (E), note that if the second term was not present, the condition

Sij = Sji would reduce to ∂xi

∂pj
= ∂xj

∂pi
, equality of cross-derivatives, the classical

condition for x (p) to be a gradient. Finally, I challenge the reader to take a piece
of paper and write down three functions xi (p1, p2, p3), i = 1, 2, 3 satisfying (E),
which is a system of three nonlinear PDEs of the first order.

It turns out that what mathematicians cannot do, truckers, rockers, teenagers,
housewives and nurses do every day. In fact, large-scale experiments show that
the consumption patterns in Canada satisfy equation (E). More precisely, if one
estimates x (p) for various types of consumers in Canada, and substitute in the
Slutsky matrix S, one finds that Sij = Sji . This was done in seminal work by
Browning and Chiappori [7]. Many economists before them had tried to check the
Slutsky conditions on consumption data, without succes.These consumption data
concern households, and typically do not satisfy the symmetry condition. Browning
and Chiappori were the first ones to separate the data concerning singles, and
found that they do satisfy the symmetry condition. Two-person households do
not, simply because there are two, not one, utility functions, and choices cannot
be made by maximising two functions simultaneously. They satisfy another, less
stringent condition, which was discovered and found to be necessary and sufficient
by Chiappori and Ekeland [9]

To sketch the mathematical content, I will just say that the problem can be
rephrased in terms of the exterior differential calculus of Elie Cartan. Introducing
the 1-form ω =∑ xidpi , equation (E) can be rewritten as ω ∧ dω = 0. If there are
2 persons in the household, the consumption x (p) has to satisfy the condition:

ω ∧ dω ∧ dω = 0

and if you want the utility functions u1 (x) and u2 (x) of the two members of
the household to be concave, some positivity conditions have to be satisfied,
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and everything turns out to be necessary and sufficient. It is a beautiful piece
of mathematics, culminating in the Cartan–Kähler theorem, which is used to
characterize, not individual demand, not household demand, but market demand.

3 The Model as an Icon

On the face of it, we have an unmitigated success: the microeconomic theory of the
consumer has been put to the test and prevailed. We have shown that ordinary people
unconsciously solve nonlinear systems of first-order PDEs, and from observing their
consumption patterns of households, we can find out how many they are. It all uses
beautiful mathematics, which has fallen into disuse nowadays, but which is superb
in the way it combines analysis and algebra.

However, the experiment checks only part of the theory, the one that concerns
decisions with immediate and certain outcomes. Many decisions have deferred and
uncertain outcomes, such as saving for one’s retirement or picking a job. Problem
(P) does not cover such cases, and the theory has to be extended. The basic utility
for an uncertain flow delivering xt at time t is then given by:

E

[∫ ∞

0
e−rtu (xt ) dt

]

Note the exponential discount rate r and the expectation E. I know of no
experiment which has comforted this model the way the Browning–Chiappori
experiment has comforted consumer theory. On the other hand, I know of much
psychological evidence which challenges both the expected utility and exponential
discount model: clearly people put more weight on losses than on gains, and on the
immediate future than on the far one.

But let us forget about the inner workings of the homo oeconomicus model, and
ask ourselves what does it represent exactly? Human beings or the social situation
they are put in? The Browning–Chiappori experiment shows that households in
Canada, when shopping, to a large extent behave as consumer theory predicts. But
is it innate behaviour, or acquired behaviour? After all, in North America, from the
early childhood, individuals are exposed to advertisement and taught to maximise
their consumption within their budget constraint: the ubiquitous mantra is Why pay
more?. For those who want higher education, colleges and universities carry courses
in “home economics”, and for the really gifted, there are courses in economics and
finance. Experiments carried out with economic students tend to show that they
behave in more selfish ways than students in other fields [8]—whether it is a result
of their training or whether they self-select into that field is an open question.

In other words, the homo oeconomicus model is very much like an icon, an
idealized description of a human being, set as an example to the multitude which
should strive to conform its behaviour to the story it is told, and which is helped
towards that worthy goal by a powerful institution, namely the global market, and
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comforted by a well-developed theory, understood only by a few cognoscenti who
lend their moral support to the powerful.

4 The Right Use of Mathematics

What I have said up to now should be uncontroversial. It can even be found within
the theory itself: the whole idea is that individuals can rank options linearly, but
where does that ranking come from? To state problem (P), the fundamental problem
of consumer theory, one needs the utility functionu (x), but where does that function
come from? It may be that homo oeconomicus has neither mother nor father, and is
born with an innate utility function, but real people begin life as infants, and it takes
about 20 years to turn them into adult members of society, responsible for their
own choices. It takes enormous efforts and resources to shape their preferences.
One could hardly see why society would devote considerable resources to education
and why the advertising industry would exist if preferences were innate. If one is
interested in building a mathematical model of human behaviour, the fundamental
question should be: what are the right preferences to have?

One possible view is that anything goes: with the proper education and training,
human beings can have any preferences whatsoever. There is no behaviour so
divinely good or so devilishly bad that human beings cannot adopt as a way of
life. Although much of human history tends to favour this view, we will discard it
for it simply states that no general theory is possible.

Another view is that human behaviour should be rational. It has been upheld by
Western philosophy since the Greeks, and it is often cited in support of the current
economic approach to human behaviour, according to which “being rational” means
“choosing the best available option among all possible ones”. This is not only
an extremely arrogant approach, since it means that everyone who disagrees is
irrational, in other words crazy, but it is also contradicted by anthropology, which
studies scores of societies where men live by different rules, by history, which
unearthes in our own societies the roots of the present ideology, by sociology,
which points out the institutions that enable homo oeconomicus to thrive, not to
mention psychology and philosophy. It is a sociologist, Max Weber, who made
the celebrated distinction between two kinds of rationality, rationality of means
(Zwecksrationalität) and rationality of purpose (Wertrationalität). Rationality of
purpose consists in choosing the right ends to pursue: what is it that makes life
worth living? That is the classical philosophical question of the good life, and it
is no concern of the economist. Once the goals have been decided on, there is the
question of how best to achieve them: that is rationality of means, and this is where
the economist comes in.

What is the role of mathematics? It has shown itself to be a worthy ally to
economists in exploring rationality of means. Could it be helpful in exploring
rationality of purpose? Not directly, it is all about values, which are uncom-
mensurable and the essence of mathematics is to measure and compare: setting
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a price for human life, for instance, is common practice in economics, when
investigating whether to improve a road or deciding on public health policy, and
unacceptable in individual behaviour (except for certain kind of professionals).
Some mathematicians have tried to formalize values judgment, Garrett Birkhoff for
instance, who wrote a book on Aesthetic Measure (1933), but the result is less than
convincing, to put it kindly.

However, mathematics could be very helpful in developing the consequences of
certain choices: what if one instituted a carbon tax? what if one restricted high-
frequency trading? what if one did away with limited liability for stockholders?
what if one introduced money and banks in economic models? I am sick and tired
of reading papers on executive compensation, concluding that they should be paid
more and more to keep them interested in doing their job: should one not question
the governance rules which lead to this kind of result, and suggest others which
would lead to more palatable results? As we mentioned in the beginning, the
rules by which markets and firms operate are not set in stone, and can be changed
for better ones. Unfortunately, there is very little research in that direction. The
bulk of research in mathematical finance, for instance, is devoted to exploring
to the very end the consequences of no-arbitrage theory, and pays no attention
to the way payments are made, banks operate and money is created. Similarly,
the model mainstream economists use to study global warming is so simplified
as to be irrelevant: there is no biosphere and the diversity of human populations
is compressed into a single “representative” individual. There is ample room for
making the model more realistic, and there is some activity in that direction, but it is
overshadowed by the Nobel prize of William Nordhaus, who devoted his life to that
model, and concludes that a warming of 3 ◦C is “optimal”, in direct contradiction to
the unanimous conclusions of biologists, physicists and other scientists.

What I suggest here, to use mathematics in a critical way, in order to question
the rules of the prevailing game, is of course more difficult than to respond to
the demand of the financial industry or the global markets. This is the difference
between engineers and scientists: the first ones solve practical problems which are
brought to them, the second ones try to understand the world they live in. There is
also a third dimension available to mathematicians, namely poetry, or rather art for
art’s sake. The world we live in is not pretty, and the more one understands it the
uglier it looks. For this reason, one needs sometime to escape in another one, like
the protagonists of that wonderful and terrible movie “Brazil”: this is what “pure”
mathematics does for you, at least what it has done for me. I have taken incredible
pleasure in the work of some masters, like John Milnor and René Thom, and the
muse of mathematics has been very kind to me. Let me conclude this by quoting
one of her presents, which accompanies me to this day:
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Theorem 4.1 Let (X, d) be a complete metric space and f : X → R ∪ {+∞}
a lower semi-continuous function, bounded from below: f ≥ 0. For every x0 and
every λ > 0 there exists some x1 such that:

• f (x1) ≤ f (x0)− λd (x0, x1)

• d (x0, x1) ≤ 1
λ
f (x0)

• ∀x, f (x) ≥ f (x1)− λd (x, x1)
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Can We Teach Functions to an Artificial
Intelligence by Just Showing It Enough
“Ground Truth”?

Adrien Courtois, Thibaud Ehret, Pablo Arias, and Jean-Michel Morel

1 Introduction

Artificial neural networks (NNs) are complex non-linear functions y = N (w; x)
obtained by combining multiple simple units, in a structure that is reminiscent of
how neurons are organized in the brain. NNs are parameterized by a vector w of
millions, billions, or sometimes even trillions of parameters.

A neural network N can be described as a family of functions (fi)i∈�1,D� and a

vector of weights w ∈ R
d such that the network is defined as

N (x;w) = fD(fD−1(. . . (f2(f1(x;w);w) . . . ;w);w).

Notably, each function fi is differentiable almost everywhere and is parameterized
by weights stored in w ∈ R

d . During a supervised training, neural networks are
trained using large number of examples pairs (x, y) of inputs and the desired outputs
(e.g. noisy and noiseless image pairs) stored in a dataset D := (xn, yn)n∈�1,N� ∈
(Rp × R

q )N . Supervised training is to be distinguished from self-supervised and
unsupervised training, which do not involve ground truth. The objective of training
is to minimize the risk, which is the expected value of the loss

L(w) =
∫

L(N (x;w), y)dP(x, y), (1)
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where P is the probability distribution of the data, and w denotes the vector of all
parameters of the network. The distribution P is usually unknown and the empirical
distribution of a collection of training samples P = 1

N

∑N
n=1 δ(xn,yn) is used instead,

so that

L(w) = 1

N

N∑

n=1

L(N (xn;w), yn). (2)

To minimize this risk—or this loss—a gradient descent algorithm is used, which
therefore reaches a local minimum, as the functional is generally not convex. The
gradient ∇wL of the loss over the training data is computed with respect to the
set of parameters w. In practice, due to computational limitations, the stochastic
gradient descent is used and more sophisticated optimization methods are becoming
common [27, 41]. The dominant learning structure is called deep learning and refers
to “deep” multi-layer neural networks who are being trained on massive data to learn
the “right” answer to a request. In supervised learning, the training is sometimes led
by human “ground truth”, obtained by manual annotation. In other examples, the
training is obtained from a large set of observed data.

Most tasks proposed to deep learning are highly complex and hardly definable
in mathematical terms. The hope is that by accumulating enough ground truth data
and feeding it to a neural network, the right operator will be obtained. This has two
implications: the operator being learned is often not mathematically or formally
defined; it is defined “in extenso” by its application to many examples.

The goal of data-driven techniques is that the network trained on a dataset
will “learn” to solve the task and generalize to new unseen data. To test this
generalization ability, the dataset is split into training and test datasets. Then,
the network is trained using data sampled from the training set, but the goal is to
optimize the performance on the test set. However, while networks for a given
task generalize well between splits of a same dataset, they often fail when applied
on a different dataset [53]. This leads to a well-known failing of deep learning
algorithms, called “statistical overfitting” or “dataset bias” [52]: e.g. the learning
task is not necessarily extensible outside of the dataset it has learned from. The fact
that neural networks struggle to generalize outside of the training domain is actually
well-known [52, 53]. As pointed out in this last paper,

Some datasets, that started out as data capture efforts aimed at representing the visual world,
have become closed worlds unto themselves.

The testing set has, legitimately enough, exactly the same origin as the learning
set, being generally extracted for the same original larger set by uniform random
sampling. In short, the problem supposedly resolved by learning parameters on the
training data set has no other definition than the dataset itself. And the verification
of the network’s capacity on a testing set statistically identical to the training set is
a congenital defect of machine learning. But what else could be done? To solve this
problem, different approaches have been studied in the literature. Among those, we
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can extract the four main ideas: uncertainty detection [1], domain transfer [56, 63],
self-supervised training [23, 47] and unsupervised training [47].

Uncertainty detection is about making the network output its confidence score
to influence its calibration [12, 18, 39, 40, 54]. This is not an easy task as neural
networks tend to be overconfident and badly calibrated [19].

Domain transfer means making a network trained on a certain dataset work on
another dataset. There are three main types of domain transfer algorithms. The first
one consists in modifying the images of the new dataset so it matches the statistics
of the images of the training dataset [22, 34, 64]. The second one consists in training
the network with an additional loss term which enforces learning features that have
the same statistics across different datasets [46, 48, 49]. Lastly, some approaches
propose to leverage the network’s features to generate pseudo-labels which will be
used to train a new network [13, 26]. This can be useful when the new dataset is
not fully labeled. Data augmentation can be seen as a domain transfer technique.
It consists in applying random transformations to the training samples to artificially
increase the diversity and size of the dataset.

Self-supervised learning has received a lot of attention in the past few years as
it allows to train a network without any label. This partially cures the problem
of wrong labels and alleviates the cost of labeling an entire dataset. In some of
those approaches, the distance between the representation of similar data samples
is reduced while it is increased for dissimilar samples [15]. For some others, no
dissimilarity is used [25]. When used, the notion of similarity is to be redefined for
each task [59, 62]. While it has its own caveats, this technique is considered to be
very promising. However, neural networks trained in a self-supervised fashion are
still trained on a dataset and they can still be subject to dataset biases, contradictions
and ambiguities.

Unsupervised learning, on the other hand, aims at exhibiting the structure
underlying a dataset. For instance, it can find clusters of data samples sharing the
same properties [5, 6]. However, this domain is not receiving as much attention as
self-supervision.

An approach that has not been pursued extensively however, is changing the
properties of the training dataset itself to limit contradictions or generate a fully
artificial dataset in which there is an unbiased ground truth. In this paper, we will
illustrate the problems of supervised learning approaches through two examples
where neural networks trained on “natural” datasets learn what is actually a
geometrically definable property. Through those two examples, we will show
that by enforcing these geometric properties on the training dataset, or directly
on images, we can drastically change the outcomes of machine learning. The two
geometric questions we shall consider are monocular depth estimation (MDE) from
a single image (“monocular vision”) and line segment detection (LSD) in natural
images.

In Sect. 2, we contrast a natural monocular depth estimation dataset with a
synthetic Rectangle Depth Estimation Dataset (RDE). While synthetic, the RDE
dataset retains the main difficulties of the depth estimation problem, but has an
unambiguous ground truth where reaching 100% accuracy is theoretically possible.
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In Sect. 3 we address the very basic line segment detection in images and oppose
two groups of methods that we describe briefly: the first approach is a geometric
statistical definition of line segments. It is represented by two methods. The
other approach is represented by not less than five deep neural networks that were
taught to recognize segments on a human annotated dataset. We make a simple
experimental comparison of these methods, as their results are easily interpreted
and linked to their methodology. Section 4 is a final discussion.

2 Depth Estimation and Its Impossible Ground Truth

Fig. 1 Depth estimation (right) of a neural network [45] trained on natural images for the Library
image (left)

A classical example of recent success in machine learning has been to train a
network to “see in depth” by giving it a large number of images coupled with their
depth map. The network is then asked to deduce from a single image its depth
map, an operation called monocular depth perception. Depth estimation datasets
[8, 33, 57, 61] consist in the association between many images and their associated
depth map measured by range laser. In other terms, each image pixel has two
attributes, color and range (or depth). No faulty human intervention can be found in
such real ground truth. Yet, the problem of deducing depth from color is obviously
ambiguous: if a flat green image is shown, what is the distance of green? Thus,
networks are at first sight requested to perform an impossible task. Yet, the hope
is that the very large size of the dataset ensures that the network’s decision will
somehow be akin to our imprecise but useful perception of perspective. The result
on images similar to the indoor scenes of the training set is impressive: See the
experiment of Fig. 1, made on an “in domain” image.

Does it mean that these networks resolve perspective vision? Note that they are
trained to find a normalized depth (between 0 and 1), not the actual depth measured
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in, say, meters. But monocular perspective perception is not to be identified with
finding real distances, even if normalized.

The human monocular perception theory of perspective [36, 37] tries to explain
how our perception orders objects in space. There are two classes of cues helping
decide if an object is farther away than another. The first ones are of optical-
geometric nature, like atmospheric perspective, organization of straight lines toward
vanishing points, shape from shading, shape from texture, and occlusion, that is
signaled by T-junctions. The other ones are empirical and rely on our experience
of the spatial organization of recognizable objects natural scenes, where in addition
we know in advance the size of these objects, humans, animals, trees, vehicles,
buildings, etc. One can deduce their approximate distance from their apparent size
in an image.

The artificial monocular depth estimators that we shall consider [38, 45] are not
being trained with a loss that is invariant to any increasing function applied to the
measured depth. They are not requested to provide an order in space, but directly a
real depth.

In order to get a clearer view of at least one element of depth perception, we shall
rely on Kanizsa’s perception of depth. Kanizsa [24] discovered that a particular
organization of visible boundaries in images in T-junctions was the predominant
cue to organize objects in space from the farthest to the closest ones. (See Fig. 2
for an illustration of the role of T-junctions: they signal which rectangle is in front
of another.) We defined in [9] a fully unambiguous depth dataset to evaluate if and
how the relative position of objects could be evaluated from Kanizsa’s theory alone.
The synthetic dataset was made of images like the one in Fig. 2.

Other synthetic datasets [43, 51] have been proposed to analyze and quantify
the effect of certain layers or training methods, allowing one to discover effects
that would otherwise be impossible to unveil [43]. Notably, synthetic datasets are
commonly used for image quality evaluation [29]. The vast majority of the literature
on depth estimation uses datasets of real images labeled using lidar lasers. Part of
these works aim at improving already-existing networks used for depth estimation.
For instance, some focus on designing better losses [30, 31, 33, 45, 55, 58] while
others [38, 44] devise post-processing strategies based on already-trained networks
to make them work on new cases.

Our dataset is inspired by the dead leaves model [14] and poses a very simple
depth estimation task where objects are replaced by simple rectangles. The
rectangles can overlap one another, creating a spatial organization that naturally puts
objects of top of others. The ground truth is the ordering of rectangles in increasing
integer order from the black (0) background to the closest rectangle (up to 10). Each
order is represented by a color. In other terms, the goal of the algorithm is, given
the input image to output similar images where colors have been replaced by the
new fixed colors in correspondence to the depth order from 0 to 10. The task given
to a neural network is closely related to real-world depth estimation as it accurately
reflects one of its main difficulties. When an object is partially occluded by others
that divide it into several components, the network must regroup the parts that
have been separated, which can only be done by recognizing the same color and/or
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Fig. 2 An example image from the RDE dataset and the associated ground truth. The brighter
the color, the higher the number of rectangles that are beneath it. The unambiguous images of
the dataset are made of up to ten superposed rectangles with fixed colors. The ground truth is the
ordering from 0 to 10 and it can be deduced visually and by a simple algorithm. (Each color on
the right is associated with a class from 0 to 10). T-junctions, namely points where a region border
stops on another border, are here the key shape ordering indicators

detecting edge alignment. The ground truth is unambiguous. Indeed, there exists
a deterministic reconstruction algorithm based on three nonlocal cues: a) color
similarity (all rectangles are monochromatic, thus can be recovered nonlocally);
b) T-junctions, a local cue that propagates nonlocally, c) convexity, which leads to
decisions about the overlap of a convex region with the one surrounding it. A full
description of the algorithm recovering depth (identified with the overlap order) is
described in [9]. An example can be found in Fig. 2.

We can now evaluate if, indeed, a neural network trained on a set deprived of
any ambiguity surpasses in performance the same network trained on the very same
dataset but were the carefully removed ambiguous cases have been added back to
the dataset. The result of this experiment is given in Table 2, where different variants
of the RDE dataset were investigated. We used the exact same architecture for every
training; only the training and test set were modified. The specificity of each variant
is described in Table 1. Various measurements of the performance of the networks
are shown. In particular, when training on a dataset where all the ambiguities were
retained (second line), we notice that the last three measurements are multiplied by a
factor 3 to 4. When changing the blur kernel, the results are catastrophic. This shows
a strong dataset bias even in this over-simplified modeling of depth estimation.

In Table 2, the test loss refers to an average error (as measured by the loss) on
the test set. The root mean square error passes from 5 to 2 roughly. The three
metrics we report in this table are three of the most commonly employed metrics
for Monocular Depth Estimation tasks [4, 7, 38, 45]: the Root Mean Square Error
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(RMSE), the δ1.25 and the Ord metric. The RMSE is defined as

RMSE(ŷ, y) :=
√
√
√
√

1

HW

∑

i,j

(ŷi,j − yi,j )2,

where ŷ is the prediction and y the ground-truth. This measures the error between
the network’s prediction and the prediction it was supposed to make. The δ1.25
metric is the percentage of pixels such that

δ1.25 := 1

HW

∑

i,j

1
{max

(
ŷi,j
yi,j

,
yi,j

ŷi,j

)

>1.25}
.

In other terms, it corresponds to the portion of pixel where the network’s prediction
erred by more than 25%. The ordinal loss consists in sampling 50,000 pairs of pixels
((i1, j1), (i2, j2)) and for each of those pairs, compute

li =

⎧
⎪⎪⎨

⎪⎪⎩

+1, if yi1,j1/yi2,j2 ≥ 1+ τ

−1, if yi1,j1/yi2,j2 ≤ 1
1+τ

0, otherwise.

Using the same pairs, the equivalent quantity l̂ is computed for the prediction. The
ordinal loss is given by

Ord := 1

|P |
∑

i∈P
1{li �=l̂i }.

In practice, we used τ = 0.03 and all the networks were evaluated using the same
set of pairs of pixels when computing the ordinal loss. Said differently, this metric
measures if the network predicted the correct ordering of the scene i.e. if the value
of one pixel is above another one in the ground truth, this ordering must prevail in
the network’s prediction regardless of the exact value.

The reader should be curious at this point to see what a big and successful neural
network trained on millions of natural images gives on our synthetic images. All
in all, we should have expected that such a network gives a constant depth on each
rectangle with constant color, and that it orders correctly each pair of rectangles that
overlap. The result is shown in Fig. 3. In the second column we see the depth
estimated by very powerful neural networks trained on millions of image-depth
pairs. They react to this abstract scene as if it were a natural perspective scene,
where generally the more distant objects are situated at the top and the closest ones
at the bottom. In other terms, the networks have learned “average” perspective laws
and apply them everywhere. There is no surprise in this result, it is “dataset bias”



446 A. Courtois et al.

Table 1 List of the different variants of the RDE dataset we considered. Both Gaussian and
uniform blur have the same kernel size. The noise is centered white Gaussian noise of standard
deviation σ = 2

256

Dataset name Ambiguous GT Gaussian blur Uniform blur Noise

Unambiguous ✗ ✓ ✗ ✗

Ambiguous ✓ ✓ ✗ ✗

No blur ✗ ✗ ✗ ✗

Noisy ✗ ✓ ✗ ✓

Uniform blur ✗ ✗ ✓ ✗

Table 2 Results on the RDE dataset and variants, as described in Table 1. All metrics are
multiplied by 100 for readability. For these classic performance metrics, the lower the better

Train dataset Test dataset Test loss ↓ Ord ↓ δ1.25 ↓ RMSE ↓
Unambiguous Unambiguous 0.72 1.79 1.98 1.95

Ambiguous Unambiguous 1.78 6.03 7.36 4.91

Unambiguous No blur 7.70 4.53 5.48 5.13

Unambiguous Noisy 1.21 2.56 6.36 3.76

Unambiguous Uniform blur 32.0 10.4 14.5 11.3

on a plausible, yet “out of domain” image. But, certainly, this result differs much
from what humans would propose.

Some Partial Conclusions
The proposed image dataset and its ground truth were designed to follow a series of
requirements:

Unambiguous ground-truth, Well-posedness: The input contains enough infor-
mation to solve the task;

Focus on a specific required network property: The network must be able to
deduce the exact ground truth from the input image only if it has the assessed
property. In our case this property was the nonlocal propagation of the depth
property to all pixels having the same color, and of the order indicated by each
T-junction to the two concerned rectangles.

Perceptual and physical validity: Although the images are not natural, a correct
interpretation of the image must be realizable by a quick visual inspection. In our
case it could be realized with rectangular colored paper sheets disposed on a table.

These properties are not attainable with natural datasets, as they contain many
statistical cues that help compensate for a structural deficiency of the network.
We conjecture that using such fully controlled datasets, but very similar to a
classic artificial intelligence task, might be used for neural network design, and for
explaining the observed properties and flaws of neural networks trained on “natural”
datasets. We have just verified in the above example that eliminating ambiguities
boosts the overall network performance.
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Fig. 3 Results of state-of-the-art networks when evaluated on our task without retraining. First
column: input and ground truth. Second column: result of MiDaS [45], result of MergeNet [38].
Third column: result of the baseline U-Net, result of our best network, both being trained on our
synthetic dataset. The disappointing results of SOTA networks on a visually interpretable image
show that these networks are guided by hidden natural statistics, much more than by nonlocal
geometric reasoning. By a nonlocal association failure, the baseline U-Net also errs on the large
disconnected brown rectangle

3 Human Ground Truth and Line Segment Detection

Line segment detection in images has innumerable applications, as most human
made objects contain straight edges that cause straight image edges, namely straight
segments across which the image intensity changes drastically, due to different
plane orientations toward the light [28, 35]. In this section we shall contrast two
methodologies for the detection in images of an object that might have claims to be
defined in purely mathematical terms: line segments. The first methodology (two
algorithms will be presented) is purely geometric and statistical, and it does not
require a single learning example. The second methodology builds sophisticated
neural networks that learn from a human-annotated dataset associating images with
their line segments.
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3.1 Line Segments Detected by Statistical Testing

LSD [16, 50] and EDlines [2, 3] are based on the non-accidentalness statistical
principle, which we shall briefly illustrate in the case of alignment detection. Its
simple guiding idea is to count the number of aligned pixels on any possible
segment and accept the set of pixels as a line segment if the observed alignment is
perceptually meaningful, namely could not occur in a fully disordered (white noise)
image. This principle originates in Gestalt theory [11]. The difference between
LSD and EDlines resides in the way candidate segments are extracted from the
image. (It would be inconvenient to test all possible segments). LSD finds connected
components of pixels sharing the same gradient orientation up to some precision. If
the shape of the component is approximately a rectangle, then the medial axis of
the rectangle is the detected segment, provided it satisfies the non-accidentalness
principle. EDlines proceeds differently and generates candidates by joining seed
candidates for the tips of the segments. Then these candidates are selected by
the non-accidentalness principle. More quantitatively, a line segment detection is
validated if its expectation in white noise is low [11]. In a white noise image, all
pixels (and their gradient orientations) are independent and uniformly distributed.
Let us define the “Number of False Alarms (NFA)” of a line segment as follows.
Let A be a discretized segment comprised of n pixels on the image domain. A valid
line segment of the image should have “many” pixel gradient directions aligned to
the direction normal to the segment A. Suppose A has at least k points with their
directions aligned (up to an error±p/2) with the normal direction to A in an image
of size N ×N . Define the NFA of A as

NFA(n, k) = N4
n∑

i=k

(
n

i

)

pi(1− p)n−i , (3)

where N4 is the number of potential line segments in an N × N image. The
probability p used in the computation of the binomial tail is the accuracy of the
line direction. An event (a line segment in this case) is called ε-meaningful if
its NFA(n, k) ≤ ε. The authors advise setting ε to 1, which corresponds to one
false detection per image. Given these definitions, a line segment of length n, with
k aligned pixels k is considered valid if NFA(n, k) ≤ 1. Otherwise the line is
rejected.
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Fig. 4 Middle: two images from the wireframe dataset. Top: their line segment ground truth in the
wireframe dataset. Bottom: their interpretation by LSD. This experiment illustrates the frailty of
human annotation: many obvious line segments are missing in the ground truth; some are partially
occluded

3.2 Learning by Examples What a Line Segment Is

We shall compare the above geometric-statistical methods LSD and EDlines with
not less than five methods created by machine learning, SOLD2 [42], M-LSD [17],
TP-LSD [21], ULSD [32], and LETR [60]. These five deep neural networks are
almost contemporary and very recent. They can be compared because they have
been trained (and tested) on the same dataset, Wireframes. In architecture design,
a wireframe is often referred to as a line drawing of a building or a scene on
paper. The authors of [20] have built this very large new dataset of over 5000
images with wireframes thoroughly labeled by humans. Note that a wireframe is
not just a set of line segments; it is a set of line segments aimed at describing an
architecture. Hence, its line segments mostly correspond to edges and corners of
structures (walls, buildings, furniture, etc.), and they mostly end on T-junctions or
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Fig. 5 Middle: two images from the YorkUrban dataset. Top: their line segment ground truth
in the YorkUrban dataset. Bottom: their interpretation by LSD. This experiment illustrates the
bias of human annotation in Wireframe dataset: an architect is only interested in architecturally
meaningful separations. There are also lines drawn that do not correspond to an actual line on the
image. Finally, many obvious line segments are missing and some are partially occluded

corners. This led annotators to neglect many segments that can be conspicuous
but have a minor explanatory role to understand the architecture, for example the
dark rays separating planks. For all five neural networks we shall consider, training
was made on this dataset and validated on its testing part and on another wireframe
test dataset, the YorkUrban dataset [10]. All of these methods focus on predicting
different parts of the lines annotated in the dataset. In particular, they try to predict
the junctions (i.e. the endpoints of the lines), the line itself as a heatmap, or a root
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point defined as the central point of the line as well as the displacements from this
root point to other defining points of the line. Additionally, the methods also include
a classification module that learns whether a predicted line corresponds to an actual
line in the dataset.

It is to be noted that some of the methods we describe have been trained
following an unsupervised or self-supervised scheme. This further points out that
the downfalls of “statistical overfitting” and “ground truths” are not exclusive to
supervised learning.

3.3 Comparison of All Methods

Fig. 6 Comparison of seven line segment detectors on a photograph of Le Pirée: original image
“Le Pirée”, results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD (2021), LETR (2021),
M-LSD (2021), SOLD2 (2021). The first two detectors are handcrafted and based on edge growing
followed by an a contrario detection threshold. The last five are obtained by sophisticated mainly
unsupervised deep learning methods

In Fig. 6 we compare the results of the seven above presented line segment detectors
on an architectural photograph. The experiment displays the original image “Le
Pirée”, followed by results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD
(2021), LETR (2021), M-LSD (2021), SOLD2 (2021). As we commented, the
first two detectors are handcrafted and based on edge growing followed by an
a contrario detection threshold. A detailed comparison of both images shows
that most segments present in one image are present in a similar position in the
other. Sometimes a segment detected by EDlines is actually split in two smaller
segments with a gap in the LSD result. This corresponds to a slightly different
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heuristic exploration of the image gradient field by both methods: LSD requires
connectedness for a segment to be detected, while EDlines allows for some gap in
a segment and therefore sometimes presents a single segment where LSD found
two. All in all, the detection maps are very similar because they obey the same
statistical definition of a meaningful segment. No machine learning is involved in
this definition and therefore no dataset dependence: these detectors are agnostic.

Something radically different is at stake with the last five detectors obtained by
sophisticated deep learning methods learning primarily from the Wireframe dataset.
Unsurprisingly, the line segment interpretation given by machine learning taught
on wireframes are widely different from those proposed by the agnostic statistical
definition.

This is confirmed by taking a look at images from the wireframe dataset [20],
see Fig. 4. The middle row shows two images from the wireframe dataset and
their “ground truth” (first row) which is a human annotation. This annotation is
actually a mental reconstruction of the architectural sketch of the scene. It presents
segments that are hardly visible, neglects many that are conspicuous, and even
partially occluded ones. This is in strong contrast with the result of the agnostic
LSD detection in the bottom row showing hundreds of line segments bordering
the ground planks on the left image. On the right-hand image, the ground truth
interprets the muntins of the windows as single line segments while these are thick
and bounded by two straight sides. This experiment illustrates perhaps the bias of
human annotation: many obvious line segments are missing because they were not
considered meaningful for interpreting the scene. The five neural networks were
also evaluated (and compared to LSD and EDlines) on the YorkUrban dataset [10].
In Fig. 5 we display results in the same format as for the Wireframe images. On
the middle row, two images from this dataset. On top of them their “wireframe”
interpretation. On the bottom row, the line segments found by LSD.

Returning to Fig. 6, one can notice some agreement between the results of the
four first mentioned networks trained on wireframe, TP-LSD, ULSD, LETR, and
MLSD, while the result of SOLD2 is puzzling. The four first results give a sketchy
but coherent view of the building visible on the foreground. The input image
belongs to the “domain” on which the neural network is competent.

Yet, on a slightly “out of domain” image, the results obtained by neural networks
trained on wireframe diverge considerably more, as evident in the results compared
in Fig. 7. The scene is actually an indoor scene, but containing just and only aligned
chairs in perspective. The networks perform a “wireframe” analysis. Hence, the
rounded angles of the chairs are replaced by corners; more strikingly, most chair
borders are visually ridges, not edges, thus delimited by two parallel straight lines.
These pairs are found by LSD and EDlines, but systematically replaced by a single
line in the wire frame interpretation.

In the experiments of Figs. 6 and 7 the algorithms depend on parameters. For
LSD and EDlines, by a classic principle of a contrario detection methods, one false
alarm (in expectation) is allowed per image. This principle makes sense in detection
tasks where multiple detections are expected. Unfortunately for neural networks no
such principle is available or accessible to learning.
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The considered machine learning methods depend on one or two parameters.
One is common to all: the score or detection threshold ranging from 0 to 1. But
an additional threshold may be used to enforce accuracy like in ML-LSD endowed
with a distance threshold, and SOLD2, which has an inlier threshold ranging in
[0, 1]. LSD and EDlines have both a single threshold, the NFA, which is fixed to 1,
thus actually not an active user parameter.

In Fig. 8 we display the results obtained when varying the parameters of each
method, particularly the score threshold. Although the median score 0.5 would be
expected to give the best result on the learning dataset, this threshold is clearly no
longer valid on an “out of domain” image.

Fig. 7 Comparison of seven line segment detectors on an “out of domain” image, a photograph
of chairs: original image “chairs” results of LSD (2008), EDlines (2011), TP-LSD (2020), ULSD
(2021), LETR (2021), M-LSD (2021), SOLD2 (2021). The first two detectors are handcrafted and
based on edge growing followed by an a contrario detection threshold. The last five are obtained
by sophisticated mainly unsupervised deep learning methods

4 Conclusion

Neural networks are generally given ambiguous or contradictory training examples
and given a proposed task that is not even definable. In the two use cases we
examined, the problem that neural networks are asked to solve is not defined by
anything but by the dataset. We picked these two examples for several reasons.
First of all, the question to be resolved by these neural networks has a clear physical
meaning (for the depth problem) and in the second example an intuitive geometric
meaning. Indeed, line segments correspond mostly to physical edges of buildings
and other man-made objects.
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Fig. 8 Parameter dependence of five line segment detectors obtained by deep learning on an “out
of domain” image, a photograph of chairs. First row: results of LETR with score thresholds
0.7, 0.3 and 0.0 respectively. Second row results of TP-LSD with score thresholds 0.25, 0.1,
and an alternative version (TP-LSD-320) with score threshold 0.1. Third row: ULSD with score
thresholds 0, 0.1 and 0.2 respectively. Fourth row M-LSD with parameter pairs (0.2, 1), (0,20) and
(0.5, 10) respectively. Fifth row SOLD2 with parameter pairs (0.1, 0.5), (0.1, 0.99), (0.5, 0.99)
respectively. The parameters are chosen so the number of segments decreases from over-detection
to under-detection; the parameters in the middle column are the more plausible ones
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We tried to argue that defining a problem by a “natural” dataset may become
a dead end. First, because no external verification is possible. Or, rather, in
the cases we examined, an external verification using sound but slightly “out of
domain” data yields questionable or unstable results, which is alarming. The
AI movement is carried by the hope that neural networks have or will have a
“generalization power”. The two examples we examined rather suggest that we
should find workarounds to force neural networks to generalize by fully controlling
the structure of well-defined synthetic datasets, rather than relying on uncontrolled
“ground truth”. Avoiding ambiguities and contradictions in what we teach neural
networks seems to be a sound pedagogic recommendation. The notions of well-
posedness, and geometric invariance for example, have been powerful requirements
in physics and applied mathematics. Such axiomatic requirements should be
applied to the training datasets and on the loss. For example, we saw that the
loss in monocular depth perception has not the obvious geometrically required
invariance. We should perhaps explore the limits of ad hoc synthetic datasets, with
mathematically definable ground truth, before we start even using “ground truth in
the wild”. Last but not least, our examination of line segment detection suggests
that the variability of networks trained on the very same dataset should be a major
concern and actually perhaps an a posteriori criterion to evaluate each proposed
dataset. Similarly, measuring the variance of the result for different training sessions
of the same neural network trained on the same dataset should also be an obvious
reliability criterion.

Neural networks are like Plato’s prisoners, shackled in a cave and shown shadows
of objects on a wall. Because they know of nothing else, they accept anything
shown as the whole reality and cannot imagine anything beyond it. Contrary to what
a mathematically naive approach would suggest, training an artificial intelligence
requires a teaching strategy that avoids contradictions and ambiguities, and the task
should be feasible in the end, much like when teaching humans.
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Part X
Mathematical Physics and PDEs

This part is mainly devoted to a programmatic vision and conjectures of several
leading experts in analysis and partial differential equations.

In Divergence-free tensors and cofactors in geometry and fluid dynamics, Denis
Serre, the inventor of compensated integrability, presents connections between Div-
free/Div-BV symmetric tensors and geometrical topics such as convex bodies and
minimal surfaces. In passing, he establishes results on the cofactor map and the
geometric mean of positive definite matrices.

Kostas Dafermos’ Hyperbolic conservation laws: Past, present and future
provides a concise birds-eye view of the vast field of hyperbolic conservation laws.
The author has managed to give an introduction to the field, where it came from,
what were major developments, and where it could/should be heading, in a mere 10
pages, as only a true master could. The article focuses on general trends of research
rather than single advances, this way one is able to get a very good impression of
the subject.

In Which nuclear shape generates the strongest attraction on a relativistic
electron? An open problem in relativistic quantum mechanics, Maria J. Esteban,
Mathieu Lewin, and Eric Séré formulate several conjectures concerning the lowest
eigenvalue of a Dirac operator with an external electrostatic potential. The latter
describes a relativistic quantum electron moving in the field of some (pointwise or
extended) nuclei. The main question is whether the eigenvalue is minimal when
the nuclear charge is concentrated at a single point. This well-known property
in nonrelativistic quantum mechanics has escaped all attempts of proof in the
relativistic case.

In Strong singularities of solutions to nonlinear elliptic equations, V. Maz’ya,
already the author of a paper offering Seventy Five (Thousand) Unsolved Problems
in Analysis and Partial Differential Equations, presents a puzzling conjecture on the
asymptotic behavior at infinity of the Riccati equation in a strip.

In their beautiful programmatic paper, S. Albeverio, F.C. De Vecchi and
S. Ugolini describe connections between stochastic mechanics, optimal control, and
nonlinear Schrödinger equations. They relate, for large N , the quantum mechanics
of N particles to certain nonlinear Schrödinger equations, the latter of which are
used also to describe the physical effect of Bose–Einstein condensation. A newer
stochastic optimal control approach to Bose–Einstein condensation is presented
with a sketch of future research lines in the different areas of mathematics involved.
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1 Divergence-Free Symmetric Tensors

A symmetric tensor is a map x �→ A(x) ∈ Symn(R), where x runs over an open
domain U ⊂ R

n. When the entries aij are distributions, we define the row-wise
Divergence operator

DivA =
⎛

⎝
n∑

j=1

∂jaij

⎞

⎠

1≤i≤n

.

Definition 1.1 We say that A is Div-BV if each entry aij and each coordinate
(DivA)i is a finite Radon measure over U . We say that A is Div-free if actually
DivA ≡ 0.

The definition was motivated initially by the study of gas dynamics, whose
conservation of mass and linear momentum can be written in terms of a Div-free
tensor in a space-time domain; see Sect. 2.1. The BV context is justified on the one
hand by the requirement of positiveness, and on the other hand by the role of the
mass of DivA in the functional inequality; see Theorem 2.1.

1.1 Special Div-Free Tensors

A central result of the mathematical theory of elasticity is the Piola identity

Div ∇̂f ≡ 0

where f is a W
1,n−1
loc -vector field. Several proofs of this fact have been elaborated,

some of them being especially elegant; we refer to [5] for a review.
When f is itself the gradient map of some potential θ ∈ W

2,n−1
loc (U), we infer

that the cofactor matrix D̂2θ of the Hessian is symmetric, locally integrable and
Div-free. If moreover θ is convex, this tensor is positive semi-definite; we call it a
special Div-free tensor. When n = 2, this construction exhausts the cone of positive
integrable Div-free tensors, though it does not when n ≥ 3.

1.1.1 Multi-linearization

We recall that the map $ �→ φ defined by φ(e) = $(e, . . . , e) is an isomorphism
from the space of d-linear symmetric maps $ : Ed → F onto that of homogeneous
polynomial maps φ : E → F of degree d . Hereabove, E,F are vector spaces over
a field of characteristic 0. Applying this to E = F = Mn(R) and to the cofactor
map M �→ M̂, we are led to the
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Definition 1.2 Cofn is the unique (n − 1)-linear symmetric map from Mn(R) into
itself such that

M̂ = Cofn(M, . . . ,M), ∀M ∈ Mn(R).

We warn the reader that the index n refers to the size n× n of the matrices, but that
Cofn has only n− 1 arguments, because M �→ M̂ is polynomial of degree n− 1.

An alternate definition is that Cofn(A1, . . . , An−1) is the coefficient of the
monomial X1 · · ·Xn−1 in the polynomial map

(X1, . . . , Xn−1) �→ 1

(n− 1)! Â(X), A(X) = X1A1 + · · · +Xn−1An−1.

For instance, if n = 3, then Cof3 is bilinear, defined by

Cof3(A,B) = 1

2

(
Â+ B − Â− B̂

)
.

More generally, the (�,m)-entry of Cofn(A1, . . . , An−1) equals (−1)�+mDetn−1
(M1, . . . ,Mn−1) where Detn−1 is the multi-linearization of the homogenous poly-

nomial Mn−1(R)
det→ R, and Mj is the sub-matrix of Aj obtained by deleting the �th

row and the mth column.
The multi-linearization allows us to extend the construction of special tensors:

Proposition 1.1 Given the functions θ1, . . . , θn−1 ∈ W 2,n−1(U), the tensor

Cofn(D
2θ1, . . . ,D2θn−1) ∈ L1(U ; Symn)

is Div-free.
If the θj ’s are convex, then this tensor is positive semi-definite (see Proposi-

tion 3.1).

Remark that even though this generalization provides much more Div-free tensors
than just the special ones if n ≥ 3, it still does not exhaust the linear cone of positive
Div-free symmetric tensors. Actually, we expect that the linear space of Div-free
tensors depends upon

(
n+1

2

) − n = (n2
)

independent functions, counting the entries
aij and the differential relations to which they obey to. This is larger than the number
n− 1 of the potentials involved in Proposition 1.1.

1.2 The Homogeneous Case: The Minkowski Problem

Let θ(x) be a positively homogeneous function of degree 1, say of class W
2,n−1
loc .

Its Hessian is therefore homogeneous of degree−1 and the corresponding Div-free
tensor is homogeneous of degree 1−n. Because of the Euler identity D2θ(x)x ≡ 0,
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we actually have

D̂2θ = μθ(x)
xxT

|x|n+1

where μθ is positively homogeneous of degree 0. The identity Div D̂2θ = 0
amounts to saying that the center of mass of μθ lies at the origin (see [10]):

∫

S
n−1

μθ(ξ)ξ ds(ξ) = 0. (1)

Conversely, every tensor of the form

A = μ(x)
xxT

|x|n+1 (2)

for some positively homogeneous function μ of degree 0, satisfies the identity

DivA = Vμδx=0, Vμ :=
∫

S
n−1

μ(ξ)ξ ds(ξ),

hence is Div-free if and only if μ satisfies (1). If μ is positive, then A turns out to
be special, according to a theorem of Pogorelov [8]. In other words, there exists
a convex function θ such that μ = μθ ; this function is positively homogeneous
of degree 1. Pogorelov’s theorem actually applies when μ is a positive measure
over Sn−1 satisfying (1), provided that μ is not supported by a great sphere (the
intersection of Sn−1 with a linear hyperplane).

Since positively homogeneous functions of degree 1 are support functions of
convex bodies, Pogorelov’s result is usually written in geometrical terms. Given a
convex body K , μθK (x) is the inverse of the Gauß curvature of ∂K at the point x
at which the outward normal is ξ . Thus Pogorelov’s Theorem solves the famous
Minkowski’s problem:

Given the Gauß curvature ξ �→ 1
μ(ξ)

as a function of the outward normal, satisfying (1),
find the convex body.

For us, it says that, given a positive μ satisfying (1), there exists a convex body
K such that μ = μθ for θ = θK . We refer to [10] for the details. Mind that θ is
unique up to an affine additive factor ; equivalently, K is unique up to a translation.

1.3 Mixed Convex Bodies

A curious situation happens when the potentials θj of Proposition 1.1 are convex and
positively homogeneous functions of degree 1, thus are support functions of convex
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bodies Kj . Then the Hessians x �→ D2θj are homogeneous of degree −1, and the
Div-free tensor A = Cofn(D2θ1, . . . ,D2θn−1) is homogeneous of degree 1 − n.

Actually, A is the coefficient of X1 · · ·Xn−1 in the polynomial X �→ ̂D2#X, where
#X = X1θ1 + · · · + Xn−1θn−1. Because of D2#Xx ≡ 0, one has an expression of
the form

̂D2#X = μX(x)
xxT

|x|n+1

where μX is homogeneous of degree 0. This implies that A has the form (2).
Since A is Div-free, the function μ satisfies (1). Because it is positive, Pogorelov’s
Theorem tells us that it is the cofactor matrix D̂2θ associated with the support
function of some convex body K . Since positive Hessians are associated with
classes of convex bodies modulo translation, we obtain that the correspondence

(θ1, . . . , θn−1) �−→ Cofn(D
2θ1, . . . ,D2θn−1),

restricted to convex positively homogeneous functions of degree 1, rewrites as a
map

(K1, . . . ,Kn−1) �→ K

where the convex bodies are understood up to a translation. This construction is
equivalent to that of the mixed body K = [K1, . . . ,Kn−1] by Firey [2] (see also
Lutwak [7]) ; in other words, the measure μ(x)dx coincides with the mixed area
S(K1, . . . ,Kn−1).

The properties of the mixing map include symmetry, homogeneity and consis-
tency:

• For every ρ ∈ Sn−1, we have [Kρ(1), . . . ,Kρ(n−1)] = [K1, . . . ,Kn−1].
• For every λ > 0, we have [λK1, . . . ,Kn−1] = λ

1
n−1 [K1, . . . ,Kn−1].

• For every convex body K , we have [K, . . . ,K] = K .

If each Kj is balanced (that is the unit ball of some norm θj = ‖ · ‖j ), then K is
the class of a balanced body. The map above thus induces a map

(‖ · ‖1, . . . , ‖ · ‖n−1)
Nn�−→ ‖ · ‖

over the space of norms. It is symmetric, of partial degree of homogeneity 1
n−1 , and

satisfies

Nn(‖ · ‖, . . . , ‖ · ‖) = ‖ · ‖.
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1.4 The Euclidian Case

Suppose that each Kj is an ellipsoid, that is ‖x‖j =
√
xT Sj x for some Sj ∈ SPDn.

Then the resulting norm is Euclidian too, ‖x‖ = √
xT Sx where S ∈ SPDn is

implicitly defined through its cofactor

Ŝ = Cofn(S1, . . . , Sn−1).

The resulting body [K1, . . . ,Kn−1] is thus an ellipsoid too.
Since volKj = ωn

√
det Sj where ωn is the volume of the unit ball, Corollary 3.1

and the identity det Ŝ = (detS)n−1 tell us that

vol [K1, . . . ,Kn−1] ≥
(

n−1∏

1

volKj

) 1
n−1

. (3)

This inequality is a special case of that for general convex bodies (Theorem 4.1 of
[7]).

2 Compensated Integrability

Compensated Integrability deals with positive semi-definite Div-BV tensors. The
positivity means that for every ξ ∈ R

n, the distribution

A(ξ) :=
n∑

i,j=1

ξiξj aij

is non-negative, hence a Radon measure. See Proposition 1.1 for some examples of
this situation.

When A is positive semi-definite, the expression (detA)
1
n produces a well-

defined Radon measure, which is absolutely continuous with respect to the trace
TrA because of the AM-GM inequality

0 ≤ (detA)
1
n ≤ 1

n
TrA.

Compensated Integrability tells us that positiveness, associated with the control the
divergence, imply an enhanced integrability:

Theorem 2.1 (Serre [9, 10]) Let A be a positive semi-definite Div-BV tensor over

R
n. Then the measure (detA)

1
n actually belongs to L

n
n−1 (Rn), and we have the
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functional inequality

∥
∥
∥(detA)

1
n

∥
∥
∥

n
n−1

≤ cn ‖DivA‖ , (4)

where the norm in the right-hand side is the total mass

sup

{〈
DivA, 6φ

〉
| 6φ ∈ CK(Rn), sup

x
| 6φ(x)| ≤ 1

}

.

The constant cn is sharp: the equality in (4) is achieved with A = χBIn when χB

is the characteristic function of a ball.

The statement above generalizes several well-known inequalities from Func-
tional Analysis, say:

• The Gagliardo inequality [4]. Take A = χKdiag(f1, . . . , fn) where χK is the
characteristic function of a hypercube, and each fj ignores the coordinate xj
(∂jfj ≡ 0).

• The Sobolev–Gagliardo–Nirenberg inequality—the choice A = f (x)In gives

‖f ‖ n
n−1

≤ c‖∇f ‖1, ∀f ∈ W 1,1(Rn).

• The Isoperimetric inequality—taking A = χDIn where χD is a characteristic
function yields

(
vol(D)

vol(B)

) 1
n ≤
(

area(∂D)

area(∂B)

) 1
n−1

where B is ball in R
n.

2.1 The Role of Div-Free Tensors in Mathematical Physics

A paradigmatic positive Div-free tensor comes from the Euler equations of gas
dynamics. Here n = 1 + d where d is the space dimension, and x = (t, y) where t

stands for the time variable. The conservation laws of mass and momentum,

∂tρ + divy(ρv) = 0,

∂t (ρv)+ Divy(ρv ⊗ v)+∇yp = 0

can be recast as Divt,yT = 0 where

T =
(

ρ ρvT

ρv ρvvT + pId

)

.
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The tensor above is obviously symmetric, positive semi-definite whenever the
pressure p is non-negative, a rather natural assumption.

Symmetric Div-free tensors turn out to be ubiquitous in Mathematical Physics,
as explained in [12]. They express the conservation laws associated with the
invariance of some Lagrangian, under changes of coordinates, through Noether’s
Theorem. The group of invariance contains space and time shifts, which imply the
conservation of momentum and of energy. It also contains the orthogonal group of
some quadratic form (either dx2 or c2dt2 − dy2), which ensures the symmetry of
the tensor.

Compensated Integrability yields new estimates that depend only upon first
principles. In the canonical example of gas dynamics in the full space R

d , we thus
obtain a Strichartz-like estimate

∫ +∞

0
dt

∫

R
d
ρ

1
d p dy ≤ c′dM

1
d

(
1

4

∫ ∫

R
d×Rd

ρ0(y)ρ0(z)|v0(z)− v0(y)|2dz dy

+M

∫

R
d
e0(y) dy

) 1
2

,

where ρ0, e0, v0 are the density, internal energy and velocity at initial time, and
M = ∫ ρ0dy is the total mass. The double integral in the right-hand side is a
Galilean-invariant form of the product of the mass with the (initial) kinetic energy.

Other examples occur in various models of continuous or discrete mechanics, for
instance Vlasov-type equations [10] or kinetic (Boltzman) equations [9]. The corre-
sponding tensor is positive semi-definite whenever the interaction between particles
is repulsive; this excludes for instance viscous forces, or attractive Coulomb force.
The Maxwell’s system, whether it be linear or nonlinear, provides also a symmetric
Div-free tensor, expressing the conservation of energy and momentum, but this one
is always indefinite [10].

3 Div-BV Tensors and the Curvature of Hypersurfaces

Another application, to hard-spheres dynamics, is presented in [11]. It involves a
non-trivial version of Compensated Integrability for Div-BV tensors supported by a
graph. More generally, there are interesting situations in Differential Geometry or in
Mathematical Physics, where a Div-BV tensor is supported by a lower-dimensional
subset, say a submanifold. A remarkable example is the following.

Theorem 3.1 Let M be a C2-hypersurface in R
n, the tangent subspace at x ∈M

being TxM. Define the tensor KM by

KM = πx Hn−1|M
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where Hn−1 is the (n−1)-dimensional Hausdorff measure, and πx is the orthogonal
projection to 6TxM. Then we have

Div KM = (n− 1)κx6νx Hn−1|M (5)

where κx is the mean curvature at x ∈M, and 6νx is the unit normal vector.
In particular KM is Div-free if and only if M is a minimal surface.

Comments

1. Notice that since the entries of KM are measures, we expected a priori that
Div KM be a distribution of order −1. The reason why it is actually a measure,
is that KM vanishes in the normal direction.

2. Compensated Integrability, in its classical form (that is, in the ambient space),
is useless in such a context, because the rank of the tensor is bounded by the
dimension of the support; in the example above, πx has rank n − 1. Hence the
determinant vanishes identically and (4) becomes trivial. But it seems likely that
a version written within the variety (mind that the dimension occurs explicitly in
our functional inequality through exponents) must be valid; this is left as an open
problem. Of course the functional inequality will involve the ambient dimension
n− 1 instead of n. Our expectation is supported by Serre [11], where we showed
the role played by the vertices of the graph; there, the tensor is special, associated
with the support function of a convex body, whose volume enters in the functional
inequality. Another supporting argument is that CI in R

n−1 can easily be derived
from CI in R

n.
3. An interesting consequence of Identity (5) is that, given a BV-function f over

M, we have

Div (fKM) = (∇f (x)+ (n− 1)κxf (x)6νx) Hn−1|M .

Therefore the tangential gradient ∇f (x), and the normal component (n −
1)κxf (x), appear as the head and tail of the same coin, that of the Divergence
of an isotropic tensor. This suggests that the expected variant of Compensated
Integrability would give a new proof of the Sobolev–Gagliardo–Nirenberg
inequality on submanifolds, first established by Michael and Simon [6] for
general manifolds under the assumption of non-negative Ricci curvature. Here,
it expresses that for compactly supported functions f over M,

‖f ‖ n−1
n−2

≤ cn−1

∫

M
(|∇f (x)| + |κxf (x)|) ds(x).
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4. The connection between the mean curvature and the projection operator πx has
been observed for a long time. A formula equivalent to (6) below, though not
stated in terms of distributional Divergence, was used by Allard [1] as a definition
of generalized mean curvature and inner normal in the context of varifolds.

The proof below covers the more general case where the hypersurfaceM admits
a boundary. The complete formula is

Div KM = (n− 1)κx6νx Hn−1|M − 6Nx Hn−2|∂M , (6)

where 6Nx ∈ 6TxM is the outer unit normal vector to ∂M at x.
Proof Let � be an open neighbourhood of M. By definition, KM acts against test
tensors S ∈ D(�)n

2
through the formula

〈KM,S〉 =
∫

M
Tr (πxS(x))Hn−1.

The distributional derivative DivKM acts over vector-valued test functions 6φ ∈
D(�)n and is defined as usual by duality

〈Div KM, 6φ〉 = −〈KM,∇ 6φ〉 = −
∫

M
Tr (πx∇φ(x))Hn−1.

Because differential operators act locally, we content ourselves to work with test
fields whose support is suitably small. For a given point m ∈ M, we therefore
consider a ball B containing m, such that M∩B is the graph of a function y �→ w(y)

in an orthonormal system of coordinates (y1, . . . , yn−1, z) of Rn. The function is of
class C2 over an open subset ω ⊂ R

n−1. The boundary B ∩ ∂M is the image w(γ ),
where γ is a part of ∂ω, and w is of class C1 up to γ . All the calculations below are
done in the coordinates (y, z) ; vectors are written blockwise accordingly.

If Supp 6φ ⊂ B, its restriction to M∩B defines a field 6ψ by 6ψ(y) := 6φ(y,w(y)).
We have

∇ 6ψ = ∇y 6φ + ∂z 6φ∇w. (7)

In the following calculations, we use the formulæ

6νx = 1
√

1+ |∇w|2
(−∇w

1

)

, πx = In − 6νx ⊗ 6νx, Hn−1|M ∼
√

1+ |∇w|2 dy.

From (7), we get

πx∇ 6φ =
(∇ 6ψ

0

)

− 1

1+ |∇w|2
(
((∇w · ∇) 6ψ)∇w

−(∇w · ∇) 6ψ
)

.
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Defining a vector field 6q := (ψ1, . . . , ψn−1), we thus have

Tr (πx∇ 6φ) = div 6q − 1

1+ |∇w|2 (∇wT∇6q ∇w − ∇w · ∇ψn).

so that

〈DivKM, 6φ〉 = −
∫

ω

{√

1+ |∇w|2 div 6q − 1
√

1+ |∇w|2 (∇wT ∇6q ∇w −∇w · ∇ψn)

}

dy.

Integrating by parts, this yields

〈DivKM, 6φ〉 =
∫

ω

6q ·
(

∇
√

1+ |∇w|2 − Div
∇w ⊗∇w
√

1+ |∇w|2

)

dy +
∫

ω

ψndiv
∇w

√
1+ |∇w|2 dy

−
∫

γ

6q ·
(√

1+ |∇w|2 ny − ny · ∇w
√

1+ |∇w|2 ∇w

)

ds −
∫

γ

ψn

ny · ∇w
√

1+ |∇w|2 ds,

(8)

where ds is the element of area over γ and ny is the outer unit normal to γ .
We recall the well-known formula

div
∇w

√
1+ |∇w|2 = (n− 1)κx .

Noticing on the one hand that

∇
√

1+ |∇w|2 − Div
∇w ⊗∇w
√

1+ |∇w|2 = −(n− 1)κx∇w, (9)

the bulk integrals simplify into

∫

ω

(n− 1)κx(ψn − 6q · ∇w) dy =
∫

ω

(n− 1)κx 6ψ ·
(√

1+ |∇w|2 6νx
)

dy

=
∫

M∩B
(n − 1)κx 6φ · 6νxHn−1. (10)

On the other hand, when x ∈ ∂M, the vector

V := πx

(
ny

0

)

obviously belongs to 6TxM and is normal to 6Tx∂M, thus is parallel to Nx . Both V

and Nx point actually in the same direction, so that V = |V |Nx . Denoting ∇τ the
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tangential (to γ ) part of the gradient, we have also

|V |2 = 1− (ny · ∇w)2

1+ |∇w|2 = 1+ |∇τw|2
1+ |∇w|2 ,

and therefore

V =
√

1+ |∇τw|2
1+ |∇w|2 Nx.

We deduce that the boundary integral in (8) equals

−
∫

γ

6ψ · V
√

1+ |∇w|2 ds = −
∫

γ

6ψ · Nx

√

1+ |∇τw|2 ds

= −
∫

∂M∩B
6φ ·NxHn−2. (11)

Assembling (8), (10) and (11), we conclude

〈DivKM, 6φ〉 =
∫

M∩B
(n− 1)Hx

6φ · 6νxHn−1 −
∫

∂M∩B
6φ ·NxHn−2,

which gives the desired formula (6). ��
A nice consequence of Formula (6) concerns self-intersecting minimal hypersur-

faces:

Theorem 3.2 Let Mj (j = 1, 2, 3) be C2-hypersurfaces, meeting along their
common boundary 
, a codimension-2 submanifold. Define M =M1∪M2∪M3
and the tensor KM as in Theorem 3.1.

Then M is a minimal hypersurface if, and only if, DivKM = 0.

Proof A self-intersecting minimal hypersurface is a configuration which satisfies
Plateau’s laws:

• each film Mj is a smooth hypersurface with vanishing mean curvature,
• along the common boundary, the films make pairwise an angle of 2π

3 .

Since

DivKM = (n− 1)
3∑

j=1

κx6νx Hn−1|Mj
−
⎛

⎝
3∑

j=1

6Njx

⎞

⎠ Hn−2|
 ,

we see that KM is Divergence-free if, and only if, each of the Mj ’s have vanishing
mean curvature (whence the first law), and the unit outer normal vectors Njx sum
up to zero along 
. But three unit vectors sum up to zero if and only if they are
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coplanar (which they are, being normal to 
) and make pairwise an angle of 2π
3

(whence the second law). ��

Appendix: Cofactors and Geometric Mean in SPDn

We gather here some results, possibly new, concerning the (n− 1)-linear map Cofn.
We point out that the map S �→ Ŝ is On-equivariant, and thus its multi-linearisation
is so:

∀Q ∈ On,∀A ∈ Mn(R), ̂QT AQ = QT ÂQ, (12)

∀A1, . . . , An−1 ∈ Mn(R), Cofn(Q
T A1Q, . . . ,QT An−1Q) = QT Cofn(A1, . . . , An−1)Q.

Recall that if A is symmetric and invertible, then Â = (detA)A−1. In particular
the cone SPDn is left invariant under the cofactor map. Our first remark is that this
fact persists after multi-linearization:

Proposition 3.1 If A1, . . . An−1 ∈ SPDn, then Cofn(A1, . . . , An−1) ∈ SPDn.

By continuity, the same result holds true when the open cone SPDn is replaced
by its closure Sym+

n .
Proof We shall prove that for every unit vector x, we have xT Cofn(A1, . . . An−1)

x > 0. Because of (12), and since On acts transitively over the unit sphere, is
suffices to consider the case of the first vector e1 of the canonical basis. Thus we
need only to consider the upper-left entry of Cofn(A1, . . . An−1) and prove that it is
positive.

This entry is the multi-linearization of the map A �→ (Â)11 = detA′, where A′
is the principal submatrix obtained by deleting the first row and column. Thus

eT1 Cofn(A1, . . . An−1) e1 = Detn−1(A
′
1, . . . , A

′
n−1),

where Detn−1 is the multi-linearization of the determinant over Symn−1.
Let us recall that the determinant, a homogeneous polynomial, is hyperbolic over

Symn−1 in the sense of Gårding [3]. Its forward cone is SPDn−1, to which the
principal submatrices A′1, . . . , A′n−1 belong.

When P is a hyperbolic polynomial, homogeneous of degree d , with forward
cone 
, its multi-linearization $ satisfies a “reverse-Hölder” inequality:

$(z1, . . . , zd) ≥
⎛

⎝
d∏

j=1

P(zj )

⎞

⎠

1
d

, ∀z1, . . . , zd ∈ 
. (13)
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When applied to the determinant, (13) gives

Detn−1(A
′
1, . . . , A

′
n−1) ≥

⎛

⎝
n−1∏

j=1

detA′j

⎞

⎠

1
n−1

,

which implies

eT1 Cofn(A1, . . . An−1) e1 > 0.

��
Our next result involves the notion of geometrical mean of r elements B1, . . . , Br

of SPDn. It is defined in terms of the distance

d(B,C) = ‖ log(B−1/2CB−1/2)‖F =
(
∑

α

(logμα)
2

)1/2

,

where the μα’s are the eigenvalues of CB−1. This distance induces a Riemannian
structure, which enjoys the properties of a symmetric cone:

• Congruences B �→ MT BM (where M ∈ GLn(R)) are isometries.
• The inversion B �→ B−1 is an isometry.

The geometric mean G(B1, . . . , Br) is the unique matrix X ∈ SPDn which
minimizes

B �→
r∑

i=1

d(B,Bi)
2.

It is characterized by the equation

r∑

i=1

log(X−1/2BiX
−1/2) = 0n, X ∈ SPDn. (14)

When r = 2, it is rather denoted B1*B2, and we have an explicit formula

B*C = B1/2(B−1/2CB−1/2)1/2B1/2 = C1/2(C−1/2BC−1/2)1/2C1/2.

Taking the trace of (14), we obtain the elementary property
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Proposition 3.2 The determinant of the geometrical mean equals the geometrical
mean of the determinants:

detG(B1, . . . , Br ) =
(

r∏

i=1

detBi

)1/r

.

Another useful fact is the

Proposition 3.3 Given B1, . . . , Br ∈ SPDn and v ∈ R
n, we have

vTG(B1, . . . , Br)v ≤
(

r∏

i=1

vT Biv

)1/r

.

In other words, the evaluation (as a quadratic form) of the geometrical mean
of positive definite matrices, is bounded above by the geometric mean of the
evaluations.
Proof We first observe that if � > 0 is a diagonal matrix, and w ∈ R

n, then by
concavity of the logarithm

wT (log�)w =
∑

α

w2
α logλα ≤ |w|2 log

(
1

|w|2
∑

α

w2
αλα

)

= |w|2 log
wT �w

|w|2 .

Since every S ∈ SPDn is unitarily similar to a positive diagonal matrix, we infer

∀S ∈ SPDn,∀w ∈ R
n, wT (log S)w ≤ |w|2 log

wT Sw

|w|2 .

Let X be the geometrical mean. Evaluating (14) at w and applying the inequality
above, we have

0 =
r∑

i=1

wT log(X−1/2BiX
−1/2)w ≤ |w|2

r∑

i=1

log
wT X−1/2BiX

−1/2w

|w|2 .

Substituting v = X−1/2w, this rewrites as

0 ≤
r∑

i=1

log
vT Biv

vT Xv
,

which gives the result. ��
The mean inherits the symmetry properties of the distance d . For instance it is

equivariant under congruences:

∀M ∈ GLn(R),∀B1, . . . , Br ∈ SPDn, G(MT B1M, . . . ,MT BrM)=MTG(B1, . . . , Br )M.
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Likewise, it is invariant under inversion:

∀B1, . . . , Br ∈ SPDn, G(B1, . . . , Br )
−1 = G(B−1

1 , . . . , B−1
r ).

It is also homogeneous of degree 1
r

in each of its arguments:

∀a1, . . . , ar ∈ R,∀B1, . . . , Br ∈ SPDn, G(a1B1, . . . , arBr)=(a1 · · ·ar)1/rG(B1, . . . , Br ).

From the two last properties, plus the identity Â = (detA)A−1, we deduce that it
commutes with the cofactor map:

Ĝ(B1, . . . , Br ) = G(B̂1, . . . , B̂r ).

We now state our main result. This is a sort of generalization of (13), where the
cofactor map S �→ Ŝ plays the role of P and the geometric mean in the right-hand
side is understood in the sense discussed above.

Theorem 3.3 For every A1, . . . , An−1 ∈ SPDn, we have

G(Â1 . . . , Ân−1) ≺ Cofn(A1 . . . , An−1).

Proof We have to compare the evaluations of both sides at an arbitrary vector v �= 0.
By homogeneity and On-equivariance, it suffices to compare them when v = e1 is
the first element of the canonical basis, that is to compare the (1, 1)-entries of both
matrices.

On the one hand, we have (Proposition 3.3)

eT1 G(Â1 . . . , Ân−1)e1 ≤
(

n−1∏

1

eT1 Âie1

) 1
n−1

.

Writing blockwise the matrices

Ai =
(· ·
· A′i

)

, A′i ∈ SPDn−1,

we have eT1 Âie1 = detA′i , whence

eT1 G(Â1 . . . , Ân−1)e1 ≤
(

n−1∏

1

detA′i

) 1
n−1

.

Now, because the determinant is a hyperbolic polynomial over SPDn−1, we infer

eT1 G(Â1 . . . , Ân−1)e1 ≤ Detn−1(A
′
1, . . . , A

′
n−1).
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We conclude by remarking that the right-hand side above is nothing but
eT1 Cofn(A1, . . . , An−1)e1. ��

Corollary 3.1 For every A1, . . . , An−1 ∈ Sym+
n , we have

n−1∏

i=1

detAi ≤ det Cofn(A1 . . . , An−1).

Proof By density and continuity, we may assume that every Ai is positive definite.
From Proposition 3.2 and Theorem 3.3, we have

(
n−1∏

1

det Âi

) 1
n−1

= detG(Â1 . . . , Ân−1) ≤ det Cofn(A1 . . . , An−1).

We conclude by using det Â = (detA)n−1. ��

Acknowledgements I am indebted to the anonymous referee, who let me know a relevant piece
of literature.
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Hyperbolic Conservation Laws:
Past, Present, Future

Constantine M. Dafermos

1 Introduction

Hyperbolic conservation laws is the term commonly used for quasilinear first-order
hyperbolic systems of partial differential equations in divergence form. In classical
continuum physics, such systems express the conservation laws for continuous
media in the absence of diffusion induced by viscosity, heat flux, etc.

The oldest, and still most important, example is provided by the Euler equations

⎧
⎨

⎩

∂tρ + div (ρv) = 0

∂t (ρv)+ div (ρv ⊗ v) + gradp(ρ) = 0,
(1)

which express the conservation of mass and momentum in the barotropic flow
of an inviscid gas. Because of its central importance in classical physics and
technology, this system has been studied intensively over the past three centuries by
mathematicians, physicists and engineers. The amount and variety of the amassed
information is enormous and yet, from the standpoint of mathematical analysis, the
fundamental questions are still open. This equally describes the state of affairs of the
entire field of hyperbolic conservation laws: a long history, a wealth of information,
recent fruitful activity and major open questions.

The aim of this brief article is to present a bird’s-eye view of the area, with an
eye to the challenges posed by open problems that are currently under investigation.
It does not purport to provide a review of the field—that would be a much more
ambitious project. In particular, attributing each development to its contributor(s)
would require hundreds of references. In their place, the bibliography consists of
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a collection of texts and monographs, where the reader may find comprehensive
expositions, together with a sample of seminal papers, of historical importance or
recent vintage, which have set, or are setting, directions in the development of the
field.

The author has struggled to gain an overview of the field in the course of
his efforts to prepare an encyclopedic presentation of the subject. The resulting
book, Hyperbolic Conservation Laws in Continuum Physics, was published by
Springer in the year 2000, and in order to keep up with current developments
has undergone four editions, with a fifth in preparation. Throughout this 25 year
endeavor, the encouragement and assistance of Catriona Byrne has been invaluable
and indispensable. This article is a small token of gratitude for her support.

2 The Past

This section spans two centuries, between 1750 and 1950. The following was
accomplished during that period:

The origins of the subject lie in classical physics. Mathematical physicists
formulated the major field theories that are governed by hyperbolic systems of
conservation laws. This was achieved initially within the framework of mechanics,
where mass and momentum are conserved. The development of thermodynamics
in the mid-nineteenth century introduced the energy conservation law together with
the notions of entropy, viscosity and heat conductivity, which play a major role in
the subject. The construction of the edifice of classical physics was completed with
the development of electrodynamics, which became yet another source for systems
of hyperbolic conservation laws.

The earliest efforts in the analysis of hyperbolic conservation laws were focused
on the Euler equations in one space dimension:

⎧
⎨

⎩

∂tρ + ∂x(ρv) = 0

∂t (ρv) + ∂x(ρv
2)+ ∂xp(ρ) = 0,

(2)

where ρ is the density, v is the velocity and p denotes the pressure of the gas. In
the course of the study of (2) it was soon realized that the characteristic property of
nonlinear hyperbolic conservation laws is that the lifespan of classical solutions
terminates in finite time because of wave breaking. This prompted Stokes to
introduce the notion of a shock wave, which manifests one of the earliest examples
of a weak solution to a partial differential equation. In his groundbreaking study
of (2), Riemann discovered the presence of what are now called Riemann invariants
in classical solutions and constructed self-similar weak solutions, solving the
Riemann problem.
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Appending the energy conservation law to the Euler equations yields the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tu− ∂xv = 0

∂t v + ∂xp(u, s) = 0

∂t
[
ε(u, s)+ 1

2v
2
]+ ∂x

[
p(u, s)v

] = 0,

(3)

which is here written in Lagrangian coordinates. In comparison to (2), (3) introduces
the new fields of entropy s and internal energy ε. The symbol u denotes the specific
volume, the inverse of density. The structure of shock waves for this important
system was first investigated by Hugoniot.

The introduction of solutions with shocks brought out a number of questions on
uniqueness and stability that had to be addressed by a combination of physical and
mathematical arguments.

Intensive investigation of the systems of conservation laws of gas dynamics and
other specific hyperbolic conservation laws was conducted during the first half of
the twentieth century so as to meet the demands for technological developments in
the aerospace and chemical industries. By mid century, intimate familiarity with
these equations had been gained and a great number of particular solutions had
been constructed, especially for steady-state, irrotational transonic flow. The list of
contributors to that research effort included applied mathematicians, aerodynami-
cists and other engineers. However, because of the formidable obstacles posed by
the analysis, the bulk of these results had been derived by heuristic arguments or
formal asymptotics. Experiments in wind tunnels also played an important role. A
systematic formulation of the general theory and a rigorous mathematical treatment
were still lacking.

3 The Present

A major turn in the direction of research took place in the early 1950s. Following
the general trends in partial differential equations, the study of the qualitative theory
of hyperbolic conservation laws was initiated. Motivated by a pioneering paper on
the Burgers equation

∂tu+ ∂x

(1

2
u2
)
= 0 (4)

by Hopf, Lax coined the term “hyperbolic systems of conservation laws” and
provided a codification of the subject based on a distillation of the earlier works by
mathematicians, physicists and engineers. In consequence, hyperbolic conservation
laws became an important part of the theory of partial differential equations. Major
progress has been made in the following directions.
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The scalar conservation law has been thoroughly investigated. Even the one-
space dimensional case,

∂tu+ ∂xf (u) = 0, (5)

manifests fascinating structure. In the multi-space dimensional situation,

∂tu+
m∑

i=1

∂xi fi(u) = 0, (6)

a major development was the insightful definition of admissible weak solutions
by Kruzhkov, inducing contraction in L1 that renders the Cauchy problem well-
posed. An alternative, equivalent formulation deemed “kinetic,” introduced by
Lions, Perthame and Tadmor, provides a powerful tool that leads to a precise
description of the fine properties of solutions. The status of the theory of the scalar
conservation law is by now definitive, but still new interesting properties continue
to be discovered.

Great progress has also been achieved in the study of systems of conservation
laws, but the theory is far from approaching completeness.

Beginning with the one-space dimensional case,

∂tU + ∂xF (U) = 0, (7)

U in R
n, a thorough investigation of self-similar solutions, U(x, t) = V (x/t), to

the Riemann problem has contributed to clearing the issues of admissibility and
uniqueness of solutions.

A major step was the development of the random choice method of Glimm,
which constructs BV solutions to the Cauchy problem for (7), under initial data
with small total variation, by using solutions to the Riemann problem as building
blocks. This methodology enabled DiPerna, T.-P. Liu and many other authors to
derive a detailed description of the structure and long time behavior of BV solutions.
An alternative but parallel approach, termed front tracking, devised by the Italian
school led by Bressan, has established both the existence and the uniqueness of
solutions. Even sharper results on existence, uniqueness and stability were obtained
by Bianchini and Bressan via the method of vanishing viscosity, which derives
solutions of (7) as limits of solutions to the parabolic system

∂tU + ∂xF (U) = ε ∂2
xU, (8)

as the artificial viscosity ε tends to zero. Thus, the basic theory of the Cauchy
problem for (7) under initial data with small total variation is essentially complete.
However, the case of initial data with large variation is still wide open.
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Progress has also been made in the theory of balance laws

∂tU + ∂xF (U) = G(U), (9)

with source terms G(U) of relaxation type.
For a special, but important, class of systems, weaker solutions, in L∞,

were constructed by means of the functional analytic method of compensated
compactness.

Modeling with systems of conservation laws in one-space dimension has prolif-
erated and now extends beyond physics to traffic theory and several other areas in
science and engineering.

We next turn to the case of systems

∂tU +
m∑

i=1

∂xiFi(U) = 0 (10)

in several space dimensions. After a long period of stagnation, significant progress
has been made in recent years.

The investigation of the Euler equations (1) has yielded notable breakthroughs
over the past few years. To begin with, it has been verified that classical solutions
break down in finite time with the development of shocks. Furthermore, following
pioneering work by De Lellis and Szekelyhidi, the method of convex integration has
been employed for constructing weak solutions to the Cauchy problem which will be
termed exotic. In particular, it was shown that infinitely many exotic solutions exist
for a dense class of initial data. This raises the issue of uniqueness and admissibility
of weak solutions, which has not yet been addressed in a satisfactory manner.

In a different direction, a successful research program launched by Gui-Qiang
Chen and coauthors has established the existence of steady solutions to the Euler
equations, in two-space dimensions, in the range where the equations change type,
from elliptic to hyperbolic. As noted in the previous section, such solutions, which
govern transonic gas flow, had been anticipated, but not rigorously established, for
the needs of the aerospace industry.

The methodology for constructing weak solutions via convex integration has also
been applied to certain systems of conservation laws related to the Euler equations
but not to general systems (10), for which the existence of weak solutions to the
Cauchy problem is still open. As a partial remedy, research has been redirected
to constructing measure-valued solutions. This notion of solution, introduced by
DiPerna, is very weak, which raises the issues of admissibility and uniqueness. As
a minimum, it has been shown that, so long as they exist, classical solutions to the
Cauchy problem are unique and stable within the class of weak or measure-valued
solutions that dissipate the aggregate entropy.

Progress in the qualitative theory of hyperbolic conservation laws has proceeded
hand in hand with advances in the numerical analysis of solutions. Indeed, the art
and science of scientific computation in the area of gas dynamics has flourished over
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the past 50 years, as a result of sophisticated algorithms combined with the use of
fast computers and the overall gains in experience with computing.

4 The Future

Any attempt to forecast the future carries risks, but at least it looks reasonable to
expect developments in the following directions, which were set in the previous
section.

In regard to systems (7), in one spatial dimension, the fundamental question
whether the Cauchy problem in the BV setting is well-posed for initial data with
large total variation remains wide open. Systems have been designed in which the
variation, and even the L∞ norm, of solutions blow up in finite time, but it is not
clear whether this pathological behavior is limited to special systems or is generic.
Efforts to demonstrate either global existence or finite-time blowup of BV solutions
have failed to reach a conclusion in either direction, even for the simplest systems,
such as (2). The difficulty lies in that wave interactions may generate such an
enormous variety of complex wave patterns that it looks impossible to classify and
analyze them. Computer-assisted proofs may lend a helping hand for that purpose.
It is conceivable that even for systems as simple as (2) the variation may blow up,
albeit only for solutions with special, nongeneric initial data. Perhaps, it may prove
easier to demonstrate breakdown of the variation by designing resonating source
terms, with no regard to the initial data. In any case, the general theory will remain
in limbo until this issue is settled.

Staying in the realm of one spatial dimension, questions of central importance
on the Cauchy problem for the system (9) of balance laws remain unanswered, even
when the initial data have small variation. Indeed, success in controlling growth of
the variation in systems of conservation laws (7) hinges on exploiting the dispersion
effect: after colliding, two waves of distinct characteristic families move away from
each other, never to interact again. By contrast, in the case of solutions to systems
of balance laws (9), the source term induces scattering that redistributes the wave
strength among the various characteristic families and may thus offset the beneficial
effects of dispersion. The investigation of the role of scattering by the source is a
necessary prerequisite for completing the theory of systems of balance laws.

Turning to systems of conservation laws in several space dimensions, it is fair
to say that the area is still terra incognita, albeit on the verge of being explored.
An important component that is missing in the theory of both weak and measure-
valued solutions is an admissibility condition that would render the Cauchy problem
well-posed. Experimentation in that direction has begun, drawing on the experience
already gained in the one-space dimensional case. Arguments based on entropy
dissipation or vanishing viscosity have been tried, but the results are far from
conclusive at the present time. This is a major challenge that must be met.

The recent activity on constructing exotic weak solutions to the Euler equations
via convex integration, reported in the previous section, has left a number of open
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questions. To begin with, it will be important to see how exotic solutions look, as
the only information available at the present time is that they are highly oscillatory.
In particular, the conjectured relation between the existence of exotic solutions and
the phenomenon of turbulence must be investigated.

It has been verified experimentally that weak solutions that are constant in all but
one spatial direction, such as planar shocks or fans thereof, which are determined
by solving Riemann problems, are physically relevant in gas dynamics. This must
be explained in the face of the existence of a multitude of exotic solutions that start
out with the same initial values but then vary in all spatial directions and dissipate
entropy at a higher rate. A possible explanation is that we are missing the proper
admissibility condition on weak solutions. Alternatively, it may turn out that exotic
solutions are not observed in nature because they are not generic. This issue must
be resolved by future research.

Still another important question is whether the existence of the rich family of
exotic solutions is peculiar to the Euler equations, resulting from a particular lack
of determinacy in their structure, or whether it extends to more general classes of
systems of conservation laws (10). To that end, the natural candidate for serving as
a test case is the system of conservation laws of elastodynamics.

The prediction is that the quest for a general theory will continue for a long time.
The investigation of the Cauchy problem for hyperbolic conservation laws under

random initial data is at an early stage of development and is expected to grow in
the near future. Perhaps it will shed some light on the question of uniqueness by
identifying which solutions are likely to be observed in nature.

Great progress should also be expected in the art and science of scientific
computation of solutions, in the following directions.

On the theoretical side, the supporting numerical analysis of the algorithms
employed in the solution of systems is based to a great extent on the theory of the
scalar conservation law. The expectation is that progress will be made by bringing
closer the numerical and the theoretical analysis of systems.

A new challenge to scientific computing is posed by the exotic solutions of the
Euler equations constructed via convex integration. Their computation will not be
an easy task as they are highly oscillatory. It should be noted that the success of
such a project would also provide valuable assistance to the theory by revealing the
structure of these solutions, which is currently unknown. An equally challenging
task is the development of methodologies for computing measure-valued solutions.

Computational projects combining traditional algorithms, based on the equa-
tions, with data science will become widespread.

The range of applications will also be expanded. Examples of topics in which
there is current activity in modeling with hyperbolic conservation laws include
traffic in congested transportation networks, gas flow in pipe networks and control
theory. Research in these areas will undoubtedly continue and new areas will open
up.
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Which Nuclear Shape Generates
the Strongest Attraction on a Relativistic
Electron? An Open Problem
in Relativistic Quantum Mechanics

Maria J. Esteban, Mathieu Lewin, and Éric Séré

This article is dedicated to Catriona Byrne on the occasion of
her retirement. Her extremely good knowledge of the
mathematical community and profession and her kindness made
her presence in mathematical events always enjoyable and very
useful.

1 A Conjecture for Relativistic Electrons

In this note we describe some conjectures which we recently coined in [13, 14],
concerning the effect of a nuclear charge on a relativistic electron. We first describe
the main conjecture somewhat informally, before we discuss its proper mathematical
formulation more thoroughly. Consider a non-negative finite Borel measure μ on
R

3 and the corresponding linear Schrödinger operator

− �

2
− μ ∗ 1

|x| , (1)

which describes a non-relativistic electron moving in the Coulomb potential gener-
ated by the positive charge distribution μ, in atomic units. The lowest (negative)
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eigenvalue of this operator is given by the variational principle [26]

λ1

(

−�

2
− μ ∗ 1

|x|
)

= inf
ϕ∈H 1(R

3
)∫

R
3 |ϕ|2=1

{
1

2

∫

R
3
|∇ϕ(x)|2 dx −

∫

R
3

(

μ ∗ 1

| · |
)

(x) |ϕ(x)|2 dx

}

. (2)

Since this is an infimum over affine functions of μ, we deduce immediately that the
eigenvalue is a concave function of μ. Therefore, it is minimized, at fixed mass
μ(R3), when μ is proportional to a delta and we have

λ1

(

−�

2
− μ ∗ 1

|x|
)

≥ λ1

(

−�

2
− μ(R3)

|x|
)

= −μ(R3)2

2
(3)

for every μ ≥ 0. The interpretation is that the lowest possible electronic energy
is reached by taking the most concentrated charge distribution, at fixed total charge
μ(R3). In fact, in [25, 27] it is proved that the eigenvalue decreases when μ is
deformed using an arbitrary contraction, for instance a dilation α3μ(α·) with α ≥ 1.
This was generalized to molecular systems in [19, 25, 27], where it is proved that the
electronic part of the ground state energy decreases when all the distances between
the nuclei are decreased.

Relativistic effects play an important role in the description of quantum electrons
in molecules containing heavy nuclei, even for not so large values of the nuclear
charge. A proper description of such systems is based on the Dirac operator [11, 38].
This is a first-order differential operator which has very different properties
compared to its non-relativistic counterpart−�/2 in (1). For instance the spectrum
of the free Dirac operator is not semi-bounded, which prevents us from giving
an unambiguous definition of a “ground state” and turns out to be related to the
existence of the positron [11]. In addition, because of its scaling properties, the
Dirac operator has a critical behavior with respect to the Coulomb potential 1/|x|
which gives a bound Z � 137 on the highest possible charge of atoms in the periodic
table, for point nuclei.

In atomic units for which m = c = h̄ = 1, the free Dirac operator D0 can be
written as

D0 = −iα ·∇ + β = −i

3∑

k=1

αk∂xk + β, (4)
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where α1, α2, α3 and β are 4 × 4 Hermitian matrices which satisfy the following
anticommutation relations:

⎧
⎨

⎩

αkα� + α�αk = 2 δk� 1,

αkβ + βαk = 0,
β2 = 1.

The usual representation in 2× 2 blocks is given by

β =
(
I2 0
0 −I2

)

, αk =
(

0 σk

σk 0

)

(k = 1, 2, 3) ,

where the Pauli matrices are defined as

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0
0 −1

)

. (5)

The operator D0 is self-adjoint on the domain H 1(R3,C4) in the Hilbert space
L2(R3,C4) and its spectrum is σ(D0) = (−∞,−1] ∪ [1,∞) [38]. Moreover,
(D0)

2 = −�+ 1.
A relativistic electron in the presence of the nuclear charge μ is described by the

Dirac–Coulomb operator

D0 − μ ∗ 1

|x| (6)

in place of the non-relativistic operator (1). In our units μ represents the nuclear
charge multiplied by the fine-structure constant α - 1/137. We defer the precise
definition of the Dirac–Coulomb operator to the next section. Eigenvalues in the
gap (−1, 1) physically correspond to stationary states of the relativistic electron.
Therefore it seems natural to expect that the lowest eigenvalue in (−1, 1) will again
be minimized for the Dirac measure μ(R3)δ0, like in the Schrödinger case (3). This
is the conjecture which we recently made in [13, 14].

Conjecture 1.1 (General Charges [13, 14]) For any non-negative Borel measure
μ such that μ(R3) � 1, the lowest eigenvalue in the gap (−1, 1) satisfies

λ1

(

D0 − μ ∗ 1

|x|
)

≥ λ1

(

D0 − μ(R3)

|x|
)

=
√

1− μ(R3)2. (7)
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In relativistic quantum chemistry one often relies on extended nuclear charges,
hence the interest of looking at any possible μ. If we restrict our attention to
pointwise nuclei, then we have μ =∑m θmδRm and the conjecture becomes

Conjecture 1.2 (Multi-Center Potentials [13, 14]) We have

λ1

(

D0 −
M∑

m=1

θm

|x − Rm|

)

≥ λ1

(

D0 −
∑M

m=1 θm

|x|

)

=

√
√
√
√
√1−

(
M∑

m=1

θm

)2

(8)

for all M ≥ 2, all R1, . . . , RM ∈ R
3 and all θm ≥ 0 so that

∑M
m=1 θm � 1,

Since any μ can be approximated by a combination of Dirac deltas for the narrow
topology, Conjecture 1.2 is equivalent to Conjecture 1.1. Indeed λ1 is continuous
for this topology [14, Lemma 12].

The case M = 2 was conjectured by Klaus in [23, p. 478] and by Briet–Hogreve
in [3, Sec. 2.4]. Numerical simulations from [2, 30] seem to confirm the conjecture
for M = 2, even for large values of the nuclear charges. In [13, 14] and here we
make the stronger conjecture that the same holds for any M . Note that the numerical
simulations seem to indicate that λ1 decreases when the Euclidean distance between
nuclear charges is decreased, a property proved by Lieb and Simon [25, 27] in the
non-relativistic case. This leads to a third conjecture:

Conjecture 1.3 (Monotonicity) Let μ be a non-negative Borel measure such that
μ(R3) � 1 and let f : R3 → R

3 be a contraction for the Euclidean norm of R3.
Then, denoting by f∗μ the pushforward of μ by f , we have

λ1

(

D0 − μ ∗ 1

|x|
)

≥ λ1

(

D0 − (f∗μ) ∗ 1

|x|
)

. (9)

Conjecture 1.1 is a special case of Conjecture 1.3, as can be seen by taking f = 0.
In this note we only discuss Conjecture 1.1, which is already far from obvious. The
main difficulty is that the lowest Dirac eigenvalue in the gap (−1, 1) is not given
by a minimum like in (2). In fact, as quickly explained below, it is given by a
min-max formula [7, 13, 17, 35]. Unfortunately, it does not seem easy to derive
a concavity property of λ1(D0 − μ ∗ |x|−1) from this variational characterization,
and this prevents us from using the same argument as in the nonrelativistic case.
However the min-max formula implies that λ1(D0 + V ) is monotone in V , so
that Conjecture 1.1 holds true if one restricts it to radially symmetric measures μ.
Indeed, for such measures we have the pointwise bound

(

μ ∗ 1

| · |
)

(x) � μ(R3)

|x| ,
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by Newton’s theorem [26] and (7) follows. If one only considers radial contractions
f , Conjecture 1.3 is also true for radially symmetric measures μ. No other case
seems to have been proved in the literature.

In the next section we discuss the proper definition of the Dirac operator D0 −
μ∗|x|−1 in (6) and the exact meaning of the “lowest eigenvalue in the gap” λ1(D0−
μ ∗ |x|−1) appearing in the conjecture.

2 Dirac Operator with External Charges

2.1 Self-adjointness

For Coulomb-like potentials V , it is not an easy task to define D0 + V as a
self-adjoint operator. The reason is that 1/|x| has the same homogeneity as the
differential part α ·∇ of the free Dirac operator. In the pure Coulomb case μ = νδ0,
everything is explicit. The operator D0−ν|x|−1 has a unique self-adjoint realization
for ν �

√
3/2 and infinitely many for ν >

√
3/2. For ν ∈ (

√
3/2, 1] one

self-adjoint extension is special, with the corresponding eigenfunctions being the
least singular at the origin. It is called the “distinguished” extension. For ν > 1
all the self-adjoint realizations look the same, with eigenfunctions having similar
oscillations near the origin [20]. For ν ∈ [0, 1] it is known that the lowest eigenvalue
of the distinguished extension in the gap (−1, 1) equals

√
1− ν2 and therefore

remains positive. The formula for this eigenvalue was already used on the right
side of (7).

Many works have been devoted to the case of a general Coulomb-type potential
V since the 1970s [22–24, 33, 34, 36, 40–42]. Various methods were introduced
to prove that there also exists a unique “distinguished” self-adjoint extension. The
results typically cover any potential V satisfying the pointwise inequality

0 ≥ V (x) ≥ − ν

|x| , ν ∈ (0, 1).

In this case, “distinguished” can have several possible meanings, which were all
eventually shown to be equivalent. One requirement was that the domain of the
operator be a subspace of H 1/2(R3,C4), so that the energy is well defined. Another
natural property was that the operator is the norm-resolvent limit of the Dirac
operator with a regularized potential. Using a quite different approach Esteban and
Loss proved more recently in [15, 16] that a distinguished self-adjoint extension
could also be defined in the critical case ν = 1.

For small values of ν, the domain of self-adjointness is just the Sobolev space
H 1(R3,C4) but for larger values of ν, the domain was not explicit in most of the
above-cited works. The recent articles [12, 35] contain a more detailed analysis of
the domain.
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In [13] all the previous works were generalized to cover the case of potentials
V = −μ∗|x|−1. The existence of a “distinguished” extension was shown under the
sole assumption that μ is a non-negative finite measure which has no atom of mass
larger than or equal to 1. This gave a clear definition to the operator D0 −μ ∗ |x|−1

in (6), describing one electron in the presence of a nuclear charge μ.

2.2 Dirac Eigenvalues in the Gap

Once the operators have been well defined, the next question is how to find and
characterize the stationary states, that is, the eigenvalues in the spectral gap (−1, 1).
This has also attracted a lot of attention in spectral theory and mathematical physics
in the last two decades [7–10, 12, 17, 31, 32, 35]. We are not going to state the
precise result here, but the conclusion is that one can characterize the eigenvalues
in the spectral gap using non-standard min-max variational methods. Potentials of
the form V = −μ ∗ |x|−1 were not covered by most of the existing results but they
were handled in [13], following the method in [7, 12, 35].

Let us emphasize that there is some difficulty in defining what it means to be the
“lowest eigenvalue in the gap (−1, 1)”, as in our two Conjectures 1.1–1.3. If we
have a well-behaved (e.g. bounded) negative potential V , then the eigenvalues of
D0+ tV will be close to 1 for small t > 0 and will all decrease when t is increased.
The lowest eigenvalue will eventually touch the lower spectrum at −1, at a certain
finite value of t , and dissolve in the continuum. Then the second eigenvalue in
the gap becomes the lowest one. We do not wish to look at these pathological
discontinuities and want to be sure that the lowest eigenvalue remains so for all
t � 1.

In fact, should our Conjectures 1.1 and 1.2 hold true, they would imply that

λ1
(
D0 − tμ ∗ |x|−1) ≥ 0, ∀t ∈ (0, 1).

In particular, when we turn on the potential V = −μ ∗ |x|−1 by means of the
parameter t , the lowest eigenvalue will always be non-negative and there will be
no spectrum in the lower half of the gap (−1, 0). No eigenvalue will dive into the
negative continuum, which justifies considering the lowest one.

Since we do not know how to prove the conjecture, a natural first step was
to investigate which measure μ can have eigenvalues approaching the negative
threshold−1. In [14], we defined a critical charge ν1 as the largest positive number
for which

λ1(D0 − μ ∗ |x|−1) > −1 for all 0 < μ(R3) < ν1 .

For measures with μ(R3) < ν1 there is thus no ambiguity of what it means to be the
“lowest eigenvalue”. Our Conjectures 1.1 and 1.2 contain the statement that ν1 = 1.
The following was shown in [14].
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Theorem 2.1 (The Critical Charge ν1 [14]) The critical number ν1 satisfies

0.9 - 2

π/2+ 2/π
� ν1 � 1. (10)

It is also the best constant in the Hardy-type inequality

∫

R
3

|σ · ∇ϕ|2
μ ∗ |x|−1 dx ≥ ν2

1

μ(R3)2

∫

R
3

(

μ ∗ 1

|x|
)

|ϕ|2 dx (11)

for every ϕ ∈ C∞c (R3,C2) and every finite non-negative measure μ ≥ 0, where
σ1, σ2, σ3 are the 2× 2 Pauli matrices defined above in (5).

The estimate (10) was proved using an inequality due to Tix [39], whereas the
link with the Hardy inequality (11) comes from the variational characterization of
the first eigenvalue. Such inequalities have played an important role in the study of
Dirac operators [1, 4–7].

3 Two Results from [13, 14]

In this last section we mention two results from [13, 14] which are related to our
Conjectures 1.1–1.3.

3.1 Existence of an Optimal Measure μ

Even if we do not know that concentrating all the mass at one point gives the lowest
eigenvalue, we could at least prove that there exists an optimizer μ for a fixed mass
μ(R3) = ν < ν1 and that it has a very small support.

Theorem 3.1 (Existence of an Optimal Measure [14]) For any ν ∈ [0, ν1), there
exists a positive Borel measure μν with μν(R

3) = ν so that

λ1

(

D0 − μν ∗ 1

|x|
)

= min
μ :

μ(R
3
)=ν

λ1
(
D0 − μ ∗ |x|−1).

The support of any such minimiser μν is a compact set of zero Lebesgue measure.

The theorem is proved in [14] by a rather delicate adaptation of techniques
from nonlinear analysis to the context of Dirac operators. The first eigenvalue is
a highly nonlinear function of the measure μ, even if the operator only depends
linearly on μ. The main “enemy” is the action of the non-compact group of
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space translations, which is controlled using Lions’ concentration-compactness
method [28, 29]. The main difficulty was to prove that the problem is locally
compact under the assumption that 0 � ν < ν1 and this is another reason why
the critical mass ν1 plays a central role. In spirit, the local compactness holds true
because the eigenvalue cannot dive into the lower continuous spectrum by definition
of ν1. But the actual proof is rather involved and relies on variational arguments
using the min-max characterization of the first eigenvalue. That the support has zero
Lebesgue measure was shown in [14] by means of a unique continuation principle
for Dirac operators, which extends famous results in the Schrödinger case [21, 37].

3.2 The Potential Energy Surface

In quantum chemistry one is interested in the potential energy surface which, by
definition, is the graph of the first eigenvalue of the multi-center Dirac–Coulomb
operator, seen as a function of the locations of the nuclei, including the nuclear
repulsion:

(R1, . . . , RM) �→ λ1

(

D0 −
M∑

m=1

θm

|x − Rm|

)

+
∑

1�m<��M

θmθ�

|Rm − R�| .

For the case M = 2 the properties of the above function were analyzed in [3, 18, 23]
in the case of subcritical singularities with charge θm < 1. In [13] we extended these
results to cover the case M > 2 and also to include the critical case of nuclear charge
equal to 1. We proved the following

Theorem 3.2 (The Potential Energy Surface [13]) Let 0 < θ1, . . . , θM � 1.

(i) The map (R1, . . . , RM) �→ λ1
(
D0 −∑M

m=1 θm|x − Rm|−1
)

is continuous on
the open set

� =
{

(R1, . . . , RM) ∈ (R3)M : Rm �= R� for m �= �

λ1

(

D0 −
M∑

m=1

θm

|x − Rm|

)

> −1

}

.

(ii) Moreover,

lim
mink �=� |Rk−R�|→∞ λ1

(

D0 −
M∑

m=1

θm

|x − Rm|

)

=
√

1−max
m

θ2
m. (12)
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(iii) If in addition
∑M

m=1 θm < ν1 then

lim
maxk �=� |Rk−R�|→0

λ1

(

D0 −
M∑

m=1

θm

|x − Rm|

)

=

√
√
√
√
√1−

(
M∑

m=1

θm

)2

. (13)

By (ii) we see that Conjecture 1.2 is valid when the nuclei are infinitely far apart.
On the other hand, (iii) says that the lowest eigenvalue is continuous when all the
nuclei are merged to one point. Conjecture 1.2 says that the limit (13) should be
from above and it would be interesting to try to prove the conjecture when the nuclei
are very close to each other. The limit (13) was also stated for M = 2 and ν1 =
ν2 < 1/2 in [3] but we could not fill all the details of the argument of the proof.

The properties of Dirac–Coulomb operators are fascinating and much more
involved than the non-relativistic Schrödinger case. Many tools (such as min-
max methods) have been developed to better deal with Dirac operators. Our
Conjectures 1.1, 1.2 and 1.3 are strongly supported by numerical results in the
physics and chemistry literature, but their proof will probably require introducing
new techniques.
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I wish you, dear Catriona, good health, happiness and many years of fruitful work for
the benefit of the world mathematical community.

Yours truly,
Vladimir Maz’ya

The intensity of my collaboration with Catriona and with Springer Verlag in
general can be illustrated by the following list of books.

1. V. Maz’ya, Sobolev Spaces, 1985.
2. V. Kozlov and V. Maz’ya, Theory of Higher-Order Sturm–Liouville Equations,

Lecture Notes, No. 1659, 1997.
3. V. Kozlov and V. Maz’ya, Differential Equations with Operator Coefficients,

1999.
4. G. Kresin, V. Maz’ya, Sharp Real-Part Theorems, Lecture Notes, No. 1903,

2007.
5. V. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers with Applications

to Differential and Integral Operators, 2009.
6. V. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential

Equations, 2011.
7. V. Maz’ya, A. Movchan, M. Nieves, Green’s Kernels and Meso-Scale Approxi-

mations in Perforated Domains, Lecture Notes, No. 2077, 2013.

1 An Open Problem

The construction of asymptotic formulae for solutions to linear elliptic boundary
value problems in strips, cylinders or domains with angular and conic boundary
points has been developed in numerous publications (see, for instance [1, 5, 7, 8, 21]
and the bibliography there). Less attention has been paid to the asymptotics of solu-
tions to nonlinear boundary value problems. In more detail, properties of solutions
to the p-Laplace equation were investigated (see [2, 4, 9–12, 16, 17, 22, 23]). In the
case of weak singularities, when the problem can be linearized at infinity or near a
singular point, boundary value problems for semilinear and more general quasilinear
equations were considered in [14, 15, 18]. As for solutions with strong singularities,
the situation is quite different. Since the principal terms of the asymptotics depend
on the nonlinear operator as a whole, direct linearization is impossible. This case
was dealt with in [3, 19, 20]. A formal asymptotic representation of solutions to the
Dirichlet problem for the Riccati equation near an angular point was given in [16].
A description of asymptotic behavior of all solutions to the Neumann problem for
the two-dimensional Riccati equation near an angular point was obtained in [6].

Now I turn to an open problem concerning the Riccati equation in a strip. By u

we denote an arbitrary solution of the quasi-linear equation

uxx + uyy + au2
x + bu2

y = 0, a, b = const > 0 (1)
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in the half-strip � = {(x, y) : x > 1, 0 < y < l} which is continuous in � and
subject to the boundary conditions

u(x, 0) = u(x, l) = 0. (2)

We are interested in the asymptotic behavior of u at infinity. A priori assuming
that the solution is uniformly bounded, one can show by a standard linearization
argument that it is asymptotically equivalent to

C exp
(
−kπx

l

)
sin

kπy

l
, k = 1, 2, . . . ,

as x → +∞, where C = const. One can show that if the Dirichlet data are
prescribed for x = 1, y ∈ [0, l], the uniformly bounded solution u is unique.

The hypothesis I propose to justify is as follows. Suppose that a function u,
solving the problem (1)–(2), is not bounded at infinity. Show that the uniform
asymptotic formula holds

u(x, y) = 1

b
log
[

exp
(√b

a

πx

l

)
sin

πy

l
+

cos
(√

b−a
a

(πy
l
− π

2

))

cos
(√

b−a
a

π
2

)
]
+O
(

exp(−δx)
)
,

(3)

where δ = const > 0 and

(b − a)a−1 �= m2, m = 1, 2, . . . . (4)

Clearly, the logarithmic term in (3) vanishes on the horizontal parts of ∂�.
Obviously, here the main term of the asymptotics depends both on linear and
nonlinear parts of the elliptic operator.

Note that (3) is global in the sense that it does not contain boundary layer terms,
unlike the asymptotics obtained in [16]. (Obviously, the angle in [16] should be
replaced by the strip using a conformal mapping.)

There are other interesting questions related to solutions of (1) and (2). For
example, what happens with the asymptotics without the restriction (4)? Also, what
will the asymptotics look like if a and b in (1) are of different signs or if they depend
on the point (x, y)? The answers to these questions are far from being obvious and,
as far as I know, there exist no general methods for their treatment at present.

In conclusion I would like to attract reader’s attention to other unsolved problems
in analysis and partial differential equations collected in [13].
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Dedication
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aspects. She is a very special communicative person, full of enthusiasm. It is
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only mathematics but also the world of arts. She saw at an early stage how the
still rather scattered attempts to create more bridges between probability theory,
rather abstract aspects of the theory of stochastic processes and infinite-dimensional
analysis on one hand, and apparently distant other areas of mathematics, from
number theory to geometry and non-standard analysis on the other, could be
enhanced, also through interactions coming from mathematical physics (especially
quantum theory). Catriona joined, directly or through her coworkers, several
scientific meetings, in particular those where S.A. was in some way involved
(from Bielefeld, Bochum, Bonn and Oberwolfach to Levico, Verona, Warwick),
and the informal discussions with her produced new interconnections between
the participants. S.A. also remembers with gratitude the encouraging interest she
expressed in work he was pursuing on the theory of Feynman path integrals. This
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led in particular to a second edition of a Lecture Notes in Mathematics [11], with the
late Raphael Høegh-Krohn and Sonia Mazzucchi as coauthors. Also on her initiative
four lectures in the series “Saint-Flour Seminars in Probability” were republished
in a Springer book with the title Mathematical physics at Saint-Flour [8] with,
besides S.A., Hans Föllmer, Leonard Gross and Ed Nelson as authors. It is not
by chance that these lectures happen to have a strong component in analysis and
probability theory besides one in mathematical physics. The present paper relates
to a number of arguments that have their roots in the topics treated in that book
initiated by Catriona. Her influence in fact is also recognizable in many books of
Proceedings edited by S.A. in various collaborations, in particular those emanating
from activities of the Research Center BiBos. It is a great pleasure for all authors
to thank Catriona for all she has done for the mathematical community and in
particular for our areas of work. We do this with our heartfelt wishes for good
health, happiness, enjoyment and success in all her future undertakings (it is really
difficult to imagine a future for her not full of beautiful activities!).

The Topics Discussed
The topics we shall present in the present paper are connected, in several ways, with
those of concern in the above mentioned books [8, 11]. The main motivations come
from questions that arose in physics, namely on how to better understand certain
phenomena appearing in nature, as manifestations of an underlying “quantum
world”.

In the first part of this exposé (Sects. 2–6) we shall concentrate on attempts
to understand in a mathematical way some aspects of the particular complex
phenomenon of Bose–Einstein condensation (BEC). In the second part (Sect. 7) we
shall mention and briefly discuss future possible developments in this connection,
but also more general issues connected with multiform and fascinating relations
between quantum evolution and probabilistic evolution that still have not been
brought to light.

Let us start by briefly mentioning what the physical phenomena of BEC is.
BEC might be characterized by saying that it happens when a sufficiently diluted
gas of bosons (i.e. consisting of identical particles with integer spin, in the case
we shall consider with spin zero, called “bosons”) confined to a box, is cooled
down in an appropriate way to “very low temperatures” (close to absolute zero).
In this case a large fraction of the number of bosons of the gas happen to get into
the same lowest energy quantum state (“ground state”), and behaves as a single
quantum object. Since the cooled down gas is often macroscopic, we have then a
macroscopic system exhibiting quantum behavior. The phenomenon was predicted
in the sense of theoretical physics for an “ideal boson gas” (without any interaction),
using quantum statistical considerations, by S.N. Bose and A. Einstein already in
1924–1925. Its experimental verification for a “real gas” had to wait until 1995
(for this experimental work E. Cornell, W. Ketteler and C. Wiemann received the
Nobel prize in 2001). Present day experimental techniques have been developed
very much since then, and permit us to establish many detailed properties of BEC.
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Of particular interest for us is that the quantum state associated with a BE
condensate can be well described by a single quantum mechanical wave function
satisfying a nonlinear Schrödinger equation with a cubic nonlinearity called the
Gross–Pitaevskii equation (see below and for references, e.g., [64, 65] and [80]).
The nonlinear term in this equation expresses a local self-interaction of each particle
of the condensate and depends on the density of the particles (it is the collective
result of the presence of 2-particle interactions between the particles of the gas).

The mathematical derivation of the Gross–Pitaevskii (GP) equation and other
related equations from a quantum mechanical N-particle system, described by a
Hamiltonian HN (see (1) below), usually with a confining potential V and with two
particle interactions given by a potential vN , taking the limit as N tends to infinity,
has been an important issue in mathematical physics for many years and there is still
much research going on, as we shall indicate.

The derivation involves the choice of particular 2-particle interactions, scaled in
a certain way depending on N and the dimension n of the underlying space in which
particles move (here we shall mainly consider the case n = 3, but other values of n
have been examined by similar methods). As we shall mention in detail in Sect. 2, in
the case n = 3 essentially three choices of scaling, characterized by a parameter 0 ≤
β ≤ 1, have been discussed: the mean-field one for β = 0 (where the limit equation,
called the mean-field or Hartree equation, contains a cubic nonlinear and non-local
term with a “good kernel”); the intermediate one for 0 < β < 1 (where the limit
equation is a nonlinear Schrödinger equation with a cubic local nonlinearity with
a constant factor in front involving the integral of the original 2-particle potential);
and for the value β = 1 the GP equation (with a local cubic nonlinearity and a
constant in front depending on the scattering length of the 2-particle potential).

As we mentioned above, the GP regime (β = 1) is the most used in the study
of BEC, but it is also the one that is most mathematically complex. The major
results were obtained in a series of papers by Lieb, Seiringer and Yngvason (see,
e.g., [63, 65] and the book [64], see also [24, 43]). The choice of the 2-particle,
translation invariant, potentials is a point interaction one, that heuristically permits
certain explicit calculations (typical of point interactions, see, e.g., [9, 13]) leading
in particular to the presence of a local nonlinearity, but also already presents for
n = 3 intriguing mathematical problems in the choice of the starting Hamiltonian
(connected with the theory of self-adjoint extensions of symmetric operators and
renormalization theory; these problems also arise in physical phenomena like the
Efimov and Thomas effects, and not by chance their study, both theoretical and
experimental, has strong connections with the work on BEC: see, e.g., [7], [42] and
also the excellent exposition in [47], we shall say a bit more on this in Sect. 7). For
a detailed explanation of the mean-field scaling limit β = 0 and its applications see,
e.g., [61, 62]. For the intermediate case 0 < β < 1 see, e.g., [83].

In our presentation in the first part of the present paper we shall stress a new
approach to this circle of problems developed in the last decade, starting from [72],
based on ideas of Nelson’s stochastic mechanics (see, e.g., [23, 40, 76, 78, 79]),
associating to a solution of the N-particle Schrödinger equation related to the N-
body Hamiltonian HN a certain diffusion process on R

nN having invariant measure
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whose drift is the logarithmic derivative of the solution of the original Schrödinger
equation. It was shown in [72] that in the GP-limit one gets a process with drift
depending on the wave function of the BE condensate. A further discussion can be
found in [16]. Progress associated with this state is discussed and a probabilistic
counterpart of the asymptotic localization of the interaction energy has been shown
in [73] and chaotic properties have been established in [86] for this scaling limit.
Other developments in this setting are discussed in Sect. 7. We shall also present,
in Sect. 4, original results on the mean field limit. For this we shall use a new
variational approach that is inspired by previous work of K. Yasue [87] and Guerra–
Morato [51], starting from an N-particle approximation of the relative mean-field
stochastic optimal control problem introduced in [4].

In Sect. 5 we present a Markovian N-particle approximation (based on our work
in [4]) to the stochastic optimal control discussed in Sect. 4. With a suitable choice
of potentials we prove two convergence results: one involving the invariant measure
of the optimal controlled N-particle process, the other concerning the law of the
process on the whole path space C0([0, T ],RnN) (for any arbitrary T > 0 fixed). In
Theorem 5.1 the convergence to zero of the 1

N
-multiple of the entropy of ρ0,N (the

invariant measure of the optimally controlled N-particle system) relative to ρ⊗N
0

(the tensor product of the invariant measure of the optimally controlled mean-field
system) is proven. A corresponding result, Theorem 5.2, holds for the conditional
entropy (with respect to the k-partial marginals, for any k ∈ N) on the path space.

In Sect. 6 the case of a variational problem with a convoluted delta potential is
studied for all values of β ∈ (0, 1]. The optimal control is discussed in relation to
the methods used in Sects. 4 and 5 for the case β = 0. In the case 0 < β < 1 both
the convergence of the “value function” and the probability measure on the path
space, with respect to the relative entropy, are considered (see Theorems 6.1 and 6.2
respectively), using the methods of [5]. In the case β = 1, a weak convergence
result of the probability law on the path space, obtained in [6], is also mentioned.

In Sect. 7 we first discuss possible extensions of the work presented in the
previous sections on stochastic optimal control, especially to a time-dependent case
(rather than the stationary case studied before). We also broaden the perspective to
other problems where the relations between hyperbolic problems and parabolic ones
play an important role, e.g., we mention the truly infinite-dimensional problems
one meets when one replaces particle quantum mechanics with relativistic quantum
field theory. Here new problems arise and very little is known about extending
optimal stochastic control to this area. We observe that much success in the study of
quantum fields has been obtained by taking a “Euclidean, Wiener-like, path integral”
method instead of the “hyperbolic path integral” (Feynman path integral). The latter
corresponds in a sense to taking imaginary time in the Euclidean path integral, fol-
lowed by an analytic continuation procedure. More direct methods have been devel-
oped to extend the existing rigorous mathematical work of Feynman path integrals
(see [10, 11, 68]) from the “finite-dimensional case” of non-relativistic quantum me-
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chanics to the “infinite-dimensional case” of quantum field theory. Additional con-
nections between probability, analysis, and geometry are also briefly mentioned.

2 Quantum Mechanics and Bose–Einstein Condensation

For the sake of simplicity hereafter we consider the quantum mechanical description
of N ∈ N identical Bosons of mass m > 0. More precisely, the N-body Hamiltonian
used in the description of the experiments on Bose–Einstein Condensation (BEC)
[37, 56, 69] is of the type

HN =
N∑

i=1

(

− h̄2

2m
8i + V (ri)

)

+
∑

1≤i<j≤N

vN (ri − rj), (1)

where V : R3 → R is a confining potential, vN a pair-wise repulsive (rotation
invariant) interaction potential and ri ∈ R

3, i = 1, . . . , N . HN is realized (under
suitable assumptions ) as a self-adjoint operator in the complex L2

s (R
3N)-space of

permutation symmetric square-integrable functions (“wave functions”). We denote
the scalar product in this space by (·, ·) and the norm by ||·||. h̄ denotes the (reduced)
planck’s constant.

The state of the system is described by the wave function �N,t solving the
Schrödinger equation

ih̄∂t�N,t = HN�N,t =
N∑

i=1

(

− h̄2

2m
8i�N,t + V (ri)�N,t

)

+
∑

1≤i<j≤N

vN(ri − rj)�N,t .

(2)

with the initial condition �N,0 ∈ L2(R3N), whose modulus square ρN
t (r) =

|�N,t (r)|2, r ∈ R
3N gives (by Born’s interpretation) the probability density (with

respect to Lebesgue measure) associated with the system of N-particles. In the
following we will focus on the stationary case, more precisely the ground state, i.e.
the wave function �N,t does not depend on t , and it is the eigenfunction of the
lowest eigenvalue of HN . In the study of BEC, the ground state plays the main role
(physically this is due to the fact that the BEC phenomenon happens at very low
temperatures). Let us characterize the ground state denoted by �0, by a variational
principle: consider the functional

E[�] := 1

2

∫

R
3N

�(r)HN�(r)dr = T� +$�. (3)
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E[�] is the mean quantum mechanical energy, where

T� :=
N∑

i=1

∫

R
3N
|∇i�|2dr1 · · · drN

is the “(mean) kinetic energy” and

$� =
N∑

i=1

∫

R
3N

V (ri )|�|2dr1 · · · drN + 1

2

N∑

i=2

∫

vN(r1 − ri )|�|2dr1 · · · drN

the (mean) potential energy associated with � ∈ L2
s (R

3N). If there exists a
minimizing function �0

N of E[�] with respect to the complex-valued functions �

in L2
s (R

3N) subject to the constraint ‖�‖2 = 1, it is called a variational ground
state. The corresponding energy E[�0

N ] given by

E[�0
N ] := inf

{
E(�) : ‖�‖2 = 1

}
,

where � in the previous set belongs to L2
s (R

3N), is called ground state energy.
Under suitable assumptions on the potentials V and v one can prove the existence
and uniqueness of the ground state �0

N for (1). By the minimax principle (see, e.g.,
[81, Thm. XIII.1]) one has HN�N

0 = E[�0
N ]�N

0 , i.e. �N
0 is the eigenfunction

corresponding to the lowest eigenvalue E[�0
N ] of HN , as a self-adjoint operator

acting in L2
s (R

3N).

Remark 2.1 Uniqueness of the ground state is to be understood as uniqueness
apart from an overall phase. Regularity conditions on V and v implying the strict
positivity and the continuous differentiability of the ground state (wave function)
are well known (indeed they follow by a suitable adaptation of the arguments in
[81] (Thm.XIII.46 and XIII.47) and [81] (Thm.XIII.11)), respectively).

The mathematical notion of the quantum phenomenon of Bose–Einstein conden-
sation can be introduced in quantum theory by starting from the one-particle density
matrix, i.e. the operator in L2(R3) having kernel:

γ (r, r′) =
∫

�0
N(r, r2, . . . rN) ·�0

N(r′, r2, . . . rN)dr2 · · · drN,

where �0
N denotes the wave function of the ground state.

Definition 2.1 Complete BEC is defined by the property that

lim
N↑∞ γ (r, r′) = ϕ(r)ϕ(r′)

for some ϕ ∈ L2(R3) and in some topology for density matrices.
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One of the main problems in the mathematical physics literature of the subject
consists in justifying the various non-linear one-particle approximation models for
describing the Bose–Einstein condensate. This goal is pursued, in the ground state
framework, starting from the N-body Hamiltonian for N Bose particles (1) and by
performing a suitable limit of an infinite number of particles.

Under certain assumptions on V and vN , it has been shown that, for N → +∞,
there is a limit wave function ϕ in L2(R3) of norm 1 solving a suitable (nonlinear)
Schrödinger equation with Hamiltonian of the form

HBE(ϕ) = − h̄2

2m
8+ V (r)+ ṽ(|ϕ|2, r), r ∈ R

3, (4)

where ṽ(|ϕ|2, r) is an L2(R3)-operator depending on the probability density |ϕ|2 on
R

3. The related energy functional is given by the expression

EBE(ϕ) =
∫

R
3

(
1

2m
|∇ϕ(r)|2 + 1

2
V (r)|ϕ(r)|2 + 1

4
ṽ(|ϕ|2, r)|ϕ(r)|2

)

dr. (5)

The precise form of the operator ṽ is strongly dependent on the kind of scaling limit
of the original interaction potential vN . If we take vN (in (1)) of the form

vN(r) = N3β

N − 1
v0(N

βr), 0 ≤ β ≤ 1 (6)

we can distinguish three regimes:

1. the mean-field regime (also called Hartree), that is β = 0, in which

ṽ(|ϕ|2, r) =
∫

R
3
v0(r− y)|ϕ|2(y)dy = (v0 ∗ |ϕ|2)(r);

2. the intermediate regime (also called nonlinear Schrödinger), i.e. 0 < β < 1, in
which

ṽ(|ϕ|2, r) =
(∫

R
3
v0(y)dy

)

|ϕ|2(r) =
(∫

R
3
v0(y)dy

)

(δ0 ∗ |ϕ|2)(r)

(where δ0 is the Dirac delta in 0);
3. the Gross–Pitaevskii regime, i.e. β = 1, in which ṽ(|ϕ|2, r) = 4πh̄2a

m
(δ0 ∗

|ϕ|2)(r), where a is the scattering length of the potential v0 (see, e.g., [64,
Appendix C] for the definition of scattering length, and see also [9] for other
physical contexts where it plays an important role).

We remark that when β = 0, which corresponds properly to the mean-field
approximation, the potential range is fixed and the intensity of the interaction
potential decreases as 1/N for N →∞. In the regime corresponding to 0 < β < 1
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the interaction potential goes to a delta function in the sense of the convergence of
measures. This intermediate (or general) mean-field case is not very well studied
and it is usually called the nonlinear Schrödinger limit. There are many results
both for the mean-field and for the intermediate case. For the latter there are some
quantitative estimates of the convergence rate for small values of β (see [62, 82] and
references therein). In [4] the general mean-field convergence problem (0 < β < 1)
is faced by using the hard results for the case β = 1 and the convergence of the one-
particle ground-state energy to the ground-state energy of the nonlinear Schrödinger
functional for the case of purely repulsive interaction potential is proved.

We finally stress that the case β = 1 cannot be considered as a mean-field regime
and it involves the scattering length of the interaction potential. The convergence of
the ground state energy in this setting has been provided by Lieb and Seiringer [63]
and Lieb et al. [65] and, recently, in [75].

In the time-dependent framework one of the main problems is that of controlling
whether the Bose–Einstein condensation is preserved by the time evolution, that
is, whether at time t > 0 for N large enough the one-particle density γ 1

N,t is, in

some approximation, equal to |ϕt |2, where ϕt is the solution of the nonlinear (time-
dependent) Schrödinger or Gross–Pitaevskii equation. More precisely, starting from
a factorized initial wave function for the N-body Hamiltonian (1) and introducing
the time evolution �N,t of the initial wave function, the goal is to prove that the
one-particle density associated to �N,t converges to |ϕt |2, with ϕt playing the role
of the time-dependent wave function of the Bose–Einstein condensate (see, e.g.,
[1, 20, 27, 43]). The techniques used in the time-dependent setting are different
from those of the stationary one, in particular instead of the mean quantum energies
the Schrödinger hierarchies are used. Many other problems, such as the study of the
fluctuations around the limit, are actually faced in the more general time-dependent
framework, see for instance [26, 28].

3 Nelson’s Stochastic Mechanics

One of the main problems in giving a stochastic representation of solutions to the
Schrödinger equation is the reversibility in time of the quantum evolution (which
is given by a one-parameter unitary group, and not by a contraction semigroup).
Indeed the time marginal probability of, for example, a diffusion Markov process is
a solution to the Fokker–Planck equation, which is a parabolic (and thus non-time-
reversible) equation. A possible solution to this problem, at least in the one particle
case, is given by Nelson’s Stochastic Mechanics, introduced by Edward Nelson in
1966. It intends to study certain quantum phenomena using a well-determined class
of diffusion processes (see [23, 30, 40, 76, 78, 79]). See [29] for a relatively recent
review on Nelson’s Stochastic Mechanics. Here we recall only the basic elements
of the theory in order to present a suggestive variational approach (due to K. Yasue,
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see [87], and F. Guerra and L. Morato, see [51], see below and Sect. 7 for other
references) that motivated our own approach in Sect. 4.

Consider a quantum particle of mass m moving on R
n, subject to a force of

potential V (and thus having Hamiltonian H = − h̄2

2m�+ V (x)). Nelson associates
to it a Markovian process which is a solution to the following SDE:

dXt = b(Xt, t)dt + νdWt, (7)

where ν =
√

h̄
m

, W is a standard Wiener process in R
n, and b : Rn × R+ → R

n is a
measurable vector field whose regularity will be made more precise below. The core
of the kinetic part of the theory is the fundamental pair of stochastic derivatives. The
forward stochastic derivative is on smooth real functions f on R

n defined by:

Df (Xt ) := lim
h↓0

Et

[
f (Xt+h)− f (Xt)

h

]

(where Et is the conditional expectation with respect to Xt ) and has the property
that:

DXt = b(Xt , t).

Nelson also introduced the backward stochastic derivative:

D∗f (Xt) := lim
h↓0

Et

[
f (Xt )− f (Xt−h)

h

]

which gives:

D∗Xt = b∗(Xt , t),

for a certain vector field b∗ on R
n ×R+. The literature on time reversal of diffusion

processes is quite large (see, e.g., [71] and references therein, see also [74]).
Foellmer [46] individuated, in the context of Stochastic Mechanics presented here,
a sufficient condition for the existence of the backward derivative: E[|b(Xt, t)|2] <
∞. If the vector field b is such that the probability density ρt for the solution Xt to
the SDE (7) is strictly positive and differentiable, we have the relation

b∗(x, t) = b(x, t)− ν2

2
∇ logρt (x). (8)

As for the dynamic, Nelson introduced the stochastic Newton equation

1

2
[DD∗ + D∗D]Xt = −∇V (Xt), (9)
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where V is the potential in which the particle of mass m is moving. Using the
relation between b∗ and b, writing u(x, t) = 1

2 (b(x, t) − b∗(x, t)) and v(x, t) =
1
2 (b∗(x, t)+ b(x, t)) we get

∂t v = −∇V (x)+ u · ∇u+ v · ∇v + ν2

2
�u, (10)

∂tu = −∇(u · v)− ν2

2
∇(∇ · v), (11)

which are reversible (in time) equations. It is possible to prove, by choosing the
initial conditions in a suitable way, that the previous system of PDEs (10), (11)
admits solutions which, by an important result of Carlen (see [29–32], permit us
to solve Eq. (7) and to associate a stochastic process to the quantum system. The
solution process is then associated with the Schrödinger equation with the potential
V (appearing in Eq. (9)). In the stationary case Eq. (10) reduces to an equation for
u which is of the form Vu = 1

2 (|u|2 + ν2div(u)).
K. Yasue initiated a heuristic variational formulation of the association of Xt to

the Schrödinger equation by introducing a Lagrangian function L associated with
the quantum Hamiltonian H

L(DXt ,D∗Xt,Xt ) = 1

4

(
|D∗Xt |2 + |DXt |2

)
− V (Xt ). (12)

An alternative action functional, proposed by Guerra and Morato, is given by the
expression

L̃(DXt ,D∗Xt,Xt ) = 1

2

(
D∗Xt ·DXt

)− V (Xt ). (13)

By the relations (8) and (9) the Lagrangian (12) can be thought of as a function of
the vector field b, the process Xt and the probability density ρt associated with it.
Thanks to this observation we can use the Lagrangian L to formulate an optimal
control problem for the controlled SDE (7) (where the vector field b plays the role
of control parameter). We consider the finite horizon optimal control problem and
the ergodic control problem associated with the Lagrangian L, i.e. we have the
respective cost functions

J fh(ρ0, b, ρt ) = EX0∼ρ0

[∫ T

0
L(DXt,D∗Xt,Xt )dt

]

, (14)

J e(ρ0, b) = EX0∼ρ0

[

lim sup
T→+∞

1

T

∫ T

0
L(DXt ,D∗Xt,Xt )dt

]

(15)
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(the suffixes fh and e in J stand for “finite horizon” and “ergodic”, respectively, see,
e.g., [44, 45] for a reference on stochastic optimal control i the notation X0 ∼ ρ0
stands for X0 having law ρ0). The reason for the choice of the cost functionals is
that the optimal controls of the previous problems satisfy the Schrödinger equation.
The same optimal control problems can be obtained replacing the Lagrangian L
with the functional L̃, given in Eq. (13), in the definition of the cost functionals J fh

and J e. More precisely, if b is an optimal control to the problem (14) where the
optimal solution process Xt has density ρt , then there is a unique (up to a complex
multiplicative constant) function �t : Rn × R+ → C such that

b(x, t) = Re

(∇�t(x)

�t(x)

)

+ Im

(∇�t(x)

�t(x)

)

, ρt (x) = |�t(x)|2,

and the function �t satisfies the Schrödinger associated to the Hamiltonian H .
Carlen proved the existence of Nelson diffusions also in the general case in which
there are nodes of the wave function [29], [30] under a finiteness condition on
the Fisher information. In the ergodic case the optimal control b and the related
probability density ρ do not depend on the time t and they are of the form

b(x) = ∇ log(�0(x)), ρ(x) = |�0(x)|2,

where the function �0 is the (real) ground state of the Hamiltonian H . Let us
mention, finally, that the variational formulations by Yasue, as well as by Guerra–
Morato, have important connections with the entropic optimal transport problem
(see [38] and [35] for studies on this connection in a rigorous probabilistic setting
related to the heat rather than the Schrödinger equation). See also Sect. 7 for other
variational approaches.

4 Non-linear Stochastic Mechanics

We want to take inspiration from the above sketched variational formulation
of stochastic mechanics and the methods used in the convergence proof of the
Bose–Einstein condensation to study some stochastic optimal control problems of
McKean–Vlasov type (namely where the cost function depends not only on the
solution process Xt to the controlled equation but also on its law).

Following [4], let us start with the autonomous stochastic differential equation
(SDE)

dXt = b(Xt)dt + νdWt ; t ≥ 0, (16)

where b is a C1 function from R
n to R

n, ν > 0 is a constant, and Wt , t ≥ 0, is
an n-dimensional standard Brownian motion. The starting point for Xt at t = 0 is
x0 ∈ R

n. We look here at b as a “control vector field” and we associate to (16) the
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following “cost functional”

J (b, x0) = lim sup
T→+∞

1

T

(∫ T

0
Ex0

[ |b(Xt)|2
2

+ V(Xt ,Law(Xt))

]

dt

)

, x0 ∈ R
n.

(17)

Let P(Rn) be the space of probability measures on R
n endowed with the topology

given by weak convergence, V : R
n × P(Rn) → R where P(Rn) is the set

of probability measures on R
n is a regular function (hereafter called “potential”)

satisfying some technical hypotheses (see Hypothesis V below) and Ex0 denotes the
expectation with respect to the solution Xt to the SDE (16) such that X0 = x0 ∈ R

n.
In [4] we proved existence and uniqueness of the optimal control b ∈ C1(Rn,Rn)

for the problem given by (16) and (17). Here we give a simplified proof of these
results. We remark that the action functional explicitly depends on the law of Xt

through the potential V but we find that the optimal control itself can be expressed
in terms of the same law.

We define the following “value function”:

J := ess supx0∈Rn

(

inf
b∈C1(R

n
,R

n
)

J (b, x0)

)

, (18)

where ess sup is the essential supremum over x0 ∈ R
n and J is the cost

functional (17).

Remark 4.1 There are two important observations to make about the initial con-
ditions chosen in the definition of the value function (18). The first one is that the
function x0 �−→ infα∈C1(R

n
,R

n
) J (α, x0) is almost surely constant in x0 with respect

to the Lebesgue measure (see Theorem 4.1 below). This means that the ess supx0∈Rn

is used only to exclude a set of measure zero with respect to x0.
The second observation is that it is possible to extend our analysis by considering

J̄ (b, ρ) := lim sup
T→+∞

1

T

(∫ T

0
EX0∼ρ(x)dx

[ |b(Xt)|2
2

+ V(Xt ,Law(Xt))

]

dt

)

,

(19)

where the process Xt now has an initial probability law Law(X0) which is absolutely
continuous with respect to Lebesgue measure of the form ρ(x)dx. Indeed in
both Theorem 4.1 and Lemma 4.1, below, we can replace the deterministic initial
condition with a random one, of the previous type, obtaining the corresponding
statement. This fact proves that

J = inf
b∈C1(R

n
,R

n
)

J̄ (b, ρ),
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for any ρ ∈ L1(Rn). In this paper we consider deterministic initial conditions in
order to simplify the treatment of the general problem.

Definition 4.1 If K : P(Rn) → R is a function we say that K is Gâteaux
differentiable if for any μ,μ′ ∈ P(Rn) there exists a bounded continuous function
∂μK(·, μ) : Rn → R such that

lim
ε→0+

K(μ+ ε(μ− μ′))− K(μ)

ε
=
∫

R
n
∂μK(y, μ)(μ(dy)− μ′(dy)), (20)

and we can choose the normalization condition given by

∫

R
n
(∂μK)(y, μ)μ(dy) = 0.

When a function K̄ : Rn × P(Rn) → R depends also on x ∈ R
n we say that K̄ is

Gâteaux differentiable if K̄(x, ·) is Gâteaux differentiable for any x ∈ R
n. In this

case we write

lim
ε→0+

K̄(x, μ+ ε(μ− μ′))− K̄(x, μ)

ε
=
∫

R
n
∂μK̄(x, y, μ)(μ(dy)− μ′(dy)).

After these remarks, let us make precise the hypothesis on the functional V
entering in the cost functional (17):

• Hypotheses V :

(i) The map V is continuous from R
n×P(Rn) to R (where we recall that P(Rn)

is equipped with the weak topology of convergence of measures).
(ii) There is a positive function V and there are three positive constants

c1, c2, c3, with c2 > 0, such that for any μ ∈ P(Rn):

V (x)− c1 ≤ V(x, μ) ≤ c2V (x)+ c3, x ∈ R
n. (21)

Furthermore, we assume that V is such that

|∂αV (x)| ≤ CαV (x) V (x) ≤ C1V (y) exp(C2|x − y|), x, y ∈ R
n

(22)

where α ∈ N
n is a multiindex of length at most |α| ≤ 2, and Cα , C1 and C2

are positive constants; V is also assumed to be growing to +∞ as |x| →
+∞.

(iii) The map V is Gâteaux differentiable and ∂μV(x, y, μ) is uniformly bounded
from below and we have

∂μV(x, y, μ) ≤ D1 +D2V (x)V (y), x, y ∈ R
n (23)
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for some constants D1,D2 ≥ 0. Furthermore, whenever

∂μṼ(y, μ) = V(y, μ)+
∫

R
n
∂μV(x, y, μ)μ(dx)

is well defined (namely when
∫
R

n V (x)μ(dx) < +∞), we require that

∂μṼ(·, μ) is a C
n
2+δ(Rn,R) Hölder function for some δ > 0.

• Hypothesis CV the functional Ṽ is convex.
• Hypothesis QV : the function V, in Hypotheses V , is radially symmetric V (x) =

V̄ (|x|), where V̄ is a C1(R+,R) increasing function for which there are constants
e1, ε > 0, e2, e3 ≥ 0 such that:

(i) V̄ (r) ≥ e1r
2+ε − e2,

(ii) V̄ ′(r) ≤ e3(V̄ (r))
3
2 , r := |x|.

Remark 4.2 The previous hypotheses on the functional V cover the mean-field
scaling regime of the interacting potential v0 in the Bose–Einstein Condensation
(BEC) (see Eq. (6) for β = 0). Indeed in the mean-field BEC the functional V in
Eq. (17)) has the form

V(x, μ) = V0(x)+
∫

R
n
v0(x − y)μ(dy), (24)

where V0, v0 ∈ C
n
2+ε(Rn), ε > 0 and μ ∈ Mc(R

n) (where Mc(R
n) is the space

of signed measures on R
n having total mass less than c ∈ R+). Furthermore,

we require that V0 grows to plus infinity as |x| → +∞, and there is a function
V , satisfying the relation (22) and Hypothesis QV , such that V0(x) ∼ V (x) as
|x| → +∞ (where∼ stands for V0(x) is bounded from above and below by positive
constants times V (x) as |x| → +∞). We also assume that v0 is bounded, reflection
symmetric, i.e., v0(x) = v0(−x), and that there exists a positive measure π on R

n

such that, for any x ∈ R
n, v1(x) =

∫
R

n e−ikxπ(dk) (i.e. v1 is the Fourier transform
of a positive measure). The class of functionals (24) satisfy the above Hypotheses
V and CV .

First we have that if the vector field b in Eq. (16) is such that J (b, x0) < +∞,
then there is a unique invariant measure ρb of Eq. (16).

Lemma 4.1 Under hypotheses V(i) and V(ii), if J (b, x0) as given by (17) (with
b ∈ C1) is not equal to+∞ there exists an unique and ergodic invariant probability
density measure ρb ∈ W 1, n2 (Rn) for the SDE (16) so that μb(dx) = ρb(x)dx is the
invariant ergodic probability measure for the SDE (16). Furthermore, we have

J̃ (b, ρb) ≤ J (b, x0)
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for almost all x0 ∈ R
n with respect to Lebesgue measure, where

J̃ (b, ρb) :=
∫

R
n

( |b(x)|2
2

+ V(x, ρb)

)

ρb(x)dx. (25)

Proof The proof is given in [4]. ��
In order to minimize the cost functional (25) with respect to ρ, for ρ ∈

W 1, n2 (Rn), ρ(x) ≥ 0 and
∫
R

n ρ(x)dx = 1, we set

Cρ = {b ∈ C1(Rn,Rn), L∗b(ρ) = 0 and |J̃ (b, ρ)| < +∞}. (26)

Then Cρ is the subset of C1(Rn,Rn) vector fields bρ ∈ Cρ such that L∗bρ (ρ) = 0
(where L∗bρ is the adjoint of the infinitesimal generator Lbρ for the solution process
Xt of Eq. (16) and the equality, in the definition of Cρ in (26), is understood in a
distributional sense) and |J̃ (bρ, ρ)| < +∞.

Remark 4.3 Suppose that b ∈ C1(Rn,Rn) such that J (b, x0) < +∞, then by
Lemma 4.1 there is a unique positive probability density ρb which is invariant and
thus, since b ∈ C1(Rn,Rn) by well-known results (see Proposition 3.1 in [4]), it
satisfies the equation L∗b(ρb) = 0. This implies that b ∈ Cρb , where Cρb is defined
by Eq. (26) with ρ = ρb.

We now introduce the following energy functional, for ρ ∈ W 1, n2 (Rn),

E(ρ) := EK(ρ)+ EP (ρ) =
∫

R
n

|∇ρ|2
2ρ

dx +
∫

R
n
V(x, ρ)ρ(x)dx, (27)

where the two terms on the right-hand side correspond by definition to the kinetic
EK(ρ) and potential EP (ρ) energies, respectively. The kinetic term is also called the
Fisher information.

The next lemma states a useful monotonicity property of the cost functional J̃ .

Lemma 4.2 For any given ρ ∈ W 1, n2 (Rn) we have

E(ρ) = J̃

(∇ρ

ρ
, ρ

)

≤ inf
b∈Cρ

J̃ (b, ρ),

where J̃ (b, ρ) is defined in (25).

Proof By [25, Chapter 3, Theorem 3.1.2], if ρ is the density of the invariant measure
of the SDE (16) we have that

∫

R
n

|∇ρ(x)|2
ρ2(x)

ρ(x)dx ≤
∫

R
n
|b(x)|2ρ(x)dx,
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for any b ∈ Cρ , with the equality holding if and only if b = ∇ρ
2ρ . Since

∫
R

n V(x, μ)ρ(x)dx depends only on the invariant measure ρ(x)dx, the lemma is
proved. ��

Let us now minimize the function E(ρ) given by (27) under the condition∫
R

n ρ(x)dx = 1. Introducing the variable ϕ = √
ρ the energy functional (27)

becomes

E(ϕ2) =
∫

R
n

( |∇ϕ|2
2

+ V(x, ϕ2)ϕ2(x)

)

dx, (28)

with ϕ ∈ L2(Rn) satisfying the condition
∫
R

n ϕ2(x)dx = 1.

Remark 4.4 The above well-known energy functional admits a unique minimizer
which is strictly positive (see [4] and references therein). Furthermore, in the case
where V is of the form (24), it coincides with the functional (5) of Bose–Einstein
condensation in the mean field regime (β = 0 in relation (6)).

Lemma 4.3 Under hypotheses V and CV the variational problem (27), with ϕ ∈
L2(Rn) satisfying the condition

∫
R

n ϕ2(x)dx = 1, admits a unique minimizer ρ0 =
ϕ2

0 . Furthermore, ϕ0 is C2+ε(Rn) for some ε > 0, it is strictly positive and satisfies
(weakly) the equation

−�ϕ0(x)+ 2V(x, ϕ2
0)ϕ0(x)+ 2

∫

R
n
∂μV(y, x, ϕ2

0)ϕ
2
0(y)dyϕ0(x) = μ0ϕ0(x),

(29)

where the uniquely determined constant μ0 is given by

μ0 = 2E(ϕ2
0)+

∫

R
n
∂μV(y, x, ϕ2

0)ϕ
2
0(y)ϕ

2
0(x)dydx. (30)

Remark 4.5 Under Hypotheses V and CV we have that J
(∇ρ0

ρ0
, x0

)
= E(ρ0),

where ρ0 = ϕ2
0 is the unique minimizer of E .

Finally we obtain our generalization, via an optimal control approach, of
stochastic mechanics versus non-linear quantum models:

Theorem 4.1 Under Hypotheses V and CV , the logarithmic gradient of the unique
minimizer ρ0 = ϕ2

0 of E , that is b = ∇ρ0
2ρ0

, is the optimal control for the problem (17)
for almost every x0 ∈ R

n with respect to the Lebesgue measure.
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Proof (of Theorem 4.1) By Remark 4.5, and the definition of J (given in Eq. (18))
we have that

J ≤ ess supx0∈RnJ

(∇ρ0

ρ0
, x0

)

= E(ρ0). (31)

In order to prove the statement of the theorem, it is sufficient to prove that E(ρ0) ≤
J, indeed, by Lemma 4.5 and inequality (31), this implies that

J ≤ ess supx0∈RnJ

(∇ρ0

ρ0
, x0

)

and thus the thesis. By Lemma 4.1, we have J̃ (b, ρb) ≤ J (b, x0) and by Lemma 4.2,
and since, by Remark 4.3, b ∈ Cρb , we get, for any fixed b ∈ C1(Rn,Rn) such that
J (b, x0) < +∞,

E(ρb) = J̃

(∇ρb

ρb

, ρb

)

≤ inf
b̂∈Cρb

J̃ (b̂, ρb) ≤ J̃ (b, ρb).

Combining the previous two inequalities and Lemma 4.3, we obtain that, for any
b ∈ C1(Rn,Rn) such that J (b, x0) < +∞,

E(ρ0) ≤ E(ρb) ≤ J̃ (b, ρb) ≤ ess supx0∈RnJ (b, x0).

Taking the inf over b ∈ C1(Rn,Rn) from the previous inequality we get E(ρ0) ≤ J.
��

Remark 4.6 An important consequence of Theorem (4.1) is that under Hypotheses
V and CV we have that

J = E(ρ0) = inf
ϕ∈H 1(R

n
),
∫
ϕ2dx=1

E(ϕ2),

where J is the value function associated with the problem (16) and the cost
functional (17), defined by (18).

Summarizing we proved that the (stationary) Nelson diffusion with drift of
gradient type solves the ergodic optimal control problem with cost functional (17),
with V satisfying Hypothesis V , CV and QV . In particular our result contains the
mean-field nonlinear Schrödinger model for the Bose–Einstein condensate (in this
case where the potential V in the cost functional (17) is given by (24)).
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5 Convergence of Markovian N -Particle Approximation

We are interested in studying a Markovian N-particle approximation to the stochas-
tic optimal control problem given by (16) and (17). This approximation is inspired
by the variational version of stochastic mechanics presented in Sect. 3.

We consider the process XN,t = (X1
N,t , . . . , X

N
N,t ) ∈ R

nN satisfying the SDE

dXi
N,t = bi

N(XN,t )dt + νdWi
t , i = 1, . . . , N (32)

where bN := (b1
N, . . . , bN

N ) : RnN → R
nN is a C1+ε function, for some ε > 0, and

the Wi
t , i = 1, . . . , N are independent Brownian motions taking values in R

n. If V
is a functional satisfying Hypotheses V , we introduce the sequence

VN(x) =
N∑

i=1

V

⎛

⎝xi,
1

N − 1

N∑

k=1,k �=i

δxi

⎞

⎠ ,

where x = (x1, . . . , xN) ∈ R
nN , N ≥ 2, and δxi is a Dirac delta measure in xi ∈ R

n.
We consider the ergodic control problem (normalized with respect to the number N
of particles)

JN(bN, x0) = lim sup
T→+∞

1

NT

∫ T

0
Ex0

[ |bN(Xt)|2
2

+ VN(Xt)

]

dt . (33)

The corresponding (normalized) energy functional (analogous to the one defined
in (27)) is

EN(ρN) = EK,N(ρN)+ EP,N(ρN)

= 1

N

(∫

R
nN

|∇ρN |2
2ρN

dx +
∫

R
nN

VN(x)ρN(x)dx

)

, (34)

where ρN is a positive Lebesgue integrable function such that
∫

R
nN ρN(x)dx = 1.

We also consider the value function

JN = ess supx0∈Rn

(

inf
bN∈C1(R

nN
,R

nN
)

JN(bN, x0)

)

. (35)

Remark 5.1 It is important to note that in the case where V is of the form (24) (i.e.
for the mean-field BEC), from the definition of VN , we get:

VN(x1, . . . , xN) =
N∑

k=1

V (xk)+ 1

N − 1

N∑

k,h=1

v0(xk − xh),
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which is exactly the total potential of the Hamiltonian HN in (1), where vN is the
mean field scaling limit of v0 (see Eq. (6) in the case β = 0).

In the setting described above we are able to prove two convergence results:
the first one involves the invariant measure ρ0,N of the optimal controlled process
XN,t , the second concerns the law of the process XN,t on the whole path space
C0([0, T ],RnN). In order to state the two convergence results we introduce
the relative entropy between probability densities ρN, ρ′N on R

nN resp. between
probability measures P,Q on the path space C0([0, T ],Rn) as

HN(ρN |ρ′N)) :=
{∫

R
nN log

(
ρN (x)

ρ′N (x)

)
ρN(x)dx if supp(ρN) ⊂ supp(ρ′N)

+∞ elsewhere
,

HC0([0,T ],Rn
)(P|Q) :=

∫

�

log

(
dP

dQ
(ω)

)

P(dω).

Theorem 5.1 Suppose that V satisfies hypotheses V , CV and QV and let ρ0,N and
ρ0 be the unique minimizers of the energies (34) and (27) respectively, then we have
as N →+∞

1

N
HN(ρ0,N |ρ⊗N

0 )→ 0. (36)

Remark 5.2 It is important to note that if ρ(k)
0,N(x1, . . . , xk) denotes the marginal of

the measure ρ0,N(x1, . . . , xN) with respect to the first k variables, then Theorem 5.1
implies Hk(ρ

(k)
0,N |ρ⊗k

0 ) → 0 (see [4] for the details). By the Csiszar–Kullback

inequality [39, 57], this implies that ρ
(k)
0,N converges to ρ⊗k

0 in L1(Rnk) and it
also means that the N-particle system (32) (when evaluated at the optimal control
bN = 1

2∇ logρN,0) is Kac and entropy chaotic (see, e.g., [53] for the definition of
these properties).

Let P0,N be the probability law of the process XN,t , on the path space
C0([0, T ],RnN), for the case where bN(x) = 1

2∇ log(ρ0,N (x)), x ∈ R
nN is the

optimal control and the law of the initial condition XN,0 is the invariant (optimal)
measure ρ0,N . We denote by P

(k)
0,N the marginal of P0,N on the path space of the first

k particles C0([0, T ],Rnk). Finally, let P0 be the law of the process Xt solution to
Eq. (16), with the optimal control b(x1) = 1

2∇ log(ρ0(x1)), x1 ∈ R
n, and starting at

the invariant measure ρ0.

Theorem 5.2 Under hypotheses V , CV and QV we have that for any k ∈ N

lim
N↑+∞H

C0([0,T ],Rnk
)
(P

(k)
0,N |P⊗k

0 ) = 0. (37)
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Proof (Idea of the Proof of Theorem 5.2) One first proves that the “value function”
1
N
JN of the N-particle system converges, as N → +∞, to J, i.e. the “value

function” of the limit problem given by (16) and (17). A stronger result holds: the
kinetic part of the energy of the N-particle system converges to the kinetic energy
of the limit problem, namely

lim
N→+∞

1

N

∫

R
nN

|∇ρ0,N(x1, . . . , xN)|2
2ρ0,N(x1, . . . , xN)

dx1 . . . dxN =
∫

R
n

|∇ρ0(x1)|2
2ρ0(x1)

dx1,

(38)

(see [4, Theorem 5.1]). Furthermore, if bN(x) = 1
2∇ log(ρ0,N (x)) and b(x1) =

1
2∇ log(ρ0(x1)), by Girsanov’s theorem we get that

1

N
H

C0([0,T ],RnN
)
(P0,N |P⊗N

0 ) = EP0,N
[|b1

N(XN,t )− b(X1
N,t )|2],

(with the upper index 1 indicating the first Rn component of the corresponding
vector in R

nN ). Using Eq. (29) we get

1

N
EP0,N

[|b1
N(Xs)− b(X1

s )|2] =
∫

R
nN

|∇1ϕ0,N(x)|2
2

dx − μ0

+
∫

R
nN

2

(

V(x1, ρ0)−
∫

R
n
∂μV(y, x1, ρ0)ρ(y)dy

)

ϕ2
0,N(x)dx, (39)

where ϕ0,N = √
ρ0,N . Exploiting the explicit formula (30) for μ0, the con-

vergence of 1
N
JN to J, for N → +∞, and the limit (38) we obtain that

limN→+∞ 1
N
H

C0([0,T ],RnN
)
(P0,N |P⊗N

0 ) = 0. Finally, by the inequality

H
C0([0,T ],Rnk

)
(P

(k)
0,N |P⊗k

0 ) ≤ k

N
H

C0([0,T ],RnN
)
(P0,N |P⊗N

0 ), k = 1, . . . , N,

see [4], we get the thesis. ��

6 The Case of the Dirac Delta Potential

In this section we propose to the reader a potential V of the following form

Vδ(x, μ) = V0(x)+ gδx ∗ μ, (40)

where V0 is a regular positive function growing at infinity (“trapping potential”), δx
is the Dirac delta centered at x ∈ R

n, g ∈ R+ is a strictly positive constant, ∗ stands
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for convolution, and μ is a probability measure. The potentialVδ does not satisfy the
regularity Hypotheses V(i) and V(iii). On the other hand it satisfies Hypothesis V(ii)
and CV , and (whenever the Gâteaux derivative is well defined) we have ∂2

μ(Ṽδ) =
2δx−y , where Ṽδ =

∫
R

n V(x, μ)μ(dx), which is a positive definite distribution.
Here we do not consider the problem of proving that the optimal control ergodic

problem has a unique optimal control (i.e. we do not prove here the equivalent of
Theorem 4.1 for the potential (40)). We suppose that there exists a family CV0 ⊂
C1(Rn,Rn) of vector fields b on R

n (in general we expect that it can depend on the
trapping potential V0 in (40)) such that

inf
b∈CV0

(

lim sup
T→+∞

1

T

(∫ T

0
Ex0

[ |b(Xt)|2
2

+ V0(Xt )+ gρx0,α,t (Xt )

]

dt

))

= EX0∼ρ0(x)dx

[
|∇ρ0(Xt )|2

4ρ2
0(Xt )

+ V0(Xt )+ gρ0(Xt)

]

, (41)

where ρx0,b,t is the probability density of the law of the solution to the SDE (16)
starting at x0 ∈ R

n evaluated at time t , and ρ0 is the density of the probability
distribution minimizing the functional

Eδ(ρ) = EK(ρ)+ Eδ,P (ρ) =
∫

R
n

( |∇ρ(x)|2
4ρ(x)

+ V0(x)ρ(x)+ g(ρ(x))2
)

dx.

(42)

In other words we suppose that in the set Cρ (introduced in (26)) the optimal
control for the problem (16) with cost functional (17) and potential Vδ (see [16]
for an alternative derivation of a stochastic process associated with the above cost
functional) exists and it is given by b = ∇ρ0

2ρ0
. What we want to consider here is

an N-particle problem converging to the solution of the optimal control ergodic
problem just described (namely we are looking for an analogous of Theorem 5.2 for
the case where V is given by Vδ in (40)).

In general, since Vδ is not well-defined for positive measures μ that are not
absolutely continuous measures, let us then consider an approximating potential
of the form

Vδ,N(x, μ) = V0(x)+
∫

R
n
vN(x − y)μ(dy),

where vN : Rn → R is a sequence of positive functions converging in the sense of
distributions to a Dirac delta δ0 when N → ∞. Let us choose a specific sequence
of the following form

vN(r) = N3β

N − 1
v0(N

βr), x ∈ R
n (43)
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for β > 0, where v0 is a positive smooth radially symmetric function with compact
support (as in formula (6)). We take the N-particle approximation having the control
bN(x1, . . . , xN) given by the logarithmic derivative of ρ0,N , that is the minimal
probability density of the energy functional Eδ associated with Vδ,N , namely

Eδ,N(ρ) = EK,N(ρ)+ Eδ,P ,N(ρ)

= 1

N

N∑

i=1

(∫

R
Nn

( |∇iρ|2
4ρ

+ V0(xi)ρ

)

dx

+ 1

N − 1

∑

j=1,...,N,j �=i

∫

R
Nn

vN(xi − xj )ρdx

⎞

⎠ .

In the rest of the paper we show how the results on Bose–Einstein condensation
(mainly for n = 3, see, e.g., [61–65, 69, 75, 82]) can be used to study the conver-
gence of the N-particles approximation of the control problem with potential (40).
For this reason hereafter we shall limit our discussion to the case n = 3.

6.1 The Intermediate Scaling Limit

The case 0 < β < 1, where β is the parameter used in the rescaling (43), which is
known as intermediate scaling limit, is very similar to the regular case (β = 0) that
we discussed in Sect. 5. Indeed, in this case we can prove the following theorem.

Theorem 6.1 Under the previous hypotheses and notations, if 0 < β < 1 we have,
as N → +∞, the convergence statements Eδ,N(ρ0,N) → Eδ(ρ0), Eδ,P ,N(ρ0,N ) →
Eδ,P (ρ0) and ρ

(1)
0,N → ρ0 (where the last convergence is in the weak L1 sense) with

the constant g = ∫
R

3 v0(x)dx (where g ∈ R+ is the constant appearing in Eqs. (40)
and (41)).

Proof The proof of the theorem can be found in [62] for 0 ≤ β < 1
3 (for any n

and a more general class of potentials v0 than the one considered here) and in [5]
for 0 ≤ β < 1 (for n = 3 and a positive-definite interaction potential v0). See also
[83]. ��

Theorem 6.1 is the analogue of the results mentioned in the proof of Theorem 5.2
in this context. Thanks to Theorem 6.1 we can repeat the reasoning performed in
the proof of Theorem 5.2, obtaining:

Theorem 6.2 Under the previous hypotheses and notations, if 0 < β < 1 we have
that the law P

(k)
0,N of the first k particles satisfying the system (32), with V replaced
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by Vδ , converges in total variation on the path space C0([0, T ],R3k) to P
⊗k
0 (where

P0 is the law on C0([0, T ],R3) of the system (16) associated with (40)).

Proof The proof can be found in [5]. ��

6.2 The Gross–Pitaevskii Scaling Limit

The case β = 1 is completely different from the previous ones. The main difference
between the cases 0 < β < 1 and β = 1 is that in this latter case the value function
convergence result of Theorem 6.1 does not hold.

Theorem 6.3 Under the previous hypotheses and notations, if β = 1 we have that,
as N → ∞ Eδ,N(ρ0,N ) → Eδ(ρ0) and ρ

(1)
0,N → ρ0 (where the latter convergence

is in the weak sense in L1) for g = 4πa (where g ∈ R+ is the constant appearing
in Eqs. (40) and (41), and a > 0 is the scattering length of the interaction potential

v0 (see [64])). Furthermore, putting ŝ = 1
g

∫

R
3
|∇ρ0|2

ρ0
dx ∈ (0, 1) we have, as

N →+∞:

EK,N(ρ0,N)→ Eδ,K(ρ0)+ gŝ

∫

R
3
ρ2

0 (x)dx.

Proof The proof of the first part of the theorem is a well-known result proven in
[63, 65, 75]. The second part is proved in [65]. ��

In this case we cannot repeat the reasoning of Theorem 5.2 since we are not able
to prove that the relative entropy H(P

(k)
0,N |P⊗k

0 ) converges to 0 (in fact we do not
know whether the relative entropy converges to 0 or to another value). On the other
hand it is possible to prove a weaker result for β = 1, we have namely:

Theorem 6.4 Under the previous hypotheses and notations, if β = 1 we have that
the law P

(k)
0,N converges weakly on the path space C0([0, T ],R3k) to P

⊗k
0 .

Proof The proof can be found in [6]. ��
Remark 6.1 In [72] a different kind of convergence is proven and in [86] a transition
to chaos result for the particle system related to the control problem is obtained.

7 Future Research Lines

We plan to extend our stochastic approach to BEC in three different directions.
First it would be interesting to face the more difficult Gross–Pitaevskii scaling limit
(β = 1) with a similar optimal control approach. Since this scaling limit gives
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rise to a singular action functional we could try to extend stochastic mechanics to
this non-linear singular Schrödinger model on one hand and obtain the solution to a
singular optimal control problem. Since our ergodic control problem can be looked
upon as being of McKean–Vlasov type, both the drift of the SDE and the potential
depending on the probability density of the invariant measure, that is, on the law of
the stochastic process, we hope to be able to prove the complete BEC (in the sense
of Definition 2.1) and its justification by taking advantage of the advanced stochastic
techniques developed in connection with the well-studied McKean–Vlasov optimal
control problem (see, e.g., [21, 33, 58], and also [19, 85]). Finally, a big effort would
be needed to extend our stochastic approach to the general time-dependent setting.
This is not a direct consequence of the ground state case, even in the mathematical
physics approach. Indeed, the proof of BEC with a time-dependent wave function
requires different techniques (see, e.g., [1, 20, 27, 28, 43]).

Let us close with a look back to the basic problems underlying the study in this
article, in order to insert them into a “future research line” prospective. Since the
Enlightenment, much of the development of mathematics has been influenced by
problems that arose in connection with the investigation of nature, in particular
physical phenomena. Especially in the last century and into the present one, the
description and interpretations of quantum phenomena have played an important
role (for instance, in relation to classical deterministic and stochastic dynamical
systems, among other examples). For the description of quantum phenomena
ideas and methods coming from the theory of infinite-dimensional spaces, and
operators on them, play a central role on the “abstract level” (accompanied by a
more “concrete level”, like the Schrödinger equation of non-relativistic quantum
mechanics). But this is certainly not the whole story, as is seen from the early
steps of quantum mechanics itself, where other areas of mathematics entered and
got enriched in one way or the other, e.g., the representation theory of Lie groups
(to express transformation properties of observables and conservation laws), see,
e.g., [66]. Variational principles also played a founding role, inasmuch as quantum
mechanics can be seen as a deformation of classical mechanics, and reciprocally
(see, e.g., [89]), and the most important variational principles have originated in
classical mechanics (see, e.g., [2, 22] and references therein). These influences
are certainly present in the genesis of R. Feynman’s reformulation of quantum
mechanics in terms of the famous heuristic “Feynman path integral”, that became
quite important both in physics and mathematics inspired by physics. We recall
that Feynman’s original approach consisted in describing the quantum mechanical

evolution by an “integral kernel” of the form e
i
h̄
S(γ ) (i being the imaginary unit, h̄

Plank’s constant and S(γ ) the action functional, i.e., a time integral of a Lagrangian,
for a path γ in a space of continuous paths). A heuristic variational principle would

then permit us to get classical orbits from integrals involving e
i
h̄
S(γ ) expressing,

for example, the solutions of Schrödinger equation, in the “semiclassical limit”
(where h̄ is considered to be very small). This general programme has found some
mathematical realization in single cases, e.g. non-relativistic quantum mechanics in
flat space (see, e.g., [11, 15, 68]) and also in some more geometric settings and for
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quantum fields (see, e.g, [10, 60]). But the mathematical and physical potentiality
is much richer, even at the non-relativistic level, see the deep discussions of this
issue in the work of J.-C. Zambrini (e.g. [88, 89]). Another aspect of mathematics
developed in connection with quantum mechanics is stochastic analysis. It has
its origins in the 1923 work of N. Wiener on Brownian motion, where the heat
semigroup kernel plays a role similar to the above Feynman kernel. It yields
the solutions of the heat equation, the parabolic analogue of the Schrödinger
equation (but Wiener himself was also interested in quantum mechanics, see
[67]). The “Wiener path integral” and its transformations play an important role
in stochastic differential equations, invented by mathematicians like S. Bernstein
(1932) and K. Itô (1948). It is emblematic that the same K. Itô who founded the
probabilistic Itô calculus also gave a first approach to the Feynman path integral
([54, 55]; for further developments, see, e.g., the references [10, 11, 68] cited
above). As we mentioned in Sect. 3, Nelson’s stochastic mechanics is a probabilistic
approach to quantum mechanics; Euclidean methods in quantum field theory (also
strongly influenced by Nelson as a tool for the construction of relativistic, hence
hyperbolic, thus Feynman’s type) quantum fields are also ways to bring together
Feynman’s methods and probabilistic methods; there is a further approach, put
forward by J.-C. Zambrini, and called by him “Euclidean stochastic mechanics”,
that exports to the world of probability structures that are somewhat hidden inside
Feynman’s hyperbolic formalism. Zambrini actually took much inspiration from
Schrödinger’s work, based on a time symmetric view of the heat equation (rather
than Schrödinger’s equation, see, e.g., [89]). Our point is to observe that there is an
immense amount of work to be done in mathematics to better understand all these
interwoven and fascinating structures.

The relations between Nelson’s stochastic mechanics and variational principles
in the study of certain quantum mechanical problems ([51, 87] mentioned in Sect. 3)
have also generated a lot of interest in the study of the “Schrödinger probabilistic
problem”. Here a lot of activity has recently been developed, e.g., in [17, 35, 46, 59,
74, 88]. In this line there are also connections with probabilistic and analytic works
on optimal transport (see, e.g., [36, 59, 70]) that deserve much further attention. The
world of systems of many quantum particles, and their limits (see [19, 85]), proper
of quantum statistical mechanics, is another area of application where such methods
should be very useful. This also would imply applications to other areas of science
like biology, mathematical finance and game theory (see for instance [33, 34, 41]).

A final comment concerns the developments of similar constructions and con-
nections in the world of fields (and strings) instead of particles. This can be seen as
an infinite-dimensional extension of the work we just discussed in relation to non-
relativistic quantum theory, as the path γ at a fixed time t in the above Feynman
approach, instead of taking values in a finite-dimensional space, would take values
in infinite-dimensional spaces. Here the constraints of invariance with respect to
transformation groups, imposed by the Poincaré invariance of relativistic quantum
fields, causes in addition worse local singularities for the paths (much stronger
than the non-differentiability of the Wiener paths), and forces regularizations
and limits much more involved and challenging than those involved in the non-
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relativistic world. The Euclidean methods of constructive quantum field theory
based on a construction at imaginary time (“heat equation world”) followed by an
analytic continuation of the relevant correlation functions to real time (“Schrödinger
equation world”) have been useful for the construction and the study of models
in space-time dimensions up to 3 (see, e.g., [48, 77, 84], for similar methods for
path integrals in quantum statistical mechanics see, e.g., [12]). Recently new
constructive methods based on a singular stochastic partial differential equation
(of the Parisi–Wu stochastic quantization type) initiated by Hairer and Gubinelli–
Imkeller–Perkowski have been developed, see for instance [14, 49, 50, 52]. Also
here there are relations to variational principles [18] and elliptic methods [3].
However a fully fledged transposition to the field case of the methods related to
stochastic mechanics and the corresponding variational methods has still to be
elaborated.

Another aspect that might be useful to examine more closely is that in a certain
limit (like the non-relativistic one starting from relativistic models with polynomial
interactions) the Hilbert space becomes a direct sum of spaces with a fixed number
N of particles with point interactions, similar to the non-relativistic models used
in Sects. 2–6 for deriving asymptotically, for N → +∞, the Gross–Pitaevskii
equation. The N-scaling used there for β = 1 is a prototype of the quantum
field renormalization procedures and has been used to give a meaning to the
Hamiltonian (1) in the case where v0 is a Dirac delta distribution, see references
[7, 9, 42, 47] (where interesting connections with the Efimov and Thomas atomic
physics effects are discussed). It also gives a meaning to the non-relativistic limit of
the mentioned quantum theoretical models at least in space time dimension 2 (see
the references in [7]). Similar methods might also be helpful in dimension 3 and 4,
but more work has definitely to be done.

In conclusion, we mentioned some open problems involving processes with
finite-dimensional resp. infinite-dimensional state space, and both using infinite-
dimensional analysis: there is indeed plenty of room for new developments out
there, and many more beautiful flowers to be found!
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Part XI
Number Theory

The article Can we dream of a 1-adic Langlands correspondence? by Xavier
Caruso, Agnès David and Ariane Mézard presents arguments for the existence
of a 1-adic Langlands correspondence which would, among other things, explain
uniformity with respect to p of results in the p-adic Langlands correspondence. A
link with the field with one element is mentioned.

True to its title, Henri Cohen’s article Computational number theory, past,
present, and future first provides a comprehensive history of the subject. This
is followed by a very complete description of the state of the art and the results
obtained, particularly in the topics of Algebraic Number Fields, L-Functions and
Automorphic Forms, and Numerical Methods. The paper ends with problems and
suggestions for the future.

Michel Waldschmidt’s article The four exponentials problem and Schanuel’s
conjecture is an in-depth and unifying presentation of a set of problems and
conjectures related to the algebraic independence of values of the exponential
function or of values of the logarithm function, as well as problems of a similar
nature.



Can We Dream of a 1-Adic Langlands
Correspondence?

Xavier Caruso, Agnès David, and Ariane Mézard

To Catriona Byrne

The Langlands programme is a far-reaching and influential web of theorems and
conjectures which has motivated a lot of research in Number Theory and Arithmetic
Geometry for more than 50 years. Very roughly, it stipulates a profound and
meaningful correspondence between representations of Galois groups on the one
hand and representations of reductive groups on the other hand. Many variations
on this theme are actually possible, depending on which base field (number field,
function field, p-adic field, etc.) and which category of coefficients we are
working with.

The pioneering works in the Langlands programme were mostly concerned
with C-valued representations. However, since the beginning of the twenty-first
century, a purely p-adic version of Langlands correspondence has emerged under
the impulsion of Breuil. Nowadays, this p-adic correspondence is fully established
for 2-dimensional representations of Gal(Qp/Qp) but, beyond this, little is known.
Many examples have however been worked out and several conjectures have been
proposed—and sometimes proved—throughout the years. One of them is the
Breuil–Mézard conjecture, which predicts that the geometrical properties of some
Galois deformation spaces are directly related to the decomposition properties of
some representations of the corresponding reductive group.
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Looking more carefully into the aforementioned works, we notice that, in
many cases, the underlying prime number p often plays a figurative role in the
calculations. Typically, the relevant reductive groups are usually defined over Z and
a significant part of the constructions and arguments can be carried out at this level.
On the Galois side, this constancy is not so obvious but it is nevertheless visible;
indeed, even though a prime number needs to be fixed from the very beginning, we
often observe, at the end of the day, that the results of the computations are mostly
independent from it.

We make the hypothesis that these strong properties of uniformity with re-
spect to p could have a deep meaning and all be the consequences of a new
type of Langlands correspondence, which should be considered as the common
denominator of the p-adic Langlands correspondences when p varies. We call
this new hypothetic correspondence the 1-adic Langlands correspondence because
we believe that the natural language to formulate it is the mysterious theory of
characteristic one whose main protagonist is the famous field with one element.

The aim of this note is to bring the reader to the agreement that our hypothesis
is not crazy but has conceivable foundations and deserves consideration. We start
our argumentation by reviewing in Sect. 1 some recent developments towards the
Breuil–Mézard conjecture, with the objective to highlight the places where the
arguments and/or the notions take a combinatorial flavour in which we have the
feeling that the underlying prime number p plays a secondary role. Then, in
Sect. 2, we briefly recall the philosophy of the field with one element and show
that it is incredibly appropriate for interpreting many objects and carrying out many
constructions encountered in Sect. 1. Finally, in order to give more substance to our
dream, we conclude this article with an appendix in which we share some thoughts
towards the development of a Galois theory in characteristic one, which is certainly
a prerequisite for a 1-adic Langlands correspondence.

Grant–The three authors are supported by the ANR project clap-clap (ANR-18-
CE40-0026-01)

1 Combinatorics Around the Breuil–Mézard Conjecture

Let p > 2 be a prime number. Throughout this section, we fix a finite extension K of
Qp and write GK = Gal(Qp/K) for its absolute Galois group. The Breuil–Mézard
conjecture is a concrete statement relating deformation spaces of representations
of GK , on the one hand, and representations of p-adic reductive groups, on the
other hand. The aim of this section is, firstly, to recall the formulation of this
conjecture and, secondly, to emphasize that, in many cases, it can be approached
using combinatorial arguments and constructions. These observations will be the
key to build bridges with the field with one element in Sect. 2.
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1.1 Review on the Breuil–Mézard Conjecture

We denote by OK (resp. kK ) the ring of integers (resp. the residue field) of K . Let
ρ : GK → GLn(Fp) be a continuous Fp-representation of GK of dimension n and
let Rρ denote the Zp-algebra parametrizing the deformations of ρ. In [31], Kisin
proved that Rρ admits quotients with strong arithmetical interest. More precisely,
given in addition the two following data:

• a Hodge type λ, that is, by definition, the datum of a tuple (λ1, . . . , λn) ∈ Z
n

with λ1 ≥ · · · ≥ λn for all embeddings ι : kK ↪→ Fp,
• an inertial type t, that is, by definition, a finite-dimensional Qp-representation of

the inertia subgroup IK ⊂ GK having open kernel and admitting an extension to
GK ,

Kisin constructed a surjective morphism of Zp-algebras Rρ → R
λ,t
ρ that

parametrizes the lifts of ρ which are potentially crystalline with Hodge–Tate weights
(λi + n− i)i, ι and inertial type t.

The Breuil–Mézard conjecture is a numerical relation between the Hilbert–
Samuel multiplicity of the special fibre of R

λ,t
ρ , denoted by e(R

λ,t
ρ ⊗

Zp
Fp), and

invariants coming from the representation theory of GLn. Precisely, let Lλ be
the irreducible algebraic Zp-representation of GLn of highest weight λ. After
[14, 25, 43], we know that there is a finite-dimensional smooth irreducible Qp-
representation σ(t) of GLn(OK) associated to t. We choose a GLn(OK)-stable
Zp-lattice Lt in σ(t), form the tensor product Lλ,t = Lt ⊗Zp

Lλ and write its

semi-simplification modulo p as follows:

(
Lλ,t ⊗Zp

Fp

)ss -
⊕

σ∈D
σ⊕nλ,t(σ )

where the sums runs over the set D of Serre weights σ , that is the set of
(isomorphism classes of) irreducible Fp-representations of GLn(kK).

Conjecture 1.1 (Breuil–Mézard) There exists a family of integers (μρ(σ ))ρ,σ ,
called intrinsic multiplicities, such that the following numerical equality holds:

e
(
R

λ,t
ρ ⊗

Zp
Fp

) =
∑

σ∈D
nλ,t(σ ) μρ(σ ) (1)

for all triples (ρ, λ, t) as above.

The Breuil–Mézard conjecture was first formulated for 2-dimensional represen-
tations in [5]. Since then, it has attracted a lot of attention. Kisin [29] proved it when
K = Qp (and n = 2) by making use of the p-adic local Langlands correspondence
for GL2(Qp) and the (global) Taylor–Wiles–Kisin patching argument. Sander [42]
and Paškūnas [39] gave a purely local alternative proof which has been extended
later on by Hu and Tan to nonscalar split residual representations [27]. For a general
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K , but still assuming n = 2, the conjecture was proved by Gee and Kisin [23] (see
also [13, Appendix C]) when λ = (0, 0) for each embedding (which corresponds to
potentially Barsotti–Tate deformations).

The extension of the Breuil–Mézard conjecture to higher n came later. The
formulation stated in dimension n in Conjecture 1.1 is due to Emerton and Gee [20]
(see also [24]). The case of 3-dimensional representations was considered and
partially solved by Herzig et al. [26] and Le et al. [33, 34].

1.2 Encoding Representations with Combinatorial Data

It turns out that, in some cases, all the objects that intervene in the statement of the
Breuil–Mézard conjecture can be entirely described by combinatorial data. Besides,
these explicit descriptions provide us with a new viewpoint on the conjecture, quite
useful for attacking it.

1.2.1 The Case of 2-Dimensional Representations

We start with the case of GL2, for which encodings are simpler and more is known.
For simplicity, we assume further that K/Qp is unramified, i.e. K = Qpf for
some positive integer f . In dimension 2, the irreducible continuous representations
ρ : GK → GL2(Fp) all take the form:

ρ = IndGK

GK′

(
ωh

2f · nr′(θ)
)

(2)

where K ′ is the unique unramified extension of degree 2 of K , ω2f is the
fundamental character of GK ′ of level 2f and nr′(θ) denotes the unique unramified
character of GK ′ sending the arithmetic Frobenius to θ . The parameters h and θ are
an integer defined modulo p2f−1 and an element of Fp respectively.

Similarly, we have a complete description of tame inertial types, that are, by
definition, those inertial types t : IK → GL2(Fp) that factor through the tame
inertia. Depending on whether they are reducible or not, they are of the form:

t = ω
γ

f ⊕ ω
γ ′
f or t = IndIK

IK′ ω
γ

2f (3)

with obvious notations. In the first case, we say that t has level f ; otherwise, that it
has level 2f .

We now assume further that λ = (0, 0) for each embedding. In this case, the
integers nλ,t(σ ) are always 0 or 1 and we define D(t) as the set of Serre weights
σ ∈ D for which nλ,t(σ ) = 1. Similarly, it is conjectured that μρ(σ) is always 0 or
1 as well and we let D(ρ) ⊂ D be the locus over which μρ(σ) is strictly positive.
Understanding the summation in the Breuil–Mézard conjecture (see Eq. (1)) then
amounts to understanding the set D(t, ρ) = D(t) ∩D(ρ).



Can We Dream of a 1-Adic Langlands Correspondence? 541

It turns out that D(t) and D(ρ) admit very explicit combinatorial descriptions
in terms of the parameters h, γ and γ ′ we introduced earlier. These descriptions
first appeared in [2, 7] and were then simplified in [17]. Very roughly, once t
(resp. ρ) is fixed, the weights in D(t) (resp. in D(ρ)) are parametrized by tuples
ε = {ε0, . . . , εf−1} ∈ {0, 1}f . Each such tuple produces a Serre weight by a simple
recipe and the set D(t) (resp. D(ρ)) is finally obtained by putting together all such
weights. We underline that D(t) and D(ρ) usually have cardinality strictly less than
2f because some ε may actually fail to produce a weight and it also happens that
two different ε lead to the same weight.

1.2.2 The Gene

Building on the previous results, we gave in [11] a purely combinatorial description
of the intersection D(t, ρ) = D(t) ∩ D(ρ) in terms of the parameters h, γ and γ ′,
assuming that the tame inertial type is reducible. More precisely, setting q = pf

for simplicity, we considered the quantity h − (q+1)γ ′ mod q2 − 1 and wrote its
decomposition in radix p:

h− (q+1)γ ′ ≡ p2f−1v0+p2f−2v1+· · ·+pv2f−2+v2f−1 (mod q2−1). (4)

From the vi’s, we then formed a periodic sequence X = (Xi)i∈Z of period 2f
assuming values in the finite set {A,B,AB,O}. The sequence X is called the gene of
(t, ρ) and it satisfies the following rules (see [11, Lemma B.1.3]):

• if vi = 0 and Xi+1 = O, then Xi = AB;
• if vi = 0 and Xi+1 �= O, then Xi = A;
• if vi = 1 and Xi+1 = O, then Xi = O;
• if vi = 1 and Xi+1 �= O, then Xi = B;
• if vi ≥ 2, then Xi = O.

To each gene X, we attached a set W(X) of combinatorial weights, which are
sequences of length f with values in {0, 1}. We then proved (see [11, Theorem
3.1.2]) that, if X denotes the gene of (t, ρ), there is a canonical bijection:

W(X)
∼−→ D(t, ρ). (5)

Beyond yielding an explicit description of D(t, ρ) and opening concrete and
algorithmical perspectives on the Breuil–Mézard conjecture, the above result raises
new questions because it somehow shows that the dependence of D(t, ρ) in t,
ρ and even in the underlying prime number p itself, is very weak, given that
the gene only retains little information about these data. In some sense, one
can interpret the gene as the “skeleton” of the pair (t, ρ) that captures its most
fundamental combinatorial properties in view of the Breuil–Mézard conjecture. In
this perspective, the construction X �→ W(X) should be thought of as the core
factory of Serre weights, while the bijections (5), for varying t, ρ and p, appear as
many tangible incarnations of this manufacture.
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1.2.3 Higher Dimension and Group-Theoretic Formulation

When we are moving to higher dimensions, the numerical descriptions we used
previously cannot continue to be that simple but, interestingly, they have analogues
which can be formulated in the language of group theory. In what follows, we
continue to assume that K = Qpf for some positive integer f . In this setting, the
relevant algebraic group is:

G = (ResOK/Zp
GLn/OK

)×Zp
Zp -

∏

J

GL
n/Zp

where J is the set of embeddings OK ↪→ Zp (or, equivalently, kK ↪→ Fp) and will
be identified with Z/fZ in what follows. We denote by T the diagonal maximal
torus of G. We let R be the set of roots of (G, T ) and W be the corresponding
Weyl group. The Borel subgroup B ⊂ G of upper triangular matrices determines a
subset R+ ⊂ R of positive roots. The group of characters X+(T ) can be canonically
identified with (Zn)J = (Zn)f and the Weyl group W is isomorphic to S

f
n . We

shall also need the extended Weyl group W̃ of G, defined by W̃ = W � X+(T ) -
(Sn � Z

n)f .
In this setting, a Serre weight is an (isomorphism class of) irreducible Fp-

representation of GLn(Fpf ). It follows from a somehow classical argument of the
theory of representations of reductive groups that Serre weights can be parametrized
by certain characters of G. Precisely, after [24, Lemma 9.2.4], we know that if we
set:

X0(T ) = { λ ∈ X+(T ) s.t. 〈λ, α∨〉 = 0 for all α ∈ R+
}

X1(T ) = { λ ∈ X+(T ) s.t. 0 ≤ 〈λ, α∨〉 ≤ p − 1 for all α ∈ R+
}

and let π denote the shift (xi)i∈Z/fZ �→ (xi+1)i∈Z/fZ on X+(T ) - (Zn)f , there is
a bijection:

F : X1(T )/(p−π)X0(T )
∼−→ D (6)

taking a character λ to the restriction to ResOK/Zp
GLn/OK

(Fp) = GLn(Fpf ) of
the representation of G(Fp) induced by the algebraic representation of G of highest
weight λ.

We also have a description of tame inertial types in terms of elements of the
group W̃ [3, 33, 35]. Let (s, μ) ∈ W̃ = W � X+(T ) and write s = (s0, . . . , sf−1)

with si ∈ Sn for all i. Let r be the order of s0sf−1 · · · s1 ∈ Sn. We consider the
unramified extension K ′ of K of degree r and let kK ′ denote its residue field. We let
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ω̃rf : IK = IK ′ → Z
×
p be the Teichmüller lift of the Serre fundamental character of

level rf . For j ∈ J, we put:

ηj =
{
(n− 1, . . . , 1, 0) j -th coordinate
(0, . . . , 0) elsewhere

and η =∑j∈J ηj . We define α′(s,μ) ∈ X+(T )HomkK -alg(kK′ ,Fp) - X+(T )r - (Zn)rf

by:

α′(s,μ),j = s−1
1 s−1

2 · · · s−1
j (μj + ηj )

and finally set:

τ (s, μ+ η) =
⊕

1≤i≤n

ω̃

∑rf−1
j ′=0

α′
(s,μ),j ′ ,ip

j ′

rf . (7)

It is our tame inertial type.
Irreducible representations ρ : GK → GLn(Fp) can be encoded in a similar

fashion. Moreover, when n = 2, it turns out that the explicit descriptions of D(t) and
D(ρ) we have mentioned earlier can be rephrased in the language of group theory
which was briefly sketched above (at least under sufficiently generic assumptions).
We do not reproduce here the corresponding recipes (which involve the so-called p-
dot product) but refer to Propositions 2.4.2 and 2.4.3 of [3] for more details. So far,
we do not have any candidate for being a plausible replacement of the gene when
n > 2. However, all the above constructions tend to show that, even though they
now need to be formulated in the language of group theory, combinatorics is still
here (and is maybe even more ubiquitous) in higher dimensions.

1.3 Explicit Computations of R
λ,t
ρ

The Breuil–Mézard conjecture is concerned with the special fibre of R
λ,t
ρ but, of

course, obtaining a complete description of the ring R
λ,t
ρ is also of interest on its

own. For example, explicit presentations of some R
λ,t
ρ have been used by Emerton,

Gee and Savitt [21] to prove important conjectures stated by Breuil in [4] about
lattices in the cohomology of Shimura curves. In this subsection, we outline the
standard strategy that is used to approach R

λ,t
ρ and report on the results of some

explicit computations.
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1.3.1 Review on Kisin’s Construction of R
λ,t
ρ

The main theoretical ingredient for studying deformations of ρ with prescribed
Hodge type and inertial type is the theory of Breuil–Kisin, which provides a
description of these deformations by means of semi-linear algebra. In our setting
and assuming in addition that t is tame of level f and K = Qpf as we already did

previously, a Breuil–Kisin module is a projective moduleM overZp⊗Zp
OK [[u]] -

Zp[[u]]J equipped with two additional structures:

• a Frobenius map ϕM : M → M which is semi-linear (with respect to the
endomorphism of Zp⊗Zp

OK [[u]] acting by the identity on Zp, by the Frobenius
of OK and taking u to up) and satisfies additional properties,

• a descent data, that is a linear action of the group Gal(K[ e
√
p]/K) - Z/eZ (with

e = pf − 1) that commutes with the Frobenius map.

A famous theorem of Kisin [30] indicates that these modules are in correspon-
dence with Zp-representations of GK that become crystalline over the extension
K[ e
√
p]. Besides, the Hodge type (resp. the inertial type) of the latter can be

easily read off from the form of the Frobenius map (resp. of the descent data) on
the former. Even better, the reduction modulo p of the representation associated
to a Breuil–Kisin module M is uniquely and entirely described by the module
M⊗OK [[u]] kK((u)) equipped with its additional structures.

The Breuil–Kisin theory then looks particularly well suited for the study of the
deformation rings R

λ,t
ρ and it turns out that it indeed is. In [31], Kisin constructed a

scheme GRλ,t
ρ parametrizing the Breuil–Kisin modules M of Hodge type λ, inertial

type t and having the additional property that M ⊗OK [[u]] kK((u)) corresponds to
the given representation ρ. This scheme is moreover equipped with a morphism
GRλ,t

ρ → SpecRρ whose schematic image has closure Spec R
λ,t
ρ . One should be

careful however that the morphism:

κ : GRλ,t
ρ → SpecR

λ,t
ρ (8)

is not an isomorphism in general because two p-torsion Breuil–Kisin modules may
correspond to the same Galois representation. It is however always an isomorphism

on the generic fibre. The special fibre of GRλ,t
ρ is denoted by GRλ,t

ρ and is called the

Kisin variety;1 in some sense, it measures the default for κ to be an isomorphism.

1 The terminology “variety” is justified by the fact that the scheme GRλ,t
ρ is always of finite type

over Fp .
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1.3.2 Examples in Dimension 2: The Generic Case

The first examples of explicit calculations of certain rings R
λ,t
ρ have been carried

out by Breuil and Mézard in [5] and [6]. They considered the case where ρ is 2-
dimensional and absolutely irreducible, λ = (0, 0) for each embedding and t is tame
of level f . Under some additional assumptions of genericity on ρ, they obtained,
when D(t, ρ) is not empty:

R
λ,t
ρ - Zp[[Xi, Yi, i ∈ JII, Zj , j ∈ J \ JII]]

(XiYi − p, i ∈ JII)
. (9)

for a certain subset JII of J (which depends on λ, t and ρ). The aforementioned
genericity assumptions play a quite important role in Breuil and Mézard’s argument.
In fact, they imply that the underlying Kisin variety is reduced to one point, which
itself ensures that the morphism κ of Eq. (8) is an isomorphism. The computation
of Rλ,t

ρ then directly reduces to that of GRλ,t
ρ .

Before moving to nongeneric cases, it is important to comment on the subset
JII which appeared in Eq. (9). The triviality of the Kisin variety indicates that the
module over Fp ⊗Fp

kK((u)) - Fp((u))
J corresponding to ρ contains a unique

lattice M(ρ) that is a Breuil–Kisin module of type (λ, t). Breuil and Mézard then
defined the shape of M(ρ): it is a finite sequence (g0, . . . , gf−1) assuming values
in the finite set {I, II} which, roughly speaking, is obtained by looking at the form
of the matrix of ϕM(ρ) in bases diagonalizing the action of the descent data. The set
JII is then formed by the indices i for which gi is II.

The shape also plays a key role on the GL2-side of the Breuil–Mézard conjecture:
in our setting, the cardinality of D(t, ρ) is 2Card(JII) (which is the Hilbert–Samuel
multiplicity of the special fibre of the ring R

λ,t
ρ given by Eq. (9)) and, more precisely,

we can explicitly parametrize the weights in D(t, ρ) by subsets of JII.

1.3.3 Examples in Dimension 2: The Nongeneric Case

Nongeneric cases are more complicated because they usually correspond to non-
trivial Kisin varieties. In [10], we computed these Kisin varieties when, as above,
ρ is absolutely irreducible, λ = (0, 0) for each embedding and t is tame of level f .
We recall that, in this setting, we have attached to the pair (t, ρ) its gene X (see
Sect. 1.2). Our results show that the Kisin variety is entirely determined by the

gene. Being a little bit more precise, we showed that GRλ,t
ρ is a closed subscheme

of
(
P

1
Fp

)Z/fZ

defined by equations of the form:

λi xi yi+1 = μi xi+1 yi (10)
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where [xi : yi] denotes the projective coordinates on the i-th copy of P1
Fp

and λi and

μi are elements of {0, 1} that can be read off from the gene X.
It is important to observe that the notion of shape can be extended to the

nongeneric case as well. Indeed, each Fp-point x of GRλ,t
ρ corresponds, by

definition, to a Breuil–Kisin module and so has a well defined shape g(x) =
(g0(x), . . . , gf−1(x)) ∈ {I, II}f in the sense of Breuil and Mézard. In full
generality, the shape is thus no longer a unique element in {I, II}f but a function on
the Fp-points of the Kisin variety taking values in {I, II}f . We proved moreover that
this function is lower-continuous (for the partial ordering on the codomain defined

by I < II) and thus defines a stratification on GRλ,t
ρ by locally closed subschemes.

As well as the Kisin variety, the shape stratification is entirely determined by the
gene.

We then proposed the following conjecture.

Conjecture 1.2

(i) The generic fibre of R
λ,t
ρ is determined by the Kisin variety equipped with its

shape stratification.
(ii) The ring R

λ,t
ρ is determined by the gene.

Regarding the first item of the conjecture, we were actually much more precise
and exhibited a candidate for being the generic fibre of Rλ,t

ρ . Besides, our candidate
is rather explicit: it is defined as the formal neighborhood of the Kisin variety in a

certain blow-up of
(
P

1
Zp

)Z/fZ

. We refer to [10, §5.4] for a complete exposition of

this construction.
Conjecture 1.2 is known is most cases where the Kisin variety is trivial. It has

also been checked in [9] in one example where the Kisin variety is isomorphic to
P

1
Fp

; in this case, the deformation ring we obtained is Zp[[X,Y,Z]]/(XY − p2).

1.3.4 Higher Dimension and Group-Theoretic Formulation

In dimension 3, tamely potentially crystalline deformation rings for small Hodge–
Tate weights and generic Galois representations have been studied in [34]. The
authors also obtained explicit presentations of the deformation rings R

λ,t
ρ in several

cases. The equations they found are often quite similar to the one given in Eq. (9).
The case of rank 2 unitary group has also been considered in [32]. In this setting, it
turns out that the explicit computations of the corresponding R

λ,t
ρ ’s boil down to the

case of GL2 (with an additional polarization structure on the Breuil–Kisin modules).
The final equations they get are then again similar to Eq. (9).

In all these situations, although computations are certainly much more difficult,
it is important to underline that the basic ingredients are the same: we continue to
have a Kisin variety, together with a shape stratification and we hope that these two
objects strongly govern the final form of the deformation space. In full generality
(i.e. for any reductive group, even not necessarily GLn), the Kisin variety and the
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shape stratification are defined using techniques coming from group theory: the
Kisin variety is a subscheme of the affine Grassmannian defined by an explicit
condition, which can be formulated in terms of the Cartan decomposition, while the
shape function x �→ g(x) is defined by means of the Iwahori–Cartan decomposition
(and it now takes values in the Iwahori–Weyl group). After [12], we know moreover
that Kisin varieties are related to Pappas–Zhu local models [41]; in this connection,
the shape stratification corresponds to the canonical stratification by affine Schubert
varieties.

2 The Field with One Element

The theory of the field with one element F1, starts with an observation of Tits [45]
who notices some curious numerical coincidences in the theory of algebraic linear
groups. The most fundamental example is given by the group GLn itself. Indeed,
its number of points over the finite field Fq is given by:

Card GLn(Fq) = (qn − 1) · (qn − q) · · · (qn − qn−1)

= (q − 1)n · qn(n−1)/2 · [n]q · [n−1]q · · · [1]q

where [i]q = 1+ q + · · · + qi−1 is the q-analogue of i and letting q tends to 1, we
find:

Card GLn(Fq) ∼q→1 (q − 1)n · n!. (11)

What is surprising is that n! can be interpreted as the cardinality of the symmetric
group Sn, which is nothing but the Weyl group of GLn. Similar results hold
more generally for a large family of groups, including the orthogonal groups,
the symplectic groups and their scalar restrictions. After these observations, Tits
asked if these numerical matchings could have deeper roots and proposed to build
a geometry of the so-called field with one element with the objective to give a
systematical and geometrical understanding of all the combinatorial structures and
constructions which appear in the theory of Lie groups or algebraic groups.

Tits’ vision was then popularized by Soulé who came up in [44] with a first
tentative definition of affine varieties over F1. Later on, other constructions
were proposed and the subject has attracted more and more attention over the
last two decades [1, 8, 15, 16, 18, 36, 38, 46]; see [37] for a recent review on
this topic. The theory of F1 is still not yet well established. However, several
definitions of the category of schemes over F1 have been proposed over the years
and significant progress towards Tits’ initial dream have been realized. Besides,
geometry over F1 has been extended to new contexts and has nowadays close
interactions with Arakelov geometry and p-adic geometry. In particular, Bambozzi,
Ben-Bassat and Kremnizer introduced in [1] analytic geometry over F1; notably
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they managed to construct a model of the Fargues–Fontaine curve [22] in their
theory. To our knowledge, this was the first connection between the theory of Galois
representations (incarnated here by p-adic Hodge theory) and the field with one
element.

2.1 Clues in Favor of a 1-Adic Breuil–Mézard Conjecture

The main reason why we believe that a 1-adic version of the Breuil–Mézard
conjecture is possible is that many objects involved in the formulation and/or the
resolution of this conjecture have natural seeds in F1-geometry. In this subsection,
we list the most important of them and comment on their F1-aspects.

First of all, we notice that the Weyl group W and its extended version W̃ , which
both play a quite important role in the construction of Serre’s weights and inertial
types, have natural interpretations in characteristic one: the Weyl group is the set
of F1-points of the underlying algebraic group (this property is Tits’ dream, which
is the main guide of the theory) while the extended Weyl group may be interpreted
as its set of points over F1(X) (see Eq. (12) in Section “Brief Review of Geometry
over F1”). Moreover, the recipes used for constructing Serre’s weights and inertial
types from an element of W̃ (see Eqs. (6) and (7)) are purely combinatorial and it is
quite likely that they can be reformulated by means of F1-geometry.

The equations of the Kisin varieties we obtained in [10] (see Eq. (10)) show that
all of them are defined over F1. Similarly, the deformation spaces computed in [5, 6]
and [34] all appear as product of discs and annuli (see particularly Eq. (9)); as a
consequence, they all come through scalar extensions from analytic spaces over F1
in the sense of [1]. Moreover, although the construction of blow-ups and formal
neighborhoods was not addressed in [1], it looks quite plausible that the candidates
for deformation spaces we introduced in [10] are defined over F1 as well.

All the above examples show furthermore a strong uniform behaviour with
respect to p. In the language of F1-geometry, this uniformity means that a whole
family of Kisin varieties (resp. of deformation spaces) parametrized by p comes
by scalar extension to Fp (resp. to Qp) from a unique variety (resp. analytic
variety) over F1. This result might suggest the existence of a common denominator
of the theory of Kisin varieties (resp. deformation spaces) which is defined in
characteristic one and underpins some of their features we observe over the p-
adics. This expectation is strengthened by the fact that Kisin varieties have a deep
group-theoretic interpretation (see last paragraph of Sect. 1.3). The same remark is
valid for the shape stratifications as well: they have good chance to be visible in
characteristic one, given that they are closely connected to affine Schubert varieties,
which are themselves known to be defined over F1 [38].
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The recipe of [11], giving a combinatorial description of the set of common
Serre’s weights in terms of the corresponding gene, also has a strong F1-flavor.
Concretely, what we expect is that:

1. the gene is a sort of F1-encoding of the pair (t, ρ),
2. the combinatorial weights of [11] are the mirror of a notion of Serre’s weights in

characteristic 1,
3. the association

gene �→ set of combinatorial weights

is the F1-incarnation of the construction (t, ρ) �→ D(t, ρ).

Beyond the justifications coming from the constructions of [11], we underline
that there is other evidence supporting that Serre’s weights in characteristic 1 should
have something to do with combinatorial weights (which are, we recall, sequences
of length f assuming values in {0, 1}). Indeed, mimicking the usual definition in
characteristic p, we expect Serre’s weights in characteristic 1 to be interpreted as
F̄1-representations (whatever that means) of the group GL2(F1f ). But, following
Tits’ vision, we can write:

GL2(F1f ) = (ResF1f /F1
GL2
)
(F1) = Weyl

(
ResF

pf
/Fp

GL2
) = (Z/2Z)f

and we already see the set {0, 1} entering into the scene. More precisely, we can
define Symk

F
2
1 as the set {Xk,XY k−1, . . . , Y k} and let GL2(F1) = Z/2Z act

on it by letting its unique nontrivial element operate by swapping X and Y (see
Appendix “Brief Review of Geometry over F1” for a justification of this definition).
Similarly, if k = (k0, . . . , kf−1) is a tuple of integers, we let Symk

F
2
1 be the

cartesian product of the Symki F
2
1 equipped with the induced action of GL2(F1f ) =

(Z/2Z)f . It is then an easy exercise to check that Symk
F

2
1 is irreducible (i.e. the

action is transitive) if and only if ki ∈ {0, 1} for all i.
We underline that Conjecture 1.2 is also in line with the above vision: roughly

speaking, it stipulates that the mapping (t, ρ) �→ R
λ,t
ρ descends over F1.

Combining the previous observations and being quite optimistic, one might hope
that the Pappas–Rapoport spaces [40] and/or Emerton–Gee stacks [20] themselves
have a model over F1 and that the irreducible components of the special fibre of the
latter will be related to the set of Serre’s weights in characteristic 1.

2.2 Major Challenges

We do not hide that, if possible, devising a 1-adic Langlands correspondence (or a
1-adic Breuil–Mézard conjecture) will definitely not be a simple task. Actually,
although the geometry over F1 has already been developed quite a lot, many
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fundamental ingredients and objects of the Langlands programme are missing in
characteristic 1.

To start with, we notice that extensions of F1, usually referred to as F1n , have
already been considered by several authors [15, 28, 44] but they have never been
systematically studied. Moreover, in the above references, F1n is defined as the
cyclotomic extension of F1 whose Galois group is isomorphic to (Z/nZ)×, and not
Z/nZ. This means in particular that we apparently do not have a nice analogue of
the Frobenius endomorphism, which sounds annoying. An option for fixing this
issue is to work with another version of F1n on which we impose by design the
existence of a Frobenius of order n (see Appendix “Galois Theory over F1” for a
first rough proposal).

Similarly, the field of 1-adic numbers Q1 and its extensions have not attracted
much attention so far. We mention however that Connes introduced the ring of Witt
vectors over F1 in [15] but we are afraid that Connes’ treatment does not perfectly fit
with our perspectives since it is eventually related to Banach algebras over the reals,
and not over the p-adics. In Appendix “Galois Theory over Q1”, using a (certainly
too) naive definition of Q1, we start exploring its theory of finite extensions.

On a different note, it seems that the theory of representations of reductive groups
over F1 has not yet been systematically studied. This could sound surprising given
that representations of reductive groups over finite fields have been attracting a
lot of attention for more than 50 years and the underlying theory includes a lot of
combinatorial parts that have good chance to be “defined” over F1.

2.3 Conclusion

Although, clearly, many locks still need to be unlocked, we continue to believe
that the 1-adic Langlands correspondence is possible. Besides, according to us,
trying to develop it could be, at the same time, a wonderful motivation and guide for
exploring the 1-adic world and for inspiring the p-adic Langlands correspondence
by separating the universal combinatorial structures on the one hand and the more
usual arithmetical properties on the other hand. We thus warmly encourage all
contributions to this topic.

Appendix: Remarks on Galois Theory in Characteristic 1

In this appendix, we start exploring the Galois properties of the field with one
element F1 and the field of 1-adic numbers Q1. Our aim is not at all to elaborate
a complete and coherent theory but to share our intuition and point out some
difficulties. In Section “Brief Review of Geometry over F1”, we briefly review the
usual constructions of geometries over F1. We then successively address the Galois
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theory of F1 and Q1 in Sections “Galois Theory over F1” and “Galois Theory over
Q1” respectively.

Brief Review of Geometry over F1

Most modern theories of geometry over F1 start by defining the category F1 − Vect
of F1-vector spaces. After Tits’ observation that GLd (F1) should be isomorphic to
Sd , it is tempting to define a vector space over F1 simply as a set, its cardinality
corresponding to its dimension over F1. By definition, an F1-linear morphism
V → W is a set-theoretical partially defined function f : V → W . The direct
sum (resp. the tensor product) of two vector spaces is their disjoint union (resp.
their cartesian product). Besides, from this point of view, the standard F1-vector
space of dimension d , namely F

d
1 , is represented by the set {1, . . . , d}; its group of

automorphisms then coincides with Sd , i.e. GLd (F1) = Sd , as expected.
After vector spaces over F1, one introduces F1-algebras: they are, by definition,

objects in commutative monoids in the category F1 − Vect, i.e. sets equipped with
a partially defined law of commutative monoids which is usually denoted with the
multiplicative convention. Examples of F1-algebras include XN = {1,X,X2, . . .}
and XZ, which should be thought of as F1[X] and F1(X) respectively. Similarly,
the F1-algebra F1[X1, . . . , Xd ] is realized by the monoid XN

1 XN
2 · · ·XN

d whose
elements are monomials in X1, . . . , Xd .

If M is an F1-algebra, it makes sense to define M-modules: they are sets
endowed with an action of M . The standard free module of rank d over M is
M⊕d = {1, . . . , d} ×M where M acts by multiplication on the second coordinate.
It is an easy exercise to check that the group of M-linear automorphisms of M⊕d is
the semi-direct productSd�(Mgp)d , where Mgp denotes the subgroup of invertible
elements of M . In particular, we get:

GLd

(
F1(X)

) = Sd � Z
d (12)

and thus obtain, at least in the case of GLd , an F1-style interpretation of the extended
Weyl group.

Up to this point, (almost) all theories agree on definitions but, when we come to
F1-schemes, points of view start to diverge. Chronologically, the first approach is
due to Deitmar [18] and it closely follows the classical theory of schemes: Deitmar
introduced spectra of monoids, equipped them with a topology and a notion of
sheaves and finally glued them to get F1-schemes. Soon after, Toen and Vaquié [46]
developed the functorial point of view. Starting from the category F1 − Vect (or,
more generally, with an abstract monoidal symmetric category C), they defined the
category F1−Alg as we did before, introduced a notion of Zariski covering on it and
finally defined F1-schemes as sheaves on F1 − Alg for this Grothendieck topology.
In [47], Vezzani proved (in a slightly different context) that Deitmar’s construction
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on the one hand and Toen–Vaquié’s approach on the other hand are equivalent, in
the sense that they give rise to the same category of F1-schemes. Besides, both
viewpoints include a functor of scalar extension:

F1 − Sch → Z− Sch, X �→ XZ

deriving from the construction M → Z[M] at the level of monoids. Deitmar
observed that toric varieties are defined over F1 but he also proved that these are
essentially the only ones [19].

Another point of view on F1-schemes, which in some sense goes back to Soulé’s
original definition, was proposed in [16] by Connes and Consani. They suggested
to define an F1-scheme as a triple (Ã,XZ, eX) where Ã is an F1-algebra, XZ is a
classical scheme and eX : (Spec Ã)Z → XZ is a morphism of schemes inducing
a bijection on k-points for any field k. In some sense, this approach separates
the purely combinatorial part, which is encoded by Ã, and the geometrical part,
which is delegated to the classical theory through the scheme XZ. López Peña and
Lorscheid [38] proved that this framework is more flexible in the sense that it allows
for defining a much larger panel of varieties over F1; those include Grassmannians,
split reductive groups, Schubert varieties, etc. Besides, in a subsequent paper,
Lorscheid [36] concretized Tits’ premonition by realizing the Weyl group of a split
reductive group as its set of points over F1.

Beyond the field with one element, what we need for the purpose of this paper
is the field of 1-adic numbers. Fortunately, this question has already been touched
on in the literature by several authors. In [15], Connes came up with a definition of
Witt vectors over F1. However, Connes’ construction looks a bit disconnected to our
needs as it is equipped with a scalar extension functor assuming values in Banach
algebras over the reals, and not over the p-adics. In a different direction, Bambozzi,
Ben-Bassat and Kremnizer [1] laid the foundations of the theory of analytic varieties
over F1. Roughly speaking, their construction is similar to the ones we briefly
sketched above except that, instead of starting with the category F1 − Vect, they
consider various categories of sets X equipped with a function | · | : X → R

+
whose purpose is to model the norm map. They showed that balls and annuli of
rigid geometry come from analytic varieties over F1; this is thus also the case for all
the deformation spaces we encountered in Sect. 1.

Galois Theory over F1

It is a natural expectation that F1 should have a finite extension of degree n for
all n with Galois group isomorphic to Z/nZ. In the literature [15, 28, 44], this
extension F1n is usually defined as the cyclotomic extension of F1, that is the F1-
algebra represented by the monoid XZ/nZ. However, it appears that this point of
view is not perfectly suited to our purpose for at least two reasons:
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1. The Galois theory is not the expected one. Indeed, the group of automorphisms
of the monoid XZ/nZ is (Z/nZ)× and not Z/nZ; in particular, we do not have a
distinguished Frobenius endomorphism. This issue is maybe even more visible
when we extend scalars to Z or Fp. Indeed, with the above definition, one would
get:

F1n ⊗F1
Fp = Fp[X]/(Xn − 1)

which is certainly not Fpn and which besides has a different Galois group.
2. The formation of F1n-points does not behave as desired. If X is a scheme defined

over F1n , it seems reasonable to expect that the set of F1n-points of X agrees with
the set of F1-points of ResF1n /F1

X. For X = GLd , this results in:

GLd(F1n) = Weyl
(
ResFpn/Fp

GLd

) = (Sd)
n

where p, here, denotes any auxiliary prime number. This expectation is
reinforced by the fact that the group (Sd)

n plays a quite important role in
the Breuil–Mézard conjecture as recalled in Sect. 1. However, if one lets
F1n be the F1-algebra corresponding to the monoid XZ/nZ, one would obtain
GLd (F1n) = Sd�(Z/nZ)d (see the discussion before Eq. (12)) which is certainly
not isomorphic to (Sd)

n since even the cardinalities differ!

The conclusion of these observations is that, although the cyclotomic extension
of F1 is undoubtedly an interesting object, it is probably not the F1n we need for the
applications we have in mind. Moreover, one checks that there is unfortunately no
F1-algebra meeting all our requirements. Instead, we propose to define from scratch
a theory of F1n-vector spaces as we did previously for F1, trying as much as possible
to incorporate the Frobenius action and keep its desired properties.

Definition 2.1 An F1n-vector space is a set. Given two F1n-vector spaces V and
W , an F1n-linear morphism f : V → W is the datum of n partially defined set-
theoretical functions f1, . . . , fn : V → W .

Again, the standard F1n-vector space of dimension d is represented by the set
{1, . . . , d}. We denote it by (F1n)d , or simply F1n when d = 1, in what follows. It is
obvious from the definition that the automorphism group of (F1n)d is (Sd)

n, i.e. we
have the expected equality GLd(F1n) = (Sd)

n. Similarly, extending the definition
of F1(X) to our new setting, one checks that GLd(F1n(X)) = (Sd � Z

d)n.
Moreover, we have an obvious scalar extension functor F1−Vect → F1n −Vect

acting on objects by V �→ V and on morphisms by f �→ (f, f, . . . , f ). In what
follows we shall use the notation F1n⊗F1

V to denote the scalar extension of V from
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F1 to F1n . Regarding scalar restriction, there are two different options to define it,
namely:

aResF1n /F1
: F1n − Vect −→ F1 − Vect

V �→ V ⊕n

mResF1n /F1
: F1n − Vect −→ F1 − Vect

V �→ V ⊗n.

(We recall that the direct sum and the tensor product over F1 are defined as the
disjoint union and the cartesian product respectively.) The functor aResF1n /F1
(resp. mResF1n/F1

) will be referred to as the additive (resp. the multiplicative)
scalar restriction from F1n to F1; hence the notation. Both versions look interesting
given than they both appear as adjoints of the scalar extensions. Precisely, for
V ∈ F1n − Vect and W ∈ F1 − Vect, we have:

HomF1n−Vect(V , F1n ⊗F1
W) = HomF1−Vect(aResF1n /F1

(V ), W),

HomF1n−Vect(F1n ⊗F1
W, V ) = HomF1−Vect(W, mResF1n/F1

(V )).

Besides, aResF1n/F1
(V ) and mResF1n/F1

(V ) are both equipped with a Frobenius
which acts by permuting cyclically the summands/factors. More concretely, the
Frobenius action on aResF1n/F1

(V ) - Z/nZ × V is given by (i, x) �→ (i+1, x)
and it is given on mResF1n/F1

(V ) - V n by (x1, . . . , xn) �→ (x2, . . . , xn, x1). We
observe in particular that aResF1n /F1

(F1n) - Z/nZ. In this sense, our definition
meets the most standard presentation of F1n [15, 28, 44]; the main difference is that
we do not retain the group structure on Z/nZ but replace it by a Frobenius structure
given by the shift. This slight modification in the point of view is actually enough
to retrieve a cyclic Galois group of order n.

Proposition 2.1 The group of automorphisms of aResF1n/F1
(F1n) commuting with

the Frobenius action is the cyclic group of order n generated by the Frobenius.

Proof An automorphism of aResF1n /F1
(F1n) is, by definition, a bijection f :

Z/nZ → Z/nZ. Requiring that it commutes with the Frobenius amounts to saying
that f (x + 1) = f (x) + 1 for all x ∈ Z/nZ. Clearly, a function satisfying this
condition must be of the form x �→ x + a, i.e. f is a power of the Frobenius. ��

Proposition 2.1 does not extend verbatim if we replace aResF1n/F1
by

mResF1n/F1
; indeed, given that mResF1n /F1

(F1n) is reduced to one point, its
group of automorphisms is trivial as well. However, we can recover the expected
group if we consider all objects V ∈ F1n − Vect at the same time: the group of
Frobenius-preserving automorphisms of the functor mResF1n/F1

is cyclic of order n
and generated by the Frobenius.

Passing to the limit, we can similarly set up a theory of vector spaces over F̄1 =
lim−→n

F1n .
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Definition 2.2 An F̄1-vector space is a set. Given two F̄1-vector spaces V and W ,
an F̄1-linear morphism f : V → W is the datum of a sequence (fi)i≥0 of partially
defined functions from V to W such that for all x ∈ V , the sequence (fi(x))i≥0 is
periodic.

As before, we have a scalar extension functor F1−Vect → F̄1−Vect which acts
trivially on objects and takes a morphism f in F1 − Vect to the constant sequence
(f, f, . . .). More generally, there is a functor F1n − Vect → F̄1 − Vect mapping
an F1n-linear morphism (f1, . . . , fn) to the sequence (fi mod n)i≥0. If V is finite-
dimensional over F̄1 (i.e. if V is a finite set), any F̄1-linear morphism with domain
V comes from an F1n-linear morphism for some n. Restrictions of scalars also exist
in this context. Writing Ẑ = lim←−n

Z/nZ, they are given by:

aRes
F̄1/F1

: F̄1 − Vect −→ F1 − Vect

V �→ Ẑ× V

mRes
F̄1/F1

: F̄1 − Vect −→ F1 − Vect

V �→ { periodic sequences with values in V }.

Furthermore, aRes
F̄1/F1

(V ) and mRes
F̄1/F1

(V ) are both equipped with a Frobenius
endomorphism: on aRes

F̄1/F1
(V ), it is (i, x) �→ (i+1, x) while it acts by shifting

the sequence by 1 on mRes
F̄1/F1

(V ). One checks that Autϕ(aRes
F̄1/F1

(F̄1)) -
Autϕ(aRes

F̄1/F1
) - Autϕ(mRes

F̄1/F1
) - Ẑ where Autϕ means the Frobenius-

preserving automorphisms.

Galois Theory over Q1

In what follows, we view Z1 (resp.Q1) as the F1-analytic algebra (in the sense of [1])
corresponding to the monoid -N (resp. -Z) endowed with the norm ‖-v‖ =
rv where r is a fixed real number in (0, 1). Here - is a formal notation for the
uniformizer of Z1 and does not have further meaning. Our definition of Z1 might
sound too naive as it seems to identify Z1 with F1[[- ]]; however, at least for the
properties we want to illustrate in this appendix, making this confusion will not have
undesirable consequences.

We now aim at defining several families of extensions of Q1 and studying their
Galois properties. We start with unramified extensions: we set Q1n = F1n ⊗F1

Q1

for any positive integer n and Q
ur
1 = F̄1 ⊗F1

Q1. They are equipped with a
Frobenius structure coming from the Frobenius on F1n (resp. F̄1) and with a Q1-
algebra structure materialized by the multiplication morphism by - at the level of
monoids. One checks that the group of automorphisms of aResF1n/F1

(Q1n) (resp.
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of aRes
F̄1/F1

(Qur
1 )) commuting with both structures) is isomorphic to Z/nZ (resp.

to Ẑ). We then get the expected Galois group.
We now come to the analogue of the tower of tamely ramified extensions.

When p is an actual prime number, this tower is obtained by extracting e-th
roots of the uniformizer for e coprime with p. There exists an obvious analogue
of this construction over Q1: for any positive integer e (without any condition
of coprimality), we consider the F1-analytic algebra Q1[ e

√
- ] defined by the

underlying monoid -(1/e)·Z equipped with the norm ‖-v‖ = rv (v ∈ 1
e
Z).

Clearly Q1[ e
√
- ] is an extension of Q1 and we can define generally Q1n[ e

√
- ] =

F1n ⊗F1
Q1[ e

√
- ] and Q

ur
1 [ e
√
- ] = F̄1 ⊗F1

Q1[ e
√
- ]. It is also possible to take the

limit on e and define Q1[ ∞
√
- ] as the F1-analytic algebra associated to the monoid

-Q with norm ‖-v‖ = rv . We write Q
tr
1 = F̄1 ⊗F1

Q1[ ∞
√
- ]; it is our candidate

for being the maximal tamely ramified extension (or even an algebraic closure?)
of Q1.

Devising a decent Galois theory for the extension Q
tr
1/Q

ur
1 looks more difficult.

Indeed, given that a morphism of monoids Q → Q which acts by the identity on Z

needs to be trivial, we conclude that there is no nontrivial morphism of Qur
1 -algebras

ofQtr
1 in the sense of Definition 2.1. In order to explain how this issue can be tackled,

it will be more convenient to work with finite extensions. For any positive integer
n, we define Kn = F1n[ n

√
- ]; it is the F1n-algebra represented by the monoid ηZ

where we have set η = n
√
- for simplicity. As we said earlier, there are no nontrivial

automorphisms of Q1n-algebras of Kn. The subtlety is that such automorphisms do
exist after restricting scalars to F1. An explicit example is given by the morphism

σn : aResF1n/F1
(Kn)→ aResF1n/F1

(Kn)

corresponding to the map:

σ
*
n : Z/nZ× ηZ −→ Z/nZ× ηZ

(i, ηj ) �→ (i+j, ηj ).

One checks that σ*
n is a morphism of monoids (where the factor Z/nZ is endowed

with its additive structure) acting by the identity on aResF1n /F1
(Q1n). Therefore, σn

has all the virtues to be considered as an element of the Galois group Gal(Kn/Q1n),
although it is not clear to us, here, why we need to retain the monoid structure on
Z/nZ whereas we argued earlier that it should be discarded in favor of the Frobenius
structure. In any case, we have the following proposition.

Proposition 2.2 The group of automorphisms of monoids of Z/nZ × ηZ acting
trivially on the submonoid Z/nZ×-Z is cyclic of order n, generated by σ

*
n .

Proof Let f be an automorphism of Z/nZ × ηZ satisfying the conditions of the
proposition. By assumption f fixes (1, 1) and (0,-). Write f (0, η) = (a, ηb) with
a ∈ Z/nZ and b ∈ Z. Since f is a morphism of monoids, we must have (na, ηnb) =
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(0,-), showing that b = 1. Hence f takes the form (i, ηj ) �→ (i+aj, ηj ) and the
proposition follows. ��

After what precedes, we are tempted to write:

Gal(Kn/Q1n) = 〈σn〉 - Z/nZ.

Moreover, noticing that σn commutes with the Frobenius, we conclude that:

Gal(Kn/Q1) = 〈ϕ, σn〉 - (Z/nZ)2.

Passing to the limit, we would end up with Gal(Qtr
1/Q

ur
1 ) - Ẑ and

Gal(Qtr
1/Q1) - Ẑ

2
.

In order to give more credit to this conclusion, we would like to make the
comparison with the classical case of Qp (where p is an actual prime number). For
each positive integer n, we set Kp,n = Qpn[p1/(pn−1)]; it is the maximal totally and
tamely ramified Galois extension of Qpn . As a consequence, the extensions Kp,n

are cofinal in the maximal tamely ramified extension of Qp. Besides, the Galois
group of Kp,n/Qp sits in the following exact sequence:

which admits a section and provides a presentation of Gal(Kp,n/Qp) as a semi-
direct product Z/nZ � Z/(pn−1)Z where a ∈ Z/nZ acts on Z/(pn−1)Z by
multiplication by pa .

Naively setting p = 1 in the preceding, we find pn−1 = 0, which does not
really make sense since Gal(Kn/Q1n) cannot reasonably be of cardinality zero.
Remembering what we did in Eq. (11), we instead write the factorization:

pn − 1 = (p − 1) · (1+ p + · · · + pn−1) = (p − 1) · [n]p.

At the level of groups, the above factorization reflects the fact that Gal(Kp,n/Qpn)

admits a subgroup of order [n]p, namely Gal(Kp,n/Kp,1). When p goes to 1,
the factor [n]p converges to n and then, passing to the limit, we expect the group
Gal(Kn/K1) = Gal(Kn/Q1n) to be cyclic of order n, which is exactly what we have
found earlier. Furthermore, when p tends to 1, the action of Z/nZ on Z/(pn−1)Z
(and consequently on all its subgroups) becomes trivial, confirming our prediction
that Gal(Kn/Q1) should be a direct product of Gal(Kn/Q1n) by Gal(Q1n/Q1).
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Remark 2.1 There is however one small annoying point in what we have said: why
is it legitimate to get rid of the factor (p−1)? If instead of discarding it without
further discussion, we try to keep it, we come to the conclusion that there should be
between Q1n and K1 an extension of degree 0 or, say, of infinitesimal degree. This
suggests that the extensions Q1n and K1 need to be considered as different objects,
which could be a way to explain why the prefactor Z/nZ should be endowed with
its Frobenius structure in the former case and with its monoid structure in the latter
(see the discussion before Proposition 2.2).

Similar to how the factor (q−1)n in Eq. (11) corresponds to the n-dimensional
torus of GLn, it is tempting to interpret the Galois group of the ghost infinitesimal
extension K1/Q1n as the algebraic group Gm over F1. Similarly, it sounds plausible
to interpret the cyclic group Z/nZ (which is supposed to be the Galois group of
Kn/K1) as the group of F1-points of an algebraic group, maybe aResF1n/F1

(Ga).
All of this suggests that Gal(Kn/Q1n) could just be the pale reflection of an algebraic
group Gal(Kn/Q1n) defined over F1 and sitting in an exact sequence of the form:

1 → aResF1n/F1
(Ga)→ Gal(Kn/Q1n)→ Gm → 1.

And similarly, passing to the limit:

1 → aRes
F̄1/F1

(Ga)→ Gal(Qtr
1/Q

ur
1 )→ Gm → 1.

Beyond its own interest, this interpretation would provide us with a natural
Frobenius structure (given by i �→ i + 1) on Gal(Qtr

1/Q
ur
1 ) - Ẑ after taking F1-

points.
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39. V. Paškūnas. On the Breuil–Mézard conjecture. Duke Math. J. 164(2), 297–359 (2015).
40. G. Pappas and M. Rapoport. ϕ-modules and coefficient spaces. Mosc. Math. J. 9, 625–663

(2009).
41. G. Pappas and X. Zhu. Local models of Shimura varieties and a conjecture of Kottwitz. Invent.

Math. 194, 147–254 (2013).
42. F. Sander. A local proof of the Breuil–Mézard conjecture in the scalar semi-simplification case.

J. Lond. Math. Soc. 94(2), 447–461 (2016).
43. P. Schneider and E.-W. Zink. K-types for the tempered components of a p-adic general linear

group. With an appendix by P. Schneider and U. Stuhler. J. Reine Angew. Math. 517, 161–208
(1999).

44. C. Soulé. Les variétés sur le corps à un élément. Mosc. Math. J. 4, 217–244 (2004).
45. J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. In: Colloque

d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de
Recherches Mathématiques, Établissements Ceuterick, Louvain, pp. 261–289 (1957).

46. B. Toën and M. Vaquié. Au-dessous de Spec Z. J. K-Theory 3, 437–500 (2009).
47. A. Vezzani. Deitmar’s Versus Toën–Vaquié’s schemes over F1. Math. Z. 271, 911–926 (2012).



Computational Number Theory, Past,
Present, and Future

Henri Cohen

For Catriona Byrne, with thanks

1 Introduction

This paper is a very personal account of some computational aspects of number
theory, especially in relation to the Pari/GP computer algebra system [104]. It
is in no way exhaustive, but highlights significant advances that I have personally
encountered.

Without going back too far in time, one of the pioneering figures in the subject
was D.H. Lehmer (and to a lesser extent his father D.N. Lehmer) who introduced a
number of methods some of which are still in use today. He is probably best known
for the Lehmer conjecture dealing with finding a polynomial with smallest nonzero
logarithmic Mahler measure [87] (see also [123] for recent work). I had the privilege
of meeting him once in Berkeley when I was still in high school. Although not a
number theorist per se, one can also mention A. Turing [133] who made extensive
computations on the Riemann Hypothesis using a method that is still used and bears
his name, see also [30].

More recently, in the 1960s and 1970s D. Shanks, who by training was not a
professional mathematician, made a number of very significant contributions to
computational number theory, see for instance [117]. To name a few, the baby-
step giant step method, which allows to find a given element in a group of size
N in time O(N1/2), the infrastructure of real quadratic fields, which was in some
sense a precursor to Arakelov theory, and an essential piece in the development
of algorithms for computing class and unit groups, the Tonelli–Shanks algorithm
for computing square roots modulo p, as well as less important but still interesting
6-letter methods (coming from FORTRAN) such as NUCOMP and SQUFOF, the
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latter allowing to factor 18-digit numbers on a pocket calculator using only 10 digits.
I refer to [37] for details on all these methods.

In parallel and during the same period, more “serious” computational math-
ematics was being done: first and foremost, the computations of B. Birch and
P. Swinnerton-Dyer in the 1960s on the Mordell–Weil group of rational elliptic
curves, leading to the famous BSD conjecture [28], which is one of the most
outstanding conjecture in number theory, on par with the Riemann Hypothesis; the
work of D. Tingley [132] leading to tables of modular elliptic curves in Antwerp IV
[29]; and later the work of J. Buhler proving the existence of an icosahedral weight 1
modular form in level 800 [35]; work of O. Atkin on many computational aspects of
modular forms such as the Atkin–Lehner operators [8], non-congruence subgroups
[10], congruences between modular forms, etc.; work of H. Stark on Stark units,
leading to the Stark conjectures [124], as well as the first explicit (although at the
time non-rigorous) computation of cuspidal Maass forms in level 1 [125] and also
[31] for a modern and rigorous treatment; this was followed by extensive work
of D. Hejhal on this subject [81]; work of A. Odlyzko on verifying the Riemann
Hypothesis at very large heights and relations with the GUE hypothesis, and in
particular the Odlyzko–Schönhage algorithm for computing ζ(s) for large <(s)
[103].

In the late 1970s and early 1980s, a flurry of activity took place around primality
testing and factoring. This ultimately led to the two leading practical primality
tests, the APRCL (Adleman–Pomerance–Rumely–Cohen–Lenstra) test using Jacobi
sums and cyclotomic fields [48] and [49], and the ECPP (Elliptic Curve Primality
Proving) algorithm using elliptic curves by O. Atkin and F. Morain [9]. Later, the
AKS (Agrawal–Kayal–Saxena) test [1] proved that primality proving is polynomial-
time, but this test is less practical than the previous ones.

For factoring, the decisive step was taken by J. Pollard (again a nonprofessional
mathematician) which led to the NFS (Number Field Sieve) algorithm [90], other
important algorithms being the MPQS (Multiple Polynomial Quadratic Sieve), in
large part due to C. Pomerance [108], and the ECM (Elliptic Curve Method), due to
H. W. Lenstra, Jr. [89]. All these algorithms are still in use today.

In parallel, R. Schoof used “�-adic” techniques to create a polynomial time
algorithm for counting points on elliptic curves over prime finite fields [116], which
was later improved by O. Atkin and N. Elkies into the SEA (Schoof–Elkies–Atkin)
algorithm [63]. For elliptic curves over fields of small characteristic, J.-F. Mestre
[98] and T. Satoh [115] invented incredibly simple algorithms for this task (only
a few lines of programming necessary, see for instance Algorithm 17.58 in [47]
for Mestre’s AGM based algorithm in characteristic 2). Later, this was largely
generalized to all hyperelliptic curves (and other varieties) by K. Kedlaya [85].
These algorithms are “p-adic” in nature, as opposed to �-adic above.
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2 The Development of Pari/GP and Computational Number
Theory Books

There are two ways of doing number theory on a computer: either program in a
standard low-level computer language such as C or even directly in assembly, or
use high-level software such as Maple or Mathematica. The first method is by far
the most efficient, but is extremely cumbersome, since for instance multiprecision
operations are not available, at least directly, in these languages. In the early 1980s,
there existed a few Computer Algebra Systems, but first they were mostly tailored
to perform computations in applied mathematics and numerical analysis and not
number theory, and second they were very slow for the little number theory that
they could do.

With the help of a few colleagues, first F. Dress, then C. Batut, D. Bernardi,
and M. Olivier, in 1985 we embarked on the daunting task of writing a complete
computer algebra system with two goals in mind: first speed and efficiency,
second specifically tailored to number-theoretic computations, although we also
included some numerical analysis tools. Once the basic functionality written (which
required 2 years of hard work, including tens of thousands of lines of assembly
language code), we included algorithms for working with common mathematical
objects, and recent groundbreaking algorithms such as the LLL (Lenstra–Lenstra–
Lovász) algorithm [91] (see [100] and [101] for later work), one of the most useful
algorithms invented at the end of the twentieth century. In friendly competition
with the KANT group led by M. Pohst, we also completed H. Zassenhaus’ program
consisting in computing rings of integers, unit groups, and class groups of algebraic
number fields. The pioneering work of Hafner–McCurley [77], followed by that of
J. Buchmann [33], led us to the first program able to compute class and unit groups
of general number fields in reasonable time and at the simple press of a keystroke.
I still recall our elation in seeing the class groups of several thousand cubic fields
being computed in the blink of an eye, since previously, computing even a few could
constitute a Masters thesis. Later, with the help of D. Bernardi and J.-F. Mestre, we
also wrote a number of programs for working with elliptic curves over the rationals,
not including rank computations.

In parallel with the writing of these programs, I decided to write down explicitly
the algorithms used, since they were either scattered in the literature, or completely
new such as Buchmann’s algorithm. This resulted in quite a large manuscript
(more than 500 pages), and on the occasion of the 1991 Arbeitstagung in Bonn
I was introduced to Catriona Byrne, who after sending the book to a number of
referees, accepted the manuscript, which was published with the title “A Course in
Computational Number Theory” as Springer GTM 138 [37]. Since then we stayed
in professional contact, at ICMs and on the occasion of the publication of my later
books, and I was very pleased that she attended the conference given in Bordeaux
for my 60th birthday in 2007.

I was of course very happy by the success of this book (I believe it has now
reached a circulation of more than 10,000 copies, Springer can confirm this), but
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evidently almost 30 years later a large part is outdated since computational methods
change much faster than mathematical theories do.

Note that previously almost all books on computational number theory were
mostly conference proceedings such as [92] and [109], and/or devoted to a specific
subject, with the exception of [140] in 1972, and [106] which appeared essentially
at the same time as [37] in 1993.

Shortly after the book appeared, J. Martinet (who was both my thesis advisor
and the chairman of our department) gave a course on class field theory, using the
classical language of moduli, instead of the more modern language of adèles and
idèles. That modern language had always frightened me, and I considered class field
theory as a difficult subject. Martinet’s course opened my eyes, and I soon realized
that class field theory could, with some effort, be included in computer packages.
For this purpose I had to develop some elementary but apparently new machinery
for dealing with relative extensions, and also I rewrote Martinet’s course (omitting
many proofs) in a way which was more suited to computer implementation. Exactly
as in the beginning of Pari/GP, this led both to an extensive Pari library for
computing in relative extensions, computing ray class groups and ray class fields
(helped by F. Diaz y Diaz and M. Olivier [43]), and to the writing of a new
book, naturally called “Advanced topics” in computational algebraic number theory,
published in 2000 as Springer GTM 193 [38]. This book contains in particular a very
understandable description of class field theory in classical language, in large part
based on Martinet’s course.

For completeness (and self-advertising) I also mention my two other books [39]
and [40] which are much less computationally oriented but contain a very large
amount of material and exercises on modern number theory.

3 Arithmetic Statistics

A considerable number of additional algorithmic methods for number fields have
since been found. In particular, in the domain of making tables of number fields, in
addition to the brute force methods using theorems of Hunter and Martinet, class-
field theoretic methods have been used to compute certain classes of number fields,
in particular quartic fields [45] and [46], very elegant methods for computing cubic
fields based on the Delone–Fadeev correspondence have been devised by K. Belabas
[15], and much more recently the work of M. Bhargava [22] and [23] has led to much
more efficient methods for computing S4 quartic fields [138].

The rest of this section is more theoretical, but intimately connected to computa-
tional number theory.

The problem of enumerating number fields (usually, but not always, ordered by
discriminant) has attracted a lot of attention. Denote by Nn(G,X) the number of
isomorphism classes of number fields of degree n, absolute discriminant less than
X, and Galois group of their Galois closure isomorphic to G, and by Nn(X) if G is
not specified. The case n = 2 is trivial, The case G = C3 is easy and first published
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by H. Cohn [52], G = C4 and G = C2 × C2 are due to A. Baily [11], although
his formulas need to be corrected, and the general case where G is abelian has been
treated by S. Mäki in her thesis (Helsinki, 1985), see also [96].

Non-abelian groups are much more difficult. The case of S3 cubic fields was
solved by Davenport and Heilbronn using the Delone–Fadeev correspondence [58],
the case of D4 quartic fields is due to F. Diaz y Diaz, M. Olivier, and the author
[45], and S4 quartic and S5 quintic fields are due to the fundamental pioneering
work of M. Bhargava [23, 24] using prehomogeneous vector spaces and a careful
point counting inside multidimensional fundamental domains.

A folk conjecture predicts that the total number of number fields of absolute
discriminant less than X should be asymptotic to c·X for a suitable positive constant
c. A much more precise general conjecture due to G. Malle [97] predicts that
Nn(G,X) ∼ c(G) · Xa(G) log(X)b(G) for explicit constants a(G) and b(G) and
a nonexplicit positive constant c(G) (his initial conjectured value of b(G) needs to
be corrected in certain cases; note that this conjecture implies that Nn(G,X) > 0
for sufficiently large X, i.e., the truth of the inverse Galois problem, which is also
conjectural), and in particular that Nn(X) ∼ cn ·X for n ≥ 2 for some cn > 0.

Malle’s conjecture is known to be true in a number of cases in addition to the ones
already mentioned, but is far from being proved in general. For instance it predicts
that N4(A4,X) ∼ c X1/2 log(X), but the best known unconditional upper bound
is N4(A4,X) = O(X0.7785) [25] (even conditionally, the best known is O(X2/3)

[139]). For another example, it is not known whether N6(X) = O(X), the trivial
bound being O(X2); it is only recently (April 2022) that several authors [6], [26]
succeeded in improving on this trivial bound, the best result being O(X61/32+ε) for
any ε > 0, still far from the conjectured result. Even more frustrating, it is widely
conjectured that the number of cubic fields with given discriminant X is O(Xε) for
any ε > 0, but the trivial class-field theoretic bound only gives O(X1/2), and the
current best bound is O(X1/3) [65].

On the other hand, an important step towards the folk conjecture was made by
J.-M. Couveignes [54], later slightly improved by other authors in [88], who show
that Nn(X) = On(X

c·log(n)2
) for a suitable constant c.

Another aspect of arithmetic statistics, closely linked to the above-mentioned
works via class field theory, is to study the distribution of class groups of number
fields. The basic conjectures were proposed by Lenstra, Martinet, and the author
in [50] and [51], although the latter should be modified in the presence of roots of
unity, see for instance [134] and [13] for recent approaches and references.

These conjectures have been proved only in a very small number of cases:
the theorems of Davenport–Heilbronn and the works of Bhargava et al. already
mentioned, and in the special case p = 2 for quadratic fields in the remarkable
work of A. Smith [122], following work of F. Gerth [73] and Fouvry–Klüners [72].

In a different direction, the so-called Odlyzko bounds, due in fact to many people
(H. Stark, A. Odlyzko, G. Poitou, J.-P.-Serre, F. Diaz y Diaz, see the references in
Odlyzko’s survey [102]) led to considerable work towards finding number fields
with smallest possible absolute discriminant for given degree and signature, see for
instance [44].
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A considerable amount of work has also been done on statistics for elliptic
curves. Without going into too much detail, probably the most spectacular heuristic
is due to B. Poonen and E. Rains [111], predicting in particular that there should
exist only a finite number of (isomorphism classes of) elliptic curves defined over Q
with Mordell–Weil rank strictly larger than 21 (the current record is due to N. Elkies
with a curve of rank 28, see [64]), see [110] for additional references. Note that 21
would be very close to optimal since another result of Elkies shows that there are
infinitely many elliptic curves defined over Q with rank greater or equal to 19, see
again [64]. A different heuristic due to A. Granville and M. Watkins [136] also gives
21 as an upper bound.

4 Automorphic Forms, L-Functions, and Pari/GP
Implementations

Notwithstanding all this work, in the past 25 years, the emphasis has turned
away from number fields, and more toward more algebro-geometric objects and
automorphic forms, in particular related to the Langlands program.

Already in the early 1990s, J. Cremona launched an extensive computation to
tabulate elliptic curves defined over Q (he has reached conductor 500,000), and has
written a very nice book giving all the details [56]. In addition, he provided the
number-theoretic community with the mwrank program, which in many cases is
able to compute the Mordell–Weil group of a rational elliptic curve.

Cremona’s computation of elliptic curves defined over Q is based on the use
of modular symbols for computing spaces of modular forms of weight 2 with
trivial character. In collaboration with N. Skoruppa and D. Zagier, we developed
algorithms for computing spaces of modular forms of any even weight with trivial
character, later generalized by Skoruppa to forms with character (Nebentypus). The
method was completely different since based on the Eichler–Selberg trace formula.
We computed and even printed large tables, which were used by a small circle but
were never published, but see below.

Since the 1990s a large number of papers appeared containing new or improved
algorithms and programs in computational number theory. In particular, the ANTS
(Algorithmic Number Theory Symposia) series held every 2 years since 1994 holds
a wealth of information, see the 14 volumes of [3], and see also [47], which is more
oriented towards cryptographic applications.

I will now focus on what I know best, without minimizing the importance of
subjects that I do not mention.

The appearance of the Computer Algebra Systems magma [32] (headed by
J. Cannon) and Sage [114] (headed by W. Stein) gave the (non-numerical)
mathematical community powerful additional tools, although the strictly number-
theoretic part of Sage mostly comes from the use of Pari/GP. One of the initial
ingredients of Sage was a package written by W. Stein for computing spaces of
modular forms using modular symbols, which is very nicely explained in his book
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[126]. Many of the implementations that I will now describe are also available in
magma (and of course also in Sage since it contains the Pari code).

In the Pari/GP system [104], a number of very important new implementations
have been included, which can be roughly divided into five categories, although
almost all these improvements are interwoven. This is the main strength of the
Pari library: so many arithmetic functions are available and used internally in so
many places that even localized improvements or better design concepts quickly
have major impacts elsewhere.

4.1 Algebraic Number Fields

• A considerably more efficient computation of the class and unit groups of
algebraic number fields due to the work of B. Allombert, K. Belabas and
L. Grenié over 20 years [19] and [76].

• The systematic use of compact representations of elements and in particular of
S-units in number fields by K. Belabas following H. Williams’ original ideas,
absolutely essential for many applications, see [34] and [120].

• A Thue equation solver, by G. Hanrot [27].
• A fast polynomial factorization engine over number fields by K. Belabas building

on earlier work of X. Roblot and the revolutionary ideas introduced in the LLL
method by M. van Hoeij [16] and [21].

• A large number of Galois-theoretic functions by B. Allombert [4].
• A complete rewrite of basic finite fields arithmetic (including polynomial factor-

ization and many multimodular methods) by B. Allombert [5] and asymptotically
fast linear algebra by P. Bruijn, including fast linear algebra over cyclotomic rings
by B. Allombert [84].

• On the fly computation of number fields with given Galois group and local data
by K. Belabas and the author, see in particular [46].

• A much more efficient program for Kummer extensions and computing class
fields by K. Belabas, L. Grenié and A. Page using C. Fieker’s ideas.

4.2 Elliptic and Hyperelliptic Curves

• Many new algorithms for elliptic curves over number fields and p-adic fields by
B. Allombert, K. Belabas, and B. Perrin-Riou.

• Isogenies by H. Ivey-Law and B. Allombert.
• Modular and class polynomial computations by A. Enge, H. Ivey-Law, and

A. Sutherland, see [66, 68, 129], and [128].
• Pairings by J. Milan and B. Allombert.
• ECPP implementation by J. Asuncion.
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• Mordell–Weil group of elliptic curves by B. Allombert, K. Belabas and D. Simon,
extending D. Simon’s original GP scripts and considerably more efficient than
J. Cremona’s initial very useful mwrank program.

• Improvements of the Heegner point method using ideas of J. Cremona and
M. Watkins by B. Allombert [135].

• Implementation of the SEA point-counting algorithm by B. Allombert, C. Doche,
and S. Duquesne.

• Kedlaya’s algorithm [85] to compute the characteristic polynomial of the Frobe-
nius automorphism on a hyperelliptic curve by B. Allombert.

• Reduction of genus 2 curves by K. Belabas and Q. Liu [94].
• A port by B. Allombert of the ratpoints program written by M. Stoll [127]

which searches for rational points of small height on hyperelliptic curves.

4.3 L-Functions and Automorphic Forms

• Numerical computation of arbitrary (motivic) L-functions, initially based on a
paper and a GP script due to T. Dokchitser [61], but largely enhanced thanks to
ideas of A. Booker, P. Molin, and the Pari group, see [41, 42], and [18].

• Computation of modular form spaces by K. Belabas and the author, again using
the Eichler–Selberg trace formula, but enormously enhanced: in particular, it
can compute modular forms of weight 1, of half-integral weight, expansions at
arbitrary cusps, Petersson products, etc., see [17] for complete details.

• Isomorphisms of lattices by B. Allombert, porting B. Souvignier’s implementa-
tion of the Plesken and Souvignier algorithm [105].

• Modular symbols by K. Belabas and B. Perrin-Riou [20] (after R. Pollack and
G. Stevens [107]), analogous to W. Stein’s initial one and more tailored towards
the computation of p-adic L-functions attached to modular forms.

• Associative and central simple algebras due to A. Page, complementing similar
work done by J. Voight.

• Hypergeometric motives and their L-functions by K. Belabas and the author,
based on ideas of N. Katz, F. Rodriguez-Villegas and M. Watkins, see [14] and
[113].

• Implementation of arbitrary Hecke Grössencharacters by P. Molin and A. Page
[99].

4.4 Numerical Methods

A large number of arbitrary precision numerical methods, many of them new, have
been implemented:
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• A. Schönhage’s polynomial root finding method, which guarantees to find all
complex polynomial roots to a given accuracy, as implemented by X. Gourdon
[75].

• A port by B. Allombert of the fplll software written by D. Stehlé
implementing very efficient floating point versions of the LLL algorithm due
to D. Stehlé and P. Nguyen [100].

• Numerous methods for numerical summation (in particular discrete Euler–
McLaurin and Monien summation), numerical integration (in particular
Gauss–Legendre integration and doubly-exponential methods), extrapolation (in
particular Lagrange and Sidi extrapolation), asymptotic expansions, and efficient
evaluation of continued fractions. All of these algorithms are explained in great
detail (including GP code) in the recent book [18] of K. Belabas and the author.

• Computation of transcendental functions, both elementary, and higher
transcendental functions, in particular hypergeometric functions, as well as
p-adic transcendental functions.

• Multiple zeta values and multiple polylogarithms, based on work of P. Akhilesh
[2] and the author.

• Computation of Dirichlet L-functions for large imaginary part of the argument,
using either K. Fischer’s zetafast algorithm [70] or the Riemann–Siegel
formula, see [7] for ζ(s) and [119] for Dirichlet characters.

4.5 Software Enhancements

On the non-mathematical side, one can mention the following:

• The use of the highly optimized gmp multiprecision library to replace most of
the integer arithmetic, in particular our own assembly code.

• The GP2C compiler written by B. Allombert which translates GP scripts into pure
C code which can be 3 or 4 times faster and can be incorporated into standalone
programs or be used to learn libpari programming.

• The possibility of using parallelism in Pari/GP programs (POSIX threads
or MPI) with essentially no effort nor additional programming, also due to
B. Allombert. The underlying mechanism is also heavily used internally in
many algorithms, without user intervention, to benefit from the now ubiquitous
multicore machines (pthreads) or launch massive jobs on computing clusters
(MPI).

5 Additional Available Software and Algorithms

As already mentioned, both magma and Sage are very large systems containing
much more than computational number theory. But in addition to the programs
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provided by these systems, the most important additional resource is the LMFDB
(L-function and Modular Form Database) [93] and [57], which contains a huge
amount of interconnected tables related to computational number theory, which
can be trivially downloaded and used in Pari/GP, magma, or Sage. This is a
collaborative effort by almost a hundred people, and has become an essential tool
for working on the subject.

Unrelated but also very useful is the arb system [83] developed by F. Johansson
which guarantees the accuracy of numerical results by working in ball arithmetic,
and which in particular contains a very large number of transcendental functions.
Not only are the results guaranteed, but in addition the implementations are
considerably more efficient than in other systems. Note also the paritwine
package [67] which allows easy access to many arb functions inside a Pari/GP
session.

I would also like to mention the following additional works, again far from being
exhaustive:

• Implementations of Hilbert modular forms by L. Dembelé and J. Voight [59], as
well as later work.

• Implementation of Bianchi modular forms by J. Cremona [55] as well as later
work, see the LMFDB [93] and [57] for further references.

• Implementation of certain types of Siegel modular forms by many people.
• Implementation of p-adic L-functions by R. Pollack and C. Wuthrich.
• Work of D. Farmer’s group on creating L-functions “out of thin air”, and in

particular in making tables of GL3 and GL4 Maass forms [69].
• Work of Poor and Yuen on paramodular forms, and in parallel of A. Brumer on

abelian surfaces, in the direction of the paramodular conjecture [112] and [36].
• The very efficient use of the p-adic Gross–Koblitz formula for counting points

over finite fields by several people, see for instance [18].
• Quasi-linear time computation of coefficients of motivic L-functions by D. Har-

vey, K. Kedlaya, A. Sutherland et al., and application to classification of
Sato–Tate groups, as well as other important contributions of these authors, see
for instance [78, 79, 130, 131], and [71].

• Chabauty–Coleman methods [95] to compute all rational points on curves and
certain other varieties, and generalizations such as Kim’s non-abelian Chabauty
[53],

• Generalizing Schoof’s algorithm, the polynomial time (but not practical) al-
gorithm of J.-M. Couveignes, B. Edixhoven1 et al. [62], for computing the
Ramanujan tau function and more generally Hecke eigenvalues.

• The work of K. Khuri-Makdisi on efficient computations on Jacobians of curves
[86].

1 My friend and colleague Bas Edixhoven died suddenly and very prematurely on January 16,
2022.
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• The recent proof by D. Harvey and J. van der Hoeven [80] of the existence
of a O(n log(n)) algorithm for multiplying n-bit numbers, which had been
conjectured for more than 50 years.

6 The Future

In the same way that fundamental research is essential for practical applications, the-
oretical progress on mathematical conjectures is often essential for computational
uses, but conversely, not only computational experiments often lead to important
conjectures (I have already mentioned BSD and the Stark conjectures, but there
are many other examples), but in conjunction with theoretical advances can lead to
proofs. Let me specialize to number theory.

Many theorems in number theory are non-effective, in that one knows that some
property is true for a “sufficiently large” (but unspecified) number, or that some
quantity is larger than C · f (x) for a known function f (x) but an unspecified
constant C, or similar. It is then useless to do computations since we will never
know when the “sufficiently large” is attained. Some other theorems are effective,
but the implied constants are so large that the computations become unfeasible.

In these cases, computational methods can be applied only after some theoretical
progress is made. Let me give a few examples.

• A special case of a well-known theorem of Brauer–Siegel implies that for any
ε > 0 the class number h(D) of an imaginary quadratic field of discriminant D is
greater than |D|1/2−ε for |D| sufficiently large, but non-effectively. In particular
h(D) → ∞ with |D|. The class number 1 problem (h(D) > 1 for |D| >

163) was famously solved by Heegner–Stark and Baker, and the class number
2 problem (h(D) > 2 for |D| > 427) by Stark and Baker using Baker’s lower
bounds for linear forms in logarithms. But it wasn’t until the combined work of
D. Goldfeld and B. Gross–D. Zagier that a very weak but explicit lower bound
tending to infinity for h(D) was found, using a very clever method, see [74] for
an overview of all this. Computational methods could then be applied, and in
this way M. Watkins [137] was able to solve the class number h problem for all
h ≤ 100 (one could go further if desired).

• A theorem of Siegel states that the number of integral points on any model of an
elliptic curve defined over Q is finite, but non-effectively. Progress on this was
made thanks to two advances, the main one being theoretical: thanks to Baker-
type theorems on linear forms in elliptic logarithms, Siegel’s theorem could be
made effective, but with bounds of the type 1010A

. The second advance was the
crucial use of the LLL algorithm to reduce in 2 or 3 steps the bound to something
manageable, so that finding all integral points on an elliptic curve is now routine
(as long as the Mordell–Weil group is known), see [121] or Section 8.7 of [39].

• A theorem of Faltings (previously known as Mordell’s conjecture) tells us that
the number of rational points on a curve of genus g ≥ 2 is finite, again non-
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effectively. In this case, theoretical advances have been constant, but slow. When
the rank r of the Mordell–Weil group of the Jacobian of the curve satisfies r < g,
Faltings’ result is in fact effective and due to C. Chabauty and R. Coleman. In the
past few years, considerable progress has been made when r = g and in some
cases r > g, but we are still far from a satisfactory situation analogous to integral
points on elliptic curves, see [53] for a survey.

• Several theorems in analytic number theory are effective, but with implied
constants that would a priori seem inaccessible to computation. Once again,
it is thanks to theoretical advances such as a very careful analysis of the so-called
“minor arcs” or similar, that the theorems have been completed, usually after a
very large computation. Two examples: Waring’s problem for 4th powers (every
integer n > 13,792 is a sum of 16 4th powers [60], and every integer is a sum
of 19 such [12]) and Goldbach’s conjecture for odd integers (every odd integer
n > 5 is a sum of at most three primes) by H. Helfgott [82].

Therefore it seems reasonable to believe that future important progress in
computational number theory will come from theoretical advances.

For instance, a very important problem (which may never be solved) is to find
efficient algorithms for finding Euler factors and local conductors of motivic L-
functions at bad primes. Apart from brute force searches (the search domain being
finite), one of the most general methods consists in writing systems of linear or
nonlinear equations and trying to solve them using the functional equation of the
L-function, but these methods fail as soon as the problems get large.

For specific types of L-functions, one has specific theorems and/or algorithms,
the most famous being Tate’s algorithm for elliptic curves. One also has algorithms
for curves of genus 2 and partial results in higher genus, for certain other varieties,
for symmetric powers of modular forms, for Hecke L-functions, and for Artin L-
functions.

A general algorithm would involve computing explicitly �-adic cohomology
groups, which for now seems out of reach except in special cases including those
mentioned above.

Other future goals may be the generalization of the Riemann–Siegel formula to
L-functions of degree larger than 1, for instance attached to classical modular forms,
a rigorous understanding of Dokchitser’s heuristic continued fraction method for
computing inverse Mellin transforms, obtaining more efficient methods for finding
L-functions knowing only their functional equation and arithmetic properties
by building on the work of D. Farmer, algorithmic methods for more general
automorphic forms, improvement in the computation of Mordell–Weil groups of
abelian varieties including the use of n-descent for n ≥ 3, and improvements of
Chabauty-like methods for finding rational points.

One can also have even more inaccessible dreams: first, of finding a polynomial
time algorithm for factoring, or at least faster than the number field sieve. But
perhaps less inaccessible, it is quite frustrating that on the one hand, given a
rational elliptic curve of rank 1, the Heegner point method can find a generator very
efficiently, while if the curve has rank 2, say, and one rational point is known, there
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is no efficient general method for finding a second independent rational point. This
is intimately linked to the fact that the BSD conjecture is totally open for curves of
rank greater than or equal to 2.

One can also consider paradigm shifts in computational problems. Until rather
recently, the Graal was to find polynomial time algorithms (possibly probabilistic
or depending on unproved hypotheses such as GRH) for computational problems.
Since then, the emphasis is sometimes more on finding quasi-linear algorithms (with
respect to the input and output size). In view of the possible existence of quantum
computers, the possibilities of quantum computability opens also a wide scope for
research, the prototypical example being Shor’s factoring algorithm [118], but many
other applications of quantum computing have since been found.
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The Four Exponentials Problem
and Schanuel’s Conjecture

Michel Waldschmidt

Personal Note
This Festschrift in honor of Springer’s Editorial Director Dr. Catriona Byrne is a
good opportunity for me to thank Catriona for her support in publishing a good part
of my works with Springer Verlag. I had the pleasure of working with her also as
an editor of this publisher. I am thankful also to the editors of this special volume
of the Lectures Notes in Mathematics for their invitation to share my favorite open
problems and the ones dear to my heart, with some background and context.

1 Introduction

I have worked on several conjectures. The one on which I spent much more time
than the others is the so-called four exponentials problem (Lang [17, Chap. II
§ 1 p. 11]), which is also the first of the eight problems in Schneider’s book on
transcendental numbers [38]. This question is a very special case, arguably one of
the easiest unsolved cases so far, of Schanuel’s Conjecture (Lang [17, Chap. III,
Historical note p. 30]). Over the years, I tried to prove Schanuel’s conjecture;
since very few results are known, in the process of trying to solve it, I added some
hypotheses which might help, and, quite often, after some time, I came back trying
to solve the four exponentials problem. Without success so far! It is hard to predict
whether the special case of the four exponentials problem will be solved before the
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very general case of Schanuel’s conjecture. As an example, the following simple
looking statement is open:

Let t be a real number such that 2t and 3t are integers. Prove that t is a nonnegative integer.

While the four exponentials problem is still open, a weaker statement, the six
exponentials theorem (Theorem 4.1), is known to be true; a special case is the
following:

Let t be a real number and p1, p2, p3 be three distinct primes. Assume that the three
numbers pt

1, pt
2 and pt

3 are integers. Then t is a nonnegative integer.

For a complete proof of this result using interpolation determinants, see Wald-
schmidt [53].

The present paper deals only with Schanuel’s conjecture and some of its
consequences, including the four exponentials problem and the problem of algebraic
independence of logarithms of algebraic numbers (of which Leopoldt’s conjecture
is a special case in the p-adic case). Further conjectures (including Grothendieck’s
conjecture on abelian periods, André’s conjecture on motives, the conjecture of
Kontsevich–Zagier on periods,. . . ) also deserve to be discussed—see for instance
Waldschmidt [52].

2 Leopoldt’s Conjecture on the p-Adic Rank of the Group of
Units of an Algebraic Number Field

When I started to do research in 1969 in Bordeaux, my thesis advisor, Jean
Fresnel, suggested me to study Leopoldt’s conjecture (Leopoldt [21]). At that time,
Fresnel was interested in p-adic L-functions (Amice and Fresnel [2]) and Leopoldt’s
conjecture was comparatively recent. The goal is to prove that the p-adic rank of
the group of units of an algebraic number field is the same as the usual rank given
by Dirichlet’s unit theorem. It amounts to saying that the p-adic regulator, which is
defined as the usual regulator by replacing logarithms with p-adic logarithms, does
not vanish. According to Fresnel, since it amounts to proving that a determinant
does not vanish, it should not be so difficult!

For a subfield of an abelian extension of an imaginary quadratic field, the
decomposition, due to Frobenius, of the Gruppendeterminant of the Galois group—
see for instance Fresnel [10], Waldschmidt [41], Kanemitsu and Waldschmidt
[16]—shows that the regulator splits into a product of linear forms with algebraic
coefficients of logarithms of algebraic numbers. As a consequence, in this special
case, as shown by J. Ax [3, Conjecture p. 587], Leopoldt’s conjecture is a
consequence of the p-adic version of a conjecture of A.O. Gel’fond on the linear
independence, over the field Q of algebraic numbers, of Q-linearly independent
logarithms of algebraic numbers. This linear independence result in the complex
case has been achieved by the seminal work of A. Baker [4], by means of a far-
reaching development of Gel’fond’s method.
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The p-adic analog of Baker’s result was proved the year after by A. Brumer
[6], who therefore solved Leopoldt’s conjecture for these abelian extensions. As
pointed out by Brumer, the translation to the p-adic case of transcendence methods
had been worked out by J-P. Serre [39]. As a matter of fact, Serre was interested in
an extension to several variables (in the p-adic case) of the six exponentials theorem
for an application to �-adic abelian representations (Serre [40], Henniart [14]).

In the general case, Leopoldt’s conjecture is a special case of the p-adic version
of the conjecture on algebraic independence of logarithms of algebraic numbers.
This is why Fresnel suggested me to study the theory of transcendental numbers.

3 Conjecture on the Algebraic Independence
of Logarithms of Algebraic Numbers

According to A.O. Gel’fond [11, Chap. III § 5 p. 177], one may assume . . . that the
most pressing problem in the theory of transcendental numbers is the investigation
of the measures of transcendence of finite sets of logarithms of algebraic numbers.
From a qualitative point of view, the statement is the following one (Lang [17,
Chap. III, Historical note p. 31]), which, according to Lang, has been conjectured
for a long time (by anybody who has looked at the subject).

Conjecture 3.1 (Algebraic Independence of Logarithms of Algebraic Numbers)
Let λ1, . . . , λn be Q-linearly independent complex numbers, such that the numbers
αi = eλi (i = 1, . . . , n) are algebraic numbers. Then λ1, . . . , λn are algebraically
independent.

In Calegari and Mazur [7, Conjecture 3.9], this conjecture is called weak
Schanuel.

Under the assumptions of Conjecture 3.1, the conclusion of Baker’s theorem [4]
is that the numbers 1, λ1, . . . , λn are Q-linearly independent, while the conclusion
of Conjecture 3.1 is that, for any nonzero polynomial P (with rational or algebraic
coefficients) in n variables, the number P(λ1, . . . , λn) does not vanish.

By abuse of language, we sometimes write λi = logαi (i = 1, . . . , n); the way
Conjecture 3.1 is stated avoids the need to select a branch of the complex logarithm.
For instance with λ1 = log 2 and λ2 = log 2 + 2π i, hence α1 = α2 = 2, Baker’s
theorem yields the linear independence of the numbers 1, log 2, π over Q, while
Conjecture 3.1 claims that log 2 and π are algebraically independent (which is not
yet proved).

Conjecture 3.1 is true for n = 1: a nonzero logarithm of an algebraic number is
transcendental, according to the theorem of Hermite–Lindemann (Schneider [38,
Chap. II § 4], Lang [17, Chap. III Corollary 1], Waldschmidt [43, Th. 3.1.1],
[49, Th. 1.2]). This is essentially the only case where Conjecture 3.1 has been
proved. Under the assumptions of Conjecture 3.1, the conclusion should be that the
transcendence degree of the field Q(λ1, . . . , λn) is n. As a matter of fact, it is not
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yet known if the field generated by all logarithms of all nonzero algebraic numbers
has a transcendence degree over Q of at least 2. However, for a conjecture which
is equivalent to Conjecture 3.1, half of the result is proved (see inequalities (2) in
Sect. 5 and (3) in Sect. 6). Hence, depending on the point of view, one may consider
that we are half way toward proving Conjecture 3.1.

4 The Four Exponentials Problem and Six Exponentials
Theorem

We would like to solve at least some special cases of Conjecture 3.1. For instance
we would like to prove that there are no algebraic relations like

(logα1)
2 = logα2

involving nonzero logarithms of algebraic numbers logα1 and logα2. Very few
results are known even for this very specific case. We will mainly work with
homogeneous relations; among the simplest nonlinear ones is the following:

(logα1)(logα4) = (logα2)(logα3),

which amounts to considering the vanishing of the determinant

∣
∣
∣
∣
logα1 logα2

logα3 logα4

∣
∣
∣
∣ . (1)

Here, logαi denote complex numbers such that αi = elogαi are algebraic numbers.
The four exponentials problem states that such a determinant can vanish if and only
if either the two rows are linearly dependent over the rational number field Q, or the
two columns are linearly dependent over Q. Since a 2 × 2 matrix has rank ≤ 1 if
and only if it can be written as

(
x1y1 x1y2

x2y1 x2y2

)

,

an equivalent form of the four exponentials problem is the following:

Conjecture 4.1 (Four Exponentials Problem) Let x1, x2 be two complex numbers
which are linearly independent over Q and let y1, y2 be two complex numbers which
are linearly independent over Q. Then at least one of the four numbers

ex1y1, ex1y2, ex2y1, ex2y2

is transcendental.
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Here is a sketch of proof of Conjecture 4.1 as a consequence of Conjecture 3.1
on algebraic independence of logarithms of algebraic numbers (Waldschmidt [49,
Exercise 1.8]). As pointed out by D. Roy [30, p. 52], Conjecture 3.1 is equivalent
to the following statement: Let λ1, . . . , λn be logarithms of algebraic numbers and
let P ∈ Q[X1, . . . , Xn] be a nonzero polynomial with algebraic coefficients such
that P(λ1, . . . , λn) = 0. Then there is a vector subspace V of Cn, rational over Q,
which is contained in the set of zeroes of P and contains the point (λ1, . . . , λn). To
completes the proof, one uses the fact that if V a vector subspace of C4, which is
rational over Q and is contained in the hypersurface z1z4 = z2z3, then there exists
(a : b) ∈ P1(Q) such that V is included either in the plane

{(z1, z2, z3, z4) ∈ C
4; az1 = bz2, az3 = bz4}

or in the plane

{(z1, z2, z3, z4) ∈ C
4; az1 = bz3, az2 = bz4}.

This four exponentials problem was proposed explicitly by S. Lang [17, Chap. II
§ 1 p. 11] and K. Ramachandra [25, p. 87–88]; it is also the first of the eight problems
at the end of Schneider’s book [38].

The following statement is weaker than Conjecture 4.1 but is proved:

Theorem 4.1 (Six Exponentials Theorem) Let x1, x2 be two complex numbers
which are linearly independent over Q, and let y1, y2, y3 be three complex numbers
which are linearly independent over Q. Then at least one of the six numbers

ex1y1, ex1y2, ex1y3, ex2y1, ex2y2, ex2y3

is transcendental.

Equivalently, a 2×3 matrix with entries logarithms of algebraic numbers, having
its two rows linearly independent over Q and its three columns linearly independent
over Q, has rank 2.

The six exponentials Theorem 4.1 was proved by Lang [17, Chap. II Th. 1] and
Ramachandra [25]. The footnote on p. 67 of [25] reads:

After writing this manuscript I came to know from professor C.L. Siegel that this is a result
first due to Schneider and Siegel. The result is unpublished. This result may also be found
in a recent paper by S. Lang, Algebraic values of meromorphic functions, Topology 5 (4),
(1966), pp. 363–370. The results of this paper have something in common with Lang’s
results.

Indeed, one can infer from Alaoglu and Erdős [1, p. 455] that the six exponentials
Theorem 4.1 and the four exponentials problem (Conjecture 4.1) were also known
to C.L. Siegel. When I met A. Selberg at a conference organized by Kai-Man Tsang
in Hong Kong in December 1993, he told me that he knew the proof of the six
exponentials Theorem 4.1, but he did not publish it because it was too easy. He said
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he tried to solve the four exponentials problem (Conjecture 4.1), which was much
more interesting, but he did not succeed.

A proof of Theorem 4.1 is given in Waldschmidt [43, Chapter 2 (Schneider’s
method)]. In his plenary lecture for the Journées Arithmétiques in Luminy in
1989, M. Laurent introduced a new idea for transcendence proofs, by means of
interpolation determinants in place of an auxiliary function; the example he worked
out was the six exponentials theorem (Laurent [20]). See also Waldschmidt [53] for
the simplest case of rational integers.

The four exponentials problem (Conjecture 4.1) has been solved under the extra
assumption that the field generated by the four numbers x1, x2, y1, y2 has transcen-
dence degree ≤ 1 (Brownawell [5, Corollary 7], Waldschmidt [42, Corollary 4]).
The proof uses a method of algebraic independence devised by A.O. Gel’fond.
This result has been extended in Roy and Waldschmidt [37], where the determinant
X1X4 − X2X3 is replaced by any homogeneous quadratic form; for the proof,
Gel’fond’s criterion is replaced by a Diophantine approximation result due to
Wirsing.

For an explanation of the fact that the transcendence machinery has so far failed
to solve the four exponentials problem, see Corollary 8.3 of Roy [33].

As mentioned above, the p-adic analog of the six exponentials theorem has been
proved by J-P. Serre [39]. As shown in Roy [29, Corollary p. 450], a positive
solution of the p-adic version of the four exponentials conjecture implies Leopoldt’s
conjecture for Galois extensions of Q with Galois group a dihedral group of order
6, 8 or 12 (hence, in particular, it implies Leopoldt’s conjecture for number fields
which are Galois extensions of Q of degree≤ 7).

5 Rank of Matrices

We have seen that the four exponentials problem can be stated as the nonvanishing
of the determinant (1). More generally, Conjecture 3.1 shows that a determinant,
the entries of which are logarithms of algebraic numbers, can vanish only in trivial
cases. A precise statement, with a definition of the meaning of trivial, is the
following (Roy [30, p. 54] and Waldschmidt [49, Lemma 12.8]).

Definition 5.1 Let M be a matrix with entries in C and K a subfield of C. Let
e1, . . . , et be a basis of the K-vector space spanned by the entries of M . Hence M

can be written as

M = M1e1 + · · · +Mtet ,

where the matrices M1, . . . ,Mt have entries in K . Let X1, . . . , Xt be indetermi-
nates. The rank of the matrix M1X1 + · · · + MtXt , with coefficients in the ring
K[X1, . . . , Xn] of polynomials in n variables, does not depend on the choice of the
basis e1, . . . , et and is denoted as rstr,K(M), which is called the structural rank of
M with respect to K .
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For any matrix M with complex coefficients and any field K , the upper bound
rk(M) ≤ rstr,K(M) is plain. Assume now that the entries of M are logarithms
of algebraic numbers. Conjecture 3.1 implies rk(M) = rstr,K(M). From the six
exponentials theorem, one deduces that when rstr(M) ≥ 3, then rk(M) ≥ 2. More
generally, the lower bound

rk(M) ≥ 1

2
rstr,Q(M) (2)

follows from Waldschmidt [44]. The lower bound (2) also holds in the p-adic case;
it proves that the p-adic rank of the group of units of an algebraic number field is at
least half of its usual rank (Waldschmidt [46]).

The proof of Waldschmidt [44] also yields an answer to the above mentioned
question on �-adic representations (Serre [40], Henniart [14]), while the complex
version answers a question of A. Weil [54] on the characters of the idèle class group
of an algebraic number field (Waldschmidt [45]).

6 The Strong Six Exponentials Theorem and the Strong Four
Exponentials Problem

There is room between the four exponentials problem and the six exponentials
theorem for a result involving five numbers (Waldschmidt [47]):

Theorem 6.1 (Five Exponentials Theorem) Let γ be a nonzero algebraic number,
x1, x2 be two complex numbers which are linearly independent over Q, and y1, y2
be two complex numbers which are linearly independent over Q. Then at least one
of the five numbers

ex1y1, ex1y2, ex2y1, ex2y2, eγ x1/x2

is transcendental.

This result is weaker than the four exponentials problem (because of the
assumption γ �= 0) but does not imply the six exponentials theorem. A result which
includes both the five and the six exponentials theorems (Theorems 6.1 and 4.1) is
the next one (Waldschmidt [48, Corollary 2.3], [47, Corollary 2.1], [49, § 11.3.3,
example 2, p. 386]).

Let x1, x2 be two complex numbers which are linearly independent over Q, let y1, y2, y3
be three complex numbers which are linearly independent over Q and let βij (i = 1, 2,
j = 1, 2, 3) be six algebraic numbers. Then at least one of the six numbers

ex1y1−β11 , ex1y2−β12 , ex1y3−β13 , ex2y1−β21 , ex2y2−β22 , ex2y3−β23

is transcendental.



586 M. Waldschmidt

A first generalization of this result has been achieved by D. Roy (Roy [26], [28,
Corollary 2 p. 38], Waldschmidt [49, Corollary 11.16]), who considers matrices
with entries which are linear combinations, with algebraic coefficients, of 1 and of
logarithms of algebraic numbers. Denote by L the Q-vector space spanned by 1 and
all logarithms of all nonzero algebraic numbers. A typical element of L is of the
form

β0 + β1 logα1 + · · · + βn logαn

with algebraic numbers αi and βj .

Theorem 6.2 (D. Roy, Strong Six Exponentials Theorem) Let x1, x2 be two
complex numbers which are linearly independent over Q and let y1, y2, y3 be three
complex numbers which are linearly independent over Q. Then at least one of the
six numbers

x1y1, x1y2, x1y3, x2y1, x2y2, x2y3

does not belong to L.

The strong four exponentials problem is the same statement as Theorem 6.2 with
only two numbers y1, y2 instead of three.

Several consequences of the strong four exponentials problem are stated in
Waldschmidt [50]1 and corollaries of the strong six exponentials theorem are
derived in Waldschmidt [51].

A much more general statement than Theorem 6.2 is an extension by D. Roy [27]
of the lower bound (2) to matrices having entries in L: for such a matrix,

rk(M) ≥ 1

2
r

str,Q
(M) (3)

see Waldschmidt [49, Th. 1.17 and Corollary 12.18].
As pointed out by D. Roy (Roy [27], [30, Conjecture 1.1] and Waldschmidt

[49, Lemma 12.14]), Conjecture 3.1 on the algebraic independence of logarithms
of algebraic numbers is equivalent to the statement that if the entries of M are in L,
then the rank rk(M) of the matrix M is always equal to its structural rank r

str,Q
(M)

with respect to Q. From this point of view, we can consider (3) as proving half of
Conjecture 3.1.

As always, the situation is the same in the p-adic case, both for results and for
conjectures. Applications to Leopoldt’s Conjecture on the p-adic rank of the units of
a number field have been derived in the following references: Emsalem, Kisilevsky

1 Erratum: The right assumption in corollary 2.12, p. 346 of Waldschmidt [50] is that the three
numbers 1, �11 and �21 are linearly independent over the field of algebraic numbers.
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and Wales [9], Jaulent [15], Emsalem [8], Laurent [18, 19], Roy [29]. See also
Calegari and Mazur [7, § 3 Remark p. 127] and Maksoud [22].

7 Schanuel’s Conjecture

Conjecture 3.1 on the algebraic independence of logarithms of algebraic numbers is
a special case of Schanuel’s conjecture, which was proposed by Stephen Schanuel
during a course given by Serge Lang at Columbia in the 1960s [17, Chap. III,
Historical Note, p. 30–31].

Conjecture 7.1 (Schanuel’s Conjecture) Let x1, . . . , xn be Q-linearly indepen-
dent complex numbers. Then at least n of the 2n numbers

x1, . . . , xn, ex1, . . . , exn

are algebraically independent over Q.

The conclusion is that the transcendence degree over Q of the field
Q(x1, . . . , xn, ex1, . . . , exn) is at least n. This result is known when x1, . . . , xn
are algebraic numbers: this is the Lindemann–Weierstrass Theorem. Conjecture 3.1
is the special case of Conjecture 7.1 where the n numbers ex1, . . . , exn are assumed
to be algebraic.

8 Roy’s Conjecture

In his plenary talk at the Journées Arithmétiques in Rome in 1999 [31, 32], D. Roy
proposed a new conjecture of his own and proved the remarkable and surprising
result that it is equivalent to Schanuel’s conjecture 7.1.
Denote by D the derivation

D = ∂

∂X0
+X1

∂

∂X1

on the field C(X0,X1).

Conjecture 8.1 (Conjecture of D. Roy) Let � be a positive integer, y1, . . . , y� Q-
linearly independent complex numbers, α1, . . . , α� nonzero complex numbers and
s0, s1, t0, t1, u positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1} < u and max{s0, s1+ t1} < u <
1

2
(1+ t0+ t1).

Assume that, for any sufficiently large positive integer N , there exists a nonzero
polynomial PN ∈ Z[X0,X1] with partial degree ≤ Nt0 in X0, partial degree ≤ Nt1
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in X1 and height H(PN) ≤ eN , which satisfies

∣
∣
∣
∣
(
DkPN

)( �∑

j=1

mjyj ,

�∏

j=1

α
mj

j

)∣∣
∣
∣ ≤ exp(−Nu)

for any integers k, m1, . . . ,m� in N with k ≤ Ns0 and max{m1, . . . ,m�} ≤ Ns1 .
Then, we have the following lower bound for the transcendence degree:

trdegQQ(y1, . . . , y�, α1, . . . , α�) ≥ �.

See also Waldschmidt [49, Conjecture 15.36]. Hence Schanuel’s conjecture
is equivalent to a purely algebraic statement, which bears some similarity to the
available criteria of algebraic independence.

The proof of the equivalence between Schanuel’s conjecture 7.1 and Roy’s
conjecture 8.1 involves a new interpolation formula for holomorphic functions of
two complex variables (Roy [31, 32]). Refined interpolation formulae are proved in
Roy [33] and Nguyen and Roy [24].

Several significant steps in the direction of Conjecture 8.1 were performed by
D. Roy, first for the multiplicative group [34], next for the additive group [35]
and then for the product of the additive group by the multiplicative group [36]. A
refinement of Conjecture 8.1, again equivalent to Schanuel’s conjecture, is devised
by Nguyen Ngoc Ai Van in [23]. The statement which is proved in Nguyen and Roy
[24] is similar to Conjecture 8.1 and is not restricted to the one-parameter subgroup
t �→ (t, exp(t)).

In [12], Luca Ghidelli refines the results of Roy [36] and Nguyen and Roy [24],
replacing the total degree with multidegrees; his tool [13] is an extension of Roy’s
multiplicity lemma for the resultant, using the theory of multiprojective elimination
initiated by P. Philippon and developed by G. Rémond.

This original point of view of D. Roy suggests a promising approach to proving
Schanuel’s conjecture: so far it is the only available strategy towards a proof of it.

Transcendence theory is going forward.

Acknowledgements Thanks to Damien Roy for his comments on a preliminary draft of this paper
and to Claude Levesque for his support.
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Part XII
Probability and Applications

In their short notes Research going forward? and The future of probability, leading
experts Varadhan and Protter make independent, quick and brilliant summaries
of probability and its relation to mathematics, economics, finance and society.
Varadhan notes that “Although Kolmogorov provided the axiomatic foundations of
probability, making it a part of formal mathematics, at heart, it remains applied
with its growth derived from tackling problems coming from physics, engineering
statistics as well as computer science.” Philip Protter expects “the research in Math
Finance to migrate from the analysis of option pricing and hedging to the larger
problems of the stability of the entire financial system. There is much interesting
mathematics to be done in this regard.”

Geoffrey Grimmett’s celebratory article Selected problems in probability theory
contains a personal and idiosyncratic selection of a few open problems in discrete
probability theory. These include certain well-known questions concerning Lorentz
scatterers and self-avoiding walks, and also some problems of percolation type.

Michel Ledoux’s article on stochastic optimization Optimal matching of random
samples and rates of convergence of empirical measures points out that “whereas the
conceptual problems of the past are now largely resolved, contemporary questions
arise frequently where the intuitive apparatus of sub-fields collide” and that “many
prominent problems are to be found at the conjunction of probability and discrete
geometry”. The article is a survey of some recent developments and challenging
open questions on the random optimal matching problem.

In his essay Space-time stochastic calculus and white noise, Bernt Øksendal
proposes that white noise can be a powerful tool in the study of multi-parameter
stochastic calculus in general. He concludes that “the multi-parameter stochastic
calculus is a mostly unexplored area of research. It is clearly important, not only for
the study of stochastic partial differential equations driven by space-time Brownian
motion but also for many other applications.”



Research Going Forward?

S. R. S. Varadhan

It requires extraordinary skill at clairvoyance to make predictions about anything,
particularly so about mathematics going forward. Since I have no such ability I will
limit myself to a few observations. Probability theory is the study of random objects.
The subject evolved as the random objects that were studied changed and became
more complex. It started with numbers and proceeded to sequences, functions,
generalized functions, surfaces, metric spaces, various combinatorial structures like
graphs, trees, triangulations, tilings etc, and required new tools.

It is hard to tell what set of random objects we will be investigating in the future.
There is so much randomness around us. Understanding the random nature of the
objects requires learning from the data that is available about them. We are now
able to collect vast amounts of data. Organizing it and inferring some thing from it
has itself become an important area of study, one in which rapid progress is being
made. Although Kolmogorov provided the axiomatic foundations of probability,
making it a part of formal mathematics, at heart, it remains applied with its growth
derived from tackling problems coming from physics, engineering statistics as well
as computer science. This means the direction in which probability theory develops
will depend very much on from where the push comes.

Developments come in two types. Most of the time it is steady progress in
incremental steps culminating in achieving the planned goal. Here one knows the
target. But one does not really know if and when they will reach the goal. But every
so often there are breakthroughs made possible by radical shift in the point of view
that produces a beautiful solution to the problem, perhaps deserving a place in ‘The
Book’. They are not predictable.

A more basic and important advance has to do with discovering relations or
connections between different areas. I can think of a paper by Kakutani [1] that
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proved that the distribution π(x, dy) of the random exit point y ∈ ∂G of Brownian
particle starting from x inside a smooth domain G in the plane is the same as the
Harmonic measure on the boundary, i.e.

u(x) =
∫

∂G

f (y)π(x, dy)

is the Harmonic function in G with boundary value f (y) on ∂G. While every
advanced student in probability is aware of it now, it was no doubt a surprise finding
at that time.

Kolmogorov’s forward and backward differential equations connect PDEs with
Markov processes. Schramm–Loewner theory uses conformal invariance to identify
the scaling limits of various random structures in the plane. Conformal Field Theory
of Mathematical Physics is connected to the theory of Gaussian Free Fields in
probability. These are just some examples that indicate surprising connections
between various branches of mathematics and mathematical physics. It makes going
forward unpredictable but rewarding.

I am sure many more such connections will be made in the future but there is no
way to predict what they will be or when they will be made.

Reference

1. S. Kakutani. Two-dimensional Brownian motion and harmonic functions. Proc. Imp. Acad.
Tokyo 20, 706–714 (1944). (Reprinted in Shizuo Kakutani: Selcted Papers, Vol. 2, Birkhäuser
(1986))



The Future of Probability

Philip Protter

Probability has always been a bit troubled within the mathematics paradigm.
Mathematicians used to view it with contempt: In the pecking order of mathe-
matical sub-disciplines, it was viewed as just below point-set topology. It wasn’t
even considered mathematics per se until Kolmogorov’s fundamental and ground-
breaking works of the late 1920s/early 1930s gave it a rigorous foundation. Before
Kolmogorov probabilists used E for expectation instead of an integral sign as in the
work of Riemann, Borel, and Lebesgue. Actually, we still do of course, only now
we know that it’s equivalent to integration.

Some of the great Russian and French mathematicians of the eighteenth and
nineteenth centuries explored aspects of probability theory. Notable among them
were d’Alembert, De Moivre, and—especially—Pierre Simon de Laplace. Laplace
even wrote an early treatise on Probability Theory [8]. In the mid eighteenth century,
according to Hans Fischer, “The value of probabilistic research was determined less
by internal mathematical criteria, but rather by the quality of its application to “real”
situations. Laplace’s CLT met the latter point in an excellent manner. The results
of all applications of this theorem matched with “good sense” and thus confirmed
Laplace’s well-known saying:

Basically, probability is only good sense reduced to a calculus.” [6]

Even such a luminary as the Baron Louis Augustin Cauchy, whose name is
given to the Cauchy Distribution in probability theory, had contempt for probability
theory, because it lacked the mathematical rigor that he championed. Indeed, he got
into a fight with Bienaymé over the claims of the universality of the central limit
theorem, using the distribution that bears his name as a counterexample. The fight
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between Bienaymé and Cauchy was played out across the pages of the prestigious
Comptes Rendus from July to September of 1853 [9].

The modern era of research, however, began with the work of Doob, who
gave a rigorous foundation for the study of stochastic processes, and practically
single handedly developed the theory of martingales. His goal was to study
a probabilistic interpretation of potential theory, involving Markov processes,
martingales, supermartingales, excessive functions, the whole shebang. See [4]
for his magnum opus. Doob was especially proud of the martingale convergence
theorem, which he once explained to me that, together with the ergodic theorem,
were the only convergence theorems in analysis that concluded convergence simply
from structure, and were not of the type that Xn → X implies

∫
XndP → ∫ XdP.

The work of Doob alone made such an impact on mathematics that suddenly it
became (mildly) fashionable to hire probabilists in mathematics departments.

In my professional lifetime several things happened to make mathematicians
continue to sit up and notice probability from time to time (and therefore hire
probabilists). The ones I observed began with Fefferman and Stein [5] showing the
dual of H 1 is BMO. This had been an open problem posed by G.H. Hardy. The key
insight for us probabilists is that Fefferman used Burkholder’s theory of martingale
transforms in a key way in his proof. Most purely mathematical proofs before
had not taken an excursion into Probability Theory to prove a purely mathematical
result. I was just beginning graduate school when this ground breaking result was
published. I saw it as a job creation program for young probabilists, who could join
math departments and explain the theory to their curious new colleagues.

A half decade later I was lucky enough to hear Hörmander give a series of
lectures at the Institute for Advanced Study, in the Fall of 1977. Hörmander had
made a breakthrough in hypoelliptic PDEs, and his work and proofs were hard
to understand, especially on the intuitive level. I remember one of my friends
commented after one of Hörmander’s lectures that she “needed an instant replay.” I
think said friend was Dina Taiani.

The French mathematician P. Malliavin came up with a highly original use of
Brownian motion to explain, in an intuitive way, Hörmander’s results. In a way,
Malliavin was continuing the program of Doob, that of using Brownian motion and
probabilistic ideas to give insights into hard analysis. In the process, en passant,
Malliavin created a new calculus of variations theory, which is now known as the
Malliavin calculus. It has proved to be a highly useful tool for a large variety of
areas. ‘Recently’ M. Hairer [7] has given a concise and insightful treatment of the
Malliavin calculus along with a simple proof of Hörmander’s Theorem, using the
probabilistic tools Malliavin created.

Also in the 1970s, a truly great decade for innovation in probability theory, came
the seminal papers of P. Samuelson, F. Black, M. Scholes, and R. Merton, using
the Itô calculus to correctly price financial options, and as a consequence creating
a revolution in Mathematical Finance, which finally culminated in the two papers
of F. Delbaen and W. Schachermayer, in the 1990s that tied together an absence
of arbitrage opportunities with the theory of martingales, and local martingales,
even sigma martingales! These results have been nicely presented in a book by
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Delbaen and Schachermayer [3]. This created, once again, a job program for young
probabilists, although this time not in the academy, but rather in the big banks
and investment houses who suddenly needed “quants" to study and understand the
new advances in the fair pricing of financial options. This theory appealed to me,
because it used the Itô calculus in new, and creative ways. I’m not sure Doob,
or for that matter K. Itô, ever envisaged abstract stochastic calculus to study the
tiny subarea of financial mathematics. P.A. Meyer, the great French probabilist
who did fundamental work developing the theory of stochastic integration for
semimartingales, was known to have contempt for its possible use in high finance.

Student demand to learn the new ‘Financial Mathematics’ once again led Math-
ematics Departments and other departments, too (Statistics, Operations Research,
mathematically oriented Business Schools) to hire probabilists, this time to teach
their students financial mathematics. So, because of the new job opportunities in
the banking sector of the economy, probabilists who knew what is loosely known as
the Black–Scholes theory, found jobs in academia too.

More recently, we should mention what is known as the Stochastic Loewner
Equation (SLE for short). L. Bieberbach made a conjecture early in the twentieth
century (1916) that a certain class of holomorphic functions had a series expansion
where the nth term had the property |an| ≤ n [1]. This conjecture remained open for
a long time, and the Czech mathematician Charles Loewner proved it was true for
the third coefficient |a3| ≤ 3. To do this, he related the problem to partial differential
equations, and in doing so created what is now known as the Loewner equation. My
former colleague at Purdue University, L. de Branges, finally proved the Bieberbach
conjecture in 1985.

The Loewner equation relates to probability via a stunning result of O. Schramm
in 2000. Revolving around work of G. Lawler and W. Werner, they gave scaling
limits of a range of stochastic processes, relating to critical percolation, the
critical Ising model, the double-dimer model, self-avoiding walks, and other critical
statistical mechanics models that exhibit conformal invariance.

In contemporary probability theory much attention has gone to the Kardar–
Parisi–Zhang equation (and its variants) of statistical physics. Work in this area,
especially by my Columbia colleague I. Corwin [2], has led to rigorous proofs of
various predictions from physics. This is an exciting area which is still developing.

I have given a sketch of some of what has gone before, but now I am asked to
forecast what is to come. Really?

Well, I cut my teeth on strong Markov processes, and then martingales, and since
most of my recent work has been in the Statistics of Stochastic Processes, especially
as they relate to Mathematical Finance, let me restrict my pseudo-insights to that
area.

In economics, the fear caused by the near total collapse of the world’s economic
system in 2008, related to the bubble in housing prices, is still with us. I expect the
research in Math Finance to migrate from the analysis of option pricing and hedging
to the larger problems of the stability of the entire financial system. There is much
interesting mathematics to be done in this regard.
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In the good old days, banks going bankrupt was an important issue. During the
depression of the 1930s, many banks did exactly that, and families lost their life
savings. To give people a renewed confidence in the banking sector, the Federal
Government (of the United States), proposed insurance backed by the full strength
of the government, up to $100,000 per account. This was later raised to $250,000
per account, which seems like a lot, until you consider housing prices in New York
City, for example. For businesses, the $250k guarantee is small, if not tiny.

Nevertheless, the guarantees worked and people began to trust their money to
banks again. Controls had been instituted to prevent the rise of mega banks. For
example, a given bank could operate in only one state. This favored the big states
with financial centers, such as California, Illinois, and of course New York.

In New York State, banks were limited to one county only, a regulation to protect
and foster smaller, local, community banks. New York City alone has five counties;
otherwise Citibank, Chase and JP Morgan would have overwhelmed the other banks.
Everything worked well, so of course the government, in its wisdom, decided to de-
regulate, and relax the controls on the big banks. This is analogous to having an
illness well controlled by medication, and then saying you feel so good, that you’re
stopping the medicine. Guess what happens?

Academics are mostly powerless to change the stupidity of our governments,
but we can, at the least, show them where their actions will take us, and why.
The community has already had limited success in this direction as regards climate
change, so hopefully we can also wake up the politicians to the dangers of their rash
actions as regards finance. Mathematics is important in this regard. One example
is when I read two articles in the same issue of a magazine, both by economists.
One article argued that the price of gold was in a bubble, and it convinced me. The
second article explained why the price of gold was not in a bubble, and I found it
equally convincing! That illustrated, at least to me, of how desperate was the need
for mathematical models, rather than just the stories economists tell so well. History
tells us it will not be easy. Good luck, everyone!

Acknowledgements This project was supported in part by NSF grant DMS-2106433.
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Selected Problems in Probability Theory

Geoffrey R. Grimmett

Dedicated in friendship to Catriona Byrne

Personal Remarks

The editorial team of Springer Mathematics has become almost family for many of
us worldwide, with Catriona Byrne at its heart. She has come to know us better than
we know ourselves, always with sympathy, and with an honest and constructive
approach to occasionally challenging areas of professional debate. Through our
numerous collaborations, she and I have kindled a warm friendship that will persist
into the next phase of our adventures. We wish her many happy years free from the
woes of authors, editors, readers, and publishers.

1 Introduction

Probability has been a source of many tantalising problems over the centuries, of
which the St Petersburg paradox, Fermat’s problem of the points, and Bertrand’s
random triangles feature still in introductory courses. Whereas the conceptual
problems of the past are now largely resolved, contemporary questions arise
frequently where the intuitive apparatus of sub-fields collide. Many prominent
problems are to be found at the conjunction of probability and discrete geometry.
This short and idiosyncratic article summarises some of these. This account is
personal and incomplete, and is to be viewed as a complete review of nothing. The
bibliography is not intended to be complete, and apologies are extended to those
whose work has been omitted.
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The questions highlighted here vary from the intriguing to the profound. Whereas
some may seem like puzzles with limited consequence, others will require new
machinery and may have far-reaching implications.

The problem of counting self-avoiding walks is introduced in Sect. 2, with
emphasis on the existence of critical exponents and the scaling limit in two
dimensions, followed by a fundamental counting problem on a random percolation
cluster. Section 3 is devoted to Lorentz scatterers and the Ehrenfest wind/tree model,
followed by Poissonian mirrors in two dimensions, and finally Manhattan pinball.
Two well-known conjectures concerning product measures are presented in Sect. 4,
namely the bunkbed conjecture and the negative association of a uniform spanning
forest. Section 5 is concerned with the identification of criticality for the randomly
oriented square lattice. In the final Sect. 6, we present two basic problems associated
with a model for a dynamic spatial epidemic, provoked in part by COVID-19.

2 Self-Avoiding Walks

2.1 Origins

Self-avoiding walks were first introduced in the chemical theory of polymerisation
(see [10, 32]), and their properties have received much attention since from
mathematicians and physicists (see, for example, [5, 14, 30]).

A path in an infinite graph G = (V ,E) is called self-avoiding if no vertex is
visited more than once. Fix a vertex v ∈ V , and let �n(v) be the set of n-step
self-avoiding walks (SAWs) starting at v. The principal combinatorial problem
is to determine how the cardinality σn(v) := |�n(v)| grows as n → ∞, and
the complementary probability problem is to establish properties of the shape of
a randomly selected member of �n(v). Progress has been striking but limited.

2.2 Asymptotics

It is now regarded as elementary that the so-called connective constant κ = κ(G),
given by

log κ = lim
n→∞

1

n
log σn(v),

exists when G is quasi-transitive, and is independent of the choice of v. Thus, in
this case

σn(v) = κ(1+o(1))n.
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The correction term is much harder to understand. We shall not make precise the
concept of a d-dimensional lattice, but for definiteness the reader may concentrate
on the hypercubic lattice Z

d .

Conjecture 2.1 For d ≥ 2 there exists a critical exponent γ = γd such that the
following holds. Let G be a d-dimensional lattice. There exists a constant A > 0
such that1

σn ∼ Anγ−1κ(G)n as n →∞. (1)

Furthermore,

γ =
{

43
32 when d = 2,

1 when d ≥ 4.

See [5, 30] for further discussion and results so far, and the papers [19, 20] of
Hara and Slade when G = Z

d with d ≥ 5, for which case they prove that γ =
1. Of particular interest is the case when G = H, the hexagonal lattice. By a
beautiful exact calculation that verifies an earlier conjecture of Nienhuis [31] based
in conformal field theory, Duminil-Copin and Smirnov [8] proved that

κ(H) =
√

1+√2.

The proof reveals a discrete holomorphic function that is highly suggestive of a
connection to a Schramm–Loewner evolution (see [23]), namely the following.

Question 2.1 Does a uniformly distributed n-step SAW from the origin of H

converge weakly, when suitably rescaled, to the Schramm–Loewner random curve
SLE8/3?

Progress on this question should come hand-in-hand with a calculation of the
associated critical exponent γ = 43

32 . Gwynne and Miller [17] have proved the
corresponding weak limit in the universe of Liouville quantum gravity.

2.3 Self-Avoiding Walks in a Random Environment

How does the sequence (σn) behave when the underlying graph G is random? For
concreteness, we consider here the infinite cluster I of bond percolation on Z

2 with
edge-density p > 1

2 (see [11]).

1 A logarithmic correction is in fact expected in (1) when d = 4.
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Question 2.2 Does the limit μ(v) := limn→∞ σn(v)
1/n exist a.s., and satisfy

μ(v) = μ(w) a.s. on the event {v,w ∈ I }?
Related discussion, including of the issue of deciding when μ(v) = pμ(Z2) a.s.

on the event {v ∈ I }, may be found in papers of Lacoin [24, 25]. The easier SAW
problem on (deterministic) weighted graphs is considered in [16].

3 Lorentz Scatterers

3.1 Background

The scattering problem of Lorentz [27] gives rise to the following general question.
Scatterers are distributed randomly about Rd . Light is shone from the origin in
a given direction, and is subjected to reflection at the scatterers. Under what
circumstances is the light ray: (i) bounded, (ii) unbounded, (iii) diffusive? While
certain special cases are understood, the general question remains open. The
problems mentioned here are concerned with aperiodic distributions of scatterers;
the periodic case is rather easier.

Fig. 1 A NW and a NE
mirror. Each is reflective on
both sides NENW

3.2 Ehrenfest Wind/Tree Model

The following notorious problem on the square lattice Z
2 has resisted solution

for many years. Let p ∈ [0, 1]. At each vertex of Z
2 is placed a mirror with

probability p, or alternatively nothing. Mirrors are plane and two-sided. Each
mirror is designated a north-east (NE) mirror with probability 1

2 , or alternatively
a north-west (NW) mirror. The states of different vertices are independent. The
meanings of the mirrors are illustrated in Fig. 1.



Selected Problems in Probability Theory 607

Light is shone from the origin in a given compass direction, say north, and it
is reflected off the surface of any mirror encountered. The problem is to decide
whether or not the light ray is unbounded.

Question 3.1 Let θ(p) be the probability that the light ray is unbounded. For what
values of p is it the case that θ(p) > 0?

It is trivial that θ(0) = 1. By considering bond percolation (with density p/2)
on the diagonal lattice of Fig. 2, and using the fact that there is no percolation when
p = 1, one obtains the less trivial fact that θ(1) = 0 (see [11]). Very little more is
known rigorously about the answer to Question 3.1.

Fig. 2 From the original (dashed) square lattice Z
2 one may construct a diagonal lattice Ẑ

2. In
fact there are two such diagonal lattices, and this fact may be used to obtain some information
about the power-law behaviour of the light ray when p = 1. The Manhattan orientations are not
relevant to the usual Ehrenfest model, but are provided to facilitate the discussion of Manhattan
pinball in Sect. 3.4

3.3 Poisson Mirrors

Here is version of the wind/tree model in the two-dimensional continuumR
2. Let �

be a rate-1 Poisson process in R
2. Let ε > 0, and let μ be a probability measure on

[0, π). We possess an infinity of two-sided, plane mirrors of length ε, and we centre
one at each point in �; the inclination to the horizontal of each mirror is random
with law μ, and different mirrors have independent inclinations. Think of a mirror
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as being a randomly positioned, closed line segment of length ε, and let M denote
the union of these segments. We call μ degenerate if it is concentrated on a single
atom, and shall assume μ is non-degenerate. See Fig. 3.

Light is shone from the origin at an angle α to the horizontal. Let Iα be the
indicator function of the event that the light ray is unbounded. Some convention is
adopted for the zero-probability event that the light strikes an intersection of two or
more mirrors.

Fig. 3 Light from the origin
is reflected off the mirrors

0

We may assume that the origin 0 does not lie in M . Let C be the component
of R2 \ M containing 0, and let {0 ↔ ∞} be the event that C is unbounded. It
is a standard result of so-called needle percolation (see [36]) that there exists εc =
εc(μ) ∈ (0,∞) such that

Pμ(0 ↔∞)

{
> 0 when ε < εc,

= 0 when ε > εc.

(Here and later, the subscript μ keeps track of the choice of μ.) Obviously, on the
event that 0 �∞, we have that Iα = 0 for all α. Therefore,

Pμ(Iα = 1 for some α) = 0, ε > εc.

The converse issue is much harder and largely open.
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Question 3.2 Suppose μ is non-degenerate.

(a) Does there exist ε′c = ε′c(μ) > 0 such that θμ(ε) > 0 for ε < ε′c?
(b) Could it be that ε′c(μ) = εc(μ)?
(c) In particular, what happens when μ is the uniform measure on [0, π)?

Let Q be the set of probability measures μ that are non-degenerate and have
support in the rational angles πQ. Suppose μ ∈ Q and 0 < ε < εc(μ). Harris
[21] has shown the striking fact that, Pμ-a.s. on the event that 0 ↔∞, we have that
Iα = 1 for (Lebesgue) almost every α.

This leads to a deterministic question. Let K be the set of mirror configurations
for which 0 ↔∞ but Iα = 0 for all α.

Question 3.3 Is K non-empty?

Harris’s theorem implies in effect that Pμ(K) = 0 when μ ∈ Q and ε �= εc(μ).
Question 3.2(c) hints at the possibility that Pμ(K) = 0 when μ is the uniform
measure on [0, π) and ε < ε(μ).

Here is a final question concerning diffusivity. Let μ ∈ Q, and denote by Xα(t)

the position at time t of the light ray that leaves the origin at angle α.

Question 3.4 Is it the case that, on the event Iα , Xα(·) is diffusive? That is, the
limit σ 2 := limt→∞ t−1var(Xα(t)) exists in (0,∞), and, when normalized, Xα(t)

is asymptotically normally distributed.

Related work on Lorentz models in the so-called Boltzmann–Grad limit may be
found in [28, 29].

3.4 Manhattan Pinball

Here is a variant of the Ehrenfest model motivated by a problem of quantum
localization, [7, Sec. 4.2] and [37, p. 238]. Draw Z

2 and the diagonal lattice Ẑ
2

as in Fig. 2; each edge of Z2 receives its Manhattan orientation as indicated in the
figure. Consider bond percolation with density q on the diagonal lattice. Along each
open edge of Ẑ2 we place a two-sided plane mirror. Light is shone from the origin
along a given one of the two admissible directions, and it is reflected by any mirror
that it encounters (such reflections are automatically consistent with the Manhattan
orientations). Let θ(q) be the probability that the light ray is unbounded.

Question 3.5 Could it be that θ(q) = 0 for all q > 0?

It follows as in Sect. 3.2 that θ(q) = 0 for q ≥ 1
2 , and it has been proved by Li

in [26] that there exists ε > 0 such that θ(q) = 0 when q > 1
2 − ε. The proof uses

the method of enhancements; see [1] and [11, Sect. 3.3].
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4 Two Stochastic Inequalities

4.1 Bunkbed Inequality

The mysterious ‘bunkbed’ inequality was posed by Kasteleyn around 1985 (see [6,
Rem. 5], and also [18]). Of its various flavours, we select the following. Let G =
(V ,E) be a finite simple graph. From G we construct two copies denoted G1 =
(V1, E1) and G2 = (V2, E2). For v ∈ V we write vi for the copy of v lying in Vi .
We now attach G1 and G2 by adding edges 〈v1, v2〉 for each v ∈ V . This new graph
is denoted G̃, and it may be considered as the product graph G × K2 where K2 is
the complete graph on two vertices (that is, an edge). We may think of the Gi as
being ‘horizontal’ and the extra edges as being ‘vertical’.

Each edge of G̃ is declared open with probability p, independently of the states
of other edges. Write Pp for the appropriate product measure. For two vertices
ui, vj of G̃, we write {ui ↔ vj } for the event that there exists a ui/vj path using
only open edges.

Conjecture 4.1 For u, v ∈ V , we have

Pp(u1 ↔ v1) ≥ Pp(u1 ↔ v2).

There is uncertainty over whether this was the exact conjecture of Kasteleyn. For
example, it is suggested in [22] (and perhaps elsewhere) that Kasteleyn may have
made the stronger conjecture that the inequality holds even after conditioning on the
set T of open vertical edges.

Some special cases of the bunkbed conjecture have been proved (see the
references in [22], and more recently [35]), but the general question remains open.

4.2 Negative Correlation

Our next problem is quite longstanding (see [33]) and remains mysterious. In a
nutshell it is to prove that the uniform random forest measure (USF) has a property
of negative association.

Let G = (V ,E) be a finite graph which, for simplicity, we assume has neither
loops nor multiple edges. A subset F ⊆ E is called a forest if (V , F ) has no cycles.
Let F be the set of all forests in G and let $ be a random forest chosen uniformly
from F . We call $ edge-negatively associated if

P(e, f ∈ $) ≤ P(e ∈ $)P(f ∈ $), e, f ∈ E, e �= f. (2)

Conjecture 4.2 For all graphs G, the random forest $ is edge-negatively associ-
ated.
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One may formulate various forms of negative dependence, amongst which the
edge-negative association of (2) is quite weak. One may conjecture that $ has a
stronger variety of such dependence. Further discussion may be found in [13, Sec.
3.9] and [33].

Experimental evidence for Conjecture 4.2 is quite strong. A similar conjecture
may be made for uniform measure on the set of F ⊆ E such that (V , F ) is connected
(abbreviated to UCS). In contrast, uniform spanning tree (UST) is well understood
via the Kirchhoff theory of electrical networks, and further by Feder and Mihail [9].
USF, UCS, and UST are special cases of the so-called random-cluster measure with
cluster-weighting factor q satisfying q < 1 (see [13, Sects 1.5, 3.9]).

In recent work, [3, 4], the percolative properties of the weighted random forest
(or ‘arboreal gas’) on Z

d have been explored. It turns out that there is a phase
transition if and only if d ≥ 3.

5 Randomly Oriented Square Lattice

The following percolation-type problem remains open. Consider the square lattice
Z

2 and let p ∈ [0, 1]. Each horizontal edge is oriented rightward with probability
p, and otherwise leftward. Each vertical edge is oriented upward with probability
p, and otherwise downward. Write 6Z2 for the ensuing randomly oriented network.

Let θ(p) denote the probability that the origin 0 is the endpoint of an infinite path
of 6Z2 that is oriented away from 0. The challenge is to determine for which p it is
the case that θ(p) > 0. It is elementary that θ(0) = 1, and that θ(p) = θ(1 − p).
It is less obvious that θ( 1

2 ) = 0 (see [11, 1st edn]), which is proved via a coupling
with bond percolation. By a comparison with oriented percolation, we have that
θ(p) > 0 if p > 6pc, where 6pc is the critical point of oriented percolation on Z

2; it
is not difficult to deduce by the enhancement method (see [1] and [11, Sect. 3.3])
that there exists p′ ∈ ( 1

2 , 6pc) such that θ(p) > 0 when p > p′. It is believed that
6pc ∼ 0.64, and proved that 6pc < 0.6735.

Question 5.1 Is it the case that θ(p) > 0 for p �= 1
2 .

It is shown in [12] that, for all p, 6Z2 is either critical or supercritical in the
following sense: if any small positive density of oriented edges is added at random,
then there is a strictly positive probability that the origin is the endpoint of an infinite
self-avoiding oriented path in the resulting graph.

6 Dynamic Stochastic Epidemics

The recent pandemic has inspired a number of mathematical problems, including
the following stochastic model (see [15]). Particles are placed at time 0 at the
points of a rate-1 Poisson process in R

d , where d ≥ 1. Each particle diffuses
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around R
d according to a Brownian motion, independently of other particles. At

any given time, each particle is in one of the states S (susceptible), I (infected), R
(removed/dead).

At time 0 there exists a unique particle in state I, and all others are in state S. The
infection/removal rules are as follows.

(a) If an infected particle comes within distance 1 of a susceptible particle, the latter
particle is infected.

(b) An infected particle remains infected for a period of time having the exponential
distribution with parameter α, and is then removed.

We call this the ‘diffusion model’.
Survival is said to occur if, with a strictly positive probability, infinitely many

particle are ultimately infected. It is proved in [15] that, when d ≥ 1 and α is
sufficiently large, survival does not occur. The following two questions (amongst
others) are left open.

Question 6.1

(i) When d = 1, could it be that there is no survival for any α > 0?
(ii) When d ≥ 2, does survival occur for sufficiently small α > 0?

In a variant of this problem termed the ‘delayed diffusion model’, a much fuller
picture is known. Suppose, instead of the above, a particle moves only when it is
infected; susceptible particles are stationary. The answers to Question 6.1(i, ii) are
then no and yes, respectively , and indeed (when d ≥ 2) there exists a critical value
αc(d) ∈ (0,∞) of α marking the onset of survival. The key difference between the
two systems is that the latter model has a property of monotonicity that is lacking in
the former.

The delayed diffusion model is a continuous space/time cousin of the discrete-
time ‘frog model’ of [2] (see also [34]), with the addition of removal. Further
relevant references may be found in [15].
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Optimal Matching of Random Samples
and Rates of Convergence of Empirical
Measures
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of her many years at the service of the scientific community, with dedication,
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special thoughts to the many rewarding and friendly exchanges over the years, as
author and editor.

Optimal matching problems have been investigated from various viewpoints in
computer science, algorithmic analysis and physics, while rates of convergence of
empirical measures to their common distribution is a central topic in probability and
mathematical statistics.

Perfect matching problems (on bipartite graphs), also called assignment prob-
lems, are combinatorial optimization problems classically studied within operation
research and algorithmic, combinatorics, graph theory and mathematical physics
(cf. e.g. [32, 33]). Classical applications to planning, allocation of resources,
traveling salesman problems, expand nowadays to networks and complex systems.
Linear programming relaxation within assignment and optimal transport problems
also provide useful tools in machine learning and data science [34].

The random version of the matching problems addresses optimization of Eu-
clidean additive functionals in geometric probability [37, 41] and rates of conver-
gence of empirical measures. It opened recently fascinating challenges, which are
active parts of current research. The close relationship with mass transportation in
particular favored the novel use of tools from convex analysis, probability theory and
partial differential equations (pde). This note describes a few of these stimulating
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questions for the Euclidean random optimal matching problem and associated rates
of convergence of empirical measures.

1 Euclidean Random Optimal Matching and Rates
of Convergence of Empirical Measures

Given points x1, . . . , xn and y1, . . . , yn in R
d , and p ≥ 1, the optimal matching

problem raises the question of estimating

inf
σ

1

n

n∑

i=1

|xi − yσ(i)|p

where the infimum runs over all permutations σ of
{
1, . . . , n

}
(and | · | is, for

example at this stage, the Euclidean distance on R
d ). That is, the task is to match

the points of a sample (x1, . . . , xn) with the ones of another sample (y1, . . . , yn)

minimizing a given cost function. The typical values of p are p = 1 and p = 2,
also p = ∞ (with then infσ max1≤i≤n |xi − yσ(i)|).

The question may be formulated equivalently in the closely related mass
transportation framework. Given p ≥ 1, the Kantorovich distance (cf. [40] e.g.)
between two probability measures ν and μ on the Borel sets of Rd with a finite p-th
moment is defined by

Wp(ν, μ) = inf
π

(∫

Rd×Rd

|x − y|pdπ(x, y)

)1/p

(1)

where the infimum is taken over all couplings π on R
d × R

d with respective
marginals ν and μ. The Wp metrics are monotone increasing with p. In the limit
p →∞, W∞(ν, μ) may be understood as the infimum over all couplings π of

esssupπ

{
|x − y| ; (x, y) ∈ R

d ×R
d
}

(for measures ν and μ with bounded support).
Given samples (x1, . . . , xn) and (y1, . . . , yn) of points in R

d , if ν = 1
n

∑n
i=1 δxi

and μ = 1
n

∑n
i=1 δyi are the empirical measures on the respective samples, the

right-hand side of (1) to the power p takes the form

inf
π

n∑

i,j=1

|xi − yj |pπij

where πij = π({xi, yj }), i, j = 1, . . . , n. Since π has marginals ν and μ, for
every i or j ,

∑n
i=1 πij = ∑n

j=1 πij = 1
n

, and the set of those matrices π is convex
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and compact in R
n2

, so that by the Birkhoff–von Neumann theorem the infimum is
achieved on a permutation matrix πij = 1

n
1{j=σ(i)}. As a consequence

inf
σ

1

n

n∑

i=1

|xi − yσ(i)|p = Wp
p(ν, μ) = Wp

p

(
1

n

n∑

i=1

δxi ,
1

n

n∑

i=1

δyi

)

.

The matching problem is thus translated equivalently as a discrepancy problem
between empirical measures in Kantorovich distances.

The random optimal matching problem deals with samples (X1, . . . , Xn) and
(Y1, . . . , Yn) of independent and identically distributed random variables in R

d

(with a finite p-th moment), and a first order analysis aims at studying the order
of growth in n of the averages

E

(

inf
σ

1

n

n∑

i=1

|Xi − Yσ(i)|p
)

. (2)

If X1, . . . , Xn are independent random variables in R
d with common distribution

μ, and if μn = 1
n

∑n
i=1 δXi , n ≥ 1, is the empirical measure on the sample, simple

arguments from the triangle and Jensen’s inequalities compare (2) to the average
E(Wp

p(μn,μ)). The latter is then sometimes referred to as a semi-discrete matching
as opposed to bipartite matching for the former. Almost surely, the sequence μn,
n ≥ 1, of empirical measures converges weakly to the common distribution μ,
a central question of interest and study in probability and statistics. The strength
of the approximation of μ by the empirical μn is indeed of basic importance in
statistical applications, and orders of decay in various probabilistic distances have
been considered. One of them is thus the Kantorovich distance that attracted a lot of
attention (the convergence of Wp(μn,μ) to 0 is equivalent to the weak convergence
of μn towards μ plus convergence of p-moments). By standard concentration tools,
not developed here, rates on E(Wp

p(μn,μ)) may often be turned into bounds on
Wp

p(μn,μ) with high probability.
More general probabilistic dependences in the random sample (X1, . . . , Xn) may

be considered. Spectral measures of random matrices is one such instance, that gave
rise to numerous recent contributions.

The exposition here is devoted to the Euclidean random optimal matching
problem in the semi-discrete form and to the rate of convergence of the empirical
measure to the reference measure in Kantorovich distance. As such, the discussion
will be mostly focused on (lower and upper) bounds on the sequence of expectations

E

(
Wp

p(μn,μ)
)

(3)

where μn = 1
n

∑n
i=1 δXi , n ≥ 1, and X1, . . . , Xn are independent identically

distributed in R
d with common distribution μ with a finite p-th moment, as well

as on possible exact (renormalized) limits (although the study of the limits for the
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bipartite matching problem does in general require further details). The note surveys
some basic results in the area, and features challenging open questions of the current
research on the asymptotic rates of (3). The basic parameters entering the discussion
are p ≥ 1, the distribution μ and the dimension d of the state space. Throughout the
text, the notation A ≈ B expresses that C−1B ≤ A ≤ CB for some constant C > 0
independent of n, possibly depending on the dimension d and the parameters of the
underlying distribution μ. Similarly A � B and A � B indicate that A ≤ CB and
A ≥ C−1B respectively. The bibliography is not extensive, and often concentrated
only on reference texts or articles.

2 The One-Dimensional Case

The one-dimensional case is of particular nature due to explicit representations of
the Kantorovich metrics Wp(ν, μ) by monotone transport map of the distributions
ν and μ on the Borel sets of R . For example,

W1(ν, μ) =
∫

R

|G(x)− F(x)|dx

where G(x) = ν( ] − ∞, x]), F(x) = μ( ] − ∞, x]), x ∈ R, are the distribution
functions of ν and μ respectively. There are similar representation formulas for
Wp(ν, μ), p ≥ 1, in terms of the inverse distribution functions, quantiles or order
statistics of empirical measures (cf. e.g. [11]).

On the basis of these explicit representations, rather precise descriptions of the
rates of convergence of empirical measures in Kantorovich distances are available
(cf. [11]). For example, E(W1(μn,μ)) is typically of the order of 1/

√
n for large

families of distributions μ, and a precise statement is that

E

(
W1(μn,μ)

)
� 1√

n

if and only if
∫
R

√
F(x)(1− F(x)) dx < ∞ (which is the case for instance if∫

R
|x|qdμ <∞ for some q > 2). The lower bound E(W1(μn,μ)) � 1/

√
n holds

true for any μ (with a first moment).
However, when p > 1 some differences occur already on basic examples

emphasizing the size of the support of μ as influencing the rate. The standard rate
1/np/2 is the rule for compactly supported laws, but in general it cannot be obtained
under moment conditions only. For example, by comparison with W1,

E

(
W2

2(μn,μ)
)
� 1

n
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if and only if
∫
R
[F(x)(1 − F(x))/f (x)] dx < ∞, where f is the density of the

absolutely continuous component of μ. Such a characterization, which admits
a version for any p > 1, is of particular interest for log-concave measures for
which two-sided comparison inequalities may be achieved. As an illustration, while
E(Wp

p(μn,μ)) is of order 1/np/2 for any p ≥ 1 if μ is uniform on a compact
interval, for μ the (standard) Gaussian distribution on R,

E

(
Wp

p(μn,μ)
) ≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
np/2 if 1 ≤ p < 2,

log log n
n

if p = 2,

1
n(logn)p/2 if p > 2.

(4)

While the rate is therefore the same as in the uniform case for 1 ≤ p < 2, two
changes occur as p = 2 and p > 2. Further models are of interest, such as for
instance the exponential distribution (see [11]).

Theoretical studies have been completed by various numerical simulations in
the physics literature, covering related random assignment problems and their
sharp asymptotic behaviors [15], such as for example the exact renormalized limit
limn→∞(n/log logn)E(W2

2(μn,μ)
) = 1 in the Gaussian case obtained in [10].

3 The Ajtai–Komlós–Tusnády Theorem in Dimension 2 and
the Ultimate Matching Conjecture

In the bipartite formulation (2) and for p = 1, the famous Ajtai–Komlós–Tusnády
theorem in dimension 2 expresses that

E

(

inf
σ

1

n

n∑

i=1

|Xi − Yσ(i)|
)

≈
√

logn

n
(5)

for samples of independent random variables uniformly distributed on the unit
square [0, 1]2. It has been established in [1] by the transportation method on
dyadic decompositions and combinatorial arguments, then reproved and deepened
by P. Shor [35] and M. Talagrand (cf. [39] and the references therein) via generic
chaining tools. The point is that, from the Kantorovich dual representation
(see [40]),

W1(ν, μ) = sup

[ ∫

Rd

ϕ dν −
∫

Rd

ϕ dμ

]
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where the supremum is taken over 1-Lipschitz maps ϕ : Rd → R, and as such
the study enters the framework of bounds on stochastic processes. Together with
a Fourier representation of the parameter set as an ellipsoid, it allows indeed for
the powerful use of majorizing measures and generic chaining methods (for which
a complete account is the monograph [39]). The methodology covers similarly the
values of p ≥ 1, with order of growth (logn/n)p/2, but the limiting case p = ∞
shows an interesting logarithmic correction described by the Leighton–Shor grid-
matching theorem [31]

E

(
inf
σ

max
1≤i≤n

|Xi − Yσ(i)|
)
≈ (logn)3/4

√
n

. (6)

This type of analysis furthermore led P. Shor [35] to a striking statement,
improving upon the upper bound in the Ajtai–Komlós–Tusnády theorem, in which
the coordinates of the variables (in R

2, indicated by the superscripts 1 and 2) do not
play the same role, namely

E

(

inf
σ

max

(
1

n

n∑

i=1

∣
∣X1

i − Y 1
σ(i)

∣
∣, max

1≤i≤n

∣
∣X2

i − Y 2
σ(i)

∣
∣
))

�
√

logn

n
. (7)

In this framework, the “ultimate matching conjecture” promoted by M. Talagrand
[39] would be that, for every α1, α2 > 0 with 1

α1
+ 1

α2
= 1

2 , there is a constant
C > 0 such that

E

(

inf
σ

max
j=1,2

( n∑

i=1

exp

(
1

C

√
n

logn

∣
∣X

j
i − Y

j

σ(i)

∣
∣
)αj
))

≤ Cn.

Using on the one hand that ea
4 ≥ a4, and on the other hand that

∑n
i=1 ea

4
i ≥

exp(max1≤i≤n a4
i ) together with Jensen’s inequality, the case α1 = α2 = 4 would

provide a neat common generalization of (the upper bounds in) the Ajtai–Komlós–
Tusnády and Leighton–Shor theorems, and at the same time improve upon (7)
corresponding to α1 = 2 and α2 = ∞ (with max1≤i≤n |X2

i − Y 2
σ(i)| in the j = 2

coordinate). A partial version of the conjecture as well as a suitable formulation in
dimension d ≥ 3 are discussed in [39].

Turning back to rates of empirical measures (or semi-discrete matching), for μ

the uniform distribution on the unit cube [0, 1]d of Rd , for any d ≥ 1 and p ≥ 1,

E

(
Wp

p(μn,μ)
) ≈

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
np/2 if d = 1,

( logn
n

)p/2 if d = 2,

1
np/d if d ≥ 3.

(8)
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The case d = 2 is thus the Ajtai–Komlós–Tusnády theorem, which, as for d = 1,
develops an unusual rate with respect to the uniform spacing 1/n1/d of n points in
[0, 1]d . However, this natural spacing is fully reflected in dimension d ≥ 3, which
makes this case easier than d = 2. Indeed, in dimension 2, there are irregularities
at all scales in the distribution of a random sample (X1, . . . , Xn) which combine
to create the logn factor, while in higher dimension, there are still irregularities
at many different scales but they cannot combine (see [39]). The complete range
of parameters p ≥ 1 and d ≥ 1 in (8) is implicit in the paper [1] and the study
[39]. See [27] for an independent proof relying on the mass transportation and pde
methodology exposed in the subsequent Sect. 5. In the same vein, a simple Fourier
analytic proof of the Ajtai–Komlós–Tusnády theorem is provided in [12] (see also
[39]). The articles [18, 21] consider distributions with compact support and densities
with respect to the Lebesgue measure uniformly bounded from below and above.

When p = ∞, the rates are respectively 1/
√
n in dimension 1, (logn)3/4/

√
n in

dimension 2 (the Leighton–Shor theorem (6)), and (logn/n)1/d in dimension d ≥ 3
[36] (and its extension [21]).

4 General Distributions and Higher Dimension

Beyond the uniform distribution, the corresponding results for more general
distributions μ, in particular with unbounded support, gave rise to a number
of contributions and open questions. The one-dimensional case is extensively
discussed in [11], and already develops unusual phenomena as mentioned in Sect. 2.

The Ajtai–Komlós–Tusnády theorem (5) in dimension 2 for p = 1 extends to
large families of distributions (see [39]). For example,

E

(
W1(μn,μ)

)
�
√

logn

n

as soon as
∫
R2 |x|qdμ <∞ for some q > 2.

A non-trivial aspect of the Ajtai–Komlós–Tusnády theorem consists also in the
lower bound E(W1(μn,μ)) �

√
logn/n (besides the proofs in [1] and [39], see [5]

for a new proof by mass transportation-pde arguments). Lower bounds are usually
not covered by general tools and for general distributions. Actually, for irregular
laws, the decay can be faster, see among others [7, 8, 17].

When p > 1, and in higher dimension d ≥ 1, the picture is more diversified. The
general investigations of [13, 17, 20], based on couplings on dyadic decompositions
together with a randomization argument by a Poisson variable, typically yield that,
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if for example
∫
Rd |x|qdμ <∞ for some q >

p
1−min(p/d,1/2) , then

E

(
Wp

p(μn,μ)
)
� 1

nmin(p/d,1/2)
. (9)

(The case p = d/2 actually involves some extra logarithmic factor.) At this level
of generality, these results are essentially optimal, and suitably extend the uniform
example when p < d/2. With respect to the Ajtai–Komlós–Tusnády theorem, one
structural aspect of the proof of the general bounds (9) (due in particular to the
randomization step) is however that, for d = 1 or 2, these will never yield anything
better than a rate of the order of 1/

√
n, and are essentially restricted to p < d/2 in

higher dimension.
The Gaussian model is a good test example to appreciate the potential range of

decay. Let thus, in the following, μ be the standard Gaussian distribution on R
d with

density (2π)−d/2 e− 1
2 |x|2 with respect to the Lebesgue measure, and in particular

moments of all orders. By a contraction argument, the Gaussian rates are always
larger than the uniform ones from (8). The one-dimensional case is pictured in (4).
In dimension d = 2, with respect to (9), it holds true that

E

(
Wp

p(μn,μ)
) ≈

⎧
⎪⎨

⎪⎩

( logn
n

)p/2 if 1 ≤ p < 2,

(logn)2

n
if p = 2,

(10)

which extends the uniform model for 1 ≤ p < 2, while a specific new feature
appears at p = 2 as a consequence of the unbounded support. The proof of the
case 1 ≤ p < 2 and of the upper bound for p = 2 in [27] is based on the
mass transportation and pde approach presented in the next section together with
a localization step, while the lower bound for p = 2 in [38] relies on the generic
chaining ideas of [39] together with a scaling argument (an alternate proof using the
transportation-pde method is presented in [28]).

In higher dimension d ≥ 3, the general bounds (9) yield that E(Wp
p(μn,μ)) �

1/np/d whenever 1 ≤ p < d/2. This has been extended to 1 ≤ p < d in [30] by a
specific Gaussian analysis of the associated Mehler kernel. In this range 1 ≤ p < d ,
d ≥ 3, the rates for the Gaussian are therefore the same as the ones for the compact
uniform model.

As identified by (10) when p = d = 2, the case p = d might be of special
interest. A possible conjecture for d ≥ 3 might be that

E

(
Wd

d (μn,μ)
) ≈ (logn)d/2

n
.

This is suggested as a lower bound in the note [38] (upper bounds with extra
logarithmic factors are obtained in [30]). It is certainly possible that the tools
developed in [38] could lead to more conclusions, also for p > d ≥ 2 (and for
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more general distributions than the Gaussian with exponential tail decay), but this is
essentially open at this point. Actually, there is no clear conjecture for p > d ≥ 2
(including p =∞) at this point.

5 Mass Transportation, PDE, and Exact Limits
and Asymptotic Expansions

On the basis of the Ajtai–Komlós–Tusnády theorem (8) for the uniform distribution
μ on the unit cube [0, 1]d of Rd , the question of the exact asymptotic behavior of
E(Wp

p(μn,μ)) as n → ∞ becomes natural. Again the one-dimensional case may
be addressed rather simply, for example E(W2

2(μn,μ)) = 1/6n (for any n).
Things are much more challenging in higher dimension, and actually some deep

structural issues are underlying the picture, in particular motivated by conjectures
raised by S. Caracciolo et al. [16] in the physics literature. As a major recent
development in this regard, answering one of these conjectures, the landmark
contribution [5] by L. Ambrosio, F. Stra and D. Trevisan achieved the exact
(renormalized) limit for the uniform measure μ on [0, 1]2 for p = 2,

lim
n→∞

n

logn
E

(
W2

2(μn,μ)
) = 1

4π
. (11)

The result actually applies to the uniform measure on a two-dimensional compact
Riemannian manifold M of volume one (the results are invariant under rescaling
of the measure), with the Euclidean distance in the definition of W2 being replaced
by the Riemannian distance. The factor 1/4π captures the common small time
behavior of the trace of the Laplace operator � in the form of

lim
t→0

4πt

∫

M

pt (x, x)dμ(x) = 1

where pt (x, y), t > 0, x, y ∈ M , is the associated heat kernel (generating the
heat semigroup Pt , t > 0). The result has been extended in [4] to measures
on a bounded connected domain in R

2 with Lipschitz boundary, with Hölder
continuous density uniformly strictly positive and bounded from above. The method
of proof is based on a deep analysis combining mass transportation and pde tools
following an Ansatz put forward in [16]. If T = ∇ψ is the optimal transport map
between two probability densities ρ0 and ρ1 (on M), the associated Monge–Ampère
equation ρ1(∇ψ) det(∇2ψ) = ρ0 is turned, via the linearization ρj ≈ 1, into
ψ ≈ 1

2 |x|2 + f where f solves the Poisson equation−�f = ρ1 − ρ0. In this way,
the Kantorovich metric W2 is approximated by an energy functional represented by
a dual Sobolev norm through the observation that, whenever g : M → R is smooth
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with
∫
M gdμ = 0, by a Taylor expansion on dνε = (1+ εg)dμ as ε → 0 (cf. [40])

lim
ε→0

1

ε2
W2

2(νε, μ) = ‖g‖2
H−1,2(μ)

where H−1,2(μ) is the dual Sobolev norm described by the trace

‖g‖2
H−1,2(μ)

=
∫

M

∣
∣∇(−�)−1g

∣
∣2dμ =

∫

M

g(−�)−1g dμ

with (−�)−1 = ∫∞0 Ptdt . On the basis of this Ansatz, the proof of the limit (11)
proceeds by regularization by the heat kernel and approximation by the energy
functional, the leading term in (11), as well as the full rates in (8), reflecting the
behaviour of the Green function (of the associated heat kernel) depending in partic-
ular on the dimension. More precise descriptions of the optimal map, rather than
only the transport cost, are developed in [3], and in [23, 24] in connection with the
behavior of the optimal transport map in the Lebesgue-to-Poisson problem together
with a refined large-scale regularity theory for the Monge–Ampère equation. In case
of the 2-dimensional sphere, a proof of the optimal matching rate is provided in [26]
via gravitational allocation (the paper also describes related algorithmic questions
of interest).

Still in dimension d = 2, the case p �= 2 is completely open (and the value p = 1
should be of particular interest). For p = 2, the paper [16] (see also [9]) actually
suggests moreover that for some value ξ ∈ R,

E

(
W2

2(μn,μ)
) = 1

4π

logn

n
+ ξ

n
+ o
(1

n

)
. (12)

Towards this conjecture, but still far from the answer, it is shown in [2] that

∣
∣
∣
∣E
(
W2

2(μn,μ)
) − 1

4π

logn

n

∣
∣
∣
∣ �

√
logn log logn

n
.

A further conjecture in this framework would be that

n
[
W2

2(μn,μ)− E

(
W2

2(μn,μ)
)] → χ

in distribution where χ is some centered random variable with an explicit distribu-
tion as a quadratic form of a Gaussian free field (see [22, 29]). Under the conjecture
(12), it would hold that

n
[
W2

2(μn,μ)− 1

4π
logn

]
→ ξ + χ
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in distribution, which would be the ultimate description of the limiting behaviour
of W2

2(μn,μ) (provided the limiting value ξ is identified). For the matter
of comparison, in dimension d = 1 for μ the Lebesgue measure on [0, 1],
E(W2

2(μn,μ)) = 1/6n while nW2
2(μn,μ) converges in law to

∫ 1
0 B(t)2dt with

B a Brownian bridge on [0, 1] (in particular E
( ∫ 1

0 B(t)2dt
) = 1/6) [6].

The identification of the limits in dimension d ≥ 3 seems to raise even higher
difficulties. Let still μ denote the uniform measure on [0, 1]d . In [25], M. Goldman
and D. Trevisan showed that, for every d ≥ 3 and p ≥ 1, the limit

lim
n→∞ np/d

E

(
Wp

p(μn,μ)
)

exists and is strictly positive. The result actually extends previous works, basically
covering p < d/2, in [7, 14, 17, 19] making use of subadditivity arguments on
dyadic and combinatorial partitionings. The new ingredient in [25] is the coupling of
subadditivity with the optimal transport and pde approach which has been successful
in dimension 2. However, since the error in the smoothing by the heat kernel and
the energy functional are of the same order in higher dimension d ≥ 3, a delicate
feature is that the leading term in the asymptotics of the Kantorovich rate might
not be given anymore by the dual Sobolev norm (while higher orders are), so that
identification of the limit is a serious task. Actually the prediction in [9, 16], for
p = 2 < d , would be that

E

(
W2

2(μn,μ)
) = cd

n2/d
+ ξ

4π2

1

n
+ o
(1

n

)
,

but cd is not clearly conjectured, while ξ should be explicitly given in terms of the
Epstein function.
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Space-Time Stochastic Calculus
and White Noise

Bernt Øksendal

Dedicated to Catriona Byrne, in gratitude for her support and
encouragement through 40 years

1 Introduction

My interest in the interplay between mathematical analysis and probability theory
goes back to the beginning of my studies at the University of Oslo in the mid
1960s. But it really gained momentum in the late 1970s when I started studying
the beautiful little book Stochastic Integrals by Henry McKean [13]. My colleague
at the time, Knut Aase, and I ran a little seminar on the book at Agder College (now
the University of Agder) and we were both fascinated by this new calculus that the
book presented, namely the Itô calculus!

Then in 1982 Sandy Davie and Alan Sinclair offered me a Research Fellowship
and invited me to spend one semester at the Department of Mathematics, University
of Edinburgh. There they asked me to give a course on stochastic differential
equations (SDEs). I knew nothing about SDEs, but started immediately to study
the subject intensively, in an effort to at least stay ahead of my (very advanced)
audience. It was a rewarding experience, which opened up a new world, consisting
of both interesting new mathematics and a number of important applications, e.g.
to modelling of dynamical systems with noise, filtering theory, optimal stopping,
stochastic control and (subsequently) mathematical finance. I was enthusiastic about
this new field of mathematics and started lecturing about it, almost like preaching a
gospel, at a number of places, including Agder College, Eötvös Loránd University,
the University of Tromsø, and California Institute of Technology (Caltech). Every
time I used the opportunity to polish my lecture notes, based on useful feedback
from the audience.
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In 1984 I submitted my lecture notes to Springer, and asked them to consider
the manuscript for publication, for example in the Springer Lecture Notes in
Mathematics (LNM). At a conference in Lancaster the same year I was fortunate
to meet the recently appointed Springer Mathematical Editor, namely Catriona
Byrne, who was handling my manuscript. She saw the potential of the manuscript
and recommended that it be considered for publication in the new book series
Universitext. The reviews were all very positive, and in 1985 the first edition of
my book Stochastic Differential Equations [18] appeared, and it became a great
success. I think one reason for the success of the book was that it filled a gap in
the literature. There were already several excellent books available, written by top
experts, but my book was written from the point of view of an enthusiastic beginner,
who was not trying to humiliate the reader but to work with the reader to understand
the topic. Some years later a professor once told me that although more recent and
more polished editions of my book were available, he gave his students the first
edition to start with, because it was somehow more “raw” and direct, without all the
technical subtleties (that should be taken seriously later) and therefore easier as a
first encounter with the field.

I will always be grateful to Catriona for her encouragement and support, not just
for the first edition of this book, but also for later editions [17] and for the other
books I wrote later with coauthors. I think she is an important reason for the success
of Springer among the mathematical community.

2 Equations with Noise and White Noise Theory

One of the fascinations with stochastic analysis is the interplay between mathemat-
ical analysis and probability theory. And perhaps the most spectacular example
of such interplay is the topic of dynamical systems subject to noise. Noise in
some form is everywhere in our society. For example, it can be in the form of
mechanical noise from machines, noise due to lack of information in the system, or
environmental noise due to random fluctuations in weather. A classic example is the
model for population growth:
Let Y (t) denote the density of a given population at time t . Then the most basic
model for the growth of Y (t) is the differential equation

dY (t)

dt
= α0(t)Y (t); Y (0) = y0 (constant) (1)

where α0(t) is a given function, representing the relative growth rate. The solution
of this differential equation is

Y (t) = y0 exp

(∫ t

0
α0(s)ds

)

.
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A weakness of this model is that it does not take into account that there might be
unpredictable, random changes, or “noise” in the environment. If we add “noise” in
the relative growth rate, the equation gets the form

dY (t)

dt
= α(t) + σ(t)W(t); Y (0) = y0, (2)

where W(t) represents “noise” at time t and σ is a given “noise” coefficient.
The question is what properties such a “noise” process W(t) should have. If
we try to represent W(t) by a stochastic process defined on a filtered probability
space (�,F , {Ft }t≥0,P), then ideally, i.e. if we think of noise as “white” in some
sense, we could require that W(t1) and W(t2) are independent if t1 �= t2 and that
W(t) is normalised, in the sense that E[W(t)] = 0 (where E denotes expectation
with respect to P) and E[W 2(t)] < ∞ for all t . But it turns out that no such
measurable stochastic process exist. However, since the Brownian motion process
B(t) = B(t, ω); t ≥ 0, ω ∈ � is continuous and has stationary, independent
increments, one could try to put

W(t) = dB(t)

dt
. (3)

This derivative does not exist in the ordinary (strong) sense, but since t �→ B(t, ω)

is continuous for a.a. ω, it is weakly differentiable for a.a. ω, and we could try
to interpret it weakly, in the sense that we regard the equation (2) as an integral
equation, that is

Y (t) = y0 +
∫ t

0
Y (s)
(
α(s)+ σ(s)

dB(s)

ds

)
ds

= y0 +
∫ t

0
Y (s)α(s)ds +

∫ t

0
σ(s)Y (s)dB(s).

This last integral can be made rigorous as an Itô integral. It is sometimes written in
the following short-hand, differential form

dY (t) = α(t)Y (t)dt + σ(t)Y (t)dB(t); Y (0) = y0.

Applying the Itô rules of stochastic calculus (the Itô formula), we find the following
well-known solution

Y (t) = y0 exp
( ∫ t

0
σ(s)dB(s)+

∫ t

0
{α(s) − 1

2σ
2(s)}ds

)
. (4)
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2.1 A More Elaborate Model

In the model above we are only considering the population at one given point x in
space and the noise is in time only. In an attempt to get a more realistic model, let
us consider the population density Y (t, x) at the time t ∈ R and at the point x ∈ R

n,
where n is the dimension of the space. For simplicity of the notation, let us assume
that n = 1 in the following. In this case, it is natural to assume that the “noise”
depends on both time and space also, i.e. that it is represented by a 2-parameter
process W(t, x). This is also relevant in many other situations, for example in
temperature modelling or, more generally, weather modelling. Assuming this, and
arguing as in (2) and allowing the coefficients to depend on both t and x, we arrive
at the following 2-parameter stochastic differential equation for Y (t, x):

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)W(t, x)dtdx.

Now suppose we proceed as above, and try to represent W(t, x) weakly as

W(t, x) = ∂2B(t, x)

∂t∂x
, (5)

where B(t, x); t ≥ 0, x ∈ R is a 2-parameter Brownian motion, also called a
Brownian sheet. (See the next section for an explanation.) Then we arrive at the
following stochastic integral equation

Y (t, x) = y0 +
∫ t

0

∫ x

0
α(s, z)Y (s, z)dsdz +

∫ t

0

∫ x

0
σ(s, z)Y (s, z)B(ds, dz),

where the last integral is the space-time (2-parameter) Itô integral with respect
to B(·, ·), as constructed in [5, 23, 24]. See also [14, 20] and [22]. As in the 1-
parameter case, we will use the following short-hand differential notation

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)Y (t, x)B(dt, dx); t, x ≥ 0 (6)

Y (t, 0) = Y (0, x) = y0; for all t, x ≥ 0.

It follows from Theorem 2.4.1 in [14] that this stochastic partial differential equation
(SPDE) has a unique adapted solution. The question is:

Problem 2.1 Can we find a formula for the solution of (6), like we did in the 1-
parameter case (4)?

In view of the many applications of white noise theory to 1-parameter stochastic
calculus (see e.g. [1–4, 6, 7, 9–11, 19] and also the spectacular white noise solution
of general SDEs in [12]), it is natural to ask if such an interplay can be useful also in
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the multi-parameter case. To support this idea we will show that white noise theory
can be used to find the solution of (6). We will explain how after a short review of
multi-parameter white nose calculus. It is mainly based on the presentation in [9],
and we refer to that book for proofs and more details.

3 Multi-Parameter White Noise Calculus

The basic idea of white noise analysis, due to Hida [8], is to consider white noise W

rather than Brownian motion B as the fundamental object. Within this framework,
we will see that Brownian motion can indeed be expressed as the integral of white
noise.

3.1 The d-Parameter White Noise Probability Space

In the following d will denote a fixed positive integer, interpreted as either the
time, space or time-space dimension of the system we consider. More generally,
we will call d the parameter dimension. Let S(Rd ) be the Schwartz space of
rapidly decreasing smooth (C∞) real-valued functions on R

d . Recall that S(Rd )

is a Fréchet space under the family of seminorms

‖f ‖k,α := sup
x∈Rd

{(1+ |x|k)|∂αf (x)|},

where k is a nonnegative integer, α = (α1, · · · , αd) is a multi-index of nonnegative
integers α1, · · · , αd and

∂αf = ∂ |α|f
∂x

α1
1 · · · ∂xαd

d

where |α| := α1 + · · · + αd .

The dual � = S ′(Rd) of S(Rd ), equipped with the weak-star topology, is the space
of tempered distributions. This space will be the base of our basic probability space,
which we explain in the following:
As events we will use the family F = B(S ′(Rd )) of Borel subsets of S ′(Rd), and
our probability measure P is defined by the following result:

Theorem 3.1 (The Bochner–Minlos Theorem) There exists a unique probability
measure P on B(S ′(Rd)) with the following property:

E[ei〈·,ϕ〉] :=
∫

S ′
ei〈ω,ϕ〉dμ(ω) = e−

1
2 ‖ϕ‖2 ; i = √−1
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for all ϕ ∈ S(Rd ), where ‖ϕ‖2 = ‖ϕ‖2
L2(Rd)

, 〈ω, ϕ〉 = ω(ϕ) is the action of

ω ∈ S ′(Rd) on ϕ ∈ S(Rd ) and E = EP denotes the expectation with respect to P.

We will call the triplet (S ′(Rd ),B(S ′(Rd)),P) the white noise probability space,
and P is called the white noise probability measure.
The measure P is also often called the (normalized) Gaussian measure on S ′(Rd).
It is not difficult to prove that if ϕ ∈ L2(Rd) and we choose ϕn ∈ S(Rd) such that
ϕn → ϕ in L2(Rd ), then

〈ω, ϕ〉 := lim
n→∞〈ω, ϕn〉 exists in L2(P)

and is independent of the choice of {ϕn}. In particular, if we define

B̃(x) := B̃(x1, · · · , xd, ω) = 〈ω, χ[0,x1]×···×[0,xd ]〉; x = (x1, · · · , xd) ∈ R
d ,

where [0, xi] is interpreted as [xi, 0] if xi < 0, then B̃(x, ω) has an x-continuous
version B(x, ω), which becomes a d-parameter Brownian motion, in the following
sense:

By a d-parameter Brownian motion we mean a family {B(x, ·)}x∈Rd of random
variables on a probability space (�,F ,P) such that

• B(0, ·) = 0 almost surely with respect to P,
• {B(x, ω)} is a continuous and Gaussian stochastic process, and, further,
• for all x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ R

d+, B(x, ·), B(y, ·) have
the covariance

∏d
i=1 xi ∧ yi . For general x, y ∈ R

d the covariance is
∏d

i=1

∫
R
θxi (s)θyi (s)ds, where θx(t1, . . . , td ) = θx1(t1) · · · θxd (td ), with

θxj (s) =
⎧
⎨

⎩

1 if 0 < s ≤ xj

−1 if xj < s ≤ 0
0 otherwise.

It can be proved that the process B̃(x, ω) defined above has a modification
B(x, ω) which satisfies all these properties. This process B(x, ω) then becomes
a d-parameter Brownian motion.

We remark that for d = 1 we get the classical (1-parameter) Brownian motion
B(t) if we restrict ourselves to t ≥ 0. For d ≥ 2 we get what is often called the
Brownian sheet.

With this definition of Brownian motion it is natural to define the d-parameter
Wiener–Itô integral of ϕ ∈ L2(Rd) by

∫

Rd

ϕ(x)dB(x, ω) := 〈ω, ϕ〉; ω ∈ S ′(Rd ).
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We see that by using the Bochner–Minlos theorem we have obtained an easy con-
struction of d-parameter Brownian motion that works for any parameter dimension
d . Moreover, we get a representation of the space � as the Fréchet space S ′(Rd).
This is an advantage in many situations, for example in the construction of the Hida–
Malliavin derivative, which can be regarded as a stochastic gradient on �. See
Sect. 4 and e.g. [7] and the references therein.

3.2 Chaos Expansion in Terms of Hermite Polynomials

The Hermite polynomials hn(x) are defined by

hn(x) = (−1)ne1/2x2 dn

dxn
(e−1/2x2

); n = 0, 1, 2, · · · .

We see that the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, · · · .

The Hermite functions ξn(x) are defined by

ξn(x) = π−1/4((n− 1)!)−1/2e−1/2x2
hn−1(

√
2x); n = 1, 2, · · · .

Some important properties of the Hermite functions are the following:

• ξn ∈ S(R) for all n
• The collection {ξn}∞n=1 constitutes an orthonormal basis for L2(R).

• sup
x∈R

|ξn(x)| = O(n−1/12).

We now use these functions to define an orthogonal basis for L2(P):
In the following, we let δ = (δ1, · · · , δd ) denote d-dimensional multi-indices

with δ1, · · · , δd ∈ N. It follows that the family of tensor products

ξδ := ξ(δ1,··· ,δd) := ξδ1 ⊗ · · · ⊗ ξδd ; δ ∈ N
d

forms an orthogonal basis for L2(Rd). Let δ(j) = (δ
(j)
1 , δ

(j)
2 , · · · , δ(j)d ) be the j th

multi-index number in some fixed ordering of all d-dimensional multi-indices δ =
(δ1, · · · , δd ) ∈ N

d . We may assume that this ordering has the property that

i < j ⇒ δ
(i)
1 + δ

(i)
2 + · · · + δ

(i)
d ≤ δ

(j)

1 + δ
(j)

2 + · · · + δ
(j)

d ,

i.e., that the {δ(j)}∞j=1 occur in increasing order.
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Now define

ηj := ξδ(j) = ξ
δ
(j)

1
⊗ · · · ⊗ ξ

δ
(j)
d

; j = 1, 2, · · · .

We regard multi-indices as elements of the space (NN

0 )c of all sequences α =
(α1, α2, · · · ) with elements αi ∈ N0 and with compact support, i.e., with only
finitely many αi �= 0. Put

J = (NN

0 )c.

Definition 3.2 Let α = (α1, α2, · · · ) ∈ J . Then we define

Hα(ω) :=
∞∏

i=1

hαi (〈ω, ηi 〉); ω ∈ S ′(Rd).

Theorem 3.3 (Wiener–Itô Chaos Expansion Theorem) Every f ∈ L2(P) has a
unique representation

f (ω) =
∑

α∈J
cαHα(ω),

where cα ∈ R for all α.

Moreover, the following isometry holds:

‖f ‖2
L2(P)

=
∑

α∈J
α!c2

α.

Example 3.1 The d-parameter Brownian motion B(x, ω) is defined by:

B(x, ω) = 〈ω,ψ〉,

where

ψ(y) = χ[0,x1]×···×[0,xd ](y).

Proceeding as above, we write

ψ(y) =
∞∑

j=1

(ψ, ηj )ηj (y) =
∞∑

j=1

⎛

⎝

x∫

0

ηj (u)du

⎞

⎠ ηj (y),
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where we have used the multi-index notation

x∫

0

ηj (u)du =
xd∫

0

· · ·
x1∫

0

ηj (u1, · · · , ud)du1 · · · dud =
d∏

k=1

xk∫

0

ξ
β
(j)
k

(tk)dtk

when x = (x1, · · · , xd). Therefore,

B(x, ω) = 〈ω,

∞∑

j=1

x∫

0

ηj (u)duηj 〉 =
∞∑

j=1

⎛

⎝

x∫

0

ηj (u)du

⎞

⎠ 〈ω, ηj 〉.

We conclude that B(x, ω) = B(x1, x2, ..., xd, ω) has the expansion

B(x, ω) =
∞∑

j=1

x∫

0

ηj (u)duHε(j)(ω)

=
∞∑

j=1

( x1∫

0

x2∫

0

...

xd∫

0

ηj (u)du1du2...dud

)
Hε(j) (ω). (7)

3.3 The Stochastic Test Function Spaces (S)

and the Stochastic Distribution Space (S)∗

We have seen that the growth condition

∑

α

α!c2
α <∞ (8)

assures that

f (ω) :=
∑

α

cαHα(ω) ∈ L2(P).

By replacing condition (8) by various other conditions we will obtain a family of
stochastic test functions and stochastic generalized functions that relates to L2(P)

in a way that is analogous to the spaces S(Rd) ⊂ L2(Rd ) ⊂ S ′(Rd). These
spaces provide a favourable setting for the study of stochastic (ordinary and partial)
differential equations.

As an analogue, recall the characterizations of S(Rd ) and S ′(Rd) in terms of
Fourier coefficients: As above we let {δ(j)}∞j=1 = {(δ(j)1 , · · · , δ(j)d )}∞j=1 be a fixed
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ordering of all d-dimensional multi-indices δ = (δ1, · · · , δd ) ∈ N
d . In general,

if α = (α1, · · · , αj , · · · ) ∈ J , β = (β1, · · · , βj , · · · ) ∈ (RN)c are two finite
sequences, we will use the notation

αβ = α
β1
1 α

β2
2 · · ·αβj

j · · · where α0
j = 1.

Theorem 3.4 (Reed and Simon [21], Theorem V. 13–14)

(a) Let ϕ ∈ L2(Rd), so that

ϕ =
∞∑

j=1

ajηj , (9)

where aj = (ϕ, ηj ); j = 1, 2, · · · , are the Fourier coefficients of ϕ with
respect to {ηj }∞j=1. Then ϕ ∈ S(Rd ) if and only if

∞∑

j=1

a2
j (δ

(j))γ <∞,

for all d-dimensional multi-indices γ = (γ1, · · · , γd).
(b) The space S ′(Rd ) can be identified with the space of all formal expansions

T =
∞∑

j=1

bjηj (10)

such that

∞∑

j=1

b2
j (δ

(j))−θ <∞

for some d-dimensional multi-index θ = (θ1, · · · , θd).
If this condition holds, then the action of T ∈ S ′(Rd ) given by (10) on ϕ ∈

S(Rd ) given by (9) is

〈T , ϕ〉 =
∞∑

j=1

ajbj .

We now formulate a stochastic analogue of this result. The following quantity is
crucial: If γ = (γ1, · · · , γj , · · · ) ∈ (RN)c (i.e., only finitely many of the real
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numbers γj are nonzero), we use the short-hand notation

(2N)γ :=
∞∏

j=1

(2j)γj .

Definition 3.5 (The Hida Spaces of Stochastic Test Functions and Stochastic
Distributions)

(a) The stochastic test function space (S)

Let (S) consist of the functions

f =
∑

α∈J
cαHα ∈ L2(P) with cα ∈ R

such that

‖f ‖2
k :=

∑

α∈J
c2
α(α!)2(2N)kα <∞ for all k ∈ N

equipped with the projective topology.
(b) The stochastic distribution spaces (S)∗

Let q ∈ R. We say that the formal sum F = ∑

α∈J
bαHα belongs to the Hida

distribution Hilbert space (S)−q if

‖F‖2−q :=
∑

α∈J
α!c2

α(2N)−αq <∞. (11)

We define the Hida stochastic distribution space (S)∗ as the union (S)∗ =⋃
q∈R(S)−q equipped with the inductive topology.

Note that (S)∗ can be regarded as the dual of (S)as follows:
The action of F = ∑

α

bαHα ∈ (S)∗ on f = ∑
α

aαHα ∈ (S), where bα, aα ∈ R, is

given by

〈F, f 〉 =
∑

α

α!aαbα.

We have the inclusions

(S) ⊂ L2(P) ⊂ (S)∗.
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Example 3.2 (Singular White Noise) One of the most useful properties of (S)∗ is
that it contains the singular or pointwise white noise:

The d-parameter singular white noise process is defined by the formal expansion

W(x) = W(x,ω) =
∞∑

k=1

ηk(x)Hε(k)(ω); x ∈ R
d . (12)

From the definition one van verify that

W(x,ω) ∈ (S)∗.

By comparing the expansion (12) for singular white noise W(x) and the
expansion (7) for Brownian motion B(x), we see that

W(x) = ∂d

∂x1 · · · ∂xd B(x) in (S)∗. (13)

In particular, for d = 1, we put x1 = t and get the familiar identity

W(t) = d

dt
B(t) in (S)∗.

3.4 The Wick Product

Since x �→ B(x, ω) is continuous a.s., it is weakly differentiable a.s., and we see
that the identity (13) also holds in the weak distribution sense (in S ′(Rd)), a.s. For
that matter, one could argue that we might as well work on S ′(Rd ) (a.s.) However,
there is no tractable product operator on S ′(Rd). One of the (many) advantages
of working on (S)∗ is that it has a natural multiplication called the Wick product,
which is a binary operation on both (S) and (S)∗, and is fundamental in the study
of stochastic (ordinary and partial) differential equations. In general, one can say
that the use of this product corresponds to—and extends naturally—the use of Itô
integrals. We now explain this in more detail.

Definition 3.6 The Wick product F >G of two elements

F =
∑

α

aαHα, G =
∑

α

bαHα ∈ (S)∗ with aα, bα ∈ R
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is defined by

F >G =
∑

α,β

(aα, bβ)Hα+β.

An important property of the spaces (S)∗, (S) is that they are closed under Wick
products:

Lemma 3.7

(a) F,G ∈ (S)∗ ⇒ F >G ∈ (S)∗;
(b) f, g ∈ (S)⇒ f > g ∈ (S).

It is easy to see directly from the definition that the Wick product is commutative,
associative and distributive over addition.

The Wick powers F >k ; k = 0, 1, 2, · · · of F ∈ (S)∗ are defined inductively as
follows:

F >0 = 1.

F >k = F > F >(k−1) for k = 1, 2, · · · .

The Wick exponential of F ∈ (S)∗ is defined by

exp> F =
∞∑

n=0

1
n!F

>n; if convergent in (S)∗.

3.5 Wick Product and Hermite Polynomials

There is a striking connection between Wick powers and Hermite polynomials
hn; n = 0, 1, 2, ...:

Theorem 3.8 Choose ϕ ∈ L2(Rd ) and define the random variable wϕ by

wϕ(ω) = 〈ω, ϕ〉.

Then

w>nϕ = ‖ϕ‖nhn(
wϕ

‖ϕ‖ ) (14)

where ‖ϕ‖ = ‖ϕ‖L2(Rd).
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This result can be used to get an explicit formula for the Wick exponential:

Theorem 3.9 (The Wick Exponential) Let ϕ ∈ L2(Rd ). Then

exp>
( ∫

Rd

ϕ(x)B(dx)
)
= exp

( ∫

Rd

ϕ(x)B(dx)− 1
2

∫

Rd

ϕ2(x)dx
)
.

Proof We may assume that ϕ = cη1, in which case we get, with w(ϕ) =∫
Rd ϕ(x)B(dx),

exp>[w(ϕ)] =
∞∑

n=0

1

n!w(ϕ)>n =
∞∑

n=0

1

n!c
n〈ω, η1〉>n

=
∞∑

n=0

cn

n!H
>n
ε1

(ω) =
∞∑

n=0

cn

n!Hnε1(ω)

=
∞∑

n=0

cn

n! hn(〈ω, η1〉) = exp
[
c〈ω, η1〉 − 1

2c
2
]

= exp

[

w(ϕ)− 1
2‖ϕ‖2

]

,

where we have used the generating property of the Hermite polynomials. ��

3.6 Wick Multiplication and Itô Integration

One of the most striking features of the Wick product is its relation to Itô integration.
In short, this relation can be expressed as follows:

Theorem 3.10 Let Y (x) be an Itô integrable process. Then

∫

Rd

Y (x)B(dx) =
∫

Rd

Y (x) >W(x)dx. (15)

Here the left-hand side denotes the Itô integral of the stochastic process Y (x) =
Y (x1, x2, ..., xd, ω) with respect to B(dx) = B(dx1dx2...dxd), while the right-hand
side is to be interpreted as an (S)∗-valued (Pettis) Lebesgue integral of Y > W in
(S)∗.

This relation explains why the Wick product is so natural and important in
stochastic calculus. It is also the key to the fact that Itô calculus (with Itô’s
formula, etc.) with ordinary multiplication is equivalent to ordinary calculus with
Wick multiplication. To illustrate this, consider the example with d = 1, x = t and
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Y (t) = B(t) · χ[0,T ](t). Then by the Itô formula the left-hand side of (15) becomes

T∫

0

B(t)dB(t) = 1

2
B2(T )− 1

2
T , (16)

while (formal) Wick calculation makes the right-hand side equal to

T∫

0

B(t) >W(t)dt =
T∫

0

B(t) > B ′(t)dt = 1

2
B(T )>2,

which is equal to (16) by virtue of (14).

4 The Space-Time Hida–Malliavin Calculus

It is natural to ask if also the Hida–Malliavin derivative can be extended to the space-
time case. As in previous sections we assume that the Brownian motion B(x);
x ∈ R

d , is constructed on the space (�,B,P) with � = S ′(Rd). Note that any
γ ∈ L2(Rd) can be regarded as an element of � = S ′(Rd) by the action

〈γ, ϕ〉 =
∫

Rd

γ (x)ϕ(x)dx; ϕ ∈ S(Rd ).

Following the approach in [7] we define the Hida–Malliavin derivative as
follows:

Definition 4.1

(i) Let F ∈ L2(P) and let γ ∈ L2(Rd ) be deterministic. Then the directional
derivative of F in (S)∗ in the direction γ is defined by

Dγ F (ω) = lim
ε→0

1

ε

[
F(ω + εγ )− F(ω)

]
(17)

whenever the limit exists in (S)∗.
(ii) Suppose there exists a function ψ : Rd �→ (S)∗ such that

∫

Rd

ψ(x)γ (x)dx exists in (S)∗ and

Dγ F =
∫

Rd

ψ(x)γ (x)dx, for all γ ∈ L2(Rd ).

(18)



644 B. Øksendal

Then we say that F is Hida–Malliavin differentiable in (S)∗ and we write

ψ(x) = DxF, x ∈ R
d .

We call DxF ∈ (S)∗ the Hida–Malliavin derivative of F at x.

Example 4.2 Suppose F(ω) = 〈ω, f 〉 = ∫
Rd f (x)B(dx), f ∈ L2(Rd). Then

Dγ F = 1

ε

[ 〈ω + εγ, f 〉 − 〈ω, f 〉 ] = 〈γ, f 〉 =
∫

Rd

f (x)γ (x)dx.

Therefore F is Hida–Malliavin differentiable and

Dx

( ∫

Rd

f (u)B(du)
)
= f (x) for a.a. x ∈ R

d .

As in the 1-parameter case one can prove the following:

Lemma 4.3 (Chain Rule) Let F ∈ L2(P) be Hida–Malliavin differentiable, with
DxF ∈ L2(λ × P), where λ denotes Lebesgue measure. Suppose that ϕ ∈ C1(R)

and ϕ′(F )DxF ∈ L2(λ×P). Then ϕ(F ) is also Hida–Malliavin differentiable and

Dx

(
ϕ(F )

) = ϕ′(F )DxF for a.a. x ∈ R
d . (19)

4.1 The General Hida–Malliavin Derivative

The Hida–Malliavin derivative can be expressed in terms of the Wiener–Itô chaos
expansion as follows: Recall that

Hα(ω) :=
∞∏

i=1

hαi (θi); where θi = 〈ω, ηi 〉

Then by the chain rule (19) we have,

DxHα =
m∑

k=1

∏

j �=k

hαj (θj )αkhαk−1(θk)ηk(x) =
m∑

k=1

αkηk(x)Hα−ε(k). (20)

In view of this, the following definition is natural:

Definition 4.4 (The General Hida–Malliavin Derivative) If F = ∑
α∈J cα

Hα ∈ (S)∗ we define the Hida–Malliavin derivative DxF of F at x in (S)∗ by
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the following expansion:

DxF =
∑

α∈J

∞∑

k=1

cααkηk(x)Hα−ε(k), (21)

whenever this sum converges in (S)∗.

This extension of the Hida–Malliavin derivative makes it possible to deal with
more general cases. In short, taking the Hida–Malliavin derivative DxF may take
you from L2(P) into (S)∗, but conditioning with respect to Fx brings you back to
L2(λ × P). For example, in the case d = 1 the following extension of the Clark–
Ocone representation theorem [17] was proved in [1]:

Theorem 4.5 (Generalised Clark–Ocone Theorem (d=1)) Let F ∈ L2(FT ,P).
Then DtF ∈ (S)∗ for all t , E[DtF |Ft ] ∈ L2(λ× P) and

F = E[F ] +
∫ T

0
E[DtF |Ft ]dB(t).

It is natural to ask if a similar result can be obtained in the general parameter
case:

Problem 4.6 Is there a d-parameter version of Theorem 4.5?

5 Solving the Population Growth Equation

We now have the machinery from white noise theory we need to solve the space-
time stochastic partial differential equation (6):

Theorem 5.1 Suppose α(t, x) and σ(t, x) are deterministic and in L2(R2). Then
the solution Y (t, x) of the equation

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)Y (t, x)B(dt, dx); t, x ≥ 0,

Y (t, 0) = Y (0, x) = y0 (constant) for all t, x ≥ 0,

can be written as

Y (t, x) =

y0

∞∑

n=0

1

n!
n∑

k=0

‖σ‖k
k!(n−k)!

[(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

hk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)]

.
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Proof First note that the equation can be written

Y (t, x) = y0 +
∫ t

0

∫ x

0
K(s, z) > Y (s, z)dsdz, (22)

where

K(s, z) = α(s, z) + σ(s, z)W(t, x), with W(t, x) = ∂2

∂t∂x
B(t, x). (23)

Substituting for Y (s, z) in (22) we get

Y (u) = y0 +
∫ u

0
K(u1) >

(

y0 +
∫ u1

0
K(u2) > Y (u2)du2

)

du1,

where we put u = (t, x), uj = (sj , zj ); j = 1, 2, ....
Repeating this we obtain

Y(u) = y0

(

1+
∫ u

0
K(u1)du1 +

∫ u

0

(∫ u1

0
K(u1) >K(u2)du2

)

du1

+ · · · +
∫ u

0

(∫ u1

0
· · ·
∫ un

0
K(u1) >K(u2) > · · · >K(un+1)du1du2 . . . dundun+1

)

+ Rn

(24)

where

Rn =

y0

∫ u

0

(∫ u1

0
· · ·
∫ un

0
K(u1) >K(u2) > · · · >K(un+1) > Y (un+1)du1du2 . . . dun

)

dun+1

It follows from the Våge inequality [9], Theorem 3.3.1, that Rn → 0 in (S)∗ as
n→∞. Therefore we get, by letting n→∞ in (24),

Y (t, x) = y0

∞∑

n=0

∫ u

0

(∫ u1

0
· · ·
∫ un

0
K(u1) >K(u2) > · · · >K(un+1)du1du2 . . . dun

)

dun+1

= y0

∞∑

n=0

1

n!n!
∫

[0,u]n
K(u1) >K(u2) > · · · >K(un)(v)du1 . . . dun

= y0

∞∑

n=0

1

n!n!
(∫

[0,u]
K(v)dv

)>n

= y0

∞∑

n=0

1

n!n!
n∑

k=0

n!
k!(n−k)!

(∫ t

0

∫ x

0
α(s, z)dsdz

)>(n−k) (∫ t

0

∫ x

0
σ(s, x)B(ds, dz)

)>k
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= y0

∞∑

n=0

1

n!n!
n∑

k=0

n!
k!(n−k)!

(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

‖σ‖khk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)

= y0

∞∑

n=0

1

n!
n∑

k=0

‖σ‖k
k!(n−k)!

(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

hk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)

.

��
Remark 5.1 A direct consequence of this result is that

E[Y (t, x)] = y0

∞∑

n=0

‖σ‖n
n!n!

(∫ t

0

∫ x

0
α(s, z)dsdz

)n

,

and if we assume that α = 0 , we get

Y (t, x) = y0

∞∑

n=0

‖σ‖n
n!n! hn

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)

.

Remark 5.2 It follows from the proof that this result holds for any random y0 ∈
L2(P), if we replace the product by a Wick product and interpret the equation in the
Wick–Itô–Skorohod sense, that is

∂2Y (t, x)

∂t∂x
= α(t, x)Y (t, x)dtdx + σ(t, x)Y (t, x) >W(t, x)dtdx; t, x ≥ 0,

Y (t, 0) = Y (0, x) = y0 ∈ L2(P) for all t, x ≥ 0.

Then the solution is

Y (t, x) =

y0 >
∞∑

n=0

1

n!
n∑

k=0

‖σ‖k
k!(n−k)!

(∫ t

0

∫ x

0
α(s, z)dsdz

)n−k

hk

(∫ t

0

∫ x

0

σ(s,z)
‖σ‖ B(ds, dz)

)

,

which has expectation

E[Y (t, x)] = E[y0]
∞∑

n=0

‖σ‖n
n!n!

(∫ t

0

∫ x

0
α(s, z)dsdz

)n

.

Note that no adaptedness conditions are needed.
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6 Concluding Remarks

The multi-parameter stochastic calculus is a mostly unexplored area of research. It
is clearly crucial in the study of stochastic partial differential equations driven by
space-time Brownian motion. See e.g. [14–16, 22] and also [9], which includes
SPDEs driven by space-time Poisson random measure white noise as well. But it
is also important for many other applications. In this informal note I have tried
to illustrate that white noise calculus can be a powerful tool in the study of multi-
parameter stochastic calculus in general.

Acknowledgements I am grateful to Nacira Agram and Yaozhong Hu for valuable comments.
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