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Foreword

Soils are literally fundamental to all human civilisations and underpin all terrestrial
ecosystems. As such, their importance to the Earth system, and all life thereon and
therein—including humans, of course—is paramount. Soils function by virtue of
their spatial organisation, and they are arguably unique systems in terms of both the
diversity of their mineral and organic constituents and in the way these are arranged
in four-dimensional space (i.e. three dimensions over time) over many orders-of-
magnitude. Soil structure is the term traditionally used to describe and conceptualise
these spatial characteristics, but arguably soil architecture is a more apposite term
since it explicitly integrates living entities in the framework and encourages consid-
eration of soils as integrated ecological systems. And it is pore networks, manifest as
extraordinarily complex multi-scale labyrinths, which are one of the most essential
features of soil systems. This is because they represent the inner space of the soil
system, in and through which all gases, liquids, solutes and organisms are bound,
reside, move, react, transform and more besides. There is a curious irony in that these
pore systems are effectively defined by where the solid phases of the soil are absent.

One of the major challenges in studying soil architecture, which has certainly
constrained progress in these terms since the onset of pedology, as a well-found
scientific discipline, is that they are (generally) friable and (certainly) opaque to the
unaided human sensory experience. One can only progress so far in quantifying and
understanding the origins and consequences of soil architecture by direct visual
observation, nor even with light or electron microscopes and modifying geologists’
or histologists’ approaches based on carefully spatially-preserved thin-sections.

Enter Godfrey Hounsfield with his visionary (pun intended) invention and devel-
opment of X-ray Computed Tomography in a medical context, with the emergent
means to non-destructively image many of the key constituents of soil, and there was
then a means to overcome what was previously considered as an intractable chal-
lenge. This opened new frontiers to explore soil systems, and over the past 40 years
the tomographic tools that have evolved for application in soil science have been
revolutionary. These encompass multi-disciplinary hardware, software and concep-
tual (i.e. modelling) engineering endeavours, allied to imaginative experimental
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vi Foreword

systems. This laudable volume provides a comprehensive description and synthesis
of all these aspects of the science and art of X-ray Computed Tomography as applied
to soil systems. It reveals often astonishing new views of the underworld and sets the
scene for the exciting future of this powerful approach to understand, and therefore
effectively manage, the critical soil resources on which we depend.

Emeritus Professor of Soil Ecology
University of Nottingham, Nottingham,
UK

Karl Ritz

e‐mail: karl.ritz@nottingham.ac.uk
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Chapter 1
40 Years of X-ray CT in Soil: Historical
Context

Iain M. Young, Sacha J. Mooney, Richard J. Heck, and Stephan Peth

1.1 Introduction

In December 1973 Godfrey Hounsfield published his seminal paper on transverse
axial scanning, describing a methodology that could non-destructively analyse a
human head (Hounsfield, 1973). Two years previously, a patient’s head had been
scanned in what was the first system available to hospitals developed by Hounsfield
and his research partners. Thereafter, an explosion in the use of Computed Tomog-
raphy (CT) systems for medical purposes was seen in most western countries, and
today Tomography systems (including MRI), in general, and CT systems, in partic-
ular, are some of the most widely used techniques in hospitals around the world.
Two decades ago, a CT exam would take more than 30 minutes. Now, it is possible
to collect high-resolution images in 2 seconds, along with vast improvements in
detector hardware and associated software, whilst reducing any dose by up to 80%.

In 1979, Hounsfield and Allan Cormack won the Nobel Prize in Physiology and
Medicine “for the development of computer assisted tomography”. Less than 3 years

I. M. Young (*)
Biological and Environmental Science and Engineering Division, King Abdullah University of
Science and Technology, Thuwal, Kingdom of Saudi Arabia
e-mail: iain.young@kaust.edu.sa

S. J. Mooney
School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leics, UK
e-mail: Sacha.Mooney@nottingham.ac.uk

R. J. Heck
School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
e-mail: rheck@uoguelph.ca

S. Peth
University of Hannover, Institute of Soil Science, Soil Biophysics Group, Hannover, Germany
e-mail: peth@ifbk.uni-hannover.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Jon Mooney et al. (eds.), X-ray Imaging of the Soil Porous Architecture,
https://doi.org/10.1007/978-3-031-12176-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12176-0_1&domain=pdf
mailto:iain.young@kaust.edu.sa
mailto:Sacha.Mooney@nottingham.ac.uk
mailto:rheck@uoguelph.ca
mailto:peth@ifbk.uni-hannover.de
https://doi.org/10.1007/978-3-031-12176-0_1#DOI


2 I. M. Young et al.

Fig. 1.1 Publications using
X-ray CT in the soil sciences

later, in a short technical note, the first X-ray microtomography system (μCT)
produced an image of the internal structure of a snail’s shell (Elliott and Dover,
1982), with a 15 μm spatial resolution, opening up the possibility of relatively
inexpensive (at least compared to medical CT systems) lab-based scanners for a
wide range of medical and non-medical applications.

Petrovic et al. (1982), in a first for soil science, using a fourth generation medical
CT system, successfully quantified bulk density changes in soil, and a year later in
Perth, Western Australia, using a bespoke laboratory gamma-ray system,
Hainsworth and Aylmore (1983) determined the spatial distribution of water in a
soil column. A new dawn in investigative technology had arrived for soil scientists
who could now observe structural elements of soil in a non-destructive fashion.

Figure 1.1 shows the published papers (using Scopus and the search terms
“tomography and soil or plant”—28th Jan 2021). A slow rise in publications
between 1986–1995 (195 publications) through to 672 papers published between
1996–2000, with an obvious upswing in 2003. Between 2016–2020 we see an
exponential rise in publications (2963). This is probably related to an increase in
the development and accessibility of benchtop high-resolution X-ray CT systems
(hereafter referred to as X-ray CT), with much of this development driven by the oil,
mining and engineering industries interests in porous media.

Whilst many of the challenges of using an X-ray CT for soil systems research
map onto those of other systems, soil brings peculiar and complex problems not seen
in any other opaque architectures, including the human body. Many such examples
are presented in this book. It is important to recognise, for instance, that the use of
CT for medical purposes is generally focussed on divergence from the norm in
human bodies. So, abnormalities such as bone fractures, emergence of dense
tumours or changes in the density of lungs are daily occurrences and most medical
systems are driven to produce clearer and faster images for such architectures, with
the lowest radiation doses possible. Often these features are readily detectable both
in terms of contrast and resolution. Similarly, in engineering where defects in
prescribed designs are an important focus. However, in soil, where compositional
and spatiotemporal heterogeneities are inherent across multiple scales, where com-
plex geometries of structures exist over space and time, in generally unsaturated
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conditions within complex organo-mineral constructs that shrink and swell, change
is a constant. It is, however, within this complex architecture of soil that the many
macro-, meso- and micro-communities live and imprint their own activity, requiring
accurate observations and analysis, that present us with problems that are of many
orders of magnitude more difficult to deal with.

As hardware has advanced, so has associated software. Due to the complexity of
soil however, the problems of image processing and analysis of the soil-plant-
microbe complex remain a great challenge (Chaps. 4 and 5). Whilst much has
been achieved, the reality is that the problems related, for example, to the segmen-
tation of unsaturated organo-mineral complexes, that comprise soil, have so far not
been solved to the extent that automated processes can be used across soil types and
X-ray CT hardware. Much improvement has been made, however, to isolate and
quantify root systems (see Chap. 9) in various soil textures despite limits of spatial
resolutions and some progress has been made observing organic matter in soil
(Chap. 10). The greatest progress has been made in the analysis of soil porosity
(Chaps. 6, 7, 8), and associated metrics (see Feeney et al., 2006). This has advanced
to the extent that we can now scan an undisturbed soil core and from the captured
3-D architecture simulate water flow, retention and gas flow. The linkages of model
simulations and 3-D pore space architecture are highlights of the advancement of the
use of X-ray CT in soils (Chap. 11).

This book deals with the great challenges of using X-ray CT for soils and looks in
detail at the recent developments in X-ray CT applications in soil research. The
associated opportunities and problems are described, from a range of researchers
covering different fields, including tips on the best way forward (Chaps. 3 and 4)
and, in some cases, differing views on the same subject; and provides practical
approaches to some limiting problems in using and/or choosing hardware systems
(Chap. 2). We hope that this book will be of interest to the soil scientists undertaking
their first forays into the world of imaging 3-D soil microstructure, as well as the
experienced user looking for special applications and practical solutions for μCT
acquisition and image analysis.
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Chapter 2
Practicalities of X-ray CT Scanning
for the Soil Sciences

Andrew Ramsey

2.1 Introduction

What better application can there be of X-ray CT than to study the heterogeneous
structure of soil? What more friable, fragile structure can there be but that of soil, so
sensitive to the slightest touch? Yet, accurately visualising the structure of soil is so
vital to understanding the passage of nutrients and water through it and the microbes
residing in it. What other technique could resolve the complex three-dimensional
(3-D) features without affecting them?

X-ray CT is a promising method of examining the 3-D structure of soil since it is
completely non-destructive and typically requires no special preparation of samples.
An X-ray CT system can image samples from a few particles of soil (~1mm) up to a
large core of soil of 20–30 cm diameter and 100 cm long. The resolution will vary,
being far higher for the smaller samples and lower for the larger samples. It will
typically be the diameter of the sample divided by a few thousand. The very highest
resolution that can be expected is around 1 μm (although some new systems state
possibilities beyond this).

X-ray CT volumes are generated from a set of projection images, so the amount of
information in them is limited by the number of pixels across the detector. It is
important though to make sure that the X-ray source is small enough that fine details
are not blurred over more than one pixel and that the mechanics of the sample
manipulation does not introduce motion blur into the reconstruction. There is a
distinction between the voxel size, which is typically the effective pixel size at the
position of the sample (only affected by the number of pixels across the detector and
the geometric magnification), and the spatial resolution which gives the finest details
separable (resolvable) in the CT volumes. This latter measure depends also upon the
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With so many manufacturers and designs of X-ray CT systems available (some
example X-ray CT system cabinets are shown in Fig. ), how can you choose the
right one for your application? Below is a (non-exhaustive) list of current X-ray CT
system manufacturers, though it is inevitable that new ones will appear within a year
or two:

2.1

sharpness of the projection images and the stability and accuracy of the sample
manipulation stage as well as knowledge of the position and alignment of the X-ray
source, stage and detector.

6 A. Ramsey

X-ray CT produces a full 3-D map of the internal structure of a specimen by
measuring the X-ray linear attenuation coefficient at each 3-D point in a small-pitch
volumetric grid. The pitch of the grid can go as low as 1 μm but is defined by the size
of the sample divided by the number of pixels across the detector, being typically in
the 10s of μm range, depending on the sample size (larger for larger samples). The
volumetric grid can be thought of as the 3-D analogue of a 2-D pixel grid in a digital
image and in fact the volume grid elements are known as “voxels”. The X-ray linear
attenuation at each voxel is calculated from the millions of total attenuation mea-
surements, one in each pixel of every projection radiograph collected at hundreds or
thousands of projection angles. Since the linear attenuation is proportional to the
electron density in the sample, then the CT results show a good indication of material
density changes, as well as being affected by chemical changes, allowing different
materials to be discriminated.

2.2 Manufacturers of μCT Systems

• Bruker (originally SkyScan of Belgium), based in Mass., USA: mainly suited to
small samples. https://www.bruker.com/en/products-and-solutions/micro
scopes/3d-x-ray-microscopes.html.

• Diondo—based in Hattingen, Germany (formerly owned by Yxlon). www.
diondo.com.

• Nikon Metrology–originally X-Tek Systems (UK), bought by Nikon Corporation
of Japan, HQ in Belgium, manufacturing a range of cabinet sizes and now
collaborating with US-based Avonix Imaging Inc. of Minnesota, USA for larger
enclosures. www.nikonmetrology.com.

• North Star Imaging (NSI)—in Minnesota, USA, owned by ITW of Chicago,
manufacturing a wide range of system sizes. www.4nsi.com.

• Rayscan Technologies—Germany. https://www.rayscan.eu/.
• Rigaku—Japan. Use both sealed and open-tube (rotating target) sources. imaging.

rigaku.com.
• Scanco Medical—Switzerland. CT systems using sealed sources designed mainly

for small life sciences samples. www.scanco.ch.
• Shimadzu—Japan. Both sealed and open-tube microfocus CT systems. www.

shimadzu.com.

https://www.bruker.com/en/products-and-solutions/microscopes/3d-x-ray-microscopes.html
https://www.bruker.com/en/products-and-solutions/microscopes/3d-x-ray-microscopes.html
http://www.diondo.com
http://www.diondo.com
http://www.nikonmetrology.com
http://www.4nsi.com
https://www.rayscan.eu/
http://imaging.rigaku.com
http://imaging.rigaku.com
http://www.scanco.ch
http://www.shimadzu.com
http://www.shimadzu.com
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Fig. 2.1 Top-left: A Nikon Metrology XTH225ST cabinet; Top-right: An NSI X3000 cabinet.
Bottom-right: A Waygate v|tome|x 225 kV system; Bottom-right: A Rigaku CT Lab HX cabinet.
[Image ©Rigaku Corporation. Used by permission]

• ThermoFisher Scientific—makers of HeliScan, designed for small rock cores.
www.thermofisher.com.

• VJ Technologies—New York, USA. www.vjt.com.
• Waygate—originally “Phoenix|x-ray”, bought by GE, then Baker Hughes, based

in Germany. https://www.bakerhughesds.com/.
• Yxlon—also in Germany (grew out of Philips X-ray). www.yxlon.com.
• Zeiss (both the Metrotom and Xradia product ranges)—Germany: Zeiss’s mea-

surement reputation married with Xradia’s nanofocus technology. https://www.
zeiss.com/metrology/products/systems/computed-tomography.html.

• ProCon—Germany. https://procon-x-ray.com.

Note that some of these are measurement companies relatively new to X-ray
technologies; others have decades of X-ray imaging experience. Rather than
discussing the range of systems from each of these companies, we note the charac-
teristics of systems that make them suitable for inspecting soil samples. Is it better to
buy a system with a high-resolution detector or a high-resolution source, or both?
How does an open-tube X-ray source compare with a closed-tube source? How
accurate does the sample manipulator need to be? Is helical scanning better than
circular scanning?

http://www.thermofisher.com
http://www.vjt.com
https://www.bakerhughesds.com/
http://www.yxlon.com
https://www.zeiss.com/metrology/products/systems/computed-tomography.html
https://www.zeiss.com/metrology/products/systems/computed-tomography.html
https://procon-x-ray.com


8 A. Ramsey

All CT systems have an X-ray source, a sample manipulator and an X-ray
detector. Industrial systems rotate the sample while keeping the source and detector
static (the converse to medical system, as the need to keep a patient still rather than
being rotated through 360� is not there). For helical scans, the sample is translated
vertically during the rotation to form a helical path.

2.3 X-ray Sources

There is one characteristic of an X-ray source that will greatly affect the quality of
the CT results and the running costs of the system. X-ray tubes come in two types:
open and closed. Closed tubes are evacuated and sealed once for their lifetime. This
has the advantage that the filament never needs to be replaced and often lasts a few
years (typically between 3 and 7 years depending on the dose output). Once it blows
though, a new X-ray tube insert is required which greatly adds to the running costs of
the system. Open tubes maintain their vacuum using a constantly running vacuum
pump (typically a high-speed turbo-molecular pump backed by a backing pump).
The filaments in these tubes last typically a couple of months and then need
replacing, a procedure which usually takes less than an hour can be easily done by
operators and costs typically a few tens of dollars. The open tubes themselves can
last decades.

If the electron beam, in an X-ray tube, is focused onto the target, the tube is said to
be a microfocus tube, with a spot size of typically less than 10 μm. If it is not focused,
the spot size may be much larger and high-resolution images can only be obtained by
acquiring low-magnification images of samples placed close to a high-resolution
detector. These are known as minifocus tubes. Most, but not all, closed tubes are
minifocus tubes.

X-ray tubes are also characterised by their penetrating power, determined by their
maximum voltage (measured in kiloVolts, or kV) and by their maximum power in
Watts, which determines the number of X-ray photon they can produce. X-rays up to
225 keV can easily pass-through soil samples up to 100 mm (4 inches) in diameter.
These sources often have the smallest spot sizes and are mostly microfocus.

It is worth asking the manufacturer about maintaining an open tube; some tube
materials require monthly deep cleaning, while others need only an occasional wipe
with an alcohol-soaked cloth. It is also worth asking about the cycle time of sources:
can the source, for example, work 24/7 thus allowing for batch scanning of more
samples overnight. It is advisable, regardless of system purchased, to take out
maintenance cover, with local expertise (through training by the manufacturer)
also being present. Well-maintained systems are often in use more than a decade
after purchase.
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2.4 Detectors

Most X-ray detectors work by converting the X-rays into visible light using a
fluorescent material layer (known as a scintillator) in front of a large array of
photodiodes, which convert the visible light into electronic charge that can be read
by the digitiser. Some detectors directly capture X-ray photons. While such detectors
are generally more sensitive than standard detectors, they are often much more
expensive (Fig. 2.2).

Following the merger of PerkinElmer and Varian a couple of years ago, Varex
Imaging Inc. has become the world’s largest manufacturer of X-ray sensitive flat
panel detectors (Fig. 2.2). A few other companies make competitive detectors, such
as iRay, Hamamatsu and Detection Technologies Inc., but these have yet to make
their way into mainstream CT systems. Waygate (being ex-GE themselves) uses a
detector created by GE which is claimed to be both high-resolution and high
efficiency (in terms of converting X-ray photons to electrical signals).

2.5 Obtaining High-Resolution Images

Increasing the image resolution can lead to a whole new level of detail being visible,
as seen in Fig. 2.3. It is often debated as to whether it is quicker to obtain high-
resolution CT data using a high-resolution detector or a high-resolution X-ray
source. A detector is deemed to be high-resolution if its pixels are smaller than
150 μm. It is worth noting that the efficiency of capture of X-rays by detector pixels
is proportional to the area of the pixel and so to the square of the quoted pixel size.
Furthermore, smaller pixels require thinner scintillators, to prevent the spread of
visible light over several pixels, and so many more X-rays pass straight through the

Fig. 2.2 Left: Varex 4343 (2880 � 2880 150 μm pixels); Right: Varex 2520DX (1900 � 1600
127 μm pixels). ©Varex Imaging. Used by permission
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Fig. 2.3 Increasing the image resolution can lead to a whole new level of detail being visible, as
seen in these images of a grinding wheel using (left) an image intensifier and (right) a Varex 1620
flat panel. [Images courtesy of Nikon Metrology UK Ltd.]

scintillator without being detected. This typically makes the efficiency of capture of
X-rays by a detector inversely proportional to the cube of the quoted pixel size.

An X-ray source is considered microfocus if its spot size is less than around
100 μm. At higher magnifications the size of the X-ray spot becomes the limit on the
spatial resolution that can be obtained. Since microfocus X-ray sources must limit
their power at small spot sizes, or expand their spot size to prevent target damage, the
scan times are often assumed to be longer. But the power of a small X-ray spot is
proportional only to the spot size itself, and so doubling the resolution needs only
twice the scan time instead of the eight times required when the detector resolution is
doubled.

Some manufacturers have techniques for increasing the detector resolution by
moving the detector within the enclosure (such as NSI’s matriX or Nikon’s
PanelShift), or by making sub-pixel movements and interlacing image pixels (such
as NSI’s subpiX or Nikon’s PixelPush) (see Fig. 2.4).

2.6 Image Quality

The quality of an image is often measured by its spatial resolution (the ability to
resolve separate but neighbouring features) and its signal-to-noise ratio (SNR). The
higher the spatial resolution, the smaller features can be seen in the images. How-
ever, it is important that the signal-to-noise ratio is kept high to prevent small
features disappearing into the background noise. Background noise, which can be
seen as speckle on the projection images, is due to a different number of X-rays
being in each consecutive image due to the random nature of X-ray production in the
target. The SNR of X-ray images, like those produced by any random process, is
proportional to the square root of the signal, which in turn is proportional to the
number of X-rays imaged. This latter is proportional to the X-ray beam current
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Fig. 2.4 Horizontal (left) and vertical (right) CT slices through a recently repotted plant pot
showing roots (brighter) and air spaces in the soil. [Images © Nikon Metrology UK Ltd.]

(usually measured in microAmps (μA) or milliAmps (mA) – 1000 μA ¼ 1 mA) and
the efficiency of the detector as well as the scan time. To double the SNR, it is
necessary to quadruple the signal. For small samples in which the beam current
cannot be increased to avoid broadening the focal spot too much and losing spatial
resolution, the only way to increase the signal is to lengthen the scan time. For
individual images this is usually not a problem, but when a CT scan already takes
tens of minutes, this can lead to unfeasibly long scan times. There is anecdotal
evidence of the ends of plant roots being blurred due to long scans, i.e. they grew
longer during the scan!

2.7 Sample Manipulator

The accurate manipulation of the sample during a CT scan is crucial to obtaining
high-resolution CT volumes. Inaccuracy in the sample movement will blur the
features in the high-resolution radiographs. For example, a precession of
100 μradians will cause a movement of 100 μm at a metre which is 10 μm
100 mm above the turntable bearings. This will prevent CT images having better
resolution than, say, 20 μm at that level; which is worse higher up. Putting your
sample on a pillar to raise it in front of a high source will similarly degrade your
spatial resolution. Turntable runout, the slop in bearings, will cause similar blurring
but this blurring will remain constant throughout the height of the sample.

A system in which the detector can be moved towards the source can save
valuable scan time. If the sample is not so small that it needs the maximum system
resolution, then it can be moved towards the source and the detector brought closer.
Since the X-ray flux is proportional to the square of the source-to-detector distance,
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Fig. 2.5 A comparison of circular CT (left) with helical CT (right) of a stack of DVDs showing
how helical CT has better vertical spatial resolution throughout the CT volume away from the
central slice. This is only true when the manipulator is well-aligned

bringing the detector only 30% closer to the source will double the brightness of the
images and thus halve the scan time needed to get the same signal-to-noise ratio.
This can lead to larger cone-beam angles and therefore greater cone-beam artefacts
in non-helical scans.

Helical CT, in which the sample is moved vertically during the sample rotation to
create a helical path requires more stringent manipulator alignment than purely
circular CT in which the sample is simply rotated. The rotation axis must be aligned
with the vertical movement axis and must be straight. Done well, helical CT though
can remove cone-beam artefacts from constantly looking up at the top of the sample
and down at the bottom. These artefacts, while clearly visible at the top and bottom
of the CT volume are in fact present throughout except in the central slice and will
degrade the vertical spatial resolution (see Fig. 2.5).

It is worth noting that a helical scan can lead to a higher-resolution CT volume
than a single circular scan, especially of a tall object, since the sample can be
magnified until its width almost fills the image rather than its taller height. Of course,
several circular sub-scans could be performed but these will need to be stitched
together using the regions where the cone-beam artefacts are greatest.

In a helical CT scan, the sample must be moved from completely below the
detector to completely above it. The cabinet height often limits the height of samples
which can be scanned using the technique. One method of obviating this is to crop
the detector vertically for these scans which allows taller samples to be scanned,
albeit more slowly due to the more rotations needed. A fixed turntable and movable
source and detector combination, as provided in some CT systems, allows the helical
scanning of taller samples.



2.8 Configurations

2.8.1 Cabinet or Enclosure?

In practice, most soil samples are not too large (<30 cm cube) and so will comfort-
ably fit into a one-piece cabinet. Most will not require X-ray sources above 225 kV
which helps keep the cost of an X-ray CT system down, which is often a major factor
in choosing a system.

2.8.2 CT Scanning Methods

There are a few different methods of capturing CT data:
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• Circular scans—these use a simple geometry since they only need a single
rotation in one position.

• Helical scans—allow taller samples to be scanned in one volume; the manipulator
needs to move a long way vertically, or the source and detector move instead.

• 2-D fan-beam scanning—this is a very slow method used for highly-scattering
samples; it is not usually needed for soil as scatter is not such a problem.

• Dual energy scans—allow for chemical discrimination by comparing the results
of scans using different X-ray energies.

• 4-D CT—time series 3-D CT scans; or continuous scanning to characterise
dynamic processes e.g. infiltration.

2.8.3 Software

The software provided with a CT system is usually the operator’s only interaction
with the system and can make or break the choice of system. There are several
software features which are considered highly desirable:

• General appearance of the user interface: How cluttered is the interface? How
many features can a user interact with? How easy it is to scan several samples
with similar settings? How difficult is it to set up a new sample?

• What options are available for different types of scans? Most systems provide
circular cone-beam scans, reconstructed using the standard FDK algorithm
(Feldkamp et al., 1984). However, helical CT allows for high-resolution scans
of tall samples and the removal of cone-beam and ring artefacts (Katsevich et al.,
2004).

• The ability to batch scan allows several samples to be scanned, without operator
intervention, say overnight.

• Programmable software allows for custom scan methods and third-party hard-
ware (like robotic sample handlers). With carefully designed sample holders, the
sample manipulator itself, in conjunction with a sample shelf inside the cabinet,
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can act as a cost-effective though slightly slower sample loader. The program-
mability can range from a few simple macros to full open architecture so that
software engineers can write programs to control not only the X-ray CT system
but of course third-party hardware like robots, or third-party software such as
databases.

• 4-D CT—both time-lapse CT scans and continuous capture in which the spatial
resolution can be played off against the extra time resolution for those events
which happen quickly, or extra spatial resolution can be obtained during those
periods of slow change (Parmesh, 2018).

2.9 Overcoming CT Artefacts

CT artefacts are unwanted features in the data not relating to real features in the
sample and come in many forms. Ring artefacts are bright and/or dark rings around
the sample rotation axis that often connect features which the operator desires to
segment, or separate, such as particles of soil. Rings are caused by non-linear
behaviour of individual pixels in a detector that have not been identified as “bad
pixels” (i.e. a dead transistor in a detector) in and interpolated over. Since they do not
move as the sample is rotated, they form rings in the CT volume. A single bad pixel,
differing greatly in intensity from its neighbours, can produce three adjacent rings
due to the filter in the filtered back-projection reconstruction algorithm [3]. A jump
in sensitivity of adjacent pixels can cause two rings (for the same reason). It is rare to
get a single ring.

Ring artefacts can be supressed during scanning by, for example, moving the
sample or detector sideways by random amounts and subsequent correcting by
shifting the image sideways by a fractional pixel amount. They can also be removed
afterwards by post-processing algorithms acting on the CT volumes.

Beam hardening artefacts occur when particles in the soil filter an otherwise
unfiltered X-ray beam and cause parts of the volume to be imaged with only higher
energy X-rays instead of the full beam spectrum. They can complicate the grey-value
thresholding of soil particles because the threshold needs to vary across the sample,
being lower in the centre. It is worth noting that the voltage selected in the software is
the electron beam acceleration voltage and not the energy of most of the X-rays,
which is much lower and of a wide range of energies. Dense particles will filter the
lower energies out of the beam leaving only more highly penetrating X-rays, making
those parts of the sample appear less absorbing of X-rays and of a lower density.
Placing a filter, for example, in front of the X-ray source removes those low energy
X-rays from the beam and improves the CT images (Fig. 2.6), at the expense of a
longer scan time. The images from the unfiltered beam are brighter but only because
they contain many low energy X-rays which cannot penetrate the sample. These low
energy X-rays are best removed from the equation. It is worth remembering that the
mean energy of the X-ray beam is controlled much more by the thickness of filter in
front of the source than by the acceleration energy of the electrons selected.
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Fig. 2.6 Left: Beam hardening in a steel rod lowering the apparent density of the centre of the
sample; Right: Beam hardening removed by filtering the X-ray beam and/or by software correction.
[Image courtesy of Nikon Metrology UK Ltd.]

Beam hardening artefacts can also be suppressed using corrections during recon-
struction. These work best when there is only one material in the sample, so often a
combination of source filtering and software correction is used (see Chap. 4).

2.10 Evaluating a Potential X-Ray CT System

The best way to evaluate a potential X-ray CT system is to have the manufacturer
scan some of your samples. Preferably use the same sample for all supplies under
consideration for comparison purposes. For soils, a resin impregnated sample is
often a good choice as it is structurally stable, presents the same challenges for all
systems, and once you define the scanning characteristics you want (fast
scan vs. slow, etc.), will provide the best comparison possible.

Samples to be scanned should range from the largest sample you will need to
scan, down to individual soil aggregate, only few millimetres across to give a breadth
of the possibilities from the instrument (Fig. 2.7). The sharpness of the images
should be evaluated considering the smallest features you expect to see/segment in
samples of a certain size, bearing in mind that the resolution is generally higher for
smaller samples as they can be imaged at higher magnifications. Zoom in until
individual voxels can be seen. The ability to scan small regions of larger samples can
be very useful but is not offered by all systems. Look out for sharpening filters being
used to artificially increase the resolution: such filters also increase the noise and
therefore do not increase the ability to distinguish small features of interest from
background noise. Noise suppression filters may also be used to reduce the



background noise, but they generally also reduce spatial resolution. The level of
background noise can also limit the ability to distinguish small density changes. A
test phantom with subtly different material densities and/or chemical composition
can be used to test this discrimination. Always ask how long scans took to be
collected and compare this will your expectations of sample throughput: what
image quality can be achieved in an acceptable length of scan?
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Fig. 2.7 CT volume of a small soil particle, only 3 mm across, demonstrating the spatial resolution
of the CT system at high geometric magnifications with segmented pores shown in yellow (top
right). [Image courtesy of the Helmholtz Centre for Environmental Research, Halle, Germany]

A heavy image contrast applied to the CT volume can be used to test how easily
soil particles, pores, etc. may be distinguished from one another. Beam hardening
artefacts will prevent all parts of the sample being processed with the same threshold
and ring artefacts will connect separate particles. Such a heavy contrast will enhance
any background noise in the data too. Always bear in mind your ultimate aim,
generally for soils this will be to segment soil aggregates and particles (i.e. solid
material) and measure the positions and sizes of the pores. The analysis software
offered with a CT system may not be that which is best suited to these aims but check
that the format the data is presented in can be used in superior software packages.
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Chapter 3
Soil Sampling and Preparation for X-ray
Imaging

Fabio Terribile, Giuliano Langella, Florindo Antonio Mileti,
Luciana Minieri, and Simona Vingiani

3.1 Introduction

Soil sampling is the first activity of most research performed in soil science. It is self-
evident that badly designed soil sampling (e.g., location, size, soil structure distur-
bance) or subsampling can lead to erroneous results spoiling any subsequent ana-
lytical techniques. This is even more crucial considering the fragility of the soil pores
network, which is a key property on which soil microtomography focuses. Thus,
both soil sampling and soil preparation have to be considered key fundamental
activities preliminary for any study in soil science.

This chapter is divided into four sections which provide an overview of: (a) the
main steps to be followed for optimum sampling, (b) the definition of representative
elementary volumes, (c) criteria for geospatial sampling, and (d) preparation of
undisturbed samples before X-ray CT analysis.

Sampling is a critical part of all micromorphological studies and, thus, also of soil
microtomography. Any mistake made in the sampling phase could affect subsequent
interpretations (i.e., what is seen, processed, or analysed in the 3-D domain), so
causing potentially erroneous conclusions about the soil material being studied. It is
important that where possible the collected samples represent the soil material as it
exists either in the field or in a laboratory (lab) experiment.

For lab experiments, sampling may generally involve the entire soil volume
employed for a specific trial (e.g., small soil cylinders subjected to a specific lab
treatment such as measurement of hydraulic conductivity or assessment of wetting
and drying cycles), thus collecting representative soil material may not be an issue.
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This is the case when subsampling of a large soil column (e.g., for a given specific
laboratory assessment, such as infiltration) and then a subsample is collected from
this. This subsampling involves addressing the sample size issue (see section below)
and the avoidance of sampling artefacts as they could occur at the outer margin of the
sample.
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In the case of field sampling (such as from experimental field trials), collecting
representative samples is much more difficult than in laboratory experiments
because soils in the field have an intrinsic heterogeneity and spatial variability.

Thus, special precautions must be taken to ensure collection of representative
materials. The following questions must be carefully addressed before sample
collection is undertaken: (i) What is the aim of the sampling? (ii) where to sample?
(iii) what size dimensions should the sample have? (iv) what orientation of samples
is needed? (v) how many samples are needed? (vi) when is the best time to sample?
(vii) how to sample? and (viii) how to document, transport, and store samples?

3.2 The Main Steps for Successful Sampling

3.2.1 What is the Aim of the Sampling

The objective of the investigation is a consideration for soil sampling orientation in
all microtomography studies. Samples usually consist of 3-D blocks, generally
comprised of undisturbed soil aggregates. It is important to stress that there is no
single technique that can be applied to all investigations. Therefore, the most suitable
sampling technique must be selected to meet the requirements of a specific study
and, in some cases, new sampling techniques are necessary.

Based on the aim of the study, sample volume, number of samples, and the choice
of what to sample need to be defined. It must be decided in advance whether the
target of the planned analyses is quantitative or descriptive, in fact X-ray tomogra-
phy (which indeed produces quantitative X-ray attenuation data) could also be
simply employed to quickly identify processes (e.g., in contaminated sites the
mixing of heavy metal sludge into soils). Descriptive approaches require fewer
sample replicates than quantitative studies to achieve their goal.

3.2.2 Where to Sample

Selection of both location and selection of the portion of the soil profile to be
sampled is strictly connected with the objectives of the research. For the sake of
clarity, here we separate the two sampling systems defined by the research objec-
tives: (i) geospatial sampling design (e.g., how to sample topsoils for bulk density
analysis considering the spatial variability such as that occurring in two areas (a & b)
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of Fig. 3.1 and (ii) how to sample a soil profile (e.g., sampling following soil
horizons in the soil profile in Fig. 3.1).
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Fig. 3.1 General view about “where to sample” with respect to soil horizons (Ap, Bw, C). Abbr.
Rep. replicate

Geospatial Sampling Design Over recent decades, geospatial sampling design has
received a great deal of research interest (e.g., pedometrics, agronomy) and also in
the case of sampling for the assessment of soil structure (e.g., Leopizzi et al., 2018)
and other microtomographic (e.g., Carducci et al., 2017) analysis. Additional infor-
mation will be provided in the following section on geospatial sampling.

Profile Sampling Design When a profile sampling design is applied, the soil should
first be divided into soil horizons and the profile description must be as detailed and
complete as possible. Samples are then taken from each horizon. If soil horizons are
not well developed and expressed, samples may be spaced at regular depth intervals,
while horizon boundaries and special or unique features might be sampled sepa-
rately. Examples of recommended sample locations for various investigations are
shown in Fig. 3.1.



Here we define the “sample size” as the actual physical dimensions (e.g., cm3) of the
soil sample and not the number of individual samples (most often named “sample
size” in statistics applied to soil studies). The required size of the sample depends on:
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For both geospatial and profile sampling design, it is good practice and thus
strongly recommended that researchers always collect bulk samples for any extra
laboratory analyses (e.g., particle size, clay mineralogy) that may be required to
better understand tomographic results. Indeed, soil profile descriptions and lab
analysis are extremely useful in order to support final evaluations of 3-D analysis.

3.2.3 Determining Sample Size

– the size of the specific feature of interest (e.g., pores, soil organic carbon,
minerals) and their distribution. This is covered in more detail in the following
section on “Representative Elementary Volume”. Nevertheless, we stress that
examining planar pores that occur between large prismatic peds/aggregates will
require larger samples than examining pores within a crumb microstructure
would.

– the sample stage of the available CT scanner is often a limiting factor. The sample
size that can be accommodated might range from a few mm3 for high-resolution
acquisition systems to over 1 m3 for industrial grade systems (e.g., GE V
Tomex L).

– the required trade-off between 3-D sample size and preferred spatial resolution
(e.g., du Plessis et al., 2017) which represents a powerful limiting factor in all CT
studies.

– the size of the required image stack and associated image processing needs, and
the need for digital subsampling for statistical analysis (e.g., digital pseudo
replicate samples).

As additional observation, we wish to emphasize that larger 3-D samples (cm’s
rather than mm’s) are often preferred to smaller ones because they support the
observation of a wider range of features and how these features are interrelated. In
some cases, large samples may be collected in the field and subdivided in the
laboratory later in order to fit/be accommodated with the CT system being used.
This is especially advisable when large aggregates are present and can be easily
separated into smaller peds/aggregates.

3.2.4 How to Orientate the Sample

Although a soil block can be rotated in any direction using 3-D image processing
software, it is self-evident that the orientation of the sample may be critical in some
investigations, especially when sampling with cylinders is necessary (e.g., water



saturation producing horizontal Fe segregation at a specific depth) or when consid-
ering specific depths within a soil profile. Therefore, it is usually important that the
orientation of a sample is known. Generally, samples are collected either in the
horizontal or vertical plane, while inclined samples may be required for specific
purposes (e.g., studying pore–matrix interaction along a slickenside which is a
sliding surface produced after wetting and drying cycles in a Vertisol). Vertically
orientated samples are the most common in soil sampling procedures employed in
soil microtomographic studies; they are especially useful to examine topsoil and
specific soil horizons of soil profiles, bedding planes of sediments or vertical pore
networks such as those created by roots or earthworms.

3.2.5 Number of Samples

The number of samples to be collected is a well-known issue in soil studies as it is
very important and affects the reliability of the results obtained. Here we can
consider two rather broad categories: (i) the required number of replicates in an
experimental setup (e.g., soil structure studies after physical simulation of processes
such as wetting and drying cycles) and (ii) the number of samples needed for a
geospatial sampling design (e.g., soil structure studies of different land use mapping
units). The latter of these two sampling designs will be considered in the following
section on geospatial sampling. Substantial scientific literature already exists for
both these considerations (e.g., Diel et al., 2019; Pöhlitz et al., 2019), but here we
shall limit our investigation to a brief general overview of the subject.

With respect to the number of replicates to be acquired for a given experimental
setup, the preliminary estimation of the number of replicates before sampling is
necessary to ensure a given level of precision in the results. Indeed, the quantity of
replicates is defined by considering the variability of the feature of interest in the soil.
Therefore, it is recommended to perform preliminary tests before planning any
specific experiment; these tests must enable the final decision about the required
number of replicates for that specific study to be taken (e.g., Gargiulo, 2008;
Gargiulo et al., 2015). However, such preliminary tests are generally not reported
in scientific literature. Indeed, a short overview of the experiments involving anal-
ysis of pore networks by X-ray CT highlights the following variability in the number
of replicates (although it is likely that scientists perform “look-see” scans in advance
and do not report this in the literature):
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• 2 replicates: (e.g., Valdez et al., 2019)
• 3 replicates: (e.g., Scotson et al., 2021; Menon et al., 2020; Ferreira et al., 2018;

Gargiulo et al., 2016; Müller et al., 2018; Zhang et al., 2018)
• 4 replicates: (e.g., Singh et al., 2020)
• 5 replicates: (e.g., Diel et al., 2019; Pöhlitz et al., 2019).

However, it is fair to note that the replication used in soil CT studies has increased
over time, most likely due to increased access and availability of the instruments.
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There are many studies focused on soil processes (sometimes performed as physical
simulations in laboratories) in which it is not evident whether replicates were present
or not (e.g., Arai et al., 2019; Pires et al., 2020; Liu et al., 2021), although this is not
recommended even for pilot studies. In general terms, replicate samples should be
collected whenever possible because a single sample is unlikely to be representative
of the variation in soil structure. Replicate samples must be collected in all studies
requiring a statistical analysis of data.

From a pragmatic standpoint, the number of replicate samples is frequently
connected to the total number of 3-D acquisitions that a researcher can perform
given access to X-ray CT instrumentation. This number can often be limited. In this
respect, Gregory et al. (2009) highlighted the difficulties in dealing with a large
number of samples often required in soil science. They suggest that by CT it is
usually only possible to examine less than 10 samples in 1 day in normal conditions,
with a consequent reduction of the potential for replicated trials. Although the speed
and availability of CT equipment has increased considerably with time, that number
is still a typical number of daily samples imaged in many laboratories around the
world. Since imaging has certainly become faster, higher quality images still take
time and this is often prioritized rather than scanning more samples, because lower
quality images usually lead to longer processing time. There is a wide literature
focused on the variability of soil porosity (e.g., Nunan et al., 2006) and correlated
properties (e.g., bulk density), while few studies have been conducted to explore the
variability of other micromorphological features (as highlighted by Vanden Bygaart
& Protz, 1999).

3.2.6 When to Sample

Many soil features, such as pore space, can change dynamically over the course of a
year. Indeed, depending on the seasonal soil water status, large planar pores (e.g.,
cracks) open or close, soluble minerals crystallize or dissolve and organic substances
can decompose. Accordingly, potential seasonal changes in the features of interest
must be considered when the most appropriate time for sampling is selected. Another
potential problem that can impact on sampling is the extent of soil dryness, since dry
fine textured soils such as clays are difficult to dig and then artefacts, such as cracks,
may form as the sampling container is forced into the soil. In such a situation,
sampling should be postponed until the soil becomes wet enough to avoid the
occurrence of cracks during sampling, although in some cases introducing a small
amount of water to the surface in the field can facilitate sampling. Evaluating when a
soil is at an optimal moisture content for sampling is subjective, requires some
testing in the field and it is fundamental to achieve good sampling especially in
clayey soils. Quantitative evaluation of the optimal moisture content to avoid the
above disturbance would usually require a preliminary triaxial test (a standard test in
soil mechanics/engineering studies but rarely performed in this context by soil
scientists).
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3.2.7 How to Sample

The majority of CT applications require the use of undisturbed soil samples. The
most common sampling methods are those using soil cores, metal or cardboard
boxes or single aggregates (see Fig. 3.1 right, left and central part of the soil profile).
Cores are used in the vast majority of sampling methods employed in experimental
setups particularly when topsoil has to be sampled but single aggregates can also be
sampled. In addition, other methodologies are used because of the specific consis-
tency of the soil. Methods for the sampling of friable soils, cemented and cohesive
materials, loose materials are discussed below.

Friable Soils Most of these soils can be sampled by using plastic (e.g., PVC)
cylinders with a cutting-edge side. These cylinders can be made at very low cost,
can be manufactured easily to many different sizes (e.g., by cutting plastic PVC
tubes), and allow reduced sampling disturbance in comparison with the traditional
micromorphological boxes (e.g., Kubiëna tins). Cylinders are also the most common
type of sample holder in soil hydrology and soil physics studies.

However, truly undisturbed soil and sediment sampling do not exist. Using X-ray
CT, Carr et al. (2020) demonstrated artefacts in the pore system in all core samples
due to pushing, cutting and hammering actions during sampling procedures. Any
combination of hammer, rotation, percussive, and continuous push led to deforma-
tions, although the advanced trimming methods (Hvorslev, 1949) resulted in the
least disturbance. This latter method refers to the slow insertion of a cylinder core
vertically into the soil with simultaneous removal of the surrounding soil to mini-
mize mechanical stress (Kemp, 1985; Carr, 2004), as should be done with a Kubiëna
box (FitzPatrick, 1984; Stoops, 2009). Indeed, this demonstrates the value of the
standard sampling approach, based on excavation of surrounding material as is
widely used in soil micromorphological studies (FitzPatrick, 1993). Samples should
ideally have a length and width that are suited to the X-ray CT scanner sample stage.
The depth of the sample should be at least one-half its width to prevent its bending
when filled (FitzPatrick, 1984; Murphy, 1986).

Another method, which is especially suitable for structured soils, is the sampling
of soil aggregates (Fig. 3.1). This method (e.g., Peth et al., 2014) ensures that
undisturbed samples are used when the element of research interest falls within the
single aggregate (e.g., intra-aggregate pore space such as in Peth et al., 2008). After
their collection, soil aggregates should be wrapped in protective material such as
paper or plastic masking tape to minimize any disturbance damage.

Samples should be labelled with the i) orientation, ii) depth, iii) replicate number,
and iv) profile number. Some researchers label the boxes on the lid first and
photograph them in place before removing them from the soil, so a complete record
of sample location and orientation is made (Murphy, 1986). Prior to sealing samples
for transport, a few drops of fungicide or formalin can be added to each sample to
prevent soil fauna burrowing within the sample during storage. All samples should
then be wrapped in aluminium foil or placed in plastic bags to prevent them from
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either drying out or absorbing water while stored in the laboratory which can be a
problem for air-dried materials, even from arid regions.

Cemented and Cohesive Materials Undisturbed specimens of cemented materials
(e.g., Bkm horizons) can be obtained without sample containers by cutting or
carving pieces out of the soil. However, these should then be placed in boxes to
prevent breakage or separation of the structural units. All such samples, as in the case
of soil aggregates, should be wrapped in protective material such as foil or plastic
and labelled as described previously.

Loose Materials Some materials may be too loosely structured to be sampled
without disturbance during removal from the soil. Particularly sensitive samples
include sands, gravelly soils, self-mulching soil, some organic soils and recently
tilled soils. These loose materials can be partially hardened in place prior to their
being removed from the soil. Murphy (1986) gives step-by-step instructions for such
procedures. Basically, the sample is first surrounded by a frame while it is still in the
soil. The sample is then covered and partially impregnated with a cementing agent
such as epoxy resin, cellulose acetate, plaster of Paris, sodium silicate, polyester
resin, or a similar material. After the cementing material has hardened, the sample
can be removed, labelled, and wrapped as previously described. This allows the
sample to be dried and, if required, to be impregnated in the laboratory prior to
scanning. Epoxy resin and plaster of Paris can be used to impregnate materials
containing numerous large pores such as tilled Ap horizons (FitzPatrick 1984).

3.2.8 How to Document, Transport, and Store Samples

Prior to removal from a sampling site, all samples should be checked to make sure
they are appropriately labelled and bagged. The profile description should be
reviewed for any omissions. Site data should be recorded including standard GPS
coordinates, landscape morphology, land use, etc., then photos (with additional
sketches) of the profile or site can be made, and where possible they must show
sample location (e.g., reference to specific horizons).

Before transport, samples should be placed in boxes and packed with suitable
material to prevent them from coming into contact with each other and being
damaged. Vibration of the samples should also be minimized using packing foam
to reduce the risk of disturbance especially for friable samples. After arriving in the
laboratory, samples should be stored in a cool, dry place but not frozen (as this may
cause cracks). A temperature of about 4 �C or lower may be needed to retard the
growth of plants and organisms. This is also especially important if reducing the
disturbance of organic materials is required.
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3.3 Representative Elementary Volume

The concept of representative elementary volume (REV) was introduced by Bear
(1972) to describe flow in porous media. The approach deals with the definition of
the minimum size of a sample necessary to present its characteristics of interest. In
other words, the size at which the measured parameter (or property) becomes
independent of the sample size. Its use in the quantification of soil structure, as
REA (Representative Elementary Area), started with Vanden Bygaart and Protz
(1999). The analysis of REV is commonly carried out by selecting consecutive soil
volumes around a central point in the sample image (see Fig. 3.2). This is indeed
feasible in the case of X-ray CT where adjacent constructions within the same 3-D
image, but centred at different points, can be used.

The representative size is then defined as the one corresponding to the transition
from the detailed scale where the “microscopic effects domain” prevails (red signal
in Fig. 3.3) to the more stable “porous media domain” (green line in Fig. 3.3)
(Baveye et al., 2002; Borges & Pires, 2012). Thus, the REV size established for a

Fig. 3.2 Visual
Representative Elementary
Volume (REV) concept. A
set of consecutive volumes
where to measure a soil
parameter to establish REV

Fig. 3.3 REV conceptualization (inspired after Bear 1972)



specific property (Costanza-Robinson et al., 2011) corresponds to the smallest
employed soil volume (the point named “V min” with the smallest volume on the
green line in Fig. 3.3) to obtain representative measurements of the selected soil
property.

Of course, REV varies according to the specific property under investigation, but
also on the basis of the type of soil material. Indeed, even limiting our analysis just to
the soil pores, it is evident that each porous media has its own characteristics (e.g.,
continuous pore space, channels, discrete pore within aggregates); therefore, the
REV of a pore space parameter calculated for a specific soil may differ for the same
parameter when a different soil type is analysed.

Limited research is available on the use of a REV in soils (Baveye et al., 2002;
Vanden Bygaart & Protz, 1999) and, due to mild fluctuations, it is sometimes
difficult to understand when it has reached the green line region (Fig. 3.3). In
1999, Vanden Bygaart and Protz (1999) highlighted a lack of suitable techniques
for the study of representative size of undisturbed soil samples. But more recently,
Borges and Pires (2012) analysed, respectively, the bulk density REV (50-100 cm3)
and soil porosity distribution in a representative element area (REA) (8.8 cm2) for
Brazilian soils, while Baveye et al. (2002), by analysing volumetric water content,
volumetric air content, gravimetric water content, and dry bulk density of Ck
horizons, demonstrated that the sizes of sampling volumes up to
60 � 60 � 30 mm influence the measured values of soil parameters significantly.
They report that dry bulk density did not reach the green REV region and may move
towards the red line of the aggregate scale as reported in Fig. 3.3.

In this scenario, it is not feasible to have “magic” REV numbers for a specific soil
feature, while it is most appropriate to suggest some preliminary tests to researchers
in order to evaluate the required REA or REV for the specific feature under
investigation. Again, these preliminary tests are very highly recommended, but not
difficult to perform. For instance, in Fig. 3.4, an example is reported in which the
REV of an Ap horizon was defined before the experiment was performed. In this
case, it is evident that 50 cm3 referred to the REV to be employed.

3.4 Geospatial Sampling

Geospatial sampling can be an important concern when samples for X-ray CT
analysis are collected from the field. In general terms, we can treat this item in the
following cases (moving from very specific to general cases):
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(i) A degraded contaminated site that requires remediation. In many cases con-
taminated soils show also signs of soil physical degradation. This may be
related to soil compression and reworking by heavy machines. In these cases,
it is important to combine the standard geochemical soil characterization with
analysis of soil porosity. In fact, a detailed analysis of the porous system (e.g.,
pore size distribution and shape of pores) may help in addressing the most



Two interesting cases, that can be profitably applied to X-ray CT, are
reported by Langella et al. ( ) and Vingiani et al. ( ). These authors
using different geophysical EMI and ERT sensors (Profiler, DUAL-EM and
ARP) and γ-ray spectrometry recognized spatial structures and zones with
different levels of anomalies, in agricultural and industrial sites. High
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Fig. 3.4 Experimental setting to establish REV after X-ray microtomography. Here increasing soil
volumes (x axis) are analysed and plotted against their corresponding total porosity. The vertical
broken line identifies the experimental obtained REV (around 50 cm3)

sustainable approach to soil remediation for each specific case. More details are
reported below.

(ii) Experimental field trials. This is the standard case when X-ray CT contributes
to other agronomic measures (e.g., manure application, tillage practices, etc.),
including cases when measurements of soil-pore parameters are influenced by
crop rotations and cover crops (e.g., Singh et al., 2020).

(iii) Standard landscape analysis. This is the case when soil survey may benefit from
X-ray CT analysis to evaluate specific issues such as soil compaction.

(i) contaminated site showing also signs of physical degradation,
In contaminated sites, soil spatial variability is a key concern since it can

combine to create a twofold spatial variability due to the two main sources of
the contamination, natural and anthropogenic. In further detail, the spatial
distribution of anthropogenic soil contamination is almost always unknown
and ex-ante information is generally lacking or completely missing. In these
cases, the use of proximal soil sensing devices can assist. In fact, the most
widespread proximal sensing devices such as Electro Magnetic Induction
(EMI) devices or Electrical Resistivity Tomography (ERT) devices are strongly
affected by the soil bulk density (in addition to other soil properties such as
water content, salt content, etc.). Therefore, the incoming geophysical mapping
results (generally obtained by a quick scan of the site) can be profitably
employed as a powerful means to better address soil sampling for the analysis
of the soil porous system.



consistency was found among the maps obtained by the different sensors. More
specifically data was merged to report all the information on a regular grid at
very high-resolution (50 cm at the field scale). This fusion of the data collected
from the different sensors was transformed to the same raster-based geometry.
This procedure produced a map of the areas in which to collect soil samples and
account for the spatial variability of the target variable and highlight possible
hot spots. The EMI, ERT, and γ-rays sensors approach was validated by XRF
measurements of soil elemental composition by the use of a field portable
technique.
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In contaminated sites, soil sampling may require policy compliance: this
refers to those cases where sampling must follow specific regulations and some
specific sampling rules are prescribed or strongly suggested. This, for instance,
is the case for soil contamination in some countries where a specific number of
samples/ha are required (e.g., Italian D.M. 471/99) on the basis of the global
spatial extent of the site (e.g., at least 5 sampling points for areas <1 ha).

(ii) Experimental field trials. This is the standard approach employed when X-ray
CT contributes to an agronomic assessment. A comprehensive description is
given in Gilbert (1987), de Gruijter, (2002) and Pennock (2004). Although
many types of sampling designs exist, only two main types (random and
systematic) are commonly used: i) Simple Random and Stratified Random
Sampling, where in Stratified Sampling points refer to predefined strata and a
simple random sample chosen from each stratum and ii) Systematic Sampling
which refers to either transects or most commonly to grids. Where constant
spacing is applied, the major caution has to be that the soil property to be
sampled must not be arranged in an orderly manner which might correspond to
the spacing of the grid. Bonfante et al. (2017) highlight that the implicit
assumption of soil homogeneity of the agronomic design experiments may
lead to erroneous results especially when subsoil condition matter. In this case,
special additional care is required in identifying the location of the different soil
types before performing appropriate sampling.

(iii) Standard landscape analysis. This can be performed by:

a. Sampling using deterministic/judgement rules. This is the classical approach
applied for pedology, geomorphology, geology, etc. surveys. In the case of
soils, the approach relies on the evidence that soils (S) are determined by
specific soil forming factors (Jenny, 1941) following the classic Jenny
eq. S ¼ f (climate, organism, relief, parent material, time), thus data on
these factors may lead to soil knowledge. In view of the factual soil
complexity in real landscapes, this approach has exhibited evident limita-
tion. Therefore, in the last three decades extensive research has developed an
entirely new branch known as Digital Soil Mapping. Despite the above,
currently, judgement-based rule approaches are very important. In this case,
researchers use their judgement to locate sampling points in landscape
positions where the soil representative of a specific land is most likely
found. For instance, this type of sampling is widely used by private-sector
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environmental consultants and the specific objective may range from an
initial evaluation of the extent of the problem to be addressed (e.g., contam-
ination) to the final stage of problem solving through a mapping exercise.
Laslett (1997) stated that consultants who undertake these surveys almost
always employ judgement sampling and place their sampling points where
their experience and prior knowledge of the site history suggest the contam-
ination might be located.

b. Sampling using Geostatistical, Spectral, and Wavelet Analysis. These types
of sampling have become a “must” in sound based scientific sampling over
the last few decades. Details are reported in Brus and de Gruijter (1997), de
Gruijter (2002), Webster and Oliver (1990), McBratney et al. (2002), Mulla
and McBratney (2000). All these approaches—which fall under the broad
umbrella of Digital Soil Mapping approaches—address the spatial depen-
dence in soil properties between locations. Thus, the location of each sample
point in space is critical information.

3.5 Sample Preparation

3.5.1 Preliminary Laboratory Analysis

Different types (e.g., size and shape) of samples can arrive in the laboratory for X-ray
imaging such as cylinders, Kubiëna boxes, aggregates, and bulk samples (Fig. 3.1).
In all cases, the start point of any investigation should be a visual assessment. This
can be done by direct stereo-microscopic analysis of the soil aggregates or, when this
is not feasible (e.g., cylinders and Kubiëna boxes), by analysing the corresponding
bulk samples. In this case, the soil has to be observed directly with oblique incident
light to identify microstructure, macropores, Fe-Mn features (such as concretions,
segregation, pyrite), and CaCO3 features; indeed, all these features may influence
X-ray absorbance and can usually give some important insights into the sample. At
this point, samples (Fig. 3.5) would usually either/both go directly for X-ray
scanning without any treatment or/and undergo specific treatments.

No treatment: It is worth noting that one important advantage of X-ray CT is the
opportunity to acquire 3-D soil blocks directly without any prior preparation
(including impregnation) which accelerates analysis of the soil-pore system.

Treatment: even considering the advantages of no treatment, there are two major
cases where pre-treatments are required:

(i) Staining specific features to separate different soil features better during (and
after) 3-D scan acquisition. Even though the soil-pore system analysis is often
the main focus of X-ray CT imaging, there is a considerable interest in
analysing the pore system in combination with other soil features such as
water and organic matter. Iltis et al. (2011) employed potassium iodide
(KI) as a contrast-enhancing agent enabling a better segmentation of structure
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Fig. 3.5 Synoptic figure showing (i) location of sampling (either free survey in the landscape or
experimental fields), soil profile sampling, different soil samples treatments before X-ray CT
analysis

and porous media. Furthermore, under specific conditions, many
microtomography studies also showed the ability to separate soil, air, and
water (an overview is given in Tracy et al. (2015) and Mao et al. (2016))
while the situation is more complex for other soil features such as minerals
(Guntoro et al., 2019) and soil organic matter (SOM) (Mao et al., 2016). The
main problem lies with the evidence that, although the physical and chemical
properties of the SOM are very different from those of the bulk soil (Kasteel
et al., 2013), it can be very difficult to differentiate between these properties in
the soil complexity due to the similarity of their X-ray attenuation coefficients
(Quinton et al., 2009). The huge interest in separating the SOM phase from the
bulk soil has pushed soil scientists to invest a great effort to achieve such
separation by using either or both pre-treatments and image processing tech-
niques (see Chap. 10). X-ray CT can be used, under specific conditions, to
visualize large organic fragments (e.g., Particulate Organic Matter—POM) and
plant roots (Kravchenko et al., 2015; Van Loo et al., 2014), but the visualiza-
tion of organic matter that is well dispersed in the soil matrix (e.g.,
nonparticulate SOM) is very difficult (e.g., Mueller et al., 2013) because of
the well-known difficulties in segmenting an image where SOM and the rest of
the soils have similar ranges of varying linear attenuation coefficients. An
advantageous approach to simplify image segmentation is to treat the sample



Silver (Ag): (Van Loo et al., ) which is the most well-known staining
system.
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with heavy elements. Indeed, soil organic matter has a marked affinity for
heavy elements (with Z > 30)—due to their charge, ionic radius, and ionic
potential and, in turn, heavy elements have an X-ray attenuation that increases
with their atomic number and, thus, improves imaging contrast (Van Loo et al.,
2014). This is covered in greater detail in Chap. 10.

The most well-known heavy elements for soil “staining” (here we use the
word staining even though it originally referred to optical microscopy) are the
following:

–

– Lead (Pb): Kettridge and Binley (2008) successfully used lead (II) nitrate
solution to increase the linear attenuation of peat by flushing it over a sample
before X-ray scanning. However, we should also emphasize the highly
carcinogenic nature of lead (II) nitrate.

– Osmium (Os) tetroxide (Rawlins et al., 2016). In 2014, Peth et al. (2014)
proposed a new method of in situ SOM visualization which could be
implemented on intact soil samples up to a few centimetres in size. This
method is based on the ability of osmium tetroxide, OsO4, to react with
organic substances, in particular, lipids. An air-dry soil is subjected to OsO4
vapours, which, upon diffusion into the soil, bind with organic materials and
stain them. Mao et al. (2016) found that the method of Os (OsO4 vapours)
staining (analysed via X-ray Dual-Energy Tomography) was effective in
staining organic materials of root origin and the organics associated with
fine soil particles, but not biochar. Arai et al. (2019) demonstrated effective
SOM localization within large macroaggregate based on synchrotron X-ray
micro-computed tomography (μCT) coupled with a vapour-phase, osmium
(Os)-staining pre-treatment. Unfortunately, osmium (Os) tetroxide is also
toxic (Van Loo et al., 2014) and special care when handling is required.

– Iodine (I) (Boyde et al., 2014). This approach is largely used in combination
with hydrological testing (Scotson et al., 2021). See Chap. 7 for more
details.

– Eosin (Br based) (Lammel et al., 2019).

Several other heavy elements such as Cu, Co, Fe, Mn, Mo, and Zn may be of
interest in binding SOM, but, since they already occur naturally in soil, their use
must be evaluated in each specific soil case. Lammel et al., (2019) tested many
different contrast enhancing agents by using synchrotron radiation
microcomputerized tomography (SR-μCT) and demonstrated that I2 was the
most efficient method as it was able to improve the image contrast, so providing
a powerful tool to determine the spatial location of SOM.

(ii) Water removal: In this context the aim is to achieve standardization of the 3-D
acquisition and an improved soil-pore segmentation. Moist and wet samples
can affect the quality of X-ray acquisition images because air, water, and soil
phases have different linear X-ray attenuation coefficients and, therefore, soils
with heterogeneous humidity may produce images that are more difficult to
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segment due to these variations. Water removal can be carried out by (a) air- or
oven- drying of samples, and (b) alternative dehydration methods from soil
micromorphology (e.g., acetone dehydration). The method used depends on the
purpose of the survey and on the characteristics of the soil sample. Air-drying is
a rather simple method which may take from 5 to 8 weeks (depending on the
soil properties) and may still require the use of an oven. The most popular
method is to oven-dry samples at 40 �C for just a few days. However, in soils
characterized by the presence of expandable minerals (e.g., smectites) and/or by
high organic matter content, the treatment could modify the soil structure. In
such a case, standard soil micromorphology approaches, including dehydration
by saturating the sample with an acetone-water mixture, become advantageous.
This involves the stepwise substitution of ever-increasing concentrations of
acetone (Murphy, 1986; FitzPatrick, 1993), in order to remove the water with
the help of zeolite.

(iii) Water removal and resin impregnation: This treatment permits to submit the
same sample to both X-ray CT scanning and thin section analysis. Once the
water has been removed, the sample can be impregnated with different mixtures
of unsaturated polyester synthetic resins or epoxies depending on how the
sample was dried. For further details, see FitzPatrick (1984), Jongerius and
Heitzberger (1975), and Murphy (1986). This approach is rather unusual when
dealing with microtomography, but it can be very profitable both as a support
for 3-D scan interpretation and analysis. Indeed, in this case, after the analysis
of a 3-D scan, which provides grey levels on the basis of the X-ray attenuation
coefficient, the researcher, through a standard optical microscopy analysis or
through chemical microanalysis (e.g., EDS-SEM) of a soil thin section, can
access the power of a much larger spectral content (e.g., visible, UV, X-ray
chemical mapping) than provided by the 3-D CT scan. This combination of
approaches can be very rewarding as demonstrated by Hapca et al. (2011 and
2015) and Bendle et al. (2015).

3.6 Conclusions

In this chapter, the crucial value of soil sampling and sample preparation in X-ray CT
studies has been addressed. Indeed, badly designed soil sampling or poor sample
preparation can lead to erroneous results spoiling any subsequent analytical tech-
niques. Actually, the more complex and advanced applied X-ray techniques (e.g.,
synchrotron based) may result in very small samples which are even more affected
by the above problems. Therefore, also the concepts of representative elementary
area (REA) and representative elementary volume (REV) are vital, due to the
importance of knowing the size at which the measured parameters (or properties)
becomes independent from the sample size, and then when representative measure-
ments are really obtained.
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However, nowadays in which there is an increasing possibility to access a wide
range of equipment, we also highlight the potential to integrate X-ray
microtomography analysis with standard 2-D analysis (including standard optical
microscopy via thin sections) and visual soil sample analysis in order to obtain a
deeper knowledge on any specific soil sample, to then achieve stronger basis for
upscaling the results.
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Chapter 4
Optimising the Scanning Process:
Demystifying the Dark Art of Optimising
Microtomography Scan Settings

Craig J. Sturrock

4.1 Introduction

X-ray Computed Tomography (X-ray CT) is now becoming an accessible technol-
ogy to quantify soil structure metrics. However, optimising images from X-ray CT
systems remains a challenging task. Understanding the influence of the wide range
of settings that control the X-ray source and detector, in addition to the procedures
relating to preparing a sample for scanning, can be overwhelming. In this chapter,
the aim is to demystify these factors and provide a simple, user-friendly, guide for
acquiring the best quality tomography data possible from soil samples.

The value of a defined protocol is that it can allow the user to easily follow a set of
instructions to achieve a specific result. However, it is always important to keep in
mind to only use or develop a technique that is appropriate for the task in hand. For
example, there are constraints on maximum resolution of a scan based on the
detector configuration and dimensions of the sample and distances between the
X-ray source, sample and detector (a more detailed description is outlined below
and in Fig. 4.1). Therefore, it is not practically possible to use X-ray CT to image a
large, intact 20 cm diameter field core at a voxel resolution of one micron due to the
data size of the volume. However, by use of multiscale imaging, it is possible to
collect images of the macropore structure of the entire 20 cm diameter core at a
coarser resolution and then subsample the core to obtain smaller volumes to image at
successively higher levels of resolution (e.g. small cores to aggregates). Finally,
always pose the question, what is the significant advantage of using CT for any given
scientific question?
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Fig. 4.1 Image of inside the cabinet of a Phoenix Nanotom 180NF CT Scanner (Waygate
Technologies). The scanner consists of a transmission target X-ray tube, rotating sample stage
(soil aggregate on stage) and a flat-panel detector. The relationship between the focal object distance
(FOD) and the focal detector distance (FDD) influences the magnification of the sample on the
detector. The smaller the FOD and greater the FDD results in greater magnification

X-ray CT is a non-invasive, non-destructive, imaging technique developed for the
visualisation and quantification of the interior structure of an object in three dimen-
sions (3-D). Its key principle is based on the differential attenuation of X-rays as they
interact with the constituent materials of a sample. For example, the mineral grains
and stones in a soil sample have a higher X-ray attenuation compared to lower
density materials such as plant roots or organic matter. Vaz et al. (2011) discussed
the current trend in types of scanners used in the soil sciences. Due to their more
general availability, much of the pioneering application of CT to soil and plant
research used medical CT systems (e.g. Petrovic et al., 1982; Hainsworth &
Aylmore, 1983; Crestana et al., 1985; Tollner et al., 1987). Phogat and Aylmore
(1989) developed a bespoke γ-ray computed tomography system, primarily with the
aim to improve the quantitative abilities of CT to simultaneously image soil water
content and bulk density (Aylmore, 1993). Later, Gregory et al. (2003) developed a
high-resolution CT system for imaging plant roots in soil. Although this system was
termed ‘high-resolution’ at the time of development (100-micron resolution), current
tomography systems can now achieve submicron resolution highlighting the some-
what subjective nature of such terminology. During the last 15 years, the industrial
sector has driven significant advances in both the speed and the image quality of CT
technology resulting in the development of cone beam X-ray CT systems.

The typical cone beam CT scanner consists of three main parts, an X-ray tube, a
sample manipulator stage and an image capture device such as flat-panel detector or



CCD based image intensifier (see Fig. 4.1). The exact specification of these three
parts will vary with equipment supplier and model.

4 Optimising the Scanning Process: Demystifying the Dark Art of. . . 41

X-ray tube: X-rays are generated by an X-ray tube, which is essentially a vacuum
tube that converts electrical input power into heat and a cone shaped beam of X-ray
radiation. A tungsten filament is electrically heated inside the tube (cathode), which
emits electrons that are accelerated towards a metal target (anode) at the end of the
tube by application of a high voltage between the cathode and the anode. As the
electrons enter the electric field of the target material atoms, they are rapidly slowed
down resulting in a loss of their kinetic energy, generating heat and electromagnetic
radiation. This type of radiation is termed Bremsstrahlung radiation (braking radi-
ation) and is continuous as it consists of X-rays of a range of energies. Additionally,
if an accelerated electron directly strikes a bound electron from the inner shell of the
target atom, causing it to be ejected, X-rays are produced as an electron from the
outer shell falls into the inner shell due to its reduction in energy. These X-rays are
termed ‘characteristic’ as their energy spectra are characteristic of the material of the
target. X-rays produced from tubes are therefore polychromatic as they display a
range of wavelength/energies depending on the maximum acceleration voltage of
the electron beam. In comparison, in synchrotron light sources X-rays are generated
by electromagnetic deflection of an extremely high-energy electron beam. The X-ray
beam produced is typically highly monochromatic, coherent and has a far higher
photon flux than that of a benchtop microfocus source. This is important to recognise
when optimising the X-ray settings to optimise the image quality for different types
of material that will be discussed later.

Nano-focus systems (e.g. capable of an electron beam focal spot <1 μm) tend to
have transmission X-ray tubes as they offer a greater level of control of the focusing
capabilities of the electron beam used to generate the X-rays (Fig. 4.2a). These tubes
are positioned horizontally in the scanner and the electron beam is transmitted
through the target at the end of the gun. However, such tubes are power limited,
and as such, are not as well suited for larger samples where higher X-ray energies
and flux are required to fully penetrate the sample. Insufficient X-ray penetration
results in dark streaks in the reconstructed data, especially around dense highly
attenuating objects in the sample. This phenomenon is termed ‘photon starvation’
(Barrett & Keat, 2004). It should be noted that focal spot size has important
consequences for the sharpness of the resultant images which will be discussed
later in the chapter. Microfocus (e.g. focal spot typically >3 μm) CT systems
typically have a reflection X-ray tube (Fig. 4.2b) (also known as directional target
tubes), which is positioned at an approx. 45� angle inside the cabinet and the electron
beam is reflected off the surface of the X-ray target material. Target materials are
generally tungsten, but some manufacturers offer options to change the target
material to allow the generation of X-rays of lower or higher energy spectra which
allows a greater contrast in specific types of material. For example, molybdenum or
copper produces lower energy spectra so they can give better results for imaging of
lower density materials. For larger soil samples, such as 15–20 cm diameter x
100 cm length field cores, a large ‘walk-in’ cabinet system with even higher
power (up to 450 kV) micro- or mini-focus (focal spot >100 μm) X-ray tubes are
required.
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Fig. 4.2 Schematic representations of cross sections through (a) transmission and (b) reflection
target X-ray tubes

Detector: The digital panel or CCD camera converts the X-rays that have
penetrated through and around the sample into a digital image. Although there are
numerous types of X-ray detectors, current state-of-the-art CT industrial systems
tend use flat-panel detectors (Harrer & Kastner, 2011). Flat-panel detectors consist of
a glass sheet coated with a layer of amorphous silicon and imprinted with a 2-D array
of thin film transistors (TFT). Signal generation can be detected by either indirect or
direct methods. Indirect panels use a phosphor scintillation screen (commonly
gadolinium oxysulfide or caesium iodide based) to create visible light when struck
by an X-ray photon which is subsequently recorded as an electrical signal by a
photodiode (Seibert, 2006). Direct detectors consist of semiconductor materials
sandwiched between two electrodes and convert X-rays directly into a positive and
negatively charged ion pairs. Advantages of flat-panel detectors over previous image
intensifier detectors are the lack of geometric distortion, flat and uniform images,
thin profiles and high dynamic range. Recent advances in detector design have seen
increased sensitivity, improved signal-noise and quantum efficiency, higher
dynamic range and the number and size of picture elements (pixels) (e.g. the
Dynamic 41|100 detector panel from Waygate Technologies (www.
bakerhughesds.com/) or XRD1620xNCS panel from Perkin Elmer (https://www.
perkinelmer.com/).

http://www.bakerhughesds.com/
http://www.bakerhughesds.com/
https://www.perkinelmer.com/
https://www.perkinelmer.com/
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Irrespective of the configuration of the CT system, the process of conducting a
scan is generally the same. The process starts by placing the sample of interest inside
the scanner which is then exposed to X-rays generated from the X-ray tube.
Numerous 2-D radiograph images (often called projections) are acquired by the
detector as the sample is rotated around the y-axis, typically over 360�. The X-rays
are absorbed and/or scattered by the sample materials causing attenuation of the
beam. The degree of X-ray attenuation is proportional to the atomic number of the
material, the photon energy of the beam and the thickness of the material. Heeraman
et al. (1997) provide a detailed mathematical description of the physics behind this
process. The degree of X-ray attenuation can be numerically calculated from the
resultant 2-D radiographic image acquired by the detector. Differences in X-ray
attenuation of the sample manifest as variations in contrast to the radiograph image,
with higher density regions attenuating more of the X-rays and appearing as darker
regions on the image (see Fig. 4.5a). The 2-D images are then processed to generate a
3-D volumetric dataset of X-ray attenuation of the sample. This process, called
reconstruction, and for commercially supplied benchtop systems is generally under-
taken via ‘simple to use’ proprietary software supplied with scanner. In this case,
only a limited number of options in the software are available to the operator to
complete this task. The reconstructed images can then be viewed and rendered to
give a 3-D model of the material. Visualisation software then permits numerous
analysis options from creating sections through the 3-D image to permit microstruc-
tural quantification of the sample. For soils, common measurements, all based on
segmentation of constituent materials depending on their differences in density,
are of soil pore network (volume, number, size, shape, internal porosity, surface
area, etc.) (Mooney, 2002; Schlüter et al., 2011, 2014; De Gryze et al., 2006), plant
root development (Bao et al., 2014; Flavel et al., 2012; Fry et al., 2018; Gregory
et al., 2003; Hargreaves et al., 2009; Tracy et al., 2012), impact of earthworms
(Amosse et al., 2015; Bottinelli et al., 2017) and insect larvae on soil structure
(Johnson et al., 2007; Booth et al., 2020), characterisation of chemical tracers
(Grayling et al., 2018) and, of recent interest, the distribution of microplastics in
soils (Totzke et al., 2021).

4.2 Preparing the Sample

How to prepare a soil sample for scanning depends on its size, shape, state (dry or
hydrated) and the research question that is being addressed. One of the major
advantages of using CT is that minimal sample preparation is required with often
no need for time-consuming chemical fixing or resin impregnation such as that
described in Chap. 3. The only critical condition for preparing the sample is that it
remains static during the duration of the scan. The majority studies using CT to study
soils work with various sizes of either soil aggregates/clods (1– 200 mm) or soil
cores (5–2500 mm diameter). Core studies may be on field structured soils or sieved
and repacked to specific conditions (moisture content, bulk density, etc.). The later



have been extensively used for the investigation of plant root growth for root
phenotyping applications and studies of the rhizosphere (Nunan et al., 2006; Moradi
et al., 2011; Mooney et al., 2012; Flavel et al., 2012; Ahmed et al., 2016; Helliwell
et al., 2017; Rabbi et al., 2018; Koebernick et al., 2019). The most important factor
in preparing a sample for scanning is that it is securely fixed to a sample holder and
will not move during the scan. To ensure optimal quality data, the first and the last
radiograph image should be the same position. Samples that are subject to movement
will have blurred edges and ‘cup-like’ ghostly artefacts in the reconstructed images
(see Fig. 4.3e). When working with small dry samples such as soil aggregates, they
can be either fixed to glass, plastic or wood rods using a suitable adhesive such as
cyanoacrylate (superglue), epoxy resin or for larger samples, hot melt glue. Alter-
natively, in some cases the aggregates can be suspended between low-density
polystyrene. Disposable plastic pipettes can be used to stack numerous samples in
this manner. This method has the advantage that the scanner can be programmed to
automatically scan each sample in a batch mode and minimising user interaction to
increase sample throughput. If working with wet soil samples, they need to be
scanned inside a sealed container, wrapped in cling film or covered in wax, to
limit evaporation which will result in shrinkage of the sample especially if the
scan times are long (e.g. > 1 hr). Depending on the size of the sample the above
framework can be implemented by using different diameter pipettes or plastic tubes
(Fig. 4.4).
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As the popularity, ease of access and relatively low cost of additive manufactur-
ing also known as 3-D printers become more readily available to many laboratories,
the ability to produce bespoke sample holders offers opportunities for improved
precision to optimise sample preparation strategies. The work of Keyes et al. (2017)
is a good example of the use of 3-D printing to produce a specialised microcosm to
enable isolation of individual plant roots and soil for high-resolution scanning at a
synchrotron light source. An additional benefit of 3-D printing approaches is the 3-D
models can be easily shared between labs that may be working with similar sample
types. For example, at the Hounsfield Facility, University of Nottingham a 3-D
printed sample holder was designed for soil columns that can be used when
undertaking plant growth trials. Sections of high-density polyethylene drainage
pipe can be cut to the desired length and then nylon mesh taped to the bottom end
(Mairhofer et al., 2017). The column, when filled with soil and a plant, is then placed
inside the sample holder so there is greater consistency between samples and
facilitates easier automation of multi -scan and -reconstruction operations. A selec-
tion of 3-D models for sample holders used at the Hounsfield Facility are available
for download here: https://github.com/UoNMakerSpace/Xray-CT-Sample-Holders

For investigations of the soil surface (e.g. Garbout et al. (2018)), it is advised to
tilt the sample to reduce cone beam artefacts from the flat surface. This may not be
required if you have access to a scanner capable of helical scanning functionality.
In-situ testing rigs to investigate mechanical stress on soils are now commercially
available. Combined with rapid scanner acquisition times and correlative image
analysis approaches temporal changes in soil samples can be performed (for

https://github.com/UoNMakerSpace/Xray-CT-Sample-Holders
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Fig. 4.3 X-ray CT XY slice images of a soil aggregate to illustrate common artefacts collected
using a Phoenix Nanotom NF180 scanner. (a) The X-ray energy is too low (50 kV) resulting in a
noisy image poor quality image with low contrast. Standard deviation of the inset dotted square grey
level (16-bit depth) ¼ 6230. (b) Optimal X-ray energy settings showing a good quality low noise
and no obvious artefacts. Standard deviation of inset dotted square¼ 2490. (c) Example of an image



¼

examples see Hall et al., 2010, Wang et al., 2019, Cheng et al., 2020, Bull et al.,
2020). See also Chap. 8.
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Inclusion of a reference object on the sample can be useful when using multiple
scans to image a single sample. Using a high-density reference material placed on the
sample while it is being scanned allows greater accuracy when mapping histogram
outputs between individual sections of the scans. A 0.05 mm thick � 1 mm width
strip of copper taped down the length of the column can be used to achieve this (See
Figure 4.4b). This method is particularly useful when scanning field cores which
may display considerable heterogeneity in structural composition. The presence of a
high-density mineral object such as a stone in one part of the multi-scan can
drastically shift the reconstructed data histogram which can cause problems for
downstream analysis.

One final point to remember is to acclimatise the sample before scanning to the
ambient environmental conditions inside the scanner cabinet. Scanning a field soil
core directly from storage in a cold room will tend to expand during the scan and
deteriorate the quality of the data. The opposite may be the case in summer months if
the laboratory is at a higher temperature than the interior of the scanner, especially if
the scanner is fitted with air conditioning. An additional benefit of an air-conditioned
cabinet is the mitigation of any internal temperature increases that can occur during
very long scans resulting from heat output of the X-ray tube and detector panel. For
precision high-resolution scanning, particularly for soil aggregates, it is
recommended to allow samples to acclimatise inside the scanner before starting
the scan.

4.3 Optimising the Image

4.3.1 Positioning the Sample in the Scanner

Once the sample is prepared, it can be placed on the rotation stage of the scanner and
suitably positioned between the X-ray source and the detector depending on the
nature of the investigation. The relationship between the distance of the sample
(Focal Object Distance: FOD) from the X-ray source and the source and the detector
(Focal Detector Distance: FDD) determines the magnification of the scan. Decreas-
ing the FOD or increasing the FDD results in increased magnification of the sample
but also reduces the field of view (see Fig. 4.1). Additionally, detector signal to noise

Fig. 4.3 (continued) with a rotation offset error at reconstruction. Image is blurred and has
characteristic halo artefacts. (d) Magnified region (white square in (c)) highlighting halo artefacts
(white arrow) and double edge on features in image (black arrow). (e) Example of motion artefact
due to lateral sample moment during the scan. The image is blurred and has characteristic cup
artefacts. (f) Magnified inset of (e), showing cup artefacts (white arrows) and double edge on
features in the image. Scale bar 3 mm



ratio is inversely proportional to the FDD due to the reduction in intensity the farther
from the X-ray source. The spatial voxel resolution of a scan is determined by
detector size (width) and the sample diameter and can be described as
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Fig. 4.4 Examples of different sample preparation methods depending on size. (a) Small soil
aggregates either glued or suspended in low-density polystyrene foam. (b) A medium scale field soil
core in a PVC column (15 cm length � 7 cm Ø) in a v|tome|x M 240 kV CT system (c) Large
100 soil cores (100 cm length� 20 cm Ø) made from commercial drainage pipe in the glasshouse of
the Hounsfield Facility, University of Nottingham. Highest magnification and voxel resolution is
achieved with small samples

V ¼ P ∙ d
D

where V is the voxel resolution, P is the pixel size, d is the sample diameter and D is
the detector width (Fig. 4.1). For example, the voxel resolution for a 25 mm diameter
sample in a CT system with a 100 mm detector and 0.05 mm pixel size would be
0.0125 mm.

For the best quality of data collection, the sample should be positioned so it does
not leave the sides of the detector at any of the projection angle during the scan as the
information relating to the edges of the sample that leaves the field of view will not
be present in the final reconstructed data. However, these parts of the sample will still
be present in projections of the front and back views of the sample and can lead to
artefacts in the data. Commercial reconstruction software now includes processing
options to reduce these artefacts (Fig. 4.3d-f). For the optimal scan resolution of a
given sample, it should be moved closer or further away from the X-ray tube so that
the projection image fills approximately 90% of the detector width. If the sample is
longer than it is wide, then it can be moved further from the source but note this will
decrease the resolution. However, multiple acquisitions (e.g. at top, middle and
bottom) can also be used to scan the sample in parts to maintain the maximal
resolution of the scan. The data can then be digitally stitched together either
automatically via the reconstruction software or manually by the user in a suitable
visualisation software. As a rule of thumb, the maximal resolution equals the sample



h

48 C. J. Sturrock

width divided by the number of pixels on the detector of the projection. For example,
a soil core of 50 mm diameter, positioned to fill 90% of a 2000 pixel width detector
(1800 px) will have a resolution of 27.7 microns. Some scanner configurations allow
for the detector to be moved closer to the source. This can be advantageous to
increase to detector signal to noise ratio as the X-ray intensity is higher. However,
this is at the expense of the maximum resolution as the magnification is lower.

4.3.2 X-ray Voltage and Current

Getting the best quality quantitative data from your sample primarily centres on
optimising the CT scan settings to obtain good quality radiographs with low image
noise. Ensuring your sample is penetrated by X-rays at all angles of rotation whilst
not over saturating your background is one of the golden rules of CT. Optimising the
X-ray tube voltage and current are the first steps to obtain the best quality projection
image. The tube voltage controls the penetrating power of the generated X-rays. As
explained earlier, X-rays are generated from the tube by crashing electrons onto or
through its metal target. Increasing the tube voltage produces an electron beam with
more energy resulting in the creation of X-rays with a higher energy spectra and thus
have greater penetrating power. Increasing the tube current increases the quantity
electrons in the beam so although more X-rays are generated per unit time their
energy spectra are the same.

Before starting the optimisation process, it is important to ensure that the flat-field
correction images are disabled in the acquisition software. Depending on the
manufacturer of the CT system software, these may be known as different names
such as black and white or offset and gain calibration images. As a starting point, it
is sensible to choose a moderate X-ray tube voltage and current setting
(e.g. Table 4.1). With the X-rays ‘on’, you can observe the greyscale histogram
window of the live projection image (Fig. 4.5). When optimising the voltage, fully
rotate the sample to ensure good penetration is achieved through all projection
angles. This is particularly important when scanning field structured soils wit
high numbers of high-density objects such as stones where it can be possible to
have some projection angles where multiple stones are present in one path. Good
penetration is obtained when the X-ray intensity measured on the detector through
the longest path and/or highest density part of sample is significantly higher than
the detector response when the X-rays are off. Theoretically, the minimum
recommended penetration value is approx. 10–15% of the maximum detector
response. For example, for a 14-bit detector panel with 16,384 grey values and a
black level of 1600, then the darkest part of your projection images should not be
less than 1600 + 0.10� (14384–1600)¼ 2878. The background (air) should not be
>85% of the detector’s maximum grey value to avoid pixel saturation. Even a
single saturated pixel can be the source of ring artefacts in reconstructed data due to
it continually outputting its maximal value. Ideally separate peaks in the histogram
should be resolved between materials of different densities (e.g. soil and air).
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Fig. 4.5 The importance of ensuring your sample has good X-ray penetration. (a) A radiograph of a
20 mm soil aggregate collected using insufficient X-ray energy (50 kV). The histogram shows the
narrow range of grey values in the image with low X-ray flux. (b) A radiograph of the same
aggregate but with a higher X-ray energy (90 kV) which has higher contrast and flux. This is
evidenced by the broad spread of grey values in the histogram and clearly defined peaks from the
different materials in the sample. Results of CT scans using these settings are shown in Figure 4.3a-b

As higher tube voltages generate X-rays with higher energies and therefore higher
penetrating power, the contrast of the lower density materials in the sample from the
background noise is reduced. It is therefore important to take care and avoid losing
these details in scan images. However, this can be challenging for the typical multi-
phase heterogeneous nature of soils that commonly consist of a multitude of
components with a wide range of material densities (e.g. air and water filled pores,
organic matter in various stages of decomposition, micro- and macro- biota, plant
roots, clay, silt and sand). In such cases, it may be appropriate to apply a metal filter
to the X-ray tube to reduce the lower energy X-rays in the beam.

By increasing the tube current, the number of X-rays passing through the sample
is increased. However, if the tube voltage is not high enough to penetrate the densest
part/path length of your sample, increasing the current will not improve the resultant
image. If the X-ray beam does not have enough energy to penetrate the sample, then
having more of them will not make any difference. Conversely, for a sample where
the penetration is sufficient, increasing the current is often a better choice, rather than
increasing the voltage further, thus minimising the risk of reducing the contrast of
low-density materials. A further consideration for tube settings relates to their
influence on the electron beam focal spot size on the tube target. The focal spot
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size is a function of the tube voltage and current often measured as the target power.
Higher voltages and current therefore increase the focal spot size and result in a
larger penumbra effect of the projected image. Care should be taken not to exceed
the target power (W) above the spatial resolution or this will reduce the sharpness of
the image.

The X-ray beam may require to be filtered to achieve good contrast of a sample
without saturating the detector. Thin sheets (approx. 0.1–2 mm) of aluminium,
copper or tin are commonly used to attenuate part of the X-ray spectra from the
X-ray source at a particular energy. The filter removes the lower energy X-rays in the
spectra and hardens the beam which can help reduce beam hardening artefacts.
Filters are also useful to avoid saturation of the detector if a higher X-ray energy is
needed to achieve a good penetration of a denser sample.

4.3.3 Detector Settings

The exposure timing and sensitivity of detector can also be used to optimise the
contrast of projection images but have important consequences for both scan time
and image quality. The exposure timing can be thought of as shutter speed on a
camera. The longer the shutter is open, the greater the amount of light reaches the
film and creates a brighter image. As more X-rays are collected with a longer
exposure time, image noise levels can be lower although overall scan time will
inherently increase. Typical detector timings in benchtop CT systems range from
approximately one hundred milliseconds to several seconds. The detector sensitivity
is similar to a digital camera ISO value. Higher values make the detector more
sensitive to X-rays and again will increase the image brightness, although the noise
levels in the image are also amplified. Longer detector timings can be useful for
higher density samples where a high degree of X-ray beam filtering has been
required to obtain good penetration of the sample. Whereas higher sensitivity
settings can be useful when imaging low-density dynamic samples at high-resolution
when you need to keep scan times short and are limited on X-ray target power. One
of the most common questions asked when enquiring about scanning a soil sample
using X-ray CT is ‘how long will it take?’ Scans can be made in less than 5 min, but
the data will have a much higher level of noise compared to ones that are acquired at
times >2 h. However, depending on the nature of your investigation this may be
acceptable. Flavel et al. (2014) used scans of 4 min to successfully quantify the
response of wheat root length density, branch density and angle to phosphate
application in small diameter (30 mm) columns containing soil. If you are trying
to identify and track the movement of insect larvae in soil and quantify relatively
large burrow structures in the soil, then limiting the X-ray dose to the insects and
avoiding motion artefacts is of greater importance than the noise level in the data.
Bont et al. (2017) and Booth et al. (2020) provide examples for such a strategy where
rapid 6–7 min scans and noise reduction image processing techniques to successfully
capture insect larvae position and the structure of their burrow networks.
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4.4 Acquisition Modes

The images captured during a CT scan can be made continuously (often called ‘fast
scans’) where the sample is in constant motion during its rotation, or stepwise, where
it stops at each rotational increment (step scans/long scans). In continuous scanning
mode, only a single radiograph image is collected for each angular projection, and as
such, the image noise is higher compared to a step scan where several images can be
integrated to average out noise and improve image quality. Depending on the
application, both methods have their strengths and weaknesses. As continuous
scans are faster than step scans, they are useful where the sample is dynamic and
at risk of motion artefacts e.g. following the movement of a contrast agent in soil.
Furthermore, if the image processing protocol can handle a certain level of image
noise, it is possible to greatly increase throughput using continuous scan modes.

However, step scans are generally the standard mode of operation and offer
improved image quality due to the option to integrate a series of images to reduce
noise. A skip value defines the number of images to discard between each step so
that the sample has time to rotate to the next position and stop before the next series
of images are integrated. If using very short detector timings, the skip value will need
to be higher to allow adequate time for the sample to turn otherwise a potentially
blurred image due to sample motion will be added to the projection image integra-
tion. A suitably long skip time is also required to reduce the ghost image of the
previous angular projection as these can also contribute to reduce quality of the final
scan. Care must also be taken if scanning very small samples on thin glass or plastic
rods as the stop-start motion of the stage can induce a vibration the sample. In such a
case, a continuous scan may provide a better result or alternatively a longer scan with
an increased detector skip could be preferable.

The number of projection images per scan is determined by the width of the
sample on the detector panel. When the sample occupies up to 95% of the detector
width, then a greater number of projection images will be required to avoid inter-
polation between edge voxels of the sample. Ideally, the number of projection
images should ensure that each incremental position moves on by no more than
one voxel. In practice, this is achieved by multiplying the number of pixels of your
sample across the width of the detector by π/2 (approx. 1.57). For example, scanning
a soil core that occupies 90% of a 2000 pixel width detector (1800px) would require
a total of 2826 projections for optimal image quality. If it is appropriate to use a
lower image resolution, it may be possible to reduce acquisition time as less
projection would be required.

4.5 Conclusions

The aim of this chapter was to provide a guide to a beginner/novice user of X-ray CT
with an introduction to the technique and demystify the various settings available on
a benchtop CT system. The work presented here is not exhaustive but should give a
basic grounding to build experience.



In summary, to achieve the best quality scans for most standard scans of soil
aggregates and cores the following actions are useful to adhere to:
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1. The sample must remain static during the scan.
2. The sample should stay within the horizontal field of view of the detector.
3. The sample must be penetrated by X-rays at all angles of rotation.
4. The sample or background surrounding the sample must not be over penetrated or

“washed” out at any angle of rotation.
5. Investing the time in obtaining good quality radiographs ensures good quality

reconstructed data which ultimately aids image processing.
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Chapter 5
X-ray Computed Tomography Image
Processing & Segmentation: A Case Study
Applying Machine Learning and Deep
Learning-Based Strategies

Talita R. Ferreira, Fábio A. M. Cássaro, Hu Zhou, and Luiz F. Pires

5.1 Image Processing: Cropping and Filtering

Depending on the type and the size of the sample, different decisions on the selection
of a region of interest (ROI), i.e. cropping of X-ray CT images for subsequent image
processing will be necessary. For instance, large samples collected in plastic tubes
might present some structural damage in their peripheries depending on how the
sample has been collected and it may be desirable to avoid such regions in any
subsequent analysis (see Chap. 3 on soil sampling). In this case, extracting
(or cropping) a regular-shaped ROI (cubic or cylindrical) in the adjacencies of the
centre of the reconstructed image, which corresponds to the core of the sample, is
frequently carried out (Galdos et al., 2020; Borges et al., 2019; Ferreira et al., 2018;
Pires et al., 2017; Backeberg et al., 2017; Vogel, 1997). In contrast, if the intention is
to evaluate the effects of the sampling procedure on the soil structure itself, it is often
more appropriate to choose a ROI that encompasses the sample’s external surround-
ings. Some software (e.g. Avizo) even offer options for selecting irregular shaped
ROI, based on a free-hand drawing of the desired region (Ferreira et al., 2019). When
the sample is irregular, such as natural soil aggregates, it is more appropriate to
consider the entire volume for the image processing since closed and open intra-
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aggregate pores can be concomitantly investigated. In this analysis, the aggregate
must be carefully separated from its background instead of simply extracting a
regular or irregular ROI (Bacq-Labreuil et al., 2019; Khan et al., 2012; Wang
et al., 2012).
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Fig. 5.1 Histogram of a 16-bit colour depth section (2-D) obtained from a soil X-ray CT image.
The minimum value (0) represents low-density materials while the maximum (65,535), 2n-1,
represents high-density materials (soil minerals) (not in Hounsfield units)

As previously described, after scanning and reconstruction, a set of 2-D digital
images, each represented by a matrix of elementary data (pixels), is obtained. When
stacked, the 2-D images slices form a 3-D image volume, which consists of elemen-
tary units called voxels. Usually, for visualization and subsequent analysis of the
X-ray CT images, materials of diverse attenuation coefficients are linked to distinct
shades of grey that characterizes the radiodensity of each voxel. X-ray CT images are
normally generated with 256 (28) or 65,536 (216) grey values, which represent
images with greyscale depths of 8- and 16-bits, respectively (Galdos et al., 2019;
Marcheschi, 2008; Gillespy 3rd & Rowberg, 1994). Figure 5.1 presents a greyscale
histogram in a typical soil X-ray CT image (16-bit). The frequency of appearance of
a given grey value and consequently the presence of peaks in the histogram represent
differences in the attenuation properties of the material: lower and higher grey values
in the greyscale represent the photon attenuation by low and high-density materials
in the soil, respectively. The presence of two noticeable peaks in the histogram is
characteristic of a two-phase porous medium.

The correct delimitation of the peaks permits the identification of the phases of
interest (segmentation) in the X-ray CT image. In the case of a ‘dried’ soil sample,
the left and the right peak are associated with the soil pore space and the soil solid
matrix, respectively (Fig. 5.1). However, it is common to find histograms from soil
images presenting overlapping peaks, which requires more effort, and on some
occasions considerably so, to define the peaks and identify the sample phases in
the image. Among the factors that affect the possibility of delimiting the peaks in the
histogram of an X-ray CT image is the signal-to-noise ratio attained during the
acquisition of the image due to non-ideal photon statistics and the partial volume
effect caused by the averaging of the X-ray intensity on the corresponding detector
pixel that has to image a sharply contrasting boundary of the scanned object (Buzug,



2008). The use of specific filters, after image reconstruction, is recommended for
denoising the image while preserving phase edges. Filters aimed at smoothing,
sharpening, edge detection, and contrast enhancement generally improve the sepa-
ration of peaks in the greyscale histogram and facilitate subsequent segmentation. In
particular, edge detection filters can have significant impacts on the identification of
phases and consequently on the obtention of reliable quantitative results. Thus,
having the segmentation step in mind, the choice on the best filtering technique
should consider its capability of producing a high-quality image without losing
relevant original details.
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Denoising algorithms can be classified as filtering methods in the spatial domain
(operations are applied directly on the image matrix), transform domain (operations
are applied after the image matrix is transformed into the frequency domain), or
other domains (based, for instance, on statistical models schemes and random fields)
(Goyal et al., 2020). Spatial domain methods for image denoising are classical and
often applied when considering X-ray CT images. These methods exploit similarities
between pixels or patches of an image through local filters, in which the denoising of
a pixel is restricted by spatial distance, or non-local filters, which take advantage of
the correlation amongst the entire range of pixels in an image (Goyal et al., 2020).
The image filtering (in the spatial domain) is based on a spatial convolution
operation between the image itself, represented by an M � N (in the simplest 2-D
case) dimension matrix, and a pre-defined K � K matrix, known as the kernel or
mask, which results in an image with the same original dimension (M � N). In other
words, the filtering process consists of multiplying pixel values from an image by a
kernel matrix that represents the filter (Marcheschi, 2008). In the filtering computa-
tion, the kernel is virtually moved pixel by pixel (voxel by voxel, in 3-D) over the
input image. Commonly applied filters for X-ray CT image enhancement are:
low-pass, Gaussian, median, non-local means, unsharp mask, among others (Tuller
et al., 2013; Marcheschi, 2008).

The low-pass filter, sometimes called box filter, involves replacing each pixel of
the image by the average of the neighbourhood pixels specified by the kernel
(Keselbrener et al., 1992). Only low spatial frequencies are maintained in the digital
images after the filter application. The elimination of high frequencies, associated
with image noise, has the disadvantage of also eliminating well-defined edges,
consequently blurring the resulted image (Marcheschi, 2008). The Gaussian filter
considers a discrete 2-D Gaussian function to define the kernel (Pathmanabhan &
Dinesh, 2007), so that the kernel coefficients are inversely proportional to the central
value of the matrix (K � K). In this way, the pixels located in the centre have a
higher weighting, i.e. greater importance, than those at the image border. One of the
drawbacks of this method is there is no preservation of the image edges, producing a
blurred and unclear filtered image (Marcheschi, 2008). The median filter represents a
nonlinear method that, instead of considering weights as the kernel coefficients,
computes the median of the pixel values in the specified kernel neighbourhood
(Heinzl et al., 2018). For being characterized by preserving the edges between the
different phases found in the digital images (Müter et al., 2012; Sun & Neuvo, 1994),
the median filter is particularly useful and one of the most popular filters for



processing of soil CT images (Oliveira et al., 2021; Zhou et al., 2020; Jarvis et al.,
2017; Burr-Hersey et al., 2017).
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The non-local means (NLM) filter was first introduced by Buades et al. (2005)
and seeks to exploit similarity amongst pixels in a non-local manner. It is a linear
filter that, instead of using small-sized kernels, potentially utilizes the entire image as
a search window (Schlüter et al., 2014). The presence of similar features or patterns
in the image is explored by the NLM filter (Goyal et al., 2020). Buades et al. (2011)
highlighted that the most similar pixels to a given pixel have no reason to be spatially
close, which is the assumption for the previously described local filters; instead,
similar pixel neighbourhoods can occur anywhere in the image. This justifies the
necessity to scan a large portion of the image in search of the pixels that are similar to
the pixel under denoising. Thus, the neighbourhood of a pixel i can be defined as any
set of pixels j in the image such that a window around j resembles a window around
i (this can be performed in both 2-D and 3-D approaches). Therefore, the pixels in
that 2-D or 3-D neighbourhoods are averaged to determine the new intensity value at
i (the denoised pixel) (Buades et al., 2004). The NLM filter is known to be very
efficient at reducing image noise without significantly losing information at phase
edges and, therefore, has been the choice of many authors to filter X-ray CT images
of porous media such as rocks (Garfi et al., 2020) and soils (Gao et al., 2019; Pöhlitz
et al., 2019; Ferreira et al., 2018, 2019). However, a sharpening filter, for instance,
the unsharp masking and sharpening high-boost filter, is often necessary after the
image denoising to accentuate the high frequencies present in the image, making the
discontinuous structures (e.g., contours) sharper (Pires et al., 2020; Distante &
Distante, 2020; Tuller et al., 2013).

5.2 Image Segmentation

After filtering, the next step in image processing is usually segmentation, that is, the
identification or separation of the phases of interest (e.g. solid matrix, pores, water,
organic matter). This is the most important step for obtaining reliable quantitative
information. A digital greyscale image is characterized by pixels each containing
intensity value information. As mentioned, the grey values are distributed among
pixels between black (0) and white (65,535) (assuming a 16-bit image) (Fig. 5.1).
Depending on the objectives and the characteristics of the scanned material, different
segmentation methods can be applied using either manual, semi-automatic, or full-
automatic procedures (Yen et al., 1995). The manual procedure is limited by the time
required for the segmentation of the samples. This is mainly due to the necessity to
carefully check the edges that separate the phases of interest (e.g. pores from the
solid matrix when the soil porous system is analysed to ensure an accurate segmen-
tation). Semi-automatic procedures have the advantage that specific functions can be
chosen to define the regions occupied by specific phases. These functions are used to
select pixels having similar grey values and classifying them as pores or solids. This
procedure speeds up the segmentation procedure, but typically requires powerful



computer processing for the analysis of 3-D images. For studies on porous media,
such as soils and rocks, global and locally adaptive segmentation methods are the
most frequently used (Schlüter et al., 2014; Houston et al., 2013; Tuller et al., 2013;
Iassonov et al., 2009; Wang, 2008; Jan, 2006), although machine learning-based
segmentation has also been applied recently (Han et al., 2019; Chauhan et al., 2016).
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5.2.1 Global Segmentation

Global segmentation uses a single threshold value for all pixels in the images. The
value 1 (white) is assigned to pixels whose grey values are higher than the
pre-defined threshold value, while 0 (black) is assigned to the remaining pixels
(those whose grey values are equal or lower than the threshold value) (Iassonov
et al., 2009). Methods to determine the threshold value are based on the greyscale
histogram of the digital image in question (Fig. 5.1). Several widely used methods of
global segmentation are based on maximum between-class variances, minimum
error, maximum entropy, or Fuzzy C-Means (FCM) (Schlüter et al., 2014).

Otsu’s (1979) method is one of the most popular global segmentation methods
used in soil sciences (Oliveira et al., 2020; Pires et al., 2019; Pöhlitz et al., 2019;
Leue et al., 2019). The Otsu method was created to find a value that provides better
separation between the background and foreground (i.e. object or phase of interest)
by minimizing their weighted within-class variance. The method works better for
images with good contrast between background and foreground, images with
bimodal histograms, and uniform lighting conditions (Iassonov et al., 2009). The
minimum error thresholding method assumes the existence of two Gaussian func-
tions related to the background and the foreground, and the optimum threshold is
determined by optimizing a criterion function related to the Bayes risk (Jiulun &
Winxin, 1997; Kittler & Illingworth, 1986). The maximum entropy method is based
on the calculation of the entropy of the object and background (Gull & Skilling,
1984). The FCM is related to a combination of the classic k-means, which is a hard
clustering technique in which each pattern is allocated to a single cluster, and the
fuzzy set theory (Landini et al., 2008). The FCM is an iterative clustering method
that involves minimizing the objective function (weighted squared root error func-
tion) (Schlüter et al., 2014). The minimization of the c-means functional, which is
represented by a nonlinear optimization problem, is solved by different methods
such as genetic algorithms, iterative minimization, etc. The objective function is
minimized to a fuzzy membership (U) and a set of cluster centroids. The fuzzy
membership is recomputed for each iterative step until an unchangeable U is
minimized.

Although the threshold values can be determined automatically by the above-
mentioned global segmentation methods and others, they might fail to segment an
object from the background when there are no distinct peaks in the histogram
because of the complexity of the soil, i.e. heterogeneity in the soil fabric. In some
cases, researchers have determined the threshold value via visual inspection of the



soil images; however, this is subjective and lacks consistency and reproducibility,
therefore great caution is needed to ensure consistent phase allocation when choos-
ing the threshold values for different samples.
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Despite their simplicity and low computational cost, global segmentation
methods do not consider how the grey values of the pixels/voxels are spatially
distributed in images (Schlüter et al., 2014). The quality of the generated binary
image greatly depends on the extent and possibility of separation between the peaks
corresponding to the foreground and background in the histogram. Frequently, even
departing from properly filtered X-ray CT images, global methods fail in providing a
good quality segmentation, which justifies the need for alternative approaches.

5.2.2 Local Segmentation

Different from the global methods, locally adaptive segmentation methods are
known to account for pixel neighbourhood statistics in the class assignment problem
(Schlüter et al., 2014). Examples of local segmentation methods are the hysteresis,
indicator kriging, and watershed methods. The hysteresis segmentation is employed
in problems that involve two-class segmentation (Pini & Madonna, 2016). The
procedure is carried out first segmenting the digital image with an upper threshold
(high-edge) to identify object pixels for which the uncertainty of class assignment is
highest. Thus, pixels brighter than the upper threshold value are considered as
belonging to the object. These pixels are assigned as true foreground pixels. The
second threshold (low-edge) identifies pixels that belong to a low-intensity class.
Pixels darker than this lower threshold will be assigned as the background. The use
of a pre-defined kernel (for example, a square) is employed for connecting the pixels
defined as high- and low-edges in the segmentation procedure (Pini & Madonna,
2016). Pixels with intermediate grey values (uncertain) are assigned to the
low-intensity class when their neighbouring pixels belong to the low-intensity
class. Otherwise, they are considered as objects when connected to pixels of this
class (Schlüter et al., 2014). Unassigned pixels are classified as high-intensity class
pixels. The quality of the segmentation by this method depends mainly on the choice
of the low- and high-edge thresholds.

The indicator kriging method completes the segmentation via the calculation of
the indicator covariance functions from the image-data (Oh & Lindquist, 1999). In
the method, a lower threshold value is defined and the pixels with grey values below
this cut-off belong to the background, while the second class includes those pixels
with grey values larger than a defined higher threshold value, for example, the
objects (Oh & Lindquist, 1999). Unassigned pixels, with grey values between the
higher and lower threshold values, will be assigned to the first or second classes
depending on the probability that the voxel belong to the background or foreground.
The probability is estimated employing the indicator kriging method, which con-
siders the spatial location of the undefined pixel and its neighbours (Oh & Lindquist,
1999).
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Fig. 5.2 Schematics of watershed segmentation: (a) Greyscale 2-D section of a soil X-ray CT
image showing the pore and solid phases in darker and brighter grey tones, respectively. (b) Output
image of the gradient operator applied on the greyscale image; dark regions represent the ‘valleys’
(local minimum) corresponding to the interior of pores and solids; bright lines represent the
‘mountains’ or ‘dams’ corresponding to the boundaries of these pores and solids. (c, d) Catchment
basins filled with markers (seeds) representing the solids (I) and pores (II). (e) Result of the
‘flooding’ process applied in the watershed segmentation

The watershed segmentation method considers a digital image as a topographic
surface, and the grey value of the pixels is interpreted as altitudes on the surface (Jan,
2006). By applying the gradient operator on the greyscale image, an output image is
obtained in which the valleys (local minimum) correspond to the interior of phases
(e.g. pores or solids) and are surrounded by ‘mountains’ that correspond to the edges
of phases (boundaries between pores and solids) (Fig. 5.2) (Beucher & Meyer,
1993). In other words, the watershed transform decomposes an image into catchment
basins that are filled with ‘water’ in a ‘flooding process’. When the waterfront from
different basins reaches the highest altitudes, they are prevented from merging by the
dams represented in the gradient image by the phase edges (Jan, 2006). The selection
of markers (seeds selected to start the immersion process) inside the catchment
basins is a crucial step for this method and can be manually or automatically defined,
considering specific knowledge of the objects (phases) (Fig. 5.2). The method
generally succeeds, even when there is poor contrast between regions of the digital
image.
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5.2.3 Machine Learning-Based Segmentation as a Solution
to New X-ray CT Imaging Challenges

In recent years, artificial intelligence (AI) has become an interesting and powerful
tool for the segmentation and analysis of tomographic images (Weikert et al., 2020).
Among several definitions of AI, the following by Ertel (2017) is most appropriate:
‘the study of how to make computers do things at which, at the moment, people are
better’. Machine learning is one of the techniques used by AI to achieve this purpose
(Chowdhary, 2020). Machine learning algorithms are usually divided into
unsupervised and supervised learning algorithms, among which the latter is currently
more widely applied (Joshi, 2020). For a classification problem such as the segmen-
tation of a digital image in different classes (phases), supervised algorithms need
samples with labelled classes (training data) from which a mathematical model
learns relevant parameters and becomes able to make predictions on new samples.
Supervised learning comprises different approaches based on, for example, the
concepts of decision trees, support vector machines (SVM), and artificial neural
networks (Joshi, 2020; Chauhan et al., 2016).

Decision trees consist of a hierarchical decision-making process at each node of a
tree-type structure, so that the classification task is guided through multiple branches
of alternative decisions. Thus, creating and aggregating multiple trees of similar
architecture results in an ensemble method (e.g., bagging, random forest, and
boosting ensembles) that permits producing robust predictive models with greater
classification performances (Joshi, 2020; Polikar, 2012). The SVM, on the other
hand, was originally developed to perform binary classification based on the con-
struction of an optimal hyperplane that imposes a maximum separation between two
classes. Some other approaches are currently being considered to extend the SVM
method for multi-class classification. Despite increasing the complexity of the
problem, which requires tuning of some hyperparameters, it may provide high
accuracy and generalization capabilities (Tzotsos & Argialas, 2008). With the recent
technological advances, neural networks are emerging in the context of the learning
process called deep learning, which is a particular area of machine learning. Deep
artificial neural networks contain multiple hidden layers of neurons aimed at learning
complex patterns in large volumes of data (Wani et al., 2020). It can only converge
for satisfying accuracy if trained with enough data followed by consistent compu-
tational manipulation. The full potential of this technology has been enabled by the
advent of graphics processor-based computation since it allows parallel training of
deep networks (Joshi, 2020).

Known challenges when applying X-ray CT to soil-related investigations are
(1) satisfying the repetition/replication requirements for appropriate statistical anal-
ysis, since X-ray CT measurements of dense samples (those substantially composed
of high attenuation materials) are time-consuming and often costly, and
(2) processing and segmenting the whole image dataset to obtain quantitative
information. The former challenge will no longer be an issue for those with access
to fourth-generation Synchrotron Light Source imaging as the high photon flux
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provided at these facilities, in the hard X-ray range, enables fast image acquisition
even of materials composed of high Z (atomic number) elements (Craievich, 2020).
This characteristic is essential for 4-D (time-resolved three-dimensional) experi-
ments which consist of acquiring a sequence of 3-D images that allows understand-
ing dynamic processes (Ferreira et al., 2022). For instance, Pak et al. (2020) recently
demonstrated that this experimental approach, with a scanning time of ~6 min per
3-D image, had great importance for observations of pore-scale processes governing
the multiphase flow in porous media. Comparatively, at MOGNO beamline (MicrO
and NanO Tomography beamline at the Brazilian Synchrotron Light Source, SIR-
IUS), it is expected that for future research 3-D imagery will be possible in few
seconds (1–5 s) (Costa et al., 2017; Ferreira et al., 2022). Thus, the necessity of fast
processing and segmentation of very large image datasets is going to be a reality at
MOGNO, and in upcoming beamlines dedicated to X-ray CT throughout the world
(though it is worth noting the majority of studies using CT to explore soils are
currently undertaken using benchtop systems).
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In this chapter we propose the application of strategies based on Machine
Learning followed by Deep Learning (Pinto et al., 2022; Spina et al., 2018;
Vasconcelos et al., 2018) to segment soil 3-D images into its pore and solid phases.
This will serve as a preparation to deal with large soil image datasets such as those
used in time-resolved soil studies.

5.3 An X-ray CT Image Segmentation Protocol Based
on Machine Learning and Deep Learning Strategies:
A Case Study

5.3.1 X-ray CT Image Acquisition and Preparation
for the Machine Learning Pipeline

3-D images of soil aggregates (~3 mm diameter each) generated at the X-ray
microtomography beamline (IMX)—second-generation light source—at the Brazil-
ian Synchrotron Light Laboratory, Brazilian Center for Energy Research and Mate-
rials (LNLS/CNPEM) were selected as demonstration specimens. The samples
(33 in total) were scanned using a polychromatic beam, filtered by a 550 μm thick
Si filter, and 1024 projections were acquired over 180� rotation of the sample. The
exposure time for each projection was 2 s, leading to a total scan time of ~35 min per
sample. An in-house filtered back projection-based algorithm (Miqueles et al., 2018)
was applied to reconstruct the images in 16-bit, raw type, which had a maximum
array of 2048 � 2048 � 2048 voxels, with a voxel side length of 1.64 μm, resulting
in image volumes of 3.36 3.36 3.36 mm3 each.

For the development of the current segmentation protocol, a series of steps was
adopted and is illustrated in Figs. 5.3, 5.4, 5.5. The steps presented in Fig. 5.3 were
performed using the Avizo software v. 2019.4. They served for preparing the images



for examination via the machine learning techniques (Note: this task can be
performed using other software or included in the machine learning pipeline). To
start, one 3-D image volume among the entire dataset was randomly selected, and a
sub-volume of 2048 � 2048 � 1938 voxels (x, y, z coordinates), containing the
aggregate, was extracted to avoid unnecessary computational processing in regions
exclusively containing background information. Fig. 5.3a shows a slice from the raw
image at the central region of the aggregate (z¼ 900). Intrinsically X-ray CT images
are characterized by having a certain level of noise, mainly introduced by an
unfavourable conversion rate of X-ray photons to visible light when scintillator-
based detection systems are used (Banhart, 2008). Before any analysis, the image
noise needs to be reduced to allow a more accurate segmentation, especially if the
noise is too prominent, as the case presented in Fig. 5.3a. In this study, the image was
denoised by a non-local means filter (INLM) (Mode: GPU Adaptive Manifold 3-D—
spatial standard deviation: 1, intensity standard deviation: 0.3, search window:
10, local neighbourhood: 5) (Fig. 5.3b) and subsequently had its edges enhanced
by an unsharp mask (INLM + UM) filter (Edge size: 4, Edge contrast: 0.7, Brightness
threshold: 0) (Fig. 5.3c). This produced evident effects on the greyscale histogram
associated with the images (Fig. 5.3d), imposing a separation between the peaks
corresponding to the air (left peak) and the solid (right peak) phases. It is seen that
the effect was more pronounced for INLM than for INLM + UM.
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Fig. 5.3 Tomographic slice at the central region of a soil aggregate (z ¼ 900): (a) raw image, (b)
after non-local means filter (INLM), and (c) non-local means filter followed by the unsharp mask
filter (INLM + UM). (d) Greyscale histograms of the raw, INLM, and INLM + UM images. (e) Seeds for
an immersion process at the aggregate (purple) and background (pink). (f) INLM after background
masking and simple thresholding based on the valley between peaks (33,289) of INLM histogram
(blue represents grey values <33,289)
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Fig. 5.4 (a) Tomographic slice at the central region of a soil aggregate (z ¼ 900) after non-local
means filter followed by unsharp mask filter (INLM + UM) and background masking (in black).
Waterpixels in a zoomed fraction of (a) with seed spacing and compactness values, respectively, set
to (b) 9 and 1000, and (c) 3 and 10. (d) Handcrafted annotations on (a) at background (pink), solid
matrix (green) and pores (blue). (e) Classification result of (a) via machine learning, where pores
and solid matrix are in royal and turquoise blue, respectively. (f) Seeds for an immersion process at
the background (pink), solid matrix (turquoise blue), and pores (royal blue). (g) Result of watershed
algorithm computation based on (f)

It is important to explain that restricting the X-ray CT analysis to a regular ROI
(e.g. cube) inside a naturally irregular soil aggregate image, something frequently
performed in studies involving soil aggregate image analysis (Camargo et al., 2022;
Ma et al., 2020; Ferreira et al., 2019; Peth et al., 2008), disregards some information
from the borders of the aggregate. An interesting way of exploring the entire
aggregate volume is to assign a label to the background to account for its volume
whenever necessary (e.g. in Zhao et al., 2020). For that, markers slightly smaller
(purple-coloured, Fig. 5.3e) and larger (pink-coloured) than the aggregate bound-
aries were generated, representing seeds for the aggregate and background, respec-
tively, to be subsequently considered in an immersion process. The markers were
created using a combination of simple thresholding, morphological filters such as
erosion/dilation, and fill-holes operations. High-gradient zones in the greyscale
image were identified by an algorithm of edge detection (default Canny method in
Avizo) and the unclassified zones were then filled by applying a watershed algorithm
(Schlüter et al., 2014; Beucher & Lantuejoul, 1979), resulting in well-defined labels
for the background and the aggregate regions. In Fig. 5.3f, the black area (zero value
assigned) represents the background region after using the result from the watershed
method to mask the INLM (Fig. 5.3b). Figure 5.3f shows, in blue, the result of simply
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Fig. 5.5 (a) Orthogonal tomographic slices of a soil aggregate after non-local means filter (INLM),
and background masking (in black), constituting the Data (see Table 5.1). (b) Same orthogonal
slices showing pores in blue from the corresponding label image resulted from Fig. 5.4g. (c) Slice
z ¼ 900 of (a). (d) Greyscale histogram of the (e) inference probability distribution output for the
pore class, with the threshold of 9.5 � 108. (f) The final classification of pores in blue with the
threshold of 10.5 � 108. (g) Same orthogonal slices of (a) showing pores in blue from the final
classification via deep learning. (h) Orthogonal tomographic slices of another soil aggregate (INLM)
with the masked background (in black) for a blind inference test and (i) the resulting classification of
pores with the threshold of 10.5 108



considering the grey value between the air and solid peaks (33,289, INLM curve,
Fig. 5.3d) as a threshold value to segment the pore and solid phases. The outcome of
this choice is, in general, regions of under and overestimation of pores mainly at the
centre and close to the borders of the aggregate, respectively. Similar strategies using
thresholding, morphological filters, and fill-holes operations failed in the attempt of
generating accurate markers for the pore and solid phases, to apply a watershed
algorithm. This happened as slight variations in the chosen threshold value elimi-
nated important markers inside pores or created fake markers in the solid matrix.
Thus, this reinforces the necessity of alternative segmentation solutions that not only
make the traditional methods faster but also provide reliable results.
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5.3.2 Machine Learning Pipeline

Aiming to accomplish the real-time segmentation of large 4-D X-ray CT data
especially at SIRIUS synchrotron facility, Annotat3D*, a software based on
Machine Learning and High-Performance Computing (HPC) techniques (Pinto
et al., 2022; Spina et al., 2018; Vasconcelos et al., 2018) has been developed by
the Scientific Computing Group at the Brazilian Synchrotron Light Laboratory,
Brazilian Center for Energy Research and Materials (LNLS/CNPEM) (*in-house
software, i.e. not currently released for wider use). Annotat3D was employed to
conduct the steps illustrated in Fig. 5.4a-e. Different from the available machine
learning-based segmentation algorithms, such as Waikato Environment for Knowl-
edge Analysis (WEKA) (Arganda-Carreras et al., 2017), which works on a pixel-
level classification, the Annotat3D software is based on a superpixel classification
(Vasconcelos et al., 2018). A superpixel is formed by a group of neighbouring pixels
with similar intensities, meaning that fewer data, composed of local contextual
information, need to be processed for the final segmentation. In addition, since the
method is implemented using HPC with parallel programming via multiple GPUs,
the superpixel classification requires much less computational time than a pixel-level
classification. In this context, a method to classify superpixels in soil images,
belonging to either solid or pore space, must be optimized by setting important
parameters related to: feature extraction, superpixel arrangement, and the type of
classifier to be used.

Feature extraction consists of filtering the input greyscale image to enrich the
information captured by the superpixels, i.e. ensuring that relevant properties of the
objects of interest are considered. In other words, extracted feature maps are filtered
versions of the input image. The following filter options are currently available:
None (Original Image), Fast Fourier Transform (FFT) Gauss, FFT Gabor, FFT DoG,
Sobel, Membrane Projections, Minimum, Maximum, Average, Variance, Median,
and LBP (local binary patterns). Also, a feature selection procedure can be enabled
to impose a percentage threshold criterion (1% is the default) on the importance of
features for classification accuracy. In this way, those contributing with less than the
importance threshold value may be disregarded, resulting in less computational



processing time without a reduction in the classification quality. The current version
of the Annotat3D software offers two approaches to estimate the superpixels using
multi-GPU code: the Simple Linear Iterative Clustering (SLIC) algorithm (Achanta
et al., 2012) and a method based on the watershed transformation (Gonçalves et al.,
2019). In the latter case, the resulting superpixels are called ‘waterpixels’ and they
may be computed in 2-D, for each of the z-slices, or in 3-D. Both approaches allow
controlling the spatial distribution of the superpixels by setting the two following
parameters: seed spacing (increasing this number generates a lower amount of
superpixels) and compactness (increasing this number smooths the borders of
superpixels, making them more regular). Additionally, two types of classifiers are
currently available: the Random Forest and the Support Vector Machines (Ho, 1998;
Cortes & Vapnik, 1995).
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Figure 5.4a shows the same slice (z ¼ 900) presented in Fig. 5.3, after using the
result from the watershed method (Fig. 5.3e) to mask the background (zero value
assigned) of INLM + UM (Fig. 5.3c). Hence, the masked INLM + UM was used as an
input image for the machine-learning pipeline. INLM + UM was chosen over INLM for
this study but there would be no restriction to use the INLM, which as well demon-
strated good results. For the tested protocol, all filters were enabled for feature
extraction with the ‘default feature selection procedure’. The watershed transform-
based method was selected to compute 2-D waterpixels and the Random Forest
classifier with 200 trees was selected to be trained.

It is important to emphasize that when choosing among the approaches for
superpixel estimation, one must keep in mind that to avoid errors in the subsequent
classification, the superpixels should fit the edges of the object of interest in the
image, e.g. pores in the case of the soil. For instance, for better visualization,
Fig. 5.4b shows the waterpixels formed in a zoomed fraction of the same slice
with seed spacing and compactness values set to 9 and 1000, which seemed to be
well adapted to the pore borders at first glance. However, this approach provided
low-quality classification, especially for narrower pores (not presented). The best
classification result was obtained by setting seed spacing and compactness values to
3 and 10, respectively. This produced a narrower distribution of waterpixels
(Fig. 5.4c), which was tested to confirm its functionality.

Once the superpixels were generated, the next step consisted in declaring the
classes (labels) for image segmentation, which were in the present case: background,
soil solid matrix, and pores. As a supervised method, the Annotat3D software
operator uses his/her judgement to add markers (or annotations) on a given slice of
the input image in regions of background (pink), solid matrix (green), and soil pores
(blue), as exemplified in Fig. 5.4d (superpixels not shown). The marked superpixels
serve as a training set for the classifier. In other words, the classifier learns from the
input labelled superpixels, which are mathematically correlated with the extracted
feature maps and provide a full classification (segmentation) of the remaining
superpixels of that particular slice or of the image as a whole. As the classifier
takes longer in the latter case, the best-tested approach was to successively check the
classification result for slices where markers were added (saving the cumulative
markers at the end of the optimization for each slice), until the operator judges it is



time to check the result for the entire image. In this process, which is optimized as
more slices are marked, it is important to identify the existence of frequently
misclassified regions and make sure that correct markers are placed on them, so
that the classifier can be optimized.
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One can assume that the necessity of few markers for a good classification makes
the classifier more efficient and consequently less operator time will be required in
the process. For the tested protocol, markers were added in approximately 200 out of
1938 slices when the classification quality for the whole image was considered
reasonable. It is important to mention that reaching an acceptable classification for
the whole image allows the operator to save the classifier method and/or the training
features as different files. One of these files can be later uploaded and used for
classifying any other image from the original dataset. Nonetheless, these images
need to undergo the same preparation steps (i.e. filtering and background masking,
Fig. 5.3). The file containing the classifier model cannot be further modified for other
input images, whereas the file containing the training features allows the operator to
change the superpixel estimation algorithm, the classifier type, and, if non-reliable
results are achieved, add new markers to improve the classification.

Figure 5.4e shows the classification result for the previously mentioned slice
(z ¼ 900) which shows pores were better delimited via machine learning than by
simple thresholding (Fig. 5.3f). There was less under and overestimation of pores at
the centre and the outer regions of the aggregate, respectively. Nevertheless, it is still
possible to identify some flaws by carefully comparing Fig. 5.4e with Fig. 5.4a.
Therefore, the resultant labels from the machine learning classification were used to
define seeds for a final watershed segmentation of INLM + UM in Avizo. Aiming to
leave an unclassified zone (grey) for the watershed algorithm computation
(Fig. 5.4f), the pore (royal blue) and solid matrix (turquoise blue) labels were
minimally eroded, while the background (pink) was not modified. The result of
this procedure is depicted in Fig. 5.4g, which demonstrates a very good agreement of
pore delimitations when compared with Fig. 5.4a.

With respect to the segmentation protocol described so far, one aspect worth
noting is that the steps illustrated in Fig. 5.3, which were conducted using the Avizo
software v. 2019.4, could alternatively have been included in the machine learning
pipeline. One alternative would be to train the classifier from scratch, that is, without
masking the background of INLM + UM. However, this imposes a higher level of
difficulty for the optimization of the classifier, and, based on the current experience,
it would be more time-consuming. Another option would be to split the machine
learning pipeline, creating two different classifiers: one specialized in classifying the
soil aggregate and background, which would replace the steps described in Fig. 5.3
to create the background mask (not tested here), and a second one specialized in
classifying the solid matrix and pores, just like that described in Fig. 5.4.

Another relevant aspect to consider is that approximately 10 days were required
to reach the result presented in Fig. 5.4g. In these 10 days, the conducted steps were:
the preparation of the input image for the machine learning pipeline, the addition of
markers in ~200 slices, and final watershed segmentation. The addition of markers
was the most time-consuming step and was more related to the current efficiency of



the machine learning algorithms than with computer processing power limitations.
Presently, this operation is far from being a fast process, but the great advantage lies
in the possibility of applying the trained classifier or training features originated from
this laborious process for fast segmentation of the remaining images from the same
dataset (this currently takes just few minutes per image), which was tested and
presented a visual classification quality similar to that obtained in Fig. 5.4e (not
presented here). Annotat3D software is under continuous development and has been
shown to become faster and more efficient with the on-going improvements, thus
requiring fewer markers per slice and fewer slices in total containing markers, which
is currently what slows the process. Although there are alternative machine learning
tools available that can be used for image processing, such as ImageJ (WEKA) and
Dragonfly, Annotat3D is being specifically designed to handle large amounts of data
in a multi-node/multi-GPU HPC environment. The software encompasses highly
optimized tools to visualize, process, and segment these data in timely manner,
preferably faster than other available alternatives.
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5.3.3 Deep Learning Pipeline

At this point, the proposed segmentation protocol advances from the classification
result obtained via machine learning and watershed methods (Fig. 5.4g) to the
application of deep learning techniques to make the whole process more general,
robust, and automated. More specifically, deep learning techniques aim at finding
good representations of the input data as a hierarchy of features, with more abstract
representations computed in terms of less abstract ones (Goodfellow et al., 2016).
While traditional machine learning algorithms cannot learn features directly from the
data and thus rely more on human effort (Fig. 5.4d), deep learning algorithms
perform both feature extraction and classification from previously computed training
label images (Bengio, 2009). The same in-house software, Annotat3D, was used to
apply deep learning techniques to train a convolutional neural network to reproduce
a classification considered as reference (ground truth), and also classify new similar
data. Thus, it was necessary to methodically test the parameters listed in Table 5.1 to
reach an optimized set of training constraints.

In this study, as a start, a workspace was created, which consists of a directory
automatically structured by the Annotat3D software to save all the decisions from
the deep learning pipeline. Next, a dataset was built to serve as a basis for the training
step (Table 5.1). The dataset included: the masked INLM as the input data (16-bit; raw
type—orthogonal planes of the image shown in Figs. 5.5a, c), the corresponding
label image resulting from the machine learning and watershed methods (8-bit; raw
type—orthogonal planes of the image with pores represented in blue, Fig. 5.5b), and
the weight map (8-bit; raw type) based on the label image. The label image consists
of values 0, 1, and 2, attributed to the background, pores, and solid matrix, respec-
tively, and these values essentially identify the different classes present in the label
image. On the other hand, the weight map was used to compel the network to focus



on the pores, as this class represented, in the analysed case, only 1% of the entire
image and consequently represented a more challenging task in the performed
classification. In the weight map from the investigated image, intensities of 1, 255,
100, and 20 were attributed to the background, centre of pores, borders of pores, and
solid matrix, respectively. After loading the data, label, and the weight map (images
with dimensions of 2048� 2048� 1964 voxels and a voxel side length of 1.64 μm),
the sampling was arranged by assigning the following values to the number of
classes, sample size, and patch size: 3, 40, and 500 � 500 � 500, respectively,
resulting in a dataset of 30.7 GB. In the Annotat3D software, the sample size
characterizes the number of sub-images, called patches, to be selected from the
input images (data, label, and weight map) to subsequently feed the neural network
training, while the patch size represents the fixed 3-D dimensions of each of these
sub-images. One can also include image augmentation strategies such as vertical/
horizontal flip, contrast variation, additional Gaussian blur, and elastic deformation
(Table 5.1) to enrich the training data (not tested here). However, some precautions
should be taken as the size of the dataset may be dramatically increased by
doing this.

5 X-ray Computed Tomography Image Processing & Segmentation: A Case. . . 73

Table 5.1 Parameters considered in the deep learning pipeline

Dataset manager Network manager Inference

Sampling Augmentation Network Dataset Settings Inference Settings

Data Vertical Flip Unet2-D Number of
images

System: Network System:

Label Horizontal
Flip

Unet3-D Number of
samples

Number of
GPUs

Input
images

Number of
GPUs

Weight Contrast Vnet Dimensions Training: Output
folder

Patches:

Sampling: Gaussian blur Data info Batch size Volume
padding

Number of
classes

Elastic
deformation

Label info Iterations Patch
border

Sample size Weight info Learning
rate

Patch size Loss
function

Convolution Neural Networks (CNNs) are the most successful artificial neural
networks for extracting features from sub-images used for image classification
(Peixinho, 2017). In essence, CNNs are composed of a sequence of layers that
combine linear convolution and non-linear operations such as activation, pooling,
and normalization. The Annotat3D software offers two different CNN architectures:
the Unet (2-D and 3-D approaches) and the Vnet (only for the 3-D approach)
(Milletari et al., 2016; Ronneberger et al., 2015). It was observed that Vnet provided
the best classification results for the current segmentation protocol. After choosing
the neural network architecture (Vnet), the dataset was loaded, and, at this point, the
Annotat3D software shows a list of the dataset’s characteristics (Table 5.1) that



allows the verification of its correctness. Afterwards, in the settings menu, four
GPUs (NVIDIA Tesla V100 32 Gb) were selected for the training step. It is known
that the gradient descent-based backpropagation is a useful learning algorithm that
aims to minimize a loss function calculated using the desired output (the label image)
and the obtained output classification (Wani et al., 2020). The loss function can take
into consideration one, all, or a fixed intermediate number of patches (the batch size)
per iteration of the backpropagation algorithm (Peixinho, 2017). The loss function
tends to provide lower values as the number of iterations increases. Nonetheless, one
needs to find a balance among error minimization, training time, and visual accuracy
between the obtained classification and the label image. In the present case, the batch
size, number of iterations, learning rate, and type of loss function that provided the
best results were: 1, 60,000, 10�5, cross-entropy, respectively. It resulted in a training
time of ~24 h. It is important to mention that, in the current implementation of the
Annotat3D software, each GPU processed one batch, which means that setting a
batch size equal to one, and using four GPUs, resulted in a real batch size of 4.
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When the training was finished, the network was exported and loaded together
with the greyscale INLM (same data used for training, Figs. 5.5a, c) in the inference
menu (Table 5.1). Four GPUs were selected to perform the inference task. By
default, the inference generates a 32-bit float tiff greyscale image for each class.
Each image contains the probability distribution over the specified class (the brighter
the regions, the higher the probability of that region to belong to the specified class:
0—background, 1—pores, or 2—solid matrix). For instance, Fig. 5.5d shows the
greyscale histogram of the probability distribution output for class 1 (pores)
(Fig. 5.5e), after converting it to a 32-bit unsigned raw image type, for convenience.
To reach a final segmentation and consequently limit the pore regions, a threshold
value was carefully chosen from the greyscale histogram. For example, the threshold
value of 9.5 � 108 overestimated the pore class (Fig. 5.5e) while the threshold value
of 10.5 � 108 provided an excellent classification of pores (Fig. 5.5f). Figure 5.5g
shows orthogonal slices of the resulting segmentation, which showed excellent
visual agreement with the label used for training of the neural network (Fig. 5.5b).

As the main purpose of the developed protocol was to classify new data, a
greyscale tomographic image from another soil aggregate (Fig. 5.5h), belonging to
the same experimental set described at the beginning of this section, was submitted
to the trained CNN, in a blind test mode. The segmentation result for this blind test,
using the same threshold value of 10.5� 108, is shown in Fig. 5.5i. Visually the pore
class was also correctly segmented for this other soil aggregate. The remaining
31 tomographic images were also segmented, taking 2 to 4 hours of inference per
image, depending on the volume occupied by the soil aggregate. So, all images could
be segmented with good quality within a few days. Although this trained CNN has
demonstrated to be suitable for the segmentation of a specific set of images, which
were all generated in approximately the same experimental conditions, this can be
useful for other sets of similar data, e.g., soil images generated with other magnifi-
cations (different voxel side length) and other X-ray beam and detector characteris-
tics. Occasionally, the segmentation result might not be as good as it was for the



original dataset, but the user can add new datasets as examples to fine-tune the CNN
training and optimize its performance on the inference of new data.
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Another important aspect is that, for this protocol, a whole segmented image was
provided to build the dataset, but this is not mandatory. In other words, smaller
fractions of the image could have been tested to investigate the potential of training a
CNN. For certain, it would demand less prior effort to generate a target label via
machine learning and watershed techniques. Similarly, extending its applicability to
other sets of images can be performed by providing small datasets based on such
different images. The timeframe for training (24 hours) and inference (a few days for
31 images) has already accelerated considerably compared to traditional segmenta-
tion methods (where months might have been necessary). Nonetheless, Annotat3D
software is being improved to handle an increasing number of image repetitions and
new time-resolved imaging demands at Sirius Synchrotron Facility. It is worth
mentioning that the current version of Annotat3D is being deployed for usage by
the beamlines of Sirius to enhance the user experience and do final debugging/
optimization. The work presented in this chapter was paramount for aiding in this
process. It is expected that the software will become available to the community in
the near future.

5.4 Conclusions

X-ray CT imaging has become an important tool for soil sciences research.
Performing high-quality segmentation is a critical step for revealing details of
inner sections or volumes of soil X-ray CT images. This can open up the possibility
of modelling and/or characterizing morphometric characteristics of the intricate
structure of the porous system. Frequently, depending on some characteristics of
the X-ray CT measurement and the condition of the sample, the related greyscale
histogram does not exhibit a clear distinction between peaks associated with its
phases (air and solids in general). In such cases, smoothing the image noise and
enhancing phase edges by filtering are necessary, but often not sufficient to allow
segmentation by a traditional global threshold method. Even local segmentation
methods such as the watershed transform, which usually outperform global
thresholding, becomes challenging as it depends on accurate markers for the immer-
sion process.

Recent developments have presented complementary, or perhaps alternative,
properties to the global and local segmentation methods, some of which have been
employing AI for the segmentation process. In this chapter, we presented the use of a
new software (Annotat3D) and protocols, based on machine learning and deep
learning, that permitted the investigation, with good results, of samples with poor
phase distinction. Besides providing good quality segmentation for challenging
images, the followed pipelines led to faster than the usual segmentation which will
extend the analysis capacity and facilitate the conduction of time-resolved studies.
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Chapter 6
Quantification of Soil Porous Architecture

Steffen Schlüter and Hans-Jörg Vogel

6.1 Introduction

In recent decades X-ray Computed Tomography (X-ray CT) has become a standard
technique for non-invasive imaging of the three-dimensional structure of intact soil.
The number of working groups worldwide that routinely apply X-ray CT for soil-
related research is steadily growing. A consequence of this expanding community is
a wealth of methods for the quantification of soil pore structure which are provided
through different software toolboxes. There has not yet been a consensus about what
a minimum set of metrics would be that is absolutely essential to quantify pore
structure. The reasons for that are two-fold. First, soil structure analysis is not an end
in itself. It is meant to reveal the heterogeneous small-scale architecture of soil,
which is required for a mechanistic understanding of observable processes and
phenomena at larger scale such as water movement, solute fluxes, plant–soil inter-
actions, gas emissions or the maintenance of biodiversity. Likewise, the existence of
hot spots in biological activity and geochemical processes is a manifestation of
microscale processes regulated by soil structure. Depending on the specific focus,
different characteristics of the pore structure might be most relevant, e.g. the volume
fraction, continuity, size distribution, clustering, or roughness of pores. It is good
practice that the set of investigated metrics is tailored accordingly. This is supported
by theoretical or empirical evidence regarding the sensitivity of the investigated
process to one or another structural feature or their combination. For example, if we
are interested in hydraulic conductivity, then we should analyse not only the pore
volume but also the pore size distribution and pore connectivity. In contrast, if we are
interested in soil aeration, then the volume and spatial distribution pattern of
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macropores is highly relevant. Also, researchers all tend to stick to established image
analysis protocols irrespective of the underlying research question either out of habit
or due to limited capacity for adapting alternative protocols. This can have two
negative side effects: First, the structural description may remain suboptimal with
regard to the processes investigated and second, an untargeted shot-gun approach
might be carried out to analyse as many metrics as possible to discover correlations,
without a clear hypothesis on the causal relationship between form and function.
This could be a promising approach in case the causal relationships are not suffi-
ciently clear or to discover unexpected relationships. However, more often than not,
such studies merely report the correlations that were found without further interpre-
tation. Thus, the link between correlation and causation is frequently missing, and
generalizations are impossible as the outcome could have been very different under
different conditions. This chapter is an attempt to prioritize and identify some highly
relevant pore structure metrics well-grounded in mechanistic process understanding.
This chapter is not meant to provide a thorough review of the relationship between
soil structure and soil functions. For this we refer the reader to Rabot et al. (2018).
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There are more issues to consider for employing X-ray CT successfully to
discover the microscale drivers for macroscale soil functioning than just identifying
suitable pore structure metrics. An equally important question in the design of an
X-ray CT study is at what scale should the pore structure be analysed. There is a
well-known trade-off between sample size and image resolution that is constrained
by the hardware (see Chaps. 2 and 4). There are two aspects that need to be balanced
for identifying the appropriate scale. The soil volume needs to be large enough to not
just capture the pore structure representatively (see Chap. 3) but also the targeted soil
process (e.g. solute transport, soil respiration). In addition, the resolution must be
fine enough to resolve the pores that are most relevant for a given process
(e.g. macropores for preferential flow, meso and micropores for water retention
and microbial activity). Very often both aspects cannot be fulfilled at the same
time. In this chapter, we will survey hierarchical sampling approaches that reconcile
both aspect and address how pore structure metrics change with scale.

Finally, X-ray CT is only capable of imaging the X-ray photon attenuation in soil
(see Chaps. 2 and 4), which limits its application to mapping the physical structure of
soil, i.e. local changes in bulk density, spatial distribution of large pores and perhaps
the spatial distribution of air and water, if the voxel size is small enough. The
detection of roots in soil, even if they are bigger than the image resolution, already
poses a huge methodological challenge (see Chap. 9). Moreover, X-ray CT is
virtually blind for any biochemical information. New protocols are now available
to improve the detection of organic matter with X-ray CT by employing staining
agents containing heavy metals that selectively bind to organic compounds to make
them visible for X-rays (Loo et al., 2014; Peth et al., 2014; Zheng et al., 2020) and
hence allow their integration into spatially explicit modelling approaches (see
Chap. 11). Yet, this is only a proxy for local concentrations but insensitive to the
quality of organic matter. Likewise, information on three-dimensional (3-D) local
elemental or isotopic composition and spatial distribution and composition of soil
microorganisms is lacking. Different microscopic and micro-spectroscopic
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techniques (fluorescence microscopy, electron microscopy, secondary ion mass
spectroscopy, etc.) are required to retrieve this biochemical information on exposed
surfaces. These two-dimensional (2-D) maps need to be aligned with structural
information obtained via X-ray CT through image registration. This correlative
imaging approach is evolving rapidly (Hapca et al., 2015; Kravchenko et al.,
2019; Lucas et al., 2020a; Schlüter et al., 2019a) as it is currently the only viable
option for a more holistic view on soil microenvironments. In sect. 6.4 we will give a
brief introduction into some practical aspects of correlative imaging.
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Finally, this chapter is also meant to facilitate easy access to pore structure
analysis for readers that are new to the subject by stating free software options for
each of the explained methods. Here, we restrict ourselves to Fiji/ImageJ (Schindelin
et al., 2012) and associated plugins, but point out that there is other free or
proprietary software that comes with comparable functionality like scikit-image,
QuantIm, Matlab, Dragonfly or Avizo.

6.2 Quantification of Pore Structure

For this chapter it is assumed that the X-ray CT raw data has already been
reconstructed and image datasets processed providing segmented images with soil
structural features of interest (Chap. 4). Image processing steps from image enhance-
ment to image segmentation and post-processing are surveyed in Chap. 5. I
principle, segmented images could contain any number of material classes. Since
this chapter is dealing with the quantification of soil pore architecture, we focus on
binary images with pores as the foreground and the soil matrix as the background.

The list of metrics that can be used for the quantification of pore architecture is
virtually endless. Likewise, there are multiple criteria by which they can be grouped
and sorted. Here we make an attempt to identify frequently used metrics and group
them from a technical point of view according to the method by which the binary
image, i.e. pores vs. background, is transformed to retrieve these metrics. This
survey is underpinned with two examples for vastly different pore system with
similar visible porosity of 0.1-0.14 mm3 mm�3 (Fig. 6.1). It comprises a ploughed
(left) and a no-till (centre) topsoil sample with a silt loam soil matrix scanned at a
voxel size of 60 μm (Schlüter et al., 2020a).

6.2.1 Metrics Based on Binary Image

Many metrics are directly calculated on binary images of the segmented pore space
without any other previous transformations. Prominent examples are the so-called
Minkowski functionalsM0 � 3 (Armstrong et al., 2019; Vogel et al., 2010), which in
3-D consists of volume M0, surface area M1, integral of mean curvature M2 and



integral of total curvature M3. The meaning of the first two is rather intuitive. M2

represents the mean curvature radius of the pore–solid interface integrated over the
entire pore surface. For convex structures such as spherical bodies it reflects the
mean breadth or the average caliper diameter (Ohser & Mücklich, 2000). If simpli-
fied shapes can be assumed a priori, such as the cylindrical shape of roots, then M2

relates to total root length irrespective of root diameter (Koebernick et al., 2014).M2

can also be normalized by the volume and surface area of a structure to obtain a
dimensionless structure model index with well-defined values for spheres, cylinders,
plates and so on that is independent of their size (Andersson et al., 2018; Hildebrand
& Rüegsegger, 1997).M3 is a topological measure describing the connectivity of the
structure (e.g. pore space) by counting the number of isolated objects, adding the
number of cavities and subtracting the number of redundant connections. This
measure is equivalent to the Euler characteristic (Vogel et al., 2010). Fully enclosed
cavities in pores (i.e. particles floating in pore space without touching other particles)
are considered unphysical features which can be ignored. The appeal of Minkowski
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Fig. 6.1 A selection of pore metrics (listed on the right) derived by different analysis methods of
the segmented pore space of a ploughed (left) an undisturbed soil (centre) with the similar visible
macroporosity (>60 μm). The values for each metric are listed in Table 6.1
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functionals is that they can be directly and very efficiently computed on the digital
grids of binary images (Ohser & Mücklich, 2000). By employing stereological
principles, uncertainties and biases associated with box-shaped geometry of voxels
are avoided (Vogel et al., 2010). It is convenient to divide Minkowski functionals by
the analysed volume and report them as densities m0 � 3. Basically, the Minkowski
functionals describe the visible porosity, its surface area, convexity and connectivity.
Their importance for transport in porous media and mass transfer at interfaces is
evident and has been reviewed recently in Armstrong et al. (2019). A very recent
development has been to derive wettability (i.e. contact angles, in partially saturated
porous media directly from the so-called deficit curvature (Blunt et al., 2020; Sun
et al., 2020)), which is related toM3 of the non-wetting phase, e.g. air-filled pores in
wet soil. Minkowski functionals can be calculated with the MorphLibJ plugin for
Fiji/ImageJ (Legland et al., 2016).
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Table 6.1 Summary of morphological properties for the pore structures of a ploughed soil and
no-till soil depicted in Fig. 6.1

metric Range unit ploughed soil no-till soil

Porosity m0 0 –
3 mm�3 0.14 0.10

Surface area density m1 0- + mm2 mm�3 1.24 0.36

Mean breadth m2 - + mm mm�3 0.40 0.25

Euler characteristic χ mm�3 0.38 0.89

Fractal dimension D 1-3 – 1.41 1.31

Connection probability Γ 0 – 1 – 0.91 0.57

Percolation 0, 1 –

Mean pore distance 0- + mm 0.50 0.44

Critical pore diameter dc 0- + mm 0.36 4.56

Mean pore size 0- + mm 0.41 3.66

There are other metrics that can be directly retrieved from binary images of pore
space. Fractal properties assess the complexity or irregularity of the pore space and
in how far this aspect is similar across spatial scales analysed by changing sample
volumes and image resolutions. The fractal dimension can be computed with the
Box Counting method that is incorporated in the standard Fiji/ImageJ distribution. In
addition, there is a suite of the so-called two-point functions (Jiao et al., 2009;
Karsanina et al., 2015; Renard & Allard, 2013; Schlüter & Vogel, 2011) that
quantify whether two randomly chosen points at a certain separation distance belong
to pores (two-point correlation function, indicator variogram), have a straight con-
nection through the pore space (two-point chord function, lineal path function) or
belong to the same pore cluster through any tortuous connection (two-point cluster
function). Note that for the latter, a connected components labelling is required as
explained below. These two-point functions quantify different aspects of pores like
regularity, width and separation distance as well as connectivity. They have been
mainly used for stochastic reconstruction of porous media in order to assess what
minimum structural information is required to create a stochastic pore structure that
reproduces a given soil structure visually or functionally (e.g. solute transport).



Variogram analysis on X-ray CT images are more common on unsegmented, grey
scale data to quantify the spatial extent across which features are correlated (Hapca
et al., 2015; Quigley et al., 2018; Rawlins et al., 2016). The anisotropy of pore
structure is captured, when these two-point relations as a function of distance are
analysed separately for different directions and compared with each other. To the
best of our knowledge, two-point functions are not yet part of Fiji/ImageJ or
associated plugins. Among others, they are implemented in QuantIm (Vogel et al.,
2010), which is an alternative, open-source image processing software.
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6.2.2 Metrics Based on Connected Components

The pore space can be distinguished into individual components such that any
connected cluster has a unique label or ID (shown as a colour code in Fig. 6.1).
This connected component labelling is implemented in MorphoLibJ (Legland et al.,
2016), but can also be retrieved with the 3-D Objects Counter in Fiji/ImageJ. Based
on this label image the connection probability of two randomly chosen pore voxels,
Γ, can be computed (Renard & Allard, 2013) according to

Γ ¼ 1
N2

v

XNc

i¼1
n2i

where Nv is the number of pore voxels, Nc is the number of individual pore clusters
and ni is the number of voxels in cluster i. If all pores are connected in one cluster,
then ¼1. The value of Γ converges to zero if porosity is fragmented into many
clusters of similar size. The two-point cluster function mentioned above determines
this connection probability as a function of separation distance.

Percolation is another salient property of pore systems. A pore network percolates
when at least one pore cluster extends from one image boundary to the opposite
boundary, e.g. top to bottom. In its simplest form this is a Boolean property, but
percolation theory comes with a list of related metrics and theoretical predictions of
functional behaviour (Hunt et al., 2014). Noteworthy is the critical pore diameter dc
(Koestel et al., 2018), i.e. the narrowest constriction along the percolating pore
cluster. The aperture of this bottleneck poses a dominant resistance to flow and
has been shown to predict saturated water flow in macropores well (Koestel et al.,
2018; Schlüter et al., 2020a). Technically, this critical pore diameter is derived from
the Euclidean distance map of the pore space—see next section—(i.e. the shortest
distance of each pore voxel to the next matrix voxel). This distance map is seg-
mented at increasing distance values resulting in binary images of receding pore
space and each time checked for percolation. The pore surface distance, at which this
connectivity is lost, corresponds to the critical pore radius. The critical pore diameter
is implemented in the Fiji/ImageJ Plugin SoilJ (Koestel, 2018).
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6.2.3 Metrics Based on Distance

There are different ways to express distance in space. The most common one is the
Euclidean (or shortest) distance between two points. The Euclidean distance trans-
form is implemented in the standard Fiji/ImageJ distribution. The outcome is
displayed in Fig. 6.1 as the Euclidean distance to the closest pore in the soil matrix.
Sampling the entire soil matrix results in pore distance histograms. The average pore
distance is retrieved as the first central moment of the pore distance histogram. This
distance information is helpful to predict the aeration status in soil, in particular
when the matric potential in an experiment is adjusted such that all visible pores are
air-filled and all unresolved pores are water-filled (Schlüter, Sammartino, & Koestel,
2020b). Then this pore distance essentially reflects the diffusion distance of
dissolved oxygen into the wet soil matrix, if the detailed trajectory at the molecular
scale is disregarded. A distance threshold can be determined in order to estimate the
anaerobic soil volume fraction of soil (Kravchenko et al., 2018; Rohe et al., 2021).
Distance maps have also been applied to root distances in soil as a measure for how
effectively a root system architecture with a given root length explores the soil
(Koebernick et al., 2014; Schlüter et al., 2018a). Euclidean distances are often
combined with other structural information in order to quantify property X as a
function of distance to material Y, e.g. radial gradients of visible porosity in the
rhizosphere as function of root distance (Helliwell et al., 2019; Koebernick et al.,
2017; Lucas et al., 2019) or element concentration as a function of pore or root
distances (Kölbl et al., 2017; Quigley et al., 2018).

Another common distance metric is geodesic distance, i.e. the distance between
two points along a path within the pore space, i.e. around obstacles posed by the soil
matrix (Schlüter et al., 2019b). The geodesic distance transform is implemented in
the MorhoLibJ plugin (Legland et al., 2016). The discrepancy between geodesic
distance and Euclidean distance arises at lengths that are much longer than the
typical size of structural features and can be used as a measure for tortuosity along
these distances (Schlüter et al., 2019b). An introduction to the use of distance
transforms in soil images is given in Holden (2001).

6.2.4 Metrics Based on Pore Size

There are different ways to quantify pore size distribution depending on the defini-
tion of what constitutes a pore. The cluster size distribution mentioned above would
be one approach, if pore continuity was the defining criterion. However, this
measure is more related to pore connectivity than to pore size in terms of pore
diameters. Moreover, this measure is highly sensitive to the image resolution since
connectivity and cluster size can change dramatically with the smallest pores
considered for the analysis. A more robust approach is to employ the maximum
inscribed sphere method to compute the local pore diameter or local thickness of the



pore space (Vogel et al., 2010). The local thickness method was originally developed
in the BoneJ plugin (Doube et al., 2010) and is now also part of the standard Fiji/
ImageJ distribution. Sampling the entire thickness map of the pore space results in
the pore size distribution. The average pore diameter of the visible pore space is
retrieved as the first central moment of the pore size distribution. The pore size
distribution is related to water release curves (Lucas et al., 2020b) since, according to
the Young-Laplace law, the local pore radius is directly linked to the entry pressure
at which air invades a water-filled pore. Summing over all pore voxels into which a
sphere with a given radius does not fit results in the water saturation at a given
capillary pressure. It should be noted, however, that this “pore morphology”
approach describes the distribution of actual pore diameters while water drainage
curves and derived pore size distributions are always biased towards smaller pore
diameters because the diameter of narrow bottlenecks are critical for the drainage of
larger pores. Moreover, the pore morphology approach assumes spherical fluid
interfaces, perfect wettability and thermodynamic equilibrium of phase distribution
within the pore space when used to estimate water content at a given water potential
which simplifies reality (Pot et al., 2015; Vogel et al., 2005). Nevertheless, this “pore
morphology” approach to modelling drainage of porous media is a valuable and
well-established method (Hazlett, 1995; Hilpert & Miller, 2001; Vogel et al., 2005)
that is much faster than 3-D flow simulations in porous media.
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The Minkowski functionals M0 � 3 (volume, surface area, convexity, connectiv-
ity, see sect. 6.2) can also be determined as a function of pore size. This is done by
repeated analysis of the image after removing pores smaller than an increasing size
threshold. As a result, the Minkowski functionals are obtained as a function of the
minimum pore diameter (Fig. 6.2) and are then referred to as Minkowski functions
M0 � 3(d ) (Vogel et al., 2010). The increasing volumeM0(d ) with decreasing d is an
alternative approach to quantify the cumulative pore size distribution. Useful appli-
cations ofM0 � 3(d ) to predict functional behaviour are again reviewed in Armstrong
et al. (2019).

6.2.5 Case Study on Tillage-Induced Pore Structure

All the aforementioned metrics were summarized in Table 6.1 for the pore structures
obtained with X-ray CT scans of a ploughed and no-till topsoil with a voxel size of
60 μm each (Fig. 6.1). The total volume (6.48 mm3) is too small to be representative.
The comparison is only meant to serve demonstration purposes. For a more com-
prehensive comparison of the pore structures including implications on saturated and
near-saturated hydraulic conductivity, see Schlüter et al. (2020a). Even though the
visible porosity of the ploughed soil is only increased by a factor of 1.4, the surface
area density is 3.4 times higher. This is because a large fraction of porosity in the
no-till pore structure is concentrated in a few, rather smooth biopores, whereas
ploughing results in a continuum of homogeneously distributed pores with irregular,
rough surfaces. The mean breadth is positive in both cases, implying that both



structures are on average convex. A positive (negative) m2 can be interpreted more
intuitively as an increase (decrease) in surface area, when the pore space is slightly
dilated. A positive Euler characteristic in the no-till soil points to poor connectivity,
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Fig. 6.2 X-ray CT derived pore size distribution within different sample sizes. (a) A cross section
through one sample at three sample sizes to illustrate the relation in size (right) and the change in
resolution (left). (b) Cumulative pore size distribution (dashed line) and corresponding distribution
of the different sample sizes (decreasing intensity of blue ¼ decreasing sample size; ϕvis ¼ m0).
Inset shows the frequency distribution of the corresponding curves. The intersection points were
used as transition points between two sample sizes to calculate the joint, cumulative distribution
(Lucas et al., 2020b) reprinted with permission



with a higher number of isolated pore objects than redundant connections. Note that
many of these isolated pores (clearly visible in Fig. 6.1) would be connected if the
soil was scanned at a finer resolution. The fragmentation of the intact soil structure
by ploughing causes a well-connected pore structure which is reflected in a negative
Euler characteristic. The small differences in fractal dimension and mean pore
distance between both images are not really indicative of the vastly different
pore morphologies. Both pore structures facilitate percolation. However, the con-
nection probability Γ is much higher in ploughed soil due to one dominating pore
cluster. Typically, there is a steep increase of Γ in a porosity range of 0.05-0.1
(Jarvis et al., 2017; Schlüter & Vogel, 2016). Note that a limited domain size like in
Fig. 6.1 may lead to a bias towards lower Γ, since the biopores in the no-till soil are
likely to be connected outside the domain (Lucas et al., 2020b). The mean pore size
and critical pore diameter are greater by one order of magnitude because of one
approx. 5 mm thick earthworm burrow that stretches from top to bottom of the
domain.
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The variability in simulated, saturated hydraulic conductivity reported by
Schlüter et al. (2020a) was best explained by the critical pore diameter in no-till
pore structures (Spearmen R ¼ 0.89, n ¼ 13) and by visible porosity and connection
probability in pore structures resulting from ploughing (Spearmen R ¼ 0.62-0.63,
n¼ 13). For near-saturated hydraulic conductivity at a matric potential of h¼�2 cm,
i.e. when a large fraction of continuous biopores is blocked by air, the connection
probability was an excellent predictor across both pore structures (Spearmen
R ¼ 0.97, n ¼ 26). The explained variability generally decreased when simulated
hydraulic conductivities were substituted by experimentally obtained values
irrespective of the measurement technique (hood infiltrometer in the field or tension
disc infiltrometers on lab columns) (Schlüter et al., 2020a).

6.3 Scale Issues in Pore Structure Characterization

The image resolution of X-ray CT scans is linked to the diameter of sample through a
fixed factor that is given by the detector resolution (i.e. the number of pixels in the
horizontal direction of the field of view). Typically for industrial CT scanners this
factor is currently in the range of 1000-2000 (Rabot et al., 2018). For instance, the
sub-volumes shown in Fig. 6.1 were cut from larger CT scans of cylindrical soil
cores with a diameter of 100 mm and a resolution of 0.06 mm, amounting to a factor
of 1667. When following the well-founded rule that (a) pore objects need to be at
least 2-3 voxels thicker than the voxel resolution to be faithfully detected and (b) that
the analysed volume needs to be much larger than the typical size of pore objects, the
size range of pores that can be analysed while being sampled representatively is
rather below one order of magnitude than above (Vogel et al., 2010). The trade-off
between resolved details and representativeness is demonstrated in Fig. 6.2a for
intact cores of different diameters taken from the same sample.
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To broaden the range of scales detected with X-ray CT it is appealing to combine
pore structure information of samples scanned at different resolutions. The method-
ological approach to generate a joint pore size distribution from the pore size
distribution of differently sized samples has been introduced by Vogel et al.
(2010) and applied frequently since (Lucas et al., 2020b; Schlüter et al., 2018b;
Schlüter et al., 2011). In Fig. 6.2b, the frequency distributions of pore diameters
obtained by the local thickness transform are plotted for three different resolutions.
The joint pore size distribution is obtained by using the intersection points between
the individual pore size distributions as transition point from one resolution to the
next (Lucas et al., 2020b). The total porosity detected after this fusion of different
scales is always higher than the porosity of each individual scale, while this approach
accounts for the fact that there is a considerable overlap in pore sizes detected at
various scales. Modifications of this approach are possible. For instance, information
on smaller pore diameters does not necessarily have to come from X-ray CT but can
be provided through other imaging modes such as electron microscopy (Gerke et al.,
2021). The pore size does not have to be determined with the local thickness
transform (maximum inscribed sphere method) but could be determined via
rescaling towards coarser resolutions.

The change in connectivity metrics (Γ, m3, dc) with increasing minimum pore
diameter can also be indicative of the underlying pore structure (Koestel et al., 2020;
Lucas et al., 2020b) as it reveals the typical size range of salient pore types such as
root channels or packing pores that provide long-range pore continuity. Therefore, it
would be attractive to also combine connectivity information from different scales in
a similar way as described above. This is easily done for the Euler characteristic,
whereas the connection probability, Γ, needs to be corrected at the scale transition
for the fact that smaller sample sizes always cut off long-distance connections and
therefore introduce a bias (Lucas et al., 2020b). Approaches for scale fusion of other
metrics listed in Table 6.1 have yet to be developed.

6.4 Correlative Imaging

6.4.1 Practical Issues

Scale issues do not only arise when pore metrics obtained at different voxel sizes are
combined in a statistical way. They become even more aggravating when the image
data from different sources needs to be merged or aligned with each other. The
technical term for this method is image registration, or co-registration. An example
of image registration is shown in Fig. 6.2a for the nested subsamples of a larger soil
column. This particular example is a rather simple exercise, as the imaging technique
is the same, the sample was not deformed internally and the size difference from one
scale to another was less than an order of magnitude. Successful image registration
can be more challenging when internal deformation of the soil volume occurs during
consecutive scans. In some cases, this deformation is the actual research interest and



can be quantified by maps of local deformation magnitude or vector fields. Soil
science related topics include soil compaction (Peth et al., 2010; Schlüter et al.,
2016) or bioturbation (Keyes et al., 2016; Koestel & Schlüter, 2018). In most cases,
however, this internal deformation is unintended. It can be induced by subsidence of
loosely packed soil, inner erosion through water flow, gas trapping and bubble
expansion, desiccation or many other processes that occur during sample prepara-
tion, incubation or any other measurements carried out on the sample in between
scanning events.
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Probably the toughest challenge of image registration arises when 2-D micros-
copy data on soil sections is registered with 3-D X-ray CT data obtained prior to
sectioning. Not only is the imaging modality different (i.e. salient features in both
images are not necessarily the same) and the structure perhaps deformed during resin
embedding, but also is the field of view of the microscopy image often limited and
depth resolution in the third dimension unknown and locally variable. This turns the
quest for good registration into a search for the 2-D needle in the 3-D haystack. This
challenge is tackled best by splitting it into a series of registration steps. That is, light
microscopy (LM) can be applied as a bridging technique on the entire soil section at
low cost to increase the chances to capture salient features that are easily found in the
X-ray CT image of the 3-D sample. The actual micrograph of interest is usually
obtained on a smaller region (e.g. fluorescence microscopy for counting bacteria or
electron microscopy for elemental mapping), since imaging the entire soil section
would be too costly or time-consuming. The 2-D-2-D registration of this micrograph
into the light microscopy image is much easier than the direct 2-D-3-D registration
of a small micrograph into X-ray CT image. An example for this sequential proce-
dure is given in Fig. 6.3. In that case study, the combination of physical structure and
bacterial ecology revealed that a large majority of bacteria are located in mesopores
(<10 μm) (Schlüter et al., 2019a).

6.4.2 Software Implementations

Image registration is required for the joint analysis of consecutive X-ray CT scans,
which is sometimes referred to as 4-D or time-lapse X-ray CT. Likewise, it is
required for the joint analysis of different tomographic techniques, subsumed
under the term correlative imaging. The methodology is by and large the same.

Image registration in Fiji/ImageJ is available in various ways. They all operate
with landmarks that have to be set by the user in both the target image and the
moving image or by identifying salient features in both images automatically.
Deformable registration based on manually defined landmarks is implemented in
the BigWarp/BigDataViewer plugin (Bogovic et al., 2016). Descriptor-based regis-
tration based on automatic feature detection was implemented in Fiji/ImageJ by
Preibisch et al. (2010). Both are included in the standard Fiji/ImageJ distribution.
Image registration of 2-D microscopy data of various modalities is, among others,



available through the Correlia plugin (Rohde et al., 2020). Elastix is a powerful and
very flexible standalone software for image registration (Klein et al., 2010) that is
also available as a plugin for Fiji/ImageJ. Many practical implementation tips for
image registration with elastix are given in Schlüter et al. (2016).
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Fig. 6.3 Case study of correlative imaging on a small, repacked, soil core with a leaf fragment
depicted in green. First, the X-ray CT data is registered to the light microscopy image with the
elastix software by jointly (a) minimizing the distance between landmark pairs (green circles) and
(b) optimizing a mutual information criterion that evaluates the correspondence of intensities
everywhere in the overlapping domain. Thus the obtained transformation matrix is employed on
the pore size map via a sub-routine called transformix to project 3-D pore diameters into the
microscopy plane. The spatial distribution of bacteria (yellow circles, n ¼ 536) was manually
detected on the fluorescence microscopy image, which was also registered into the light microscopy
image. In this way, the relative abundance of bacteria in different pore diameter classes was
determined using the ROI Manager of Fiji/ImageJ. Bacteria located in pores below the detection
limit of CT (<10 μm) were assigned to mesopores. Visible pores were classified into narrow
macropores (<50 μm) and wide macropores (>50 μm). Modified from Schlüter et al. (2019a)

There is limited functionality in Fiji/ImageJ for 2-D-3-D registration as explained
above, due to the different dimensionality of the data. A notable exception is
BigWarp, which can handle 2-D microscopy images and 3-D tomography images
simultaneously. In addition, with BigWarp it is possible to determine the landmarks
on the greyscale CT data, which typically contains the richest details in microstruc-
ture, and subsequently employ the registration with these landmarks on any other
processed CT data derived from it (segmented data, distance data, etc.). The same
two-step strategy has been applied with elastix and a sub-routine called transformix
in Fig. 6.3 (Schlüter et al., 2019a).
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6.5 Conclusions

We have surveyed frequently used metrics for quantifying pore morphology in
binary X-ray CT data of soil and in how far they relate to soil functioning. The
trade-off between resolution (detail) and size (representativeness) has been stressed
together with strategies to overcome it. In addition to extending the scale, an
extension in information content was described by combining different imaging
techniques and employing correlative imaging. We are optimistic that the soil
science community might be on the verge of leaving behind a pioneering phase in
which working groups have developed and applied an enormous diversity of differ-
ent protocols for pore structure analysis. In the future we may progress into a
consolidation phase with more standardized image analysis protocols that allow
for direct comparisons of X-ray CT data from different sources or to develop large
databases on pore structure information as recently suggested by Rabot et al. (2018).
This would open up a novel avenue to identify structural characteristics that are
typical for different soil types or different land use and soil management.
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Chapter 7
X-ray Computed Tomography for Studying
Solute Transport in Soils

Sandeep Kumar, Poulamee Chakraborty, and Stephen Anderson

7.1 Introduction

The study of pollutant transport through soil is important to protect soil and water
resources from contamination (Anderson et al., 2015a, b). Chemicals (including
agrochemicals and waste from petroleum, nuclear and several other industries) may
appear at elevated concentrations causing major soil and water pollution and have
the potential for unintended consequences to human health (Bus & Hammond,
2007). From an agricultural perspective, the usage of mineral fertilizer has risen
10 times since 1960, and pesticide sales have risen from approximately $1 billion to
$35 billion per year since 1970 worldwide (FAO, 2018,). In addition, global annual
mineral nitrogen fertilizer application to croplands is around 115 million tonnes, and
around 4.6 million tonnes of pesticides are sprayed into the environment each year
(FAO, 2018). Particularly, soluble nitrate ions (NO3

�) originating from fertilizers
are very mobile and are common contaminants of surface and groundwater causing
serious health issues in infants (methemoglobinemia or blue-baby syndrome) as well
as eutrophication of water bodies (Hubbard et al., 2004). Most of these pollutants
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may be transported to groundwater via leaching through the vadose zone and can
lead to significant ecological implications through soil and water contamination (Dor
et al., 2019). Furthermore, these chemicals can persist in the soil for many years and
can make once-rich soil unusable for farming, and their bioaccumulation can wipe
out living creatures. In addition to these human-induced contaminants and industrial
chemicals, several pollutants (e.g., arsenic) are of geological and geohydrological
origin (van der Zee & Leijnse, 2013). Significant costs are involved in the remedi-
ation of contaminated soil and water sources (Pimentel et al., 1992). Therefore, it is
important to understand how these chemicals interact with and are transported
through the soil profile (Carvalho, 2006) to reduce their negative impacts on the
environment using different management practices (structural and non-structural)
leading to increased bio-efficacy and reduced use rates (Grayling et al., 2018).
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Traditionally, the concentration of selected chemicals in soil is considered as one
of the controlling measures of the degree of soil pollution. However, over the last
few decades, the residence time of a contaminant or pollutant in the soil is becoming
an important measure, which is largely influenced by a combination of transport,
retention, reaction, and transformation processes which a solute undergoes in soil
(Govindaraju & Das, 2007). Understanding and parameterizing solute transport
through porous media is the first step towards the mitigation of soil and water
pollutants. Therefore, this chapter focuses on conventional and recent Computed
Tomographic (CT) techniques used in the measurement of solute and water transport
through porous media.

7.2 Methods to Study Solute and Water Transport in Soils

In the last two decades, the study of solute transport to groundwater has become of
increasing prominence due to the rising awareness about pollution and water quality.
Upgrading groundwater preservation techniques are indispensable and are supported
by detailed studies on pollutant transportation and hydraulic behaviour of soils
(Anderson et al. 2015a). Knowledge of solute and water transport helps to lessen
the detrimental impacts of pesticides on the environment and develop various
innovative approaches that reduce the application rate and increase the efficiency
of agrochemicals (Grayling et al., 2018). There are various methods proposed to
measure solute and water transport parameters. Some of these methods are discussed
below.

Solute transport can be predicted by performing column transport experiments in
the laboratory (outflow experiments) under a variety of water flow conditions
(Reddy et al., 1992; Weber et al., 1993) and by lysimeter studies (Byers et al.,
1995; Weber et al., 1994). Parameter estimation codes such as CXTFIT (Toride
et al., 1995) are used for fitting analytical solutions of the transport equation to
experimental breakthrough curves (BTCs). These breakthrough experiments are
used to measure the movement and dissipation of pesticides, insecticides, and
other harmful chemicals and to determine the potential contamination of



groundwater (Redondo et al., 1997). Solute transport parameter estimation for
various conditions such as nonlinear adsorption of chemicals or preferential flow,
for which closed form analytical solutions are difficult, are obtained through numer-
ical solutions (Šimůnek & Van Genuchten, 1999). The numerical codes enable one
to obtain several parameters in the unsaturated soil; these hydraulic functions can be
estimated from observed water contents, pressure heads, and/or instantaneous or
cumulative boundary conditions using the numerical inversion of the Richards
equation. Similarly, the numerical inversion of advection-dispersion equation
(ADE) allows the estimation of solute transport and/or reaction parameters using
breakthrough curves. However, the heterogeneity of the soil profile often results in
anomalous dispersion of solute. Subsequently, the ADE has been continuously
modified over the decades; for example, Coats and Smith (1964) proposed a
mobile-immobile model by adding a source/sink term to the ADE to take care of
the mass exchange between mobile and immobile water. Then after that, various
modifications of ADE with the introduction of multiple-rate and multiple-region for
solute transport simulation have been proposed (Šimůnek et al., 2003). However,
these modifications introduced a large number of parameters that may depend not
only on the soil physical properties (Zhang et al., 2007) but also on the water flow
(Pang & Hunt, 2001). Moreover, the direct measurements of solute transport using
breakthrough curves can be time-consuming (Karup et al., 2016). In addition,
traditional methods of bulk ex-situ chemical or eluate analysis can be difficult at
estimating the flow of solute in a spatio-temporal manner simultaneously (Grayling
et al., 2018). The extrapolation of laboratory-derived data for predicting solute
behaviour under field conditions is tenuous considering the many variables that
influence solute dynamics. Therefore, a technique providing spatial distributions of
contaminant concentrations and groundwater velocities such as the non-destructive
method of X-ray CT may be a possible method for studying solute transport through
porous media. Some of the key parameters of solute and water transport estimated
using the X-ray CT approach are given in Table 7.1, and a comparative analysis
between traditional and X-ray CT technique is given in Table 7.2.
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Effective evaluation of solute and water transport in soils in the laboratory can be
arduous (Anderson et al., 2014). CT imaging techniques, on the contrary, are fast,
robust, non-invasive, permit the 3-D visualization of soil structural properties on a
micro-metre scale (Carlson et al., 2003; Hapca et al., 2015), provide information on
the spatial distribution of soil pores (Rab et al., 2014), and can be used to study
transport parameters at a resolution not possible with traditional methods. In addi-
tion, CT procedures have been applied to characterize microbial habitat microstruc-
tures, root architectures, solute movement, gas exchange, and water flow properties
under different soils and crop management systems (Nunan et al., 2006; Tracy et al.,
2010; Flavel et al., 2014; Kettridge & Binley, 2008). In numerous examinations,
X-ray CT has been utilized in a spatial-temporal manner to explore the hydro-
physical attributes of the soil (Taina et al., 2008). Compacted soil layers and their
boundaries can also be identified through CT scanning with 3-D images (Garbout
et al., 2013; Grevers et al., 1989). Imaging the soil pore space in 3-D and the
quantification of pore structure can help in understanding the links between



macropore characteristics and fluid flow and solute transport (Katuwal et al., 2015).
In many studies, X-ray CT has been used to investigate the hydro-physical charac-
teristics of the soil in a functional and temporal manner. The following sections
describe the procedure for utilizing CT scan techniques for measuring the solute and
water transport parameters in soil.
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Table 7.1 Traditional and X-ray Computed Tomography (CT) methods for studying solute and
water transport in soils

Studied key parameters Methods References

Preferential water flow Helical CT approach Sammartino et al. (2012)

Preferential water flow in paddy
fields

X-ray CT and break-
through curve

Zhang et al. (2015)

Porosity and hydraulic
conductivity

X-ray CT-measured
solute breakthrough

Anderson et al. (2003)

Soil structural (macroporosity and
bulk density) properties

X-ray CT and visible
near-infrared
spectroscopy

Katuwal et al. (2018a)

Cu and water transport X-ray CT approach Paradelo et al. (2013)

Solute transport Visible–near-infrared
spectroscopy

Katuwal et al. (2018b)

Transport of solute and colloid
tracers in soils

X-ray CT approach Soto-Gómez et al. (2019)

Solute transport Fast X-ray CT Van Offenwert et al. (2019)

Tracers to visualize solute
movement

X-ray CT Anderson et al. (2003);
Clausnitzer and Hopmans (2000);
Luo et al. (2008)

Visualization of soil water
movement

X-ray CT Mooney (2002)

Tracing particle movement in soils X-ray CT Grayling et al. (2018)

Microstructure due to wetting and
drying, and subsequent pesticide
mobility

X-ray CT Dor et al. (2019); Zhang et al.
(2015)

Root structure in influencing nitrate
leaching

X-ray CT Galdos et al. (2020)

7.3 CT Scanning for Estimating Solute and Water
Transport

Solute and water transport in soils are impacted by pore-water velocity, hydraulic
conductivity, solute dispersivity, and porosity (Anderson et al., 2014). The pore
structure of soils is one of the most important parameters influencing solute and
water transport through soil. This structure is closely related to surface runoff and
soil permeability and, therefore, is an important determinant of soil water storage for
crop production. Pore-structure is a critical parameter that can affect the movement



and storage of water, nutrients, and microfauna in the soil (Seobi et al., 2005).
Traditionally, various methods such as density measurements, gas pycnometry
(Danielson & Sutherland, 1986), mercury intrusion (Danielson & Sutherland,
1986), soil bulk density data, soil water characteristic curves, and tension
infiltrometer data (Everts & Kanwar, 1993) have been successfully used to charac-
terize soil porosity or pore-size distribution; albeit these methods may not precisely
expose the obscure features of soil pores. Within a distance of only a few
millimetres, soil porosity can be highly variable, causing water and transport param-
eters to differ spatially with orders of magnitude. Therefore, the measurement of
pore structure at mm to μm scales has been considered to be significant in antici-
pating micro-scale liquid flow properties (Yang et al., 2018). X-ray CT has been
effectively used for its potential to directly study soil-pore networks (Katuwal et al.,
2018a, also see Chap. 6).
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Table 7.2 The advantages and disadvantages of the traditional and CT approaches for measuring
solute and water transport in soils

Methods Advantages Disadvantages References

Traditional
(e.g. tracer
outflow
experiments)

Less expensive Lack of real-time data especially
a 3-dimensional perspective

Grayling
et al.
(2018)

Equipment often readily available Destructive methods

Inability to represent spatial dis-
tribution of pores and their
network

Computed
Tomography

Visualization of the internal fabric
of a porous media such as soil.

Expensive Zhang
et al.
(2015)

Non-destructively visualize the
internal pore geometry of the
structured media with repeating
scanning.
Characterization of the active
processes in situ can be attempted
assuming the solute/particulate
material can be distinguished
from the soil background.

Best suited for the visualization of
motionless objects.
Resolution-sample size trade off
exists. Representative elementary
volume may be different for dif-
ferent property.

Grayling
et al.
(2018)
Luo et al.
(2008)

Anderson et al. (2003) conducted a breakthrough experiment taking intact soil
cores and scanning the cores several times before, during, and after solute break-
through experiments using potassium iodide (KI) (a conservative solute, which does
not react with the soil). The soil core was scanned while being saturated with water
and while being saturated with dilute KI solution to obtain:

μ pþwð Þ ¼ μp 1� ϕð Þ þ μwϕ ð7:1Þ
μ pþwþcð Þ ¼ μp 1� ϕð Þ þ μ wþcð Þϕ ð7:2Þ



where μ is the linear attenuation coef cient with the subscript p + w for water-
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fi

saturated pores, p for dry porous media, p + w + c for saturated KI solution, and ϕ is
the porosity of the soil core. Combining the two equations, the following is obtained:

ϕ ¼ μ pþwþcð Þ � μ pþwð Þ
μ wþcð Þ � μ wð Þ

ð7:3Þ

Therefore, porosity, ϕ, for a voxel, centred at x,y,z is given as

ϕ x, y, zð Þ ¼ CTN x, y, zð Þ pþwþcð Þ � CTN x, y, zð Þμ pþwð Þ
CTN wþcð Þ � CTN wð Þ

ð7:4Þ

where CTN(x, y, z)(p + w) is the CT number in the voxel centred at x,y,z containing
only water-saturated pores (CT number is the X-ray absorption coefficient in each
voxel normalized to the corresponding absorption coefficient for water expressed in
Hounsfield units, Lindgren (1991)); CTN(x, y, z)(p + w + c) is the CT number in the
voxel centred at position x,y,z containing pores saturated with aqueous KI solution;
CTN wð Þ is the mean cross-sectional CT number for the cylinder containing only
water; and CTN wþcð Þ is the mean cross-sectional CT number for the cylinder
containing only aqueous KI solution. The average CT-determined porosity for
each soil core was calculated by averaging the porosity values estimated for the
entire soil core.

In addition to total porosity, soil macropores can have an important role in
transporting solutes, water, and other colloids in the system (Soto-Gómez et al.,
2018). These macropores are the pores or structural cracks in the soil with an
effective diameter of>1000 μm (Jarvis, 2007; Anderson et al., 2014). As the indirect
measure of soil pore size distribution or porosity does not include any detailed
information on the spatial distribution of the pores or the nature of the pores (Gantzer
& Anderson, 2002), CT scanning can be applied to estimate the numbers, structure
(in terms of size and shape), distribution, and 3-D visualization of macropores in soil
(Anderson et al., 2003). For example, Fig. 7.1 shows reconstructed 3-D macropore
structure for intact soil cores collected from a native grass land, a cropland under
long-term no-till, and a conventionally-tilled cropland. Luo et al. (2010) quantified
and observed distinct differences in the various characteristics of macropore net-
works such as continuous macroporosity change along depth, macropore size dis-
tribution, and connectivity (path number and node density) for two different soil
types (Hagerstown silt loam and Morrison sand) and two land uses (row crop and
pasture). Zhang et al. (2019) studied intact soil cores from a plot with long-term
fertilizer experiments, analysed the macropores with the help of CT scanning, and
characterized the soil cores as bio-pore dominated and matric dominated samples.
The pores with pore length to pore radius ratio of more than 20 were considered as
bio-pores in their study. They also calculated the air permeability and saturated
conductivity for the cores using traditional methods and assessed their relationships
with the macropore characteristics. They identified the mean macropore diameter of



the limiting layer (the layer with minimum value of macroporosity) as the best
correlated variable.
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Fig. 7.1 Three-dimensional visualization of soil macropore networks for a native grassland,
no-tilled cropland, and conventionally-tilled cropland. Coloured soil macropores are shown in
non-porous white background. Source: Created by Dr. Poulamee Chakraborty

Hydraulic conductivity is difficult to measure precisely at small scales using
conventional laboratory methods as porosity varies over small distances making
the conductivity to vary by orders of magnitude. Therefore, averaging is considered,
which often fails to yield sufficiently accurate information, particularly for hetero-
geneous porous media such as soil. The direct chemical transport observation
collected using CT scan images, therefore, has emerged as a valuable tool for
understanding solute and water transport processes. Anderson et al. (2003) com-
bined X-ray CT imaging with iodide tracer breakthrough experiments and used an
inverse approach with CT-determined porosity distributions (Eq. 7.4) to estimate the
distribution of soil hydraulic conductivity within undisturbed soil cores. They
measured the hydraulic conductivity values on a per voxel basis and observed a
positively skewed frequency distribution for the conductivity values for a particular
soil core which showed the influence of macropores on the conductivity values. Dal
Ferro et al. (2015) used the X-ray CT technique to obtain the saturated hydraulic
conductivity of the largest pore, which represents the highly networked large
singular pore within soil cores. They utilized a modified Poiseuille equation to
estimate water flow through the pores as a function of the CT-measured tortuosity
and discrete compactness. Their study combined the 3-D pore-shape aspects
(i.e. tortuosity and discrete compactness) with the pore volume to calculate the
saturated hydraulic conductivity using Darcy’s equation and obtained a good esti-
mate of the conductivity values within the same order of magnitude as that of the
experimentally determined ones. The CT technique, therefore, is useful in providing
additional information on pore structure to estimate the variations in soil hydraulic
parameters.
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Fig. 7.2 Relative iodide concentration versus pore volume for solute breakthrough using both
effluent samples and computed tomography measurements Source: reconstructed from Anderson
et al. (2003)

In addition to estimating soil hydraulic properties, CT scanning of a solute
breakthrough curve can also be utilized to measure solute transport parameters
(Anderson et al., 2014). Transport breakthrough experiments were conducted on
intact cores with dilute KI as a solute. The relative concentration of KI solution for
each pixel in a core based on attenuation coefficient was, C(x,y,z)rel, defined as:

C x, y, zð Þrel ¼
CT x, y, z, tð Þ � CT x, y, z, t ¼ 0ð Þ
CT x, y, z, Tð Þ � CT x, y, z, t ¼ 0ð Þ ð7:5Þ

where CT(x,y,z,t) is the X-ray attenuation value for a voxel during breakthrough at
time t; CT(x,y,z,t ¼ 0) is the X-ray attenuation value when the core is saturated with
water; and CT(x,y,z,T) is the X-ray attenuation value when the soil is fully replaced
by the dilute KI solution (Anderson et al., 1992). The solute velocity, dispersion
coefficient, and dispersivity values were obtained using the CT-measured break-
through curves. Fig. 7.2 shows the relative iodide concentration versus pore volume
for the solute breakthrough curve obtained using effluent outflow measurements and
computed tomography measurements (adapted from Anderson et al. (2003)).
Anderson et al. (2014) observed lower values for dispersivity using the CT method
as compared to the outflow method, which might be attributed to additional disper-
sion through the column end-plate in the outflow experiments. Their study showed
the utility of CT as a useful technique to estimate solute transport parameters.

In addition to using CT-measured breakthrough curves to estimate the water and
solute transport parameters, the CT technique has also been used for simulating



solute and water transport solving the Navier–Stokes equation directly on the CT
derived pore network (lattice Boltzmann method) or using pore network modelling
(Bultreys et al., 2015). For example, Köhne et al. (2011) utilized the CT derived pore
size distribution, interface area density, and connectivity to set up an equivalent pore
network model for predicting the breakthrough curves of Br—and Brilliant Blue
FCF at unsaturated and steady-state flux. Similarly, Gharedaghloo et al. (2018)
modelled water flow and solute transport in the unstructured pore networks extracted
from CT images of peat soil. In addition to these studies, X-ray CT is used to
visualize the various structural changes in soil due to anthropogenic or natural
causes. For example, soil cracks caused by hysteresis can change the soil structure
(Dor et al., 2019). Zhang et al. (2015) used CT to study the impacts of wetting and
drying on soil microstructures and the subsequent impact on solute mobility in
agricultural fields. Dor et al. (2019) packed sandy clay loam and Geva clay soils,
saturated them with distilled water, and obtained CT images. The same soil samples
were then subjected to drying followed by rewetting and rescanning to complete the
wet-dry cycle. They reported that during the wetting and drying cycle, the structure
of clay soil was weakened due to aggregate disintegration as the equivalent diameter
of the particle-size distribution modal value was decreased, which enhanced atrazine
desorption and leaching. However, the structure of a sandy clay loam soil was
strengthened due to CaCO3 cementation and reduced the atrazine desorption and
leaching. Similarly, Paradelo et al. (2013) also used CT to study soil pores
(>180 μm) and their subsequent impact on solute transport. They used CT scanning
to measure soil macroporosity and observed it to be the best predictor of air
permeability and saturated hydraulic conductivity. They also reported that the
relative amount of Cu released was strongly correlated with the CT-measured
macroporosity indicating the potential of this visualization technique for predicting
contaminant transport through soil. X-ray CT can also be used to investigate the
agrochemical movement through various plant systems, for example, Scotson et al.
(2021) have recently used CT scan to study the differences in solute movement
through ridged and flat plant systems with and without ponding water. They
observed lower infiltration of solute in ridged plant system as compared to the flat
plant system in absence of ponding water, however, ponding water negated the
effect. This indicates that the anticipated rainfall is an important factor to be
considered while applying agrochemicals. In addition, CT techniques have been
used to study root structure and estimate its influence on solute transport. Galdos
et al. (2020) scanned repacked soil cores with maize, ruzigrass, and palisade grass
grown in the cores and obtained the CT scans of the cores to visualize the root
structure. The images were also used to calculate the total porosity in each image and
the relative size, shape, and connection of each pore in 3-D using the BoneJ plugin
within ImageJ. Nitrate breakthrough curves were obtained for the same cores and the
CT scan-derived parameters were combined to observe that a high volume of thin
roots was more effective at reducing and delaying leaching in comparison with
similar volumes of thicker roots. They reported that plants with fine roots can
generate soils with higher microporosity, increased connectivity of the pore network,
and increased tortuosity, which can help to retain the nitrate within the soil. Thus, CT
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imaging techniques are emerging as an important tool to visualize soil structural
changes and root networks (see Chap. 9). The visualization of pore networks using
CT techniques can further be improved by combining this with other visualization
tools, for example, to study the pores in soil that can transport microspheres. Soto-
Gómez et al. (2018) utilized fluorescence macrophotography along with CT tech-
niques to trace the colloid transporting pores in intact soil columns. Thus, this
technology can be used to assess and refine important management practices to
reduce nutrient leaching. The chapter so far has discussed the advantages of CT scan
as a straightforward interpreter of transport processes in soil; however, some of the
limitations of the technique that can reduce the accuracy of parameter estimation are
discussed in the following section.
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7.4 Limitations of CT Techniques for Estimating Water
and Solute Transport through Soil

Although CT has emerged as an important tool to visualize and estimate water and
solute transport through soil, it still has some limitations and requires a continuous
improvement in the imaging and image processing techniques to improve the
quantification of transport properties. For example, the CT technique generates
spatial data of the entire sample over the whole course of the scan, therefore, it
requires repeated scanning to track solute transport and is not suitable for tracers
moving too rapidly through the soil relative to the time of imaging (Grayling et al.,
2018). However, due to minimal disturbance and recent reduction in scanning time,
the same soil sample can be made available for repeated scanning in the region of
interest for different parameters (Nielsen, 2004). Another limitation of the CT
procedure is that a thick object usually absorbs too much energy, resulting in low
X-ray flux and poor image quality thereby reducing the sample size that can be
scanned. However, with recent advancements in CT technology, larger soil samples
are being measured (Mooney et al., 2012). The increase in scanning sample size has
also helped in achieving a representative elementary volume (see Chap. 3) for the
CT-measured porosity and fluid properties (Gharedaghloo et al., 2018). In addition,
as previously stated elsewhere, various CT scanning artefacts, such as beam hard-
ening (the increase in mean X-ray beam energy as it passes through the scanned
object as lower-energy X-rays are attenuated more readily by the object than higher-
energy X-rays), are reduced by the introduction of filters in modern CT machines
(see Chap. 4). Another artefact that is encountered in CT is the partial volume effect
that occurs because of the presence of a number of different substances in a voxel
resulting in a CT number, which is an average value for all the materials present.
This creates difficulty in obtaining a bimodal histogram of the grey level when
thresholding (Gackiewicz et al., 2019). However, recent improvements in the reso-
lution of the CT images and image processing techniques have reduced this effect
(see Chap. 5).
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7.5 Conclusions

Studying the transport of solutes in porous media is important to protect water
resources from contamination. The X-ray Computed Tomographic techniques
have emerged as a fast, robust, and non-invasive method to provide a unique
opportunity to quantify detailed pore morphological parameters and permit 3-D
visualization of soil structural properties. Most studies using X-ray CT in soil
assessed the 3-D structure of soil macropores because of the strong contrast between
the linear attenuation coefficients of the soil matrix and pores. However, this
technology is also an important tool for non-destructively imaging and estimating
the dynamic water and solute transport properties of porous media, particularly with
the recent advancement in the reduction of scanning interval. In addition, CT has
made the pore scale modelling of water and solute transport possible by providing
the 3-D pore network and allowing the Navier–Stokes equations to be solved directly
on a gridded or meshed 3-D image of the pore space geometry. While CT can be
expensive, it does provide promising potential for assessing transport processes to
help in more accurately predicting contaminant transport through soil which is likely
to improve over time.
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Chapter 8
X-ray Imaging of Mechanical Processes
in Soil

Mathieu Lamandé and Lars J. Munkholm

8.1 Introduction

Soils are generally subjected to a range of mechanical stresses. These stresses can be
applied by soil biota (e.g. earthworms, roots), during wetting and drying, freezing
and thawing, by trampling of animals and humans, or by machinery during agricul-
tural operations (e.g. tillage, traffic). The resulting deformations and their effects on
soil functions are complex. They can be quantified through bulk measurements
(e.g. water and gas transport parameters), where the interpretation is based on
conceptualisation of soil pore space (e.g. Arah & Ball, 1994). An alternative
approach, X-ray Computed Tomography (CT) imaging solves the issue of soil
opacity and allows three-dimensional observations of the internal changes in soil
structure (Taina et al., 2008; Chap. 6). This can be used to evaluate our interpretation
of bulk measurements and the concepts for the soil pore system. Our knowledge of
the stress-strain relationships of unsaturated structured soils is theoretical, with
simplifications of soil intrinsic properties (e.g. Burland, 1990), and empirical,
based on bulk observations where the stress-strain relationships are then given by
constitutive equations (Koolen & Kuipers, 1983). Developments in X-ray imaging
techniques have facilitated our understanding of the mechanical processes in soil.
This chapter will present a range of studies reporting these developments and will
give perspectives of using X-ray imaging in soil mechanics related research.
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8.2 X-ray CT in Relation to Tillage

The impact of soil tillage on soil is complex as it directly induces mechanical stresses
and indirectly strongly affects the stresses induced by soil biota, wetting/drying and
freezing/thawing processes. The mechanical stresses directly induced by tillage may
result in soil deformation, ranging from overall loosening (brittle/shear failure) to
deformation with, or without, volume change. Soil loosening is normally desired in
tillage, but will in many cases also involve compaction or shearing of parts of the
disturbed soil volume (e.g. compaction below tines). Further, soil tillage will
normally be associated with soil traffic, which may result in traffic-induced soil
compaction, as described in the next section of the present chapter. The avoidance of
tillage—as in minimal or no-tillage systems—limits the direct mechanical impact
from tillage and traffic, meaning that soil structure formation and stabilisation
depend strongly on natural physical processes and biotic influences from roots,
microorganisms and soil fauna (Bronick & Lal, 2005; Munkholm et al., 2019).
X-ray CT has been applied to the soil sciences since the 1980/90s as a powerful
tool to visualise and quantify, on the one hand, soil structural properties resulting
from tillage (or no-tillage) and associated key soil functions and, on the other hand,
the soil structural properties affecting soil behaviour in tillage. In one of the first
studies, Werner et al. (1993) used soil from tillage experiments to illustrate the
potential of X-ray radiographs to characterise the spatial changes in soil structural
properties—both on greyscale images and on binarised and segmented images. In
the following years more than 150 peer-reviewed papers were published according
to Web of Science (tillage + (X-ray CT or “Computed Tomography” or “CT
scanner”) + soil; accessed 11 Jan 2021) (Fig. 8.1). It took time before X-ray CT
became more broadly used in tillage research: fewer than five papers were published
per year until 2012 and fewer than 30 papers were published from 1991 to 2010. The
availability of the methodology and the interest in using X-ray CT visualisation for
tillage studies have escalated in recent years, and more than half of all the papers
(78) have been published in 2017–2020.

8.2.1 Visualisation and Evaluation of Seedling Growing
Conditions Produced by Tillage

Most of the early X-ray CT studies focussed on visualisation and evaluation of
macro-structure produced by tillage due to the coarse resolution of CT images and
simplicity in available image analysis methods. For instance, Munkholm et al.
(2003) used a medical CT scanner as a supplementary tool to visualise the
short-term impact of two different no-tillage drills on soil physical conditions for
germination and seedling growth. For the no-tillage drills, the tine created more
disturbance than the disk, though both created less disturbance than the traditionally
ploughed system (Fig. 8.2), which was interpreted as beneficial for readily



compactable sandy loams in a cool and moist climate. More recently, Blunk et al.
(2021) significantly advanced the use of X-ray CT for high-resolution analysis of the
effects of tillage on soil structural quality of the seedling environment (Fig. 8.3).
They showed that X-ray CT was a powerful tool to quantify the variability in soil-
seed contact in the field for sugar beet and to evaluate effects of soil type and tillage
intensity on seedbed conditions. Additionally, Blunk et al. (2017, 2019) demon-
strated the benefits of using X-ray CT for evaluating the impact of seed priming
techniques on early seedling growth. Thus, X-ray CT can be a valuable tool to
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Fig. 8.1 Yearly number of peer-reviewed papers that have been published according to Web of
Science using the following topic search (11 January 2021): tillage + (X-ray CT or “computed
tomography” or “CT scanner”) + soil

Fig. 8.2 2-D CT-scanning images showing variations in grey value, with the seed furrow at the
centre. Bulk density increases with brightness. Each image is from a single undisturbed column
(180 mm diameter, 200 mm height) from each treatment taken at T2. PL: conventionally ploughed
soil; DD-D: direct-drilled with single-disc coulters; DD-C: direct-drilled with chisel coulters.
Reproduced from Munkholm et al. (2003) with permission from Elsevier



develop management options (precision tillage, seed enhancement technologies) to
optimise seeding and seedling growth.
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Fig. 8.3 Example 2-D slices of each sampled soil texture and management technique. (a) Loamy
sand—strip tillage. (b) Loamy sand—minimum tillage. (c) Loamy sand—maximum tillage. (d)
Sandy clay loam—ploughed. (e) Sandy clay loam—ploughed and pressed. (f) Sandy clay loam—

ploughed and syncro. (g) Sandy loam—cultivator 1 pass. (h) Sandy loam—cultivator 2 passes. (i)
Sandy loam—cultivator 3 passes. Seedbed density characterisation was based on visual assessment:
Yellow ¼ compacted layer. Blue ¼ loose layer. Green ¼ seed. Scale bar represents 7 mm.
Reproduced from Blunk et al. (2021) with permission from Elsevier

8.2.2 Macropore Structure and Functioning Affected by
Tillage/no-Tillage

Tillage strongly influences the volume, size distribution and spatial organisation of
soil pores, especially macropores (>80 μm). X-ray CT is a very powerful tool for
3-D soil pore analysis and therefore it has been used to advance knowledge on tillage
impact on soil macropores since the method was first applied ca. 30 years ago, e.g.,
Werner et al. (1993). Early studies focussed on visualisation and analysis of volume,
diameter and shape of mainly large macropores (typically >0.3 mm pores) (Werner
et al., 1993; Gantzer & Anderson, 2002) due to low-resolution scanning (typically



associated with medical X-ray CT scanners). For research applications, most asso-
ciated CT scanners and image analysis methods have strongly advanced during the
last decade. Garbout et al. (2013) visualised and quantified macropore system
characteristics from a long-term tillage study (Fig. 8.4) and linked these measure-
ments to visual field evaluations and traditional soil pore results from measurements
in the laboratory on soil cores. Their X-ray CT results supported the detailed results
from more classical measurements and evaluations in relation to stratification of the
topsoil (0–20 cm layer) and showed that the ploughed soil had more macropore
networks, branches and junctions than the no-tilled soil. On the other hand, the
macropores from the ploughed soil had a lower degree of anisotropy and shorter
average branch length than the no-tilled soil. Thus, vertically oriented continuous
macropores (biopores), i.e., a more pipe-like system, were more dominant in
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Fig. 8.4 3-D visualisation of the X-ray CT-detected pore system for soil cores (Ø ¼ 20,
height ¼ 20 cm) of (a) direct-drilled soil, D, and (b) ploughed soil, P. The left image is a 3-D
view of the pore system. In the middle the soil pore network is obtained after skeletonisation. The
right image shows the pore thickness with the calibration thickness in mm. The samples were taken
in the same block and scanned using a medical scanner at a resolution of 0.39 mm x 0.39 mm x
0.60 mm. Reproduced from Garbout et al. (2013) with permission from Elsevier



no-tillage, which is in line with a number of other studies (Munkholm et al., 2013;
Schlüter et al., 2020; Pires et al., 2017; Borges et al., 2019). The pore characteristics
mentioned all significantly affect the functionality of the pore system for gas and
water transport. That is, a vertical oriented pipe-like system indicates good condi-
tions for fast movement of air and water in the vertical direction but limited
conditions for gas exchange and availability of nutrients and water in the zones
between the major vertical pores. In recent years, high-resolution scanners combined
with improved image segmentation and analysis methods have strongly advanced
3 characterisation and quantification of the macropores and the ability to utilise the
data for prediction and analysis of soil pore functionality (see Chap. 6). Significant
correlations between X-ray CT-derived soil pore system parameters and soil func-
tional properties related to gas and water transport in soil have been shown in a
number of recent tillage studies (Muller et al., 2019; Schlüter et al., 2020; Stumpf da
Silva et al., 2021). There appears to be a clear potential for utilising X-ray
CT-derived parameters (macroporosity, connectivity, critical diameter) to predict
and improve current pedotransfer functions used in the prediction of especially
convective gas and water transport properties in soil (Schlüter et al., 2020; Stumpf
da Silva et al., 2021). X-ray CT also has significant potential for improving our
understanding of the impact of tillage on greenhouse gas emissions (Alskaf et al.,
2021; Cooper et al., 2021; Mangalassery et al., 2014). These emissions are affected
by processes at both micro- and macroscale and therefore call for studies where
X-ray CT is used at different scales to study the impact of tillage-induced soil
structural changes on emissions of CO2, N2O and CH4 from soil. For instance, soil
pore characteristics detected using X-ray CT can be applied to quantify potential of
O2 supply in microsites and the risk of N2O emissions (Rohe et al., 2021).
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8.2.3 Using X-Ray CT to Predict Soil Fragmentation from
Tillage

Predicting the impact of tillage on soil structure was stated by Dexter (1979) as a key
challenge in soil tillage research and remains a valid and relevant challenge despite
40 years of focussed research. Seedbed preparation and sometimes also seeding
operations involve the break-up and fragmentation of soil. This fragmentation results
from the opening of cracks and pores and there is therefore a strong link between the
3-D characteristics of air-filled pores and the resulting break-up of soil when exposed
to tensile stresses (Munkholm, 2011). Thus, X-ray CT has the potential to signifi-
cantly improve our understanding of soil fragmentation and may be applied to model
the break-up of soil as part of tillage processes. Munkholm et al. (2012) showed a
strong positive correlation between CT-derived pore characteristics and the frag-
mentation of intact soil cores. Soil fragmentation showed strongest correlations with
pore volume, surface area and number of junctions per cm3, indicating the impor-
tance of both the abundance and morphological characteristics of the air-filled pore



space. Soil aggregate strength plays a key role in the fragmentation of soil in tillage.
Munkholm et al. (2016) used X-ray CT to evaluate the role of aggregate pore and
shape characteristics in relation to aggregate tensile strength and the fragmentation
of intact soil cores. They concluded that bulk soil fragmentation could be predicted
by CT-derived aggregate characteristics.

8 X-ray Imaging of Mechanical Processes in Soil 119

8.3 Soil Compaction Due to Traffic

Two types of soil structure deformation are included in the general definition of soil
compaction: the reduction of soil pore space (compression of unsaturated soils,
consolidation of saturated soils) and the modification of the soil architecture (defor-
mation, with or without a volume change) (Koolen & Kuipers, 1983). Petrovic et al.
(1982) reported an early study showing X-ray imaging techniques were well suited
to identifying soil densification. More recent studies, as described below, have used
X-ray CT to quantify structure deformation due to traffic in the field and to improve
our understanding of the processes leading to soil compaction.

8.3.1 Identification of the Long-term Effects of Soil
Compaction

Lamandé et al. (2013) investigated the potential of using medical CT scanning for
analysing subsoil structure in a long-term soil compaction experiment in Southwest
Sweden. Despite using a coarse resolution (0.6 mm in all three directions for 0.2 m�
0.2 m soil columns), the visualisation techniques could identify persistent effects of
subsoil compaction on the CT number of the soil matrix (i.e., the soil matrix density)
14 years after establishment of the experiment (Fig. 8.5). These differences were also
identified by the dry bulk density measurements on the same soil cores. One could
argue that there is no need to use an advanced technique such as X-ray CT if simple
mass-balanced laboratory measurements give the same results. However, one advan-
tage is that the visualisation technique is not destructive, so that soil cores can be
used for further analysis of the soil structure (e.g. measurement of hydraulic prop-
erties) or for submitting to remediation treatments (wetting/drying or freezing/
thawing cycles). In addition, in the same study, visualisation detected core-sampling
artefacts (displacement of stones creating cavities) that influenced the evaluation of
the effects of soil compaction from mass-balanced total porosity measurements.
Most importantly, visualisation of the soil structure in 3D helped interpreting the
bulk soil measurements. The comparison of the mass-balanced total porosity and the
CT-estimated macroporosity for five slices of the soil columns showed that root
exploration was more intense in the compacted plots (Fig. 8.5).
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Fig. 8.5 Mass balance-estimated total porosity and X-ray CT-estimated pore fraction (the resolu-
tion was approx. 0.6 mm in all three dimensions) as a function of depth for five slices of intact soil
columns (0.2 high and 0.2 m in diameter) sampled below the ploughing depth in a long-term soil
compaction experiment in Sweden. Reproduced from Lamandé et al. (2013) with permission from
Wolters Kluwer

In another long-term experiment, Schjønning et al. (2013) observed lower
CT-estimated macroporosity and a smaller number of CT-identified pores for a
clayey subsoil in Finland 29 years after compaction. Per definition, soil compac-
tion implies a densification of the soil (Håkansson 1990). The destruction of the
largest pores is expected first, but by how much are the “largest” pores affected?
This surely depends on the magnitude of the stresses applied to the soil, and on the
soil’s resistance to compaction, which is itself influenced by intrinsic soil proper-
ties and the pore water pressure during deformation. The resolution prevents a
complete characterisation of all the soil pore space through visualisation. However,
CT data below the threshold of what can be segmented on the images, i.e., the
“unseen”, can also give interesting information about the densification of soil. For
example, Schjønning et al. (2013) reported a surprisingly precise estimation (with
a standard deviation of only 0.015 g cm�3) of the soil matrix density measured in
the laboratory from the CT number of the soil matrix measured on images with a
rather coarse resolution (0.3 mm horizontally and 0.6 mm vertically).

8.3.2 Segmentation and Compaction

X-ray imaging allows the detection of materials according to their X-ray attenuation
(see Chap. 2). This makes the application of these techniques interesting for the
study of soil compaction as a change in soil density (Petrovic et al., 1982). However,
due to the influence of soil density in both the detection method (X-ray attenuation is
a function of soil bulk density) and the studied object (soil compaction often leads to
a densification of the soil structure), detection of the eventual compaction must be
done carefully. Lamandé et al. (2013) performed a sensitivity study to evaluate the
effect of the chosen segmentation threshold between the pore space and soil matrix
on the CT-estimated porosity for compacted and control subsoil cores. They showed



that the choice of threshold influenced the CT-estimated porosity differently for
control and compacted subsoil cores. An increase in segmentation threshold
(in Hounsfield Units; HU) led to an increase of the difference in CT-estimated
porosity between the control and compacted treatments at one of the two depths of
the Mollic Endogleyic Luvisol investigated (Fig. 8.6).
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Fig. 8.6 A sensitivity study showed the effect of the chosen segmentation threshold on the
differences in air-filled porosity quantified from the CT images between the control and the
compacted treatment at two depths in a long-term soil compaction experiment in Sweden. An
increase of the segmentation threshold led to a larger residual soil compaction at 0.35 m depth.
Reproduced from Lamandé et al. (2013) with permission from Wolters Kluwer

8.3.3 From Soil Displacement to Stress Transmission

As X-ray CT imaging is non-destructive and can therefore be applied several times
on the same soil core, this presents opportunities in soil mechanics to record
observations in time steps during the loading of a soil core. However, this also
requires the construction of a loading frame made out of low-density materials to
allow the scanning process. Naveed et al. (2016) produced such a frame and were
able to observe soil deformation during stepwise loadings of undisturbed topsoil
columns by a hydraulic jack in a medical X-ray CT scanner. The deformation of
regularly tilled topsoil cores was first quantified by a reduction in the CT-estimated
macroporosity and an increase in the CT number of the matrix. At a given loading



step, this reduction was largest close to the piston at the top of the soil column and
decreased with depth. Aiming at a better understanding of the deformation processes
during loadings, Naveed et al. (2016) went further in the analysis of the CT images.
They followed the vertical displacement of the hundreds of gravels naturally present
in the soil columns, which kept their shape during loading and were therefore easy to
recognise on the sequential images (Fig. 8.7). Using these gravels as markers, soil
vertical displacement could be quantified in the whole soil column. Displacement
could be converted to stress using stress-displacement curves at the contact between
the piston and the top of the soil column, and assuming homogeneous mechanical
properties throughout the soil column. Results indicated that below an applied stress
of 275 kPa, the soil stress propagation pattern corresponds to that of a discrete
element (i.e., a collection of resistant aggregates), while at an applied stress of
620 kPa, the stress propagation followed the stress propagation pattern as described
by the elasticity theory (Fig. 8.8).
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Fig. 8.7 Greyscale images reconstructed from X-ray CT scans of an intact topsoil column (Loam)
at a water content corresponding to field capacity (a). The same soil column was then subjected to
partially confined uniaxial compression at 275 kPa (b) and 620 kPa (c) applied stress. For this soil
column, 506 gravel bits were used to quantify the vertical soil deformation during the compression
test. The red circles indicate the vertical displacement of one of these gravels at 0 kPa (a), 275 kPa
(b) and 620 kPa (c) applied stress. Reproduced from Naveed et al. (2016) with permission from
Elsevier

8.4 Visualisation of Soil Deformation

Although X-ray CT has been used in the study of rock mechanics since the late
1980s (e.g., Raynaud et al., 1989), Shi et al. (1999) were probably the first to publish
a study on the visualisation of soil-like geomaterials deformation using X-ray
CT. They built a test box for loading and shearing in Plexiglas that could be fitted
in a medical X-ray CT scanner and could allow acquisition of cross-sectional images



at several strain levels. About 10 years later, Peth et al. (2010) presented a quanti-
tative study of the local deformation of repacked soil cores (95 cm2) using X-ray
micro-tomography. Soil deformation was due to either hydraulic stresses (swell-
shrink tests) or mechanical stresses (confined compression tests on air-dried soil
cores). They observed highly heterogeneous deformation during swell-shrink tests in
spite of the homogenised structure of the cores prior to the tests. In addition, the
cracks formed during shrinkage controlled the deformation pattern of the soil cores
during the confined compression tests. Obviously, these kinds of observations are
not possible using bulk field or laboratory techniques. The understanding of the
mechanisms involved during soil structure formation and deformation needs micro-
scale analysis, but the precise description of micro-scale deformation is not
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Fig. 8.8 Vertical stress (kPa) in the soil column calculated according to Boussinesq (1885) at
275 kPa (a), and at 620 kPa (b) applied stress, and measured from the displacement of the gravels
during the compression test at 275 kPa (c), and at 620 kPa (d) applied stress. Reproduced from
Naveed et al. (2016) with permission from Elsevier



straightforward. During deformation, the material moves from voxel to voxel, and
advanced image analysis techniques are needed to relate successive images of the
soil matrix during deformation (e.g., Crostack et al., 2008). Alternatively, the use of
non-deformable markers has been shown to be effective for aligning the volume of
interest and following the deformation of some specific macropores (Schäffer et al.,
2008a, b) or following the soil matrix deformation (Naveed et al., 2016). Analysis of
the bulk soil pore space characteristics during deformation, as for example reported
by Bottinelli et al. (2016) during shrinkage of paddy soils, by Zhou et al. (2021)
during successive freeze-thaw cycles, by Pires et al. (2020) during wetting and
drying cycles, or by Pöhlitz et al. (2018, 2019) during compression tests, is more
straightforward. In these studies, X-ray CT imaging enabled successive bulk mea-
surements of macroporosity, macropore size distribution, macropore shape and
connectivity. This is equivalent to the characterisation of the pore space by inter-
pretation of measured gas transport parameters using a conceptual pore network
model (e.g., Arah & Ball, 1994).
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8.5 Conclusions

X-ray CT imaging has been widely and successfully used during the last 40 years to
observe the consequences of soil mechanical processes on soil structure. Compac-
tion and fragmentation were the two main processes addressed through comparative
studies, where soil structure was investigated before and after traffic events, follow-
ing tillage operations, or at several time steps during soil deformation in controlled
laboratory conditions. In these studies, 3-D image analysis has been shown to be an
efficient method to help interpreting soil structure characterisation using other
laboratory methods. Most studies used X-ray CT imaging for bulk measurements
of the soil structure, in line with other laboratory methods for the determination of
capacity and intensity parameters such as bulk density, soil water characteristics, air
permeability, gas diffusion, saturated and near-saturated hydraulic conductivity. To
date only few promising studies used X-ray CT imaging to observe and quantify the
progress of deformation of specific structural features in soil, which seems to be the
approach to choose to really understand the mechanics of soil deformation.
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Chapter 9
X-ray Imaging of Root–Soil Interactions

Maik Lucas and Doris Vetterlein

9.1 Introduction

Growing roots interact with soil, and its structure, across a range of spatial and
temporal scales, and thus adapt to the local environment (Downie et al., 2015).
Several factors influence the development of roots, and as such, shape the root
system architecture (RSA). Well-known examples of these are water stress, mechan-
ical impedance, pore connectivity and porosity (Bengough et al., 2011; Correa et al.,
2019; Lucas et al., 2019a). However, it is not just physical but also biological and
chemical factors such as the availability of nitrogen that can change the growth of
roots and their RSA (Flavel et al., 2014; Gao et al., 2019b; Nwankwo et al., 2018).
Due to all these factors, perhaps not surprisingly root growth in artificial soil, such as
gel media and indeed sieved soil, shows significantly different root growth when
compared to roots developed in undisturbed soil (Hargreaves et al., 2009).

X-ray Computed Tomography (X-ray CT) and X-ray synchrotron tomography
(SR-CT) have the great advantage of non-invasively characterizing the architecture
of the root system and the associated plant–soil interactions at biologically relevant
(sub-)mm scales in soils. In recent years, X-ray CT offered a variety of new
possibilities to characterize RSA and to reveal processes taking place in the vicinity
of the root, i.e. the rhizosphere. In this chapter we first provide a brief review on how
rhizosphere research with X-ray CT has developed within the last three decades. In
sections two and three, root segmentation methods and observable root traits will be
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evaluated. Finally, this chapter will highlight root research with X-ray CT in
different fields of research such as image-based modelling and interaction of roots
with soil structure.

130 M. Lucas and D. Vetterlein

9.2 General Overview and Drawbacks

The first serious application of X-ray CT in plant studies emerged during the 1980s.
Hainsworth and Aylmore (1983, 1986) examined water extraction by roots by
visualizing changes in water content, i.e. attenuation, around radish roots (Raphanus
sativus). However, these, and also other, imaging approaches in the beginning of the
1990s had quite a coarse resolution with edge length of more than 1 mm (Tollner
et al., 1994; Watanabe et al., 1992). Later the development of industrial scanner
systems (Jenneson et al., 2003) made it possible to scan and segment fine root
systems like wheat at a resolution of 100 μm (Gregory et al., 2003). In recent
years, modern industrial X-ray CT scanners have become increasingly affordable
and technical developments have resulted in better ratios of sample
size vs. resolution (see Chaps. 2 and 4). This is an important development, as
small column sizes needed for high-resolution always lead to artificial root growth
at column walls and thus to different RSA compared to plants grown under natural
field conditions. In addition, the problem of the trade-off between sample size and
resolution may partially be evaded by merging multiple scans of cylindrical columns
(Flavel et al., 2012; Koebernick et al., 2014).

In recent years, the number of studies using X-ray CT for root research has
significantly increased and in addition, image resolution has improved considerably
(Fig. 9.1). In the current decade, the average column size for experiments with plants
for X-ray CT has fluctuated around 6 cm in diameter, resulting in resolutions of
about 30–40 μm. Thus, although the diameter of roots has a physiological lower
threshold of approx. 30 μm (Fitter, 1987), fine roots often cannot be segmented
properly, as roots smaller than 5 voxels are hard to quantify during image processing
and analysis. The reason for this is that objects close to image resolution can be not
captured in a representative way due to imaging artefacts (Vogel et al., 2010) (see
discussion in Chaps. 4 and 6). However, new image analysis protocols enable
classification of roots with diameters near image resolution (Flavel et al., 2017;
Gao et al., 2019a). In addition, time-efficient scanning and imaging protocols enable
even for rapid phenotyping of undisturbed field samples (Maenhout et al., 2019;
Pfeifer et al., 2015) and high-resolution X-ray CT and SR-CT of small samples
containing single roots were successfully applied to observe process and image
features like root hairs at high-resolution of approx. 1 μm (Daly et al., 2016;
Keyes et al., 2017a; Koebernick et al., 2017, 2019). Thus, X-ray CT has developed
into a suitable tool to non-invasively visualize the entire root system of different
plants as well as rhizosphere processes with μm resolution in 3-D.
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Fig. 9.1 Results of a literature search in web of science, which had 338 hits (4.01.2020, search
query: X-ray AND (CT OR tomography) AND (rhizosphere OR plant root) carried out in 2020.
From this, 121 publications were about experiments with plants in soil using X-ray CT or SR-CT.
Lines show the results of a locally weighted regression computed in R with the plugin ggplot2
(Version 3.30)

9.3 X-ray Dose

During X-ray CT analysis, plants and their surrounding soil are exposed to ionizing
radiation. Pioneering experiments on the effects of X-rays on plant cells have shown
different effects of the radiation, ranging from none to strong morphologically
negative ones associated with the destruction of the growth hormone auxin and the
inhibition of the formation of meristematic cells (Evans, 1965; Johnson, 1936;
Skoog, 1935). Although plants in these studies were often exposed to much higher
doses than required for common experiments, X-ray dose of current X-ray CT
studies can influence plant growth as well. This depends on numerous factors such
as plant species, growth phase, scan frequency and length, as well as scan settings
such as energy and sample distance and the use of filters (Blaser et al., 2018; Zappala
et al., 2013a). Blaser et al. (2018) showed in their experiments with faba bean (Vicia
faba) and barley (Hordeum vulgare), that faba bean reacted to the X-ray dose with
shortened root lengths, with lateral root growth being restricted in particular,
whereas barley showed no negative effects due to X-ray CT scans. Several factors,
such as the soil type and the diameter of the column, determine how much radiation
reaches the root. Decomposition of single roots of faba bean incubated in a sandy
loam showed higher rates due to X-rays, while there was no effect on decomposition
of roots in a light clay soil (Haling et al., 2013). In summary, there is no real
threshold value for X-ray CT studies with plants which can yet be assumed and
pilot studies on new plants at different energies and scan times might be instructive.
In addition, the dose to the plant shoot, and thus the potential impact on root growth,



can be significantly reduced by using a lead shield (Lippold et al., 2021). Blaser et al.
(2018) concluded from their observations that generally non-scanned controls
should be included in X-ray CT studies. These aspects should be especially consid-
ered for 4-D imaging of plants, in which a time sequence of the same plant is
analysed thus increasing the overall dose (Blaser et al., 2018). So far, such
non-scanned controls were used only in very few studies. No effect of X-ray dose
of multiple scans was shown for radish (Daly et al., 2018), rice (Oryza sativa)
(Zappala et al., 2013a) and wheat (Triticum aestivum) (Flavel et al., 2012; Colombi
& Walter, 2017). In a study by Colombi and Walter (2016), controls showed that
despite scanning after 2, 5, 8, 11 and 14 days of sowing, there was no effect of dose
on root or shoot biomass of triticale (x Triticosecale), soybean (Glycine max) and
wheat. However, X-rays may not only affect the plant directly but may also impact
microorganisms. In a recent work of Ganther et al. (2020) columns with maize (Zea
mays) were scanned and the corresponding effect on the rhizosphere processes
including microbial community composition and root gene expression was analysed
1 h and 24 h after the scanning procedure. It was shown that under the medium dose
of 0.81 Gy, which is typically used for scans of plant columns, the composition of
the rhizosphere bacterial microbiome was not affected. It was further demonstrated
that although a downregulation of cell growth and cell stress related gene expression
after 1 h occurred, gene expression recovered 24 h after X-ray CT scanning (Ganther
et al., 2020). These partly contradictory findings reveal that more research is needed
to evaluate critical thresholds of X-ray dose on various plants and microorganisms in
root and rhizosphere.
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9.4 Opportunity In Situ over Time

The most unique opportunities arising from the use of X-ray CT in root and
rhizosphere research is that it cannot just be used to visualize root structure in 3-D
but also in 4-D, i.e. over time. It offers the possibility to investigate specific time-
points of root behaviour of the same plant. Thus, it also gives the opportunity to
investigate the development of different root types and relate their functions to their
age (Vetterlein & Doussan, 2016). One of the drawbacks of repeated measurements
with X-ray CT is the increase in X-ray dose per plant as elaborated above. Previous
studies used this 4-D analysis for various research questions, e.g. root decay was
observed for individual roots (Haling et al., 2013) (Fig. 9.2a), the interaction of roots
with granular fertilizer application was shown (Ahmed et al., 2016; Gao et al.,
2019b) (Fig. 9.2b) or the shrinkage or roots during drought and associated loss of
contact (Carminati et al., 2009, 2013; Koebernick et al., 2018).
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Fig. 9.2 Above: Degradation of a faba bean root after incubation in a sandy loam for (a) 13 (b)
22 (c) 33 and (d) 46 days from (Haling et al., 2013). Below: Growth of faba bean with localized
phosphor application (f) 7, (g) 11 (h) 15 (i) 19 and (j) 23 days after seeding (DAS) from (Gao et al.,
2019b)

9.5 Root Segmentation

A crucial step during X-ray CT analysis, which describes the root system, but also
rhizosphere processes, is the segmentation of the root system. This implies the
separation of all image voxels into classes, in this case root voxels and soil matrix
(including pores filled with air or water). One of the easiest segmentation methods is
based on the attenuation density (i.e. by applying simple thresholds for grey values,



see Chap. 5). This fast segmentation based on the histogram was often applied in
early X-ray CT studies (Heeraman et al., 1996; Lontoc-Roy et al., 2005, 2006;
Pierret et al., 1999). However, this simple thresholding causes major obstacles, as
roots, consisting mainly of water, have a similar attenuation as water or other organic
material. Zappala et al. (2013b) showed that saturated conditions do not allow a
sufficient segmentation of rice roots whereas at field capacity roots can be segmented
most accurately (Zappala et al., 2013b). This is reasonable as scans of whole
columns lead to resolutions of >30 μm, i.e. only air filled pores are visualized and
water is only visible as mixed pixels with soil matrix. Also, partial-volume effects,
which are created by mixed voxel of different image features below image resolution
(see Chap. 6) lead to many misclassifications.
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Thus, many different approaches have been developed to handle these issues of
accurate root segmentation. Many of them involve pre- and post-processing of the
image. These are used to enhance the contrast between roots and soil matrix and to
reduce noise by applying different filters like Gaussian and Non-local means filters
(Flavel et al., 2012; Kaestner et al., 2006; Koebernick et al., 2014; Lucas et al.,
2019b). In addition, post-processing filters can be applied to remove misclassified
features, e.g. by applying size or median filters (Gao et al., 2019a; Lucas et al.,
2019b). More details about image processing to enhance the results of segmentation
methods can be found in Chap. 5 and in Schlüter et al. (2014).

To overcome the drawbacks of thresholding based on histograms, more complex
imaging approaches were developed and used, which make use of features inherent
in root systems such as connectivity or their cylindrical shape. Region Growing
approaches, i.e. adaptive local thresholding methods, are based on the connectivity
of the root system. Region growing classifies voxels based on a seed point or region,
usually set manually. Adjacent voxels are added to these regions until they do not
match a pre-determined similarity criterion (e.g. grey value intensity, greyscale
texture). One of the first who successfully applied such an approach was Gregory
et al. (2003), who segmented the roots of wheat and rapeseed (Brassica napus) with
an underestimation of around 10%. Similarly, the root tracking software RootViz3-
D® (http://www.rootviz3-D.org/) determines a probability function on the grey
values of roots and tracks the root based on a starting point. It was shown to be
successfully in segmenting wheat roots (Tracy et al., 2012b). Flavel et al. (2017)
provide an overview of the use of X-ray CT for root segmentation.

Various studies have used the ‘region growing’ method implemented in the
widely used software VGStudio MAX. It was successfully used to segment tap
root systems like tomato (Solanum lycopersicum) (Helliwell et al., 2017, 2019;
Tracy et al., 2013), pea (P. sativum) (Keyes et al., 2017b) and faba bean
(Blaser et al., 2018; Koebernick et al., 2014, 2015) and for fibrous root systems
like wheat (Atkinson et al., 2020; Flavel et al., 2012; Helliwell et al., 2019), maize
(Galdos et al., 2020), barley (Pfeifer et al., 2014), rice (Fang et al., 2018; Kirk et al.,
2019) as well for ruzi grass (Brachiaria ruziziensis) and palisade grass (Brachiaria
brizantha) (Galdos et al., 2020). Hudek et al. (2017) successfully applied region
growing to segment the root system of 10 pioneer plants in the fore-field of a glacier.
This broad field of application for region growing methods shows that region

http://www.rootviz3-d.org/


growing indeed is suitable to be used for most root systems. However, it is only
semi-automated and therefore needs a lot of user interaction and thus it is time-
consuming (Flavel et al., 2012).
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Hysteresis thresholding is another local adaptive thresholding method, which can
be applied to segment roots (Lontoc-Roy et al., 2005, 2006; Nwankwo et al., 2018).
It uses two thresholds, a global stringent threshold to segment the roots and a second
threshold which is in an iterative approach only considered if the voxels are
connected to segmented root volumes.

Mairhofer et al. (2012) developed the free software RooTrak for the segmentation
of roots based on level-sets. It starts with an initial appearance model based on grey
values which are manually defined as seed points of the root system. The software
tracks the roots through 2-D image slices based on connectivity requirements and
updates the model. Since the original version extensions have been made by the
developers and it now allows to extract plagiotropic roots, i.e. it also tracks roots
growing upwards (Mairhofer et al., 2013) and can be used to segment and separate
different root systems in one sample (Mairhofer et al., 2015a, 2016). This allows
examining the spatial interaction of different plants. RooTrak was successfully
applied to segment wheat, maize, tomato, tillage radish, vetch and black oat (Burr-
Hersey et al., 2017; Daly et al., 2018; Mairhofer et al., 2012, 2017).

Root1 is a Fiji/ImageJ (Schindelin et al., 2012) macro developed by Flavel et al.
(2017). It first increases the scale of the images to avoid root fragmentation by
following imaging steps and then uses a combination of different filters (sobel,
median, erosion) for pre- and post-processing of a manually set bi-level threshold.
After this a connected region extraction by a user-defined seed point is applied. For
large image/file sizes this step is best achieved in the bespoke X-ray CT software
(Flavel et al., 2017) where Root 1 successfully extracted the roots of chickpea (Cicer
arietinum, 10% overestimation, wheat (1% underestimation) and barley (8% under-
estimation—Flavel et al., 2017; Rabbi et al., 2018a, 2018b).

A recently developed root segmentation tool by Gao et al. (2019a) called Rootine
is like Root1 as it is a macro for the software Fiji/ImageJ. However, different to other
root segmentation methods, it does not directly rely on grey values and is shape
based. The main component of the macro is the use of the Tubeness plugin (https://
imagej.net/Tubeness). In short, it finds roots by their salient feature of tubular
structure. This is implemented by computing the eigenvalues of the Hessian matrix
derived from the second derivative of grey values (Frangi et al., 1998). It is
combined with a scale space approach using Gaussian smoothing of different
standard deviations σ to segment roots of different diameters. The Tubeness-results
are then segmented using hysteresis thresholding, which preserves the connectivity
of the roots. This allows filtering of the biggest connected component, i.e. the root
system, to remove the noise in the end. Rootine was successfully applied to segment
the fibrous root system of maize in different studies (Gao et al., 2019a, 2019b;
Lucas et al., 2019a). However, an important advantage of Rootine is that it does not
necessarily rely on connectivity of the root system. Thus also roots in subsamples
can be segmented, which are not fully connected any more (Lucas et al., 2019a). In
addition, Tubeness can also be used to segment biopores, i.e. cylindrical shaped
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pores, which have the same shape, but not the attenuation value of roots (Lucas et al.,
2019b). Due to the high parallelisation of the Fiji/ImageJ plugins used, it was shown
to outperform region growing in VGStudio, Root1 and RooTrak in terms of com-
putational time and user interactions (Gao et al., 2019a). Most recently Phalempin
et al. (2021) developed an improved version of Rootine, which increased the
computational demand, however, the number of user-defined parameters could be
further reduced. In a benchmark test, a “worst-case” scenario (i.e. images with poor
quality and rather low image resolution and of soils with high heterogeneity) was
compared with images of a “best-case” scenario, i.e. with respective image qualities.
With 114% in the “best-case” scenario and 73% for the “worst-case” scenario, root
recovery has been drastically improved compared to the first version of Rootine,
especially for the “worst-case” scenario.
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Future root segmentation will include machine learning algorithms (e.g. like the
deep learning approach recently developed (Douarre et al., 2016; Soltaninejad et al.,
2019)). These give the opportunity to train models based on more than one feature
image (e.g. together on grey values, Hessian matrix (structure) and gradient masks
(structure)). Thus, more than one salient feature of roots can be combined with
minimal user interaction. These deep learning models need to be trained on ground
truth images of various root types in different soil types (Xu et al., 2018). A
collaborative database of different laboratories working on root imaging with
X-ray CT would be a powerful tool to achieve this.

However, no matter which segmentation method is applied, the result needs to be
evaluated. This is often done by comparing them with traditional root washing and
analysing methods (Flavel et al., 2012, 2017; Gao et al., 2019a; Gregory et al.,
2003). In addition, artificial images with similar characteristics as a real X-ray CT
images or real X-ray CT images from roots segments can be used for validation
(Mairhofer et al., 2015b). These systems are well defined in terms of their length,
volumes and areas and in addition offer the possibility to validate a segmentation
method under changing signal-to-noise ratios (Mairhofer et al., 2015b).

9.6 Root System Architecture and Root Traits

Root system architecture (RSA) plays an important role in the plants ability to
acquire water and nutrients and hence for stabilizing yields under adverse environ-
mental conditions. This has raised interest in characterizing RSA traits in order to use
them for breeding strategies related to crop improvement (Tracy et al., 2020). X-ray
CT is able to provide all RSA traits in great detail for young plants, however,
currently, due to the low throughput it cannot compete with simple methods such
as shovelomics (Trachsel et al., 2011). Yet, it can be used to investigate specific
changes in RSA of different plants.

The possibility to observe the root system in situ and in 3-D offers new valuable
parameters to be characterized. This is important as the heterogeneous nature of soils
in time and space leads to highly plastic responses of plant roots. These are governed



by changes in elongation rate, branching, surface area and angle, which shape the
final RSA (Morris et al., 2017). In the following typical root traits, which were
analysed using X-ray CT imaging will be discussed and are summarized in
Table 9.1.
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Numerous studies have described the root structure by means of classical root
traits like total root length (Ahmed et al., 2016; Blaser et al., 2018; Gao et al.,
2019b; Jenneson et al., 2003) and length densities (Flavel et al., 2014; Lucas et al.,
2019a), root volume (Fang et al., 2019; Tracy et al., 2012b), surface area (Daly et al.,
2018) and by root diameter classes (Bauerle & Centinari, 2014; Colombi & Walter,
2016). As elaborated above, these traits can easily be evaluated by comparing them
to results obtained with root washing and hence they are also accessible with simple,
however, destructive methods. Most of these traits are easily derived during image
analysis. Estimating the root volume is simply done by counting the number of
voxels classified as root. Root diameters are often described by the using the
maximum inscribed ball method (more details can be found in Chap. 6), for instance
by using the local thickness tool in Fiji/ImageJ as described in Lucas et al. (2019b).
Most research analysing the length of the root system uses the skeletonize approach
(Flavel et al., 2017; Blaser et al., 2018; Gao et al., 2019b). Skeletonize reduces the
diameter of the roots by removing the border pixel without breaking the connectivity
of a root system. The result is a voxel thick root system from which the total amount
of voxel represents the total length of the root system. However, as skeletonization
can be slow (especially for thick roots which need a high number of iterations) other
methods can also be used to measure the length of a root system. Koebernick et al.
(2014) used one of the Minkowski functionals (see Chap. 6) to describe the length of
the total root system. Lucas et al. (2019a, b) used the local thickness approach for
describing the diameter of the roots and in addition for measuring the length of
different diameter classes by assuming a perfect cylindrical form of the roots.

Comparable to classical approaches, root length or root length densities can be
described for different depths. However, during destructive sampling and root
washing, careful decisions need to be made about the depth at which samples are
taken and the number of segments into which a soil profile or plant pot will be
divided. In contrast, X-ray CT offers the possibility to (1) increase the vertical
resolution, which can be estimated in a slice-by-slice manner (i.e. it is only limited
by the spatial image resolution) and (2) decide to summarize and compare different
depth based on first results. In addition, X-ray CT allows the description of (3) root
length density in 3-D (i.e. difference in density within a depth – horizontal resolu-
tion) which can also be visualized (Flavel et al., 2017).

In addition, more complex traits like branching angle (Burr-Hersey et al., 2017;
Flavel et al., 2014) or number and length of different root orders (Flavel et al., 2012;
Blaser et al., 2018; Carminati et al., 2009; Colombi & Walter, 2016) can be
estimated. However, these traits are often measured manually within software like
Fiji/ImageJ or VGStudio and thus are time-consuming to be analysed. Root
branching length can be estimated (e.g. with the Analyse Skeleton function in Fiji/
ImageJ), however, this function estimates the length for all branches (Flavel et al.,
2017) but cannot distinguish between root branches of different orders.



(continued)
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Table 9.1 X-ray CT derived root traits and the relevant literature examples

Root trait Example literature

Classical
2-D traits

Root length, vol-
ume, surface and
diameter

Blaser et al. (2018); Daly et al.
(2018); Koebernick et al.
(2014); Lazarević et al. (2016)

Root length (den-
sity) profile and
maximum depth /
width

Flavel et al. (2014); Gao et al.
(2019b); Tracy et al. (2012b)

Tuber volume,
number of
rhizomes

Davey et al. (2011); Perez-
Torres et al. (2015)

Branch angle Burr-Hersey et al. (2017);
Flavel et al. (2014);
Hargreaves et al. (2009);
Pierret et al. (1999); Tracy
et al. (2012b)

Number and
length of branches

Burr-Hersey et al. (2017);
Carminati et al. (2009);
Colombi and Walter (2016);
Flavel et al. (2012)

Only in
3-D

Euclidean distance Koebernick et al. (2014);
Lucas et al. (2019b); Schlüter
et al. (2018)

Convex hull Burr-Hersey et al. (2017); Fry
et al. (2018); Helliwell et al.
(2019); Hudek et al. (2017);
Zappala et al. (2013b)



9 X-ray Imaging of Root–Soil Interactions 139

Table 9.1 (continued)

Root trait Example literature

Minimum dis-
tances between
root systems

Mairhofer et al. (2017)

Fractal dimension
and tortuosity of
root system

Fang et al. (2019);
Subramanian et al. (2015);
Tracy et al. (2013)

Center of mass,
point of substan-
tial morphological
changes

Flavel et al. (2014); Mairhofer
et al. (2012, 2017); Tracy et al.
(2012b)

Over the past two decades, major advances in new measurements were made,
which describe specific root traits in 3-D. One of these is the convex hull, describing
the root volume, which is occupied by the root system (Burr-Hersey et al., 2017;
Helliwell et al., 2019; Mairhofer et al., 2012; Zappala et al., 2013b). The centre of
mass/centroid (Mairhofer et al., 2012; Tracy et al., 2012b) and the point of substan-
tial morphological changes (Flavel et al., 2014) are two measures, which help to
reduce the information of the complex 3-D root system and describe changes under
changing environmental factors with a single number.

The Euclidean distance to roots is another measure, which describes the root
system from the soil perspective (also see Chap. 6). The Euclidean distance image
includes the minimum length of a straight line from each soil voxel of a 3-D image to
the next root. Comparable to root length densities in 3-D, as shown in Flavel et al.
(2017) this allows the description of how a certain root system occupies the soil
volume. Schlüter et al. (2018) showed how to fit a model to the frequency distribu-
tion of Euclidean distances, which can be used to describe the rhizosphere volume
and which can be adapted to specific interaction distances for rhizodeposition and
soil water, etc. (Schlüter et al., 2018).

All these measures still cannot reduce the major drawback of X-ray CT,
i.e. sample size: resolution trade-off. This means results of these measures obtained
from images of growing plants in small columns need to be interpreted with caution,
as the root system under natural field conditions profit of much larger available soil
volumes.
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9.7 Mutual Interaction of Roots and Soil Structure

When roots grow into soil, they reorganize the spatial arrangements of soil particles
and after they die and decay, they leave behind cylindrical shaped pores, which are
known as biopores (Lucas et al., 2019b). However, these biopores and other
macropores can be also used by roots to elongate into soil and bypass zones of
high resistance (Jin et al., 2013; Lucas et al., 2019a; White & Kirkegaard, 2010).
X-ray CT and SR-CT offer the possibility to reveal these mutual interactions of roots
and soil structure. Different to other research fields, elaborated in this chapter,
changes in soil structure induced by plants are often observed under natural field
conditions in undisturbed field samples (Jarvis et al., 2017; Koestel & Schlueter,
2019; Kuka et al., 2013; Lucas et al., 2019b). Hu and co-workers showed in several
publications the influence of roots on macropore structure of different land types,
revealing the positive correlation of root density and macroporosity (Hu et al., 2016,
2019a, 2019b, 2020). In an extensive field study of a chronosequence, Lucas et al.
(2019b) observed soil structure formation on a reclamation site by describing the
porosity with a scale approach. By scanning three different sample sizes extracted
from fields of different ages they examined the changes in macroporosity down to a
resolution of 5 μm. Unlike Hu et al., Lucas et al. (2019b) argued that roots do not
necessarily change the macroporosity over time, but they can rearrange the exiting
macropores and thus create a dense system of biopores. For the specific agricultural
chronosequence, maximum biopore density close to 20 cm cm�3 was already
achieved after 6 years in the topsoil and comparable high values after 12 years in
40–60 cm depth (Fig. 9.3a) (Lucas et al., 2019b). In a follow-up study they showed
that by creating this highly connected biopore system, roots are able to increase the
connectivity of the pore system down to pore diameters of 0.1 mm, which reduces
the percolation threshold and thus has a positive effect on air permeability and water
conductivity near saturation (Lucas et al., 2020b).

The effect of root growth on pore structure is highly depending on the plant
species, its RSA and the soil texture. Galdos et al. (2020) analysed breakthrough
curves in addition to X-ray CT images to measure the effect of three different plants
on leaching of nitrate. They showed that palisade grass having a fine root system
increased porosity most but decreased leaching as it did not increase the widest
macropores, but only finer and well-connected ones, compared to maize and ruzi
grass (Galdos et al., 2020). Bacq-Labreuil et al. (2019) showed in pot experiments
that different cover crops affect macroporosity and pore connectivity differently in
two different soil textures (clay and sandy soil). In the same vein, field sample
analysis showed that plants increased connectivity and porosity in clay soil but
decreased these parameters in sandy soil and perennial plants manifest a wider
range of pore sizes (Bacq-Labreuil et al., 2018).

Other research about the changes in soil deformation by roots focused on
visualizing root growth with high temporal resolution. Keyes et al. (2016) scanned
growing roots over 20 h with 1 scan h�1 and visualized soil deformation of a
growing root tip over time to quantify soil deformation by applying a digital volume



correlation approach. In a latter study, they increased temporal and spatial resolution
using SR-CT and observed growth and displacement by roots over 42 min (8 time
steps, 6 min each). This allowed them to visualize root reconfiguration of primary
mineral grains with a resolution<2 μm and thus to parameterize kinematic analyses.
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Fig. 9.3 Examples from various for the mutual interaction of soil structure and plant growth. (a)
Development of biopores segmented from X-ray CT images of 3 cm samples of 50 cm depth from a
chronosequence 1, 3 and 24 years after segmentation (Lucas et al., 2019b). Root system of radish
(b) and vetch (c) after 58 days of growth. Red arrow indicates location of bulk density changes with
a low bulk density above (1.2 g cm�3) and 1.4 g cm�3 below (Burr-Hersey et al., 2017). (d) Roots
(white) colonising artificial macropores in soil with high bulk densities (1.6 g cm�3) and (e) root
crossing a pore in low bulk density soil (1.2 g cm�3) (Atkinson et al., 2020). (f) Density gradients
around roots growing in soil of three different bulk densities (left) and corresponding examples of
CT image slices (Lucas et al., 2019a). (g) Horizontal slice of faba bean after 17 days of drying.
Arrows points to gap around particles adhering to the root surface after root shrinkage (Koebernick
et al., 2018)



Their results revealed that roots without an intact root cap induced a significantly
greater degree of soil deformation than intact roots in a dry and compacted soil
(Keyes et al., 2017a).
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9.8 Compacted Soils

As agricultural management becomes more intensified, including heavier machin-
ery, an increasing impact of soil compaction on plant growth has been witnessed
(Tracy et al., 2011). X-ray CT has proven a valuable tool to estimate the impact of
soil compaction on root development. A number of studies have observed that under
high compaction, plants root diameters are increased and length densities and surface
area tend to be reduced and thus also the soil volume explored by roots is reduced
(Colombi & Walter, 2016; Fang et al., 2018, 2019; Lucas et al., 2019a; Tracy et al.,
2012a). In 4-D X-ray CT analyses of tomato plants in bulk densities varying from
1.2–1.6 Mg m�3 Tracy et al. (2013) showed that the impact of dry bulk density on
root growth was greatest three days after planting and that the influence of dry bulk
densities differs between soil types. In a later study, they revealed that endogenous
abscisic acid concentration plays an important role in mediating the root response to
soil compaction and has a positive influence on RSA in compacted soil (Tracy et al.,
2015). A phenotyping study with 14 different genotypes of wheat, subjected to three
different bulk densities, revealed that under moderate soil compaction the capacity to
maintain the number of axial and lateral roots plays an important role in maintaining
shoot biomass production (Colombi & Walter, 2016).

To determine the effects of compacted layers in columns imitating compacted
subsoil, Burr-Hersey et al. (2017) compared three cover crops, which showed
different reactions to subsoil compaction. It was shown that radish switched from
single tap to multiple perpendicular root system at the compacted layer, while vetch
primary root showed less lateral root growth (Fig. 9.3b, c) and black oats exhibited
no deviation at compacted layers. Recently, the importance of ethylene signalling
was demonstrated to be crucial in triggering root growth responses to soil compac-
tion (Pandey et al., 2021). Among other analysis of these authors, X-ray CT analyses
of wild-type rice and ethylene-insensitive mutants growing in uncompacted soil
(1.1 g cm�3) or highly compacted soil (1.6 g cm�3) revealed that reduced root length
and increased root diameters are rather a response to changed ethylene diffusion than
a direct response of increased penetration resistance (Pandey et al., 2021). This
mechanism was presumably evolved to avoid growth in compacted soils (Pandey
et al., 2021), which, on the other hand, would also further explain how roots
preferentially grow in soil regions with low density as, e.g., observed in Lucas
et al. (2019a).

At the same time, connected biopores have an important role helping roots
overcome limitations of plant growth in compacted soil, as roots can grow into
them and thus explore larger soil depths. These interactions of biopores and roots in
compacted soils can be visualized with X-ray CT too. It was shown that artificial



macropores facilitate root growth (Fig. 9.3d, e) especially under high bulk densities
(Atkinson et al., 2020; Colombi et al., 2017; Pfeifer et al., 2014). As soil penetration
resistance increases with soil depth, roots are especially in subsoils restricted to
growth within macropores. Thus, to investigate small scale root macropore interac-
tions in the field with X-ray CT, many small samples at different depths would be
needed to provide the possibility for high-resolution for root segmentation and to
cover the whole soil profile, respectively. Another possibility was provided by Zhou
et al. (2021), who used X-ray CT images from large soil cores of 100 cm height to
segment macropores and combined them with results of root counting by the
traditional core break method. They showed soil macroporosity explained 59% of
total root depth variation of six different wheat lines, while there were no differences
between wheat varieties. Especially at depths greater than 35 cm, most roots were
associated with macropores (Zhou et al., 2021).
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9.8.1 Compaction of the Rhizosphere

While roots grow into the soil as described above, the physical, chemical and
biological properties in their surroundings (i.e. in the rhizosphere) are also being
modified (Hinsinger et al., 2009; Young, 1998). Root-induced structural changes of
the rhizosphere do not only affect microbial habitats, but likewise the transport of
water and nutrients. In model calculations supported by X-ray CT imaging, Aravena
et al. (2011, 2014) showed that increased rhizosphere compression (reduced poros-
ity) has a positive effect on root water uptake. In an early stage, it was assumed that
growing roots, mostly compress the rhizosphere, as their root diameters are often
larger than the existing pores (Bruand et al., 1996; Dexter, 1987). In a model by
Dexter, compaction is defined as an exponential decrease in porosity towards the
roots, which is determined by a constant multiple of the root diameter (Dexter,
1987). The aforementioned development of X-ray CT enables the in-situ observation
of the root–soil interface and hence the soil porosity gradient could be visualized and
analysed directly in recent years (Feeney et al., 2006; Helliwell et al., 2017; Vollsnes
et al., 2010). Confirmations of Dexter’s model have been made, as for young maize it
was shown that the compaction around roots in sand is exponential and depends on
the root radius (Lucas et al., 2019a; Vollsnes et al., 2010). Other researchers,
however, found contradictory results (i.e. an increase in porosity in the rhizosphere)
(Helliwell et al., 2017, 2019; Rabbi et al., 2018a, 2018b; Zhang et al., 2020). X-ray
CT analysis of aggregates from the rhizosphere of ryegrass (Lolium perenne) with a
resolution of 4.4 μm showed a significant increase in porosity compared to bulk soil
samples (Feeney et al., 2006). This was also observed by Helliwell et al. (2017) in
the rhizosphere of tomato plants, which the authors attributed to processes such as
shrinkage and swelling and thigmotropism that occur more intensively in the
rhizosphere. In subsequent work, these authors showed that the porosity (density)
gradients depend on the plant species and texture (Helliwell et al., 2019).
Furthermore, Rabbi et al. (2018a, 2018b) showed that drought tolerant chickpea



genotypes form roots with a larger diameter and a larger, more porous rhizosheath,
resulting in increased water absorption capacity. In a similar way, Zhang et al. (2020)
showed that the porosity of the rhizosheath near the root surface of highland rice is
higher than that of lowland rice. Koebernick et al. (2019) described an increased
porosity in the immediate vicinity of the epidermis of barley roots followed by a
zone of compaction. They assigned this to a “surface/wall effect” and were able to
describe the pattern of porosity around the root using Dexter’s model with an
extension that takes into account the packing geometry of spherical soil particles
(Koebernick et al., 2019). A broader perspective has been adopted by Lucas et al.
(2019a); they demonstrated in a study using undisturbed field samples as well as in
an experiment with maize grown at different bulk densities under controlled condi-
tions that the initial soil structure has a decisive influence on the porosity of the
rhizosphere (Fig. 9.3f). The mechanistic physical effect of the roots growing into the
soil structure leads to the compression of the rhizosphere soil as described in Dexter
(1987) in combination with a low porosity at the surface of the epidermis as
described in Koebernick et al. (2019). This is especially true for soils containing
few and unconnected macropores in the size of the root segment diameters. How-
ever, besides the formation of new root channels, roots can also penetrate into
existing macropores. This leads to low rhizosphere porosity in soils with high
macroporosity, due to the interaction of the plant with the existing pore structure
(Lucas et al., 2019a). An important aspect arising from this study for future research
in the field of physical processes in the rhizosphere is that loosely filled cylinders
(1.3 g cm�3), as typically used for laboratory experiments, lead to very porous
rhizospheres and not to homogenous physical properties as often assumed.
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The differences in rhizosphere densities may also change the relative distribution
of organic matter in biopore/rhizosphere walls, as physical protection of organic
matter is influenced (Lucas et al., 2020a). In the same vein, Van Veelen et al. (2020)
were able to reveal in a correlative analysis of synchrotron X-ray fluorescence
microscopy and X-ray absorption near-edge structure with X-ray CT that iron,
sulphur and phosphate chemistry are strongly influenced by the spatial variation in
porosity. In the direct porous vicinity of the root, dissolution processes are increas-
ingly occurring due to optimal conditions for microbial activity, while the subse-
quent densification zone is associated with reduced permeability and increased
binding and reactions on particle surfaces, e.g. resulting in the formation of stable
Fe oxides (van Veelen et al., 2020).

9.8.2 Root-Soil Contact

As discussed above, the space directly at the epidermis is often more porous than the
rhizosphere, which tremendously affects the ability of roots to take up water and
nutrients. X-ray CT enables not only the determination of gradients in porosity with
distance to the root, but also the quantification of the direct contact area of root
epidermis with soil particles. In addition, also the seed-soil contact can be visualized



and segmented (Blunk et al., 2017, 2019). In experiments with maize and lupin, it
was shown that root-soil-contact varies greatly with small changes in macroporosity
and increased with decreasing aggregate size (Schmidt et al., 2012).
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In pot experiments with lupine and faba bean, it was observed that root-soil
contact changes dynamically (Carminati et al., 2013; Koebernick et al., 2018). If a
soil dries out, gaps occur around roots due to root shrinkage (Fig. 9.3g) but are
closed again after roots swelled due to irrigation. By observing gap formation and
transpiration under wetting and drying cycles it was shown that first transpiration
decreases then gaps are formed, thus Carminati et al. (2013) concluded that gaps are
a result and not a cause of reduced water availability. However, it is important to note
that the wall effect described by Koebernick et al. (2019) and shrinkage dynamic of
roots can be only differentiated with 4-D X-ray CT image analysis at high image
resolution.

9.9 Interaction with (Micro)Organisms

X-ray CT analysis may be combined with analysis of soil (micro-)biota to analyse
the soil–plant–microbe complex. Grose et al. (1996) showed that X-ray CT can also
indirectly be used to classify soil habitats. Their measurements implied that spatial
heterogeneity of soil water in the rhizosphere is biologically significant, that is
favourable and less favourable sites can be found in the rhizosphere for the growth
of two pathogenic fungi (Grose et al., 1996). However, a drawback of this study is
that the authors assumed a constant bulk density for calculating water contents, and
thus did not allow for local changes in soil density effecting the X-ray attenuation.
However, X-ray CT may be used to describe soil habitats, which can be combined
with soil ecological analyses. For instance, Feeney et al. (2006) revealed a complex
interplay of structural changes in the rhizosphere of plants with fungal communities.
There are a number of other X-ray CT studies focusing on soil pathogens. The
influence of a scab-inducing pathogen could be successfully measured with X-ray
CT by analysing density gradients of the below ground organs of growing potato
plants (Han et al., 2009). Sturrock et al. (2015) coupled real-time PCR analysis with
X-ray CT to study the interaction of the plant pathogenic fungus Rhizoctonia solani
with wheat and rapeseed. They found a strong correlation of pathogen DNA and
changes measured in root traits over time and higher tolerance of wheat plants
compared to rapeseed (Sturrock et al., 2015). By using split-columns for the growth
of a mycorrhiza-defective tomato mutant and a wild-type tomato the effect of
arbuscular mycorrhizal fungi (AMF) could be disentangled and revealed much
higher impact of roots on porosity and soil stability compared to fungal hyphae
(Hallett et al., 2009). Feng et al. (2013) revealed that metal nanoparticles such as
AgNPs can have negative effects on AMF and thus change their positive effect on
plant growth. Wireworms are known for their damage they cause on crops. 4-D
analysis of the interaction of barley and maize with them revealed that the volume of
wireworm borrows was different between the two plants but was not correlated with



root volume (Booth et al., 2020). Similarly, Johnson et al. (2004) visualized the
movement of S. lepidus larvae and their interactions with white clover. Further
details on the use of X-ray CT for the analysis of soil biology can be found in
Chap. 10.
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9.10 The Impact of Nutrition on Root Growth

To efficiently assimilate and utilize nutrients, plants have developed a range of
adaptive responses (Hodge, 2004). X-ray CT has proven to be a useful tool to
analyse the morphological and physiological responses to the amount and distribu-
tion of nutrients. It was shown that phosphorus bands induced high local root length
densities and an increase in branch density within the band compared to homoge-
nized phosphorous application for wheat roots (Flavel et al., 2014; Fig. 9.4a, b).
Similarly, comparing the influence of localized phosphorus (P) application to maize
and faba bean roots, Gao et al. (2019b) showed maize reacts already 11 days after
sowing with higher root length density compared to uniform P application, while
faba bean showed no response (Fig. 9.4c-f). Nwankwo et al. (2018) showed high
root length densities and a higher number of fine roots around seedballs, which can
be easily made by hand and include also fertilizer. These changes in root behaviour
are important to consider for fertilizer application or more specifically, its location.
Concentrated root growth towards nutrients, for example, may not be beneficial
under conditions where roots need to explore large or deep soil volumes as in the
event of drought.

However, an important aspect to cover the response of RSA to nutrients is the use
of additional techniques to cover and analyse nutrient distribution. Brackin et al.
(2017) used X-ray CT analysis to position microdialysis probes at known distances
from roots. Their results revealed nitrate accumulated close to roots whereas ammo-
nium was depleted as expected, which may be explained by nitrate fluxes arriving at

Fig. 9.4 The effect of localized phosphorus application on wheat (Flavel et al., 2014, (a, b)), maize
(c, d) and faba bean (Gao et al. 2019a, b, (e, f)). A, C, E show plants growing into soil with localized
phosphorus application, while images B, D and F show images of plant roots growing into soil
mixed with phosphorus fertilizer



the root surface exceeding the rate of uptake. This combination of techniques allows
to reveal new insights of nutrient physiology in the soil–plant continuum and thus
may provide new possibilities for nutrient efficient fertilizer application. Micro
suction cups at different depth in a soil column can be used to analyse various
nutrient concentration and pH-values and link them to root length distribution over
time (Gao et al., 2019b). In addition, the correlative imaging of X-ray CT and
elemental mapping (SEM-EDS) can be used for numerical diffusion models and
calculate root-uptake of nutrients like phosphorus (McKay Fletcher et al., 2019).
However, again limiting pot size is restricting the options of investigations.

9 X-ray Imaging of Root–Soil Interactions 147

9.11 Image-Based Modelling

9.11.1 Explicit Models

X-ray CT imaging offers the possibility to process data for image-based models as
extensively elaborated in Chap. 11. However, especially SR-CT can be also used to
model root related processes on high-resolution images (Daly et al., 2017; Keyes
et al., 2013; Koebernick et al., 2017). At present, these can have a resolution down to
approx. 1 μm and thus offer the possibility to segment root hairs and be used to
model their contribution to P uptake (Fig. 9.5b) (Daly et al., 2016; Keyes et al., 2013)
or their role in soil structure formation (Fig. 9.5a) (Koebernick et al., 2017).
However, it is important to consider that for these explicit image-based models
until now only very small soil volumes have been used (< 1 cm3), due to the high-
resolution required and due to the limitation of computational time. However,
although image volumes affect modelling results (Fig. 9.5a), often volumes, which
cannot be considered as representative elementary volumes, are analysed. This is in
particular the case for macropores, and hence detrimental for soil hydrological
processes linked to macropore—connectivity like (near) saturated hydraulic con-
ductivity, which cannot be covered within small samples (Lucas et al., 2020b).

9.11.2 Root System Architecture (RSA) as Input for Models

Models using the RSA as input can cover larger number of scenarios compared to
experiments. In addition, RSA with similar traits but different realizations can be
modelled and used for contrasting scenarios. Most of these studies rely on the RSA
created by models, however, this can be replaced by using 3-D X-ray CT images as
an input. In such a way, X-ray CT can be used to calculate water distribution and
water uptake by plants (Daly et al., 2018; Koebernick et al., 2015). Koebernick et al.
(2015) used a split root experiment with split layers of paraffin to show that despite
the hydraulic barrier water redistribution happens.
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Fig. 9.5 (a) Flow streamlines of local Darcy velocities simulated by image-based modelling in the
barley rhizosphere with increasing site length (left: 0.16 mm; middle: 0.25 mm; right: 0.4 mm) by
Koebernick et al. (2017). Warmer colours indicate greater relative velocity (b) Modelled surface
concentrations of phosphate on the soil particle surface after 10 h of uptake by a root and its hairs of
wheat (left) and streamlines showing phosphate transport paths from soil surface to root hairs
((magenta) and root (blue). (Keyes et al., 2013)

9.12 Conclusions

This chapter has focused on recent advances in X-ray imaging of plant root interac-
tion, particularly in the field of root segmentation and analysis of RSA. In addition, a
broad overview of specific research applications for root scientists was given. It was
shown that in recent years several segmentation methods were published, which all
have their strength and drawbacks. However, these methods all focus on specific
features of roots, like attenuation values, connectivity, or their shape. We foresee the
next challenges will take place using machine learning algorithms, which can be
trained by a joined database of various laboratory data along with root imaging via
X-ray CT. In addition to the advances in image processing and image analysis
protocols, this will strengthen the possibility of X-ray CT to be used for process
understanding in rhizosphere research, as well it will offer the possibility for
phenotyping studies with X-ray CT. As extensively reviewed, X-ray CT allows



the examination of various processes involved in soil–root interactions as it offers
the major advantage of undisturbed visualisation of soil and root structure in 3-D and
even 4-D. The next challenge will be to minimize the impact of the trade-off between
sample size and resolution and thus not only focus on pot experiments with limiting
pot sizes but also on samples taken from field experiments.
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Chapter 10
X-ray Computed Tomography Imaging &
Soil Biology

Sasha Kravchenko

10.1 Introduction

Since C. Darwin (1809–1882), V. Dokuchaev (1846–1903) and H. Jenny
(1899–1992), soil organisms have been well-known as the key element of soil
formation (Schaetzl & Anderson, 2005), particularly important for development
and properties of soil structure (Meurer et al., 2020). Yet, the opaque nature of the
soil and near impossibility of observing soil micro- and macro-fauna activities in
their natural habitat, without destroying the habitat itself, have made studies of the
soil organisms’ behaviours and their subsequent influence on the soil extremely
challenging. The development of X-ray Computed Tomography (CT) provided a
long-needed capability to look inside soil samples, even though of relatively small
(<10–20 cm) sizes, while keeping them intact. X-ray CT enables visualization of
intact soil structure with organic objects, such as plant roots or animals, located
within it. Thus, it is particularly useful in assessing the role of soil biota, including
microorganisms, on soil structure formation and properties and in informing studies
of biology and behaviour of soil meso- and macro-fauna, especially earthworms and
larger insects. X-ray CT has been readily employed by soil scientists, generating a
large body of knowledge concerning interactions between soil physical
(e.g. structural) components and soil organisms. Improvements in CT image quality
and resolution over the past couple of decades have expanded its implementation in
soil studies from viewing relatively large organisms, such as insects, to exploring
micro-habitats relevant for functioning of soil microorganisms, to visualizing soil
organic matter.

This chapter begins with an overview of the CT use in the studies of soil meso-
fauna, primarily earthworms, followed by a review of the current works on soil
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microorganisms and their activities that use CT directly as well as indirectly. It then
considers the potential effects of scanning on activities and functioning of soil
organisms that might influence the interpretation of the experimental results and
concludes with a review of current efforts in using CT for visualizing soil particulate
and non-particulate organic matter.
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10.2 Soil Meso-Fauna and X-ray CT

It is now 140 years since Charles Darwin (Darwin, 1881) highlighted the signifi-
cance of earthworms as agents of soil development. Yet, despite wide recognition of
its importance, the progress in understanding the belowground activities and engi-
neering effects of soil meso-fauna has remained justifiably slow. It is needless to say
that soil is an opaque media. But unlike other types of opaque media where
burrowing invertebrates live, e.g. wood, soil is also very fragile. Moreover,
burrowing of soil meso-fauna lacks consistent structure and is opportunistic in
nature, exploiting inherent variations in soil characteristics, presence of existing
pores, and low-density spots. These features make it next to impossible to effectively
explore the burrowing structures of soil mesa-fauna. Cutting through a soil
burrowing system inevitably destroys it, while pre-installed study devices or glass
walls alter the burrowing activity and structure construction. Thus, studies of
belowground faunal architectures have been few and limited (Oades, 1993) and
had to rely on very creative but extremely time-consuming approaches, including
casting that involves pouring fast setting liquids/resins into earthworm channels
(Garner, 1953), microscopy combined with X-ray stereo-radiography (Rogaar &
Boswinkel, 1978), or a complex process of soil thin sectioning (Wendt and Larink,
1990; Ligthart et al., 1993). Utilization of CT offered unprecedented opportunities
for progress in understanding and quantifying the invertebrate burrowing effects on
soil functioning. The pioneering work of Warner et al. (1989) and Joschko et al.
(1991) demonstrated CT capabilities in visualizing macropores of biological origin
and earthworm burrows.

Observing temporal dynamics, spatial patterns, and burrowing outcomes from
earthworm and insect activities in environments close to their natural habitats and
with minimal disturbance became a reality, creating an abundant and actively
growing research field. The studies related to activities and biology of soil meso-
fauna include works on burrowing behaviours (Joschko et al., 1993; Booth et al.,
2020), characteristics of burrow systems of individual earthworm species (Jegou
et al., 1999; Bastardie et al., 2003; Capowiez et al., 2003, 2011), species interactions
(Capowiez & Belzunces, 2001; Capowiez et al., 2001), effects of different land uses,
management practices, and soil pollution on earthworm burrows and activity (Jegou
et al., 2002; Auclerc et al., 2013; Pelosi et al., 2017; Mombo et al., 2018). A detailed
comprehensive review of the earlier literature on using CT in earthworm studies can
be found in Taina et al. (2008).
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For soil meso- and macro-organisms, CT can be used to image not just changes in
the soil structure stemming from their activities, but also movements of the organ-
isms themselves. One of the latest inspiring examples is the work of Booth et al.
(2020) who visualized locations of the freshly made burrows and positions of
introduced insects within containers with different plant species. The study enabled
analysis of plant–insect interactions and explorations of how root architecture affects
insects’ burrowing patterns and activities.

X-ray CT has also become instrumental for quantitative characterization of
earthworms’ effects on formation of soil macropore structure. Earthworms are
classified into three broad ecological groups, which differ in their burrowing activ-
ities (Lee & Foster, 1991), namely, epigeic (those that do not build permanent
burrows and live close to soil surface), endogeic (those that built semi-permanent
burrowing systems in the topsoil with a complex network of filled and refilled
macropores, in both horizontal and vertical directions), and anecic (those that
build permanent vertical burrowing systems up to 1 m deep). The use of CT enabled
quantitative descriptions of the burrowing patterns, including such characteristics as
diameter, branching, connectivity, verticality, bioturbation, etc. (Capowiez et al.,
2015). But quantification also revealed that the variability in burrowing characteris-
tics of individual species even within the same ecotype can be very substantial,
leaving behind soils with drastically different macropore systems (Fig. 10.1 from
(Capowiez et al., 2015)). However, even though observations from single species
studies indicate that different earthworm species make markedly distinct burrow
systems, it is very difficult to identify to which species a particular burrow belongs in
multi-species studies or in intact soil columns (Jegou et al., 1999; Bastardie et al.,
2003; Capowiez et al., 2003, 2015). Smaller worms such as enchytraeids also
modify soil pore characteristics, especially increasing presence of biopores with
diameters comparable to their sizes (500–700 μm). Yet still smaller organisms, e.g.,
mites, have not been observed to influence pore volumes and size distributions for
pores visible in CT images at 50 μm resolution (Porre et al., 2016).

Being a non-invasive technique CT offers unique opportunities for observing
temporal trends in development of pore characteristics as an outcome of soil faunal
activities. It is particularly useful for exploring the fate of the macropores, as many of
them change their characteristics, e.g., when they are refilled by earthworm casts
(Capowiez et al., 2014a). Among the macropore characteristics that can change are
open diameter (Whalen et al., 2015), hydrological properties, and ability to transport
water and gases. The earthworms not only generate new macropores but also modify
their characteristics by making wider pores narrower due to deposition of casts and
application of slime on the pore boundaries (Pagenkemper et al., 2015). The
macropores created by earthworms or the root-created macropores subsequently
populated by earthworms have their walls affected by earthworm presence, includ-
ing the blockage of pores connected with the macropore. Combining CT with
endoscopy allowed observation of decreases in diameters of macropores due to
earthworm generated lining as well as closings of laterally interconnected pores
which open into vertical macropores by clogging them with coating lining (Kautz
et al., 2013; Pagenkemper et al., 2015). The time sufficient for different species to



build contrasting macropore networks in the originally sieved and homogenized soil
is just 4–6 weeks (Capowiez et al., 2015; Bottinelli et al., 2017). Other recent
examples of monitoring of temporal dynamic in pore characteristics in relation to
root and insect activities are the work of Koestel and Schluter (2019), who monitored
pore architecture evolution in an intact soil core buried into topsoil in the field by
taking it out for occasional CT scanning for 2 years, as it was naturally populated by
sequences of plants and insects; and LeMer et al. (2021), who explored how aging of
the earthworm burrows affects their connectivity to the surface.
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Fig. 10.1 Examples of macropore structures generated by earthworms of different species from
different ecotypes (from Capowiez et al., 2015). The systems were built by the earthworms in
6 weeks after being introduced into repacked soil cores

The macropore structure can have a very strong effect on soil hydraulic properties
(Capowiez et al., 2014b); for example, the infiltration rate can be 2–4 times higher in
soil columns populated by anecic species than by endogeic species (Capowiez et al.,
2015), while saturated hydraulic conductivity can be >3 times different among soils
where the macropore systems were built by different species (Bottinelli et al., 2017).
A notable benefit from using CT in such studies is that it allows identification of the
particular features of earthworm burrows and species characteristics that are the most
likely drivers of changes in soil hydrology. For example, burrow length and a total
volume of percolating burrows appeared to be the characteristics best at describing



variability in soil hydrological properties (Capowiez et al., 2015; Bottinelli et al.,
2017).
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Fig. 10.2 Spatial patterns in soil density in vicinity of a macropore generated by earthworms (from
Schrader et al., 2007)

A distinct benefit of CT is the capabilities it provides for in-detail exploration of
how fine-scale soil structure characteristics, e.g., pore size distributions, spatial
patterns in pore locations, and in the soil density, etc., are affected by earthworm
burrows. For example, Schrader et al. (2007) used CT to identify spatial patterns in
soil density in vicinity of the earthworm burrow, i.e. the drilosphere. They demon-
strated that the compacted area surrounding a ~ 5 mm Ø burrow measured ~5–6 mm
in width and quantified density distribution in vicinity of the burrow (Fig. 10.2).

Another unique aspect in estimating the contribution of earthworm activities to
soil functioning that can be obtained by using CT is the assessment of the volumes of
the earthworm created macropores that are connected to the soil surface and thus can
serve as preferential flow paths (Bastardie et al., 2005). Such macropores can
comprise a surprisingly small portion of overall burrows present within the soil
matrix (Bastardie et al., 2005), yet they can play a major role in soil hydrology and in
distribution of dissolved organics and nutrients to deep soil layers.

Earthworm casts are an important component of soil structure (Meurer et al.,
2020). Endogenic earthworm species ingest soil and then egest it as casts. Under
favourable conditions a single earthworm can ingest in a day a volume of soil that



can be 4–6 times greater than its own weight (Curry & Schmidt, 2007). The casts
thus can constitute a major element of soil structure, an element that has physical and
chemical characteristics substantially different from those of the bulk soil or from
soil aggregates originated due to physical and biological processes unrelated to
earthworms. X-ray CT has been shown to be a valuable tool to study physical
characteristics of soil aggregates of earthworm origin in detail at just few micron
resolutions. Le Bayon et al. (2020) characterized physical properties of soil aggre-
gates originating from casts of three earthworm species. The use of CT enabled the
authors not only to distinguish cast-based aggregates from the aggregates in a control
soil, but also to detect differences in cast-aggregate characteristics among the
earthworm species.
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While significant progress has been made in conducting the tasks of segmenting,
identifying, and characterizing soil pores using CT images (see Chap. 6), soil pore
analyses relevant to studies of soil fauna remain a challenge. Even obtaining a clear
separation of pores of biological origin from the non-biological pores is not a trivial
task (Leue et al., 2019), while distinguishing between biological pores originating
from root vs. earthworm origin is a substantial challenge (Pelosi et al., 2017). This
separation is performed based on size (Capowiez et al., 2011; Pagenkemper et al.,
2015) and shape (Zhang et al., 2015, 2018; Leue et al., 2019) characteristics.

It also should be noted that while significant knowledge gains have been achieved
in a course of many laboratory studies, extrapolation of the findings to the field must
be undertaken with caution. A number of issues limit the universality of laboratory
experiment results. For example, the size of containers that can be CT scanned with
sufficiently fine resolution is usually limited to diameters<10–50 cm. This limits the
size of the colonies that could be studied, altering the fauna’s behavioural patterns
and generating boundary effects (Booth et al., 2020). Potential negative effects of
radiation on the animals also need to be considered.

10.3 Soil Microorganisms and X-ray CT

One of the key advantages of using CT in the studies focusing on soil microbiology
is an opportunity to obtain information on physical structure of the micro-habitats
where microbes reside (Nunan et al., 2006). Availability of oxygen, water, and
nutrients, accessibility to predators are just a few of the environmental parameters
that can vary within the soil matrix at spatial scales of a few microns to a few
millimetres creating a highly variable mosaic of suitability for microbial functioning
(Keiluweit et al., 2017). The flow and transport processes driving the micro-
environmental conditions and their variations take place within soil pores. Adhered
thin biofilms on pore surfaces are where the active microorganisms live (bar those
inside other biological materials) or travel through (Or et al., 2007). The great benefit
of CT is that visualization of soil pores is what it does best, with scanning resolutions



and methods of pore identification and pore analyses continuously and rapidly
improving (see Chap. 6).
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However, while there is clear evidence that spatial patterns of microorganisms are
related to pore properties and locations (Nunan et al., 2003), the experimental works
that employ CT in the studies of soil microbial activities and microbially driven
processes are far from being abundant. Overall, the microscale patterns in microbial
processes within intact soils are much less explored as compared to the patterns in
physical and even biochemical processes (Baveye et al., 2018).

That is not because of the lack of appreciation of the role of physical micro-
habitats for microbial functioning. In fact, there are a great number of studies that
attempt modelling microbial spread and activity as a function of micro-
environmental conditions (see a comprehensive list of recent works compiled by
Baveye et al. (2018)). Such modelling efforts often utilize the X-ray CT information
from scanned intact soils. For example, Kravchenko et al. (2011) modelled fungal
growth taking place within soils under long-term contrasting management by visu-
alizing pores from CT images of intact cores. There have been innovative attempts of
recreating artificial soil matrixes, via, for example, 3-D printing of CT soil images,
with realistic pore architectures reflecting soils of different types and under different
land use and management practices (Otten et al., 2012; Lamande et al., 2020). This
approach can potentially enable a clear separation of the effects of physical charac-
teristics from those of chemical and biological soil properties. In future, it will offer
exciting opportunities for experimental assessments of the roles of pore characteris-
tics on microbial functioning and related soil processes.

Yet, at the moment, the experimental work aimed at demonstrating associations
between physical micro-environmental conditions, as visualized via CT, and micro-
bial functioning remains extremely challenging. The greatest issue for CT-based
studies is the mismatch between the achievable scanning resolution and the size of
microorganisms: bacteria and archaea are too small to be visible on most X-ray CT
systems. The CT scanning resolution in most soil studies ranges from 5 to 50 μm.
Only recently 1–2 μm resolution-based studies became possible. However, they are
plagued by the CTs inverse relationship between the resolution and the sample size,
where fine resolution scanning is possible only in relatively small soil samples,
limiting representativeness and spatial scale of the findings. The second issue
currently limiting the effectiveness of CT use is that most microorganisms consist
of at least 80% water, which makes their attenuation coefficient insufficiently
distinct from that of water, making them hard to distinguish from the water within
the soil matrix.

Biofilms, microbial colonies embedded in self-protecting matrix of extracellular
polymeric substances, are a special case. Biofilms, even though thin, have suffi-
ciently large areal extent to be detected on CT images. However, with water being
the main component of the biofilms there remains a strong limitation, making it very
difficult to distinguish a biofilm from surrounding soil pore water in CT images. The
solution implemented to solve this problem usually consists of applying contrast or
staining agents, e.g., BaSO4 (Davit et al., 2011; Iltis et al., 2011; Peszynska et al.,
2016; Carrel et al., 2017). Yet, even with that enhancement, most of the successful



biofilm studies up to date were conducted in artificially created porous media, e.g.,
glass or plastic beads, or washed sand (Davit et al., 2011; Iltis et al., 2011; Peszynska
et al., 2016; Carrel et al., 2017), with no work in intact soil reported so far. A recent
success story is a study of cyanobacteria in biological soil crusts (Couradeau et al.,
2018) (Figure 10.3a), yet it is the cyanobacteria assembled into >100 μm bundles
that was possible to visualize and characterize with CT.
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Fig. 10.3 Examples of microorganism visualizations using CT: cyanobacteria bundle in a soil crust
(from Couradeau et al., 2018) with red scale bars representing 300 μm on the whole sample image
and 150 μm on the zoomed-in cut-outs (a), hyphae of Aureobasidium pullulans within pine
sapwood (from Van den Bulcke et al., 2008) (b), a likely fungal hyphae observed in a soil sample
previously stained with AgNO3 (from Lammel et al., 2019) (c)

Detecting fungi on CT scans has proved to be even more challenging than
studying biofilms and at present there are hardly any reports of fungi reliably
visualized using CT in the intact undisturbed soil. The main issue is that the scanning
resolution to visualize fungal hyphae must be quite small: from 1–3 μm to, prefer-
ably, sub-micron range. As has been demonstrated before in studies of CT-based
identification and characterization of soil pores, a reliable visualization of an object,
say a pore, requires that the scanning resolution be at least 2–5 times smaller than the
diameter of the object (Vogel et al., 2010; Koestel et al., 2018). While such
assessments have not been yet conducted for fungi visualization tasks, one can
expect that similar image analyses and segmentation procedures will be involved
in studying fungal hyphae as those used for soil pores. Thus, for a reliable visual-
ization of a 10 μm diameter fungal hyphae, a resolution no bigger than 3 μm would
be needed. And, as mentioned earlier, at present, such fine resolution scanning is
only possible in small (<10 mm) soil samples, a size that is not big enough to have
meaningful observations of fungal spread and interactions with the soil.

Successful fungi visualization via CT has been obtained in decomposing
wood samples (Van den Bulcke et al., 2008, 2009), where high image resolution
(0.7 μm) enabled visualization of fungi mycelia within wood cells (Fig. 10.3b).



Lilje et al. (2013) visualized fungi grown in mixtures of polystyrene beads, which
were built to resemble soil and were X-ray translucent. Prior to scanning the fungi
were fixed and stained to enhance visualization. Lammel et al. (2019) were success-
ful in identifying hyphae on CT images of the soil samples after different dopants
were applied to stain the organics and enhance its visualization. Another item to
consider for CT studies that involve living fungi is that they can be more sensitive to
radiation damage than other soil microorganisms (Jackson et al., 1967). Even though
one formal assessment demonstrated no negative effects of radiation on fungal
PLFA (Bouckaert et al., 2013), there are concerns that radiation can affect growth
of some fungal species (Van den Bulcke et al., 2009).
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A practical, even though low spatial resolution, approach to relate microbial data
with CT information has been proposed by Kravchenko et al. (2013) and Wang et al.
(2013). They added Escherichia coli to CT scanned macro-aggregates, which were
then cut into small subsections and E. coli’s quantities in each subsection were
determined using qPCR. Combining E. coli results with pore characteristics in the
individual subsections enabled exploring the role of pores in defining where the
E. coli might go upon entering soil macro-aggregates and whether/how much of it
will leave the aggregates after the soil is subjected to saturated flow. Kravchenko,
et al. (2014b) continued with this approach in relating bacterial community compo-
sition to pore characteristics. The CT scanned macro-aggregates were cut into sub-
sections, where each subsection was subjected to 16S rRNA analysis. The benefit of
this approach is that both physical and biological measurements can be obtained
using the best techniques currently available; pore architecture via image analysis of
fine resolution CT images and microbial abundance and community composition via
standard well-tested biological techniques known to generate reliable results. The
drawback is that the volume of the soil needed for the biological analyses must be
relatively large. A minimal size of an individual soil subsection used to generate a
single biological data point can hardly be less than 0.125 mm3 (500 � 500 �

500 μm3). Given that the size of an individual bacteria is ~1 μm and that distances
at which the bacterial colonies are spatially correlated are ~100–500 μm (Nunan
et al., 2002, 2003), such a sample, of course, provides only very coarse assessment of
microbiological data. Such soil volume also contains multiple micro-environments
with potentially very different features, resulting in only crude assessments of the
relationships between biological and physical characteristics.

A different experimental approach enables a more direct focus on procuring
inhabitants from specific soil micro-environments (i.e. pores of different sizes).
The method is based on modifications of soil matric potentials for either extracting
soil solution from pores of different sizes or for adding different substrates into pores
of different sizes. In the first scenario the extracted solution can be subjected to
biological and biochemical analyses (e.g., Bailey et al., 2017), while in the second
indirect observations of the microbial activities can be conducted (e.g., Ruamps
et al., 2011). While this approach is typically implemented by using pore informa-
tion from water retention curves (Killham et al., 1993; Wright et al., 1995; Ruamps
et al., 2013; Nunan et al., 2017), more detailed exploration of the pore characteristics
can be obtained by CT scanning (Kravchenko et al., 2020). Yet, this method also has



its own drawbacks, the most important of which is that it is impossible to get the
contents of pores of a specific size without avoiding some degree of mixing and
cross-contamination from pores of other sizes.

168 S. Kravchenko

Very promising recent developments in efforts to obtain CT and biological data at
comparable scales have used a method of resin impregnation of intact soil followed
by analyses of thin sections procured from the soil surface. The method originated
from soil micromorphology (Bullock et al., 1985) and also was employed in the
microscopic analyses of soil microbial and pore characteristics (Nunan et al., 2001).
Recent works have combined microbial data obtained from the surfaces of resin
impregnated soil with 3-D CT data (Juyal et al., 2019, 2021). Microbial data in such
analyses are obtained via fluorescent microscopy of the polished soil thin sections.
The great advantage of this approach over the above-described methods is that the
spatial resolutions in the physical and microbial data are very similar and locations of
individual microorganisms or microbial colonies can be visualized and enumerated
in relation to soil pores. However, the method suffers from two significant short-
comings. One is that preparation of resin impregnated thin sections is a very
laborious, time-consuming, and costly process, and the other is that matching of
the microscopy and CT images can be very difficult and imprecise. While the latter
problem might be resolved by the latest progress in development of image analyses
and registration tools (Schlüter et al., 2019a, 2019b), the tasks of resin impregnation
and procuring the thin sections for the analyses are unlikely to become easier.

10.4 Indirect Use of CT to Observe the Outcomes
of Microbial Activities

Since microorganism sizes are below the currently used resolutions in soil CT
scanning, in addressing their roles in soil structure formation the CT is often used
to view the outcomes of their activities, that is the changes in soil structure generated
by microorganisms under different settings. It can be argued that such studies assess
the microorganisms’ influences only indirectly. However, the experiments that
stimulate disparate microbial activities and where the influence on soil structure
can be visualized via CT generate a lot of useful information.

In such studies CT is implemented as a tool to characterize soil structure and pore
architecture, while specialized microbiological methods are used for microorganism
characterization. Feeney et al. (2006) followed the CT analyses of the pore charac-
teristics affected by plant roots and fungi by destructive fungal biomass measure-
ments using ergosterol-based approach. The authors observed that soil porosity
increased even in the bulk soil, which was not directly affected by plant roots—as
long as the soil was accessible to fungi during plant growth. Studies that aim at
comparisons among management practices often choose to work with sets of
sub-samples where some are subjected to CT for pore characterization, while the
other are used for chemical and biological measurements. For example, Rabbi et al.



(2016) used selected soil macro- and micro-aggregates collected from sites with
contrasting land use, such as crop, pasture, woodlot, to characterize pore geometry
via CT, while the other set of aggregates collected from the same sites was used to
characterize diversity of microbial communities and organic decomposition rates.
Harvey et al. (2020) used CT to examine pore characteristics of one subset of
manufactured aggregates, while the other subset was populated with yeasts placed
in different positions within the aggregates to explore protection of microorganisms
within aggregate interiors. Juyal et al. (2018) built soil materials with contrasting
bulk density levels and employed CT to procure in-detail quantification of the pore
architectures of the obtained materials. Then inoculums of Bacillus sp. and Pseudo-
monas sp. were applied on one side of the sample and the abundance of the bacteria
that reached the other side of the sample was assessed, enabling the authors to
explore relationships between soil pore characteristics and bacteria movement
through the soil.
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Such studies have been instrumental in demonstrating the relationships between
organic inputs, such as plant residues and roots, and soil pore formation driven by
microbial decomposition. For example, presence of residues within soil aggregates
stimulates pore formation; and pores follow a spatial gradient with more new pores
forming at shorter distances to the residue (De Gryze et al., 2006). The nature of the
added organic inputs, that is whether they are added as particulate organic carbon
(C) or as dissolved organic C, results in contrasting microbial activities, which then
lead to formation of contrasting pore architectures (Bucka et al., 2019).

Production and emission of N2O, a potent greenhouse gas, is a function of
microbial activity, including nitrification and denitrification, and can be strongly
affected by soil pore characteristics. The activities of microorganisms involved in
N2O production and subsequent processing, for example, full denitrification of N2O
to N2, are driven by the existence of micro-environmental conditions which are
conducive to their growth. The presence of pores of tens-micron Ø range, their
connectivity, and spatial distribution patterns affect travel times for gases and
solutions from/to pores vs. surrounding soil matrix and water fill status of the
pores. These characteristics are just a few of many key components that define
hotspots of microbial activities in soil which can be studied using CT (Schlüter et al.,
2019a, 2019b). X-ray CT has been demonstrated to be a very efficient tool for
exploring pore effects in N2O emission studies, as it enables relating properties of
soil pore architecture to the emissions (Mangalassery et al., 2013, 2014; Rabot et al.,
2015; Porre et al., 2016; Kravchenko et al., 2018b).

Despite the many complications and challenges facing the attempts of using CT
in microbial studies, such attempts are most valuable, bringing new light into micro-
environmental effects on soil microbial functioning. For example, the presence of
large pores in macro-aggregates and their greater connectivity were found to be
associated with greater C mineralization, but, surprisingly, with lower microbial
diversity (Rabbi et al., 2016). It has been often suggested that micro-environments
with low connectivity and smaller pores constitute a collection of non-connected
niches, conducive to formation of high microbial diversity (e.g. Nunan et al., 2017).
Studies combining CT with microbial analyses support this notion demonstrating



that places with high pore connectivity and high microbial productivity are the ones
where diversity might be reduced (Rabbi et al., 2016) and where copiotroph organ-
isms might dominate (Kravchenko et al., 2014b). Lower bulk density, higher pore
connectivity, and greater surfaces of the interfaces between solids and pores are the
factors that facilitate bacterial transport through the soil, via pores and likely water
films along pore boundaries (Juyal et al., 2021).
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10.5 Effect of CT Scanning on Soil Organisms

When using CT in the studies aiming at exploring macro- and micro-organism
activities within the scanned soil samples, the important question is whether
X-rays have a negative effect on the organisms’ wellbeing and functioning. Obvi-
ously, the presence of such effects would be a serious argument against implemen-
tation of CT in soil studies focusing on those soil functions that involve biological
activities. After all, gamma-irradiation is a widely used tool for effective soil
sterilization (McNamara et al., 2003). The doses used in gamma-irradiation soil
sterilization studies are 10–20 kGy, where 10 kGy will eliminate actinomycetes,
fungi and invertebrates and 20 kGy will be sufficient to eliminate most bacteria
(McNamara et al., 2003). However, the radiation levels used currently in X-ray
studies of plants and soils typically are <100 Gy (Zappala et al. (2013), that is, at
least two orders of magnitude lower than those that are critically harmful for soil
biota. Yet, even low doses might have an effect, which is important to be aware of
and account for in experimental work and result interpretation. Here the studies that
have looked at X-ray CT effects on specific macro- and micro- soil organisms are
summarized in terms of indicators of soil biological activity, such as microbial
biomass and soil respiration (Table 10.1).

The consensus from several independent works is that radiation doses delivered
during CT soil scanning sessions have either minor or non-detectable effects on soil
microbial biomass and microbial activity, as expressed via C mineralization. Effects
on abundance of some of bacteria phyla or fungal species can be expected, but
typically they do not translate into differences in the indicators of bacterial commu-
nity structure and diversity indexes (see Fischer et al., 2013). Activities of extracel-
lular enzymes is what appears to have experienced minor but consistent effects of CT
scanning (Ganther et al., 2020). Yet the good news is that most of the scanning
effects are temporal and disappear within days after scanning.

It also should be noted that the majority of the studies that explored the effect of
CT scanning on microbial activity were conducted via benchtop scanners with very
low radiation dozes (1–23 Gy). A study conducted at a synchrotron facility at an
inherently higher radiation (1000 Gy) also did not report significant effects on
bacterial community compositions (Kravchenko et al., 2014a, 2014b). But it should
be noted that in that study the scanning was undertaken on air-dry samples, while the
effect of radiation on soil organisms has been shown to be lower in dry than in moist
soil. Yet, another synchrotron study that involved repeated scanning of moist soil
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Table 10.1 Summary of the studies that explored the effect of CT scanning on soil microbial
activity

Organism/indicator
Doze/
Duration Scanner Effect Source

Microbial biomass 23 Gy over
6 repeated
scans

Benchtop A Phoe-
nix Nanotom
X-ray CT scanner
(GE sensing and
Inspection tech-
nologies, GmbH,
Wunstorf,
Germany)

Slightly numerically
higher microbial bio-
mass in unscanned
samples, no statisti-
cally significant
differences.

Zappala
et al. (2013)

C mineralization,
PLFA analysis,
enzyme activities

Single
scan

Benchtop No effect on C miner-
alization and PLFA, a
slight temporal
decrease in dehydroge-
nase activity

Bouckaert
et al. (2013)

Bacterial commu-
nity structure (16C
rRNA), extracellu-
lar enzyme activi-
ties, microbial
biomass

Single
scan

Benchtop (phoenix
v|tome| x L
240, GE-Sensing
& Inspection
Technologies
GmbH, Wunstorf,
Germany)

Differences in micro-
bial community struc-
tures, decrease in
enzyme activities, e.g.,
beta-glucosidase,
increase in microbial
biomass a week after
scanning.

Fischer et al.
(2013)

Bacterial commu-
nity structure (16S
rRNA)

~1000 Gy
single scan

Synchrotron,
advanced photon
source, Argonne

No effect on bray-
Curtis dissimilarity
clustering of bacterial
communities. How-
ever, statistically sig-
nificant differences
between scanned and
unscanned samples in
selected bacterial
groups.

Kravchenko
et al.
(2014b)

C mineralization,
extracellular
enzyme activity,
microbial biomass,
bacterial commu-
nity structure (16S
rRNA), archaea
abundance

2.4 Gy Benchtop ((HMX
ST 225, Metris
X-Tek, UK)

No effect on any of the
studied microbial
characteristics

Schmidt
et al. (2015)

Microbial growth
in response to glu-
cose addition,
microbial commu-
nity composition,
extracellular
enzyme activities

0.81 Gy Benchtop (X-TEK
XTH 225, Nikon
metrology)

No effect on microbial
growth and bacterial
community diversity
indexes and commu-
nity composition;
decreased activity of
leucine aminopeptidase
and phosphomonoes-
terase, but not beta-
glucosidase

Ganther
et al. (2020)



samples did report that scanning somewhat affected cyanobacteria functioning,
namely, it prevented a normal behaviour of migration to the surface after dry samples
were rewetted (Couradeau et al., 2018).
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10.6 CT and Soil Organic Matter Visualization

The organic materials within the soil are commonly classified into two broad types:
particulate organic matter (POM) and non-particulate organic matter, where the latter
will be referred to here as just soil organic matter (SOM). Visualization of these two
types of material within intact soil samples via CT requires different approaches and
strategies. Particulate organic matter consists of discernible fragments of plant and
animal residues ranging in size from 0.053 to 2 mm (Cambardella & Elliott, 1992).
Due to its size and attenuation properties, POM visualization on CT images is
relatively straightforward, consisting of the steps similar to those needed to segment
plant roots (e.g. Mooney et al., 2012; see Chap. 9). However, it should be noted that,
unlike live/fresh plant roots, POM fragments imbedded into the soil matrix come
from a wide range of origins and are at variable stages of decomposition. Thus, there
is often a significant variability in the greyscale values of POM fragments due to
differences in densities, chemical composition, potential incorporation of mineral
grains, etc. For example, relatively fresh plant or animal residues can have darker
grey values than those that are at a more advanced stage of decomposition, while
biochar might have lighter greyscale values due to its higher density. The fragments
of POM also lack connectivity and defined structure of plant root images, still further
complicating their identification.

Typically, identification of POM is based on determining the range of greyscale
values representative of POM in the studied images (e.g., De Gryze et al., 2006;
Sleutel et al., 2008; Negassa et al., 2015). The greyscale images of POM are then
used for thresholding, followed by a series of artefact removal steps, which are often
needed to exclude image features that happen to have similar greyscale values as
POM. One of such commonly encountered features are pore/solid boundaries
subjected to partial volume effects; an artefact caused by some voxels being partially
occupied by pores and partially by soil’s solid material. A number of strategies,
including filtering, erosion, denoising, separation by size, etc. can be implemented to
remove such artefacts (Kravchenko, et al., 2014a; Piccoli et al., 2019). The usage of
contrast/staining agents, chemicals that enhance the contrast between POM frag-
ments and the surrounding soil on the images, can greatly improve POM determi-
nation (Peth et al., 2014; Lammel et al., 2019; Piccoli et al., 2019).

Visualization of SOM presents a much greater challenge than POM visualization.
Due to the small size of non-particular SOM, it cannot be directly seen in CT images.
Even though areas within an intact soil matrix with higher SOM often tend to have
darker greyscale values due to their lower density and dominance of H and C atoms,
using this information for quantitative assessments of SOM can be possible only in
very specific circumstances. Quigley et al. (2018) demonstrated how this approach



can generate valuable information to explore gradients of organic matter next to
decomposing plant roots. But the use of this approach was less successful in other
areas within the intact soil cores. Thus, using staining agents that react with SOM or
its selected components, changing the attenuation characteristics is the only option
for visualization of SOM in CT images. Staining with OsO4 is a potentially useful
approach that demonstrated substantial promise in applications with soil aggregates
and small intact cores (Peth et al., 2014; Rawlins et al., 2016; Quigley et al., 2018;
Arai et al., 2019; Zheng et al., 2020) (Fig. 10.4). Yet, the issue that plagues those
SOM detection procedures that rely on the use of contrast agents is the difficulty in
ensuring consistent accessibility of all SOM within the sample to the added agent.
This problem can be less severe and thus less noticeable in well-mixed artificially
prepared soil mixtures, which are commonly used in the studies that compare
performances of different staining techniques (e.g., Van Loo et al., 2014; Lammel
et al., 2019). How well can the staining agent reach the organics within intact soil
samples is an important question; and the bigger the sample or the more heteroge-
neous it is in terms of its pore characteristics and solid matrix properties, the more
questionable the uniformity of the staining becomes. Intact, heterogeneous soil
samples are typically the main focus in the studies that use CT tools. Staining
chemicals can be delivered to the soil in either liquid or gaseous form (Peth et al.,
2014; Van Loo et al., 2014; Lammel et al., 2019), and staining that relies on gaseous
diffusion of the contrast agent might lead to more uniform results. However, in the
study that used OsO4 vapours, the staining efficiency still decreased at distances
>5 mm from the gas entry surface even after >7 days of exposure to OsO4 vapours
(Zheng et al., 2020).
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A potential difficulty with implementing staining techniques that rely on adding
the staining agent in the liquid form are a likely disturbance of the original soil
structure both during initial liquid addition and during subsequent efforts of washing
the non-reacted chemicals out of the soil (Van Loo et al., 2014; Arai et al., 2019;
Lammel et al., 2019). The main reason for the use of staining agents in CT studies is
explorations of the relationships between SOM and soil pore architecture. Thus, an
intensive routine of saturation, drainage, and washing might not be suitable for many
soils, especially those prone to swelling and shrinking. It can potentially significantly
affect the initial soil pore structure, thus the initial positions of organic materials with
respect to other elements of soil matrix, altering SOM-pore associations.

The next step after SOM visualization in CT images is obtaining numerical
measures to characterize its quantities and spatial patterns, and at present the
methods to undertake this are in a very early stage of development. Any fresh
biological input into the soil consists of an extremely complex mixture of different
organic compounds, where each of them can react differently with the added staining
agents. Microbial decomposition of the fresh inputs greatly magnifies the complexity
of the resultant products; and even within the same soil, the long-term differences in
land use and management can lead to differences in SOM’s chemical composition
(Sleutel et al., 2007). Thus, it is unlikely that analytical quantifications based on
considering specific chemical reactions between organic compounds and staining
chemicals will ever become available in this context. Chemical reactions remain
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Fig. 10.4 Example of visualizing particulate (POM) and non-particulate (SOM) in an intact soil
aggregate (a) and in its selected subsections (b-d) using staining with OsO4 vapours and dual-
energy CT scanning (from Peth et al., 2014)



poorly understood even for the staining of fresh biological tissues with OsO4

vapours which is the technique that has been actively used by biologists for
>70 years and continues to be a subject of active research (Bahr, 1954; Griffiths,
1974; Belazi et al., 2009). It is not clear what components of SOM and POM are
reacting with staining agents, to what extent, and by which of several possible
mechanisms (Lammel et al., 2019). Zheng et al. (2020) demonstrated that while
plant root residues and soil with high organic matter content are well stained by
OsO4 vapours, biochar was not, and soils can vary widely in their biochar contents.
Quantifications built on empirically derived relationships between measurements of
soil C and the results of staining-assisted CT scanning appear to be the only possible
route. Such efforts have shown initial promise in the studies with OsO4 (Zheng et al.,
2020) and I2 vapours (Lammel et al., 2019).
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An additional issue with using liquid contrast agents for quantitative purposes is
that there might be not only chemical, but also hydrological drivers of their spatial
distribution patterns. For example, fragments of plant residues within the soil
matrix to a certain extent act as sponges that absorb moisture from the surrounding
soil in quantities that depend both on their characteristics and on pores in the
surrounding soil (Kravchenko et al., 2017, 2018a). Thus, when the contrast agent
is added to a dry soil in a liquid form, the resultant high presence of the agent
within a POM fragment can stem more from the liquid absorption by the POM, and
less so from the organic matter reaction with the agent. On the other hand, applying
the liquid contrast agent to a wet soil can lead to mixing of the added chemical with
soil water decreasing quality of POM identification (Piccoli et al., 2019). From that
point of view, gaseous staining agents might be more promising for quantification
purposes.

10.7 Conclusions

Even though the primary focus of most X-ray CT applications in soil science
concerns the physical structure of intact soil, given that that structure is both a
habitat and a product of activities of soil biota, the benefits of CT use in soil biology
are numerous and overarching. For soil meso-fauna, including earthworms and
burrowing insects, CT offers capabilities of viewing the outcomes of their activities,
the temporal dynamic in development of resultant soil architecture, and the locations
and movements of the organisms themselves. For microorganisms, CT enables
quantification of their influences on soil structure formation in space and time; as
well as on what the resultant soil structure adds to a variety of soil processes,
including soil C protection and sequestration, and greenhouse gas emissions.
While the importance of physical structure for soil fauna has been always recog-
nized, the traditional destructive methods of its classification (e.g. dry- and
wet-aggregate sieving) precluded direct observations of soil-dwellers in their
undisturbed environments. Despite its many technical limitations and difficulties in
implementation, CT offers such capabilities. Its wider utilization in soil biology will



lead to a greater appreciation of the soil as a unique habitat and a better understand-
ing of the ecological principles that guide its functioning.
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Chapter 11
Integrating X-ray CT Data into Models

Xavier Portell, Valerie Pot, Ali Ebrahimi, Olivier Monga, and Tiina Roose

11.1 Introduction

X-ray Computed Tomography (X-ray CT) offers important 4-D (i.e., 3-D scanning
over time) structural information of the soil architecture. This imaging tool provides
access to the 3-D morphological properties of the soil pore space such as the 3-D
connectivity of pores that are essential to the understanding of water, solute, and gas
transport processes. Other morphological properties such as pore-size distribution,
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specific surface area, or spatial heterogeneity of soil can be obtained from the X-ray
CT images. Many studies have used this technique to better understand the evolution
of macroscopic soil physical properties such as structural stability and relate it to
spatial descriptors of soil pore space morphology when the soil undergoes wetting/
drying cycles (e.g., Diel et al., 2019) or when it is subjected to different agricultural
practices (e.g., Papadopoulos et al., 2009; Dal Ferro et al., 2013; Caplan et al., 2017).
Non-equilibrium transfer processes, such as preferential transport, have also been
related to the quantification of macropores in X-ray CT images (e.g., Larsbo et al.,
2014; Katuwal et al., 2015; Soto-Gómez et al., 2018). In addition, X-ray CT data
have proved particularly useful for reconstructing the skeletons of biopore networks,
such as those burrowed by earthworms (Capowiez et al., 1998), and for monitoring
their temporal dynamics (Joschko et al., 1993) (see Chap. 10). The role of air-filled
soil pores and in particular their connectivity in 3-D in the transport of microbial-
generated gaseous products (N2O, CO2) have been hypothesized (Rabot et al., 2015;
Porre et al., 2016). X-ray CT data have also provided new knowledge about the 3-D
architecture of root systems (e.g., Helliwell et al., 2013) and their impact on the 3-D
soil architecture (see Chap. 9). For instance, root hairs were shown to modify the
pore-size distribution and connectivity in the rhizosphere (e.g., Keyes et al., 2013;
Koebernick et al., 2017, 2019). X-ray CT measurements have also allowed imaging
aerenchymatous roots and the gas bubbles entrapped in the soil of rice paddies to
explain transport of CO2 and O2 between roots and the atmosphere (Kirk et al.,
2019). The dynamics of the spatial dispersion of soil microorganisms could be
related to the 3-D description of the pore space obtained by X-ray CT (Juyal et al.,
2020). The role of some pore-size classes could also be linked with soil carbon
storage (Kravchenko et al., 2020) (see Chap. 10).
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Many experimental studies have highlighted the link between soil functioning
and structural information of soil architecture extracted from X-ray CT. This is often
performed by looking for correlations between measured soil functions and mor-
phological properties of the pore space. From this vantage point, modelling offers an
interesting and complementary methodological tool to these studies. In addition to
their predictive character, models open the way to the testing of hypotheses about the
role of the complex soil architecture on soil biological and physical processes, by
carrying out structurally realistic in-silico experiments that can now be set up thanks
to X-ray CT imaging. Development of spatially explicit pore-scale modelling in the
1990s, encompassed with a steep increase in desktop processors computing power
and development of parallel computing algorithms, has made the routine use of
X-ray CT images in modelling common. Early examples of the integration of X-ray
CT data into spatially explicit models are found in the rock physics domain (Spanne
et al., 1994; Hazlett, 1995). The inclusion of X-ray CT data into models focusing on
soils occurred at a later stage (Falconer et al., 2005; Monga et al., 2008; Keyes et al.,
2013). Consequently, the rock physics domain accounts for a large number of
studies dealing with water flow, multiphase flow, and reactive transport (e.g.,
Blunt et al., 2013; Bultreys et al., 2016; de Paulo et al., 2020), whilst the soil domain
has been the object of a lower number of studies, possibly because of its importance
not being widely recognized and/or funding being more abundant for the problems



dealing with oil and gas movement in the rocks. Synthetic porous media or packing
of sands have also been imaged and processed into pore-scale models to study
fundamental physical and biological processes in granular media (e.g., Schaap
et al., 2007; Sukop et al., 2008; Peszynska et al., 2016). Such approaches are a
valuable step forward to account for some of the soil complexity, but outputs
obtained should be taken cautiously because the studied system can behave funda-
mentally differently from the real soil situation.
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The main approach in using X-ray CT information in image-based models is the
direct integration of the 3-D organization of the soil phases in the numerical grid of
pore-scale models. Soil processes such as water flow, multiphase flow, diffusion, or
reactive transport are subsequently computed in the 3-D pore space using Compu-
tational Fluid Dynamics (CFD) tools such as Finite-Element, Finite-Volume, or
lattice-Boltzmann approach. In an alternative indirect approach, X-ray CT data is
used to obtain key image-based structural qualities to parameterize soil features that
are needed as input parameters into macroscopic soil models that ignore the explicit
3-D description of soil. One example of such a morphometric statistical approach is
the extraction of critical pore diameters to be used in macroscopic analytical relations
to predict saturated hydraulic conductivity. The structural morphometric parameters
obtained from X-ray CT can also be used to generate an equivalent 3-D pore space,
for instance extracting the Euler number (a number used for quantifying the con-
nectivity of the pore space) to parameterize a pore network model (PNM). The latter
approach is also classified as indirect. Soil structure can also be generated from
explicit soil images by using more sophisticated statistical methods such as the
Markov-chain Monte-Carlo method as performed by Wu et al. (2004). Although
the images used in this latter work were 2-D thin sections, the method can be applied
to X-ray CT data (Lin et al., 2020).

This chapter focuses on soil modelling approaches that make use of X-ray
CT. Other porous media, such as carbonate rocks, sandstone, etc., have been
thoroughly addressed in other reviews (e.g., Golparvar et al., 2021) to which readers
are referred to. First, we focus on the practical aspects of the integration of X-ray CT
data of the main soil phases into spatially explicit models highlighting the main
approaches that can be used for such integration. We then provide an overview of
how X-ray CT data has been integrated in soil modelling research distinguishing
between work on a direct or an indirect use of X-ray CT.

11.2 Direct Integration of X-ray CT Data-Derived Soil
Phases into Image-Based Models

In this section, we focus on the integration of X-ray CT data of the main soil phases,
namely pore space (sect. 11.2.1), air and water (sect. 11.2.2), organic matter (sect.
11.2.3), and roots (sect. 11.2.4), highlighting the main modelling strategies that can
be adopted.
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A number of preliminary steps must be carried out before the integration of the
soil phases in image-based models can be undertaken. These processes allow for the
acquisition of a greyscale representation of the soil structural information that is
usually segmented to produce binary images, i.e., black and white. Following this,
the different soil phases are then labelled by different colours identifying solid
particles and non-solid particles (pores), which are normally used by image-based
models despite providing less signal information than greyscale images. Readers
interested in segmentation and post-treatment processes are referred to Chaps. 5 and
6 along with the reviews of Iassonov et al. (2009) and Schlüter et al. (2014).

11.2.1 Integration of X-ray CT Data of Pore Space Geometry

Different strategies can be adopted to integrate the structural information of pore
space geometry provided by the segmented X-ray CT images into image-based
models. We will distinguish four strategies differing in the degree of simplification
of the soil structural information and the immediacy of their use: voxel-based, finite-
element meshing, morphological, and irregular PNM approaches. The main charac-
teristics of these strategies are summarized in Fig. 11.1.

The most straightforward strategy is to make use of all the structural information
elements provided by the image to reconstruct the numerical grid. Depending on the
CFD tools used, two approaches can be distinguished, the so-called ‘voxel-based’
and ‘finite-element’ modelling techniques. Voxel-based models directly map the
voxels of the segmented X-ray CT image to the model’s numerical grid, as is
typically done when using lattice-Boltzmann models. Depending on the desired
degree of accuracy of the soil processes, the lattice-Boltzmann grid can be further
refined (e.g., Sukop et al., 2008). Finite-Element solvers require the reconstruction of
the numerical grid using more or less sophisticated meshing software (e.g.,
iso2mesh, Tran et al., 2020).

Another strategy is to reduce the number of computational elements of the
segmented X-ray CT image while keeping key structural information, as performed
by the so-called ‘morphological’ and ‘irregular Pore Networks’ models. In these
cases, the integration of X-ray CT data requires a number of operations specific for
each modelling approach. The main steps required are reported in Fig. 11.2. Mor-
phological models approximate the complex pore space morphology with a set of
simplified geometrical primitives such as balls (e.g., Hilpert & Miller, 2001; Vogel
et al., 2005; Lehmann et al., 2006; Monga et al., 2008), ellipsoids or generalized
cylinders (Ngom et al., 2012; Kemgue et al., 2019), located along the median axes of
the pore space. This set of maximal balls recover the skeleton of the pore space.
These balls also function as the nodes of an adjacency graph, which considers the
neighbourhood information of each geometric primitive (e.g., balls) where the soil
processes are locally computed (Monga et al., 2007). They can also be used to
construct generalized cylinders or ellipsoids (Ngom et al., 2012; Kemgue et al.,
2019). Like morphological models, irregular PNMs construct networks of nodes



located along the median axes of the imaged pore space (e.g., Ebrahimi et al., 2013).
Irregular PNMs use the same operations than the morphological approach to extract
clusters of maximal balls. Then these clusters of maximal balls are converted to pore-
throat network (Fig. 11.2). In both approaches, the size of the given geometrical
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Fig. 11.1 Overview of four main methods used to integrate X-ray CT 3-D structural data in image-
based models. In the figure, points that can be seen as advantages are in green while disadvantages
are depicted in red. PNMs stands for pore network models. In the figure, CG is an indication of the
computing time required to generate the numerical grid and CS is an indication of the computing
time required to simulate diffusion of a chemical species through the network for 10 days. An X-ray
CT image of 5123 voxels and an average desktop computer (e.g., AMD Ryzen 7 or Intel i7
processor, and 16/32 GB of RAM) have been assumed on providing these indicative numbers
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Fig. 11.2 Overview of the operations required to integrate X-ray CT images of the soil architecture
into image-based models. For illustrative purpose, we sketch a binary segmented image showing
pore and solid space. Note that other soil phases may be added (e.g., water phase, solid organic
matter). (a) The segmented X-ray CT image is used directly by voxel-based approaches. Note that
only the pore phase is represented in the figure. (b) Finite-element approaches use a mesh
approaching where the segmented pore space is located. (c) The morphological approach requires
the skeletonization of the segmented pore space image, which is used as a base to construct a
minimal set of maximal balls that approach the soil pore space. Once identified, the relationships
and connectivity of the maximal balls are written in an adjacency graph, which is valuated by
attaching to each ball a set of attributes (e.g., air or water, organic matter mass). (d) In addition to the
steps described by the morphological approach, irregular pore networking models extract clusters of
maximal balls that are converted to pore-throat networks. This requires sorting the maximal balls by



primitives (in morphological models) and the bonds (in irregular PNMs) are locally
computed from the measured area of inscribed circles or balls within the pores (e.g.,
Perez-Reche et al., 2012). PNMs classically use cylindrical or angular bonds
(throats). There are standalone open software tools (http://openpnm.org, Gostick
et al., 2016; http://porespy.org, Gostick et al., 2019) that allow constructions of these
irregular pore networks.
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In PNMs, the choice of the bond shape can have important consequences on the
model behaviour. Microscopic soil images revealed that natural soil pores consist of
heterogeneous and angular cross-sections rather than cylindrical shapes (Blank &
Fosberg, 1989; Hamamoto et al., 2016). Quantifying such angular form of pores is
not only crucial for a realistic representation of soil microscale structure, but it also
has a significant impact on water configuration and soil hydraulic conductivity
(Raoof & Hassanizadeh, 2012). For instance, using fast tomography imaging in
simplified porous media made of packing of glass beads and in sands, Hoogland
et al. (2016) characterized corner flow and conductivity dynamics during soil
drainage process. As pores are drained or dried, a fraction of water remained in the
pores’ angular corner (Tuller et al., 1999). Many studies have shown that the
assumption of cylindrical pore cross-section that only allows for single-phase occu-
pancy was insufficient to represent water configuration and hydraulic continuity
(Zhou et al., 2000; Tuller & Or, 2001). On the other hand, angular pores allow
retaining two or more fluids simultaneously and thus better represent liquid config-
uration in soil. Joekar Niasar et al. (2009) developed a geometry-based approach for
pore network modelling to characterize and produce various ranges of pore cross-
sections to describe natural pore geometry, including irregular hyperbolic triangles
and regular hyperbolic polygons. The pore geometry and angularity are also essen-
tial factors controlling colloid and microbial transport in unsaturated soil (Bradford
& Torkzaban, 2008; Saiers & Lenhart, 2003). For instance, Ebrahimi and Or (2014)
showed that pore angularity impacts effective water film thickness necessary for
bacterial motility in unsaturated soil. In addition, soil macropores and their orienta-
tion are known to significantly impact hydraulic conductivity by allowing the rapid
flow of water in the soil. Micropores are created by worm holes, plant roots, soil
aggregation, and soil wetting/drying. Recent advances using X-ray CT imaging
allowed for characterization and quantification of such soil pores at higher resolution
compared to traditional methods that used dye tracing, spectral image analysis, and
sectioning soil into thin layers (Katuwal et al., 2015; Li et al., 2016; Hu et al., 2020).
It is worth mentioning that as with all imaging and image-based techniques, there is a
constant temptation to include more and more detail on different physical processes
into models. Novel technologies provide a detailed view of soil pore structure
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Fig. 11.2 (continued) decreasing sizes, with larger balls ranked as ancestors and small ones as
daughters, the identification of common element between families (bonds between pores), and the
assignment of geometrical properties to the bonds identified (e.g., angularity, surface area, shape
factors). Further details of the substeps required by the morphological and irregular pore network
approaches can be found in Table S11.1

http://openpnm.org/
http://porespy.org/


however, the challenge remains in finding the right balance in terms of the number of
measurable details that need to be captured in the models and observations to
effectively describe soil function while reducing the inherent complexity of soil.
Not all details matter but direct simulation alone or in combination with homogeni-
zation approaches (discussed later) is needed to determine which features matter and
when; this process allows for systematic classification of processes/phenomena into
important and unimportant functional traits.
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Fig. 11.3 3-D view of a pore geometry integrated in the voxel-based, morphological, and PNM
approaches. In the morphological approach, balls are used as geometric primitives. In the irregular
PNM approach, cylindrical bonds are used. The size of the ROI is 56x56x56 voxels. The voxel
resolution is 9.77 μm (Peth et al., 2014)

The advantage of morphological models and irregular PNMs is that they provide
a close approximation of the X-ray CT image-based soil pore space as they retain the
spatial heterogeneity of the clustering of pores and connectivity in addition to the
pore-size distribution (Blunt, 2001; Xiong et al., 2016; Perez-Reche et al., 2012).
These methods compact the data information provided by the X-ray CT images and
represent an interesting alternative to estimate soil processes in larger-scale simula-
tions than can do the voxel-based models.

As an illustrative example, we have used a set of synchrotron X-ray CT images of
soil aggregates from Peth et al. (2014) to show how pore space is integrated in three
selected image-based model approaches: a lattice-Boltzmann Method (LBM), a
morphological model, and an irregular PNM. Before segmenting the image, we
reduced the noise of the image using a non-local filter mean and passed an unsharp
mask to enhance contrast between phases (Schlüter et al., 2014). We then applied a
local segmentation using a watershed algorithm (Marker-Controlled Watershed in
MorpholibJ plugin of Fiji/ImageJ, Legland et al., 2016) to obtain a binary image,
with white voxels corresponding to the solid phase and black voxels corresponding
to the pore phase. Post-processing of the binary image was further performed with a
majority filter to remove segmentation noise. The segmented image was then
integrated in the LBM which is a voxel-based model by making a direct correspon-
dence between each X-ray CT voxels and the nodes of the model numerical grid. The
same segmented image was then integrated in the morphological model of Monga
et al. (2014) and the irregular PNM of Ebrahimi et al. (2013). Figure 11.3 displays
the same region of interest (ROI) of the image to better highlight the differences in



pore space recovering by the three approaches. The porosity obtained with the three
approaches was 0.1233, 0.1054, and 0.0986 for the voxel-based, morphological, and
irregular PNM approaches, respectively. Comparison of the pore-size distribution
obtained with the three methods can be seen in Fig. 11.4. A priori, underestimations
of the pore space volume recovered by the irregular PNM and morphological model
can be expected due to the approximations these methods assume. Nonetheless, for
this image, these approximations did not translate into a substantial loss of the pore-
size classes of the pore volume. The morphological approach, which consists of a
minimal set of maximal balls that barely overlap, reproduced the pore-size distribu-
tion of the ROI computed with the morphological opening released in the
MorpholibJ plugin of Fiji/ImageJ (Legland et al., 2016) well. The slight underesti-
mation of pore volume in PNM is associated with the throat assignment step in
which the neighbouring maximal balls to a pore are converted to a throat with a
constant size. The throat size is chosen based on the average size of maximal balls
connecting two pores that tends to overrepresent small balls.
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Fig. 11.4 Pore-size distribution of the ROI (56�56�56 voxels) of Peth et al. (2014) image,
obtained with a voxel-based (purple), morphological (green), and the irregular PNM (orange)
depicted in Fig. 11.3
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11.2.2 Integration of X-ray CT Data of Air–Water
Distribution

The fact that attenuation of X-rays by water is comparable to that of organic matter
hinders distinguishing these two phases in soil X-ray CT images. Imaging protocols
are not always straightforward (e.g., Rezanezhad et al. (2010) did not distinguish
water from organic matrix of peat soils). In the case of peat soils, distinguishing
water from organic matrix relies on the equilibration time between peat and water,
which results in some solutes being incorporated to the water surrounding peat,
blurring the distinction between phases. If water in the saturated peat is replaced with
deionized water, contrast is enhanced and distinction of the two phases is possible
(Iain Young, personal communication). High quality images and a resolution
targeted to the visualization of air–water interfaces in well resolved pores are thus
required. For instance, air-filled and water-filled pores were successfully segmented
in X-ray CT images of soil columns (e.g., Mooney, 2002; Daly et al., 2015). Imaging
the spatial distribution of water and air phases in the soil pore space can be more
easily measured using synchrotron radiation X-ray CT (e.g., Carminati et al., 2008;
Pot et al., 2015; Daly et al., 2017). Another option is to stain water by heavy contrast
agents. Li and Tang (2019) used an iodine-based contrast medium to visualize water
films in glass beads and sand, but they could not observe them in a clayey soil. Our
previous experiences have shown that the drawback of using contrast agents,
particularly in structured clayey soils, is the massive change in electrolyte concen-
tration in the soil solution brought by adding contrast agent solution (such as KI),
which could lead to strong soil dispersion (Pot et al., 2011). Scotson et al. (2019)
investigated the use of gold nanoparticles for X-ray CT contrast enhancement, which
might well provide a promising avenue, especially for soil biological processes, as
gold is inert.

The water distribution and movement can be more easily measured using neutron
imaging. Neutrons interact strongly with light elements such as hydrogen allowing
for better distinction of soil water at the expense of a poorer representation of soil
minerals. Combining X-ray and Neutron CT images using data registration tech-
niques allows exploiting this complementarity and obtaining the solid, air, and water
phase distributions experimentally (Clark et al., 2019). This process requires
de-resolving the higher resolution image (usually X-ray CT) to match the lower
resolution data, which can be done, for instance using Fiji/ImageJ. Despite that in
principle, the whole range of soil water content can be resolved, the accuracy is
largely influenced by the spatial and temporal resolution achievable by the tomo-
graphic method (Tötzke et al., 2021). For instance, Moradi et al. (2011) reported
rhizosphere volumetric water content profiles of a sandy soil sieved to <2 mm that
ranged from 0.05 to 0.4, approximately.

To date, only a few image-based models have integrated X-ray CT imaging of
water and air distributions directly (Keyes et al., 2013; Daly et al., 2015, 2016).
Rather, these distributions have been computed using drainage and imbibition
algorithms that calculate the typical capillary pressure head that allows air or water



invasion in the pore network. The sequence of pore invasion by air or water is
determined by pore size and pore connectivity only and ignoring the viscous effects
and gravity. In the case of drainage, the network of pores is initially assumed to be
water filled. Then pores connected to the network entry or already invaded
neighbouring pores are drained in a sequence of decreasing pore size. Each pore is
evaluated for air invasion based on its size and experienced pressure head according
to the Young–Laplace equation. This is adopted in modelling frameworks using
morphological models and PNMs (e.g., Carminati et al., 2008; Monga et al., 2014;
Ebrahimi & Or, 2015; Pot et al., 2015; Hoogland et al., 2016; Kemgue et al., 2019).
Another option is to apply interfacial (van der Waals) and capillary forces to the
simulated fluid to generate a phase separation between regions of high fluid density
and low fluid density, respectively, attributed to water and air. This approach is
adopted in the voxel-based LBM (e.g., Falconer et al., 2012; Genty & Pot, 2013) and
in finite-element solvers such as the commercial software COMSOL Multiphysics
(Cooper et al., 2017, 2018). LBM solvers with free licenses for research such as
PALABOS (Latt et al., 2021) and DL_MESO (Seaton et al., 2013) are available.
When interfacial and capillary forces are computed there is a remarkable agreement
of the position of the air–water menisci to that measured in X-ray CT images (Pot
et al., 2015). Good agreement can also be obtained using morphological models and
PNMs (Carminati et al., 2008; Pot et al., 2015) even if the air–water interface
presents as an abstracted geometry of the real pore space using Euclidean geometries
with defined angularities (Hoogland et al., 2016).
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Fig. 11.5 Images of air–water interfaces in a disturbed soil sample, as measured by synchrotron
X-ray CT imaging and as produced by a voxel-based approach and a morphological model (Pot
et al., 2015). Cyan is the iso-contour of the air–water interface and dark blue is the liquid phase

The success of numerical methods to compute water and air distributions in pore
space geometries extracted from X-ray CT images and the difficulty in obtaining
X-ray CT imaging of water and air distribution in complex soil samples explain the
wide adoption of these methods. As an example, Fig. 11.5 displays a comparison
between synchrotron X-ray CT imaging and air–water interfaces computed using the
LBM and the morphological approach. The mean absolute error between simulations



and measurements of the position of the menisci were 5% and 18% for the LBM and
morphological approach, respectively. As can be seen in the picture, performance of
the methods is remarkable, especially for the LBM approach.
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11.2.3 Integration of X-ray CT Data of Solid Organic Matter
Distribution

The similar attenuation of X-rays by water and solid organic matter also hinders the
imaging of soil organic matter in X-ray CT images (see Chap. 10). However, large
fragments of organic matter, the particulate organic matter (POM), can be rather
easily visually identified due to their recognizable shape, as was shown when
comparing X-ray CT with micromorphological study of organo-mineral assem-
blages in thin sections (Elyeznasni et al., 2012). Multi-modal segmentation tools
can be used to correctly segment POM and avoid false coatings of organic matter
around large pores, due to partial volume effect (e.g., Elyeznasni et al., 2012;
Schlüter et al., 2014). However, the identification of small organic matter embedded
in the soil matrix remains a challenge and needs the adoption of organic matter
staining (Peth et al., 2014; Van Loo et al., 2014; Quigley et al., 2018; Piccoli et al.,
2019a; Zheng et al., 2020; Maenhout et al., 2021). Despite that some measured
X-ray CT organic matter distributions are available in the literature, this information
has not been used in modelling studies yet. Instead, scenarios of organic matter
placements in the segmented X-ray CT images have been used (e.g., Falconer et al.,
2015; Portell et al., 2018).

To initiate integration of realistic 3-D X-ray CT images of spatial distribution of
organic matter, we take the example of the soil image obtained by Peth et al. (2014)
that we partially displayed in Fig. 11.3 and extracted the structural information
required by image-based modelling (Fig. 11.6). Peth et al. (2014) irreversibly fixed
osmium to the organic compounds of the soil. To locate the stained organic matter,
the soil sample was scanned at a synchrotron at two photon energies above and
below the absorption edge of X-ray by osmium. To obtain Fig. 11.6, we first applied
a noise reduction pre-processing on both images, using a median 3-D filter and
passed an unsharp mask to enhance contrast between phases (Schlüter et al., 2014).
Following the procedure in Peth et al. (2014), we subtracted these images and
obtained a 3-D image where the highest grey levels correspond to the highest
concentrations of osmium associated with large fragments of organic matter
(POM) and lower grey levels correspond to organic matter coatings of pore walls
or organic matter residing in smaller pores within the soil matrix (Peth et al., 2014).
A global segmentation using three thresholds whose values were initially chosen
using Otsu and C-means segmentation algorithms was carried out. This resulted in a
multi-modal image where the three types of organic matter identified in Peth et al.
(2014), associated to different levels of osmium concentration, were distinguished.
A majority filter was passed on the resulting image to remove noise associated with
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the segmentation step. To integrate this structural information on organic matter in
an image-based model, we merged this information with the former binary image
containing information on the pore and solid phase as discussed in sect. 11.2.1. To
do so we simply added both images to get a multi-modal image. This structural
information can now be directly integrated in an image-based model, e.g., the lattice-
Boltzmann model of Pot et al. (2010), where different reactivity of the solid–pore
interface is included.
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Fig. 11.6 3-D views of soil fragment showing osmium-stained soil organic matter. (a) Total
organic matter with high (red), medium (cyan), and low (green) relative osmium concentration,
(b) Piece of organic matter showing a high relative osmium concentration, (c) Pore phase (dark
blue) and the same organic matter stained with a high relative osmium concentration. The size of the
ROI is 56 56 56 voxels. The voxel resolution is 9.77 μm (Peth et al., 2014)

11.2.4 Integration of X-ray CT Data of Roots

Despite the recent popularity for rhizosphere related research, few rhizosphere
image-based modelling approaches are available to date, probably due to the rhizo-
sphere complexity (both in terms of processes and soil phases involved) and to the
challenges faced by the structural imaging of plant–soil interactions such as the
identification of soil phases and difficulty of imaging fluxes (see Roose et al., 2016).
Distinction among root and other soil phases is increasingly being performed yet it
remains challenging, suffering from the limitations such as partial volume effects
already highlighted previously. For instance, the pioneering work of Keyes et al.
(2013) used Synchrotron X-ray CT and successfully identified root hairs, soil, pore
space, and root surface regions. Also, along with the characterization of mucilage
and root hairs, and water sorption of chickpea roots, Rabbi et al. (2018) computed
the radial and axial water permeability using lattice-Boltzmann modelling based on
X-ray CT images of sieved and repacked soil. Given that they are usually filled with
water, roots can also be identified using neutrons. For instance, Zarebanadkouki
et al. (2012, 2014) used neutron radiography to visualize the transport of deuterated
water and developed a method to reconstruct flow into roots. Segmentation of the



reconstructed images is complex, often involving semiautomatic methods (Keyes
et al., 2013; Daly et al., 2016). Open-source semiautomated tools to follow root
growth such as RooTrak (Mairhofer et al., 2016) or the Fiji/ImageJ plugin Smart
Root (Lobet et al., 2011) as well as commercial tools such as WinRHIZO are
available (see Chap. 9).
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Once segmented, the root structural information is used to set up the processes of
interest. To date, the most studied processes are nutrient uptake (mainly P), uptake of
water in saturated and unsaturated conditions, and root growth. Unlike root
architecture-based approaches, which use volumetric reactions/uptake terms, spa-
tially explicit image-based approaches use the root structural information to define
the boundary conditions suitable to the process of interest (Ruiz et al., 2020b). Keyes
et al. (2013) used Michaelis–Menten nutrient uptake conditions to simulate P uptake
by root and root hairs. McKay Fletcher et al. (2019) also assumed a Michaelis–
Menten nutrient uptake boundary condition on all active roots but added a constant
citrate exudation rate per surface on root tips to study organic-acid enhanced P
uptake. Daly et al. (2018) assumed a water uptake rate proportional to the radial
conductivity of water through root epidermis and the pressure drop between root
internal xylem pressure and the water soil potential. The internal xylem pressure
adopted was 1 MPa during the day and 0 MPa at night. For an in-depth explanation
of the mathematical expressions adopted by current approaches, readers are referred
to the reviews of Ruiz et al., (2020b) and Daly et al. (2016). So far, assumptions
about the specific uptake/exudation regions need to be tackled using expert knowl-
edge due to the lack of structurally explicit data. Root (or root hair) growth is
currently being studied using time-dependent boundary conditions. A common
technique to do so is assuming a given geometry and activating the appropriate
boundary condition according to a (measured) growth rate (e.g., McKay Fletcher
et al., 2020). In this approach, the developed root segment is used, but the uptake/
exudation properties are activated at the appropriate time after having started the
simulation.

11.3 Overview of Image-Based Modelling Works

11.3.1 Modelling of Soil Physical Processes

11.3.1.1 Saturated Water Conditions

The macroscopic properties of transport in soils depend on the 3-D organization of
the pores and their size (Dullien, 1992). In that regard, the direct integration into
transport models of X-ray CT images accurately describing soil cavities and their
connectivity is a unique opportunity to explain soil hydrodynamic properties. Sev-
eral works have numerically calculated 3-D water velocity fields in X-ray CT images
of soil samples (e.g., Daly et al., 2015; Dal Ferro et al., 2015; Pot et al., 2020; Zhang
et al., 2021a). To carry out image-based modelling, the images are segmented into



binary information representing the soil pores and the solid phase (see Sect. 11.2.1).
Mathematically, rigorous up-scaling for fluid flow computation, where Darcy’s law
is derived from Stokes’ equations solved at the microscopic scale (Daly & Roose,
2014), enables the calculation of the hydraulic conductivity and soil water retention
curve, based on a representative element volume (REV)(see Chap.3). The periodic-
ity of the soil architecture of the REV is also required. However, the search for an
image size that is representative of the physical properties of the soil such as porosity
and/or hydraulic conductivity has been rarely carried out (Daly et al., 2015;
Gharedaghloo et al., 2018; Gerke & Karsanina, 2020). In other cases, the aim is to
understand how flow paths emerge in the complex pore space (e.g., Pot et al., 2020)
and how the macroscopic property of interest (calculated at the ROI scale), such as
permeability, emerges from the 3-D water velocity fields calculated at the micro-
scopic scale (pore organization within the ROI, e.g., Menon et al., 2011; Deurer
et al., 2012; Khan et al., 2012; Zhang et al., 2021b).
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In almost all the studies above, the voxels of the segmented image were directly
mapped to grid nodes and the Stokes’ water flow was computed in the complex pore
geometry using either the Lattice-Boltzmann approach (Menon et al., 2011, 2015;
Hyväluoma et al., 2012; Zhou et al., 2018; Pot et al., 2020; Zhang et al., 2021b),
finite-element solvers (e.g., Daly et al., 2015, 2017; Gerke et al., 2018; Gerke &
Karsanina, 2020) or a finite-volume solver (Gackiewicz et al., 2019). Other
approaches such as smoothed particle hydrodynamics (Dal Ferro et al., 2015) have
also been used. Gharedaghloo et al. (2018) assumed an irregular PNM model. The
network of pores extracted from segmented X-ray CT images consisted of cylindri-
cal throats and volumeless nodes (see Sect. 11.2.1) and the water flow through the
throats was calculated by solving a system of linear water balance equations
(Valvatne & Blunt, 2004). To carry out the flow calculation, periodic conditions at
the edge of the images are applied and a pressure gradient or force field (gravity)
imposed. Once the steady state is reached, the 3-D water velocity field, which is the
velocity at each node of the computational grid, is saved. Visualization of these 3-D
fields reveals preferential flow paths. As a matter of example, visualization and
characterization of flow pathways evidenced that pores of similar size contributed
unequally to flow resistance in biological crusts (Menon et al., 2011). This work also
provided qualitative insights on soil surface seal functioning by showing how only a
few flow channels penetrated through the surface seal and revealed strong lateral
flows below these seal structures (Hyväluoma et al., 2012). Permeability
(or saturated hydraulic conductivity) is then calculated by integrating the 3-D fluid
velocity fields over the ROI. In that respect, image-based modelling outputs have
highlighted the major role that large conductive pores have on water flow (e.g., Dal
Ferro et al., 2015). They have also confirmed that: (i) variability in permeability is
largely affected by size and by a few key pore throats (e.g., Gharedaghloo et al.,
2018; Pot et al., 2020; Zhang et al., 2021a) and (ii) that porosity is not the sole
morphological parameter explaining such permeability, suggesting that pore-size
distribution and the pore network connectivity and tortuosity must be considered as
well (e.g., Zhou et al., 2018).
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The outputs of image-based models have also been compared to X-ray
CT-derived pore space morphological parameters such as porosity, pore-size
distribution, connectivity (Euler number), tortuosity, and critical diameter of the
percolating pores. Many of these parameters can already be calculated with existing
open-source free image analysis software (e.g., Fiji/ImageJ, QuantIm), while others,
including tortuosity, remain more complicated to obtain (e.g., Gommes et al., 2009;
Roque & Costa, 2020). Tortuosity can be estimated from spectral dimension (e.g.,
Crawford et al., 1993) or by computed 3-D fluid velocity fields or solute diffusion
fields in 3-D images (e.g., Koponen et al., 1996; Berg & Held, 2016; Zhang et al.,
2021b). Correlations between these morphological parameters and outputs of the
image-based models are commonly investigated in the literature. For instance,
prediction of a reduction of flow rate when biological crusts and repacked soil
aggregates are submitted to compaction was related not only to the reduction in
total porosity but also to a modified pore-size distribution (Menon et al., 2011,
2015).

In an alternative indirect approach, X-ray CT images are first analysed to deliver
morphological parameters such as the ones described above. These parameters are
subsequently used in macroscopic empirical models that predict water content,
hydraulic conductivity, and solute diffusivity. Examples of these empirical models
are the well-known empirical Kozeny–Carman equation and other relations based on
percolation theory and critical path analysis (Katz & Thompson, 1986) which relate
the saturated hydraulic conductivity with specific surface area, tortuosity, and a
characteristic length of the pore size. As found in works dealing with porous rocks
(e.g., Nishiyama & Yokoyama, 2017), this indirect integration of 3-D X-ray CT data
of soils has allowed to demonstrate that the critical path diameter is a better
parameter to be used in the Kozeny–Carman equation as compared to the mean
hydraulic radius (Koestel et al., 2018; Pot et al., 2020). Luo and Lin (2009) used
X-ray CT imaging to show that fractal dimension alone was insufficient to charac-
terize soil macropore structure and flow patterns including a lacunarity function that
reflects size distribution of macropores as a diagnostic value to better describe soil
structural properties. Packages included in existing image analysis software can also
be used to compute diffusion processes. The QuantIm software (Vogel, 2008) solves
Fick’s law of diffusion in 3-D with a finite difference approach. Using this package,
Deurer et al. (2012) calculated the apparent diffusion coefficient of macropore
networks around soil aggregates. They extracted small ROIs from segmented
X-ray CT images of soil cores sampled under tree-rows and wheel-tracks and
computed the diffusive flux within them. The size of the ROI was chosen to
encompass a sufficiently large number of soil aggregates (almost 100). They attrib-
uted the absence of significant differences in the gas diffusion coefficient between
ROIs to the similarity in the volume of pores larger than 1 mm and to the fact that
they were well connected. Lattice-Boltzmann model (Zhou et al., 2019) and PNM
(Gharedaghloo et al., 2018) were also used to compute solute transport properties.
According to theory of transport in porous media, Zhou et al. (2019) predicted an
increase of the solute dispersion coefficient in soil macroaggregates amended with
biochar resulting from an increased saturated hydraulic conductivity. For peat soils,



¼

the diffusion coefficient decreased with depth driven by an increased tortuosity
whereas dispersivity did not vary considerably (Gharedaghloo et al., 2018).
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11.3.1.2 Unsaturated Water Conditions

Soil water movement has been modelled classically using Richards’ equation, which
consists of a mass conservation combined with two equilibrium measurements for
the partially saturated hydraulic conductivity and soil suction characteristic that
relates the level of relative soil saturation to the soil water pore pressure. As such,
both measurements can take a long time and hence the need for intelligent estimation
of these values based on various morphological and textural information. In addi-
tion, both hydraulic conductivity and suction characteristic exhibit hysteresis, i.e.,
the shape of the curve as a function of saturation is different depending on if the
measurement is done whilst drying or wetting the sample. Currently, this compounds
the problem for measurements as to capture the hysteresis one would need to be
doing numerous long wetting and drying experiments (weeks and months) very
accurately so the locations of the Haine’s jumps are accurately captured for hyster-
esis; not to mention the extra sets to capture scanning curves between the wetting and
drying at the intermediate points. Nonetheless, as suggested by Berg et al. (2013),
who were able to directly image Haine’s jumps in sandstone samples using X-ray
CT, future developments may allow to speed up the process.

Currently, Haine’s jumps can be predicted using modelling. The mathematical
foundations for this that were used on X-ray CT images were established by Daly
and Roose (2015). Cooper et al. (2018) expanded the previous work of Daly and
Roose (2015) and Cooper et al. (2017) to include the effect of plant exudates on the
water release curve (and hence Haine’s jumps) and the hydraulic conductivity. We
next discuss how this was undertaken by giving a flavour of mathematical analysis
involved.

We have already discussed above the ways X-ray CT measurements can be used
to capture some of the statistics for estimating saturated hydraulic conductivity. An
essentially similar approach can be employed to capture the partially saturated
hydraulic conductivity curves if one scans the soil samples whilst wetting and drying
and segments out the water–mineral and water–air interfaces. However, this is a very
intensive image analysis endeavour. Rather, it would be much better to be able to
predict computationally in combination with soil pore space imaging how the
wetting and drying influence partially saturated hydraulic conductivity and soil
suction characteristics. The fundamental science/mathematics concerning this was
established by Daly and Roose (2014, 2015) and implemented directly on images by
Cooper et al. (2017) and expanded to include root exudates that change the water
wetting and drying properties in the pore space by Cooper et al. (2018). All this work
was possible due to the rigorous application of the homogenization theory. Homog-
enization theory is a perturbation approach which assumes that a composite material,
i.e., soil in this case, is comprised of many small things. This means that there is a
microscale x and macroscale y and that the ratio of the two x/y ε is small. The next



step in homogenization assumes that the solution depends on each of these indepen-
dently and upon application of the perturbation in ε, a sequence of analytic mathe-
matical problems can be found that determine what microscale features matter at the
macroscopic scale. For example, after Daly and Roose (2014, 2015) and Cooper
et al. (2017, 2018), this approach gave a computational analytic approach to calcu-
lating partially the saturated hydraulic conductivity tensor and soil suction charac-
teristic, including wetting and drying Haine’s jumps, based on the images of the pore
space.
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Constrained by the intensive image analysis tasks involved, very few works have
attempted to use successive X-ray CT scans of soil samples at different water
contents. Using an indirect integration of X-ray CT data, Rezanezhad et al. (2009,
2010) proposed a modified Kozeny–Carman equation taking into account the soil
air-filled porosity. The parameters of the air-filled fraction were extracted from X-ray
CT images of peat soils scanned at different water contents. Reasonably good
agreement was obtained between the predicted conductivity and the experimentally
measured one. The increasing number, volume, and tortuosity of the air-filled pores
imaged were key parameters in these organic soils to explain the decrease of the
unsaturated hydraulic conductivity. Fast scanning X-ray CT data of soil columns
subjected to rainfall infiltration were also used to extract two key parameters to be
used in a 1-D macroscopic preferential water flow model coupling a soil-matrix
capillary flow and a gravity-driven macropore flow: the percolating macroporosity
and the characteristic size of the porous medium, which was defined as the average
half-distance between percolating macropores (Lissy et al., 2020). The latter param-
eter controls the lateral flow from macropores to soil matrix and was calculated using
a Voronoï diagram of the X-ray CT image. Fixing these parameter values in the
model strongly improved the mechanistic understanding of water exchanges
between macropores and soil matrix. In particular, as it could be expected, the
model was able to generate large water exchanges between macropores and the
soil matrix for initially drier soil conditions.

Indirect integration of X-ray CT data has also been used to compute the partially
saturated hydraulic conductivity and the soil suction characteristic. Knowledge of
the pore-size distribution was delivered by 3-D X-ray CT imaging and the water
release curve was calculated from it using the Young–Laplace equation (Beckers
et al., 2014). Computation of the soil hydraulic function was subsequently carried
out using the macroscopic numerical unimodal (van Genuchten, 1980) and dual
porosity (Durner, 1994) models calibrated with the water release curve predicted
from the pore-size distribution. The addition of supplementary X-ray CT-image-
based data in the water retention curve allowed an improved calibration of the dual
porosity model and enhanced predictions of the near-saturated hydraulic function.

Pore-scale imaging can also be used to characterize fractal geometry of pore
space and water distribution with implications to determine gas transport and
permeability of porous media (Yu & Liu, 2004; Liu et al., 2019; Piccoli et al.,
2019b; San José Martínez et al., 2010). For instance, Liu et al. (2019) used X-ray
CT imaging to show that the water and gas distributions of quartzitic sands are
fractal. Using an indirect approach, they extracted the area and tortuosity fractal



dimensions from X-ray CT images in order to develop a fractal theory-based
relative permeability model to describe water and gas distributions in pores. Others
have developed a number of fractal based models to describe soil unsaturated
hydraulic conductivity using a fractal model for the water retention curve and the
pore-size distributions (Tyler & Wheatcraft, 1990; Xu, 2004; Alfaro Soto et al.,
2017; Ghanbarian & Hunt, 2017).
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X-ray CT image-based information has also been indirectly integrated into 3-D
macroscopic numerical models of water and solute transport. Unlike a direct inte-
gration, a computation mesh covering the whole domain, not only the pore space, is
generated in this approach. Values of the parameters of the water release curve and
hydraulic conductivity function are locally calculated as a function of either the type
of material (denser regions defined as high grey values of the X-ray CT image and
less dense regions defined as low grey values, Kasteel et al., 2000) or as a function of
the local porosity obtained after segmentation of the X-ray CT images (Dohnal et al.,
2013). These studies confirmed that solute spreading simulated at the column scale
was sensitive to the difference in the local saturated hydraulic conductivity but not to
the local dispersivities (Kasteel et al., 2000). Additionally, Dohnal et al. (2013)
complemented X-ray CT data with 3-D data of water content obtained by Magnetic
Resonance Imaging (MRI) to determine maps of entrapped air that was added to the
3-D macroscopic model as no-flow regions. Their modelling results supported the
assumption that the observed decrease in outflow rate during repeated infiltration
experiments could be caused by entrapped air in large pores. Moreover, the spatial
distribution of the entrapped air had a greater impact than its volume.

Comparing predictions of an image-based model relying on accurate representa-
tions of 3-D air–water interfaces to long established semi-empirical equations from
experimental determinations was used to better understand solute transport in unsat-
urated conditions (Genty & Pot, 2014). At the same time, this allowed testing the
robustness of the direct image-based models used. Genty and Pot (2014) integrate
X-ray CT pore geometries in an image-based model that computes the phase field
equation (described in Sect. 11.2.2) obtaining explicit air–water interfaces at differ-
ent water contents and at equilibrium. The air–water distributions were subsequently
used by a second image-based model of solute transport. The 3-D solute diffusion
fields at specific water contents produced by this second model allowed the estima-
tion of the effective diffusion coefficient at the scale of the ROI through an inversion
of a macroscopic analytical solution of the Fick’s law. A good agreement with the
macroscopic semi-empirical equation based on Archie’s law, which relates the
effective solute diffusion coefficient and the water saturation, confirmed the classic
value of the exponent of Archie’s law used for soils (Genty & Pot, 2014). Hu et al.
(2018) also used knowledge of equilibrated air and water distributions, this time
calculated by a morphological image-based approach, and directly integrated this
3-D structural information in a simplified free-surface model considering static
equilibrium to predict unsaturated water flow.

The final approach to simulating the unsaturated fluid flow in soils found in the
literature is based on an indirect use of X-ray CT data to generate simpler spatially
explicit models where the soil processes of interest are subsequently simulated. This



was first done by Vogel and Roth (2001), who integrated soil pore-size distribution
and topology data on the pore connectivity obtained from a 3-D reconstruction of
serial thin sections of soil to produce a large number of equivalent pore networks,
using a regular PNM. These authors demonstrated that this structural information
was sufficient to predict the soil suction characteristic and hydraulic properties.
Later, Köhne et al. (2011) applied the procedure described by Vogel and Roth
(2001) to obtain an equivalent pore network based on X-ray CT images of two
arable soils. It is worth noting that these works are following an indirect approach to
the integration of X-ray CT data. Unlike irregular PNMs, regular PNMs are gener-
ated using regular assemblies of nodes interconnected by bonds of simplified
geometry (e.g., cylinders). The length, radius, and number of bonds per nodes are
parameters of the PNM. The modelled architecture reproduces an equivalent pore
network of similar physical properties of given soil samples such as the pore
geometry, size distribution, and degree of connectivity, which are extracted after
image analysis of the target X-ray CT data.
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11.3.2 Modelling of Biological Processes

11.3.2.1 Modelling of Microbial Activity

Image-based models are progressively moving towards the inclusion of soil
biological activity, including fungal (e.g., Falconer et al., 2007), roots (e.g.,
Keyes et al., 2013), and bacterial (e.g., Vogel et al., 2015) processes, as it has
been reported in recent reviews (Roose et al., 2016; König et al., 2020; Golparvar
et al., 2021). Image-based modelling of soil microbial activity has essentially
emphasized the role of soil architecture in establishing diverse spatial accessibility
of organic substrates to decomposers that explain the spatial distribution and
growth of fungi (Falconer et al., 2007, 2012, 2015; Pajor et al., 2010; Kravchenko
et al., 2011; Cazelles et al., 2013), the bacterial diversity (Portell et al., 2018), and
the microbial functions such as the decomposition of organic matter and CO2

emissions (Ngom et al., 2011; Vogel et al., 2015, 2018; Monga et al., 2008, 2014).
For instance, X-ray CT images of undisturbed sandy loam soil were directly
integrated in an image-based model of fungal growth dynamics by Falconer
et al. (2012). These authors simulated fungal biomass spreading in an X-ray CT
pore space directly integrated in the numerical grid of the model. Fungal mycelia
biomass was conceptualized by three biomass fractions: insulated (i.e., old inactive
biomass), non-insulated biomass (i.e., active hyphal tips), and mobile (i.e., internal
translocating resource) biomasses. Insulated biomass is immobile while
non-insulated biomass and the internal resource spread through a diffusion process
constrained by the pore space and existing fungal biomass subdomains, respec-
tively. The system of partial differential equations was solved using the classical
Crank-Nicholson scheme. Local fungal spread was modulated by a diffusion
coefficient that is a function of the water content present in the numerical grid.



The water content of the grid elements was computed by an LBM approach
(as described in Sect. 11.2.2) implemented in the open-source PALABOS (Latt
et al., 2021). Falconer et al. (2012) predicted a significant decrease in fungal
growth by increased water saturation conditions. Water-filled pores alter the
connectivity of the air phase, which slows down fungal colonization in line with
the model assumptions. Nonetheless, the explicit integration of the 3-D distribu-
tion of air-water phases in the model suggested that it is the spatial location of
water-filled pores rather than the water content itself that is responsible of this loss
of connectivity and, therefore, that the bulk water content of the soil samples is
insufficient to predict fungal growth and spatial expansion.
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The explicit soil architecture imaged with X-ray CT can also be used to study
survival and coexistence of different bacterial species in soil. Survival and coexis-
tence of different bacterial species in simplified porous media have been shown to be
controlled by the connectivity of the pores, the water saturation conditions, and the
respective locations of the nutrients and bacteria (e.g., Long & Or, 2005; Ebrahimi &
Or, 2015). As an example, Portell et al. (2018) investigated the role of soil archi-
tecture and location of organic matter in the coexistence of three bacterial strains
showing competitive, generalist, and poorly competitive profiles. To do so, X-ray
CT data of an undisturbed loamy soil was directly integrated in the numerical grid.
The methodology coupled a lattice-Boltzmann model, accounting for the diffusion
of dissolved organic carbon through the water phase (Genty & Pot, 2013, 2014), and
an individual-based model, accounting for the activity of soil microorganisms. The
approach also considers explicitly the distribution of organic matter hydrolysing
over time following a first-order kinetic of constant rate. Hydrolysed organic carbon
is released into the water phase neighbouring the particulate carbon, if there is any.
The water–air distribution in the pore space was computed for three saturation levels
(0.25, 0.5, and 1) using an LBM approach (see Sect. 11.2.2) described and param-
eterized in the literature (Genty & Pot, 2013; Pot et al., 2015). The lack of multi-
modal data covering the organic matter distribution (see Sect. 11.2.3) and bacteria
position was tackled here using simulation scenarios assuming a fixed bulk amount
of organic matter initialized as solid fragments. Bacteria were positioned randomly
on the interface between the pore and solid face, performing repetitions to account
for the uncertainty of this distribution. Portell et al. (2018) predicted large effects of
the spatial distribution of organic matter on the strain’s distribution but a largely
unaffected total microbial biomass evolution. The poorly competitive strain was
found to grow to the same extent of the other strains when located near large pieces
of organic matter. Nonetheless, the presence of more competitive strains in the same
microhabitat prevents the growth of the least competitive strain. These outputs are in
agreement with predictions performed using simplified porous media that found that
survival and coexistence of different bacterial species are controlled by the connec-
tivity of the pores, the water saturation conditions, and the respective locations of the
nutrients and bacteria (e.g., Long & Or, 2005; Ebrahimi & Or, 2015).

Integration of X-ray CT structural information into image-based models allowed
the investigation of the role of differentiated soil porous architectures of a silt loam
soil either subject to conventional tillage or under a grassland on organic matter



decomposition (Ngom et al., 2011). In this study, the pore space of the segmented
X-ray CT data was approached by means of a morphological approach based on
spheres (see Sect. 11.2.1). The water retention curve of the ROI was simulated using
the Young–Laplace law with a zero-contact angle between water and soil (Sect.
11.2.2). The biological sub-model described in Monga et al. (2008) was then used to
simulate organic matter decomposition. This model simulates the growth, respira-
tion, mortality, and dormancy of densities of microorganisms placed in its constit-
uents’ maximal balls. To mimic extracellular enzymatic decomposition, the model
assumes that soil organic matter within a ball can be decomposed by microorganisms
placed in all balls connected through the water-filled path. Organic matter decom-
position is modelled assuming an offer/demand approach comparing the maximal
decomposable masses (offer) and the maximal microorganisms’ needs (demand).
When the offer is less than the demand, the former is distributed according to the
geodesic distance between the resources and the microorganisms using a polynomial
repartition law. Simulation scenarios conducted by Ngom et al. (2011) used a
temporal extent of 100 days and distributed organic matter and bacteria in pores of
different sizes by placing organic matter in pores smaller than 20 μm and immobile
bacteria in larger, more aerated pores. Ngom et al. (2011) suggested that small,
isolated pores largely decreased organic matter availability to microbes, hindering
mineralization in the conventional tillage treatment, whereas more connected pore
space facilitated mineralization of most of the organic matter on the grassland
treatment.
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In a recent study, the impact of fertilization on the health of microbial commu-
nities was tackled using a direct finite-element based approach. This study (Ruiz et al.,
2020a) examined how the soil structure and soil moisture content influence nitrogen
movements around an ammonium nitrate fertilizer pellet and the subsequent impact
on microorganisms’ activity. Nitrogen species accounted for in the model are
ammonium, nitrate, and dissolved organic nitrogen, which were subjected to the
processes of N immobilization, ammonification, nitrification as well as diffusion in
the water phase. Samples were imaged with X-ray CT from where the soil phase, air
phase, and the fertilizer pellet were segmented. The water distribution in the seg-
mented pore space was computed using a two-phase water–air model (see Sect.
11.2.2). Release of nitrogen to the water phase is modelled using appropriate
boundary conditions on the surface of the pellet. Boundary conditions around the
soil phase were used to model the sorption and desorption of chemical species as
well as chemical transformations mediated by microorganisms. The microbial pop-
ulation size responsible for these transformations was assumed to be fixed for the
time length of the simulation. The reduction in the microbial activity due to cytotoxic
concentrations of fertilizer was calibrated using preliminary experiments. Ruiz et al.
(2020a) found that diffusion and concentration of nitrogen in the water phase is
critically dependent upon soil moisture and chemical species considered and pro-
vides predictions for the maximum concentrations of ammonium and nitrate around
the pellet under dry conditions.

In addition to the direct approach, X-ray CT data has also been indirectly used in
modelling studies to understand the consequences of structural heterogeneities in



soil microbial diversity and functioning. For instance, experimental studies have
shown that low pore connectivity and heterogeneous water configuration in soil
increase microbial diversity (Carson et al., 2010) and interaction (Tecon et al., 2018).
Using statistical estimates of pore sizes and distances between interstitial sites
obtained from existing X-ray CT images of soil samples, Resat et al. (2012)
produced simplified soil aggregate structures with random, continuously-connected
pores. They studied the dynamics of microorganisms using two distinct carbon
obtention strategies: microorganisms with membrane-associated hydrolase and
microorganisms releasing extracellular hydrolases. The authors found that coexis-
tence of both strategies produced higher cellulose utilization efficiency and a
reduced stochasticity. They also concluded that bacterial growth dynamics was the
result of a balance between the substrate degradation kinetics, the dynamics of
enzymes produced by the microorganisms, and the diffusive processes taking
place in the modelled pore space. Their modelling work also supports previous
evidence that bacteria tended to grow preferentially near the carbon source.
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Burrowing activity of soil fauna makes the soil architecture a highly dynamic
variable. A realistic consideration of the modification of soil architecture by its
biological components is needed as it impacts not only soil microbial functions,
but soil physical functions as well. The latter were investigated by Bastardie et al.
(2002) who built simplified 3-D networks of earthworm burrows in which they
simulated saturated water flow. The networks were made of a series of connected
cylinders, which represented segments of earthworm burrow systems. Using an
indirect approach, they extracted statistical estimates of length and orientation of
these segments from X-ray CT images of a repacked soil core colonized by a single
earthworm (Capowiez et al., 1998) to generate a large number of equivalent porous
media. Earthworm trajectories were computed by predefined rules of worm move-
ment obtained from experimental observations in 2-D terraria (Capowiez &
Belzunces, 2001). Therefore, like regular PNMs, physical properties of these equiv-
alent porous media such as length and orientation of the burrow segments are
reproduced but their actual spatial arrangement is disregarded. Bastardie et al.
(2002) showed parameters such as the volume of pore space and the interconnec-
tedness of burrows were not relevant to explain the permeability of the porous
media. Instead, the connectivity of the burrow systems (i.e., the number of indepen-
dent paths) was found to be a more relevant parameter. So far, actual representation
of temporal modification of soil architecture by earthworms has been undertaken
using repeated X-ray CT scanning at a low temporal resolution, mainly to highlight
modification caused by the treatment applied (Pagenkemper et al., 2015). Nonethe-
less, this information has not yet been directly used in a model. Instead, Blanchart
et al. (2009) generated fractal soil geometry to investigate the role of earthworm
burrowing including ingestion and production of casts in compacting and
uncompacting soil using an equivalent porous medium. Along the same line, it is
worth reporting modelling studies simulating temporal modification of soil archi-
tecture by soil microorganisms in which a simplified arrangement of solid particles
on a regular numerical grid has been used by some authors (Crawford et al., 2012;



Ray et al., 2017) to tackle the role of the production of gluing agents by microor-
ganisms in gathering soil particles.
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It is worth highlighting the role that image-based modelling of soil microbial
activity can play in generating mechanistic knowledge of biologically driven pro-
cesses in complex environments such as soil. One of the approaches used in that
respect is the realization of sensitivity analysis where the soil architecture is explic-
itly taken into account using X-ray CT data (Cazelles et al., 2013; Vogel et al., 2015,
2018). Water–air distributions in the imaged pore space are then usually computed
using image-based modelling for different water contents (see Sect. 11.2.2). Varied
organic matter distributions (see Sect. 11.2.3) and positions of microorganisms are
additionally considered for conducting simulation scenarios. Far from just being a
mathematical exercise, such analysis provides valuable insights into how much soil
functions and processes are affected by different soil architectures (provided by
X-ray CT) and by changes on further abiotic (amount and distribution of organic
matter, moisture content, etc.) and biotic (distribution of microorganisms, growth
parameters, etc.) inputs. This allows testing of hypotheses about the role of soil
architecture on soil microbial activity by unravelling, for instance, the relative
importance of the biotic and abiotic components. As an example, analysing fungal
physiological processes, soil architecture, and initial carbon distribution, Cazelles
et al. (2013) found the spatial extension of hyphal tips and the fungal biomass yield
were highly affected by the fungal physiological parameters associated with the
growth and recycling processes. Also, Vogel et al. (2018) found that under low
accessibility of organic matter to soil bacteria, conditioned by the local structural
heterogeneities in the bacteria micro-habitats, the decomposition of organic matter
was no longer dependent on the physiological parameters. A general point related
with this kind of analysis is that the model assumptions and limitations need to be
properly communicated and understood so the results can be appropriately
interpreted.

11.3.2.2 Modelling of Root Processes

The prospective of steering rhizosphere management to boost plant productivity
while reducing agrochemicals has attracted much attention of the scientific commu-
nity, including the development of many rhizosphere models. Nonetheless, the
number of image-based models existing to date is still very limited (Ruiz et al.,
2020b). If we consider models where the soil architecture is considered explicitly,
the list of approaches is even more reduced. Keyes et al. (2013) used Synchrotron
X-ray CT and developed a finite-element image-based model of phosphate uptake by
wheat roots and root hairs and implemented it in COMSOL. The volume mesh used
by the model includes root hairs, soil, root surface, and water defined separately.
Different grey levels were used to identify the meshed elements thanks to the high
quality of the synchrotron light. Potential heterogeneity on the P transporters along
the root was not considered due to the lack of data and uptake properties were
assumed to be the same over the surface. These authors found that the root surface



was responsible for a slightly superior P uptake (1%) than the root hairs, despite their
closest proximity to the soil surfaces, where most of the phosphate was located. In a
follow-up study, Daly et al. (2016) expanded the previous model to include both
bulk and rhizosphere soil. The soil near the root (i.e., rhizosphere soil) was explicitly
described through the integration of X-ray CT data and surrounded by a large/infinite
bulk soil (i.e., away from the root). The latter was achieved with the use of a
boundary condition obtained by means of homogenization theory. Root-hair growth
was mimicked by considering the structure and a time-dependent uptake boundary
condition. The study found that the key criterion for convergence of the P uptake was
the size of the rhizosphere region considered.
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Further work on P uptake by roots focuses on complexifying the P uptake
mechanism but also simplifying the structural description of the soil phase.
McKay Fletcher et al. (2020) added the exudation of citrate, which can enhance P
uptake and study the effect of root system architecture on organic-acid enhanced P
uptake of 12-day-old wheat plants. Time-lapse X-ray CT was used to define the root
architectures. Boundary conditions were placed as dictated by the measured X-ray
CT structures and growth simulated by activating the appropriate conditions mim-
icking the X-ray CT root growth measured. The soil volume was identified in the
X-ray CT images, but the soil architecture was disregarded and a homogenous soil,
including a parameter to account for an approximate volumetric water content,
adopted. McKay Fletcher et al. (2019) further evolved the approach to investigate
how changes in root system architectures of barley (Hordeum vulgare) affect P
uptake from a fertilizer pellet. The study elegantly combines modelling, X-ray CT,
Scanning Electron Microscopy with Electron Dispersive X-ray Spectroscopy
(SEM-EDS), and soil thin sections. As in McKay Fletcher et al. (2020), X-ray CT
identified solid, water, and pores were assumed as a single homogeneous volume
and modelled using a single finite-element mesh. Appropriate boundary conditions
are then placed on the boundaries of the root and fertilizer pellet, which were also
identifiable in the X-ray CT images.

Daly et al. (2018) used time resolved X-ray CT and modelling to test the accuracy
of spatially averaging the water uptake of young wheat plants grown in pots of
50 mm diameter x 80 mm height. Roots, solid, and pore space were identified in the
X-ray CT images. The water–air interfaces were computed by implementing
Richards’ equation for partially saturated flow parameterized with the water release
characteristics and the saturation-dependent hydraulic conductivity measured. A
finite-element mesh describing the root surface, the soil architecture, and the air
phase was created and model outputs for a number of root systems were compared to
the averaged model of Roose and Fowler (2004) to account for the effect of
explicitly including the root architecture. Comparison of these approaches for a
number of root system architectures and two soil types found less than 2% diver-
gence. Nonetheless, the simplified model could not capture the heterogeneous water
distribution seen in the image-based approach. Since Daly et al. (2018) performed a
number of image treatments averaging many soil particles, it has been suggested that
this may actually be masking some nuances at the pore scale not captured in this
study (Ruiz et al., 2020b). A more comprehensive review about the use of image-



based modelling to describe water dynamics in the rhizosphere is provided by Daly
et al. (2017).
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Landl et al. (2019) simulated the impact of naturally created biopores originated
from decayed plant roots and earthworm activity on root growth, soil water flow, and
root water uptake. In this work, soil properties are defined at the nodes of regular
cubic grids, each having a hydraulic state and soil properties. A soil element
(volume) was subsequently defined by the properties of the 8 surrounding nodes.
They assumed two regular cubic grids, a coarse grid (1 cm) used to compute water
flow and a finer one (0.5 cm) to compute growth development affected by soil local
conditions. Biopores were modelled as a soil material with a very low penetration
resistance to the roots and assumed to be air-filled, thus, not contributing to the water
flow. An X-ray CT image stack (231 μm thick) was initially used to set up the
position of the biopores directly. A downgrading procedure involving an initial
skeletonization of the X-ray CT data was used to assign biopore voxels to the fine
grid. The method was found to produce an increased bioporosity while keeping
biopore length densities fairly constant. Model parameters were calibrated via the
optimization of the root architecture parameters so that simulated and experimentally
observed root length distributions were in agreement with each other. Simulation
scenarios with the calibrated model showed biopores sustainedly mitigated transpi-
ration deficits by permitting roots to take up water from deeper soil layers. This was
found also when a reduced root water uptake in biopores due to limited root–soil
contact was assumed.

Assuming an indirect integration approach, X-ray CT data of root architectures
growing in soil can be used to parameterize existing root system models. Root
system models are approaches simulating the structure, topology, and 3-D place-
ments of roots. Root growth is simulated assuming a set of rules regarding elonga-
tion, branching, and death and a discrete approach defining individual segments of
root that may have attributes such as radius, age, or hydraulic properties associated is
usually adopted (Schnepf et al., 2020). A set of benchmarks, including reference
calibration data sets, have recently been proposed by Schnepf et al. (2020), which
suggest that methodologies may converge in the near future. As a matter of example
of the methodology, Landl et al. (2021) coupled a 3-D root architecture with a
rhizodeposition model that accounts for the transport of rhizodeposition. The
coupled model is used to investigate spatio-temporal distribution patterns of citrate
and mucilage in soil. Root system architectures of Vicia faba and Zea mays were
extracted from X-ray CT images and saved as Root System Markup Language
(Lobet et al., 2015). An in-house computer code was then used to extract the
model parameters of the root architecture model (e.g., internodal distance, root
radius, branching angle, maximal root length). Soil architecture was not explicitly
accounted for in this approach. After running a number of simulation scenarios,
Landl et al. (2021) found that: (i) rhizodeposition hotspot volumes around roots
reached maximum values at intermediate root growth rates, (ii) root branching led to
an increased volume of rhizodeposition hotspot zones due to the rhizosphere of
individual roots overlapping, and (iii) that the rhizodeposition hotspot values were



smaller around the Zea mays root system as compared to the one predicted by Vicia
faba.
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11.4 Conclusions

Whether direct or indirect, the combination of X-ray CT and image-based modelling
is a powerful tool to understand the consequences of the soil structural heterogeneity
on soil functions. Indirect modelling methods allow consideration of this structural
heterogeneity in an implicit manner. Direct approaches explicitly describe structural
heterogeneity. The power of the direct approach is that it allows focus on particular
aspects of soil, which often are difficult, or simply impossible, to manipulate
experimentally. This strength comes at the cost of requiring higher computing
resources which, in practice, limit the volume of soil simulated. These detailed
microscale description of soil processes can then be extrapolated to the macroscale
using mathematical homogenization.

Despite providing new insights on soil functioning, the robustness of image-
based modelling frameworks relies on the quality of the X-ray CT data, as well as the
mathematical and computational tools available. Caution must be made because
computation tools may introduce their own errors into the problem being tackled,
which can depend on the particular process or components being considered.
Another critique often made regarding spatially explicit image-based models, mainly
those focused on the soil microscale, is the unfeasibility of ‘validating’ the model
outputs. This is due to the considerable heterogeneity found in soils and to our lack
of knowledge of the soil functioning at this scale, which often requires using inverse
modelling techniques and educated guesses. In simpler cases of validating image-
based models simulating saturated water flow, some discrepancies between the
predicted saturated hydraulic conductivity calculated in the X-ray CT images and
experimental measures have been reported (Elliot et al., 2010; Dal Ferro et al., 2015;
Koestel et al., 2018). This relatively poor performance has been suggested to be
related to an inadequate imaging resolution that hinders the visualization of smaller
pores in the X-ray CT images that still contribute to the water flow (Dal Ferro et al.,
2015; Koestel et al., 2018). The first point to make here is that, in this context,
models are first a tool to test and develop alternative hypotheses that can be
subsequently tested experimentally. The second point is that when the purpose of
modelling is prediction, not being able to obtain a specific experimental measure
does not necessarily mean that the model cannot be validated. Confidence in model
outputs can be obtained using multiple experimental data or knowledge data mea-
sured at different scales and/or for related scenarios (e.g., Grimm et al., 2005). Being
able to reproduce situations and outputs for which the model was not explicitly
calibrated or designed for suggests that the mechanisms implemented are robust. A
closer exchange and collaboration among experimentalist and modellers would
revert in the identification of experimental approaches and measurable (indirect)
metrics allowing validating current modelling approaches.
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A limitation of image-based modelling is inherent to trade-off between sample
size and image resolution. The larger the soil sample, the higher the unresolved
porosity that we are missing. For some processes such as water flow, this may not be
a big deal but for others, such as the ones related to the diffusion of solutes (Zhang
et al., 2016) and the biological activity of bacteria and viruses, it may not be
acceptable. Decreasing sample size complicates experimental manipulation and
may require increasing the number of repetitions. The unresolved porosity issue
could be, in principle, partially tackled using greyscale images instead of segmented
X-ray CT (Baveye et al., 2017). Reviewing the current work, it is self-evident that
very few studies attempt to use this greyscale information which, in our view, should
be increasingly explored in the near future. Further opportunities to tackle the
resolution limit can also rely on the combination of methods. The representation
of reactive species transport in soils, challenging at the time, offers examples of this
method combination. In reactive transport, the bottleneck is often associated with the
low resolution of X-ray CT images to estimate pore surface area. Some studies have
suggested to use a sorption correction function which accounts for the deviation
between the complex pore surface area measured in the X-ray CT images and the
simpler one generated in an equivalent pore network (Köhne et al., 2011). Such
correction functions allow for incorporating the information on the pore surface area
into pore network models. Using this strategy, Köhne et al. (2011) improved the
transport prediction of a reactive species through intact soil samples. Overall, further
studies are required to systematically combine submicron and nanometre scale
roughness of soil pore surfaces for accurate prediction of solute and colloid trans-
port. Nanoscale surface heterogeneities have been shown to both increase and
decrease colloid attachment in porous surfaces resulted from different influences
of roughness under energy barrier absent or present, respectively (Shen et al., 2011;
Rasmuson et al., 2017; Torkzaban & Bradford, 2016). As a matter of example, Lin
et al. (2021) used a PNM and showed that nanoscale roughness alters the sticking
efficiency and colloid attachment non-monotonically with tendency to increase with
roughness.

The chapter has also highlighted that the simultaneous use of multi-modal image-
based description of the soil is, with few exceptions, still to be translated into
modelling exercises. This is the case for imaged organic carbon but, to a certain
extent, also for soil microorganisms, although methods are being developed (Baveye
et al., 2018). The most common method to date seems to rely on thin slicing of resin
impregnated soil cores combined with a specific (FISH) or unspecific (calcofluor
white) staining method to visualize microorganisms. These 2-D maps are then
aligned with the 3-D structural X-ray CT data following complex alignment pro-
cedures (Hapca et al., 2015; Schlüter et al., 2019).
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Chapter 12
Future Perspectives

Sacha J. Mooney, Stephan Peth, Richard J. Heck, and Iain M. Young

12.1 Introduction

The adoption of X-ray CT imaging to the soil sciences has initiated a step-change in
our understanding of how the design and complexity of the physical architecture of
the soil porous network influences and regulates some of the most important soil
functions, including water storage and flow, diffusion of gases, microbial behaviour
and more. It has been well-appreciated, for decades, that soil structure is a vitally
important soil property, but without an effective and rapid means to quantitatively
assess it in 3-D, as it exists in the field, and how it changes dynamically over time,
has been a too-frequently disregarded factor, often excluded from transport models
and simplified excessively in the laboratory. Hounsfield’s contribution to the devel-
opment of X-ray CT in the 1970s (now over 50 years ago), best known for saving
millions of lives each year through medical diagnostics, continues to support
scientific advancement across a vast range of disciplines, especially those in the
material and engineering sciences. However, one might argue that soil, the most
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complex biomaterial on Earth, has been among those disciplines to benefit the most.
Soil, with its highly complex yet fragile structure, that varies across many spatial and
temporal scales, host to tremendous biodiversity, and upon which we are so depen-
dent on for our food, our water, as well as the crucial role it has to play in mitigating
the future changing climate, has long been considered something of a ‘black box’
when it comes to its structure. The ability to visualise the size, shape and connection
of the microscopic pore structures (operating across multi scales), along with other
soil material such as organic matter and those organisms that exist in soil such as
roots and fauna, represents a huge advance in our current and future scientific
capabilities. The key of course is to link such information to function. While in
this book we provide a synthesis of the progress the community has made over the
last c. 40 years, the next 40 years is likely to surpass these in terms of advancing our
understanding of soil form and function. Considering the key chapter themes in this
book, we here offer a future perspective on how we perceive the research fields may
advance, highlighting where bottlenecks exist, where collective community action is
needed and where greater interdisciplinary collaboration is necessary.

In most cases the cost of CT systems, following a broad period of plateau appears
to be increasing, exacerbated no doubt by the recent component shortages associated
with the Covid-19 pandemic. On this basis it seems unlikely that there will be
significant changes in the near-term availability of CT systems to soil scientists,
and in many cases, equipment sharing and scientific collaboration will continue to be
necessary to support future scientific advances. Indeed, we would encourage such
collaborative efforts, especially across disciplines. More positively, the future capa-
bility of instruments is likely to increase, though within the confines of current
limitations, such as the sample size/resolution trade-off. The most likely future
improvement to CT systems is around X-ray detector quality and automated feature
detection. There continue to be regular but significant improvements in image
quality and phase contrast alongside reductions in scan times (Chap. 2) and auto-
mated sampling is coming on stream. The soil science community stands to benefit
considerably from this as it will advance our ability to undertake 4-D imagery, with
high replication, important for studies considering water movement (Chap. 7) and
root–soil interactions (Chap. 9) and improve the quantification of a wider range of
soil components such as soil organic matter (Chap. 10). Such improvements will
bring the current laboratory bench-top CT system closer to the synchrotron light
source-based systems, but with the enhanced access that frequently impacts on the
experimental plans for using the latter. One area that has not developed as much, in
recent years, as might have been expected, is the integration of X-ray CT with other
scientific instruments such as atomic absorption or mass spectrometry. This could
facilitate the parallel 3-D quantification of chemical elements in soil, alongside the
pore network data that is routinely collected from CT scanning, similar to what is
possible via Nano-SIMs, albeit rather time consumingly and following resin impreg-
nation and serial sectioning (e.g. Mueller et al., 2012). This would represent a major
technological advance and remains an area in its infancy, although new applications
and integration of X-ray CT with multi-modal correlative imaging are potentially
very exciting new developments (e.g. Schlüter et al., 2019; Keyes et al., 2022).
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Optimising the imaging process, both pre- and post-scan, remains a major
challenge for the X-ray analysis of soil samples and, in many respects, it still remains
a bit of a ‘dark art’ (Chap. 4). Though greater application and use of CT will increase
the size of the size community and most likely bring in much needed new expertise.
Most commercial CT systems are ‘closed’ in terms of operation, with little choice in
terms of settings including use of filters, correction algorithms, etc. This can be
advantageous as it means most systems are relatively simple to use, and the training
requirement for the new user is generally light. However, there are disadvantages in
that the options for users to make changes to processes, like reconstruction, are
limited with many algorithms proprietary. Although most manufacturers seem
receptive to the needs of users, and in the future, this could lead to greater options
for certain operations, such as artefact correction.

One of the key areas where greater community action is needed is image
processing and segmentation (Chaps. 5 and 6). Appropriate image thresholding
remains the ‘holy grail’ for most analysis, and the tools/algorithms used often vary
widely between researchers, which has negative impacts when it comes to compar-
ing research outputs (see Baveye et al., 2010). Greater standardisation of methods
and approaches would allow a much-improved transferability of research, something
which is currently lacking. At present, soil scientists typically use a wide range of
software/approaches which is often a result of software availability, though the
freeware, ImageJ/FiJi (Schneider et al., 2012) and its associated libraries continue
to be extensively utilised and developed by soil scientists (e.g. SoilJ (Koestel,
2018)). In the future there is potential for much greater application of more sophis-
ticated algorithms, particularly those routinely employed in other disciplines such as
the medical sciences and new statistical approaches which is likely to be a fruitful
avenue to pursue. There is also potential for greater exploration of greyscale and
blended (masked greyscale) data analysis rather than strictly binary, though there has
been some development in this area recently (Martínez-Araya & Lark, 2018), it is
certainly an area worthy of further research. Image quality inevitably varies widely
across available instruments and scanner settings. Although we usually aim for the
best possible quality scans, in most cases there is often a compromise between
scanning time and image signal to noise ratios. This is particularly important when
it comes to studies of dynamic processes where temporal resolution is in contradic-
tion to spatial resolution (or better detail detectability) or where a very high numbers
of samples are involved. What the best compromise between image quality and
number of replicate samples to answer a specific research question will be has, so far,
not been systematically studied. Certainly, this depends on the research question but
the community could benefit from studies that develop protocols for benchmark
tests. Many laboratories undertake this kind of work routinely before embarking on
new experiments though it is rarely published. High throughput scanning of hun-
dreds of samples is within reach and may be required when considering the consid-
erable spatial heterogeneity of soil structure. At the same time, this calls also for
automated image analysis routines and the employment of standards for quality
control. Some recent advancements in machine learning approaches show potential
to address these challenges, e.g. using lower number of projection images without
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loss of image quality or automated segmentation of soil pore networks, roots or
organic matter (Wieland et al., 2021).

Quantification of the soil porous architecture has been the most common appli-
cation of X-ray CT in soil science and the area which has advanced the discipline the
most (Chap. 6). A significant development in the last 10 years has been for pore
network analysis to move predominantly from 2-D to 3-D analysis. This has led to a
greater understanding of how the soil pore network regulates key processes in soil
like infiltration (Chap. 7). Many quantification approaches have become
standardised, particularly those around measurement of the pore size distribution,
facilitating a much greater comparison with other physical measurement methods
such as the water release curve. Although soil pore connectivity, which is further
emerging as a key property (e.g. Neal et al., 2020), is still highly varied in how it is
measured. ImageJ/FiJi, with its many associated plugins, has become a very widely
used platform which has facilitated the standardisation of approaches to an extent
and this is likely to continue, particularly as many of the industrial standard imaging
packages routinely sold with CT systems such as VG StudioMAX are very expen-
sive (individual licenses typically costs > $10 K).

The application of X-ray CT specifically to issues concerning soil water physics is
still in its infancy. While there are several examples in the literature that have sought
to visualise water in pore spaces (Tracy et al., 2015), characterisation of water at the
pore scale remains very complex and time consuming, whereas at the ‘soil column’
scale, the technical challenges of taking ‘snapshots’, i.e. repeated scans of a dynamic
process remains a major issue. In this case, advances in scanner technology could
have considerable impact, especially for 4-D imaging (with short acquisition times)
and improving image/phase contrast (Chap. 7). Increasingly, CT imaging is poised
to make major contributions to soil hydraulic models by parameterisation using real
3-D pore network information, especially if images of water-filled pores at tension in
soils could be routinely captured and quantified. In comparison, the application of
CT to other soil physical considerations, especially those related to soil deformation
are more straightforward; as such this area has grown probably faster than most areas
with CT measurement now routine for the characterisation of soil management,
especially tillage impacts on soil structure (Chap. 8). However, there is still a lack of
detailed studies on the rather complex localised stress-strain behaviour in soil (Peth
et al., 2010) which would form the basis for the development of models describing
soil structure dynamics. Ultimately, the coupled hydraulic-mechanical processes
need to be quantified to foster our understanding of many practically relevant issues
like shrink-swell behaviour or soil–root interactions. The development of in-situ
testing stages, where samples can be manipulated during scanning, e.g. by loading,
freezing-thawing or root growth could greatly facilitate the analysis of the micro-
scale processes leading to structure dynamics. As the adoption of regenerative
agriculture practices gathers pace globally, and the renewed necessity to conserve
carbon and improve soil health is realised, the need for comprehensive understand-
ing of soil structural dynamics, such as that available via X-ray CT, across a range of
relevant spatial scales, will be even more prominent than now.
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Our ability to visualise roots in soil, segment them from the soil matrix for
quantification and assess the surrounding soil structure has been a ‘game changer’
for rhizosphere-related research (Chap. 9). This research has probably been the
biggest growth area in the application of CT to soil sciences in the last 10 years’
and has fostered much greater collaboration between plant and soil scientists. Great
advances have been made in the ‘root segmentation’ challenge (difficult due to
similarities in X-ray attenuation between roots and other organic soil fractions),
and there is much promise in the application of machine learning/artificial intelli-
gence (AI) approaches to assist with what is often a laborious process (Soltaninejad
et al., 2020). However, there is still no universal approach for the segmentation of
roots in soil CT images, and many of the available tools are either complex to use for
a routine user or very time consuming, which becomes more problematic as sample
numbers increase due to short scan times. Greater interdisciplinary collaboration is
needed with imaging specialists and computer scientists to overcome current obsta-
cles, which will also be supported by the enhanced phase contrast available on the
newer detectors.

While the main focus in recent years, in the application of CT to soil sciences, has
been on the soil physics and root–soil interactions area, there has been growing
interest in the benefits of CT imaging to other aspects of soil sciences most notably
soil biology (Chap. 10). Though the visualisation of micron-scale soil fauna is
usually out of scope, due to attenuation or resolution limitations, many studies
have used X-ray CT images to illustrate the feedbacks between soil fauna and
their dynamic environment. Future advances in CT resolution, alongside novel
staining approaches, could open new doors in this area. Another ‘holy grail’ has
been the drive to visualise soil organic matter in-situ. Great advances have been
made in this regard, and this is an area that is likely to be of considerable interest
going forwards, given the importance of soil carbon to the climate emergency, food
and soil security, etc. Even more challenging is the in-situ visualisation of soil
microbes with new studies such as Keyes et al. (2022) which combined X-ray CT
with synchrotron X-ray fluorescence/X-ray absorption near edge structure
(XRF/XANES) element mapping showing promise. Straightforward solutions in
that respect are currently not available but a compromise could be to combine 3-D
scanning of structure followed by 2-D sectioning and mapping back the localised
microbes into the 3-D structure. Here advances in image co-registration are partic-
ularly useful (Chap. 6). Developing microbial staining methods would be another
promising but challenging path to go towards a full representation of the 3-D
architecture of biotic and abiotic components.

The access to CT scanners to derive data concerning the multiscale 3-D structure
of soil has opened up new possibilities for the discipline of pore network modelling
(Chap. 11). No other technique can acquire the data needed for modelling
approaches, such as Lattice-Boltzmann, so rapidly and across different scales.
However, issues remain in handling the size of the data and the considerable
complexity in the structural arrangement of soils, meaning that many models still
work at a coarser resolution than the imaging (i.e. many modelling approaches
convert fine resolution information to a coarser resolution to reduce data size),
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such that the important system complexity can be occluded or lost. There is great
potential for AI approaches to help overcome some of these obstacles, along with
enhanced computing capabilities. There remains, however, a problem with the
application and future development of such pore scale models, as often this work
is highly sophisticated, undertaken by a small number of people, and highly theo-
retical, which has led to a dearth of image-based models that are actually being
utilised in prediction and decision making by key stakeholders which has to remain a
future challenge. Model validation is another important issue requiring some phys-
ical data at the pore scale level which is difficult to obtain. The development of
microsensors that can be located within a soil sample that locally measure state
variables (e.g. oxygen concentration) or techniques that can measure processes such
as enzyme activity by zymography could be very useful. The combination of
imaging soil structure with pore scale modelling of soil processes and microsensing
to validate such models is a very exciting future perspective with the potential to
greatly enhance our understanding of structure and function in soils.

12.2 Conclusions

X-ray CT has made a very substantial contribution to soil sciences over the last
40 years, particularly so in the last 10 years, and we anticipate this to continue and
increase in the future. Access to CT scanning for soil scientists has improved over
time, and we are now seeing a greater emphasis on standardisation in research
methods and protocols, and new technological developments. Though largely driven
by other disciplines, new capabilities in CT systems will benefit researchers working
across soil and plant sciences. While the inherent trade-offs associated with X-ray
CT such as sample size vs resolution will remain, improved image quality especially
in terms of phase contrast and resolution, alongside faster scan times, will offer huge
benefits for multiscale imaging of dynamic processes in soil. Other issues related to
data handling, such as appropriate image processing and measurement, might take
longer to overcome, but developments in the areas of cloud computing, data science,
AI/machine learning, in-situ soil sensors and so on, all offer promise. On this basis,
we have reason to expect an even greater impact from the application of CT to soil
sciences in the next 40 years, compared to the last 40 years.

In closing we offer a quote to the soil science community working with X-ray CT
from Sir Godfrey Hounsfield, the instrument’s inventor, that he delivered as part of a
speech to children at his former school when he was invited back to open a new
library named in his honour. Sir Godfrey said “Each new discovery that is made
brings with it the seeds of other, future inventions. There are many discoveries,
probably just around the corner, waiting for someone to bring them to life, could this
possibly be you?” (Bates et al., 2012).
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