
Chapter 2
SIR

2.1 Introduction

The following 10 chapters are devoted to the study of patterns of infection over time
and age. The current chapter introduces the basics of compartmental modeling of
transmission dynamics. This is followed by a chapter with in-depth discussion of
the reproduction number, R0, which is the most important quantity for understand-
ing epidemics of infectious agents. The subsequent chapters detail the importance
of age structure and seasonality in shaping epidemics and pandemics as well as sev-
eral important time series methods for characterizing and understanding temporal
recurrence patterns of infection. The last two chapters explore how ideas from dy-
namical systems theory can help explain several very curious aspects of the waxing
and waning of infection through time.

2.2 The SIR Model

In 1927, Kermack and McKendrick (1927) published a set of general equations
(Breda et al., 2012) to better understand the dynamics of an infectious disease
spreading through a susceptible population. Their motivation was

One of the most striking features in the study of epidemics is the difficulty of finding a causal
factor which appears to be adequate to account for the magnitude of the frequent epidemics
of disease which visit almost every population [. . .] The problem may be summarized as
follows: One (or more) infected person is introduced into a community of individuals, more

This chapter uses the following R packages: deSolve, phaseR, and shiny.
A conceptual understanding of reproduction numbers and the simple epidemic is useful. Five
minute epidemics MOOC introductions are:
Reproduction number https://www.youtube.com/watch?v=ju26rvzfFg4.
Closed epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.
The sir.app shinyApp provides an interactive interface as part of the epimdr2 package.
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12 2 SIR

or less susceptible to the disease in question. The disease spreads from the affected to the
unaffected by contact infection. Each infected person runs through the course of his sick-
ness, and finally is removed from the number of those who are sick, by recovery or by death.
The chances of recovery or death vary from day to day during the course of his illness. The
chances that the affected may convey infection to the unaffected are likewise dependent
upon the stage of the sickness. As the epidemic spreads, the number of unaffected members
of the community becomes reduced [. . .] In the course of time the epidemic may come to
an end. One of the most important problems in epidemiology is to ascertain whether this
termination occurs only when no susceptible individuals are left, or whether the interplay of
the various factors of infectivity, recovery and mortality, may result in termination, whilst
many susceptible individuals are still present in the unaffected population.

Fig. 2.1: The SIR flow diagram of transitions among Susceptibles (S), Infected and
Infectious (I), and Recovered/Removed (R) compartments. Rates are per capita rates
among compartments

Following a general mathematical exposé, they suggested a set of pragmatic as-
sumptions that lead to the standard SIR model of ordinary differential equations
(ODEs) for the flow of hosts between Susceptible, Infectious, and Recovered com-
partments. In modern notation, the simplest set of equations is (Fig. 2.1)

dS
dt

= μN
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birth
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(2.1)
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dt

= γI
︸︷︷︸

recovery

− μR
︸︷︷︸

death

(2.3)

The assumptions of Eqs. (2.1)–(2.3) are:

• The infection circulates in a population of size N, with a per capita baseline
death rate, μ , which is balanced by a birth rate μN. From the sum of Eqs. (2.1)–
(2.3), dN/dt = 0 and N = S+ I+R is thus constant. N is assumed to be large,
so epidemics will unfold according to the predictable clockwork of the coupled



2.2 The SIR Model 13

deterministic differential equations. We will consider how to accommodate de-
viations from this assumption throughout the ensuing text, notably in Sects. 3.4,
8.2, and 9.2.

• The infection causes acute morbidity (not mortality); that is, in this version of
the SIR model, we assume we can ignore disease-induced mortality. This is rea-
sonable for certain infections like chickenpox, but certainly not for others like
rabies, SARS, or Ebola (Sects. 3.7, 3.9, and 10.6 introduce models that relax on
this assumption).

• Individuals are recruited directly into the susceptible class at birth (so ignore
perinatal maternal immunity).

• Transmission of infection from infectious to susceptible individuals is controlled
by a bilinear contact term β I SN . This stems from the assumption that the I in-
fectious individuals are independently and randomly mixing with all other indi-
viduals, so a fraction S/N of the encounters is with susceptible individuals; β is
the contact rate times the probability of transmission given a contact between a
susceptible and an infectious individual.

• Chances of recovery or death are assumed not to change during the course of
infection.

• Infectiousness is assumed not to change during the course of infection.
• Infected individuals are assumed to move directly into the infectious class (as op-

posed to the SEIR model introduced in Sect. 3.7) and remain there for an average
infectious period of 1/γ (assuming μ << γ).1

• The model finally assumes that recovered individuals are immune from reinfec-
tion for life.2

The basic reproduction number (R0), interchangeably also termed the basic repro-
ductive ratio, is defined as the expected number of secondary infections from a sin-
gle index case in a completely susceptible population. This is a pivotal quantity in
the theory of infectious disease dynamics. Chapter 3 is entirely devoted to this quan-
tity. For this particular model (Eqs. (2.1)–(2.3)), R0 =

β
γ+μ , and thus β = R0(γ +μ).

The later relationship is useful because while β is one of the key rate parameters in
the model, it is often more intuitive to think in terms of R0 as it can be estimated
from a variety of data using a variety of methods (Chap. 3).

1 The implicit assumptions that stem from the use of deterministic, ordinary differential equation
(ODE) are that the infectious periods (and resident times in all compartments) are exponentially
distributed. This is a tractable approximation for exploring overall dynamics, but observed dura-
tion of infection periods is often much less variable—the Eimeria-gut parasite (a relative of the
Plasmodium parasites that cause malaria) undergoes a fixed number of replication cycles before
all parasites leave the host (Smith et al., 2002b) or much more variable. Section 2.9 discusses a
practical approach to modeling disease dynamics when the exponential assumption is deemed too
simplistic.
2 Sections 10.5 and 11.4 visits on dynamics under transient immunity via the SIRS and SIRWS
models.
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2.3 Numerical Integration of the SIR Model

If there are no (or negligible) births and deaths during the duration of an epidemic
(μ � 0), the dynamics are commonly referred to as a closed epidemic. While it is oc-
casionally possible to derive analytical solutions to systems of ODEs like Eqs. (2.1)–
(2.3), we generally have to resort to numerical integration to predict the numbers
over time. The deSolve R package provides functions to numerically integrate
such equations. Throughout this text numerical integration of a variety of different
ODE models will be required. While the models differ, the basic recipe is generally
the same: (1) define an R function for the general system of equations, (2) specify
the time points at which we want the integrator to save the state of the system, (3)
provide values for the parameters, (4) give initial values for all state variables, and
finally (5) invoke the ode function.

require(deSolve)

STEP 1: Define the function (often called the gradient function) for the equation
systems. The deSolve package requires the function to take the following param-
eters: time, t,3 a vector with the values for the state variables (in this case S, I, and
R), y, and parameter values (for β , μ , γ , and N), parameters:

sirmod = function(t, y, parameters) {
# Pull state variables from y vector
S = y[1]
I = y[2]
R = y[3]
# Pull parameter values from the input vector
beta = parameters["beta"]
mu = parameters["mu"]
gamma = parameters["gamma"]
N = parameters["N"]
# Define equations
dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dI, dR)
# Return list of gradients
list(res)

}

STEPS 2–4: Specify the time points at which we want ode to record the states
of the system (here we use a half year with weekly time increments as specified
in the vector times), the parameter values (in this case as specified in the vector
paras), and starting conditions (specified in start). If we model the fraction
of individuals in each class, we set N = 1 (though we could do percentages with
N = 100 or some other population size of relevance). Let us consider a disease with

3 Though, in the case of the simple SIR model, there is no time dependence in any of the parame-
ters, so this parameter is not called within the gradient function; this will change when we consider
seasonality (Chap. 6).
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an infectious period of 2 weeks (γ = 365/14 per year) for the closed epidemic (no
births or deaths so μ = 0). A reproduction number of 4 implies a transmission rate
β of 2. For starting conditions, assume that 0.1% of the initial population is infected
and the remaining fraction is susceptible.

times = seq(0, 0.5, by = 1/365)
paras = c(mu = 0, N = 1, R0 = 4, gamma = 365/14)
paras["beta"] = paras["R0"] * (paras["gamma"] + paras["mu"])
start = c(S = 0.999, I = 0.001, R = 0) * paras["N"]

STEP 5: Feed start values, times, the gradient function sirmod, and param-
eter vector paras to the ode function as suggested by args(ode).4 For con-
venience, we convert the output to a data frame (ode returns a list). The head
function shows the first 5 rows of out and round(,3) rounds the number to three
decimals.

out = ode(y = start, times = times, func = sirmod, parms = paras)
out = as.data.frame(out)
head(round(out, 3))

## time S I R
## 1 0.000 0.999 0.001 0.000
## 2 0.003 0.999 0.001 0.000
## 3 0.005 0.998 0.002 0.000
## 4 0.008 0.998 0.002 0.000
## 5 0.011 0.997 0.002 0.000
## 6 0.014 0.996 0.003 0.001

Figure 2.2 shows how the model predicts an initial exponential growth of the epi-
demic that decelerates as susceptibles are depleted and finally fade out as susceptible
numbers are too low to sustain a chain of transmission.

plot(x = out$time, y = out$S, ylab = "Fraction", xlab = "Time",
type = "l")

lines(x = out$time, y = out$I, col = "red")
lines(x = out$time, y = out$R, col = "green")

R allows for a lot of customization of graphics—Rseek.org is a useful resource
to find solutions to all things R. . . Fig. 2.2 has some added features such as a right-
hand axis for the effective reproduction number (RE )—the expected number of new
cases per infected individuals in a not completely susceptible population—and a
legend so as to confirm that the turnover of the epidemic happens exactly when
RE = R0s = 1, where s is the fraction of remaining susceptibles. The threshold
R0s= 1⇒ s= 1/R0 results in the powerful rule of thumb for vaccine-induced elimi-
nation and herd immunity: if, through vaccination, the susceptible population is kept
below a critical fraction, pc = 1−1/R0, then pathogen spread will dissipate and the
pathogen will not be able to reinvade the host population (e.g., Anderson & May,
1982; Roberts & Heesterbeek, 1993; Ferguson et al., 2003). This rule of thumb ap-
peared to work well for smallpox, the only vaccine-eradicated human disease; its R0

4 For further details on usage, do ?function on the R command line, i.e., ?ode in this instance.

http://rseek.org
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was commonly around 5, and most countries saw elimination once vaccine cover
exceeded 80% (Anderson & May, 1982). The actual code for Fig. 2.2 is:

R0 = paras["R0"]
# Adjust margins to accommodate a second right axis
par(mar = c(5, 5, 2, 5))
# Plot state variables
plot(x = out$time, y = out$S, ylab = "Fraction", xlab = "Time",

type = "l")
lines(x = out$time, y = out$I, col = "red")
lines(x = out$time, y = out$R, col = "green")

# Add vertical line at turnover point
xx = out$time[which.max(out$I)]
lines(c(xx, xx), c(1/R0, max(out$I)), lty = 3)

# prepare to superimpose 2nd plot
par(new = TRUE)
# plot effective reproduction number (w/o axes)
plot(x = out$time, y = R0 * out$S, type = "l", lty = 2,

lwd = 2, col = "black", axes = FALSE, xlab = NA, ylab = NA,
ylim = c(-0.5, 4.5))

lines(c(xx, 26), c(1, 1), lty = 3)
# Add right-hand axis for RE
axis(side = 4)
mtext(side = 4, line = 4, expression(R[E]))
# Add legend
legend("right", legend = c("S", "I", "R", expression(R[E])),

lty = c(1, 1, 1, 2), col = c("black", "red", "green",
"black"))

2.4 Final Epidemic Size

The closed epidemic model has two equilibria: the disease free equilibrium, {S =
1, I = 0, R = 0}, which is unstable when R0 > 1 and the {S∗, I∗, R∗} equilibrium
which reflects the final epidemic size, R∗, for which I∗ = 0 as the epidemic even-
tually self-extinguish in the absence of susceptible recruitment; S∗ is the fraction
of susceptibles that escape infection altogether. For the closed epidemic, there is
an exact mathematical solution to the final epidemic size (below). It is nevertheless
useful to consider computational ways of finding steady states in the absence of
exact solutions.

The easiest approach is to use the ode function to integrate the system until it
settles on a steady state (if it exists).5

5 By varying initial conditions, we should be able to find multiple stable equilibria if there are more
than one of them. This approach will not find unstable equilibria, for these we need to use other
strategies. Section 10.3 considers in more depth how to find all equilibria whether stable or not.
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Fig. 2.2: The closed SIR epidemic with left and right axes and effective reproduction
number, RE . The epidemic turns over at RE = 1

require(rootSolve)
equil = runsteady(y = c(S = 1 - 1e-05, I = 1e-05, R = 0),

times = c(0, 1e+05), func = sirmod, parms = paras)
round(equil$y, 3)

## S I R
## 0.02 0.00 0.98

So for these parameters, 2% of susceptibles are expected to escape infection alto-
gether and 98%—the final epidemic size—are expected to be infected during the
course of the epidemic.

The final epidemic size depends completely on R0. For this specific SIR vari-
ant, β = R0(γ + μ) and for the closed epidemic μ = 0. Continuing to assume an
infectious period of 2 weeks (i.e., γ = 1/2), we may vary R0 from 0.1 to 5. For mod-
erate to large R0, this fraction has been shown to be approximately 1− exp(−R0)
(e.g., Anderson & May, 1982). We can check how well this approximation holds
(Fig. 2.3).6

# Candidate values for R0 and beta
R0 = seq(0.1, 5, length = 50)

6 The for loop here calculates the final epidemic size for a range of values of R0; a loop works
by repeating calculations (in this case 50 times), and after each repeat, the value of the looping
variable (in this case i) is changed to the next value in the looping vector. So in this example i
will be 1 first, then 2, and then . . . until the loop ends after i= 50.
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betas = R0 * (paras["gamma"] + paras["mu"])
# Vector of NAs to be filled with numbers
fs = rep(NA, 50)
# Loop over l from 1, 2, ..., 50
for (i in seq(from = 1, to = 50, by = 1)) {

equil = runsteady(y = c(S = 1 - 1e-05, I = 1e-05, R = 0),
times = c(0, 1e+05), func = sirmod, parms = c(mu = 0,

N = 1, beta = betas[i], gamma = 365/14))
fs[i] = equil$y["R"]

}
plot(R0, fs, type = "l", xlab = expression(R[0]))
curve(1 - exp(-x), from = 1, to = 5, add = TRUE, col = "red")
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Fig. 2.3: The final epidemic size as a function of R0. The black line is the solution
based on numerically integrating the closed epidemic, the red line is the approxima-
tion f � 1− exp(−R0)

The approximation is good for R0 > 2.5 but overestimates the final epidemic size
for smaller R0 (and is terrible for subcritical R0 < 1).

For the closed epidemic SIR model, there is an exact mathematical solution to the
fraction of susceptibles that escapes infection (1− f ) given by the implicit equation
f = exp(−R0(1− f )) or equivalently exp(−R0(1− f ))− f = 0 (Swinton, 1998). So
we can also find the true expected final size by using the uniroot function to the
equation. The uniroot function finds numerical solutions to equations with one
unknown variable (which has to be named x).
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# Define function
fn = function(x, R0) {

exp(-(R0 * (1 - x))) - x
}
1 - uniroot(fn, lower = 0, upper = 1 - 1e-09, tol = 1e-09,

R0 = 2)$root

## [1] 0.7968121

# check accuracy of approximation
exp(-2) - uniroot(fn, lower = 0, upper = 1 - 1e-09, tol = 1e-09,

R0 = 2)$root

## [1] -0.06785259

So, for R0 = 2, the final epidemic size is 79.6% and the approximation is off by
around 6.7%-points. We will visit on stochastic aspects of the final epidemic size
distribution in detail in Sect. 14.6.

2.5 The Open Epidemic

An open epidemic has recruitment of new susceptibles (i.e., μ > 0). As long as
R0 > 1, the open epidemic has an endemic equilibrium were the pathogen and host
coexist. If we use the SIR equations to model fractions (i.e., set N = 1), Eq. (2.2)
of the SIR model implies that S∗ = (γ + μ)/β = 1/R0 is the endemic S equilib-
rium, which when substituted into Eq. (2.1) gives I∗ = μ(R0 − 1)/β , and finally,
R∗ = N− I∗ −S∗ as the I and R endemic equilibrium values. We can study the pre-
dicted dynamics of the open epidemic using the sirmod function. In a stable host
population with a life expectancy of 50 years, the per capita weekly birth/death rate
is μ = 1/(50∗52). For illustration, assume that 19.99% of the initial population is
susceptible and 0.01% is infected, and numerically integrate the model for 50 years
(Fig. 2.4).

times = seq(0, 50, by=1/365)
paras = c(mu = 1/50, N = 1, R0=4, gamma = 365/14)
paras["beta"]=paras["R0"]*(paras["gamma"]+paras["mu"])
start = c(S=0.1999, I=0.0001, R = 0.8)*paras["N"]
out = as.data.frame(ode(y=start, times=times,

func=sirmod, parms=paras))
par(mfrow=c(1,2)) #Make room for side-by-side plots
#Prevalence in time
plot(times, out$I, ylab="Fraction", xlab="Time",

type="l")
#S-I phase-plane
plot(out$S, out$I, type="l", xlab="Susceptible",

ylab="Infected")
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Fig. 2.4: The open SIR epidemic. (a) The fraction infected over time. (b) The joint
time series of infecteds and susceptibles in the S–I phase plane. The trajectory forms
a counterclockwise inward spiral in the S–I plane (note that the 50-year simulation
is not long enough for the system to reach the steady-state endemic equilibrium at
the center of the spiral)

2.6 Phase Analysis

When working with dynamical systems, one is often interested in studying the dy-
namics in the phase plane and deriving the isoclines that divide this plane into re-
gions of increase and decrease of the various state variables. The phaseR package
is a wrapper around ode that makes it easy to visualize 1- and 2-dimensional differ-
ential equation flows.7 The R state in the SIRmodel does not influence the dynamics,
so we can rewrite the SIR model as a 2D system.

7 The phaseR package requires the gradient function to take the arguments t, y, and
parameters.
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simod = function(t, y, parameters) {
S = y[1]
I = y[2]

beta = parameters["beta"]
mu = parameters["mu"]
gamma = parameters["gamma"]
N = parameters["N"]

dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
res = c(dS, dI)
list(res)

}

The isoclines (sometimes called the null-clines) in this system are given by the
solution to the equations dS/dt = 0 and dI/dt = 0 and partition the phase plane into
regions where S and I are increasing and decreasing. For N = 1, the I-isocline is
S= (γ+μ)/β = 1/R0 and the S-isocline is I = μ(1/S−1)/β . We can draw these in
the phase plane and add a simulated trajectory to the plot (Fig. 2.5). The trajectory
cycles in a counterclockwise dampened fashion toward the endemic equilibrium
(Fig. 2.5). To visualize the expected change to the system at arbitrary points in the
phase plane, we can further use the function flowField in the phaseR package
to superimpose predicted arrows of change.

require(phaseR)
#Plot vector field
fld = flowField(simod, xlim = c(0.2,0.3), ylim = c(0,.007),

parameters = paras, system = "two.dim",
add = FALSE, ylab = "I", xlab = "S")

#Add trajectory
out = as.data.frame(ode(y = c(S = 0.1999, I = 0.0001),

times = seq(0, 52*100, by = 1/365), func = simod,
parms = paras))

lines(out$S, out$I, col = "red")
#Add S-isocline
curve(paras["mu"]*(1/x-1)/paras["beta"], 0.15, 0.35,

xlab = "S", ylab = "I", add = TRUE)
#Add I-isocline
icline = (paras["gamma"] + paras["mu"])/paras["beta"]
lines(rep(icline, 2), c(0,0.01))
legend("topright", legend = c("Transient", "Isoclines"),

lty = c(1, 1), col = c("red", "black"))
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Fig. 2.5: The S–I phase plane with isoclines and the predicted counterclockwise
trajectory toward the endemic equilibrium

2.7 Stability and Periodicity

As a preview of more detailed discussions in Chap. 10, this section is just a teaser.
For continuous-time ODE models like the SIR, equilibria are locally stable if (and
only if) all the real parts of the eigenvalues of the Jacobian matrix when evalu-
ated at the equilibrium are smaller than zero. An equilibrium is (i) a node (i.e., all
trajectories moves monotonically toward/away from the equilibrium) if the largest
eigenvalue has only a real part and (ii) a focus (i.e., trajectories spiral toward or
away from the equilibrium) if the largest eigenvalues are a conjugate pair of com-
plex numbers (a± bı).8 For a focus, the imaginary part determines the dampen-
ing period of the cycle according to 2π/b. We can thus use the Jacobian matrix to
study the SIR model’s equilibria. If we set F = dS/dt = μ(N − S)− βSI/N and
G= dI/dt = βSI/N− (μ + γ)I, the Jacobian of the SIR system is

8 And (iii) a center, as is the case for the Lotka–Volterra predator–prey model, if the conjugate pair
only has imaginary parts.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Lotka-Volterra_equations
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J=
( ∂F

∂S
∂F
∂ I

∂G
∂S

∂G
∂ I

)

, (2.4)

and the two equilibria are the disease free equilibrium and the endemic equilibrium
as defined above.

R can help with all of this. The endemic equilibrium is:

# Pull values from paras vector
gamma = paras["gamma"]
beta = paras["beta"]
mu = paras["mu"]
N = paras["N"]
# Endemic equilibrium
Sstar = (gamma + mu)/beta
Istar = mu * (beta/(gamma + mu) - 1)/beta
eq1 = list(S = Sstar, I = Istar)

The elements of the Jacobian using R’s differentiation D function are

# Define equations
dS = quote(mu * (N - S) - beta * S * I/N)
dI = quote(beta * S * I/N - (mu + gamma) * I)
# Differentiate w.r.t. S and I
j11 = D(dS, "S")
j12 = D(dS, "I")
j21 = D(dI, "S")
j22 = D(dI, "I")

Pass the values for S∗ and I∗ in the eq1 list to the Jacobian,9 and use the eigen
function to calculate the eigenvalues:

# Evaluate Jacobian at equilibrium
JJ = with(data = eq1, expr = matrix(c(eval(j11), eval(j12),

eval(j21), eval(j22)), nrow = 2, byrow = TRUE))
# Calculate eigenvalues
eigen(JJ)$values

## [1] -0.04+1.250554i -0.04-1.250554i

For the endemic equilibrium, the eigenvalues are a pair of complex conjugates which
real parts are negative, so it is a stable focus. The period of the inward spiral is:

9 In previous coding of the sirmod function, parameter values were pulled from the input argu-
ments inside the function to make the code as transparent as possible; while it makes the code easy
to read, it makes for extra coding and can clutter up the workspace with variables that are defined
in multiple locations. The with function allows the evaluation of an expression using variables
defined in a data list.
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2 * pi/(Im(eigen(JJ)$values[1]))

## [1] 5.024321

So with these parameters, the dampening period is predicted to be just over 5 years.
Thus, during disease invasion, we expect this system to exhibit initial outbreaks
every 5 years. A further significance of this number is that if the system is stochasti-
cally perturbed by environmental variability affecting transmission, the system will
exhibit low-amplitude “phase-forgetting” cycles (Nisbet & Gurney, 1982) with ap-
proximately this period in the long run. We can make more accurate calculations
of the stochastic system using transfer functions (Priestley, 1981; Nisbet & Gurney,
1982). We will visit on this more advanced topic in Sect. 10.8.

The same protocol can be used for the disease free equilibrium {S∗ = 1, I∗ = 0}.
eq2 = list(S = 1, I = 0)
JJ = with(eq2, matrix(c(eval(j11), eval(j12), eval(j21),

eval(j22)), nrow = 2, byrow = TRUE))
eigen(JJ)$values

## [1] 78.27429 -0.02000

The eigenvalues are strictly real and the largest value is greater than zero, so it is
an unstable node (a “saddle”); the epidemic trajectory is predicted to move mono-
tonically away from this disease free equilibrium if infection is introduced into the
system. This makes sense because with the parameter values used, R0 = 4, which is
greater than the invasion threshold value of 1.

Because we will require Jacobian matrices for a large number of different cal-
culations regarding infectious disease dynamics, Sect. 6.8 will introduce a general-
purpose jacobian function that is part of the epimdr2 package.

2.8 Heterogeneities

The bare-bones SIR model makes many simplifying assumption. A lot of the the-
ory in the subsequent chapters contends with making more realistic models by in-
corporating various heterogeneities. Important complications are age-dependence
in susceptibility, infectiousness, contact rates and disease symptomology (Chaps. 4
and 5), a greater number of functionally distinct classes such as nosocomical (hospi-
tal associated) transmission being different from that in the community (Sect. 3.10),
waning/boosting of immunity (Sect. 11.4), infections having multiple distinct out-
comes (Sect. 10.6), seasonal changes in dynamics (Chap. 6), and spatial/social het-
erogeneities (Chaps. 12 and 14). The need to consider more elaborate models typ-
ically depends on the biology/ecology of the host and pathogen and the scientific
problem in question.
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2.9 Advanced: More Realistic Infectious Periods

As an initial illustrative example of added realism, we can consider how infectivity
and removal rates are usually not constant during the course of infection. For acute
pathogens, recently infected individuals are usually likely to be infected for a while
longer, whereas individuals infected some time ago are likely to have a higher rate
of removal either because the immunity is ramping up or increased risk of death or
quarantining if disease severity increases over time. We can baby step toward solv-
ing the Kermack & McKendrick (1927) general equations of such time dependence
by modifying the basic SIR model to consider more realistic infectious periods.

The S(E)IR-type differential equation models assume that the rate of exit from
the infectious classes is constant, and the implicit assumption is thus that the infec-
tious period is exponentially distributed among infected individuals. The average
infectious period predicted from Eq. (2.2) is 1/(γ + μ), but an exponential fraction
is infectious much shorter/longer than this. The chain-binomial model, which will be
discussed in Sect. 3.4, in contrast, assumes that everybody is infectious for a fixed
period and then instantaneously recovers (or dies). These assumptions are mathe-
matically convenient, but in reality neither are particularly realistic. Hope-Simpson
(1952) traced the chains of transmission of measles in multi-sibling households.
The timing of secondary and tertiary cases was analyzed in detail by Bailey (1956)
and Bailey and Alff-Steinberger (1970). The average latent and infectious periods
were calculated to be 8.58 and 6.57 days, respectively. While the distribution around
each of these averages was not estimated separately (the latent period was assumed
to be distributed and the infectious period assumed fixed), the variance around the
roughly fortnight period of infection was estimated to be 3.13. The mean duration of
infection is thus 15.15 days with a standard deviation of 1.77 (Fig. 2.6). So neither
a fixed nor an exponential distribution is very accurate (Keeling & Grenfell, 1997;
Lloyd, 2001).

Kermack and McKendrick’s (1927) original model allows for arbitrary infectious
period distributions. We can write Kermack and McKendrick’s original equations as
renewal equations (Breda et al., 2012), introducing the additional notation of k(t)
being the (instantaneous) incidence at time t (i.e., flux into the I class at time t).

dS
dt

= μN
︸︷︷︸

birth

− μS
︸︷︷︸

death

− k(t)
︸︷︷︸

outflux

(2.5)

k(t) = β I(t)
S(t)
N

(2.6)

dI
dt

= k(t)
︸︷︷︸

influx

− μI
︸︷︷︸

death

−
∫ ∞

0

h(τ)
1−H(τ)

k(t− τ)dτ
︸ ︷︷ ︸

distributed recovery

(2.7)
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Fig. 2.6: Gamma distributed infectious periods. (a) The predicted infectious pe-
riod distribution based on a gamma distribution with shape u = 1, 5, 25, 100, and
100,000; u = 1 corresponds to the exponential distribution implicit in the standard
SIR model. The bold line (u= 73) is the one corresponding to the variance observed
in Hope-Simpson’s (1952) study of measles. The dotted line (virtually indistinguish-
able from the u = 100) is a Gaussian distribution intended to show that when u is
large the gamma distribution converges on the normal distribution. (b) The proba-
bility of still being infectious as a function of time for the different distributions. As
u becomes large, the distribution converges on a fixed infectious period. Note that
the empirical distribution (bold) is quite different from the exponential (u= 1)

dR
dt

=
∫ ∞

0

h(τ)
1−H(τ)

k(t− τ)dτ
︸ ︷︷ ︸

distributed recovery

− μR
︸︷︷︸

death

, (2.8)

where k(t − τ) is the number of individuals that were infected τ time units ago,
h(τ) is the probability of recovering on infection day τ , and H(τ) is the cumulative
probability of having recovered by infection day τ; k(t− τ)/(1−H(τ)) is thus the
fraction of individuals infected at time t−τ that still remains in the infected class on
day t and the integral is over all previous infections so as to quantify the total flux
into the removed class at time t. Though intuitive, these general integro-differential
equations (Eqs. (2.5)–(2.8)) are not easy to work with in general. For a restricted set
of distributions for the h() function however—the Erlang distribution (the gamma
distribution with an integer shape parameter)—the model can be numerically inte-

https://en.wikipedia.org/wiki/Erlang_distribution
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grated using a gamma-chain model (referred to as “linear chain trickery” by Metz
& Diekmann, 1991) of coupled ordinary differential equations (e.g., Blythe et al.,
1984; Lloyd, 2001; Bjørnstad et al., 2016). The trick is to separate any distributed-
delay compartment into u sub-compartments through which individuals pass at a
rate of x∗u. The resultant infectious period will have a mean duration of 1/x and a
coefficient of variation of 1/

√
u.

A chain SIR model to simulate S → I → R flows with more realistic infectious
period distributions is:10

sirChainmod = function(t, logx, parameters) {
x = exp(logx)
u = parameters["u"]
S = x[1]
I = x[2:(u + 1)]
R = x[u + 2]
with(as.list(parameters), {

dS = mu * (N - S) - sum(beta * S * I)/N
dI = rep(0, u)
dI[1] = sum(beta * S * I)/N - (mu + u * gamma) *

I[1]
if (u > 1) {

for (i in 2:u) {
dI[i] = u * gamma * I[i - 1] - (mu + u *

gamma) * I[i]
}

}
dR = u * gamma * I[u] - mu * R
res = c(dS/S, dI/I, dR/R)
list(res)

})
}

We can compare the predicted dynamics of the simple SIR model with the u= 2
chain model, the u = 500 chain model (which is effectively the fixed-delay differ-
ential model), and the “measles-realistic” u= 73 model.

times = seq(0, 10, by = 1/52)
paras2 = c(mu = 1/75, N = 1, R0 = 18, gamma = 365/14, u = 1)
paras2["beta"] = paras2["R0"] * (paras2["gamma"] + paras2["mu"])
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04, paras2["u"] -

1)), R = 1e-04))
out = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
plot(times, exp(out[, 3]), ylab = "Infected", xlab = "Time",

ylim = c(0, 0.003), type = "l")

10 With a high number of compartments, this system of equations can become “stiff” with the
computer potentially making rounding errors leading to erroneous negative numbers. We use a
“log-trick” available for systems where all state variables are strictly positive: we solve the system
in log-coordinates to smooth abrupt changes and force all states to be greater than zero. To employ
this technique, log-transform all initial values in start, change the first line in the function to
x = exp(logx) and the last line to return dS/S, etc. in place of dS which comes from the
chain-rule of differentiation and the fact that D(logx) = 1/x.

https://en.wikipedia.org/wiki/Chain_rule
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paras2["u"] = 2
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04/paras2["u"],

paras2["u"] - 1)), R = 1e-04))
out2 = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
lines(times, apply(exp(out2[, -c(1:2, length(out2))]), 1,

sum), col = "blue")

paras2["u"] = 73
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04/paras2["u"],

paras2["u"] - 1)), R = 1e-04))
out3 = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
lines(times, apply(exp(out3[, -c(1:2, length(out3))]), 1,

sum), col = "red", lwd = 2, lty = 2)

paras2["u"] = 500
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04/paras2["u"],

paras2["u"] - 1)), R = 1e-04))
out4 = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
lines(times, apply(exp(out4[, -c(1:2, length(out4))]), 1,

sum, na.rm = TRUE), col = "green")

legend("topright", legend = c("SIR", "u=2", "u=500",
"u=73 (H-S)"), lty = c(1, 1, 1, 2), lwd = c(1, 1, 1, 2),
col = c("black", "blue", "green", "red"))

The more narrow the infectious period distribution, the more punctuated the pre-
dicted epidemics. However, infectious period narrowing alone cannot sustain re-
current epidemics. In the absence of stochastic or seasonal forcing, epidemics will
dampen to the endemic equilibrium (though the damping period is slightly accel-
erated and the convergence on the equilibrium is slightly slower with narrowing
infectious period distributions) (Fig. 2.7).

In the above we considered non-exponential infectious period distributions. How-
ever, the general gamma-chain method can be used for any compartment. Lavine
et al. (2011), for example, used it to model non-exponential waning of natural and
vaccine-induced immunity to whooping cough.

2.10 An SIR shinyApp

The following code will launch a shinyApp of the SIR model in a local browser.
This App can also be launched by calling runApp(sir.app) from the epimdr2
package. Several of the subsequent chapters also have associated shinyApps. Those
will be accessible from the epimdr2 package or the epimdr2 GitHub site, but
not scripted in the text because the code is long and a bit tedious. The sir.app is
presented here in full, so the interested readers can get a sense of shinyApp coding.
Bjørnstad et al. (2020a) provide a more elaborate online accessible shinyApp to
study the SIR model at https://shiny.bcgsc.ca/posepi1/.

https://cran.r-project.org/package=epimdr2
https://github.com/objornstad/epimdr2

 8408 57236 a 8408 57236
a
 
https://shiny.bcgsc.ca/posepi1/
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Fig. 2.7: Chain SIR models with different infectious period distributions

require(shiny)
require(deSolve)
require(phaseR)

# This creates the User Interface (UI)
ui <- pageWithSidebar(
headerPanel("The SIR model"),
#The sidebar for parameter input
sidebarPanel(
#Sliders
sliderInput("R0", "R0:", 2,

min = 0.5, max = 20),
sliderInput("infper", "Infectious period (days)", 5,

min = 1, max = 100),
sliderInput("mu", "birth rate (yrˆ-1):", 5,

min = 0, max = 100),
sliderInput("T", "Time range:",

min = 0, max = 1, value = c(0,1))
),
#Main panel for figures and equations
mainPanel(
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#Multiple tabs in main panel
tabsetPanel(

#Tab 1: Time plot (plot1 from server)
tabPanel("Time", plotOutput("plot1")),
#Tab 2: Phase plot (plot2 from server)
tabPanel("Phase plane", plotOutput("plot2",

height = 500)),
#Tab 3: MathJax typeset equations
tabPanel("Equations",

withMathJax(
helpText("Susceptible $$\\frac{dS}{dt} =

\\mu (N - S) - \\frac{\\beta I S}{N}$$"),
helpText("Infecitous $$\\frac{dI}{dt} =

\\frac{\\beta I S}{N} - (\\mu+\\sigma) I$$"),
helpText("Removed $$\\frac{dR}{dt} =

\\gamma I - \\mu R$$"),
helpText("reproduction number $$R_0 =

\\frac{1}{\\gamma+\\mu} \\frac{\\beta N}{N}$$")
))

))) #End of ui()

# This creates the ’behind the scenes’ code (Server)
server <- function(input, output) {

#Gradient function for SIR model
sirmod=function(t, x, parameters){

S=x[1]
I=x[2]
R=x[3]
R0=parameters["R0"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
beta=R0*(gamma+mu)
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
dR = gamma * I - mu * R
res=c(dS, dI, dR)
list(res)

}

#Plot1: renderPlot to be passed to UI tab 1
output$plot1 = renderPlot({
#input\$xx’s are pulled from UI
times = seq(0, input$T[2], by=1/1000)
paras = c(mu = input$mu, N = 1, R0 = input$R0,

gamma = 365/input$infper)
start = c(S=0.999, I=0.001, R = 0)
paras["beta"] = with(as.list(paras), R0*(gamma+mu))
#Resonant period
AA=with(as.list(paras), 1/(mu*(R0-1)))
GG=with(as.list(paras), 1/(mu+gamma))
rp=round(2*pi*sqrt(AA*GG),2)
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#Integrate ode with parameters pulled from UI
out=ode(start, times, sirmod, paras)
out=as.data.frame(out)

#Plot1
sel=out$time>input$T[1]&out$time<input$T[2]
plot(x=out$time[sel], y=out$S[sel], ylab="fraction",
xlab="time", type="l", ylim=range(out[sel,-c(1,4)]))
title(paste("R0=", paras["R0"], "Period=", rp))
lines(x=out$time[sel], y=out$I[sel], col="red")
lines(x=out$time[sel], y=out$R[sel], col="green")
legend("right",

legend=c("S", "I", "R"),
lty=c(1,1,1),
col=c("black", "red", "green"))

})

#Plot2: renderPlot to be passed to UI tab 2
output$plot2 <- renderPlot({
times = seq(0, input$T[2], by=1/1000)
paras = c(mu = input$mu, N = 1, R0 = input$R0,

gamma = 365/input$infper)
paras["beta"] = with(as.list(paras), R0*(gamma+mu))

start = c(S=0.999, I=0.001, R = 0)

#Gradient function used for phaseR phase-plot
simod=function(t, y, parameters){
S=y[1]
I=y[2]
beta=parameters["beta"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
res=c(dS, dI)
list(res)

}

#Integrate simod
out=ode(start[-3], times, simod, paras)
out=as.data.frame(out)

AA=with(as.list(paras), 1/(mu*(R0-1)))
GG=with(as.list(paras), 1/(mu+gamma))
rp=round(2*pi*sqrt(AA*GG),2)

plot(x=out$S, y=out$I, xlab="Fraction suceptible",
ylab="Fraction infected", type="l")

title(paste("R0=", paras["R0"], "Period=", rp))
#Add vector field
fld=flowField(simod, xlim=range(out$S),
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ylim=range(out$I), parameters=paras,
system="two.dim", add=TRUE,ylab="I", xlab="S")
#Add isoclines
abline(v=1/paras["R0"], col="green")
curve(paras["mu"]*(1-x)/(paras["beta"]*x), min(out$S),

max(out$S), add=TRUE, col="red")
legend("topright",

legend=c("S-isocline", "I-isocline"),
lty=c(1,1),

col=c("red", "green"))
})

} #End of server()

shinyApp(ui, server)
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