
Chapter 13
Spatial and Spatiotemporal Patterns

13.1 Spatiotemporal Patterns

Spatial and spatiotemporal data analysis is of great importance in disease dynam-
ics for a number of reasons such as looking for space-time clustering, hotspot de-
tection, characterizing invasion waves, and quantifying spatial synchrony. Spatial
synchrony—the level of correlation in outbreak dynamics at different locations—is
of particular significance to acute immunizing infections, because asynchrony may
permit regional persistence of infections despite local chains-of-transmission break-
ing during post-epidemic troughs (Keeling et al., 2004, see Sect. 15.7). Conversely,
spatial synchrony can exacerbate the economic and public health burden because
the resulting regionalized outbreaks can overwhelm logistical capabilities as was
evident in the early part of the 2013–2014 West African Ebola outbreak and the
2020–2021 SARS-CoV-2 pandemic. Spatial statistics is also important in order to
correct for the problem of spurious associations between incidence and environmen-
tal data because spatial autocorrelation violates the assumption of independence.
This is further discussed in Sect. 18.2.

13.2 A Plant-Pathogen Case Study

Pathogenic fungi are generally not very important pathogens of mammals, though a
virulent species of Pseudogymnoascus emerged in North America in 2007 to cause
white-nose syndrome and exert major mortality events of bats (Blehert et al., 2009;
Hoyt et al., 2021). In humans they cause ringworm and several opportunistic in-
fections such as aspergillosis and candidiasis that are of minor importance except
for in immunocompromised people. In various non-vertebrate animal case studies
fungal pathogens have been shown to cause major epizoonoses. For example, As-
pergillus sydowii has recently decimated Caribbean sea fan corals (Bruno et al.,
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2011) and fungal infections frequently slaughter their way through insect popula-
tions (Hajek & St. Leger, 1994). Fungi are very common pathogens of plants on
which non-systemic pathogens are often called rust. Systemic infections cause dev-
astating disease like Dutch elm disease and chestnut blight. The latter completely
altered the nature of North American hardwood forests when emerging during the
first decade of the twentieth century (Anagnostakis, 1987).

While a bit idiosyncratic, the spatial dataset from Jennifer Koslow’s experiment
on a foliar, non-systemic rust fungus (Coleosporium asterum) that infects the flat-
top goldenrod (Euthamia graminifolia) provides useful illustrations of various geo-
statistical methods. The euthamia data present the severity of rust disease expres-
sion ($score, from 0 to 10) on host-plants planted within mesocosms ($plot) in
an old field near Ithaca in New York State. The mesocosms were in a checkerboard
grid with locations specified by coordinates $xloc and $yloc. Each mesocosm
contained 3 focal E. graminifolia plants. The field also contained naturally occur-
ring E. graminifolia, as well as several other hosts of the rust, most notably the
Canada goldenrod (Solidago canadensis). Two different treatments, species com-
position ($comp, with three levels) and watering treatment ($water, with two
levels), were applied to the mesocosms in a fully factorial design. Finally, to ac-
count for spatial variation the field were divided into four blocks with treatment
combinations randomly assigned within each block.

For some of the analyses we need jittered coordinates because the three plants
within each plot were not given separate coordinates. Figure 13.1 shows the spatial
layout of the study. The vertical lines mark the predefined blocks.

data(euthamia)
euthamia$jx = jitter(euthamia$xloc)
euthamia$jy = jitter(euthamia$yloc)
symbols(y = euthamia$xloc, x = euthamia$yloc,

circles = euthamia$score, inches = 0.1,
xlab = "y", ylab = "x")

abline(v = 47.5,col = 2)
abline(v = 97.5,col = 2)
abline(v = 147.5,col = 2)
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Fig. 13.1: Rust scores from Keslow’s experiment
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13.3 Spatial Autocorrelation

Spatial statistics is a very rich field. This chapter focuses on a subset of methods that
are commonly used in epidemiology involving the notion of spatial autocorrelation.
Legendre (1993) is a great introduction to the use of spatial autocorrelation statistics
in ecological studies in general. While all the methods discussed—such as Mantel
tests, parametric and nonparametric correlation functions, local indicators of spatial
association, etc.—come in canned packages (this chapter uses the ncf package), it
is useful to spend a bit of time on the underlying ideas.

Many geostatistical methods to describe spatial pattern are focused on either
spatial variance (Gary’s C) or spatial correlation (Moran’s I). This chapter largely
focuses on the family of correlational methods. The regular (Pearson’s) product-
moment correlation (ρ ) between two random variables, Z1 and Z2, is defined as:

ρ12 =
(Z1 −μ1)

σ1

(Z2 −μ2)

σ2
,

where μ’s are expectations and σ ’s are standard deviations.1 The autocorrelation
has exactly the same definition and is used when the Z’s are measurements of the
same quantity (e.g., prevalence, incidence, presence/absence, etc.) at different spa-
tial locations (or different times; Sect. 7.2).

The calculation needs to know (or have an estimate of) the values of the μ’s
and σ ’s. In the case of single snapshot spatial data the marginal mean and marginal
standard deviation is normally used.2 For the euthamia rust data (Fig. 13.1) these
quantities are:

n = length(euthamia$score)
# marginal mean:
mu = mean(euthamia$score)
# marginal MLE sd:
sig = sd(euthamia$score) * (n - 1)/n

Using the outer function that provides all pairwise products of two vectors, the
estimated autocorrelation matrix (rho) among all 360 plants is then:

# rescale Zs
zscale = (euthamia$score - mu)/sig
# autocorrelation matrix
rho = outer(zscale, zscale)

Note that while the individual pairwise values are not constrained to be between
−1 and 1, as correlations need to be, the various geostatistical methods discussed
in the following involves manipulations of this matrix to normalize values. Most

1 It is, again, unfortunate that these Greek symbols as used in statistics take a different meaning
than their previous usage in epidemiology, but it cannot be helped since the study of epidemics
leans on so many different fields of science.
2 Note that the geostatistical methods usually use the maximum likelihood estimator of σ rather
than the best linear unbiased (BLUE) estimator; the denominator is n rather than n−1.

https://en.wikipedia.org/wiki/Standard_deviation
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of the methods also require some sort of associated spatial distance matrix. Most
commonly used are the Euclidian distance for UTM coordinates or the great-circle
distance for latitude/longitude coordinates. The Euclidean distance matrix among
all 360 plants in the euthamia dataset is:

dst = as.matrix(dist(euthamia[, c("xloc", "yloc")]))
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Fig. 13.2: Scatterplot of pairwise ρ against pairwise distance

To understand the different geostatistical methods, consider the plot of the paired
autocorrelations as a function of their spatial distance (Fig. 13.2).

plot(dst, rho, cex = 0.1, ylab = expression("pairwise " *
rho), xlab = "Pairwise distance (m)")

With this it is easy to erect a conceptual understanding of many different geostatis-
tical methods.

• Mantel test: An overall test for whether there is any significant relationship be-
tween the elements in the two matrices. This is essentially a test for significant
correlation between ρ and distance.

• Correlogram: The most classic tool of testing how autocorrelation depends on
distance without assuming any particular function. Hack the distance x-axis into

https://en.wikipedia.org/wiki/Great-circle_distance
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segments (given by specifying some distance increment) and calculate the aver-
age ρ within each distance class.3

• Parametric correlation functions: Assume the relationship follows some para-
metric relationship—such as Exponential, Gaussian, or Spherical functions—and
do the appropriate nonlinear regression of ρ on distance. Section 18.2 provides
an example of such fitting via the lme function of the nlme library.

• Nonparametric correlation function: Fit a nonparametric regression (usually a
smoothing spline or a kernel smoother) to the relationship (Hall & Patil, 1994).
This also goes by the name of the spline correlogram (Bjørnstad & Falck, 2001).

• Local indicators of spatial association (LISA): A test for hotspots (Anselin,
1995) specifying a neighborhood size and for each location calculates the average
ρ with all the other locations that belongs to its neighborhood to find areas of
significant above average values.

There are a bunch of other named methods that are variations of these. Several of
which are extensions to when there is multiple observations at each location (such
as a spatial panel of time series), in which case it is natural to estimate the autocor-
relation matrix using the regular correlation matrix. The modified correlogram of
Koenig (1999) is the multivariate extension of the correlogram (see also Bjørnstad
et al., 1999b). The time-lagged spatial cross-correlation function has been used to
study waves of spread (see below and Sect. 12.8). Various other versions allow the
spatial correlation function to vary by cardinal direction (so-called anisotropic cor-
relograms) to investigate directional patterns (Bjørnstad et al., 2002b).

13.4 Testing and Confidence Intervals

An important reason why specialized methods are needed for these analyses, despite
most being conceptually simple, is because while the n original data points may (or
may not) be statistically independent the n2 numbers in the autocorrelation matrix
is obviously very statistically non-independent and the interdependence is very in-
tricate (as nicely discussed and visualized by Rousseeuw and Molenberghs, 1994).
None of the usual ways of testing for significance or generating confidence inter-
vals is therefore applicable. Testing is usually done using permutation tests under
the null hypothesis of no spatial patterns. The correlogram (or Mantel test, or ...) of
the real data should look no different than that of a random re-allocation of obser-
vations to spatial coordinates if the null hypothesis is true. Statistical significance is
calculated by comparing the observed estimate to the distribution of estimates for,
say, 999 different randomized datasets.4 If the observed is more extreme than 950
(990) of the randomized data we conclude that there is significant deviation from

3 The variogram is similar to the correlogram but instead of using the autocorrelation similarity
measure it uses the semivariance dissimilarity measure: (Zi−Zj)

2/2.
4 This produces a total of 1000 known possible outcomes; the 999 we randomly generated plus the
one nature provided.
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spatial randomness at a nominal 5%-level (1%-level). For some of the methods it
is possible to generate confidence envelopes using bootstrapping (resampling with
replacement; Bjørnstad and Falck, 2001). All the above methods are available in
the ncf package.

require(ncf)

13.5 Mantel test

We continue using the euthamia data as a case study:

test1 = mantel.test(M1 = rho, M2 = dst, quiet = TRUE)
test1

## $correlation
## [1] -0.04603662
##
## $p
## [1] 0.000999001
##
## $call
## [1] "mantel.test(M1 = rho, M2 = dst, quiet = TRUE)"
##
## attr(,"class")
## [1] "Mantel"

There is a significant negative association between similarity and distance showing
that the rust data are not spatially random. The Mantel test is a crude tool but it does
reveal that locations near each other tend to be more similar in disease status than
those separated by a greater distance. If instead of having two matrixes have spatial
coordinates and observations the syntax is:

mantel.test(x, y, z, latlon = FALSE)

In this case coordinates can either be Euclidian or latitude/longitude if latlon =
TRUE.

13.6 Correlograms

The correlogram shows how the autocorrelation is a function of distance (Fig. 13.3).
The shape of the correlogram can indicate random, diffusive, or clinal patterns. Ran-
dom patterns show up as a flat non-significant correlogram, diffusive patterns will
have significantly positive values at short distances that tapers off to zero, and gra-
dient patterns will have significantly positive values at short distances and signifi-
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cantly negative values at long distances.5 Legendre and Fortin (1989) provide visual
probes for patterns using various characteristics of the correlogram. The illustration
using the euthamia data is:

test2 = correlog(x = euthamia$xloc, y = euthamia$yloc,
z = euthamia$score, increment = 10)

plot(test2)

The first distance class is significantly positive and the estimated distance to which
the local positive value decays to zero (the x-intercept) is 44 meters indicative of
significant local similarity. There is further evidence of significantly negative auto-
correlation at long distances suggestive of a gradient across the field (Fig. 13.3).

13.7 Nonparametric Spatial Correlation Functions

Finer resolution and confidence intervals can be found using the nonparametric spa-
tial covariance function (Hall & Patil, 1994; Bjørnstad & Falck, 2001):

test3 = spline.correlog(x = euthamia$xloc, y = euthamia$yloc,
z = euthamia$score, quiet = TRUE)

summary(test3)$estimate

## x e y
## estimate 36.53666 5.981457 0.5824953

summary(test3)$quantiles

## x e y
## 0 17.82638 0.005531342 -0.003692403
## 0.025 27.34768 0.409260018 0.126207964
## 0.25 32.96260 3.119520264 0.295493112
## 0.5 36.03922 5.992822095 0.391821835
## 0.75 39.95760 8.451637015 0.517451204
## 0.975 44.19246 12.655055265 0.778859891
## 1 59.30986 15.005569404 1.200445017

The spline.correlogram returns a bunch of stuff; in fact all the summary
statistics I thought might be of relevance in some previous spatial analyses
(Bjørnstad & Falck, 2001). These are:

• estimates: A vector of benchmark statistics.

5 Inhibitory processes such as the Janzen-Connell effect discussed in Sect. 12.4 will produce sig-
nificantly negative values at short distances that tapers off.
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Fig. 13.3: The spatial correlogram for the euthamia rust data. Values that signif-
icantly deviates from that expected under the null hypothesis of complete spatial
randomness are represented by filled black circles

• x: The lowest value at which the function is = 0.6

• e: The lowest value at which the function is = 1/e (i.e., the spatial scale pa-
rameter in the presence of exponential or Gaussian spatial correlation; recall
Sect. 12.2).

• y: The extrapolated value at x= 0.
• quantiles: A matrix summarizing the quantiles in the bootstrap distributions

of the benchmark statistics. The 2.5- and 97.5-percentiles represent the 95% con-
fidence interval.

plot(test3)

6 If correlation is initially negative, the distance calculated appears as a negative measure. This
may seem a little strange, but some locally inhibitory processes predict significant negative local
auto- or cross-correlation (e.g., Seabloom et al., 2005).



13.8 LISA 269

0 50 100 150 200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Distance

C
or

re
la

tio
n

Fig. 13.4: The spline correlogram of the euthamia rust data. The grey polygon
represents the 95% bootstrap confidence envelope

Figure 13.4 shows the estimated correlation function with its bootstrap 95% confi-
dence envelope. The confidence envelope allows comparisons of correlation func-
tions for different datasets to look for significant differences (Bjørnstad et al.,
1999a).

13.8 LISA

The previous methods average across all locations to study how similarity depends
on distance. Local indicators of spatial association (Anselin, 1995) quantify how
similar observations are within neighborhoods of each observation. This can be used
to test for significant spatial hot/cold-spots of disease (Fig. 13.5). For this we have
to define the radius of the neighborhood. Spatial dependence in the euthamia data
decay to zero at around 40m (Fig. 13.4), so we use 20 meters.

test4 = lisa(x = euthamia$yloc, y = euthamia$xloc,
z = euthamia$score, neigh = 20)

plot(test4)
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Fig. 13.5: LISA analysis of Koslow’s rust data (with a 20m neighborhood). Filled
red circles are significant spatial hotspots. Squares are cold-spots. The size of the
symbols reflects how much the disease-score deviates from the mean

13.9 Cross-Correlations

Janis Antonovics and his colleagues have done roadside surveys of antler smut dis-
ease counting number of healthy and diseased wild campions (Silene alba) at the
Mountain Lake Biological field station for more than 20 years (Antonovics, 2004).
The silene data contains the mean number of healthy $hmean and diseased
$dmean plants for each road segment, as well as latitude $lat and longitude $lon
(Fig. 13.6).

data(silene)
symbols(silene$lon, silene$lat, circles = sqrt(silene$dmean),

inches = 0.2, xlab = "Longitude", ylab = "Latitude")
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Fig. 13.6: Burden of antler smut on wild campion at the Mountain Lake field station
(Antonovics, 2004)
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Most geostatistical methods can be extended to consider spatial cross-correlation
between different variables. As an example we can use the silene dataset to in-
vestigate if prevalence is spatially cross-correlated with abundance using the spline
cross-correlogram (Fig. 13.7).

silene$ab = silene$dmean + silene$hmean
silene$prev = silene$dmean/(silene$dmean + silene$hmean)

The square-root transform of the abundance measure helps normalize the variance
of the count data. There is significant positive cross-correlation within a 1 km range
(95% CI: {0.6, 2.9} km) meaning that where the host tends to be abundant, the
pathogen tends to be prevalent.

testcc = spline.correlog(x = silene$lon, y = silene$lat,
z = silene$prev, w = sqrt(silene$ab), latlon = TRUE,
na.rm = TRUE)

plot(testcc)

We can use a spatial cross-correlogram (using 25m distance increments) to study
if presence/absence of rust is spatiotemporally cross-correlated between 1994 and
1995 in the filipendula dataset discussed in Sect. 12.3.

0 2 4 6 8 10

-0
.1

0
-0

.0
5

0.
00

0.
05

0.
10

0.
15

0.
20

Distance

C
or

re
la

tio
n

Fig. 13.7: Spatial cross-correlation of prevalence and abundance in the silene
dataset
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data(filip)
testcc2 = correlog(x = filip$X, y = filip$Y, z = filip$y94,

w = filip$y95, increment = 25)

The local inter-year correlation (corr0) is 0.75 and the first cross-correlation is
significantly positive with a cross-correlogram x-intercept of 148m:7

testcc2$corr0

## [1] 0.7651124

testcc2$x.intercept

## (Intercept)
## 148.939

Locations heavily affected in 1994 were thus also heavily affected in 1995 testifying
to the importance of local contagion and/or habitat heterogeneity in infection risk.
This is an example of a time-lagged cross-correlogram (Bjørnstad et al., 2002b).

13.10 Gypsy Moth

The gypsy moth (Sect. 12.5) was introduced to the northeastern USA in the late
1860s and has spread at a rate of 10–20 km per year since. The larvae eats leaves of
a wide range of trees and shrubs and reaches outbreak densities usually around ev-
ery 10 years. The outbreaks end through epizootics of the Lymantria dispar nuclear
polyhedrosis virus and more recently the entomopathogenic fungus Entomophaga
maimaiga that together kills virtually all larvae following outbreaks. Bjørnstad et al.
(2010) used the nonparametric spatial covariance function to study the spatiotem-
poral patterns in these outbreaks. The gm dataset contains UTM coordinates and
fraction of forests defoliated each year between 1975 and 2002 in 20× 20 km grid
cells across northeast USA. The following characterize the patterns of synchrony
and time-lagged cross-correlation in the outbreak time series:

data(gypsymoth)
sel = apply(gypsymoth$defoliation[,2:28], 1, sum)!=0
#Synchrony:
fit1 = Sncf(gypsymoth$xy[sel, 1]/1000, gypsymoth$xy[sel, 2]/1000,

gypsymoth$defoliation[sel, ], resamp = 500)
#Lag 1 cross-correlation
fit2 = Sncf(gypsymoth$xy[sel, 1]/1000, gypsymoth$xy[sel, 2]/1000,

z = gypsymoth$defoliation[sel, 1:27],
w = gypsymoth$defoliation[sel, 2:28], resamp = 500)

#Lag 2 cross-correlation
fit3 = Sncf(gypsymoth$xy[sel, 1]/1000, gypsymoth$xy[sel, 2]/1000,

z = gypsymoth$defoliation[sel, 1:26],
w = gypsymoth$defoliation[sel, 3:28], resamp = 500)

7 The spline cross-correlogram would give bootstrap confidence intervals on these quantities.
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The outbreaks are highly synchronized out to 200 km, with a regional average out-
break correlation of around 0.2. The time-lagged cross-correlogram show significant
local cross-correlation at the 1-year lag but not 2-year lag, indicating that outbreaks
tend to persist spatially for 2 years before collapsing (Fig. 13.8):

par(mfrow = c(1, 3))
plot(fit1, ylim = c(-0.1, 1))
title("Lag 0")
plot(fit2, ylim = c(-0.1, 1))
title("Lag 1")
plot(fit3, ylim = c(-0.1, 1))
title("Lag 2")
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Fig. 13.8: The (a) nonparametric spatial covariance function, (b) lag one and (c) lag
two cross-correlation function of gypsy moth outbreak data from northeastern USA
between 1975 and 2002
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