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Preface

Preface to Second Edition

As with the first edition, the second edition has further benefitted heavily from in-
put from numerous people, particularly my various students, postdocs, and collab-
orators. The book club at the London School of Tropical Medicine and Hygiene
provided valuable feedback on the first edition clarifying how the text should be
better fleshed out and organized. Reorganizing, restructuring, and recoding meant
that the current material is not fully back-compatible, so the epimdr2 R package
should be used with the new edition. Typesetting of equations has been changed for
clarity and shinyApps has largely been reparameterized with reproduction number,
R0, rather than transmission rate (β ) since that is more intuitive. The SARS-CoV-2
pandemic spurred significant new analyses of infectious disease dynamics. Much of
the new age-structured modeling in Chap. 4 were developed with Jessica Metcalf,
Ruiyun Li, and Dami Pak. The catalytic model is now discussed in a separate chapter
(Chap. 5). New competing strain models have been added (Sect. 3.12). The chapter
on networks has been greatly expanded. Functions for automation of Jacobian ma-
trices and next generation calculation are presented. A new chapter on invasion and
persistence (Chap. 15) has new treatment of zoonoses including visits on branching
processes, spatial diffusion, synchrony, and metapopulation persistence. New data
sets were provided by Lance Waller and Laura Pomeroy as well as various pub-
licly available sources. Rustom Antia has kindly helped me better understand the
rudiments of adaptive immunity and immune memory.

To understand the philosophy behind this text, I encourage any reader to peruse
the preface to the first edition.1 While the R ecosystem is evolving rapidly, I have
deliberately striven to use generic S3 code for all calculations (except for occasional
straying for animations, etc., in accompanying shinyApps) for the reason that I di-
dactically believe that the logic of programming with data laid out by Chambers
(1998) is the simplest and most elegant way. With respect to mathematical sym-

1 The preface to the first edition has been updated so chapter and section labels are consistent with
the new text.
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bols, I have tried as best as possible to be consistent in usage (thus some changes
in notation from first edition) such that, for example, β is generally used for trans-
mission, φ for force of infection, ω for loss of immunity, rates are lowercase Greek,
and probabilities are uppercase Greek. The text covers a lot of material though, so
keeping the Greek alphabet soup sorted has been challenging.

In addition to previous funding, this text has also benefitted from support from
the Norwegian Research Council. The text and associated teaching materials have
been my main passion for almost a decade.

University Park, PA, USA Ottar N. Bjørnstad
May 2022
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Preface to First Edition

Despite an undergraduate degree in Zoology and a MSc on the behavior of voles,
I have long been fascinated by theoretical biology and the relationship between
models and data, and the feedback between statistical analysis and conceptual de-
velopments in the area of infectious disease dynamics, in particular, and ecological
dynamics in general. My perpetual frustration has been to read all the wonderfully
clever books and journal articles exuding all sort of nifty maths and stats, but not
quite being able to do any of it myself when it came to infectious diseases that I
care about. This frustration led me to make myself some worked examples of all
this cleverness. Over the years the stack of how-to’s has grown, and the following
chapters are an attempt at organizing these so they may be useful to others. I have
tried to organize the chapters and sections in a reasonably logical way: Chaps. 2–
11 is a mix and match of models, data and statistics pertaining to local disease
dynamics; Chaps. 12–15 pertains to spatial and spatiotemporal dynamics; Chap. 16
highlights similarities between the dynamics of infectious disease and parasitoid–
host dynamics; Finally, Chaps. 17–18 overviews additional statistical methodology
I have found useful in the study of infectious disease dynamics. Some sections are
marked as “advanced” for one of two reasons: (i) either the maths or stats is a bit
more involved and/or (ii) the topic in focus is a bit more esoteric. Although not
marked as such, most of Chap. 11 is advanced in this respect. While less run-of-the-
mill, I have thought it important to include these sections, because they cover topics
that may be less easy to find code for elsewhere.

I have had invaluable help from students, colleagues and collaborators in my
quest. The pre-conference workshops of “Ecology and Evolution of Infectious Dis-
ease” that I co-taught between 2005 and 2008 enhanced my motivation to annotate
many worked examples; Bare-bones of several of the following sections were writ-
ten during frantic 24hrs stints prior to these workshops. Much of the other material
arose from interactions with students and post-docs at Pennsylvania State Univer-
sity’s Center for Infectious Disease Dynamics (CIDD). Parts of the epidemics on
networks and the R0 removal estimator is from Matt Ferrari’s PhD research, the age-
structured SIR simulator and the SIRWS model is from Jennie Lavine’s PhD work.
Working with distributed-delay models has been a collaboration with Bill Nelson
and my students Lindsay Beck-Johnson and Megan Greischar. Angie Luis and I
cooked up the code to do transfer functions in R as part of her PhD research. Much
of the code on the catalytic model is from collaborations with Laura Pomeroy and
then-CIDD postdoctoral fellows Grainne Long and Jess Metcalf. The in-host TSIR
was also a collaboration with Jess. The Gillespie code arose from collaborations
with postdoctoral fellow Shouli Li and my honor student Reilly Mummah. Reilly
also taught me how to write my first shinyApp. Away from Penn State, Aaron King
and Ben Bolker have at various times been unbelievably patient in teaching me bits
of maths I didn’t understand. Roger Nisbet painstakingly guided me through my
first transfer functions during my postdoctoral fellowship at NCEAS. During the
same period Jordi Bascompte introduced me to coupled-map lattice models. Finally,
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Bryan Grenfell showed me wavelets and introduced me to the field of infectious dis-
ease dynamics some 20 years ago.

The data used has been kindly shared by Janis Antonovics, Jeremy Burdon, Re-
becca Grais, Sylvije Huygen, Jenn Keslow, Sandy Leibhold, Grainne Long and
Mary Poss. The first draft of the text was completed while I was on sabbatical at the
University of Western Australia and University of Oslo/the Norwegian Veterinary
Institute during 2017. My work leading up to this text has variously been funded by
the National Science Foundation, the National Institute of Health, the US Depart-
ment of Agriculture and the Bill and Melinda Gates Foundation.
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Chapter 1
Introduction

1.1 Preamble

The use of mathematical models to understand infectious disease dynamics has a
very rich history in epidemiology. Kermack and McKendrick (1927) is the seminal
paper that introduced the equations for the general Susceptible–Infected–Removed
model and showed how a set of restrictive assumptions lead to the standard SIR
model of ordinary differential equations. During the 1950s and early 1960s, stochas-
tic theories of disease dynamics were developed by Bailey (1957) and Bartlett
(1960a). Bartlett (1956, 1960b) further pioneered the use of Monte Carlo simu-
lations of epidemics with the aid of electronic computers (as opposed to regular
human computers), while Muench (1959) proposed the catalytic framework for un-
derstanding age-incidence patterns.1 The decades to follow saw broad expansions
of theories as well as a surge in real-life application of mathematics to dynamics
and control of infectious disease.

There are several excellent textbooks of mathematical epidemiology including
Anderson and May (1991) and Keeling and Rohani (2008). The purpose of the cur-
rent text is not to replicate these efforts but rather use these frameworks as a starting
point to discuss practical implementation and analysis. The discussion will be cen-
tered around a somewhat haphazard collection of case studies selected to explore
various conceptual, mathematical, and statistical issues. The text is designed to be
more of a practicum in infectious disease dynamics.

The dynamics of infectious diseases shows a wide diversity of pattern. Some
have locally persistent chains of transmission others persist spatially in consumer–
resource metapopulations. Some infections are prevalent among the young, some
among the old, and some are age-invariant. Temporally, some diseases have little
variation in prevalence, some have predictable seasonal shifts, and others exhibit vi-

I recommend that readers peruse the preface to the first edition to get a sense of the intended
purpose of this monograph.
1 Though, as reviewed by Dietz and Heesterbeek (2002), the original calculations leading to the
catalytic model were proposed by Daniel Bernoulli in the late eighteenth century.
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olent epidemics that may be regular or irregular in their timing. Models and models
with data have proved invaluable for understanding and predicting this diversity and
thence help improve intervention and control. The following chapters are an attempt
at providing some notes for a field guide for working with data, models, and mod-
els and data to understand epidemics and infectious disease dynamics in space and
time.

1.2 In-Host Persistence

Infectious diseases can be classified according to their persistence within the host
and attack rates with respect to age. Some infections result in life-long colonization
of a host because the immune system does not clear them. Such in-host persistence
may be because the immune system permits it—as for the many symbionts that are
beneficial to the host (viz. commmensals and mutualists)—or because detrimental
symbionts (viz. pathogens) are able to evade clearance. Examples of “in-host persis-
tent” pathogens are retroviruses such as HIV, latent viruses such as herpes viruses,
and a number of bacteria such as the causative agents of tuberculosis (Mycobac-
terium tuberculosis) and leprosy (M. leprae). There are also a large number of other
chronic viruses (Virgin et al., 2009).

Acute infections, in contrast, result in transient colonization of the host—which
in humans can last for days or months depending on the pathogen—followed by
clearance. The clearance is usually immune-mediated, though some viruses like
measles or canine distemper virus may run out of target cells to infect (Morris et al.,
2018) and some pathogens may have a programmed life cycle within the host. Some
coccidian pathogens within the genus Eimeria, for example, go through an exact
number of replication cycles in the host (as merozoites) before all pathogen cells are
expelled into the environment as oocysts (Smith et al., 2002b). The more common
example of transience is due to immune-mediated clearance. Examples are plenti-
ful and include acute viruses like measles and influenza, bacteria such as many that
causes respiratory disease like bacterial meningitis (e.g., Neisseria meningitidis) or
whooping cough (Bordetella pertussis and B. parapertussis), and protozoans such
as those that cause malaria (Plasmodium spp.).

Among the acute infections, we distinguish between those that leave sterilizing
immunity following clearance versus those that leave no or short-lived immunity.
This can happen via a number of mechanisms including variable gene expression,
rapid evolution, co-circulating strain clouds, or other immune evasive maneuvers.
Neisseria meningitidis and its congener N. gonorrhoeae (which cause gonorrhea),
for example, are thought to leave little effective immune memory because of the
bacteria’s ability to express a very variable arsenal of surface proteins (e.g., Stern
et al., 1984; Tettelin et al., 2000). Plasmodium falciparum is comprised of a di-
verse set of strains with non-overlapping “antigenic repertoires” (as well as variable
antigen expression) that allows repeat reinfection (e.g., Gupta et al., 1998). A num-
ber of common viral afflictions of children have a somewhat more limited strain
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diversity that may allow several reinfection cycles, but the immune system is ulti-
mately able to cover their entire antigenic space. Examples include rotavirus (Pitzer
et al., 2011) and the enterovirus complex that cause hand, foot, and mouth disease
(Takahashi et al., 2016). Many influenza subtypes render effective immune memory
short-lived because of rapid evolution; high mutation rates lead to antigenic drift and
viral recombination during coinfection leads to antigenic shifts (Koelle et al., 2006).
Moreover, many respiratory infections target the so-called permissive areas of the
nasopharyngeal and upper respiratory tract. Endemic α- and β -coronavirus infec-
tions, for instance, result in production of protective antibodies and T-cell memory
but reinfections are common because immune delivery is down-regulated in these
areas (Lavine et al., 2021). Finally, many pathogens have various anti-immune de-
vices. Respiratory syncytial virus, for example, uses molecular decoys against neu-
tralizing antibodies (Bukreyev et al., 2008) and Bordetella pertussis employs the
pertussis toxin to, at least transiently, inhibit recruitment of immune effector cells to
sites of infection (Kirimanjeswara et al., 2005).

Many of the remaining acute, immunizing pathogens—the ones that result in
a transient infection followed by life-long sterilizing immunity—are the poster
children of mathematical epidemiology. Notable examples are among the classic
vaccine-preventable viruses like measles, rubella, and smallpox. From a biolog-
ical point of view, the complete failure of immune escape of these pathogens is
somewhat mysterious (Kennedy & Read, 2017), but the resulting simple dynamical
clockwork is a joy to anyone hoping to apply mathematics to understand the living
world.

From an epidemiological point of view, it is important to make a functional, as
opposed to taxonomical, classification of pathogens because it allows us to under-
stand the differences in age-specific attack rates and contrasting disease dynamics.
The acute, immunizing infections mainly circulate among the young and therefore
comprise the many childhood infections because most or all older hosts are im-
mune. From the point of view of the compartmental SIR-like formalism, it is natural
to divide the host population in Susceptible, Intected, and Removed compartments
and assume a unidirectional flow from susceptible children through immune (“re-
moved”) adults. In contrast, the prevalence of in-host persistent infections, such as
the many chronic viruses (Virgin et al., 2009) and untreated life-long bacterial in-
fections that cause tuberculosis and leprosy, will generally tend to accumulate with
age. With respect to the SIR formalism, it is thus natural to consider a model with a
unidirectional flow from the S compartment to a terminal I compartment. The acute
but imperfectly immunizing infections may lead to relatively age-invariant attack
rates with looped S→ I → S or S→ I → R→ S flows depending on the duration of
immune protection (Fig. 1.1).

SIR-like frameworks predict the broad expectation for how age-prevalence curves
will be modulated by factors such as age-specific pattern of mixing and differen-
tial mortality between infected and non-infected individuals (Chap. 4). Statistical
epidemiology can subsequently be used to probe empirical patterns to discover
subtleties in the dynamics of disease transmission that is hard to observe directly
(Chap. 5).
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1.3 Patterns of Endemicity

Fig. 1.1: The SIR(S) compartmental flow and the two bottlenecks for local per-
sistence: (i) the transmission bottleneck for poorly transmitted infections and (ii)
the susceptible bottleneck for highly transmissible, acute immunizing (or lethal)
pathogens

We classify the dynamics of infectious disease according to broad patterns of
endemicity. First, there is the distinction between locally persistent and locally non-
persistence pathogens. Local persistence fails when a local chain of transmission
breaks. This can happen for two very different reasons (Fig. 1.1): (i) the transmis-
sion bottleneck is when a pathogen is insufficiently transmissible to sustain a chain
of transmission and (ii) at the opposite end of the spectrum is the susceptible bot-
tleneck for acute pathogens that are so transmissible that they burn through suscep-
tibles much faster than they are replenished. In measles, for example, prevaccina-
tion cities in the USA smaller than a critical community size (CCS) of 250k–500k
did not produce enough susceptible children to sustain a local chain of transmis-
sion (Bartlett, 1960b) (Fig. 1.2). Recurrence of such pathogens typically involves
spatial dynamics and persistence at the metapopulation scale through spread among
asynchronous local host communities (Keeling et al., 2004) or core-satellite dynam-
ics in which a few large cities above the CCS serve as persistent sources for spatial
dissemination to communities below the CCS (Grenfell & Harwood, 1997; Grenfell
et al., 2001). The 1988 and 2002 epidemics of a related morbillivirus, the phocine
distemper virus (PDV) in European harbor seals, are other illustrations of locally
non-persistent infections due to high transmission relative to susceptible recruit-
ment rates (e.g., Swinton, 1998). Following introduction into each local population
(“haul-out”), explosive local epidemics terminated after 1–4 months due to suscepti-
ble depletion. When such epidemics happens so fast that recruitment of susceptibles
(through birth, immigration, or loss of immunity) is negligible during the course
of the outbreak it is termed a closed epidemics. The closed epidemic is the focus
of the standard Susceptible–Infected–Recovered model which is introduced in the
first part of Chap. 2. We will discuss PDV spillover and invasion in more detail
in Sect. 15.3. At the opposite end of the transmissibility spectrum, pathogens may
bottleneck because transmission is too ineffective. In particular, if the reproduc-
tion number (R0, the expected number of secondary cases from a primary case in a
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Fig. 1.2: Persistence of measles against population size for 954 cities and villages in
prevaccination England and Wales (1944–1964). Communities below 500k exhib-
ited occasional or frequent (depending on size) local extinction of the virus

completely susceptible population) is smaller than one, we see stuttering subcriti-
cal chains of transmission followed by pathogen fadeout. This is the case for many
zoonoses such as monkey pox and Nipah (stage 3 zoonoses in the classification by
Lloyd-Smith et al., 2009, Sect. 15.1). Persistent recurrence of these infections typ-
ically involves reservoir hosts and intermittent zoonotic reintroduction. For exam-
ple, in their study of Lassa fever in Sierra Leone, Iacono et al. (2015) concluded
that about 20% of the human cases were caused by human-to-human transmis-
sion (with an average reproduction number below one), while the remaining major-
ity was caused by transmission from the multimammate rat (Mastomys natalensis)
reservoir.

Locally persistent infections are commonly classified as (i) stable endemics that
show little variation in incidence through time. Many STDs with SI- and SIS-like
dynamics like gonorrhea (Fig. 1.3a) and HIV exhibit this pattern. (ii) Seasonal en-
demics that show low’ish-level predictable seasonal variation around some mean.
Many endemic vector-borne and water-borne infections exhibit this pattern. A clas-
sic example is the seasonal two-peaked mortality rate from Cholera in the province
of Dacca, East Bengal (King et al., 2008); the first peaks at the beginning of the
monsoon season and the second toward the end (Fig. 1.3b) due to how water flow
affects bacterial presence. Finally, (iii) recurrent epidemics that may be regular or
irregular are characterized by violent epidemic fluctuations over time. Many acute,
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Fig. 1.3: (a) Weekly incidence of gonorrhea in Massachusetts (2006–2015) and (b)
monthly average (± SE) mortality from cholera in the Dacca district (1891–1940)

immunizing highly contagious pathogens—measles being the poster child—follow
this pattern (Fig. 1.4), the determinants of which will be discussed in Chaps. 6 and 8.

1.4 R

To provide a cohesive framework for the practical calculations, all analyses are done
in the open-source R language. All functions, data, and shinyApp’s discussed in
the text are contained in the epimdr2 package and all the code used is available
in text format on the epimdr2 GitHub site https://github.com/objornstad/epimdr2.
With the package and the code, everything contained herein should be fully repro-
ducible. Figures 1.2 and 1.4 were for example generated using the following code:

require(epimdr2)
#Fig 1.2
data(ccs)
plot(ccs$size, ccs$ext*100, log = "x", xlab =

"Community size", ylab = "Percent
of time extinct")

#Fig 1.3a
plot(magono$time, magono$number, ylab = "Cases",

xlab = "Year")
lines(lowess(x = magono$time, y = magono$number, f = 0.4))

#Fig 1.3b
data(cholera)
ses = sesd = sesdv = rep(NA, 12)
ses[c(7:12, 1:6)] = sapply(split(cholera$Dacca,

http://www.r-project.org
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Fig. 1.4: Incidence of measles in various US and UK cities during the prevaccination
era. The data represent fortnightly incidence (roughly corresponding to the virus’
serial interval). The vertical bars mark annual intervals

cholera$Month), mean, na.rm = TRUE)
sesd[c(7:12, 1:6)] = sapply(split(cholera$Dacca,

cholera$Month), sd, na.rm = TRUE)
sesdv[c(7:12, 1:6)] = sesd/sqrt(length(split(cholera$Dacca,

cholera$Month)))
require(plotrix)
plotCI(x = 1:12, y = ses, ui = ses + sesdv, li = ses -

sesdv, xlab = "Month", ylab = "Deaths")
lines(x = 1:12, y = ses)
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1.5 Resources

Updates and additional multimedia resources (including all R code) related to this
text can be found on https://github.com/objornstad/epimdr2.

A 5 min overview of Patterns of endemicity can be watched from YouTube:
https://www.youtube.com/watch?v=Mf EZm5amxI. This video is part of the Penn-
sylvania State University produced epidemics MOOC. The entire course is acces-
sible free from https://www.coursera.org/learn/epidemics. There will be pointers to
relevant videos at the start of each chapter.

https://github.com/objornstad/epimdr2
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Chapter 2
SIR

2.1 Introduction

The following 10 chapters are devoted to the study of patterns of infection over time
and age. The current chapter introduces the basics of compartmental modeling of
transmission dynamics. This is followed by a chapter with in-depth discussion of
the reproduction number, R0, which is the most important quantity for understand-
ing epidemics of infectious agents. The subsequent chapters detail the importance
of age structure and seasonality in shaping epidemics and pandemics as well as sev-
eral important time series methods for characterizing and understanding temporal
recurrence patterns of infection. The last two chapters explore how ideas from dy-
namical systems theory can help explain several very curious aspects of the waxing
and waning of infection through time.

2.2 The SIR Model

In 1927, Kermack and McKendrick (1927) published a set of general equations
(Breda et al., 2012) to better understand the dynamics of an infectious disease
spreading through a susceptible population. Their motivation was

One of the most striking features in the study of epidemics is the difficulty of finding a causal
factor which appears to be adequate to account for the magnitude of the frequent epidemics
of disease which visit almost every population [. . .] The problem may be summarized as
follows: One (or more) infected person is introduced into a community of individuals, more

This chapter uses the following R packages: deSolve, phaseR, and shiny.
A conceptual understanding of reproduction numbers and the simple epidemic is useful. Five
minute epidemics MOOC introductions are:
Reproduction number https://www.youtube.com/watch?v=ju26rvzfFg4.
Closed epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.
The sir.app shinyApp provides an interactive interface as part of the epimdr2 package.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-031-12056-5 2
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or less susceptible to the disease in question. The disease spreads from the affected to the
unaffected by contact infection. Each infected person runs through the course of his sick-
ness, and finally is removed from the number of those who are sick, by recovery or by death.
The chances of recovery or death vary from day to day during the course of his illness. The
chances that the affected may convey infection to the unaffected are likewise dependent
upon the stage of the sickness. As the epidemic spreads, the number of unaffected members
of the community becomes reduced [. . .] In the course of time the epidemic may come to
an end. One of the most important problems in epidemiology is to ascertain whether this
termination occurs only when no susceptible individuals are left, or whether the interplay of
the various factors of infectivity, recovery and mortality, may result in termination, whilst
many susceptible individuals are still present in the unaffected population.

Fig. 2.1: The SIR flow diagram of transitions among Susceptibles (S), Infected and
Infectious (I), and Recovered/Removed (R) compartments. Rates are per capita rates
among compartments

Following a general mathematical exposé, they suggested a set of pragmatic as-
sumptions that lead to the standard SIR model of ordinary differential equations
(ODEs) for the flow of hosts between Susceptible, Infectious, and Recovered com-
partments. In modern notation, the simplest set of equations is (Fig. 2.1)

dS
dt

= μN
︸︷︷︸

birth

− β I
S
N

︸︷︷︸

infection

− μS
︸︷︷︸

death

(2.1)

dI
dt

= β I
S
N

︸︷︷︸

infection

− γI
︸︷︷︸

recovery

− μI
︸︷︷︸

death

(2.2)

dR
dt

= γI
︸︷︷︸

recovery

− μR
︸︷︷︸

death

(2.3)

The assumptions of Eqs. (2.1)–(2.3) are:

• The infection circulates in a population of size N, with a per capita baseline
death rate, μ , which is balanced by a birth rate μN. From the sum of Eqs. (2.1)–
(2.3), dN/dt = 0 and N = S+ I+R is thus constant. N is assumed to be large,
so epidemics will unfold according to the predictable clockwork of the coupled
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deterministic differential equations. We will consider how to accommodate de-
viations from this assumption throughout the ensuing text, notably in Sects. 3.4,
8.2, and 9.2.

• The infection causes acute morbidity (not mortality); that is, in this version of
the SIR model, we assume we can ignore disease-induced mortality. This is rea-
sonable for certain infections like chickenpox, but certainly not for others like
rabies, SARS, or Ebola (Sects. 3.7, 3.9, and 10.6 introduce models that relax on
this assumption).

• Individuals are recruited directly into the susceptible class at birth (so ignore
perinatal maternal immunity).

• Transmission of infection from infectious to susceptible individuals is controlled
by a bilinear contact term β I SN . This stems from the assumption that the I in-
fectious individuals are independently and randomly mixing with all other indi-
viduals, so a fraction S/N of the encounters is with susceptible individuals; β is
the contact rate times the probability of transmission given a contact between a
susceptible and an infectious individual.

• Chances of recovery or death are assumed not to change during the course of
infection.

• Infectiousness is assumed not to change during the course of infection.
• Infected individuals are assumed to move directly into the infectious class (as op-

posed to the SEIR model introduced in Sect. 3.7) and remain there for an average
infectious period of 1/γ (assuming μ << γ).1

• The model finally assumes that recovered individuals are immune from reinfec-
tion for life.2

The basic reproduction number (R0), interchangeably also termed the basic repro-
ductive ratio, is defined as the expected number of secondary infections from a sin-
gle index case in a completely susceptible population. This is a pivotal quantity in
the theory of infectious disease dynamics. Chapter 3 is entirely devoted to this quan-
tity. For this particular model (Eqs. (2.1)–(2.3)), R0 =

β
γ+μ , and thus β = R0(γ +μ).

The later relationship is useful because while β is one of the key rate parameters in
the model, it is often more intuitive to think in terms of R0 as it can be estimated
from a variety of data using a variety of methods (Chap. 3).

1 The implicit assumptions that stem from the use of deterministic, ordinary differential equation
(ODE) are that the infectious periods (and resident times in all compartments) are exponentially
distributed. This is a tractable approximation for exploring overall dynamics, but observed dura-
tion of infection periods is often much less variable—the Eimeria-gut parasite (a relative of the
Plasmodium parasites that cause malaria) undergoes a fixed number of replication cycles before
all parasites leave the host (Smith et al., 2002b) or much more variable. Section 2.9 discusses a
practical approach to modeling disease dynamics when the exponential assumption is deemed too
simplistic.
2 Sections 10.5 and 11.4 visits on dynamics under transient immunity via the SIRS and SIRWS
models.
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2.3 Numerical Integration of the SIR Model

If there are no (or negligible) births and deaths during the duration of an epidemic
(μ � 0), the dynamics are commonly referred to as a closed epidemic. While it is oc-
casionally possible to derive analytical solutions to systems of ODEs like Eqs. (2.1)–
(2.3), we generally have to resort to numerical integration to predict the numbers
over time. The deSolve R package provides functions to numerically integrate
such equations. Throughout this text numerical integration of a variety of different
ODE models will be required. While the models differ, the basic recipe is generally
the same: (1) define an R function for the general system of equations, (2) specify
the time points at which we want the integrator to save the state of the system, (3)
provide values for the parameters, (4) give initial values for all state variables, and
finally (5) invoke the ode function.

require(deSolve)

STEP 1: Define the function (often called the gradient function) for the equation
systems. The deSolve package requires the function to take the following param-
eters: time, t,3 a vector with the values for the state variables (in this case S, I, and
R), y, and parameter values (for β , μ , γ , and N), parameters:

sirmod = function(t, y, parameters) {
# Pull state variables from y vector
S = y[1]
I = y[2]
R = y[3]
# Pull parameter values from the input vector
beta = parameters["beta"]
mu = parameters["mu"]
gamma = parameters["gamma"]
N = parameters["N"]
# Define equations
dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dI, dR)
# Return list of gradients
list(res)

}

STEPS 2–4: Specify the time points at which we want ode to record the states
of the system (here we use a half year with weekly time increments as specified
in the vector times), the parameter values (in this case as specified in the vector
paras), and starting conditions (specified in start). If we model the fraction
of individuals in each class, we set N = 1 (though we could do percentages with
N = 100 or some other population size of relevance). Let us consider a disease with

3 Though, in the case of the simple SIR model, there is no time dependence in any of the parame-
ters, so this parameter is not called within the gradient function; this will change when we consider
seasonality (Chap. 6).
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an infectious period of 2 weeks (γ = 365/14 per year) for the closed epidemic (no
births or deaths so μ = 0). A reproduction number of 4 implies a transmission rate
β of 2. For starting conditions, assume that 0.1% of the initial population is infected
and the remaining fraction is susceptible.

times = seq(0, 0.5, by = 1/365)
paras = c(mu = 0, N = 1, R0 = 4, gamma = 365/14)
paras["beta"] = paras["R0"] * (paras["gamma"] + paras["mu"])
start = c(S = 0.999, I = 0.001, R = 0) * paras["N"]

STEP 5: Feed start values, times, the gradient function sirmod, and param-
eter vector paras to the ode function as suggested by args(ode).4 For con-
venience, we convert the output to a data frame (ode returns a list). The head
function shows the first 5 rows of out and round(,3) rounds the number to three
decimals.

out = ode(y = start, times = times, func = sirmod, parms = paras)
out = as.data.frame(out)
head(round(out, 3))

## time S I R
## 1 0.000 0.999 0.001 0.000
## 2 0.003 0.999 0.001 0.000
## 3 0.005 0.998 0.002 0.000
## 4 0.008 0.998 0.002 0.000
## 5 0.011 0.997 0.002 0.000
## 6 0.014 0.996 0.003 0.001

Figure 2.2 shows how the model predicts an initial exponential growth of the epi-
demic that decelerates as susceptibles are depleted and finally fade out as susceptible
numbers are too low to sustain a chain of transmission.

plot(x = out$time, y = out$S, ylab = "Fraction", xlab = "Time",
type = "l")

lines(x = out$time, y = out$I, col = "red")
lines(x = out$time, y = out$R, col = "green")

R allows for a lot of customization of graphics—Rseek.org is a useful resource
to find solutions to all things R. . . Fig. 2.2 has some added features such as a right-
hand axis for the effective reproduction number (RE )—the expected number of new
cases per infected individuals in a not completely susceptible population—and a
legend so as to confirm that the turnover of the epidemic happens exactly when
RE = R0s = 1, where s is the fraction of remaining susceptibles. The threshold
R0s= 1⇒ s= 1/R0 results in the powerful rule of thumb for vaccine-induced elimi-
nation and herd immunity: if, through vaccination, the susceptible population is kept
below a critical fraction, pc = 1−1/R0, then pathogen spread will dissipate and the
pathogen will not be able to reinvade the host population (e.g., Anderson & May,
1982; Roberts & Heesterbeek, 1993; Ferguson et al., 2003). This rule of thumb ap-
peared to work well for smallpox, the only vaccine-eradicated human disease; its R0

4 For further details on usage, do ?function on the R command line, i.e., ?ode in this instance.

http://rseek.org
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was commonly around 5, and most countries saw elimination once vaccine cover
exceeded 80% (Anderson & May, 1982). The actual code for Fig. 2.2 is:

R0 = paras["R0"]
# Adjust margins to accommodate a second right axis
par(mar = c(5, 5, 2, 5))
# Plot state variables
plot(x = out$time, y = out$S, ylab = "Fraction", xlab = "Time",

type = "l")
lines(x = out$time, y = out$I, col = "red")
lines(x = out$time, y = out$R, col = "green")

# Add vertical line at turnover point
xx = out$time[which.max(out$I)]
lines(c(xx, xx), c(1/R0, max(out$I)), lty = 3)

# prepare to superimpose 2nd plot
par(new = TRUE)
# plot effective reproduction number (w/o axes)
plot(x = out$time, y = R0 * out$S, type = "l", lty = 2,

lwd = 2, col = "black", axes = FALSE, xlab = NA, ylab = NA,
ylim = c(-0.5, 4.5))

lines(c(xx, 26), c(1, 1), lty = 3)
# Add right-hand axis for RE
axis(side = 4)
mtext(side = 4, line = 4, expression(R[E]))
# Add legend
legend("right", legend = c("S", "I", "R", expression(R[E])),

lty = c(1, 1, 1, 2), col = c("black", "red", "green",
"black"))

2.4 Final Epidemic Size

The closed epidemic model has two equilibria: the disease free equilibrium, {S =
1, I = 0, R = 0}, which is unstable when R0 > 1 and the {S∗, I∗, R∗} equilibrium
which reflects the final epidemic size, R∗, for which I∗ = 0 as the epidemic even-
tually self-extinguish in the absence of susceptible recruitment; S∗ is the fraction
of susceptibles that escape infection altogether. For the closed epidemic, there is
an exact mathematical solution to the final epidemic size (below). It is nevertheless
useful to consider computational ways of finding steady states in the absence of
exact solutions.

The easiest approach is to use the ode function to integrate the system until it
settles on a steady state (if it exists).5

5 By varying initial conditions, we should be able to find multiple stable equilibria if there are more
than one of them. This approach will not find unstable equilibria, for these we need to use other
strategies. Section 10.3 considers in more depth how to find all equilibria whether stable or not.
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Fig. 2.2: The closed SIR epidemic with left and right axes and effective reproduction
number, RE . The epidemic turns over at RE = 1

require(rootSolve)
equil = runsteady(y = c(S = 1 - 1e-05, I = 1e-05, R = 0),

times = c(0, 1e+05), func = sirmod, parms = paras)
round(equil$y, 3)

## S I R
## 0.02 0.00 0.98

So for these parameters, 2% of susceptibles are expected to escape infection alto-
gether and 98%—the final epidemic size—are expected to be infected during the
course of the epidemic.

The final epidemic size depends completely on R0. For this specific SIR vari-
ant, β = R0(γ + μ) and for the closed epidemic μ = 0. Continuing to assume an
infectious period of 2 weeks (i.e., γ = 1/2), we may vary R0 from 0.1 to 5. For mod-
erate to large R0, this fraction has been shown to be approximately 1− exp(−R0)
(e.g., Anderson & May, 1982). We can check how well this approximation holds
(Fig. 2.3).6

# Candidate values for R0 and beta
R0 = seq(0.1, 5, length = 50)

6 The for loop here calculates the final epidemic size for a range of values of R0; a loop works
by repeating calculations (in this case 50 times), and after each repeat, the value of the looping
variable (in this case i) is changed to the next value in the looping vector. So in this example i
will be 1 first, then 2, and then . . . until the loop ends after i= 50.
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betas = R0 * (paras["gamma"] + paras["mu"])
# Vector of NAs to be filled with numbers
fs = rep(NA, 50)
# Loop over l from 1, 2, ..., 50
for (i in seq(from = 1, to = 50, by = 1)) {

equil = runsteady(y = c(S = 1 - 1e-05, I = 1e-05, R = 0),
times = c(0, 1e+05), func = sirmod, parms = c(mu = 0,

N = 1, beta = betas[i], gamma = 365/14))
fs[i] = equil$y["R"]

}
plot(R0, fs, type = "l", xlab = expression(R[0]))
curve(1 - exp(-x), from = 1, to = 5, add = TRUE, col = "red")
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Fig. 2.3: The final epidemic size as a function of R0. The black line is the solution
based on numerically integrating the closed epidemic, the red line is the approxima-
tion f � 1− exp(−R0)

The approximation is good for R0 > 2.5 but overestimates the final epidemic size
for smaller R0 (and is terrible for subcritical R0 < 1).

For the closed epidemic SIR model, there is an exact mathematical solution to the
fraction of susceptibles that escapes infection (1− f ) given by the implicit equation
f = exp(−R0(1− f )) or equivalently exp(−R0(1− f ))− f = 0 (Swinton, 1998). So
we can also find the true expected final size by using the uniroot function to the
equation. The uniroot function finds numerical solutions to equations with one
unknown variable (which has to be named x).
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# Define function
fn = function(x, R0) {

exp(-(R0 * (1 - x))) - x
}
1 - uniroot(fn, lower = 0, upper = 1 - 1e-09, tol = 1e-09,

R0 = 2)$root

## [1] 0.7968121

# check accuracy of approximation
exp(-2) - uniroot(fn, lower = 0, upper = 1 - 1e-09, tol = 1e-09,

R0 = 2)$root

## [1] -0.06785259

So, for R0 = 2, the final epidemic size is 79.6% and the approximation is off by
around 6.7%-points. We will visit on stochastic aspects of the final epidemic size
distribution in detail in Sect. 14.6.

2.5 The Open Epidemic

An open epidemic has recruitment of new susceptibles (i.e., μ > 0). As long as
R0 > 1, the open epidemic has an endemic equilibrium were the pathogen and host
coexist. If we use the SIR equations to model fractions (i.e., set N = 1), Eq. (2.2)
of the SIR model implies that S∗ = (γ + μ)/β = 1/R0 is the endemic S equilib-
rium, which when substituted into Eq. (2.1) gives I∗ = μ(R0 − 1)/β , and finally,
R∗ = N− I∗ −S∗ as the I and R endemic equilibrium values. We can study the pre-
dicted dynamics of the open epidemic using the sirmod function. In a stable host
population with a life expectancy of 50 years, the per capita weekly birth/death rate
is μ = 1/(50∗52). For illustration, assume that 19.99% of the initial population is
susceptible and 0.01% is infected, and numerically integrate the model for 50 years
(Fig. 2.4).

times = seq(0, 50, by=1/365)
paras = c(mu = 1/50, N = 1, R0=4, gamma = 365/14)
paras["beta"]=paras["R0"]*(paras["gamma"]+paras["mu"])
start = c(S=0.1999, I=0.0001, R = 0.8)*paras["N"]
out = as.data.frame(ode(y=start, times=times,

func=sirmod, parms=paras))
par(mfrow=c(1,2)) #Make room for side-by-side plots
#Prevalence in time
plot(times, out$I, ylab="Fraction", xlab="Time",

type="l")
#S-I phase-plane
plot(out$S, out$I, type="l", xlab="Susceptible",

ylab="Infected")
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Fig. 2.4: The open SIR epidemic. (a) The fraction infected over time. (b) The joint
time series of infecteds and susceptibles in the S–I phase plane. The trajectory forms
a counterclockwise inward spiral in the S–I plane (note that the 50-year simulation
is not long enough for the system to reach the steady-state endemic equilibrium at
the center of the spiral)

2.6 Phase Analysis

When working with dynamical systems, one is often interested in studying the dy-
namics in the phase plane and deriving the isoclines that divide this plane into re-
gions of increase and decrease of the various state variables. The phaseR package
is a wrapper around ode that makes it easy to visualize 1- and 2-dimensional differ-
ential equation flows.7 The R state in the SIR model does not influence the dynamics,
so we can rewrite the SIR model as a 2D system.

7 The phaseR package requires the gradient function to take the arguments t, y, and
parameters.
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simod = function(t, y, parameters) {
S = y[1]
I = y[2]

beta = parameters["beta"]
mu = parameters["mu"]
gamma = parameters["gamma"]
N = parameters["N"]

dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
res = c(dS, dI)
list(res)

}

The isoclines (sometimes called the null-clines) in this system are given by the
solution to the equations dS/dt = 0 and dI/dt = 0 and partition the phase plane into
regions where S and I are increasing and decreasing. For N = 1, the I-isocline is
S= (γ+μ)/β = 1/R0 and the S-isocline is I = μ(1/S−1)/β . We can draw these in
the phase plane and add a simulated trajectory to the plot (Fig. 2.5). The trajectory
cycles in a counterclockwise dampened fashion toward the endemic equilibrium
(Fig. 2.5). To visualize the expected change to the system at arbitrary points in the
phase plane, we can further use the function flowField in the phaseR package
to superimpose predicted arrows of change.

require(phaseR)
#Plot vector field
fld = flowField(simod, xlim = c(0.2,0.3), ylim = c(0,.007),

parameters = paras, system = "two.dim",
add = FALSE, ylab = "I", xlab = "S")

#Add trajectory
out = as.data.frame(ode(y = c(S = 0.1999, I = 0.0001),

times = seq(0, 52*100, by = 1/365), func = simod,
parms = paras))

lines(out$S, out$I, col = "red")
#Add S-isocline
curve(paras["mu"]*(1/x-1)/paras["beta"], 0.15, 0.35,

xlab = "S", ylab = "I", add = TRUE)
#Add I-isocline
icline = (paras["gamma"] + paras["mu"])/paras["beta"]
lines(rep(icline, 2), c(0,0.01))
legend("topright", legend = c("Transient", "Isoclines"),

lty = c(1, 1), col = c("red", "black"))
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Fig. 2.5: The S–I phase plane with isoclines and the predicted counterclockwise
trajectory toward the endemic equilibrium

2.7 Stability and Periodicity

As a preview of more detailed discussions in Chap. 10, this section is just a teaser.
For continuous-time ODE models like the SIR, equilibria are locally stable if (and
only if) all the real parts of the eigenvalues of the Jacobian matrix when evalu-
ated at the equilibrium are smaller than zero. An equilibrium is (i) a node (i.e., all
trajectories moves monotonically toward/away from the equilibrium) if the largest
eigenvalue has only a real part and (ii) a focus (i.e., trajectories spiral toward or
away from the equilibrium) if the largest eigenvalues are a conjugate pair of com-
plex numbers (a± bı).8 For a focus, the imaginary part determines the dampen-
ing period of the cycle according to 2π/b. We can thus use the Jacobian matrix to
study the SIR model’s equilibria. If we set F = dS/dt = μ(N − S)− βSI/N and
G= dI/dt = βSI/N− (μ + γ)I, the Jacobian of the SIR system is

8 And (iii) a center, as is the case for the Lotka–Volterra predator–prey model, if the conjugate pair
only has imaginary parts.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Lotka-Volterra_equations
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J =

( ∂F
∂S

∂F
∂ I

∂G
∂S

∂G
∂ I

)

, (2.4)

and the two equilibria are the disease free equilibrium and the endemic equilibrium
as defined above.

R can help with all of this. The endemic equilibrium is:

# Pull values from paras vector
gamma = paras["gamma"]
beta = paras["beta"]
mu = paras["mu"]
N = paras["N"]
# Endemic equilibrium
Sstar = (gamma + mu)/beta
Istar = mu * (beta/(gamma + mu) - 1)/beta
eq1 = list(S = Sstar, I = Istar)

The elements of the Jacobian using R’s differentiation D function are

# Define equations
dS = quote(mu * (N - S) - beta * S * I/N)
dI = quote(beta * S * I/N - (mu + gamma) * I)
# Differentiate w.r.t. S and I
j11 = D(dS, "S")
j12 = D(dS, "I")
j21 = D(dI, "S")
j22 = D(dI, "I")

Pass the values for S∗ and I∗ in the eq1 list to the Jacobian,9 and use the eigen
function to calculate the eigenvalues:

# Evaluate Jacobian at equilibrium
JJ = with(data = eq1, expr = matrix(c(eval(j11), eval(j12),

eval(j21), eval(j22)), nrow = 2, byrow = TRUE))
# Calculate eigenvalues
eigen(JJ)$values

## [1] -0.04+1.250554i -0.04-1.250554i

For the endemic equilibrium, the eigenvalues are a pair of complex conjugates which
real parts are negative, so it is a stable focus. The period of the inward spiral is:

9 In previous coding of the sirmod function, parameter values were pulled from the input argu-
ments inside the function to make the code as transparent as possible; while it makes the code easy
to read, it makes for extra coding and can clutter up the workspace with variables that are defined
in multiple locations. The with function allows the evaluation of an expression using variables
defined in a data list.
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2 * pi/(Im(eigen(JJ)$values[1]))

## [1] 5.024321

So with these parameters, the dampening period is predicted to be just over 5 years.
Thus, during disease invasion, we expect this system to exhibit initial outbreaks
every 5 years. A further significance of this number is that if the system is stochasti-
cally perturbed by environmental variability affecting transmission, the system will
exhibit low-amplitude “phase-forgetting” cycles (Nisbet & Gurney, 1982) with ap-
proximately this period in the long run. We can make more accurate calculations
of the stochastic system using transfer functions (Priestley, 1981; Nisbet & Gurney,
1982). We will visit on this more advanced topic in Sect. 10.8.

The same protocol can be used for the disease free equilibrium {S∗ = 1, I∗ = 0}.

eq2 = list(S = 1, I = 0)
JJ = with(eq2, matrix(c(eval(j11), eval(j12), eval(j21),

eval(j22)), nrow = 2, byrow = TRUE))
eigen(JJ)$values

## [1] 78.27429 -0.02000

The eigenvalues are strictly real and the largest value is greater than zero, so it is
an unstable node (a “saddle”); the epidemic trajectory is predicted to move mono-
tonically away from this disease free equilibrium if infection is introduced into the
system. This makes sense because with the parameter values used, R0 = 4, which is
greater than the invasion threshold value of 1.

Because we will require Jacobian matrices for a large number of different cal-
culations regarding infectious disease dynamics, Sect. 6.8 will introduce a general-
purpose jacobian function that is part of the epimdr2 package.

2.8 Heterogeneities

The bare-bones SIR model makes many simplifying assumption. A lot of the the-
ory in the subsequent chapters contends with making more realistic models by in-
corporating various heterogeneities. Important complications are age-dependence
in susceptibility, infectiousness, contact rates and disease symptomology (Chaps. 4
and 5), a greater number of functionally distinct classes such as nosocomical (hospi-
tal associated) transmission being different from that in the community (Sect. 3.10),
waning/boosting of immunity (Sect. 11.4), infections having multiple distinct out-
comes (Sect. 10.6), seasonal changes in dynamics (Chap. 6), and spatial/social het-
erogeneities (Chaps. 12 and 14). The need to consider more elaborate models typ-
ically depends on the biology/ecology of the host and pathogen and the scientific
problem in question.
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2.9 Advanced: More Realistic Infectious Periods

As an initial illustrative example of added realism, we can consider how infectivity
and removal rates are usually not constant during the course of infection. For acute
pathogens, recently infected individuals are usually likely to be infected for a while
longer, whereas individuals infected some time ago are likely to have a higher rate
of removal either because the immunity is ramping up or increased risk of death or
quarantining if disease severity increases over time. We can baby step toward solv-
ing the Kermack & McKendrick (1927) general equations of such time dependence
by modifying the basic SIR model to consider more realistic infectious periods.

The S(E)IR-type differential equation models assume that the rate of exit from
the infectious classes is constant, and the implicit assumption is thus that the infec-
tious period is exponentially distributed among infected individuals. The average
infectious period predicted from Eq. (2.2) is 1/(γ + μ), but an exponential fraction
is infectious much shorter/longer than this. The chain-binomial model, which will be
discussed in Sect. 3.4, in contrast, assumes that everybody is infectious for a fixed
period and then instantaneously recovers (or dies). These assumptions are mathe-
matically convenient, but in reality neither are particularly realistic. Hope-Simpson
(1952) traced the chains of transmission of measles in multi-sibling households.
The timing of secondary and tertiary cases was analyzed in detail by Bailey (1956)
and Bailey and Alff-Steinberger (1970). The average latent and infectious periods
were calculated to be 8.58 and 6.57 days, respectively. While the distribution around
each of these averages was not estimated separately (the latent period was assumed
to be distributed and the infectious period assumed fixed), the variance around the
roughly fortnight period of infection was estimated to be 3.13. The mean duration of
infection is thus 15.15 days with a standard deviation of 1.77 (Fig. 2.6). So neither
a fixed nor an exponential distribution is very accurate (Keeling & Grenfell, 1997;
Lloyd, 2001).

Kermack and McKendrick’s (1927) original model allows for arbitrary infectious
period distributions. We can write Kermack and McKendrick’s original equations as
renewal equations (Breda et al., 2012), introducing the additional notation of k(t)
being the (instantaneous) incidence at time t (i.e., flux into the I class at time t).

dS
dt

= μN
︸︷︷︸

birth

− μS
︸︷︷︸

death

− k(t)
︸︷︷︸

outflux

(2.5)

k(t) = β I(t)
S(t)
N

(2.6)

dI
dt

= k(t)
︸︷︷︸

influx

− μI
︸︷︷︸

death

−
∫ ∞

0

h(τ)
1−H(τ)

k(t− τ)dτ
︸ ︷︷ ︸

distributed recovery

(2.7)
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Fig. 2.6: Gamma distributed infectious periods. (a) The predicted infectious pe-
riod distribution based on a gamma distribution with shape u = 1, 5, 25, 100, and
100,000; u = 1 corresponds to the exponential distribution implicit in the standard
SIR model. The bold line (u= 73) is the one corresponding to the variance observed
in Hope-Simpson’s (1952) study of measles. The dotted line (virtually indistinguish-
able from the u = 100) is a Gaussian distribution intended to show that when u is
large the gamma distribution converges on the normal distribution. (b) The proba-
bility of still being infectious as a function of time for the different distributions. As
u becomes large, the distribution converges on a fixed infectious period. Note that
the empirical distribution (bold) is quite different from the exponential (u= 1)

dR
dt

=
∫ ∞

0

h(τ)
1−H(τ)

k(t− τ)dτ
︸ ︷︷ ︸

distributed recovery

− μR
︸︷︷︸

death

, (2.8)

where k(t − τ) is the number of individuals that were infected τ time units ago,
h(τ) is the probability of recovering on infection day τ , and H(τ) is the cumulative
probability of having recovered by infection day τ; k(t− τ)/(1−H(τ)) is thus the
fraction of individuals infected at time t−τ that still remains in the infected class on
day t and the integral is over all previous infections so as to quantify the total flux
into the removed class at time t. Though intuitive, these general integro-differential
equations (Eqs. (2.5)–(2.8)) are not easy to work with in general. For a restricted set
of distributions for the h() function however—the Erlang distribution (the gamma
distribution with an integer shape parameter)—the model can be numerically inte-

https://en.wikipedia.org/wiki/Erlang_distribution
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grated using a gamma-chain model (referred to as “linear chain trickery” by Metz
& Diekmann, 1991) of coupled ordinary differential equations (e.g., Blythe et al.,
1984; Lloyd, 2001; Bjørnstad et al., 2016). The trick is to separate any distributed-
delay compartment into u sub-compartments through which individuals pass at a
rate of x∗u. The resultant infectious period will have a mean duration of 1/x and a
coefficient of variation of 1/

√
u.

A chain SIR model to simulate S → I → R flows with more realistic infectious
period distributions is:10

sirChainmod = function(t, logx, parameters) {
x = exp(logx)
u = parameters["u"]
S = x[1]
I = x[2:(u + 1)]
R = x[u + 2]
with(as.list(parameters), {

dS = mu * (N - S) - sum(beta * S * I)/N
dI = rep(0, u)
dI[1] = sum(beta * S * I)/N - (mu + u * gamma) *

I[1]
if (u > 1) {

for (i in 2:u) {
dI[i] = u * gamma * I[i - 1] - (mu + u *

gamma) * I[i]
}

}
dR = u * gamma * I[u] - mu * R
res = c(dS/S, dI/I, dR/R)
list(res)

})
}

We can compare the predicted dynamics of the simple SIR model with the u= 2
chain model, the u = 500 chain model (which is effectively the fixed-delay differ-
ential model), and the “measles-realistic” u= 73 model.

times = seq(0, 10, by = 1/52)
paras2 = c(mu = 1/75, N = 1, R0 = 18, gamma = 365/14, u = 1)
paras2["beta"] = paras2["R0"] * (paras2["gamma"] + paras2["mu"])
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04, paras2["u"] -

1)), R = 1e-04))
out = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
plot(times, exp(out[, 3]), ylab = "Infected", xlab = "Time",

ylim = c(0, 0.003), type = "l")

10 With a high number of compartments, this system of equations can become “stiff” with the
computer potentially making rounding errors leading to erroneous negative numbers. We use a
“log-trick” available for systems where all state variables are strictly positive: we solve the system
in log-coordinates to smooth abrupt changes and force all states to be greater than zero. To employ
this technique, log-transform all initial values in start, change the first line in the function to
x = exp(logx) and the last line to return dS/S, etc. in place of dS which comes from the
chain-rule of differentiation and the fact that D(logx) = 1/x.

https://en.wikipedia.org/wiki/Chain_rule
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paras2["u"] = 2
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04/paras2["u"],

paras2["u"] - 1)), R = 1e-04))
out2 = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
lines(times, apply(exp(out2[, -c(1:2, length(out2))]), 1,

sum), col = "blue")

paras2["u"] = 73
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04/paras2["u"],

paras2["u"] - 1)), R = 1e-04))
out3 = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
lines(times, apply(exp(out3[, -c(1:2, length(out3))]), 1,

sum), col = "red", lwd = 2, lty = 2)

paras2["u"] = 500
xstart2 = log(c(S = 0.06, I = c(0.001, rep(1e-04/paras2["u"],

paras2["u"] - 1)), R = 1e-04))
out4 = as.data.frame(ode(xstart2, times, sirChainmod, paras2))
lines(times, apply(exp(out4[, -c(1:2, length(out4))]), 1,

sum, na.rm = TRUE), col = "green")

legend("topright", legend = c("SIR", "u=2", "u=500",
"u=73 (H-S)"), lty = c(1, 1, 1, 2), lwd = c(1, 1, 1, 2),
col = c("black", "blue", "green", "red"))

The more narrow the infectious period distribution, the more punctuated the pre-
dicted epidemics. However, infectious period narrowing alone cannot sustain re-
current epidemics. In the absence of stochastic or seasonal forcing, epidemics will
dampen to the endemic equilibrium (though the damping period is slightly accel-
erated and the convergence on the equilibrium is slightly slower with narrowing
infectious period distributions) (Fig. 2.7).

In the above we considered non-exponential infectious period distributions. How-
ever, the general gamma-chain method can be used for any compartment. Lavine
et al. (2011), for example, used it to model non-exponential waning of natural and
vaccine-induced immunity to whooping cough.

2.10 An SIR shinyApp

The following code will launch a shinyApp of the SIR model in a local browser.
This App can also be launched by calling runApp(sir.app) from the epimdr2
package. Several of the subsequent chapters also have associated shinyApps. Those
will be accessible from the epimdr2 package or the epimdr2 GitHub site, but
not scripted in the text because the code is long and a bit tedious. The sir.app is
presented here in full, so the interested readers can get a sense of shinyApp coding.
Bjørnstad et al. (2020a) provide a more elaborate online accessible shinyApp to
study the SIR model at https://shiny.bcgsc.ca/posepi1/.

https://cran.r-project.org/package=epimdr2
https://github.com/objornstad/epimdr2

 8408 57236 a 8408 57236
a
 
https://shiny.bcgsc.ca/posepi1/
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Fig. 2.7: Chain SIR models with different infectious period distributions

require(shiny)
require(deSolve)
require(phaseR)

# This creates the User Interface (UI)
ui <- pageWithSidebar(
headerPanel("The SIR model"),
#The sidebar for parameter input
sidebarPanel(
#Sliders
sliderInput("R0", "R0:", 2,

min = 0.5, max = 20),
sliderInput("infper", "Infectious period (days)", 5,

min = 1, max = 100),
sliderInput("mu", "birth rate (yrˆ-1):", 5,

min = 0, max = 100),
sliderInput("T", "Time range:",

min = 0, max = 1, value = c(0,1))
),
#Main panel for figures and equations
mainPanel(
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#Multiple tabs in main panel
tabsetPanel(

#Tab 1: Time plot (plot1 from server)
tabPanel("Time", plotOutput("plot1")),
#Tab 2: Phase plot (plot2 from server)
tabPanel("Phase plane", plotOutput("plot2",

height = 500)),
#Tab 3: MathJax typeset equations
tabPanel("Equations",

withMathJax(
helpText("Susceptible $$\\frac{dS}{dt} =

\\mu (N - S) - \\frac{\\beta I S}{N}$$"),
helpText("Infecitous $$\\frac{dI}{dt} =

\\frac{\\beta I S}{N} - (\\mu+\\sigma) I$$"),
helpText("Removed $$\\frac{dR}{dt} =

\\gamma I - \\mu R$$"),
helpText("reproduction number $$R_0 =

\\frac{1}{\\gamma+\\mu} \\frac{\\beta N}{N}$$")
))

))) #End of ui()

# This creates the ’behind the scenes’ code (Server)
server <- function(input, output) {

#Gradient function for SIR model
sirmod=function(t, x, parameters){

S=x[1]
I=x[2]
R=x[3]
R0=parameters["R0"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
beta=R0*(gamma+mu)
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
dR = gamma * I - mu * R
res=c(dS, dI, dR)
list(res)

}

#Plot1: renderPlot to be passed to UI tab 1
output$plot1 = renderPlot({
#input\$xx’s are pulled from UI
times = seq(0, input$T[2], by=1/1000)
paras = c(mu = input$mu, N = 1, R0 = input$R0,

gamma = 365/input$infper)
start = c(S=0.999, I=0.001, R = 0)
paras["beta"] = with(as.list(paras), R0*(gamma+mu))
#Resonant period
AA=with(as.list(paras), 1/(mu*(R0-1)))
GG=with(as.list(paras), 1/(mu+gamma))
rp=round(2*pi*sqrt(AA*GG),2)



2.10 An SIR shinyApp 31

#Integrate ode with parameters pulled from UI
out=ode(start, times, sirmod, paras)
out=as.data.frame(out)

#Plot1
sel=out$time>input$T[1]&out$time<input$T[2]
plot(x=out$time[sel], y=out$S[sel], ylab="fraction",
xlab="time", type="l", ylim=range(out[sel,-c(1,4)]))
title(paste("R0=", paras["R0"], "Period=", rp))
lines(x=out$time[sel], y=out$I[sel], col="red")
lines(x=out$time[sel], y=out$R[sel], col="green")
legend("right",

legend=c("S", "I", "R"),
lty=c(1,1,1),
col=c("black", "red", "green"))

})

#Plot2: renderPlot to be passed to UI tab 2
output$plot2 <- renderPlot({
times = seq(0, input$T[2], by=1/1000)
paras = c(mu = input$mu, N = 1, R0 = input$R0,

gamma = 365/input$infper)
paras["beta"] = with(as.list(paras), R0*(gamma+mu))

start = c(S=0.999, I=0.001, R = 0)

#Gradient function used for phaseR phase-plot
simod=function(t, y, parameters){
S=y[1]
I=y[2]
beta=parameters["beta"]
mu=parameters["mu"]
gamma=parameters["gamma"]
N=parameters["N"]
dS = mu * (N - S) - beta * S * I / N
dI = beta * S * I / N - (mu + gamma) * I
res=c(dS, dI)
list(res)

}

#Integrate simod
out=ode(start[-3], times, simod, paras)
out=as.data.frame(out)

AA=with(as.list(paras), 1/(mu*(R0-1)))
GG=with(as.list(paras), 1/(mu+gamma))
rp=round(2*pi*sqrt(AA*GG),2)

plot(x=out$S, y=out$I, xlab="Fraction suceptible",
ylab="Fraction infected", type="l")

title(paste("R0=", paras["R0"], "Period=", rp))
#Add vector field
fld=flowField(simod, xlim=range(out$S),
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ylim=range(out$I), parameters=paras,
system="two.dim", add=TRUE,ylab="I", xlab="S")
#Add isoclines
abline(v=1/paras["R0"], col="green")
curve(paras["mu"]*(1-x)/(paras["beta"]*x), min(out$S),

max(out$S), add=TRUE, col="red")
legend("topright",

legend=c("S-isocline", "I-isocline"),
lty=c(1,1),

col=c("red", "green"))
})

} #End of server()

shinyApp(ui, server)



Chapter 3
R0

3.1 Primacy of R0

For directly transmitted pathogens, R0 is per definition the expected number of sec-
ondary cases that arise from a typical infectious index case in a completely sus-
ceptible host population. R0 plays a critical role for a number of aspects of disease
dynamics and is therefore the focus of much study in historical and contemporary
infectious disease dynamics (Heesterbeek & Dietz, 1996). For perfectly immunizing
infections in homogeneously mixing populations, these include:

• The threshold for pathogen establishment. When R0 is greater than one, a
pathogen can invade. When it is smaller than one, the chain of transmission will
stutter and break (Lloyd-Smith et al., 2009, see Sect. 15.2). For directly transmit-
ted wildlife diseases, there is often an associated critical host density for disease
invasion. This has for example been estimated to be 1 red fox per km2 for rabies
in Europe (Anderson et al., 1981) and 17 mice per ha for Sin nombre hantavirus
in Montana (Luis et al., 2015). Section 10.7 provides a worked example for rac-
coon rabies.

• The threshold for vaccine-induced herd immunity. If a sufficient number of in-
dividuals are vaccinated, the effective reproduction number (RE , the expected
number of secondary cases in a partially immune population) will be below
one, and the population will be resistant to pathogen invasion. The threshold
is pc = 1− 1/R0. Thus, measles with an R0 of up to 20 requires around 95%
vaccine cover for elimination and smallpox (R0 � 5) around 80%.

• In a closed epidemic, the peak prevalence is 1− (1+ logR0)/R0 (House & Keel-
ing, 2011) and the early doubling time is log(2)V/ logR0, where V is the serial
interval (the average infection-to-onward-transmission time).

This chapter uses the following R packages: bbmle and statnet.
A discussion of the reproduction number and epidemic curve can be found in two five minute
epidemics MOOC videos:
Reproduction number https://www.youtube.com/watch?v=ju26rvzfFg4.
Closed epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-031-12056-5 3
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• As discussed in Sect. 2.4, the final epidemic size is given by R0 according to
the approximate relationship f � 1− exp(−R0) if there are no changes to host
behavior in response to the epidemic.

• In a stable host population, the mean age of infection is approximately ā �
L/(R0−1), where L is host life expectancy (Dietz & Schenzle, 1985). In a chang-
ing population, a more accurate calculation is ā� 1/(μ(R0 −1)), where μ is the
host birth rate.

• As derived in Sect. 2.6, the susceptible fraction at equilibrium is S∗ = 1/R0.
A consequence of this is that for competing strains that elicit cross-protecting
immunity R0 will determine competitive dominance and strain replacement
(Shrestha et al., 2014).1 A recent illustration of this is the replacement among
SARS-CoV-2 variants as evolution increases human-to-human transmission.

For these reasons and more, a lot of attention has been given to measuring R0 for
various infectious diseases as detailed below.

3.2 Rates and Probabilities

When working with data, models, and “models-and-data” for infectious disease dy-
namics, it is important to keep a cool head in terms of keeping track of which quanti-
ties are probabilities and which quantities are rates and how to move between these
two mathematical currencies.2 Confusion arises because the nomenclature of epi-
demiology and mathematical epidemiology is related but not always identical. In
epidemiology, the “case-fatality rate” is sometimes used to denote the fraction of
infections that ends in death, which from a mathematical/statistical point of view is
not a rate but a probability: the probability that an infection will lead to death (Dietz
& Heesterbeek, 2002). Likewise, in epidemiology, the seasonal influenza “attack
rate” denotes the fraction of people that contracts the flu in a given influenza season.
Again, from a mathematical/statistical/dynamical systems point of view, this quan-
tity is not a rate but a probability representing the chance of any randomly chosen
individual of unknown previous influenza infection history getting infected during
the season.

When considering events in modeling terms, a rate x per time unit is defined
on [0,∞] and 1/x is the average time to an event (if the rate remains constant). If
events are random and independent, the probability of no events in a time interval
Δ t is exp(−xΔ t) and the number of events in Δ t follows a Poisson distribution with

1 This result is parallel to Tilman’s (1976) R∗ theory of resource-based competition of free-living
organisms; whichever species that can sustain positive growth at the lowest concentration of the
limited resource will be competitively dominant. The twostrain.app in Sect. 3.12 allows fur-
ther exploration of this.
2 The disease dynamics literature has many example of how easy it is to confuse the two, which
often becomes particularly apparent when grappling with acute crises such as the 2014 West Africa
Ebola outbreak and the SARS-CoV-2 corona emergence in late 2019 through 2020.
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mean xΔ t (if the rate remains constant). A probability, in contrast, is defined on
[0,1]. If we observe a probability p of something happening in a time interval, we
can back-calculate the associated (constant) rate as x=−log(1− p)/Δ t.

If there are two competing processes, with rate x at which event one (e.g., re-
covery) happens and rate y at which event two (e.g., death) happens, the probability
of ending up with outcome one is x/(x+ y) and the probability of ending up with
outcome two is y/(x+y). This scales such that with three competing rates the prob-
ability of outcome one is x/(x+ y+ z), etc.

3.3 Estimating R0 from a Simple Epidemic

A variety of methods have been proposed to estimate R0 (or the effective repro-
duction number, RE ).3 Some are purely model based, others involve very elaborate
model fitting exercises, and some use fairly simple ideas based on the closed epi-
demic and analogies to the ecology of free-living organisms (Dietz, 1993).

The simplest idea is that during the initial spread phase susceptible depletion may
be sufficiently negligible that the epidemic may be assumed to grow in a density-
independent, exponential fashion. Basic ecology of free-living organisms tells us
that the rate of exponential growth is r= log(R0)/V , whereV is the generation time;
thus R0 = exp(rV ).4 Moreover, since an exponentially growing population grows
according to N(t) = N(0)exp(rt), the time for a population to double is log(2)/r.
By analogy, we can apply these ideas to the early phase of an epidemic to estimate
R0.

For pathogens, the Ns above would represent the prevalence and V represents
the serial interval which is the average time between infection and reinfection. This
interval will normally be a little shorter than the latent plus infectious period. It is,
again, important to clarify some additional nomenclature here. The latent period of
an infectious disease is the typical time from being exposed to becoming infectious,
and the infectious period is the typical time from becoming infectious to stop being
infectious (through recovery or death).5 These quantities differ sometimes mildly
and sometimes by a lot from the clinical concepts of the incubation period, which
is the time between exposure and overt symptoms of disease and period of illness.
For influenza, for example, the infectious period has been estimated to be around 4
days (Carrat et al., 2008), the latent period around 1 day (Canini & Carrat, 2011),
and the serial interval around 4 days (Cowling et al., 2009). For anyone who has
had a bad bout of influenza, this contrasts with the often 10 days to 2 weeks of

3 Recall that the effective reproduction number is the expected number of secondary cases in a
partially immune population: RE = sR0, where s is the fraction of the population that is susceptible.
4 Unless explicitly stated otherwise, log will always be taken to mean the natural logarithm in this
text.
5 Though for certain infections like anthrax, Ebola, and entomopathic viruses, a cadaver can be
infectious and in the case of anthrax for a very long time.
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feeling miserable. It is also important to keep in mind that latent and infectious
periods vary wildly among pathogens. For example, for influenza, the latent period
and infectious period are very short. For tuberculosis, in contrast, the latent period
can span decades (Dye, 2015).

Disease data most often represent incidence, i.e., the number of new infections
not the number of current infections. However, the nature of exponential growth is
such that incidence also grows at the same exponential rate as prevalence. Initial
growth is exp(r), where r = (R0 − 1)/V (e.g., Ferguson et al., 2003). The simplest
way to estimate R0 is thus to regress log(cumulative incidence) on time to estimate
the rate of exponential increase (r) and then back-calculate R0 = Vr+ 1 (e.g., An-
derson & May, 1991).

One can explore using the weekly measles data from the 2003 outbreak in Ni-
amey, Niger (Grais et al., 2008). The data is available as niamey. The tot cases
column represents the total incidence across the city for each week of the outbreak.

data(niamey)
head(niamey[, 1:5])

## absweek week tot_cases tot_mort lethality
## 1 1 45 11 0 0.000000
## 2 2 46 12 1 8.333333
## 3 3 47 15 0 0.000000
## 4 4 48 14 1 7.142857
## 5 5 49 30 0 0.000000
## 6 6 50 41 1 2.439024

The following provides a visual inspection to identify the initial period of exponen-
tial growth.

par(mar = c(5, 5, 2, 5))
plot(niamey$absweek, niamey$tot_cases, type = "b", xlab = "Week",

ylab = "Incidence")
par(new = TRUE)
plot(niamey$absweek, niamey$cum_cases, type = "l", col = "red",

axes = FALSE, xlab = NA, ylab = NA, log = "y")
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative incidence")
legend("topleft", legend = c("Cases", "Cumulative"), lty = c(1,

1), pch = c(1, NA), col = c("black", "red"))

The cumulative incidence looks pretty log-linear for the first 6 weeks or so (Fig. 3.1).
The data is weekly and the serial interval for measles is around 10–12 days, and thus
V is around 1.5–1.8 weeks. We can calculate R0 assuming either 1.5 or 1.8:

fit = lm(log(cum_cases) ˜ absweek, subset = absweek <
7, data = niamey)

r = fit$coef["absweek"]
V = c(1.5, 1.8)
V * r + 1

## [1] 1.694233 1.833080



3.4 The Chain-Binomial Model 37

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0

Week

In
ci

de
nc

e

10
50

500
5000

C
um

ulative incidence

Cases
Cumulative10

00

Fig. 3.1: Weekly incidence of measles in Niamey, Niger during the 2003–2004 out-
break

So a fast-and-furious estimate of the reproduction number for this outbreak places
it in the 1.5–2 range. Measles exhibits recurrent epidemics in the presence of var-
ious vaccination campaigns in Niger, so this number represents an estimate of the
effective reproduction number, RE , at the beginning of this epidemic.

In their analysis of the SARS-CoV-1 emergence, Lipsitch et al. (2003) showed
that for an infection with distinct latent and infectious periods, a more refined es-
timate is given by R = Vr+ 1+ f (1− f )(Vr)2, where f is the ratio of infectious
period to serial interval. For measles, the infectious period is around 5 days.

V = c(1.5, 1.8)
f = (5/7)/V
V * r + 1 + f * (1 - f) * (V * r)ˆ2

## [1] 1.814450 1.999198

Lipsitch et al.’s (2003) refined calculations thus produce slightly higher estimates
of RE in the range of 1.8–2. These simple methods based on initial growth are very
handy because they are simple. However, they only use a portion of the data, and as
pointed out by King et al. (2015a), it may be desirable to carry out more rigorous
estimation.

3.4 The Chain-Binomial Model

Ferrari et al. (2005) proposed a maximum likelihood removal method for estimating
R0 for the closed epidemic based on the so-called chain-binomial model of infec-
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tious disease dynamics. The chain-binomial model, originally proposed by Bailey
(1957), is a discrete-time stochastic alternative6 to the continuous-time deterministic
SIR model introduced in Chap. 2.

In contrast to the S(E)IR models, the chain-binomial assumes that an epidemic
is formed from a succession of discrete generations of infectious individuals in a
coin-flip fashion. Just like in the SIR, we assume that infectious individuals exert
a force of infection on susceptibles of β I/N. In a generation, t, of duration given
by the serial interval which is used as the basic time unit, the probability that any
given susceptible will escape an infectious contact will be exp(−β I/N). This comes
from the basic result that if some event—such as contacts between a susceptible
and the population of infectious individuals—is happening at rate, x, the number
of events in Δ t will be distributed according to a Poisson(xΔ t) distribution, so the
probability of no events (no contacts) will be e−xΔ t . The converse outcome will
happen with a probability 1− exp(−β I/N), and thus if there are St susceptibles we
expect St(1−exp(−β It/N)) new infecteds in generation t+1. The assumption that
contacts happen at random leads to the stochastic chain-binomial model:

It+1 ∼ Binomial(St ,1− exp(−β It/N)) (3.1)

St+1 = St − It+1 = S0 −
t

∑
i=1

Ii (3.2)

If we ignore observational error, we thus have two unknown parameters: the
initial number of susceptibles, S0, and the transmission rate, β . The reproduction
number is a composite of these two as R0 = S0(1− exp(−β/N)), which for large
populations is approximately βS0/N because 1− exp(−x) � x for x << 1. Thus,
in the case of the chain-binomial, β is approximately the reproduction number at
the beginning of the epidemic, which makes sense since infectious individuals are
expected to transmit for exactly a time unit before recovering.7

If we make the assumption that each epidemic generation depends only on the
state of the system in the previous time step (“conditional independence”), the re-
moval method estimates β and S0 from a sequence of binomial likelihoods. The
advantage of this method relative to the earlier methods is that we can use all the
data and not just a few observations from the beginning of an epidemic.

We employ a standard recipe, for doing a “nonstandard” maximum likelihood
analysis (see Bolker 2008 for an excellent discussion of this). The first step is to
write a function for the likelihood. Conditional on some parameters, the function
returns the negative log-likelihood of observing the data given the model. The like-
lihood, which is the probability of observing data given a model and some param-
eter values, is the working-horse of a large part of statistics. R has inbuilt dxxxx-
functions to calculate the likelihood for any conceivable probability distribution.

6 This model also forms the foundation for the TSIR model (Bjørnstad et al., 2002a; Grenfell et al.,
2002) which is the focus of Chap.8.
7 This is comparable with previous SIR calculations of R0 = β/(γ +μ) from Sect. 2.2 since when
the time unit is scaled by the serial interval the denominator is typically quite close to unity.
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The function to calculate a binomial likelihood is dbinom. We can thus define a
likelihood function for the chain-binomial model:8

llik.cb = function(S0, beta, I) {
n = length(I)
S = floor(S0 - cumsum(I[-n]))
p = 1 - exp(-beta * (I[-n])/S0)
L = -sum(dbinom(I[-1], S, p, log = TRUE))
return(L)

}

For the proper statistical analysis (below), the two parameters will be estimated
simultaneously. However, in order to ease into the idea of likelihood estimation, we
will consider the two sequentially and visualize the likelihood by plotting it over a
grid of potential values. We can illustrate these ideas with the data on measles from
one of the three different reporting centers in Niamey, Niger from 2003 (Grais et al.,
2008). The data first needs to be aggregated into 2-week intervals which is roughly
the serial interval for measles. The epidemic in district 1 lasted for 30 weeks (the
31st week is a zero). The function split divides a vector into a list based on some
grouping variable and sapply applies a function, in this case sum, to the list to
return a new vector.

twoweek = rep(1:15, each = 2)
y = sapply(split(niamey$cases_1[1:30], twoweek), sum)
sum(y)

## [1] 5920

In district 1, there were 5920 cases during the epidemics, so S0 needs to be at least
that number. In the above parameterization RE � β , let us initially assume a candi-
date value of 6500 for S0 and calculate the likelihood for each candidate value of β
between 1 and 10 by 0.1 (Fig. 3.2):

S0cand = 6500
betacand = seq(0,10, by = 0.1)
ll = rep(NA, length(betacand))
for(i in 1:length(betacand)) {

ll[i] = llik.cb(S0 = S0cand, beta = betacand[i],
I = y)}

plot(ll ˜ betacand, ylab = "Neg log-lik",
xlab = expression(beta))

betacand[which.min(ll)]

## [1] 2.3

8 Note that the [-x] subsetting in R means “drop the x’th observation,” and thus the [-n]
and [-1] make sure that adjacent pairs of observations are aligned correctly. We use the floor
function for the vector of S’s because dbinom requires the denominator and numerator to be
integers.
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Fig. 3.2: The conditional profile log-likelihood of β for Niamey’s district 1 assuming
S0 = 6500

The convention is to consider the negative log-likelihood to profile over the pa-
rameter.9 Intuitively, one may think that it would be more natural to consider the
likelihood itself (i.e., the probability of observing the data given particular param-
eter values). However, since this would be a product of numbers (one for each
observation) smaller than 1, computers are not precise enough to distinguish the
joint probability from zero if the dataset is large. Since logarithms of products
are sums of logarithms (log(a ∗ b) = loga+ logb), the change of scale solves this
problem.

If the S0 guess is right, then β should be around 2.3. We can do a similar check
for S0 (assuming β is 2.3). The grid value associated with the highest likelihood
value is 7084.8 (Fig. 3.3), so the original S0 guess was good but not perfect.

betacand = 2.3
S0cand = seq(5920, 8000, length = 101)
ll = rep(NA, length = 101)
for (i in 1:101) {

ll[i] = llik.cb(S0 = S0cand[i], beta = betacand, I = y)
}
plot(ll ˜ S0cand, ylab = "Neg log-lik", xlab = expression(S[0]))
S0cand[which.min(ll)]

## [1] 7084.8

9 Section 9.4 will summarize basic likelihood theory in more detail.
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Fig. 3.3: The conditional profile log-likelihood of S0 for Niamey’s district 1 assum-
ing β = 2.3

For a proper analysis, we minimize the negative log-likelihood by varying both
parameters simultaneously. We can do this using the generic optim function or the
mle2 function in the bbmle package. The mle2 function not only uses optim to
find maximum likelihood estimates but also provides confidence intervals, profile
likelihoods, and a variety of other useful measures (Bolker, 2008).

require(bbmle)
fit = mle2(llik.cb, start = list(S0 = 7085, beta = 2.3),

method = "Nelder-Mead", data = list(I = y))
summary(fit)

## Maximum likelihood estimation
##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 7085,
## beta = 2.3), beta = 2), data = list(I = y))
##
## Coefficients:
## Estimate Std. Error z value Pr(z)
## S0 7.8158e+03 1.3022e+02 60.019 < 2.2e-16 ***
## beta 1.8931e+00 3.6968e-02 51.209 < 2.2e-16 ***
## ---
## Signif: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -2 log L: 841.831

confint(fit)



42 3 R0

## Profiling...

## 2.5 % 97.5 %
## S0 7577.967212 8088.641095
## beta 1.820943 1.966336

So the joint MLE estimates are S0 = 7816 (CI: {7578, 8088}) and β = 1.89 (CI:
{1.82, 1.97}).

Applying statistical tools to biological models, like the chain-binomial, can use-
fully highlight uncertainties due to parametric interdependencies. In the case of a
closed epidemic like the measles outbreak considered here, for example, it is con-
ceivable that similar epidemic trajectories can arise from having a large number of
initial susceptibles and a low transmission rate or a more moderate number of sus-
ceptibles and a higher transmission rate. We can quantify this through considering
the correlation matrix among the parameters of our likelihood analysis; vcov calcu-
lates their variance–covariance matrix from which we can calculate standard errors
according to sqrt(diag(vcov(fit))) and cov2cor converts this to a corre-
lation matrix. As intuition suggested there is a strong negative correlation between
the estimates of the β and S0 parameters.

cov2cor(vcov(fit))

## S0 beta
## S0 1.0000000 -0.7444261
## beta -0.7444261 1.0000000

3.5 Stochastic Simulation

The chain-binomial is both a statistical model for estimation and a stochastic model
for dynamics. We can thus write a function to simulate dynamics using the estimated
parameters.10 The function takes 3 parameters representing the initial number of
susceptibles (S0), the transmission rate (beta), and the initial number of infectious
(I0).

sim.cb = function(S0, beta, I0) {
I = I0
S = S0
i = 1
while (!any(I == 0)) {

i = i + 1
I[i] = rbinom(1, size = S[i - 1], prob = 1 - exp(-beta *

I[i - 1]/S0))
S[i] = S[i - 1] - I[i]

10 In contrast to the loop introduced in Sect. 2.4, where the number of iterations is constant and
known, the number of epidemic generations may vary among realizations because disease extinc-
tion is a stochastic process. We therefore use while instead of for when looping; ! means “not”
in R.
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}
out = data.frame(S = S, I = I)
return(out)

}

We can superimpose 100 stochastic simulations on the observed epidemic. The
simulations from the chain-binomial model brackets the observed epidemic nicely
(Fig. 3.4), suggesting that the model is a reasonable first approximation to the un-
derlying dynamics. We will revisit on this case study in the context of outbreak
response vaccination in Sect. 9.8.

plot(y, type="n", xlim=c(1,18), ylab="Predicted/observed",
xlab="Week")

for(i in 1:100){
sim=sim.cb(S0=floor(coef(fit)["S0"]),

beta=coef(fit)["beta"], I0=11)
lines(sim$I, col=grey(.5))

}
points(y, type="b", col=2)

3.6 Further Examples

Example 1: The flu dataset represents the number of children confined to bed each
day during a 1978 outbreak of the reemerging influenza A/H1N1 strain in a boarding
school in North England (Fig. 3.5). This subtype of influenza had been absent from
human circulation after the A/H2N2 pandemic of 1957 but reemerged (presumably
from some laboratory freezer) in 1977. The school had 763 boys of which 512 boys
were confined to bed sometime during the outbreak. None of the boys would have
had previous exposure to A/H1N1.

The typical time of illness was 5–7 days. Since the data is the number confined
to bed each day, the data is not incidence but a proxy for prevalence. The data
looks pretty log-linear for the first 5 days. Family studies have been used to estimate
the serial interval for flu between two and four days (most between two and three;
Cowling et al., 2009; Vink et al., 2014). Volunteer studies show the mean infectious
period around 5 days (Carrat et al., 2008).

data(flu)
plot(flu$day, flu$cases, type = "b", xlab = "Day", ylab = "sick",

log = "y")
tail(flu)

## day cases
## 9 9 192
## 10 10 126
## 11 11 70
## 12 12 28
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Fig. 3.4: Observed (red) and 100 simulated (gray) epidemics using the chain-
binomial model and ML parameters for S0 and β from Niamey’s district 1 data

## 13 13 12
## 14 14 5

The “fast-and-furious” estimate of R0 is thus:

fit = lm(log(cases) ˜ day, subset = day <= 5, data = flu)
r = fit$coef["day"]
V = c(2, 3)
V * r + 1

## [1] 3.171884 4.257827

This is higher than most estimates of R0 of pandemic flu (which typically lies in the
1.5–2.5 interval). However, contact rates within a boarding school are likely to be
higher than average across human populations as a whole.

Example 2: The CDCs record for the 2014–2015 Ebola outbreak in Sierra Leone
is in the ebola dataset. The serial interval for Ebola is estimated at around 15
days with an incubation period of 11 days. The mean time to hospitalization was
5 days and the mean time to death or dismissal was 5 and 11 days, respectively
(WHO Ebola Response Team, 2014; White & Pagano, 2008). The data is the back-
calculated incidence as the difference of the cumulative cases reported by the CDC.
Because of the complexities of reporting and revisions of case load through time,



3.6 Further Examples 45

2 4 6 8 10 12 14

5
10

20
50

10
0

20
0

Day

In
 b

ed

Fig. 3.5: The daily number of children confined to bed (on a log-10 scale) in a
boarding school in North England during an outbreak in 1978 of the reemerging
A/H1N1 strain

this leads to some negative numbers for certain dates. These are set to zero as a
crude fix (Fig. 3.6).

data(ebola)
par(mar = c(5, 5, 2, 5))
plot(ebola$day, ebola$cases, type = "b", xlab = "Week",

ylab = "Incidence")
par(new = T)
plot(ebola$day, ebola$cum_cases, type = "l", col = "red",

axes = FALSE, xlab = NA, ylab = NA, log = "y")
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative incidence")
legend("right", legend = c("Cases", "Cumulative"), lty = c(1,

1), pch = c(1, NA), col = c("black", "red"))
tail(ebola)

## date day cum_cases cases
## 98 7/8/15 468 13945 34
## 99 7/15/15 475 13982 37
## 100 7/22/15 482 14001 19
## 101 7/29/15 489 14061 60
## 102 8/5/15 496 14089 28
## 103 8/12/15 503 14122 33
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Fig. 3.6: Incidence and cumulative incidence of Ebola during the 2014–2015 out-
break in Sierra Leone

We first use the regression method with Lipsitch’s correction:

fit = lm(log(cum_cases) ˜ day, subset = day < 100, data = ebola)
r = fit$coef["day"]
V = 15
f = 0.5
V * r + 1 + f * (1 - f) * (V * r)ˆ2

## day
## 1.698811

We next aggregate the data in 2 week increments roughly corresponding to the serial
interval, so we can apply the removal method.

# Data aggregation
cases = sapply(split(ebola$cases, floor((ebola$day - 0.1)/14)),

sum)
sum(cases)

## [1] 14721

# Removal MLE
fit = mle2(llik.cb, start = list(S0 = 20000, beta = 2),

method = "Nelder-Mead", data = list(I = cases))
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summary(fit)

## Maximum likelihood estimation
##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 20000,
## beta = 2), data = list(I = cases))
##
## Coefficients:
## Estimate Std. Error z value Pr(z)
## S0 2.7731e+04 2.5949e-07 1.0687e+11 < 2.2e-16 ***
## beta 1.4237e+00 1.1783e-02 1.2083e+02 < 2.2e-16 ***
## ---
## Signif: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## -2 log L: 5546.683

Because of the difference in magnitude of the estimates of S0 (in the ten thousands)
and R0 (around 1.4), the numerical method used to calculate confidence intervals
struggles, so we need to suggest starting standard errors for the confint function.

confint(fit, std.err = c(100, 0.1))

## Profiling...

## 2.5 % 97.5 %
## S0 26393.579452 29287.725327
## beta 1.384683 1.463184

The removal and Lipsitch methods provide comparable estimates that are some-
what lower than those concluded by more elaborate analyses by the WHO team for
the Sierra Leone outbreak (WHO Ebola Response Team, 2014). The meaning of S0

from this analysis is a bit amorphous because Sierra Leone is a country of 8M people
virtually none of which were likely to have been exposed to EBOV previous to the
2014 outbreak. Probably the best way to think of it is as under the chain-binomial
assumptions this is the most plausible number of people within the eventual sphere
of spread of the virus across the country. Some such considerations should become
more clear in the discussions of spatial and social networks in Chaps. 12 and 14.

Example 3: The ferrari dataset holds the incidence data for a number of
outbreaks—Ebola DRC ’95, Ebola Uganda ’00, SARS Hong Kong ’03, SARS Sin-
gapore ’03, Hog Cholera Netherlands ’97 and Foot-and-mouth UK ’00—aggregated
by disease-specific serial intervals (Table 3.1; Ferrari et al., 2005). As a further ex-
ample we can look at the DRC Ebola outbreak in Kikwit, Democratic Republic of
Congo between January and June 1995.
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Disease Serial interval Location Year
Ebola 14d DRC 1995

Uganda 2000
SARS 5d Hong Kong 2003

Singapore 2003
Hog cholera 7d Netherlands 1997
FMD 21d UK 2000

Table 3.1: Serial interval for each outbreak in the ferrari dataset

names(ferrari)

## [1] "Eboladeaths00" "Ebolacases00" "Ebolacases95"
## [4] "FMDfarms" "HogCholera" "SarsHk" "SarsSing"

ferrari$Ebolacases95

## [1] 4 6 5 18 36 99 40 17 4 1 NA NA NA NA NA

sum(ferrari$Ebolacases95, na.rm = TRUE)

## [1] 230

y = c(na.omit(ferrari$Ebolacases95))

The number of initial susceptibles must be larger than the summed incidence, so we
make an initial guess of 300.

fit = mle2(llik.cb, method = "Nelder-Mead", start = list(S0 = 300,
beta = 2), data = list(I = y))

fit

##
## Call:
## mle2(minuslogl = llik.cb, start = list(S0 = 300,
## beta = 2), data = list(I = y))
##
## Coefficients:
## S0 beta
## 241.118108 3.181465
##
## Log-likelihood: -48.3

confint(fit, std.err = 2)

## Profiling...

## 2.5 % 97.5 %
## S0 233.973778 254.051292
## beta 2.692505 3.718357

The estimated R0 is 3.2. It thus appears that the Ebola outbreak in DRC in 1995
was more explosive than in Sierra Leone in 2014. This could be due to aggregation
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across a larger geographic area for the latter and/or the more intensive public health
interventions. The interpretation of the S0 estimate, here, is a bit easier; Kikwit is a
city of almost 500k inhabitants, but by early May 1995 most cases were isolated in a
quarantine ward of the Kikwit central hospital. In the removal estimator, S0 is again
accommodating overall social clique size within the sphere of spread. Perhaps the
best way to think of the S0 parameter when applied to data from larger areas is as
a flexible accommodation to best use all available data to estimate the reproduction
number.

We will revisit on R0 calculations for the DRC outbreak using the next-generation
matrix method in Sect. 3.10.

3.7 R0 from S(E)IR Flows

As discussed in Sect. 2.2, R0 = β/(γ + μ) for the simple SIR model. This is the
correct quantity assuming that the force of infection (the rate at which susceptibles
are infected) is β I/N, there is no latent period and no disease-induced mortality, so
the index case is expected to be infectious for a period of 1/(γ+μ) time units during
which it will transmit at a rate of β ∗N/N. The numerator comes about because all
the N individuals in the population are by definition susceptible when we consider
the basic reproduction number, and thus initial S= N.

Fig. 3.7: The SEIR flow diagram. Apart from vaccination, parameters represent per
capita rates of flow from the donor compartment. Vaccination is assumed to be a
fraction of children vaccinated at birth

Different SIR-like flows will produce different quantifications of R0, but we can
use the same logic for all linear flows. Consider, for example, the case when infec-
tions have a latent period leading to the SEIR model (Fig. 3.7) of the flow of hosts
between Susceptible, Exposed (but not yet infectious), Infectious, and Removed
(either recovered with immunity or dead) compartments in a randomly mixing pop-
ulation:

dS
dt

= μN(1− p)
︸ ︷︷ ︸

recruitment

− β I
S
N

︸︷︷︸

infected

− μS
︸︷︷︸

dead

(3.3)
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dE
dt

= β I
S
N

︸︷︷︸

infected

− σE
︸︷︷︸

infectious

− μI
︸︷︷︸

dead

(3.4)

dI
dt

= σE
︸︷︷︸

infectious

− γI
︸︷︷︸

recovered

−(μ +α)I
︸ ︷︷ ︸

dead

(3.5)

dR
dt

= γI
︸︷︷︸

recovered

− μR
︸︷︷︸

dead

+ μNp
︸︷︷︸

vaccinated

. (3.6)

Here susceptibles are assumed either vaccinated at birth (fraction p) or infected at
a rate β I/N. Infected individuals will remain in the latent class for an average pe-
riod of 1/(σ + μ) and subsequently (if they escape natural mortality at a rate μ)
enter the infectious class for an average time of 1/(γ + μ +α); α is the rate of
disease-induced mortality (not case fatality rate). By the rules of competing rates
(Sect. 3.2), the case fatality rate is α/(γ + μ +α) because during the time an indi-
vidual is expected to remain in the infectious class the disease is killing at a rate
α . By a similar logic, the probability of recovering with immunity (for life in the
case of the SEIR model) is γ/(γ +μ +α). Putting all these pieces together and as-
suming no vaccination, the expected number of secondary cases in a completely
susceptible population is the probability of making it through latent stage with-
out dying * expected infectious period * transmission rate while infectious. Thus,
R0 =

σ
σ+μ

1
γ+μ+α

βN
N = σ

σ+μ
β

γ+μ+α .

3.8 Other Rules of Thumb

Mean Age of Infection: For endemic fully immunizing infections in a constant-
sized host population, R0 is related to mean age of infection, ā, according to R0 �
1+L/ā, where L is the life expectancy of the host (e.g., Dietz & Schenzle, 1985).
This rule of thumb is often used in conjunction with seroprevalence-by-age profiles
to get estimates of R0. Chapter 5 discusses age-incidence patterns in more detail.

Final Epidemic Size: In principle, the reproduction number can be estimated from
the final epidemic size according to the equations discussed in Sect. 2.4. If there is
some preexisting immunity and there is homogeneous mixing, then R0 can be quan-
tified according to log(s0)−log(s∞)

s0−s∞
, where s0 and s∞ are the fractions of the population

that is susceptible at the beginning and end of the epidemic, respectively (Heester-
beek & Dietz, 1996). However, this is unlikely to be very reliable because the final
epidemic size calculations assume that the epidemic is progressing according to the
deterministic model (and all its assumptions) including no changes in host behav-
ior in the face of the epidemic (Funk et al., 2010). For example, Ebola is thought
to have an R0 in the 2–3.5 range, which is what lead CDC to warn that the West-
African outbreak could result in millions of cases. In the end, the total number of
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cases in Guinea, Liberia, and Sierra Leone was a far lower number, around 25,000,
because of extensive public health interventions and changes to dangerous contacts
and funeral practices. The outbreak of a novel coronavirus in 2020 saw extensive
changes to behavior through movement bans within 4 weeks of recognition of the
pathogen (e.g., Tian et al., 2020; Inglesby, 2020). Interventions and social distanc-
ing will thus generally stop epidemics reaching their logical conclusion based on
the R0. Bjørnstad et al. (2020a) provide a web-based interactive shinyApp to study
how social distancing and vaccination affect the shape of an SIR epidemic.

For certain common infections like seasonal influenza, the rule of thumb regard-
ing the final epidemic size may hold; the historical annual attack rate for the flu is
around 10–15%, which is probably close to that expected from its R0 (around 1.5–
2) and the typical fraction of susceptibles of around 25% (prevaccination, assuming
immunity following infection lasting around 4 years; Koelle et al., 2006).

Contact Tracing: Contact tracing can provide direct estimates of R0. Blumberg and
Lloyd-Smith (2013a) showed that this together with size distributions of subcritical
transmission chains can provide estimates in important low R0 (“subcritical”) set-
tings, such as human monkey pox in the face of eroding smallpox herd immunity.
They estimated the human-to-human reproduction number to be 0.32. Given that
the smallpox vaccine is likely to be cross-protective against monkey pox, the worry
is that this effective reproduction number will increase over time since smallpox
vaccination is no longer carried out. Contact tracing was also used to estimate R0

during the early spread of SARS during the 2003 outbreak (Riley et al., 2003). The
type of branching process models used by, for example, Lloyd-Smith et al. (2005)
and Blumberg and Lloyd-Smith (2013a) will be discussed further in Sect. 15.2.

De et al. (2004) did a contact tracing study of the spread of gonorrhea across a
sexual network in Alberta, Canada. The directional transmission graph among the
89 individuals is in the gonnet dataset. The initial cluster of 17 cases all frequented
the same bar, each infected between 0 and 7 other partners with 2.17 as the aver-
age. The subsequent infections, in turn, infected between 0 and 6 partners with an
average of 0.62. The drop is (i) due to the sexual network being depleted of sus-
ceptibles and (ii) because infection across heterogenous networks will differentially
infect individuals according to their number of contacts (Ferrari et al., 2006a). Epi-
demics across social networks is the topic of Chap. 14, and we will revisit on this
network therein. The statnet package has great tools for visualizing chains of
transmission on networks (Fig. 3.8).

require(statnet)
data(gonnet)
nwt = network(gonnet, directed = TRUE)
plot(nwt, vertex.col = c(0, rep(1, 17), rep(2, 71)))



52 3 R0

Fig. 3.8: Network of spread of gonorrhea as studied by De et al. (2004). The initial
17 cases (in black) frequented the same bar (white) were ultimately responsible for
a cluster of 89 cases identified through contact tracing

3.9 Advanced: The Next-Generation Matrix

For epidemics that are not simple linear chains, it is less straightforward to calcu-
late R0 from parameterized models using the “logical method.” The next-generation
matrix is the general approach that works for all compartmental models of any com-
plexity (Diekmann et al., 1990). It is done in a sequence of steps:

1. Identify all n infected compartments.
2. Construct an n× 1 matrix, F, that contains expressions for all completely new

infections entering each infected compartment.
3. Construct an n×1 matrix, V−, that contains expressions for all losses out of each

infected compartment.
4. Construct an n× 1 matrix, V+, that contains expressions for all gains into each

infected compartment that does not represent new infections but transfers among
infected classes.

5. Construct an n×1 matrix, V = V−−V+.
6. Generate two n×n Jacobian matrices, f and v, that are the partial derivatives of

F and V with respect to the n infectious state variables.
7. Evaluate the matrices at the disease free equilibrium (dfe).
8. Finally, R0 is the greatest eigenvalue of fv−1|d f e.

This is quite an elaborate scheme, so we will try it out first for the SEIR model
for which we already know the answer. Unfortunately, R is not naturally designed
to do vectorized symbolic calculations, so we need to do this, one matrix element

https://en.wikipedia.org/wiki/Next-generation_matrix
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at a time.11 Chapter 2 introduced how to use quote to do symbolic differentia-
tion in R. The substitute function allows for some simple symbolic additional
manipulations.

STEP 1: Infected classes are E and I; let us label them 1 and 2. STEP 2: All new

infections: dE/dt = βSI/N, dI/dt = 0

F1 = quote(beta * S * I/N)
F2 = 0

STEP 3: All losses: dE/dt = (μ +σ)E, dI/dt = (μ +α + γ)I

Vm1 = quote(mu * E + sigma * E)
Vm2 = quote(mu * I + alpha * I + gamma * I)

STEP 4 : All gained transfers: dE/dt = 0, dI/dt = (σ)E

Vp1 = 0
Vp2 = quote(sigma * E)

STEP 5: Subtract Vp from Vm

V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))

STEP 6: Generate the partial derivatives for the two Jacobians

f11 = D(F1, "E")
f12 = D(F1, "I")
f21 = D(F2, "E")
f22 = D(F2, "I")

v11 = D(V1, "E")
v12 = D(V1, "I")
v21 = D(V2, "E")
v22 = D(V2, "I")

STEP 7: Assuming N=1, the disease free equilibrium (dfe) is S = 1, E = 0, I = 0,
R= 0. We also need values for other parameters. Assuming a weekly time step and
something chickenpox-like, we may use μ = 0, α = 0, β = 5, γ = 0.8, σ = 1.2, and
N = 1.

paras = list(S = 1, E = 0, I = 0, R = 0, mu = 0, alpha = 0,
beta = 5, gamma = 0.8, sigma = 1.2, N = 1)

f = with(paras, matrix(c(eval(f11), eval(f12), eval(f21),
eval(f22)), nrow = 2, byrow = TRUE))

v = with(paras, matrix(c(eval(v11), eval(v12), eval(v21),
eval(v22)), nrow = 2, byrow = TRUE))

11 Though Sect. 3.10 will introduce a nextgenR0 function that shows how it is possible to do
calculations more compactly using a list of equations and some acrobatic combinations of D,
lapply, and attr.
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STEP 8: Calculate the largest eigenvalue of f × inverse(v). The function for invert-
ing matrices in R is solve.

max(eigen(f %*% solve(v))$values)

## [1] 6.25

Let us check that the next-generation method and the logical method are in agree-
ment recalling that for the SEIR flow R0 =

σ
σ+μ

β
γ+μ+α .

with(paras, sigma/(sigma + mu) * beta/(gamma + mu + alpha))

## [1] 6.25

3.10 SEIHFR

Legrand et al. (2007) form the foundation for many of the recent Ebola models. The
model has five compartments corresponding to Susceptible, Exposed, Infectious in
community, infectious in Hospital, dead but not yet buried (at Funeral rites), and
Removed (either buried or immune). The model is more complex than previous
compartmental models and cannot be represented by a simple linear chain (Fig. 3.9).
The parameterization used here is motivated by the original formulation by Legrand
et al. (2007), but the notation conforms to the other sections of this book; each
infectious compartment contributes to the force of infection through their individual
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Fig. 3.9: The SEIHFR flow diagram for Ebola dynamics



3.10 SEIHFR 55

Table 3.2: Parameters for Legrand et al. (2007)’s Ebola model using the data from
the 1995 DRC epidemic

Parameter Meaning Value
N Population size
1/σ Incubation period 7d
1/γh Onset to hospitalization 5d
1/γ f Onset to death 9.6d
1/γr Onset to recovery 10d
1/η f Hospitalization to death 4.6d
1/ηr Hospitalization to recovery 5d
1/χ Death to burial 2d
Θ Proportion hospitalized 80%
Λ Case fatality ratio 81%
βi Transmission rate in community 0.588
βh Transmission rate in hospital 0.794
β f Transmission rate at funeral 7.653

For clarity lowercase Greek are rates and uppercase are probabilities/fractions

β s. There are two branching points in the flow: the hospitalization of a fraction Θ of
the infectious cases after an average time of 1/γh days following onset of symptoms
and the death of a fraction Λ of the I and H classes after an average time of 1/γ f
days and 1/η f days, respectively. For the 1995 DRC outbreak, Legrand et al. (2007)
assumed that hospitalization affected transmission rates but not duration of infection
or probability of dying. Model parameters are given in Table 3.2, and the model
equations are

dS
dt

= −(βiI+βhH+β f F)S/N
︸ ︷︷ ︸

transmission

(3.7)

dE
dt

= (βiI+βhH+β f F)S/N
︸ ︷︷ ︸

transmission

− σE
︸︷︷︸

end of latency

(3.8)

dI
dt

= σE− ΘγhI
︸︷︷︸

hospitalization

−(1−Θ)(1−Λ)γrI
︸ ︷︷ ︸

recovery

−(1−Θ)Λγ f I
︸ ︷︷ ︸

death

(3.9)

dH
dt

= ΘγhI
︸︷︷︸

hospitalization

−Λη f H
︸ ︷︷ ︸

death

−(1−Λ)ηrH
︸ ︷︷ ︸

recovery

(3.10)

dF
dt

= (1−Θ)(1−Λ)γrI+Λη f H
︸ ︷︷ ︸

dead

− χF
︸︷︷︸

burial

(3.11)

dR
dt

= (1−Θ)(1−Λ)γrI+(1−Λ)ηrH
︸ ︷︷ ︸

recovered

+ χF
︸︷︷︸

buried

. (3.12)

There are four infected compartments (E, I, H, and F), thus F, V−, and V+ will
be 4×1 matrices, and f and v will be 4×4 matrices.
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STEP 1: Infected classes are E, I, H, and F ; let us label them 1–4.

STEP 2: All new infections: dE/dt = βSI/N, dI/dt = 0, dH/dt = 0, dF/dt = 0

F1 = quote(betai * S * I/N + betah * S * H/N + betaf *
S * F/N)

F2 = 0
F3 = 0
F4 = 0

STEP 3: All losses

Vm1 = quote(sigma * E)
Vm2 = quote(Theta * gammah * I + (1 - Theta) * (1 - Lambda) *

gammar * I + (1 - Theta) * Lambda * gammaf * I)
Vm3 = quote(Lambda * etaf * H + (1 - Lambda) * etar *

H)
Vm4 = quote(chi * F)

STEP 4: All gained transfers

Vp1 = 0
Vp2 = quote(sigma * E)
Vp3 = quote(Theta * gammah * I)
Vp4 = quote((1 - Theta) * (1 - Lambda) * gammar * I +

Lambda * etaf * H)

STEP 5: Subtract Vp from Vm

V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))
V3 = substitute(a - b, list(a = Vm3, b = Vp3))
V4 = substitute(a - b, list(a = Vm4, b = Vp4))

STEP 6: Generate the partial derivatives for the two Jacobians

f11 = D(F1, "E"); f12 = D(F1, "I"); f13 = D(F1, "H")
f14 = D(F1, "F")

f21 = D(F2, "E"); f22 = D(F2, "I"); f23 = D(F2, "H")
f24 = D(F2, "F")

f31 = D(F3, "E"); f32 = D(F3, "I"); f33 = D(F3, "H")
f34 = D(F3, "F")

f41 = D(F4, "E"); f42 = D(F4, "I"); f43 = D(F4, "H")
f44 = D(F4, "F")

v11 = D(V1, "E"); v12 = D(V1, "I"); v13 = D(V1, "H")
v14 = D(V1, "F")

v21 = D(V2, "E"); v22 = D(V2, "I"); v23 = D(V2, "H")
v24 = D(V2, "F")

v31 = D(V3, "E"); v32 = D(V3, "I"); v33 = D(V3, "H")
v34 = D(V3, "F")

v41 = D(V4, "E"); v42 = D(V4, "I"); v43 = D(V4, "H")
v44 = D(V4, "F")
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STEP 7: Disease free equilibrium: the dfe is S= 1,E = 0, I = 0,H = 0,F = 0,R= 0.
We also need values for other parameters. We use the estimates from the DRC 1995
outbreak scaled as weekly rates from tables and appendices of Legrand et al. (2007).

gammah = 1/5 * 7
gammaf = 1/9.6 * 7
gammar = 1/10 * 7
chi = 1/2 * 7
etaf = 1/4.6 * 7
etar = 1/5 * 7
paras = list(S = 1, E = 0, I = 0, H = 0, F = 0, R = 0,

sigma = 1/7 * 7, Theta = 0.81, Lambda = 0.81, betai = 0.588,
betah = 0.794, betaf = 7.653, N = 1, gammah = gammah,
gammaf = gammaf, gammar = gammar, etaf = etaf, etar = etar,
chi = chi)

f = with(paras, matrix(c(eval(f11), eval(f12), eval(f13),
eval(f14), eval(f21), eval(f22), eval(f23), eval(f24),
eval(f31), eval(f32), eval(f33), eval(f34), eval(f41),
eval(f42), eval(f43), eval(f44)), nrow = 4, byrow = T))

v = with(paras, matrix(c(eval(v11), eval(v12), eval(v13),
eval(v14), eval(v21), eval(v22), eval(v23), eval(v24),
eval(v31), eval(v32), eval(v33), eval(v34), eval(v41),
eval(v42), eval(v43), eval(v44)), nrow = 4, byrow = T))

STEP 8: Calculate the largest eigenvalue of f × inverse(v)

max(eigen(f %*% solve(v))$values)

## [1] 2.582429

3.11 A Next-Generation R0 Function

Among programmers in general and R enthusiasts in particular, there is often a
bizarre obsession with compact “elegant” code (where elegant usually translates
to incomprehensible). While developing this text, I wasted a day of work finding
that for the SEIR model steps 6–8 can also be done with:

Flist = c(F1, F2)
f1 = lapply(lapply(Flist, deriv, "E"), eval, paras)
f2 = lapply(lapply(Flist, deriv, "I"), eval, paras)
f = matrix(c(attr(f1[[1]], "gradient")[1, ], attr(f1[[2]],

"gradient")[1, ], attr(f2[[1]], "gradient")[1, ],
attr(f2[[2]], "gradient")[1, ]), nrow = 2)

Vlist = c(V1, V2)
v1 = lapply(lapply(Vlist, deriv, "E"), eval, paras)
v2 = lapply(lapply(Vlist, deriv, "I"), eval, paras)
v = matrix(c(attr(v1[[1]], "gradient")[1, ], attr(v1[[2]],
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"gradient")[1, ], attr(v2[[1]], "gradient")[1, ],
attr(v2[[2]], "gradient")[1, ]), nrow = 2)

max(eigen(f %*% solve(v))$values)

## [1] 6.25

The utility of this is that it leads to a general-purpose function nextgenR0 to
do the final calculations for arbitrarily complex compartmental flows that takes five
arguments:

1. Istates is a vector naming all Infected classes.
2. Flist is a list that contains equations (as quotes) for completely new infections

entering each infected compartment for each class.
3. Vlist is a list that contains the equations (as quotes) for losses out of each

infected compartment minus the equations (as quotes) for all gains into each
infected compartment that does not represent new infections but transfers among
infectious classes.

4. parameters is a labeled vector of parameters.
5. dfe is a labeled vector of all states at the disease free equilibrium.

nextgenR0 = function(Istates, Flist, Vlist, parameters, dfe) {
paras = as.list(c(dfe, paras))
k = 0
vl = fl = list(NULL)
for(i in 1:length(Istates)) {

assign(paste("f", i, sep = "."), lapply(lapply(Flist,
deriv, Istates[i]), eval, paras))

assign(paste("v", i, sep = "."), lapply(lapply(Vlist,
deriv, Istates[i]), eval, paras))

for(j in 1:length(Istates)){
k=k+1
fl[[k]] = attr(eval(as.name(paste("f", i,

sep = ".")))[[j]], "gradient")[1, ]
vl[[k]] = attr(eval(as.name(paste("v", i,

sep = ".")))[[j]], "gradient")[1, ]
}

}

f = matrix(as.numeric(as.matrix(fl)[ ,1]),
ncol = length(Istates))

v = matrix(as.numeric(as.matrix(vl)[ ,1]),
ncol = length(Istates))

R0 = max(eigen(f %*% solve(v))$values)
return(R0)

}

For the SEIHFR model, the modified calculations are:

istates=c("E", "I", "H", "F")

flist=c(dEdt=quote(betai * S * I / N +
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betah * S * H / N + betaf * S * F / N),
dIdt = quote(0), dHdt = quote(0), dFdt = quote(0))

Vm1 = quote(sigma * E)
Vm2 = quote(Theta * gammah * I + (1 - Theta) * (1 -

Lambda) * gammar * I + (1 - Theta) * Lambda *
gammaf * I)

Vm3 = quote(Lambda * etaf * H + (1 - Lambda) * etar * H)
Vm4 = quote(chi * F)

Vp1 = 0
Vp2 = quote(sigma * E)
Vp3 = quote(Theta * gammah * I)
Vp4 = quote((1 - Theta) * (1 - Lambda) * gammar * I +

Lambda * etaf * H)

vlist = c(substitute(a - b, list(a = Vm1, b = Vp1)),
substitute(a - b, list(a = Vm2, b = Vp2)),
substitute(a - b, list(a = Vm3, b = Vp3)),
substitute(a - b, list(a = Vm4, b = Vp4)))

df = list(S = 1,E = 0, I = 0, H = 0, F = 0,R = 0)

paras=c(sigma = 1/7*7, Theta = 0.81, Lambda = 0.81,
betai = 0.588, betah = 0.794, betaf = 7.653, N = 1,
gammah = 1/5 * 7, gammaf = 1/9.6 * 7, gammar = 1/10 * 7,
etaf = 1/4.6 * 7, etar = 1/5 * 7, chi = 1/2 * 7)

nextgenR0(Istates = istates, Flist = flist, Vlist = vlist,
parameters=paras, dfe=df)

## [1] 2.582429

3.12 A Two-Strain shinyApp

Section 3.1 alluded to how strains that elicit cross-immunity R0 determine their
competitive dominance. This is a plausible explanation for why there were histori-
cally very few cases of monkey pox, but increasing incidence in West and Central
Africa in recent decades after small pox was eradicated and vaccination seized (Ri-
moin et al., 2010). A parallel question is whether canine distemper virus may be-
gin to circulate in humans if measles is eradicated and mass vaccination is stopped
(Yoshikawa et al., 1989); just like many pox viruses, morbilliviruses induce cross-
protective immunity and recent data indicates substantial infection of cattle by the
pest-de-petite-ruminant virus (PPRV) in goat/sheep endemic areas following rinder-
pest eradication (Herzog et al., 2019). The historical decline of leprosy caused by
Mycobacteria leprae long before antibiotics has been suggested to be related to
immune-mediated interactions with the more transmissible Tb causing M. tuber-
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Fig. 3.10: Variant replacement during the second year (2021–2022) of the SARS-
CoV-2 pandemic. “Other” represents wild type plus alpha through gamma. The
other traces represent delta and the various surging omicron variants

culosis (Lietman et al., 1997; Donoghue et al., 2005). The “variant” displacement
dynamics currently being played out by SARS-CoV-2 is a striking contemporary
example. The variant dataset represents the time series of variant dominance
between May 2021 and March 2022 (Fig. 3.10):

data(variants)
matplot(variants$date, variants[, 2:7], type = "b",

xlab = "date", ylab = "frequency")
legend("bottomleft", legend = c("other", "delta", "o",

"o-BA.1", "o-BA.2", "o-BA.2.12"), pch = as.character(1:6),
col = 1:6, bg = "white")

The extended two-strain SIR model to cover various scenarios of cross-immunity
whereby prior infection by one strain may reduce shedding (Θ ) or susceptibility (Ξ )
of another is detailed below.12 The extended model also allows for the possibility
that a fraction (1−Π ) of the hosts becomes completely immune following primary
exposure by either strain (Fig. 3.11). A simple strategic model that assumes no co-
infections is:

12 Note: There are only so many Greek symbols, so the Θ in Fig. 3.11 has a different meaning than
in the model of Eqs. (3.7)–(3.12) and Fig. 3.9.
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Fig. 3.11: The flowchart for a competing two-strain SIR model assuming no co-
infections

dS
dt

= μN
︸︷︷︸

birth

− μS
︸︷︷︸

death

− β1SI1
N

︸ ︷︷ ︸

1◦ infection by 1

− β2SI2
N

︸ ︷︷ ︸

1◦ infection by 2

(3.13)

dI1
dt

=
β1SI1
N

︸ ︷︷ ︸

1◦ infection by 1

− γI1
︸︷︷︸

recovery 1

− μI1
︸︷︷︸

death

(3.14)

dI2
dt

=
β2SI2
N

︸ ︷︷ ︸

1◦ infection by 2

− γI2
︸︷︷︸

recovery 2

− μI2
︸︷︷︸

death

(3.15)

dR1

dt
= ΠγI1

︸ ︷︷ ︸

susceptible to 2

− (β2I2 +Θβ2J2)ΞR1

N
︸ ︷︷ ︸

2◦ infection by 2

− μR1
︸︷︷︸

death

(3.16)

dR2

dt
= ΠγI2

︸ ︷︷ ︸

susceptible to 1

− (β1I1 +Θβ1J1)ΞR2

N
︸ ︷︷ ︸

2◦ infection by 1

− μR2
︸︷︷︸

death

(3.17)

dJ1

dt
=

(β1I1 +Θβ1J1)ΞR2

N
︸ ︷︷ ︸

2◦ infection by 1

− γJ1
︸︷︷︸

recovery

− μJ1
︸︷︷︸

death

(3.18)

dJ2

dt
=

(β2I2 +Θβ2J2)ΞR1

N
︸ ︷︷ ︸

2◦ infection by 2

− γJ2
︸︷︷︸

recovery

− μJ2
︸︷︷︸

death

(3.19)
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dR
dt

=(1−Π)γ(I1 + I2)+ γ(J1 + J2)
︸ ︷︷ ︸

immune

− μR
︸︷︷︸

death

. (3.20)

In the absence of a competitor, the R0 and endemic equilibrium of strain 1 are:

R0,1 =
β

γ +μ
N
N

(3.21)

S∗1 =1/R0 (3.22)

I∗1 =μ(R0 −1)/β (3.23)

R∗
1 =

γI∗1
(1−Π)+mu

(3.24)

R∗ =(1−Π)∗R∗
1/μ . (3.25)

The invasion equations for a second strain are:

dS
dt

= μN
︸︷︷︸

birth

− μS
︸︷︷︸

death

− β1SI∗1
N

︸ ︷︷ ︸

1◦ infection by 1

− β2SI2
N

︸ ︷︷ ︸

1◦ infection by 2

(3.26)

dI2
dt

=
β2SI2
N

︸ ︷︷ ︸

1◦ infection by 2

− γI2
︸︷︷︸

recovery 2

− μI2
︸︷︷︸

death

(3.27)

dR2

dt
= ΠγI2

︸ ︷︷ ︸

susceptible to 1

− (β1I∗1 +Θβ1J1)ΞR2

N
︸ ︷︷ ︸

2◦ infection by 1

− μR2
︸︷︷︸

death

(3.28)

dJ2

dt
=

β2I2ΞR∗
1

N
︸ ︷︷ ︸

2◦ infection by 2

− γJ2
︸︷︷︸

recovery

− μJ2
︸︷︷︸

death

(3.29)

dR
dt

=(1−Π)γ(I∗1 + I2)+ γ(J8
1 + J2)

︸ ︷︷ ︸

immune

− μR
︸︷︷︸

death

(3.30)

R0,2 =
β2

γ +μ
(3.31)

Q0,2 =
β2

γ +μ
S∗

N
+

Ξβ2R∗
1I2

N(γ +μ)
. (3.32)

The R0s represents the single-strain situations and the Q0,2 is the invasion number
of strain 2 assuming strain 1 is at its endemic equilibrium {S∗1, I∗1 ,R∗

1}. The doubling

time of the invader is Td =
log(2)

log(Q0)/(γ+μ) by the logic that during disease invasion the

doubling time is log(2)/r where r = log(RE)/serial interval. The coded gradient
functions for Eqs. (3.13)–(3.20) are:
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twostrain = function(t, y, parameters) {
S = ifelse(y[1] < 0, 0, y[1])
I1 = ifelse(y[2] < 0, 0, y[2])
I2 = ifelse(y[3] < 0, 0, y[3])
R1 = ifelse(y[4] < 0, 0, y[4])
R2 = ifelse(y[5] < 0, 0, y[5])
J1 = ifelse(y[6] < 0, 0, y[6])
J2 = ifelse(y[7] < 0, 0, y[7])
R = ifelse(y[8] < 0, 0, y[8])

with(as.list(parameters), {
phi = (beta1 * I1 + beta2 * I2 + Theta * (beta1 *

J1 + beta2 * J2))/N
dS = mu * N - phi * S - mu * S
dI1 = (beta1 * I1 + Theta * beta1 * J1) * S/N -

(gamma + mu) * I1
dI2 = (beta2 * I2 + Theta * beta2 * J2) * S/N -

(gamma + mu) * I2
dR1 = Pi * gamma * I1 - (beta2 * I2 + Theta *

beta2 * J2) * Xi * R1/N - mu * R1
dR2 = Pi * gamma * I2 - (beta1 * I1 + Theta *

beta1 * J1) * Xi * R2/N - mu * R2
dJ1 = (beta1 * I1 + Theta * beta1 * J1) * Xi *

R2/N - gamma * J1 - mu * J1
dJ2 = (beta2 * I2 + Theta * beta2 * J2) * Xi *

R1/N - gamma * J2 - mu * J2
dR = (1 - Pi) * gamma * (I1 + I2) + gamma * (J1 +

J2) - mu * R
res = c(dS, dI1, dI2, dR1, dR2, dJ1, dJ2, dR)
return(list(res))

})
}

The reason R0 uniquely determines competitive dominance in the presence of
perfect cross-immunity is that the equilibrium fraction of susceptible is s∗ = 1/R0.
Recalling the effective reproduction number RE = sR0, whichever strain has the
greatest R0 will force all other strains into their subcritical territory (RE < 1) and
thus drive them extinct. By analogy to Tilman’s (1976) theory of resource-based
competition of free-living organisms, we may coin this as the S∗ theory of strain
dominance. For illustration, we may consider a scenario with imperfect but strong
cross-immunity (θ = 0.15,Ξ = 0.15,Π = 0.8), wild type β1 = 500/year and a 50%
transmission advantage of a mutant, an infectious period of 5 days, and an annual
host birth rate of 0.02/year. With these parameters, the respective R0s are 6.9 and
10.3, and the invasion number (Q0,2) when the original strain is at its endemic equi-
librium is 2.8 predicting an initial doubling time (Td) of around 5 days.

paras = c(mu = 0.02, N = 1, beta1 = 500, beta2 = 750,
gamma = 365/5, Theta = 0.15, Xi = 0.15, Pi = 0.8)

R01 = with(as.list(paras), beta1/(gamma + mu))
R01

## [1] 6.847439
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R02 = with(as.list(paras), beta2/(gamma + mu))
R02

## [1] 10.27116

# Q02:
Q02 = with(as.list(paras), {

S1star = 1/R01
I1star = mu * (R01 - 1)/beta1
R1star = 1 - (S1star + I1star)
Q02 = (beta2 * S1star)/(mu + gamma) + (beta2) * Xi *

R1star/(mu + gamma)
Q02

})
# Invasion number
Q02

## [1] 2.815313

# Strain 2 doubling time (in days) at invasion
365 * log(Q02)/(paras["mu"] + paras["gamma"])

## mu
## 5.17395

For the assumed parameters, we can visualize the S∗ idea by considering a sce-
nario in which the mutant appears in year 15 at which time the original strain has
drawn down the susceptible fraction to 26% with 59% being in the R1 compartment
of the flow depicted in Fig. 3.11. Since Q0,2 is greater than 1, the mutant can invade
and add to the depletion of susceptibles. At some point, the susceptible fraction is
so low as to push RE,1 permanently below zero and at the new endemic equilibrium
(with these parameters S∗ is about 10%), the original strain will be driven extinct
(Fig. 3.12).

require(deSolve)
times = seq(0, 30, by = 1/200)
start = c(S = 0.999, I1 = 0.001, I2 = 0, R1 = 0, R2 = 0,

J1 = 0, J2 = 0, R = 0)
out1 = as.data.frame(ode(start, times, twostrain, paras))

ta = out1[out1[, 1] > 15, ]
start2 = c(S = ta[1, 2], I1 = ta[1, 3], I2 = 0.001, R1 = ta[1,

5], R2 = ta[1, 6], J1 = ta[1, 7], J2 = ta[1, 8], R = ta[1,
9])

out2 = as.data.frame(ode(start2, times, twostrain, paras))

R01 = with(as.list(paras), beta1/(gamma + mu))
R02 = with(as.list(paras), beta2/(gamma + mu))
plot(out1$S, R01 * out1$S, ylim = c(0, R01), type = "l",

xlab = "S", ylab = "Re")
lines(out2$S, R02 * out2$S, col = 2)
abline(h = 1)
points(1/R01, 1, pch = "X")
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Fig. 3.12: An illustration of the S∗ theory of competitive dominance. The original
strain will draw down the susceptible fraction toward its endemic equilibrium (at
which point R∗

E,1 = 1, marked X. The higher R0 emergent strain will continue to
draw down the susceptibles to its equilibrium (S∗2 = 1/R0,2, marked •) at which
point RE,1 = S∗2R0,1 is held below one, so the original strain is outcompeted and
permanently prevented from reemerging

points(1/R02, 1, pch = 19)
legend("right", legend = c("Re1", "Re2"), lty = c(1, 1),

col = c("black", "red"))

The twostrain.app contains an interactive interface to study this model of
competitive displacement versus coexistence of strains with various scenarios of R0

dominance and partial-to-complete cross-immunity. The shinyApp can be launched
from R through:

require(epimdr2)
runApp(twostrain.app)



Chapter 4
FoI and Age-Dependence

4.1 Force of Infection

The force of infection (FoI) is the per capita rate at which susceptibles are exposed to
infection. The FoI in the S(E)IR compartmental model (Eqs. (2.1)–(2.3) and (3.3)–
(3.3)) is φ = β I/N because each susceptible is assumed to contact other individuals
in the population at some rate, the fraction of those contacts that are with infected
individuals is I/N, and β is by definition the contact rate times the probability of
infection upon contact.1

An important basic and applied question is how the FoI scales with population
density/size (de Jong et al., 1995), i.e., how the transmission rate parameter should
be considered to be a function of N, β (N). The literature suggests two extreme situ-
ations termed: density-dependent transmission for which the FoI scales linearly with
density and frequency-dependent transmission for which the FoI is independent of
density. Roberts and Heesterbeek (1993) point out that there is some significant con-
fusion in the literature about the meaning of these terms, as the denominator N in
the SEIR formulations is by some wrongly interpreted as Eqs. (3.3)–(3.6) being a
frequency-dependent model. Roberts and Heesterbeek (1993) clarify that this is a
mistaken interpretation; the I/N simply stems from the idea that only this fraction
of random contacts is with infectious individuals (as opposed to the complimen-
tary fraction which is with noninfectious individuals). The issue of density- versus
frequency-dependence should be thought of in terms of how β (= contact rate ∗
transmission probability) and therefore R0 scale with density (Roberts & Heester-
beek, 1993; Bjørnstad et al., 2002a; Ferrari et al., 2011). For the strictly density-

This chapter uses the following R packages: splines, fields, and scatterplot3d.
A discussion of the force of infection can be found in two five minute epidemics MOOC videos:
Force of Infection https://www.youtube.com/watch?v=dj1DiqA4Lvg.
Pathogens and Extinction https://www.youtube.com/watch?v=v67gtiACBTY.

1 The theoretical FoI is model specific, so more complicated models may have more complicated
FoIs. The FoI for the Ebola SEIHFR model of Sect. 3.10, for example, is given by rate 1© in
Fig. 3.9.
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O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-031-12056-5 4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12056-5_4&domain=pdf

 4999 52599 a 4999 52599
a
 
https://www.youtube.com/watch?v=dj1DiqA4Lvg

 7823 53706 a 7823 53706 a
 
https://www.youtube.com/watch?v=v67gtiACBTY

 11914 62249 a 11914
62249 a
 
https://doi.org/10.1007/978-3-031-12056-5_4


68 4 FoI and Age-Dependence

dependent model, numbers of contacts are proportional to density, so β (N)∝N, and
thus transmission and R0 scale linearly with density, so the FoI eventually simplifies
to β I. In contrast, the strictly frequency-dependent model assumes that contact rates
are independent of N and, therefore, so is R0 and thus the compound FoI remains
β I/N. It is easy to envisage intermediate phenomenological models, say, contact
rates scaling with some decelerating power q of population size (0 < q< 1) (Smith
et al., 2009b) leading to an FoI of β I/Nq.2

The frequency-dependent model is often used for sexually transmitted diseases
(STDs) and vector-borne infections with the logic that the number of sexual partners
does not scale with density and neither does the feeding requirements of mosquitoes;
the female mosquito vectors of many vector-borne pathogens—including dengue,
yellow fever, zika, and malaria causing Plasmodium parasites—have to take a blood
meal to complete the gonotrophic cycle to lay a new batch of eggs every handful
of days (the exact timeline of which depend on temperature; Delatte et al., 2009).
With fewer hosts available, the vectors will increase their search radius to meet their
need, and, thus, transmission rate will not decrease with decreasing host density.

An interesting ecological implication is that in the absence of an alternative host,
a deadly density-dependently transmitted pathogen is less likely to drive a host ex-
tinct because as the pathogen decimates the host, the reproduction number is ex-
pected to eventually decrease below one, at which time the chain of transmission
will falter and break.3 Frequency-dependent pathogens, in contrast, may be able to
sustain the chain of transmission to a bitter end as the reproduction number may
remain supercritical even as the host population size dwindles (De Castro & Bolker,
2005).

4.2 Burden of Disease

Various time, space, and host heterogeneities are important forces in shaping epi-
demic curves and changing epidemiological patterns. In humans, age-related differ-
ences in susceptibility, exposure, and disease are among the most important such
heterogeneities.

In everyday conversation about contagious maladies, disease and infection are
sometimes used interchangeably. Often this imprecision does not matter. It is how-
ever useful to keep in mind that disease strictly speaking refers to symptomology
and infection to chains of transmission and pathogen/parasite colonization status.
The latent period—the time between a pathogen colonizes a host and the host can
pass the infection on—is different from the incubation period—the time from colo-
nization to onset of symptoms. Such distinctions are obvious for certain infections;
all recognize the distinction between HIV positive and AIDS. The latter refers to
disease status and the former to infection status. For influenza, the virus is typically

2 Liu et al. (1986) proposed that spatial clustering can be modeled by a transmission term βSpIq/N,
with p and q between zero and one.
3 The notion of a critical host density is discussed in more detail in Sect. 10.7.
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cleared in less than a week, but non-contagious cough and discomfort can last for
another week or more. Thus, clinical relevance is not always the same as dynamic
relevance.

The severity of disease of many infections depends on age. The very young are
often prone to more severe disease. Both measles and whooping cough, for example,
cause highest morbidity and mortality in children under one (e.g., Miller & Fletcher,
1976; Grais et al., 2007). Other diseases are more severe in the elderly. Mortality
from influenza-like illness (ILI) is a common example and more recently SARS-
CoV-2 (Verity et al., 2020). Teratogenic diseases are those that cause complications
during pregnancies. Rubella, chickenpox, and Zika are important examples (Metcalf
& Barrett, 2016). For these, infections of reproductive age women are the most
pressing public health concern. It is important to understand determinants of age-
prevalence curves for two reasons: first, because of such age-specificity in burden of
disease and second because age-structure can mold infectious disease dynamics in
important ways. Age-dependence in incidence arises through the interacting forces
of age-specific susceptibility as molded by the past exposure and the age-specific
force of infection.

4.3 WAIFW

Age-structured FoIs result from age-varying contact rates and assortative mixing
among different age groups. The so-called Who-Acquires-Infection-From-Whom
(WAIFW) matrix is used to describe the patterns of non-homogeneous mixing
among different age groups (Grenfell & Anderson, 1989). Mossong et al. (2008)
conducted a diary-based social study to map age-stratified contact rates for var-
ious countries in Europe as part of the polymod project. The contact rates by
contactor and contactee are provided in the mossong dataset. We can vi-
sualize the diary data using an image plot with contours superimposed (Fig. 4.1).

data(polymod)
head(polymod)

## contactor contactee contact.rate
## 1 1 1 120.37234
## 2 2 1 33.45833
## 3 3 1 23.13380
## 4 4 1 24.33333
## 5 5 1 29.00662
## 6 6 1 14.50331

x = y = polymod$contactor[1:30]
z = matrix(polymod$contact.rate, ncol = 30, nrow = 30)
image(x = x, y = y, z = z, xlab = "Contactor", ylab = "Contactee",

col = gray((12:32)/32))
contour(x = x, y = y, z = z, add = TRUE)
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Fig. 4.1: The contact rates reported in the diary study of Mossong et al. (2008)

The reported contact rates are not symmetrical, which a WAIFW matrix will
necessarily be, because of age-specific biases in diary entry rates as well as the age-
profile of the contactors vs contactees. Before we symmetrize the matrix, we can
look at the reported marginal contact rate for each age group. Most contacts are
among same-aged individuals and school-aged children have the greatest number
of contacts (Fig. 4.2). There are, however, important off-diagonal ridges resulting
from, for example, parent/offspring or pupil/teacher interactions.

plot(apply(z, 1, mean) ˜ x, ylab = "Total contact rate",
xlab = "Age")

4.4 A RAS Model

Schenzle (1984) emphasized the importance of age-structured mixing and age-
structured FoIs when modeling infectious disease dynamics. Bolker and Grenfell
(1993) extended this model to the “realistic age-structured (RAS) model,” which in
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Fig. 4.2: The age-specific contact rates reported by the diary study of Mossong et al.
(2008)

its full elaboration is an age-structured compartmental model with discrete aging of
each birth cohort (at the beginning of each school year) and seasonality in trans-
mission. Seasonality is the topic of Chap. 6. Here we can incorporate the polymod
contact matrix in a simpler age-structured compartmental model making the sim-
plifying assumption that individuals age exponentially (i.e., aging in and out are
constant within each age group with rates set such that they will on average spend
the right amount of time in each age-bracket). This allows the formulation of a RAS
model using chains of differential equations. In the below example, the upper age
cut-offs and age-progression rates for the n = 70 age categories are a. One can in
principle use the raw symmetric contact matrix in the model, but here we use a thin-
plate spline4 smoothed matrix using the Tps function in the fields package. The
smoothing protocol allows interpolation to use different age-brackets, in this case
annual brackets to age 70, for the model projections (Fig. 4.3).

4 A thin-plate spline is a spline-based technique that produces smooth surfaces in 2 (or higher)
dimensions (Wood, 2003).
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require(fields)
n = length(x)
# symmetrize
z2 = (z + t(z))/2
z3 = as.vector(z2)
xy = data.frame(x = rep(x[1:n], n), y = rep(y[1:n], each = n))
# smooth
polysmooth = Tps(xy, z3, df = 100)
surface(polysmooth, xlab = "", ylab = "", col = gray((12:32)/32))
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Fig. 4.3: The thin-plate spline smooth estimate of the WAIFW matrix

For the age-structured SIR model, first annualize and normalize the WAIFW matrix:

n = 70
ra = rep(1, 70) #aging rates
x = cumsum(1/ra) #age brackets
# annualize & symmetrize
ps = predict(polysmooth, x = expand.grid(1:70, 1:70))
ps2 = matrix(ps, ncol = 70)
ps2 = ps2 + t(ps2)
# normalice
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W = ps2/mean(ps2)

An age-structured SIR model assuming all children are born into the first suscep-
tible class (S1; so ignoring maternal immunity), that aging through the a’th age-class
happens a rate ra (so average time in age-bracket a is 1/ra) and allowing for the
possibility of age-specific vaccination rate va (=−log(1− p)ra, where p is vaccine
cover; cf. discussion on rate/probability conversions of Sect. 3.2) is:

dS1

dt
= μN

︸︷︷︸

birth

− φ1S1
︸︷︷︸

infection

− v1S1
︸︷︷︸

vaccination

− r1S1
︸︷︷︸

aging

− μS1
︸︷︷︸

death

(4.1)

dSa
dt

= ra−1Sa−1
︸ ︷︷ ︸

aging in

− φaSa
︸︷︷︸

infection

− vaSa
︸︷︷︸

vaccination

− raSa
︸︷︷︸

aging out

− μSa
︸︷︷︸

death

(4.2)

dIa
dt

= ra−1Ia−1
︸ ︷︷ ︸

aging in

+ φaSa
︸︷︷︸

infection

− γIa
︸︷︷︸

recovery

− raIa
︸︷︷︸

aging out

− μIa
︸︷︷︸

death

(4.3)

dRa

dt
= ra−1Ra−1
︸ ︷︷ ︸

aging in

+ γIa
︸︷︷︸

recovery

− raRa
︸︷︷︸

aging out

+ vaSa
︸︷︷︸

vaccination

− μRa
︸︷︷︸

death

(4.4)

φa =
A

∑
j=1

βWajI j/N

︸ ︷︷ ︸

force of infection

, (4.5)

where φa is the FoI on the a’th age class. In matrix notation (see Sect. 4.7 for a gentle
introduction to matrix calculations in biology), the age-specific FoI is φ = βWI/N.
The age-structured SIR model is thus (in log-coordinates)5

sirAgemod = function(t, logx, parameters) {
n = length(parameters$r)
xx = exp(logx)
S = xx[1:n]
I = xx[(n + 1):(2 * n)]
R = xx[(2 * n + 1):(3 * n)]
with(as.list(parameters), {

phi = (beta * W %*% I)/N
dS = c(mu, rep(0, n - 1)) * N - (phi + r) * S +

c(0, r[1:(n - 1)] * S[1:(n - 1)]) - mu * S -
v * S

dI = phi * S + c(0, r[1:(n - 1)] * I[1:(n - 1)]) -
(gamma + r) * I - mu * I

dR = v * S + c(0, r[1:(n - 1)] * R[1:(n - 1)]) +
gamma * I - r * R - mu * R

res = c(dS/S, dI/I, dR/R)

5 Recall that the with(as.list(...)) allows evaluation of the equations using the definitions
in the parameters vector and %∗% denotes matrix multiplication.
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list((res))
})

}

where S, I, and R are vectors of length n, phi is the age-specific force of infection
predicted from the WAIFW matrix, and v is a vector of length n that allows for age-
specific vaccination rates. The r vector sets appropriate aging rates if age groups
vary in duration. The below illustration assumes that the initial population is 9.9%
susceptible and 0.1% infected and assumes an infectious period of 14 days, a life
expectancy of 50 years, and a base transmission rate of 100/year:

v.pre = rep(0, n)
paras = list(N = 1, gamma = 365/14, mu = 0.02, beta = 100,

W = W, v = v.pre, r = ra)
ystart = log(c(S = rep(0.099/n, n), I = rep(0.001/n, n),

R = rep(0.9/n, n)))

Following integration, Fig. 4.4a shows the age-specific prevalence and equilibrium
age-specific prevalence (Fig. 4.4b) using the polymod contact matrix. Figure 4.4b
also shows the predicted age-prevalence curve for the age-structured model with
homogenous mixing.

require(deSolve)
times = seq(0, 500, by = 1/52)
# polymod mixing
out = as.data.frame(ode(ystart, times, sirAgemod, paras))
par(mfrow = c(1, 2)) #Room for side-by-side plots
# Time series of infecteds
matplot(times/52, exp(out[, (n + 2):(2 * n + 1)]), type = "l",

xlab = "Year", ylab = "Prevalence")
# homogenous mixing:
paras$W = matrix(1, ncol = n, nrow = n)
out2 = as.data.frame(ode(ystart, times, sirAgemod, paras))
# Final age-prevalence curve
plot(x, t(exp(out2[2608, (n + 2):(2 * n + 1)]))/sum(exp(out2[2608,

(n + 2):(2 * n + 1)])), ylab = "Prevalence", xlab = "Age",
col = 2, pch = "*")

points(x, t(exp(out[2608, (n + 2):(2 * n + 1)]))/sum(exp(out[2608,
(n + 2):(2 * n + 1)])))

legend("topright", c("polymod", "homogenous"), col = 1:2,
pch = c("o", "*"))

In contrast to the model with homogenous mixing which predicts that age-intensity
curves decay exponentially with age (as expected for a process with constant rates),
the RAS model can lead to a variety of age-incidence curves including the hump-
shaped curve with a mode at around 15 years given the parameters employed
(Fig. 4.4b).

The RAS model is useful in clarifying how age-incidence curves will change
under realistic mixing and various vaccination regimes. For simplicity, consider the
above parameterization and vaccine delivered with a 60% cover during the sec-
ond year of life and study the effect on the mean age of infection. A 60% vaccine
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Fig. 4.4: The age-specific prevalences from the age-structured SIR model. (a) Tra-
jectory through time. (b) Equilibrium age-incidence curves for the polymod matrix
(o) vs homogenous mixing (∗)

cover will reduce R0 from 3.5–4 to around 1.5 and implies a vaccination rate of
v=−log(1−0.6) = 0.91 year−1 for the 12–23 month target group.

# polymod matrix
paras$W = W
# 60\% vaccination of second age-class
paras$v = c(0, -log(1 - 0.6) * ra[2], rep(0, n - 2))
out3 = as.data.frame(ode(ystart, times, sirAgemod, paras))
# Mid-point for each age-bracket
x2 = x - (1/ra/2)
# Equilibrium age-prevalence and MAI
pv3 = t(exp(out3[2608, (n + 2):(2 * n + 1)]))
sum(x2 * pv3)/sum(pv3)

## [1] 27.55307
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# Prevaccination
pv = t(exp(out[2608, (n + 2):(2 * n + 1)]))
sum(x2 * pv)/sum(pv)

## [1] 17.55689

So the mean age of infection (MAI) is shifted from 17 years to around 27 years
because of the reduction in susceptible recruitment. With homogenous mixing, the
shift would be from around 13 years to 22 years:

paras$W = matrix(1, ncol = n, nrow = n)
out4 = as.data.frame(ode(ystart, times, sirAgemod, paras))
# Equilibrium MAI
pv4 = t(exp(out4[2608, (n + 2):(2 * n + 1)]))
sum(x2 * pv4)/sum(pv4)

## [1] 22.09802

# Prevaccination
pv2 = t(exp(out2[2608, (n + 2):(2 * n + 1)]))
sum(x2 * pv2)/sum(pv2)

## [1] 13.01221

The lower prevaccination mean under homogenous mixing is because a smaller
fraction of very young children are exposed under the more realistic age-mixing
scenario.

4.5 Virgin Epidemics

At the time of revising this chapter for the 2nd edition, the SARS-CoV-2 2020/21
pandemic is unfolding, one of only a few true global virgin epidemics in a long
time. In 2009, influenza A/H1N1pmd was a new recombinant strain (Smith et al.,
2009a), but subsequent evidence indicates that prior exposure to the already circu-
lating A/H1N1 strain provided substantial cross-immunity to reduce disease symp-
toms and transmission (Chowell et al., 2011). Looking at historical age-mortality
patterns, the 1918 Spanish influenza A/H1N1 pandemic also testified to the critical
importance of both age and prior exposure on burden of disease and mortality. While
not serologically confirmed, historical records suggest that the elderly in 1918 were
protected by immunity from an A/H1N1-related strain replaced during a mid/late
nineteenth-century pandemic (Simonsen et al., 1998). Sero-archaeology suggests
that the curiously limited excess mortality in older age groups may be due to the
1847 pandemic being an influenza A virus of an H1 and/or N1 variant (Dowdle,
1999; Morens & Fauci, 2007). Such sero-archaeological studies have suggested that
the Russian pandemic of 1889 was possibly due to an influenza A/H3 variant. In-
triguingly, however, Vijgen et al. (2005) used genomic tools to trace the probable
date of origin of the OC43 coronavirus to the late 1880s to suggest that the deadly
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pandemic that killed millions of people could alternatively have been caused, not by
an influenza virus, but by what is today a harmless winter cold.

Both the 1918 and 2009 influenza A pandemics were associated with very dif-
ferent temporal patterns from subsequent seasonal endemics, both exhibiting three
waves during the initial year of invasion (Gog et al., 2014; Bjørnstad & Viboud,
2016). History further shows that age-structure and mortality during virgin epi-
demics are often very different from subsequent endemic age-circulation, whether
looking at transiently immunizing viruses like the 1918 Spanish flu pandemic or
viruses that resulted in sterilizing immunity for survivors such as was the case when
Europeans brought measles and smallpox to the Americas at the end of the fifteenth
century. Such changes can shift patterns of morbidity and mortality over time even
in the absence of any pathogen evolution. The changing public health burden is
governed by factors at the intersection between incidence at age, disease at age, and
possible complete or partial protection due to prior exposure. During the period of
establishment toward long-term endemism, incidence at age will change because
of contact patterns and early removal of high contact people (oftentimes of school
and college age) as per the discussion in Sect. 4.3 and further discussed in a social
network context by Ferrari et al. (2006a). Later disease at age profiles may shift be-
cause over time re-exposed at-risk individuals may suffer lower burden of disease
because of residual partial immune protection (Lavine et al., 2021; Li et al., 2021b).

The RAS model can be used to investigate plausible transitions by assuming
a completely susceptible initial population6 and study how age-specific risk may
change over time. Figure 4.5 shows one scenario of changes in age-incidence pat-
terns during a transition from emergence to endemicity of an immunizing pathogen.

n = 70
a = rep(1, 70)
ystart2 = log(c(S = rep(0.9989/n, n), I = rep(0.001/n,

n), R = rep(1e-04/n, n)))
paras = list(N = 1, gamma = 365/14, mu = 0.02, beta = 100,

W = W, v = v.pre, r = ra)
out5 = as.data.frame(ode(ystart2, times, sirAgemod, paras))

# year 1 relative risk
y1 = apply(t(exp(out5[1:52, (n + 2):(2 * n + 1)])), 1,

sum)
y1 = y1/sum(y1)

# year 2 relative risk
y10 = apply(t(exp(out5[(1:52) + 10 * 52, (n + 2):(2 *

n + 1)])), 1, sum)
y10 = y10/sum(y10)

# endemic relative risk
yT = apply(t(exp(out5[(1:52) + 499 * 52, (n + 2):(2 *

6 The tiny non-zero fraction of initials in the R group in the code is because integrating the model
in log-coordinates for numerical stability requires non-zero state variables, so log(0) =−∞ would
break the numerical integrator.
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n + 1)])), 1, sum)
yT = yT/sum(yT)

plot(x, y10, lty = 2, type = "l", ylab = "Relative risk",
xlab = "Age")

points(x, yT, type = "b", col = 2, pch = "*")
points(x, y1, type = "b", pch = 1)

legend("topright", c("Virgin", "10yr", "Endemic"), col = c(1,
1, 2), pch = c("o", NA, "*"), lty = c(NA, 2, NA))

Lavine et al. (2021) and Li et al. (2021b) provide discussion of how such calcula-
tions can be used to project plausible scenarios toward endemicity for the ongoing
SARS-CoV-2 pandemic.

4.6 Vaccination by Age-Dependent Risk

Section 4.2 discussed how burden of disease may be strongly age-specific. Verity
et al. (2020) showed that infection–mortality ratios from the SARS-CoV-2 virus
were <0.5% in the young but >10% in the elderly during the first months of
the 2020/21 pandemic. Accordingly, most countries instituted an age-based prior-
ity ranking for vaccine deployment (Li et al., 2021a) with a goal to broaden age-
brackets once target cover of high-risk groups is reached (e.g., 85% of the 70+
bracket). To model plausible switch times for expanding age-targeting, we can use
the rate/fraction conversion discussed in Sect. 3.2. Recalling that a rate, x, is related
to the fraction, p, in a time interval Δ t according to the quantile function for the
exponential distribution: x=−log(1− p)/Δ t. The time Δ t to reach the target cover
is Δ t =−log(1− p)/x. So, for example, given a rate of 2N vaccines per year (i.e., a
vaccine capacity where on average everyone can be vaccinated twice in a year), the
length of time in years until 75% of the target population is vaccinated is

-log(1 - 0.75)/2

## [1] 0.6931472

which is 8.3 months.
Assuming a population where 30% of the population is in the high-risk age group

(N1) and the other 70% is in age group N2, and assuming an 85% target cover of N1

before vaccination is opened up for all, the duration of targeted vaccination will be
−log(1−0.85)/(0.69/N1) =−log(1−0.85)/(0.69/0.3) years.

-log(1 - 0.85)/(0.69/0.3)

## [1] 0.8248348
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Fig. 4.5: The relative age-specific prevalences from the age-structured SIR model
during the first year of invasion (the virgin epidemic), after 10 years and long-term
endemism for an immunizing pathogen with a 14-day infectious period, an R0 of
3.8, and a polymod mixing matrix. The risk during the virgin epidemic is broadly
age-invariant, the endemic risk is strongly shifted toward high contact younger age
groups after a decade, then flattens, and drifts slightly upward as community immu-
nity lowers the force of infection

The 0.82 years is around 10 months. In order to project vaccine dynamics into the
future, we can consider coverage over time in the two groups given this target and
switch point (Fig. 4.6):

# N1 cover with time before switch
p1 = seq(0, 0.85, by = 0.01)
T1 = -log(1 - p1)/(0.69/0.3)
plot(T1, p1, type = "l", xlim = c(0, 2), ylim = c(0, 1),

xlab = "year", ylab = "cover")
# After switch
T2 = seq(0, 2 - max(T1), length = 100)
p2 = 1 - exp(-0.69 * T2)
# N1 cover
lines(T2 + max(T1), p2 * 0.15 + 0.85)
# N2 cover
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Fig. 4.6: The predicted trajectory of vaccination cover for a target group (N1) with
30% of the population and the remainder 70% (N2) given a vaccination capacity of
2N/year and target to 85% cover of the target group before broader dissemination

lines(T2 + max(T1), p2, col = 2)
# total cover
lines(c(T1, T2 + max(T1)), c(p1 * 0.3, (p2 * 0.15 + 0.85) *

0.3 + p2 * 0.7), lty = 2)
abline(v = max(T1), lty = 3)
abline(h = 0.85, lty = 3)
legend("topleft", c("N1", "N2", "All"), lty = c(1, 1,

2), col = c(1, 2, 1))

4.7 Projecting Host Age-Structure

As discussed in Sects. 4.3 and 4.4, age-dependent contact rates are important deter-
minants of infectious disease dynamics. As a consequence, the host age-structure
is critical. Moreover, as will be particularly well illustrated in Sect. 6.6 with respect
to fully immunizing infections, the rate of susceptible recruitment (viz. vaccine-
discounted birth rates) can greatly influence recurrence patterns. The most common
framework to predict host age-structure and future birth numbers is the Leslie matrix



4.7 Projecting Host Age-Structure 81

model (Leslie, 1945; Caswell, 2001). While this theme is a bit tangential to the main
focus of this monograph, it is a useful way to start thinking about matrix algebra for
biology—a mathematical toolset that will be used frequently in the next chapters.
The model projects the number of individuals of age a, na in discrete (often annual)
time steps according to

n0,t+1 = f1n1,t + f2n2,t + . . .+ fAnA,t (4.6)

n1,t+1 = s0n0,t (4.7)

n2,t+1 = s1n1,t (4.8)

... (4.9)

where fa represents age-specific fecundities, A is the maximum life span, and sa are
age-specific survival probabilities. In matrix form, these equations can be written as
Nt+1 = LNt , where N represents the vector of number of individuals in each age
class and L is the Leslie matrix that has fecundities along the first row and survivals
on the sub-diagonal:

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

f0 f1 f2 · · · fA
s0 0 0 · · · 0
0 s1 0 · · · 0
... 0

. . .
...

...
0 0 · · · sA−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(4.10)

The Leslie theory of population growth shows that if fecundities and survivor-
ships are constant over time, then the host population will grow if the dominant
eigenvalue (λ ) of L is greater than 1 and decline otherwise. Moreover, in the long
term, the population will reach a stable age-distribution (an unchanging fraction of
individuals in each age-class) proportional to the dominant eigenvector of L. The
theory further predicts that once the stable distribution is reached, the population
will have a geometric rate of growth of λ . Thus, in the long run, the matrix calcula-
tion LNt simplifies to λNt . To illustrate, it is convenient to use a simple hypothetical
population with three age classes:

fa <- c(0, 0.5, 1.2)
sa <- c(0.8, 0.8, 0)
L <- matrix(0, nrow = 3, ncol = 3)
# inserting fa vector in first row
L[1, ] <- fa
# inserting sa in the subdiagonal:
L[row(L) == col(L) + 1] <- sa[1:2]

A forward simulation and visualization using scatterplot3d shows the popu-
lation growth and age-structure over time (Fig. 4.7):

Na = matrix(0, nrow = 65, ncol = 3)
Na[1, ] = c(10, 0, 0)
for (i in 2:65) {

Na[i, ] = L %*% Na[i - 1, ]
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}
scatterplot3d(Na[1:30, ], type = "b", xlab = expression(n[0]),

ylab = expression(n[1]), zlab = expression(n[2]))

The simulation confirms the mathematical postulate that long-term growth of an
age-structured host population converges on the dominant eigenvalue, λ , and there-
after the asymptotic age-structure is proportional to the dominant eigenvector of L:

Tot = apply(Na, 1, sum)
# growth during last years
tail(Tot[2:65]/Tot[1:64])

## [1] 1.060331 1.060331 1.060332 1.060331 1.060331 1.060331

# First EV is dominant and real only
Re(eigen(L)$values[1])

## [1] 1.060331

# Simulated age-structure for year 65
Na[65, ]/sum(Na[65, ])

## [1] 0.4303442 0.3246858 0.2449700

# Normalized dominant eigen vector
Re(eigen(L)$vector[, 1])/sum(Re(eigen(L)$vector[, 1]))

## [1] 0.4303438 0.3246864 0.2449698

After 65 years of population growth, the predictions are clearly borne out.

Advanced: Leslie Sensitivity and Elasticity

The fa’s and sa’s are the so-called vital rates of population growth. For a variety
of reasons, we may be interested in understanding which vital rates are contribut-
ing most strongly to population growth and thus susceptible recruitment. Caswell
(2001) defines two key quantities for such an analysis: the sensitivity and the elas-
ticity. Both of these detail how the long-term (asymptotic) growth rate, λ , of age-
structured populations depends sensitively on each fecundity/survival element (con-
ventionally denoted by α)7 of the Leslie matrix. The sensitivity is the derivative of
λ with respect to each of the elements, αi j, according to

si j =
∂λ

∂αi j
=

viw j

< w,v >
, (4.11)

7 This is another unfortunate case of notation conventions in different fields pertinent to infec-
tious disease dynamics that adds confusion to the Greek alphabet soup; this text generally adheres
to mathematical epidemiology conventions for which α is commonly used for rate of infection-
induced mortality, but in mathematical demography αi j conventionally refers to the i’th row and
j’th column of the Leslie matrix.
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Fig. 4.7: The predicted number of individuals in each of the three age classes for
the hypothetical host population for the first 30 years of simulation, starting with
10 newborn individuals. Initially, age-structure changes rapidly, but the increas-
ingly straightened line shows the convergence on the stable age-distribution. Once
reached, the total population size and each age group is growing by a factor of λ
each time step

where w and v are the dominant right and left eigenvectors of L, vi and wj are the
i’th and j’th element of the of the v and w vectors, respectively, and < w,v > is the
scalar product of the two vectors:

< w,v >= w1v1 +w2v2 + . . .+wnvn. (4.12)

The eigen function calculates all the central quantities:

Ex = eigen(L)
# The dominant eigenvalue
lambda = Ex$values[1]
lambda

## [1] 1.060331+0i

# The dominant (right) eigenvector is
w = Ex$vectors[, 1]
w

https://en.wikipedia.org/wiki/Dot_product
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## [1] 0.7267629+0i 0.5483290+0i 0.4137040+0i

The left dominant eigenvector is calculated by transposing L and then decomposing:

v = eigen(t(L))$vectors[, 1]
v

## [1] 0.4976716+0i 0.6596208+0i 0.5632259+0i

Before proceeding in completing the calculations outlined in Eq. (4.11), it may
be useful to make some clarifications about eigen calculations; from the point of
view of general matrix theory, the eigenvectors and eigenvalues of matrices can
have complex solutions involving

√
−1 denoted by ı (which will, as alluded to in

Sect. 2.7, be very important for later calculations of stability and resonant periodicity
in Chap. 10). As it turns out, the Leslie matrix always has real dominant eigenvalues
and eigenvectors. However, the eigen function that solves for the general case does
not know this, so the use of Re() strips the 0ı complex parts from the dominant
eigenvalue and right and left eigenvectors.

sens = Re((v %*% t(w))/sum(v * w))
sens

## [,1] [,2] [,3]
## [1,] 0.3781828 0.2853319 0.2152776
## [2,] 0.5012488 0.3781828 0.2853319
## [3,] 0.4279978 0.3229163 0.2436343

The elasticity (Caswell, 2001) is the proportional change in the population
growth rate resulting from a proportional change in the transitions according to
ei j = αi jsi j/λ . To simplify further calculations, a function to do all these calcu-
lations is:

leslie = function(L){
Ex = eigen(L) #Eigendecompostition of matrix
w = Re(Ex$vectors[, 1]) #right eigenvector
lambda = Re(Ex$values[1]) #dominant eigenvalue
v = Re(eigen(t(L))$vectors[, 1]) #left eigenvector
sens = (v %*% t(w))/sum(v * w) #sensitivities

elast = L * sens/lambda #elasticities
#list of results
res = list(lambda = lambda, right.eigenvector = w,

left.eigenvector = v, elasticity = elast,
sensitivity = sens)

return(res)
}

For the hypothetical three age-group population, the projected annual growth rate
is 6% and the elasticities show that survival of the young of the year (α21) is the most
important contributor to population growth:
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leslie(L)$lambda

## [1] 1.060331

leslie(L)$elasticity

## [,1] [,2] [,3]
## [1,] 0.0000000 0.1345485 0.2436343
## [2,] 0.3781828 0.0000000 0.0000000
## [3,] 0.0000000 0.2436343 0.0000000

The us dataset contains age-specific survival and fecundities for the USA in
2005 in 5-year age brackets (Arias et al., 2010). Employing the above methodology
and focusing on the 0–40 year group the life table predicts an annual growth of
2.3% which is higher than the US census data of 0.9% at the time. The analysis
further shows that survival through childbearing age (e21, e32, and e43) is the most
influential contributor to growth:

L2 <- matrix(0, nrow = 8, ncol = 8)
L2[1, ] <- us$fa[1:8]
L2[row(L2) == col(L2) + 1] <- us$sa[1:7]
# Annualized growth rate
(leslie(L2)$lambda)ˆ(1/5)

## [1] 1.023346

# Elasticities
round(leslie(L2)$elasticity, 2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 0.00 0.00 0.00 0.02 0.05 0.05 0.04 0.02
## [2,] 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## [3,] 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00
## [4,] 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00
## [5,] 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00
## [6,] 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00
## [7,] 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
## [8,] 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

Engen et al. (2021) provide an example of how the Leslie framework can further
be applied to infectious disease dynamics, for example, in the case where “age”
refers to time since infection.



Chapter 5
The Catalytic Model

5.1 Immune Memory

While immunobiology is not the focus of this text, some basic underpinnings are
useful for motivating the so-called catalytic model to study how immunity may build
up with age, how age-specific heterogeneities may affect this, and how we can use
immune data to back-calculate key dynamic quantities. There are two main branches
of the adaptive immune system—the part of the immune system that helps to build
a repertoire for protection against reinfection. The T lymphocyte cells develop in
the thymus where they are trained to recognize “self.” The training is that cells
with affinity for any cells encountered in this organ are culled so that only those
with non-self affinity are released for general circulation. T effector cells are key to
recognizing intracellular pathogens via the self-/non-self MHC pathways (Harty &
Badovinac, 2008). A simplified caricature of this pathway is that most cells cut some
small fraction of intracellular proteins into short amino acid sequences (usually of
a length of 9–16 amino acids) and present them on the cell surface. T cells that
bind to what they consider non-self proteins will multiply and trigger the killing of
the infected cell. Following clearance of infection, some of the T cells will produce
long-lived lineages that henceforth generate memory of past infection.

B lymphocyte cells that develop in the bone marrow are responsible for the
second important branch of immune memory. Upon being stimulated and matur-
ing (Kurosaki et al., 2015), they produce arsenals of antigen-specific antibodies,
each mature lineage able to recognize a specific bit of a surface protein (an epi-
tope) of a particular pathogen such as the hemagglutinin of the influenza virus
or specific antigens of pathogenic bacteria (e.g., Neisseria gonorrhoeae), protists
(e.g., malaria-causing Plasmodium spp), or any number of intestinal or systemic
parasitic worms. When analyzed correctly, antigen-specific antibodies in blood or
mucus contain powerful epidemiological information about the force of infection
(FoI) in a population, the current prevalence, and the type of age-specific transmis-
sion heterogeneities discussed in Chap. 4. Ignoring all molecular and immunological

This chapter uses the following R package: splines.
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details, an important bit of biology is that B cells from any given linage will over
time differentiate to produce different antibody isotypes (Duarte, 2016); isotypes
means that they react to the same epitope but have a different structure and subtly
varying purpose. A primary infection will result in the production of plasma B cells
that produce antibodies (immunoglobulines) of type M (IgM). Once the infection
is cleared, some cells will result in long-lived memory B lineages that produce IgG
antibodies. In caricature, IgG looks like a Y where the top of the Y is the antigen-
binding region, whereas IgM are five Y’s anchored together in a circle at the base.1

IgA that in caricature looks like two hinged Y’s is secreted into mucus and is im-
portant for blocking pathogen reentry and also for fighting intestinal parasites. De-
pending on pathogen characteristics, such as what organs/tissues/cells they interact
with, some memory lineages last for life to produce permanent infection-blocking
“sterilizing” immunity following a primary infection. Examples of such are many
of the vaccine-preventable childhood viruses such as measles, mumps, and rubella.
For these, IgG-positivity-at-age data presents records of past infection that can be
analyzed via the catalytic model framework. Measures of antigen-specific IgM flag
current or recent primary exposure/infection. Lavine et al. (2021) provide an illus-
trative discussion w.r.t. human coronaviruses.

An important caveat for correct analysis of age-seroprevalence profiles is the
presence of maternal antibodies in newborns. IgGs, but not their B cell generators,
are actively transferred across the placenta prior to birth to protect infants until their
immune system matures (Niewiesk, 2014). To a lesser extent, maternal IgAs are
transferred through breast milk. Thus, high IgG titers in the very young generally
reflect the mother’s prior exposure to the pathogen. Such maternal antibodies protect
newborns but increase the probability of primary vaccine failure because they limit
antigen presentation, which is why most childhood vaccination protocols start in
the 6–12 months age-window after maternal IgGs have decayed to no longer block
stimulation and maturation of a child’s B cells (Niewiesk, 2014).

5.2 The Catalytic Model

Age-incidence patterns are shaped by the intersections between the overall force of
infection (Sect. 4.1), the age-specific mixing patterns (Sect. 4.3), and the population-
level susceptibility-at-age profile. Muench (1959) proposed a catalytic model to
study how immunity may build up with age, how age-specific heterogeneities may
affect this, and how age-seroprevalence data can be used to estimate intensity of
circulation of any given pathogen in any given population. Many subsequent refine-
ments (e.g., Grenfell & Anderson, 1985; Hens et al., 2010; Long et al., 2010) show
how such data can also help elucidate the important age-related heterogeneities dis-
cussed in Sects. 4.3 and 4.4.

1 There are other isotypes. Duarte (2016) and Nature Immunology Milestones provides a series of
short synopses for readers interested in digging deeper into immunobiology.

https://www.nature.com/ni/articles?type=milestones
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The force of infection φ is a rate, thus if age-invariant in a randomly mixing
population the waiting time to first infection is exponentially distributed with a mean
age of infection of 1/φ (Fig. 4.4b). For endemic, fully immunizing infections in a
constant-sized host population, the basic reproduction number (R0) relates to the
mean age of infection (ā) according to R0 � 1+L/ā, where L is the life expectancy
of the host. Thus the mean age of infection will be ā � L/(R0 − 1) allowing easy
back-of-the-envelope calculations of both φ and R0 (Dietz & Schenzle, 1985). The
reason why L enters into the calculation is that in a stable host population, host birth
rates have to balance death rates, so susceptible recruitment will be 1/L.2

The general rate, φ(a, t), posits that susceptible infection rates may depend on
age (a) and time (t). Ignoring time-dependence (but see Ferrari et al., 2010, for
dealing with deviations from this), the cumulative FoI to age a is

∫ a
0 φ(a)da, and thus

the probability of not having been infected by age a is 1− p(a) = exp(−
∫ a

0 φ(a)da)
and the probability of being infected on or before age a is (much by the same logic
as laid out in Sect. 3.2):

p(a) = 1− e−
∫ a

0 φ(a)da. (5.1)

Equation (5.1) is the standard catalytic model (Muench, 1959; Hens et al., 2010).3

Age-intensity curves and age-seroprevalence curves are important data sources for
fitting the model estimating the FoI in any given population. For nonlethal, persistent
infections and nonlethal, fully immunizing infections, the former/latter provides im-
portant data for estimating φ(a). In the simplest case where the FoI is independent of
both age and time, the probability of having been infected by age a is 1−exp(−φa).
If we have data on the number of infected individuals by age, we can then use the
standard generalized linear model (glm) framework to estimate the FoI for the age-
invariant FoI model.

Generalized linear models (McCullagh & Nelder, 1989) have two components:
an error distribution (such as binomial, Poisson, negative binomial, normal, etc.) and
a “link” function that specifies how the expected (predicted) values ŷ are linked to
the linear predictors x = c0 + c1x1 + c1x2 · · · . Common link functions are (depend-
ing on error distributions): “identity,” “log,” “logit” (= “log-odds” = log(ŷ/(1− ŷ))),
and “complimentary log-log” (= log(− log(1− ŷ))). The link functions are associ-
ated with inverse link functions which for the aforementioned are “identity,” exp(x),

exp(x)
1+exp(x) , and 1− exp(−x), respectively.

Assuming that some na individuals of age a reveal from serology that ya individ-
uals have been previously infected, inferring the average φ turns out to be a stan-
dard generalized linear binomial regression problem: p(a) = 1− exp(−φa) is the
expected fraction infected (or seropositive) by age a. Thus log(− log(1− p(a))) =
log(φ)+ log(a), so we can estimate the age-invariant log-FoI as the intercept from a
glm with binomial error, a complimentary log-log link and log-age as a regression

2 In populations of changing size, a more accurate calculation is ā � 1/(μ(R0 − 1)), where μ is
the host birth rate (Dietz & Schenzle, 1985).
3 If immunity wanes at a rate ω , the reversible catalytic model is p(a) = φ(a)

φ(a)+ω (1−e−
∫ a

0 φ(a)+ω da)

(see e.g., Pomeroy et al., 2015, for an example). Heisey et al. (2006) discuss corrections needed if
infection causes significant disease-induced mortality.
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“offset.” An offset is a covariate that has a fixed coefficient of unity in a regression.
The R call will be of the form:4

glm(cbind(inf, notinf) ˜ offset(log(a)),
family = binomial(link = "cloglog"))

The prevaccination measles antibody data of Black (1959) represent seropreva-
lence by age of some 300 people from New Haven, Connecticut from blood drawn
in the summer of 1957:

data(black)
black

## age mid n pos neg f
## 1 <1 0.75 10 8 2 0.8000000
## 2 1-4 2.50 21 4 17 0.1904762
## 3 5-9 7.00 41 31 10 0.7560976
## 4 10-14 12.00 52 50 2 0.9615385
## 5 15-19 17.00 30 28 2 0.9333333
## 6 20-29 25.00 38 37 1 0.9736842
## 7 30-39 35.00 51 49 2 0.9607843
## 8 40-49 45.00 35 31 4 0.8857143
## 9 >50 60.00 30 26 4 0.8666667

The age profile of seroprevalence takes the characteristic shape of many prevac-
cination childhood diseases: high seroprevalence of the very young (< 1 year) due
to the presence of maternal antibodies that wanes with age, followed by buildup of
immunity to almost 100% seroprevalence by age 20 (Fig. 5.1). In these data, there
is perhaps some evidence of loss of immunity in the elderly, so we use the binomial
regression scheme to estimate the log-FoI based on the data for people in the 1–40
year groups and compare predicted and observed seroprevalence by age (Fig. 5.1):

b2 = black[-c(1, 8, 9), ] #subsetting age brackets
#Estimate log-FoI
fit = glm(cbind(pos,neg) ˜ offset(log(mid)),

family = binomial(link = "cloglog"), data = b2)
#Plot predicted and observed
phi = exp(coef(fit))
curve(1 - exp(-phi * x), from = 0, to = 60,

ylab = "Seroprevalence", xlab = "Age")
points(black$mid, black$f, pch = "*", col = "red")
points(x = b2$mid, y = b2$f, pch = 8)
phi

## (Intercept)
## 0.1653329

1/phi

## (Intercept)
## 6.048405

4 Binomial regression using glm takes either a binary 0/1 variable as the response or a matrix with
two columns representing number of successes and failures for each covariate level.
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Fig. 5.1: Seroprevalence by age from the measles antibody study of Black (1959)
from prevaccination Connecticut. The solid line is the predicted age-prevalence
curve for the subset of the data used for estimation (black stars). The smaller red
stars are data excluded from estimates due to maternal antibodies in the young and
possibly waning titers in the elderly

The estimated FoI is 0.16/year, giving a predicted mean age of infection of 6 years.

5.3 More Flexible φ -Functions

The assumption of a constant, age-invariant FoI is usually too simplistic because
of age- or time-varying patterns of mixing (Sect. 4.3). Long et al.’s (2010) data on
prevalence of the bacterium Bordetella bronchiseptica in a rabbit breeding facility
provides an illustration. B. bronchiseptica is a non-immunizing, largely avirulent
(though it can cause snuffles), persistent infection of rabbits. The motivation for the
study was to better understand which age groups are most involved in the circulation
of the pathogen. Two hundred and fourteen rabbits of known age (in months) were
swabbed nasally and tested for the bacterium.

data(rabbit)
head(rabbit)

## a n inf
## 1 1.0 59 3
## 2 2.0 8 7
## 3 2.5 4 4
## 4 3.0 2 1
## 5 3.5 5 1
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## 6 4.0 2 0

The average FoI can be calculated using the binomial regression scheme intro-
duced above. In the breeding facility, the older breeding animals are kept separate
from the younger animals, so the below estimation is based on data of rabbits < 1
year old. Figure 5.2 superimposes the fit on the plot of prevalence by age.

rabbit$notinf = rabbit$n - rabbit$inf
#Binomial regression
fit = glm(cbind(inf, notinf) ˜ offset(log(a)),

family = binomial(link = "cloglog"),
data = rabbit, subset = a < 12)

#Plot data
symbols(rabbit$inf/rabbit$n ˜ rabbit$a, circles = rabbit$n,

inches = 0.5, xlab = "Age", ylab = "Prevalence")
#Predicted curves for <1 yr and all rabbits
phi = exp(coef(fit))
curve(1 - exp(-phi * x), from = 0, to = 12, add = TRUE)
curve(1 - exp(-phi * x), from = 0, to = 30, add = TRUE,

lty = 2)
1/phi

## (Intercept)
## 5.918273

The predicted median age of infection is just under 6 months. The constant FoI
model seems to do well for up to about 15 months of age, but the model overpredicts
the prevalence in older individuals. To allow for the scenario that the FoI varies with
age, we need to implement our own framework (as opposed to using glm) using
the more general maximum likelihood ideas introduced in Sect. 3.4. One model for
age-specific FoI assumes a piecewise constant model (Grenfell & Anderson, 1985),
where individuals are classified into discrete age classes. For a piecewise constant
model, the integrand in Eq. (5.1) integrates to

∫

φ(a)da = φa(a− ca)+∑k<a φkdk,
where φa is the FoI of individuals in the a’th age bracket, and ca and da are the lower
cut-off age and duration of that bracket, respectively. A function for the integrand
takes the argument a for age, up is a vector of the upper cut-offs for each age
bracket, and foi is the vector of age-specific FoIs according to:

integrandpc = function(a, up, foi) {
# Find which interval a belongs to
wh = findInterval(a, sort(c(0, up)))
# Calculate duration of each interval
dur = diff(sort(c(0, up)))
# Evaluate integrand
inte = ifelse(wh == 1, foi[1] * a, sum(foi[1:(wh -

1)] * dur[1:(wh - 1)]) + foi[wh] * (a - up[wh -
1]))

return(inte)
}
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Fig. 5.2: Age-prevalence of B. bronchiseptica in a rabbit breeding facility. Circle
size is proportional to the number of animals tested in each age group. The solid line
is the predicted age-prevalence curve for the subset of the data used for estimation
(up to 1-year old animals). The dotted line is the extrapolation to older individuals

The negative log-likelihood function for the piecewise model takes arguments
corresponding to log-FoI (par), age (age), the number of positives (num), the num-
ber tested in each age group (denom), and age class cut-offs (up). Estimating the
FoI on a log-scale (foi=exp(par)) ensures that all rates will be positive:

llik.pc = function(par, age, num, denom, up) {
ll = 0
for (i in 1:length(age)) {

p = 1 - exp(-integrandpc(a = age[i], up = up,
foi = exp(par)))

ll = ll + dbinom(num[i], denom[i], p, log = TRUE)
}
return(-ll)

}

For this example, upper cut-off ages are taken as 1, 4, 8, 12, 18, 24, and 30 months
and arbitrary initial values of 0.1 are assigned for each piece of the FoI function
prior to optimization:
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x = c(1, 4, 8, 12, 18, 24, 30)
para = rep(0.1, length(x))

The optim function will search for the maximum likelihood estimates for each age
bracket:

est = optim(par = log(para), fn = llik.pc, age = rabbit$a,
num = rabbit$inf, denom = rabbit$n, up = x,
method = "Nelder-Mead")

The resultant maximum likelihood estimates for the log-FoI are given in est$par.
The associated age-specific FoIs are:

round(exp(est$par), 4)

## [1] 0.0626 0.3712 0.0573 0.0000 0.0000 0.0000 0.0027

Figure 5.3 shows the predicted age-prevalence curve from the estimated stepwise
FoI function according to the following code:

#Make space for left and right axes
par(mar = c(5, 5, 2, 5))
#Add beginning and ends to x and y for step plot
xvals = c(0, x)
yvals = exp(c(est$par, est$par[7]))
plot(xvals, yvals, type = "s", xlab = "age", ylab = "FoI")

#Superimpose predicted curve
par(new = T)
p = rep(0, 28)
for (i in 1:28) {

p[i] = 1 - exp(-integrandpc(a = i, up = x,
foi = exp(est$par)))

}
plot(p ˜ c(1:28), ylim = c(0, 1), type = "l", col = "red",

axes = FALSE, xlab = NA, ylab = NA)

#Add right axis and legend
axis(side = 4)
mtext(side = 4, line = 4, "Prevalence")
legend("right", legend = c("FoI", "Prevalence"),

lty = c(1, 1), col = c("black", "red"))

The FoI peaks perinatally and then falls to zero after the 8-month age class. This
is likely due to the older breeder females being housed separately and only having
contact with their kittens. Long et al. (2010) used this (in combination with some
other analyses; see Sect. 18.5) to conclude that most infections happen at a young
age from infected mothers to their offspring and then among litter mates.
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Fig. 5.3: The piecewise constant age-specific FoI of B. bronchiseptica in a rabbit
breeding facility and the associated predicted age-prevalence curve

5.4 A Log-Spline Model

An alternative nonparametric approach to the piecewise constant model is to use
smoothing splines. A regression spline is a smooth curve that can take an arbitrary
shape except that it is constrained to be continuous and with continuous first and sec-
ond derivatives (Härdle, 1990; Hastie & Tibshirani, 1990). The popularity of splines
in nonparametric regression stems from its computational tractability; a spline can
be fit by multiple regression on a set of basis function decompositions of a covari-
ate. The gam and mgcv packages offer automated ways to fit a variety of spline
variants to binomial data (and any other error distribution within the exponential
family). Unfortunately, as with the case of the piecewise constant model, fitting the
log-spline model is a bit more involved because of the integration step in Eq. (5.1).
The splines package has functions to create various spline bases that can be used
with the lm function; predict.lm can predict values for the spline given regres-
sion coefficients.

The approach taken here is a bit cheeky in that it hijacks a spline regression
object created using the bs spline basis functions in combination with lm and uses
optim to update/override the regression coefficients of the lm object via a binomial
maximum likelihood until a solution is found. The smoothness of the age-FoI curve

https://en.wikipedia.org/wiki/Smoothing_spline
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is set by the number of degrees of freedom of the spline. In the below code, the dl
object will end up as the hijacked object for the age-specific FoI (Long et al., 2010).

require(splines)
# Degrees-of-freedom
df = 7
# Construct dummy lm object
dl = lm(inf ˜ bs(a, df), data = rabbit)

To undertake this, the tmpfn function predicts the spline on a log-scale (to be anti-
logged) to ensure that the FoI estimates are strictly positive:

tmpfn = function(x, dl) {
x = predict(dl, newdata = data.frame(a = x))
exp(x)

}

Finally, the tmpfn2 function calculates the negative log-likelihood of the FoIs (as
done in the foipc function above) by applying the inbuilt R numerical integrator,
integrate, to the spline:

tmpfn2 = function(par, data, df) {
# Dummy lm object
dl = lm(inf ˜ bs(a, df), data = data)
# Overwrite spline coefficients with new values
dl$coefficients = par
# Calculate log-likelihood
ll = 0
for (i in 1:length(data$a)) {

p = 1 - exp(-integrate(tmpfn, 0, i, dl = dl)$value)
ll = ll + dbinom(data$inf[i], data$n[i], p, log = T)

}
return(-ll)

}

As per previously, arbitrary initial values are optimized through the minimization of
the negative log-likelihood using optim.

para = rep(-1, df + 1)
dspline = optim(par = para, fn = tmpfn2, data = rabbit,

df = df, method = "Nelder-Mead", control = list(trace = 2,
maxit = 2000))

Figure 5.4 shows the resultant maximum likelihood fits.

par(mar = c(5, 5, 2, 5)) #Room for two axes
# Overwrite dummy object coefficients with MLEs
dl$coefficients = dspline$par
# Age-prevalence plot
plot(tmpfn(rabbit$a, dl) ˜ rabbit$a, type = "l", ylab = "FoI",

xlab = "Age (mos)", las = 1)
# Overlay FoI
par(new = TRUE)
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p = rep(0, 28)
for (i in 1:28) {

p[i] = 1 - exp(-integrate(tmpfn, 0, i, dl = dl)$value)
}
plot(p ˜ c(1:28), ylim = c(0, 1), type = "l", col = "red",

axes = FALSE, xlab = NA, ylab = NA)
axis(side = 4, las = 1)
mtext(side = 4, line = 4, "Prevalence")
legend("topright", legend = c("FoI", "Prevalence"), lty = c(1,

1), col = c("black", "red"))
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Fig. 5.4: The spline estimate of the age-specific FoI of B. bronchiseptica in a rabbit
breeding facility

Both the piecewise (Fig. 5.3) and spline (Fig. 5.4) models show strong evidence of
age-specificity in the FoI with a peak in transmission somewhere between 1 and 5
months of age, suggesting that circulation is mainly among the young and among
litter mates (Long et al., 2010). We revisit this case study in Sect. 18.5.
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5.5 Rubella

Rubella is a relatively mild, vaccine-preventable viral infection that causes fever
and rash in children, but infection during pregnancy leads to stillbirths or congenital
rubella syndrome (CRS). It is thus one of the classic teratogenic diseases. The main
public health objective is therefore to minimize the FoI in women of childbearing
age. As discussed in Sect. 5.2, being a rate of infection of susceptibles, the FoI gov-
erns not only the mean but also the full distribution of the age of first infection,
which in the case of fully immunizing infection like rubella is the only infection an
individual will experience. Vaccination always lowers the overall circulation (FoI)
in the population and the overall number of susceptibles. However, unless vaccine-
induced elimination is achieved, we expect vaccination to also increase the mean
age of infection (MAI) among the unvaccinated and thus lead to a skew of cases
toward older age groups. Knox (1980) thus pointed out that there is a potential risk
that vaccination can increase burden of CRS (and other vaccine-preventable ter-
atogenic diseases). The importance of this consideration is clearly illustrated by a
surprising surge in CRS cases in Greece in the mid-90s following a low-intensity
vaccination campaign (Panagiotopoulos et al., 1999). As a rule of thumb, WHO
subsequently only recommends the use of the measles–mumps–rubella (MMR) vac-
cine once a country or region has reached at least an 80% cover of routine measles
childhood vaccination (WHO, 2011). The catalytic framework can help clarify the
tipping point for when to switch strategies.

Age-incidence data is less ideal than seroprevalence data for catalytic analysis;
however, it is more common and therefore worth considering. Metcalf et al. (2011c)
studied age-intensity curves for rubella across the provinces of Peru between 1997
and 2009. There were 24,116 reported cases during the period. The data are 1/2-
monthly to age 1 and yearly thereafter (Fig. 5.5). With age-incidence data on immu-
nizing infections, we can use the catalytic framework to estimate the relative age-
specific FoI using the cumulative incidence by age (in place of age-seroprevalence
or age-prevalence). For the analysis, we use the total number of cases as the denom-
inator because the actual number of susceptibles in each age group is not monitored.
Hence, the estimate is a relative FoI because of the unknown baseline. Using the to-
tal cases as a denominator leads to sever biases of the FoI at old age classes (because
exactly all of the assumed susceptibles in the final age class will be presumed to be
infected at the time), so it should only be applied to the younger portion of the data.5

data(peru)
head(peru)

## age incidence cumulative n
## 2 0.01095890 1 56 24116
## 3 0.01369863 1 57 24116
## 4 0.01643836 1 58 24116
## 5 0.01917808 2 60 24116

5 Its application also assumes a uniform age distribution, so a correction for the age-pyramid may
be necessary for a more refined analysis (Ferrari et al., 2010).

https://en.wikipedia.org/wiki/Congenital_rubella_syndrome


5.5 Rubella 99

## 6 0.03561644 1 61 24116
## 7 0.03835616 2 63 24116

# Calculate cumulative incidence
peru$cumulative = cumsum(peru$incidence)
# Define denominator
peru$n = sum(peru$incidence)
par(mar = c(5, 5, 2, 5)) #Make room for two axes and plot
# Plot incidence with cumulative overlaid
plot(peru$incidence ˜ peru$age, type = "b", xlab = "Age",

ylab = "Incidence")
par(new = T)
plot(peru$cumulative ˜ peru$age, type = "l", col = "red",

axes = FALSE, xlab = NA, ylab = NA)
axis(side = 4)
mtext(side = 4, line = 4, "Cumulative")
legend("right", legend = c("Incidence", "Cumulative"),

lty = c(1, 1), col = c("black", "red"))

The first analysis applies the piecewise model assuming a separate FoI for each
year up to age 20 and 10 year classes thereafter. Convergence of the piecewise model
with this many segments is very slow, so the actual figure (Fig. 5.6) was produced by
doing repeat calls to optim using different optimization methods (Nelder-Mead,
BFGS, and SANN), feeding the estimates from each call as starting values for the
next. However, the basic analysis is:

#Upper age cut-offs
up = c(1:20, 30, 40, 50, 60, 70, 80)
para = rep(0.1, length(up)) #Inital values
#Minimize log-likelihood
est2 = optim(par = log(para),fn = llik.pc, age = peru$age,

num = peru$cumulative, denom = peru$n, up = up,
method = "Nelder-Mead", control =
list(trace = 2, maxit = 2000))

#Step plot
x = c(0, up)
y = exp(c(est2$par, est2$par[26]))
plot(x, y, ylab = "Relative FoI", xlab = "Age", type = "s",

ylim = c(0, 0.25), xlim = c(0, 80))

There is a clear peak in FoI in the 8–10 age group (Fig. 5.6). The pattern makes
sense given the biology of rubella and the assortative mixing commonly seen in the
human host with most contacts being among the same-aged individuals (Sect. 4.3).
Peru has a life expectancy of around 75 years, and the R0 of rubella is typically
quoted in the 4–10 range, so according to ā � L/(R0 − 1), the peak in circulation
would be expected to be in an interval around 10 years of age.

More refined scenario analyses regarding consequences of vaccination can be
done using the spline model introduced in Sect. 5.4. The focus is on the 0–45 year
age range as this spans the pre- to post-childbearing age:
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Fig. 5.5: Age-specific incidence and cumulative incidence of rubella in Peru 1997–
2009

data3 = peru[peru$age < 45, ]
df = 5
para = rep(0.1, df + 1)

The analysis follows the above by using a log-transformation to constrain the FoI
to be positive, create a dummy lm object, and define the function to evaluate the
negative log-likelihood of the FoI curve given the data:

# Prediction function
tmpfn = function(x, dl) {

x = predict(dl, newdata = data.frame(age = x))
exp(x)

}
# Dummy lm object
dl = lm(cumulative ˜ bs(age, df), data = data3)
# Log-likelihood function
tmpfn2 = function(par, data, df) {
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Fig. 5.6: The relative age-specific FoI of rubella in Peru as estimated using the
piecewise-constant model

dl = lm(cumulative ˜ bs(age, df), data = data)
dl$coefficients = par
ll = 0
for (a in 1:length(data$age)) {

p = ((1 - exp(-integrate(tmpfn, 0, data$age[a],
dl = dl)$value)))

ll = ll + dbinom(data$cumulative[a], data$n[a],
p, log = T)

}
return(-ll)

}

Getting a good fit is computationally expensive but reveals an interesting two-
peaked force of infection (Fig. 5.7): A dominant peak just under 10 years and a
subdominant peak around 35. A plausible scenario is that most people get infected
in school, but the fraction that escapes this dominant age of infection is most likely
to contract the virus when their children get infected during schooling age.

#Fit model
dspline.a45.df5 = optim(par = log(para), fn = tmpfn2,

data = data3, df = df, method = "Nelder-Mead",
control = list(trace = 4, maxit = 5000))
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#Overwrite dummy object coefficients with MLEs
dl$coefficients = dspline.a45.df5$par
plot(exp(predict(dl)) ˜ data3$age, xlab = "Age",

ylab = "Relative FoI", type = "l")
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Fig. 5.7: The relative age-specific FoI of rubella in Peru as estimated using the spline
model

The fraction of cases that is predicted to occur in the childbearing age-bracket
is the joint probability of not being infected by age 15 and thence being infected
before age 40:

exp(−
∫ 15

0
φ(a)da)(1− exp(−

∫ 40

15
φ(a)da)). (5.2)

We can predict this fraction from the spline model.

(exp(-integrate(tmpfn, 0, 15, dl = dl)$value)) * (1 -
exp(-integrate(tmpfn, 15, 40, dl = dl)$value))

## [1] 0.08815273

Thus, with the current pattern of circulation, just over 9% of the cases are predicted
to occur in the at-risk age group. With a flat 50% reduction in FoI, this fraction
would change to:

redn = 0.5
(exp(-redn * integrate(tmpfn, 0, 15, dl = dl)$value)) *

(1 - exp(-redn * integrate(tmpfn, 15, 40, dl = dl)$value))

## [1] 0.2376147
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The reduction in FoI is a predicted increase in the mean age of infection (in reality,
this will also likely lead to a change in the age-specific FoI curve; see Sect. 4.4), so
that almost 24% of cases are predicted to fall in the at-risk group. For simplicity,
assuming an associated 50% reduction in cases, the total number in the age-bracket
of concern would thus increase given this intervention, predicting an intervention-
induced enhancement of the public health problem as suggested by Knox (1980)
and as was seen in Greece during the 1990s (Panagiotopoulos et al., 1999).

Metcalf and Barrett (2016) discuss public health issues related to the possible
introduction of vaccines against the recent teratogenic Zika virus that can cause mi-
crocephaly in children of mothers infected during pregnancy in light of the lessons
learnt from rubella. Whooping cough is another vaccine preventable disease that
causes significant morbidity and mortality in young children. Lavine et al. (2011)
discuss how a waning vaccine could increase circulation among people of child-
bearing age and thus increase the risk of parent–newborn transmission. They rec-
ommended that cocoon vaccination of expecting parents should be considered if the
current acellular vaccine is as leaky as is feared (Warfel et al., 2014). Althouse and
Scarpino (2015) provide further discussion of the utility of cocoon vaccination and
other interventions.



Chapter 6
Seasonality

6.1 Environmental Drivers

Host behavior and environmental factors influence disease dynamics in a variety of
ways through affecting the pathogen such as the survival of infective stages outside
the host and via host demographies from changing birth rates, carrying capacitities,
social organization, etc. Sometimes such influences have relatively subtle conse-
quences (e.g., slight changes in R0) as is likely the effect of absolute humidity on
influenza transmission (Lowen et al., 2007; Bjørnstad & Viboud, 2016). Other times
the consequences are substantial by changing the dynamics qualitatively such as in-
ducing multiannual or chaotic epidemics (London & Yorke, 1973; Schaffer, 1985;
Earn et al., 2000b; Dalziel et al., 2016) or initiating ecological cascades (Jones et al.,
1998; Glass et al., 2000; Luis et al., 2015). It is useful to distinguish between trends,
predictable variability (such as seasonality), or non-predictable variability due to
environmental and demographic stochasticity.

Some level of seasonality in transmission is very common in infectious disease
dynamics and is usually reflected in seasonal cycles in incidence (Altizer et al.,
2006); seasonality in incidence is the norm even for persistent infections for which
prevalence may remain relatively stable. Influenza is the poster-child for seasonal-
ity in infection risk in the public eye (e.g., Bjørnstad & Viboud, 2016). Figure 6.1a
shows the mean weekly influenza-related deaths in Pennsylvania between 1972 and
1998. The pronounced winter-peaked seasonality is linked to how climate condi-
tions, such as temperature and absolute humidity affect rates of viral degradation in
the environment (Shaman & Kohn, 2009; Dalziel et al., 2018). There is evidence of
similar drivers of other airway viruses such as the respiratory syncytial virus (Pitzer
et al., 2015).

We can illustrate various types of seasonality using four infectious diseases in
Pennsylvania contained in the paili, palymes, pagiard, and pameasle

The chapter uses the following R packages: deSolve and plotrix.
A five minute epidemics MOOC on seasonality can be seen on youtube:
https://www.youtube.com/watch?v=TDuuM-wm6nw.
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Fig. 6.1: Mean (± 1 SD) weekly incidence of (a) deaths due to influenza like illness,
(b) Lyme’s disease, (c) giardiosis, and (d) pre-vaccination measles in Pennsylvania

datasets. The below is a simple function to extract and plot weekly average inci-
dence (and standard errors) through the year from time series. Weekly incidence
data occasionally has 53 reporting weeks (because years are 52.14 weeks, and leap
years are 52.28 weeks). The function omits these extras.1

ppp = function(wk, x) {
require(plotrix)
x = x[wk < 53]
wk = wk[wk < 53]
ses = sapply(split(x, wk), mean, na.rm = TRUE)
sesv = sapply(split(x, wk), sd, na.rm = TRUE)
sesdv = sesv/sapply(split(x, wk), sd, na.rm = TRUE)

1 split creates a list from a vector and sapply applies a function to a list to return a
new vector.
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plotCI(x = c(1:52), y = ses, ui = ses + sesdv, li = ses -
sesdv, xlab = "Week", ylab = "Incidence")

}

Figure 6.1 shows the seasonality in reported incidence of Lyme’s disease, giardiosis,
measles, and mortality from influenza-like illness (ILI) in Pennsylvania.

par(mfrow = c(2, 2)) #A four panel plot
ppp(paili[, "WEEK"], paili[, "PENNSYLVANIA"])
title("ILI mortality (1972-98)")
ppp(palymes[, "WEEK"], palymes[, "PENNSYLVANIA"])
title("Lymes (2006-14)")
ppp(pagiard[, "WEEK"], pagiard[, "PENNSYLVANIA"])
title("Giardia (2006-14)")
ppp(pameasle[, "WEEK"], pameasle[, "PENNSYLVANIA"])
title("Measles (1928-69)")

Seasonality arises from a variety of causes depending on the mode of transmis-
sion of the pathogen: air-borne (like influenza), vector-borne, or water-/food-borne.
Lyme’s disease, for example, is caused by tick-vectored bacteria in the genus Bor-
relia. Figure 6.1b shows the sharply seasonal incidence of human cases of Lyme’s
in Pennsylvania. The seasonality is the combined effect of seasonality in tick ac-
tivity levels and human use of wilderness. Most mosquito-vectored pathogens also
show strong seasonality because of the temperature- and precipitation-dependence
of the vector life cycle. The seasonality of cholera infections, caused by the Vibrio
cholerae bacterium, is among the most studied water-borne pathogens. The sea-
sonality in southeast Asia is caused by rainfall variation associated with the mon-
soon season (Codeço, 2001; Ruiz-Moreno et al., 2007) (Fig. 1.3b). However, other
water-borne diseases like giardiasis caused by protozoans in the genus Giardia also
show marked seasonality (Fig. 6.1c). Host behavior can further cause seasonality in
contact rates. Childhood disease dynamics, for example, are often shaped by “term-
time” forcing: increased transmission when schools are open (e.g., Fine & Clarkson,
1982; Kucharski et al., 2015). Weekly average prevaccination incidence of measles
in Pennsylvania, for instance, collapses as school closes for the summer only to re-
sume robust circulation after the vacation ends (Fig. 6.1d). Additionally, seasonal
urban–rural migration in Niger has been shown to generate strong seasonality in
measles transmission (Ferrari et al., 2008). Seasonally varying birth rates can in-
duce seasonality in susceptible recruitment in wildlife (Swinton et al., 1998; Peel
et al., 2014) and humans (Martinez-Bakker et al., 2014).

6.2 The Seasonally Forced SEIR Model

To study the effect of seasonality in transmission, we modify the SEIR model
(Eqs. (3.3)–(3.6)). We first consider the gradient functions for the undriven system.
As in Sect. 4.4, we use with(as.list(...)) to evaluate the expression using
the definitions in the parms vector.
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seirmod = function(t, y, parms) {
S = y[1]
E = y[2]
I = y[3]
R = y[4]

with(as.list(parms), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dE, dI, dR)
list(res)

})
}

We can simulate 10 years of dynamics using the basic recipe introduced in
Sect. 2.3. The seasonally forced SEIR model has been successfully applied to under-
stand the dynamics of measles, such as those depicted in Fig. 1.4, and other immu-
nizing childhood infections (e.g., Schwartz, 1985; Earn et al., 2000b; Bauch & Earn,
2003). To simulate a measles-like pathogen, assume a latent period of 8 days and
an infectious period of 5 days. Assume the initial host population to be 0.1% infec-
tious, 6% susceptibles, and the rest immune; the R0 of measles is typically quoted in
the 13–20 range, which means that the equilibrium fraction of susceptibles is some-
where around 5%. For simplicity, assume a host life span of 50 years and set N = 1
to model the fraction in each compartment.

require(deSolve)
times = seq(0, 10, by = 1/120)
paras = c(mu = 1/50, N = 1, beta = 1000, sigma = 365/8,

gamma = 365/5)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)

As discussed in Sect. 3.7, the R0 for this system, assuming disease-induced mortality
is negligible, is σ

σ+μ
β

γ+μ .2 We can verify that our choice of β places R0 in the
measles-like range. We use quote to define the equation for R0.

R0 = quote(sigma/(sigma + mu) * beta/(gamma + mu))
with(as.list(paras), eval(R0))

## [1] 13.68888

The integrated ODEs plotted in time and in the phase plane reveal that, as is the case
of the SIR model, the unforced SEIR model predicts dampened oscillations toward
the endemic equilibrium when R0 is above one (Fig. 6.2).

2 If the infection has a case fatality ratio of, say, 30%, the additional rate of removal is α =
−log(1− 0.3)/ip, where ip is the duration of infection and the appropriate calculation would be
R0 = σβ/(σ +μ)(γ +μ +α).
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out = as.data.frame(ode(start, times, seirmod, paras))
par(mfrow = c(1, 2)) #Two plots side by side
plot(times, out$I, ylab = "Prevalence", xlab = "Time",

type = "l")
plot(out$S, out$I, ylab = "Prevalence", xlab = "Susceptible",

type = "l")
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Fig. 6.2: Predicted prevalence from the SEIR model (a) in time, and (b) in the phase
plane with μ = 1/50, N = 1(to model fractions), β = 1000, σ = 365/8, and γ =
365/5. Ten years are not long enough for the simulation to settle on the endemic
equilibrium, but the dampened cycles are apparent
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6.3 Seasonality in β

The predicted dampened oscillations toward an equilibrium are at odds with the
recurrent outbreaks seen in many immunizing infections (e.g., Fig. 1.4). Sustained
oscillations require either additional predictable seasonal drivers—the topic of this
chapter—or stochasticity (Sect. 8.2). An important driver in human childhood in-
fections is seasonality in contact rates because of aggregation of children during
the school term (Fine & Clarkson, 1982; Kucharski et al., 2015). For simplicity, we
can analyze the consequences of seasonality by assuming sinusoidal forcing on the
transmission rate3 according to β (t) = β0(1+β1cos(2πt)). The mean transmission
rate is β0, but the realized transmission varies cyclically with a period of one time
unit, and the magnitude of the seasonal variation is controlled by the parameter β1.
The modified gradient function is:

seirmod2 = function(t, y, parameters) {
S = y[1]
E = y[2]
I = y[3]
R = y[4]

with(as.list(parameters), {
dS = mu * (N - S) - beta0 * (1 + beta1 * cos(2 *

pi * t)) * S * I/N
dE = beta0 * (1 + beta1 * cos(2 * pi * t)) * S *

I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dE, dI, dR)
list(res)

})
}

With no seasonality, the model predicts dampened oscillation, and with moderate
seasonality, the prediction is low-amplitude annual outbreaks. However, as season-
ality increases (to β1 = 0.2, say), we start seeing some surprising consequences of
the seasonal forcing (Fig. 6.3): the appearance of harmonic resonance between the
internal cyclic dynamics of the SEIR clockwork and the annual seasonal forcing
function.

times = seq(0, 100, by=1/120)
paras = c(mu = 1/50, N = 1, beta0 = 1000, beta1 = 0.2,

sigma = 365/8, gamma = 365/5)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
out = as.data.frame(ode(start, times, seirmod2, paras))
par(mfrow = c(1, 2)) #Side-by-side plot
plot(times, out$I, ylab="Infected", xlab="Time",

3 It is possible to analyze more realistic patterns of seasonality, such as a more explicit term-time
forcing; see Keeling et al. (2001) and Chap. 8. The qualitative (but not detailed) results appear to
be robust to the exact shape of the forcing function.
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xlim = c(90, 100), ylim = c(0,
max(out$I[11001:12000])), type = "l")

plot(out$S[11001:12000], out$I[11001:12000],
ylab = "Infected", xlab = "Susceptible", type = "l")
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Fig. 6.3: The 10 last years of the forced SEIR model for β1 = 0.2. (a) Predicted
prevalence and (b) the S–I phase plane

The emergent pattern of recurrence in the forced SEIR model is the result of
an interaction between the internal periodic clockwork (the damping period) of the
SEIR flow and the externally imposed periodic forcing. The damping period is the
focus of Chap. 10. However we can use the results previewed in Sect. 2.7: When
working with a continuous-time ODE model which results in cyclic behavior like
the SEIR model, the dominant eigenvalues of the Jacobian matrix—when evaluated
at the equilibrium—are a conjugate pair of complex numbers (a±bı) that determines
the period according to 2π/b.

The endemic equilibrium of the SEIR model is S∗ = 1/R0, E∗ = (μ+γ)I∗/σ and
I∗ = μ(1−1/R0)R0/β (ignoring the absorbing compartment R∗ = 1−S∗−E∗−I∗):

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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mu = paras["mu"]
N = paras["N"]
beta0 = paras["beta0"]
beta1 = paras["beta1"]
sigma = paras["sigma"]
gamma = paras["gamma"]
R0 = sigma/(sigma + mu) * beta0/(gamma + mu)
# Equilibria
Sstar = 1/R0
Istar = mu * (1 - 1/R0) * R0/beta0
Estar = (mu + gamma) * Istar/sigma
eq = list(S = Sstar, E = Estar, I = Istar)

The D function can carry out symbolic differentiation to generate and evaluate the
elements of the Jacobian matrix:

dS = quote(mu * (N - S) - beta0 * S * I / N)
dE = quote(beta0 * S * I / N - (mu + sigma) * E)
dI = quote(sigma*E - (mu + gamma) * I)
#Elements of Jacobian
j11 = D(dS, "S"); j12 = D(dS, "E"); j13 = D(dS, "I")
j21 = D(dE, "S"); j22 = D(dE, "E"); j23 = D(dE, "I")
j31 = D(dI, "S"); j32 = D(dI, "E"); j33 = D(dI, "I")
#Jacobian
J = with(eq,
matrix(c(eval(j11),eval(j12),eval(j13),

eval(j21),eval(j22), eval(j23),
eval(j31),eval(j32), eval(j33)),
nrow=3, byrow=TRUE))

In this calculation, the dominant pair of complex conjugates is at the second and
third places in the vector of eigenvalues. The associated resonant period is:

round(eigen(J)$values, 3)

## [1] -118.725+0.000i -0.107+2.667i -0.107-2.667i

2 * pi/(Im(eigen(J)$values[2]))

## [1] 2.355891

So, the recurrent biennial epidemics are sustained because the internal epidemic
clockwork cycles with a period of 2.3 years, but it is forced at an annual time scale,
so as a compromise the epidemics are locked on to the annual clock, but with al-
ternating major and minor epidemics such as seen, for example, in prevaccination
measles in New York 1944–1958 (Fig. 1.4b) and London 1950–1965 (Fig. 1.4c).
Section 6.8 introduces a general-purpose Jacobian calculator that makes these cal-
culations less arduous.
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6.4 Bifurcation Analysis

We can make a more comprehensive summary of the consequences of seasonality
on the SEIR flow using a bifurcation analysis: A systematic search across a range
of β1 values. For annually forced models, this is best done by strobing the system
once each year. To study the long-term (asymptotic) dynamics, we discard the initial
transient part of the simulation. In the below, we hence use one data point per year
for the last 42 years of simulation (which the sel variable flags) so that an annual
cycle produces a single value (so will a fixed-point equilibrium), biannual cycles two
values, etc. The resultant bifurcation plot shows when annual epidemics gives way to
biannual cycles and finally chaotic dynamics as seasonality increases (Fig. 6.4). The
irregular dynamics with strong seasonality comes about because there is no simple
resonant compromise between the internal clock and the external forcing function.
We may think of it as resonance giving place to dissonance in the dynamical system.
That stronger seasonality pushes measles from regular to irregular epidemics has
been predicted by the theoretical literature (e.g., Aron & Schwartz, 1984) and is
supported by an empirical comparison of measles dynamics in prevaccination UK
and USA by Dalziel et al. (2016) (see Sect. 11.2).

First define initial conditions and the sequence of parameter values to be consid-
ered for β1 and then do the numerical integration for each of its values:

times = seq(0, 100, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
beta1 = seq(0, 0.25, length = 101)
# Matrix to store infecteds
Imat = matrix(NA, ncol = 12001, nrow = 101)
# Loop over beta1’s
for (i in 1:101) {

paras = c(mu = 1/50, N = 1, beta0 = 1000, beta1 = beta1[i],
sigma = 365/8, gamma = 365/5)

out = as.data.frame(ode(start, times, seirmod2, paras))
Imat[i, ] = out$I

}

For the visualization arbitrarily select the prevalence at the beginning of the 4th
month each year of the simulations and plot the values against the associated β1

values for the bifurcation plot (Fig. 6.4).

sel = seq(7001, 12000, by = 120)
plot(NA, xlim = range(beta1), ylim = c(1e-07, max(Imat[,

sel])), log = "y", xlab = "beta1", ylab = "prevalence")
for (i in 1:101) {

points(rep(beta1[i], length(sel)), Imat[i, sel], pch = 20)
}

Thus, with measles-like parameters, annual epidemics give way to biennial cycles
at β1 around 0.15 corresponding to a seasonal coefficient of variation (CV) in trans-
mission of 10% and chaos for β1 just over 0.2 corresponding to a CV of around
15%.
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Fig. 6.4: The bifurcation plot of prevalence at the beginning of the 4th month of
each year against seasonality for the forced SEIR model

6.5 Stroboscopic Section

Rand and Wilson (1991) studied the seasonally forced SEIR model with a set of
parameters resulting in chaotic dynamics. It is interesting to integrate the model
with these parameters for a very long time (in this case for 10,000 years) to better
understand/visualize the meaning of quasi-periodic chaos. We will discuss this topic
in greater detail in Sect. 11.2. Figure 6.5 shows a time series of prevalence and
the dynamics in the S–I phase plane strobed at the annual time scale—the annual
stroboscopic section of the S–I plane. The time series is erratic, but the paired S–I
series trace out a very intricate pattern (Fig. 6.5b); the four-armed shape corresponds
to the propensity of the chaotic pattern to adhere to a wobbly quasi-periodic 4-
year recurrence. Chapter 11 will revisit on this attractor and its role in facilitating
“chaotic stochasticity” and “stochastic resonance.”

times = seq(0, 1e+05, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
paras = c(mu = 1/50, N = 1, beta0 = 1800, beta1 = 0.28,

sigma = 35.84, gamma = 100)
out = as.data.frame(ode(start, times, seirmod2, paras))
sel = seq(7001, 1.2e+07, by = 120)
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par(mfrow = c(1, 2))
plot(out$time[7001:13001], out$I[7001:13001], type = "l",

xlab = "Year", ylab = "Prevalence")
plot(out$S[sel], out$I[sel], type = "p", xlab = "S", ylab = "I",

log = "y", pch = 20, cex = 0.25)
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Fig. 6.5: (a) Time series of prevalence. (b) S–I phase plane of the annual strobo-
scopic section of the quasi-periodic chaotic prevalence of a seasonally forced SEIR
model (μ = 0.02, β0 = 1800, β1 = 0.28, σ = 35.84, and γ = 100) (Rand & Wilson,
1991)

6.6 Susceptible Recruitment

The patterns of recurrent epidemics are also shaped by other characteristics of the
host and pathogen. Earn et al. (2000b) studied how susceptible recruitment affects
dynamics of the seasonally forced SEIR model by doing a bifurcation analysis over
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μ (Fig. 6.6). As shown by Earn et al. (2000b), reduced susceptible recruitment in
the seasonally forced SEIR model leads to a cascade from annual to biennial to
coexisting annual and complex attractors.4 To trace out the coexisting attractors, it
is necessary to use multiple starting conditions because each attractor will have its
own basin of attraction; that is, despite being a deterministic model, the dynamic
behavior will change depending on the initial conditions. We do this by looping
forward and backward over μ using the final values of the simulation with previous
parameter values as initial conditions for the subsequent simulation.

times = seq(0, 100, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
mu = seq(from = 0.005, to = 0.02, length = 101)
ImatF = ImatB = matrix(NA, ncol = 12001, nrow = 101)
#Forwards analysis
for(i in 1:101){

paras = c(mu = mu[i], N = 1, beta0 = 2500,
beta1=0.12, sigma = 365/8, gamma = 365/5)

out = as.data.frame(ode(start, times, seirmod2,
paras))

ImatF[i,] = out$I
start = c(S = out$S[12001], E = out$E[12001],

I = out$I[12001], R = out$R[12001])
}
#Backwards analysis
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
for(i in 101:1){

paras = c(mu = mu[i], N = 1, beta0 = 2500,
beta1 = 0.12, sigma = 365/8, gamma = 365/5)

out = as.data.frame(ode(start, times, seirmod2,
paras))

ImatB[i,] = out$I
start = c(S = out$S[12001], E = out$E[12001],

I = out$I[12001], R = out$R[12001])
}
#Forward/backward bifurcation plot
sel = seq(7001, 12000, by = 120)
par(mfrow = c(1,1))

plot(NA, xlim = range(mu), ylim = range(ImatF[,sel]),
log = "y", xlab = "mu", ylab = "prevalence")

for(i in 1:101){
points(rep(mu[i], dim(ImatF)[2]), ImatF[i, ],

pch = 20, cex = 0.25)
points(rep(mu[i], dim(ImatB)[2]), ImatB[i, ],

pch = 20, cex = 0.25, col = 2)
}

4 We discuss coexisting attractors in further detail in Sect. 11.4.

https://en.wikipedia.org/wiki/Attractor#Basins_of_attraction
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Fig. 6.6: The bifurcation plot of prevalence against birth rate μ for the forced SEIR
model with intermediate (8.5% CV) seasonality. Black represents values from the
forward analysis and red the backward analysis

In Fig. 6.6, the attractor from the forward analysis is shown in black and back-
ward analysis in red. This color coding reveals the coexisting attractors for a range
of parameter values. The predicted transition from biennial epidemics to annual
when birth rates are above 25 per thousand per year is confirmed from changes
in measles dynamics following the baby boom post-World War II in the UK (see
Fig. 1.4c and Sect. 7.6). The complex dynamics at lower susceptible recruitment
rates comes about for the same reasons as discussed in Sect. 6.4 because of disso-
nance between the external annual forcing and the internal periodic clock. With a
per capita susceptible recruitment rate of 0.002/year which corresponds to 90% vac-
cination rate in the model parameterization, the dampening period is predicted to be
7.4 years (as calculated by changing parameter values in the code from Sect. 6.3; see
also Chap. 10). Hence, Earn et al. (2000b) predicted that vaccination may, depending
on seasonality, lead to chaotic epidemics. A complication in many real populations
is that the troughs following major epidemics may be so deep that the chain of trans-
mission will often break, leading to disease fade-out (Ferrari et al., 2008). In a math-
ematical study of rabies spread in European red fox, Mollison (1991) dubbed this
the “atto-fox” of deterministic models; if the models predict that there is a 10−18th
of a rabid fox running around, deterministic predictions may not be very relevant
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to real-life epidemics. However, Dalziel et al. (2016) provide plausible evidence for
sustained quasi-periodic chaotic epidemics in several US cities prevaccination. This
evidence will be discussed further in Sect. 11.2. How non-persistent chaotic fluctua-
tion may hamper eradication efforts through asynchronized epidemics and regional
metapopulation persistence will be addressed in Sects. 15.6–15.8.

6.7 A Forced SEIR shinyApp

The seasonally forced SEIR model can be further studied using the seir.app
shinyApp. The app can be launched from R through:

require(epimdr2)
runApp(seir.app)

6.8 A Jacobian Function

In this and subsequent chapters, we will need to construct and evaluate Jacobian
matrices for a range of different models and for a variety of purposes. These topics
include among other stability analysis, resonant periodicity calculation, and evalua-
tion of transfer functions. Each case needs the Jacobian matrix evaluated with some
parameters and at some point in the phase plane. R is not primarily design to do
symbolic math, but a cobbled together general-purpose function is:5

jacobian = function(states, elist, parameters, pts) {
paras = as.list(c(pts, parameters))
k = 0
jl = list(NULL)
for (i in 1:length(states)) {

assign(paste("jj", i , sep = "."), lapply(lapply(elist,
deriv, states[i]), eval, paras))

for (j in 1:length(states)) {
k = k + 1
jl[[k]] = attr(eval(as.name(paste("jj", i,

sep=".")))[[j]], "gradient")[1, ]
}

}
J = matrix(as.numeric(as.matrix(jl)[, 1]),

ncol = length(states))
return(J)

}

The function requires the following arguments:

5 As for the nextgenR0 function introduced in Sect. 3.11, the internal syntax here involves quite
a bit of acrobatics. Its construction involved a lot of trial and error on the authors part but it works.
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• states is a vector naming all state variables.
• elist is a list that contains equations (as quote) for all state variables.
• parameters is a labeled vector of parameters.
• pts is a labeled vector of the point in the phase plane in which to evaluate the

Jacobian (often the endemic or disease free equilibrium).

To illustrate its usage, consider the SIR model (Eqs. (2.1)–(2.3)). Because the R
compartment is absorbing and does not influence the damping period, this class can
be ignored.

#STEP 1: classes are $S$ and $I$
st = c("S", "I")
#STEP 2: Equations are:
el = c(dSdt = quote(mu * (N - S) - beta * S * I/N),

dIdt = quote(beta * S * I/N - (mu + gamma) * I))
#STEP 3: Some arbitrary parameters are
parms = c(mu = 1/(50 * 52), N = 1, beta = 2,

gamma = 1/2)
#STEP 4: for this SIR the endemic equilibrium is
eeq = with(as.list(parms), c(I = (gamma + mu)/beta,

S = mu * (beta/(gamma + mu) - 1)/beta))
#STEP 5: Invoke Jacobian calculator:
JJ = jacobian(states = st, elist = el,

parameters = parms, pts = eeq)

The endemic equilibrium is a stable focus with a resonant periodicity given by the
imaginary coefficient of the dominant complex eigenvalues:

eigen(JJ)$value

## [1] -0.5000006+0.0240038i -0.5000006-0.0240038i

# Resonant period
2 * pi/Im(eigen(JJ)$value[1])

## [1] 261.7575



Chapter 7
Time Series Analysis

7.1 Taxonomy of Methods

Analysis of epidemic time series is a large endeavor because of the richness of dy-
namical patterns and a plentitude of historical data (Rohani & King, 2010). A wide
range of tools are used, some of which are borrowed from mainstream statistics
and other of which are custom-made. The classic “mainstream” methods belong to
two categories: the so-called time-domain and frequency-domain methods. The au-
tocorrelation function and ARIMA models belong to the former class and spectral
analysis, and the periodogram belongs to the latter. Hybrid time/frequency methods
have become increasingly prominent in the form of wavelet analysis because it al-
lows the study of changes in disease dynamics through time (Grenfell et al., 2001).
This chapter discusses a variety of standard methods using a variety of time series
data. Examples of more custom-made methods are mechanistically motivated mod-
els such as the time series SIR (TSIR) that is the focus of Chap. 9, semi-parametric
models (Ellner et al., 1998), and nonparametric (“empirical dynamic”) models. An
example of the latter is discussed in Sect. 11.8.

7.2 Time Domain: ACF and ARMA

The autocorrelation function (ACF) and the autoregressive-moving-average
(ARMA) model are classic tools for describing serial dependence in time series
in the time domain. We first apply the ACF to the (weekly) time series of prevalence
from the seasonally forced SEIR model. The ACF quantifies serial correlations at

This chapter uses the following R packages: forecast, Rwave, imputeTS, nlts,
and plotrix.
Five minute epidemic MOOC videos on seasonality and patterns of endemicity can be watched on
YouTube:
Seasonality https://www.youtube.com/watch?v=TDuuM-wm6nw
Patterns of endemicity https://www.youtube.com/watch?v=Mf EZm5amxI.
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different time lags; that is, for a given time series, it uses correlation analyses to
consider statistical similarity of observations separated by each relevant time lag.
Autocorrelation techniques are used in several context in the study of infectious dis-
ease dynamics. Chapter 13 discusses how spatial autocorrelation (how similarity in
incidence depends on separating distance in space) can be used to study spatial and
spatiotemporal disease dynamics. Chapter 18 shows how corrections for autocorre-
lation can be used to make valid inference in the face of interdependence of data
points that would otherwise render standard methods that assume independence in-
valid.

As an illustration, consider the seasonally forced SEIR model introduced in
Sect. 6.3 parameterized to the biennial regime with major epidemics in even years
and minor epidemics in odd years. A simulated time series is constructed through
integrating the ODEs numerically as in Chap. 6. Figure 7.1 shows the ACF for lags
up to 3 years (=156 weeks) as calculated using the acf function.

require(deSolve)
times = seq(0, 100, by = 1/52)
paras = c(mu = 1/50, N = 1, beta0 = 1000, beta1 = 0.2,

sigma = 365/8, gamma = 365/5)
xstart = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
out = as.data.frame(ode(xstart, times, seirmod2, paras))

par(mfrow = c(1, 2))
plot(times, out$I, ylab = "Infected", xlab = "Time", xlim = c(90,

100), type = "l")
acf(out$I, lag.max = 156, main = "")

The major peak in autocorrelation at 104 week lag represents the dominant 2 year
periodicity in the simulation, the minor peak at 52 week lag reflects the subdominant
annual periodicity, and the nadirs at 26 and 78 weeks reflect, respectively, how 2 year
lags align dynamics perfectly, 1 year lags align major and minor peaks (and major
and minor troughs), and half year and one-and-a-half year reflect the opposition
between epidemic peaks and troughs.

For noncyclic time series, the ACF is an important tool for characterizing the du-
ration of serial dependence in time series. The ACF will drop to zero at the horizon
where influence of past values is lost.

7.3 ARMA

Autoregressive-moving-average models have been used to forecast disease dy-
namics for respiratory (e.g., Choi & Thacker, 1981), water-borne (e.g., Baker-
Austin et al., 2013), and vector-borne diseases (e.g., Linthicum et al., 1999). The
ARMA(p,q) model assumes that the future incidence (Yt) can be predicted accord-
ing to Yt = a1Yt−1 + . . .+ apYt−p + εt − b1εt−1 − . . .− bqεt−q, where the ε’s rep-
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Fig. 7.1: The ACF of prevalence from the seasonally forced SEIR model with μ =
0.02, β0 = 1000, β1 = 0.2, σ = 45, and γ = 73 and all rates are 1/year. (a) Time
series. (b) ACF

resent stochasticity and the echo of past stochasticity.1 The ARMA model applied
to the monthly influenza-like illness reported from Iceland can be done using the
forecast package:

require(forecast)
data(icelandflu)

For the analysis, convert the data frame into a time series ts object and do a sea-
sonal decomposition (Fig. 7.2). Because the epidemics are very peaky, it is useful to

1 The ARMA model is usually considered a purely statistical model (i.e., not containing biological
mechanism), though it can be shown that for example the linearized discrete-time SIR model with
stochastic transmission can be approximately mapped onto an ARMA(2,1) model (see Sect. 10.9).
Bjørnstad et al. (2001) and Bjørnstad et al. (2004) provide additional examples of how ARMA
processes arise from a variety of ecological interactions.
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square-root transform the numbers. There is a slight trend through the data, but as
expected the winter seasonality is the dominant feature of the time series.

ilits = ts(sqrt(icelandflu$ili), start = c(1980, 1), end = c(2009,
12), frequency = 12)

plot(decompose(ilits))
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Fig. 7.2: A decomposition of the Iceland ILI time series

As an example of statistical forecasting, the seasonal ARMA(2,1) model can be
trained on the data from 1990 through 2000 to predict the following 24 months
(Fig. 7.3):

wts = window(ilits, start = c(1990, 6), end = c(2000,
5))

fit = arima(sqrt(wts), order = c(2, 0, 1), list(order = c(1,
0, 0), period = 12))

coef(fit)

## ar1 ar2 ma1 sar1 intercept
## 1.4460827 -0.7323795 -0.7819940 0.2026528 2.4823415

fore = predict(fit, n.ahead = 24)
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# Calculate approximate upper (U) and lower (L)
# prediction intervals
U = fore$pred + 2 * fore$se
L = fore$pred - 2 * fore$se
# plot observed and predicted values
ts.plot(sqrt(wts), fore$pred, U, L, col = c(1, 2, 4, 4),

lty = c(1, 1, 2, 2), ylab = "Sqrt(cases)")
legend("bottomleft", c("ILI", "Forecast", "95% Error Bounds"),

col = c(1, 2, 4), lty = c(1, 1, 2))

Time

Sq
rt(

ca
se

s)

1990 1992 1994 1996 1998 2000 2002

-2
0

2
4

6

ILI
Forecast
95% Error Bounds

Fig. 7.3: Forecast of square-root transformed ILI incidence in Iceland for the 2001
and 2002 seasons using a seasonal ARMA(2,1) model

While ARMA forecasting is useful in many disciplines and is an important part
of the broad statistical toolbox, it suffers from lacking mechanism and can therefore
not answer questions like “how are dynamics likely to change if we vaccinate 50%
of susceptible children?” It furthermore assumes that time series are stationary, es-
sentially meaning that dynamical patterns do not change radically over time. As is
frequently seen in infectious diseases, this is not a good assumption. Chapter 8 dis-
cusses how time series methods that incorporate more biological mechanisms (like
the time series SIR model) are better able to capture and predict dynamic transitions.
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7.4 Frequency Domain

The Schuster periodogram is a direct way of estimating and testing for significant
periodicity. The periodogram decomposes a time series into cycles of different fre-
quencies (where frequency = 1/period). The importance of each frequency is mea-
sured by the spectral amplitude. As an illustration, the spectrum function calcu-
lates the periodogram for the time series from the seasonally forced SEIR model.
The analysis clearly identifies the two superimposed periods (Fig. 7.4).

my.spec = spectrum(out$I)
par(mfrow = c(1, 2))
#default plot (less default lables)
plot(my.spec, xlab = "Frequency", ylab = "Log-amplitude",

main = "", sub = "")
#plot with period (rather than frequency)
plot(1/my.spec$freq/52, my.spec$spec, type = "b",

xlab = "Period (year)", ylab = "Amplitude", xlim = c(0, 5))

Using the fast Fourier transform (FFT), the Schuster periodogram automati-
cally estimates the spectrum of a time series (of length T ) at the T/2 frequencies

f = { 1
T ,

2
T , . . . ,

T/2
T } and equivalent periods {T, T

2 , . . . , 2}). An upside of using
FFT is that it is fast. A downside is that the Schuster periodogram is not a consis-
tent method, meaning that the estimated periodogram does not converge on the true
power spectrum as the time series gets longer because the number of frequencies
considered (and thus the number of values estimated) increases linearly with time
series length. Numerous fixes of this have been developed, the most common is to
smooth the periodogram (Priestley, 1981), but nonparametric density estimation has
also been proposed. Kooperberg et al.’s (1995) log-spline spectral density method
is introduced in Sect. 10.8.

7.5 Time/Frequency Hybrids: Wavelets

The wavelet spectrum is an extension of spectral analysis that allows an additional
time axis and therefore allows the study of changes in dynamics over time (Tor-
rence & Compo, 1998; Grenfell et al., 2001). Unlike the periodogram, wavelets do
not have canonical periods for decomposition so these have to be user specified. Us-
ing the Morlet wavelet (which is provided by for example the cwt function in the
Rwave package), the periods are given via the number of octaves, no, and voices,
nv. With 8 octaves, the main periods will be {21, 22, . . . , 28} = {2, 4, . . . , 256}. The
number of voices specifies how many subdivisions to estimate within each octave.
With four voices, the resultant periods will be {21, 21.25, 21.5, 21.75, 22, 22.25, . . .}.
Consider first the simulated time series of prevalence for the unforced SEIR model
(Fig. 7.5).
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Fig. 7.4: The power spectrum of prevalence for the seasonally forced SEIR model.
(a) Default plot of log-amplitude against frequency and (b) amplitude against period
(in years)

# Simulate and plot time series
times = seq(0, 25, by = 1/52)
paras = c(mu = 1/50, N = 1, beta = 1000, sigma = 365/8,

gamma = 365/5)
xstart = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
out2 = as.data.frame(ode(xstart, times, seirmod, paras))
par(mfrow = c(1, 2)) #Side-by-side plots
plot(times, out2$I, type = "l", xlab = "Time", ylab = "Infected")

The wavelet decomposition is

#Wavelet analysis
require(Rwave)
#Set the number of "octaves" and "voices"
no = 8; nv = 32
#Calculate periods
a = 2ˆseq(1, no + 1 - 1/nv, by = 1/nv)
#Do the continous wavelet decomposition
wfit = cwt(out2$I, no, nv, plot = FALSE)
#Calculate the wavelet spectrum
wspec = Mod(wfit)
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#Wavelet plot with contours
image(x = times, wspec, col = gray((12:32)/32),

y = a/52, ylim = c(0, 4), xlab = "Time", ylab = "Period")
contour(x = times, wspec, y = a/52, ylim = c(0, 4),

zlim = c(mean(wspec), max(wspec)), add = TRUE)
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Fig. 7.5: Prevalence against time for the unforced SEIR model (μ = 1/50, N = 1,
β = 1000, σ = 365/8, γ = 365/5) with associated wavelet spectrum

The initial inter-epidemic period at around 2.5 years is strong (recall that the damp-
ening period of the SEIR with these parameters is 2.3 years; Sect. 6.3) but then
wanes as the system converges toward the stable endemic equilibrium. We see this
clearly illustrated if we compare the wavelet spectrum at, for example, the beginning
of year 2 and the beginning of year 10 (Fig. 7.6).

plot(a/52, wspec[104, ], type = "l", ylab = "Amplitude",
xlab = "Period")

lines(a/52, wspec[1040, ], type = "l", lty = 2, col = "red")



7.6 Measles in London 129

legend("topright", legend = c("Year 2", "Year 10"), lty = c(1,
2), col = c("black", "red"))
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Fig. 7.6: The estimated wavelet spectrum at the first week of year 2 and year 10 for
the unforced SEIR model

7.6 Measles in London

The prevaccination incidence of measles shows interesting nonstationarities that
have been traced back to changing susceptible recruitment due to the post-World
War II baby boom (Grenfell et al., 2002; Becker et al., 2019, Fig. 7.7). The meas
dataset contains the biweekly incidence and births from 1944 to 1965.

data(meas)
head(meas)

## year week time London B
## 1 44 2 44.00000 180 1725
## 2 44 4 44.03846 271 1725
## 3 44 6 44.07692 423 1725



130 7 Time Series Analysis

## 4 44 8 44.11538 465 1725
## 5 44 10 44.15385 523 1725
## 6 44 12 44.19231 649 1725

par(mar = c(5, 5, 2, 5)) #Make room for two axes
plot(meas$time, meas$London, type = "b", xlab = "Week",

ylab = "Incidence", ylim = c(0, 8000))
par(new = T) #Superimposed births plot
plot(meas$time, meas$B, type = "l", col = "red", axes = FALSE,

xlab = NA, ylab = NA, ylim = c(1000, 2700))
axis(side = 4)
mtext(side = 4, line = 3, "Births")
legend("topright", legend = c("Cases", "Births"), lty = c(1,

1), col = c("black", "red"))

Fig. 7.7: Biweekly incidence of measles in London between 1944 and 1965 with
susceptible recruitment (births) superimposed

In addition to providing a continuous wavelet transform, the Rwave package has
a crazy climber algorithm to highlight ridges in the wavelet spectrum (implemented
with the crc and cfamily functions). When applied to the London measles data,
the crazy climber reveals the background annual rhythm and the punctuated appear-
ance of the biennial cycle in the early 1950s (Fig. 7.8).

# Set octaves, voices and associated periods
no = 8
nv = 32
a = 2ˆseq(1, no + 1 - 1/nv, by = 1/nv)
# Continous wavelet decomposition
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wfit = cwt(meas$London, no, nv, plot = FALSE)
wspec = Mod(wfit)
# Crazy climber
crcinc = crc(wspec, nbclimb = 10, bstep = 100)
fcrcinc = cfamily(crcinc, ptile = 0.5, nbchain = 1000,

bstep = 10)

## There are 2 chains.

ridges = fcrcinc[[1]]
ridges[which(ridges == 0)] <- NA
# Wavelet plot with crazy-climber and contours
image(x = meas$time, wspec, col = gray((12:32)/32), y = a/26,

ylim = c(0.1, 3), ylab = "Period", xlab = "Year")
contour(x = meas$time, wspec, y = a/26, ylim = c(0, 3),

nlevels = 6, zlim = c(mean(wspec), max(wspec)), add = TRUE)
image(x = meas$time, y = a/26, z = ridges, add = TRUE,

col = gray(0))
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Fig. 7.8: The wavelet spectrum of the London measles incidence with crazy climber
ridges. The appearance of a significant biennial rhythm in the 1950s is conspicuous
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Figure 7.9 contrasts the spectrum of the first biweek of January 1945 and the first
biweek of January 1954. The transition from a dominance of annual to biennial
epidemics is conspicuous. Two-year cycles are pronounced when birth rates are
around 20 per thousand per year; annual epidemics are associated with higher birth
rates. This transition due to the post-World War II baby boom is as predicted by the
seasonally forced SEIR model with dropping birth rates (Earn et al., 2000b, Fig. 6.6)
and will be discussed further in Chap. 8.

plot(a/26, wspec[261, ], type = "l",xlim = c(0, 3),
xlab = "period (years)", ylab = "amplitude")

lines(a/26, wspec[27, ], type = "l", lty = 2,
col = "red")

legend("topleft", legend = c("1945", "1954"),
lty = c(2, 1), col = c("red", "black"))
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Fig. 7.9: The wavelet spectrum of the London measles in Jan 1945 versus Jan 1954

The above methods of time series analysis require regularly spaced time series
without any missing values. Lomb (1976) developed the Lomb periodogram for un-
equally spaced data. Furthermore, the classic spectral methods are poorly adapted to
quantify rhythms in nonmetric data such as the presence/absence of infection. Leg-
endre et al. (1981) developed the contingency periodogram for such situations. The
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nlts package has the spec.lomb and contingency.periodogram func-
tions to carry out such analyses. The mvcwt package has functions that do wavelet
analyses of time series with missing data or unequally spaced data.

7.7 Project Tycho

Project Tycho (http://www.tycho.pitt.edu) is a great resource for time series on his-
torical disease incidence. The data used in Sect. 6.1 were downloaded from this
database. Weekly data of whooping cough (1925–1947), diphtheria (1914–1947),
and measles (1914–1947) in the city of Philadelphia are from Project Tycho and are
saved in the tywhooping, tydiphtheria, and tymeasles datasets. These
were all important causes of childhood mortality in the early twentieth century and
were therefore “reportable infections” in the USA. Whooping cough is caused by
bacterial colonization of the lower respiratory tract by congeneric species in the
genus Bordetella, most notably B. pertussis, and causes violent coughing, vomiting,
and pneumonia. Diphtheria is caused by infection by Corynebacterium diphtheriae
whose toxin caused a range of health complications before a vaccine was avail-
able.2 Measles is a severely immuno-compromising paramyxovirus that still kills
more than fifty thousand children each year (Dixon et al., 2021). These time series
are helpful to illustrate some additional aspects of disease dynamics and time series
methods.

data(tywhooping)
tywhooping$TIME = tywhooping$YEAR + tywhooping$WEEK/52
tywhooping$TM = 1:length(tywhooping$YEAR)
data(tydiphtheria)
data(tymeasles)
tydiphtheria$TIME = tymeasles$TIME = tymeasles$YEAR +

tymeasles$WEEK/52

These time series have occasional weeks of missing data that have to be interpolated
using the imputeTS package for ease of analyses. But first we can use the whoop-
ing cough data to illustrate the use of the Lomb periodogram for spectral analysis of
unevenly spaced data.

7.8 Lomb Periodogram: Whooping Cough

There are 14 missing weeks in the tywhooping data set. For frequency-domain
analyses of this data, we either have to interpolate the missing weeks or use the
Lomb periodogram. Compare the two approaches:

2 The first smallpox vaccines are dated to China in the fifteenth century (Plotkin, 2011). There-
after, the diphteria toxoid vaccine developed in the 1920s was among the very first to be broadly
administered (Relyveld, 2011).
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data(tywhooping)
whp = na.omit(tywhooping)

#data with missing values interpolated
require(imputeTS)
sum(is.na(tywhooping$PHILADELPHIA))

## [1] 14

tywhooping$PHILADELPHIA=
na_interpolation(ts(tywhooping$PHILADELPHIA))

#Classic periodogram
my.spec = spectrum(sqrt(tywhooping$PHILADELPHIA))
#Lomb periodogram
require(nlts)
my.lomb = spec.lomb(x = whp$TM,

y = sqrt(whp$PHILADELPHIA))

plot(1/my.spec$freq/52, my.spec$spec, type = "b",
xlab = "Period (year)", ylab = "Amplitude")

par(new = TRUE)
plot(1/my.lomb$freq/52, my.lomb$spec, axes = FALSE,

type = "b", col = 2, xlab = "", ylab = "")
legend("topright", legend = c("Classic", "Lomb"),

lty = c(1, 1), pch = c(1, 1), col = c("black", "red"))

With only 14 missing values in a 1000+ week long time series, the shape of the
Schuster periodogram (on interpolated data) and the Lomb periodogram are almost
identical (Fig. 7.10). With a higher fraction of a time series missing, interpolation
will introduce biased or spurious patterns in the analysis so the Lomb method will
be essential.

7.9 Triennial Cycles: Philadelphia Measles

Like in London, prevaccination measles dynamics in Philadelphia exhibit interesting
nonstationarities that are highlighted by a wavelet analysis. There are 24 missing
weeks to interpolate to ease the wavelet analysis:

data(tymeasles)
sum(is.na(tymeasles$PHILADELPHIA))

## [1] 24

tymeasles$PHILADELPHIA =
na_interpolation(ts(tymeasles$PHILADELPHIA))
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Fig. 7.10: The Lomb periodogram and the classic periodogram (on interpolated
data) of the Philadelphia whooping cough time series

We can twiddle with the graphics margins and layout using the par and layout
functions to make a prettier compound graphic (Fig. 7.11).

par(mfrow = c(2, 1), mar = c(2, 4, 2, 1))
layout(matrix(c(1, 1, 2, 2, 2), ncol = 1))
plot(tymeasles$TIME, sqrt(tymeasles$PHILADELPHIA), type = "b",

ylab = "Sqrt(incidence)")
title("Measles 1914-47")

no = 8
nv = 16
a = 2ˆseq(1, no + 1 - 1/nv, by = 1/nv)
wfit = cwt(sqrt(tymeasles$PHILADELPHIA), no, nv, plot = FALSE)
wspec = Mod(wfit)
par(mar = c(1, 4, 0.25, 1))
image(z = wspec, y = a/52, ylim = c(0, 4), ylab = "Period(year)",

col = gray((12:32)/32), xaxt = "n")
contour(z = wspec, y = a/52, ylim = c(0, 4), nlevels = 6,

zlim = c(mean(wspec), max(wspec)), add = TRUE)
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Fig. 7.11: Wavelet spectrum of measles in Philadelphia

The early annual epidemics give way to irregular triennial epidemic cycles from
1920 onward (Fig. 7.12). The triennial cycles are the hallmarks of chaotic epidemics
(Li & Yorke, 2004; Dalziel et al., 2016). This will be discussed further in Sect. 11.2.

plot(a/52,wspec[54,], type = "l", xlim = c(0, 4),
xlab = "Period (years)", ylab = "Amplitude",
col = "red", lty = 2)

lines(a/52, wspec[1357,], type = "l", xlim = c(0, 4))
legend("topleft", legend= c("1915", "1940"),

lty = c(2, 1), col = c("red","black"))
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Fig. 7.12: The Jan 1915 versus Jan 1940 New York measles wavelet spectrum.
Annual epidemics gave way to triennial cycles

7.10 Wavelet Reconstruction and Wavelet Filter: Diphtheria

Diphtheria exhibited conspicuous annual cycles during the beginning of the twen-
tieth century until the addition of an adjuvant to the toxoid vaccine in 1926 led to
a strong secular downward trend and effectively the elimination of the disease
(Fig. 7.13). The wavelet allows the study of how the reduction in incidence is asso-
ciated with a loss of periodicity and increase in high-frequency variability (“noise”)
(Fig. 7.13). There are 18 missing values to interpolate prior to the analysis.

data(tydiphtheria)
sum(is.na(tydiphtheria$PHILADELPHIA))

## [1] 18

tydiphtheria$PHILADELPHIA =
na_interpolation(ts(tydiphtheria$PHILADELPHIA))

par(mfrow = c(2, 1), mar = c(2, 4, 2, 1))
layout(matrix(c(1, 1, 2, 2, 2), ncol = 1))
plot(tydiphtheria$TIME, sqrt(tydiphtheria$PHILADELPHIA),

type = "b", ylab = "Sqrt(incidence)")
title("Diphteria 1914-47")

no = 8; nv = 16; a = 2ˆseq(1,no+1-1/nv, by = 1/nv)
wfit = cwt(sqrt(tydiphtheria$PHILADELPHIA),

no, nv, plot = FALSE)
wspec = Mod(wfit)

https://en.wikipedia.org/wiki/Diphtheria#History
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par(mar = c(1, 4, 0.25, 1))
image(z = wspec, y = a/52, ylim = c(0, 3),

ylab = "Period(year)", col = gray((12:32)/32), xaxt = "n")
contour(z = wspec, y = a/52, ylim = c(0, 3), nlevels = 6,

zlim = c(mean(wspec), max(wspec)), add = TRUE)

Fig. 7.13: The wavelet spectrum of historical diphtheria in Philadelphia

It is sometimes of interest to use the wavelet as a signal filter. We may for ex-
ample want to quantitate how the strength of the annual cycle of diphtheria (in the
45–60 week range, say) changes over time. To do this, we use wavelet reconstruc-
tion around the relevant time scales (Fig. 7.14). For the Morlet wavelet, the formula
for reconstruction using the j’th through j+ s’th scales is provided by Torrence and
Compo (1998). The mid-pass filter clearly illustrates the loss of annual signal over
time (Fig. 7.14).
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#midpass filter
sel = a > 45 & a < 60
rec = 0.6 * apply(Re(wfit[ ,sel])/sqrt(a[sel]), 1,

sum)/(0.776 * (piˆ(-1/4)))
data = pi * scale(sqrt(tydiphtheria$PHILADELPHIA))/2
plot(tydiphtheria$TIME, data, type = "b", xlab = "Year",

ylab = "Scaled cases")
lines(tydiphtheria$TIME, rec, type = "l", col = 2, lwd = 3)
legend("topright", legend = c("Scaled cases",

"Annual reconstruction"), pch=c(1, NA), lty = c(1, 1),
lwd = c(1, 3), col = c("black", "red"))

7.11 Advanced: FFT and Reconstruction

One-hundred-and-twenty years ago, Arthur Schuster proposed the bold idea that any
discrete-time series can be decomposed and exactly reconstructed from a sum of
trigonometric functions. Given its nonstationary transition from annual to biennial
epidemics, the prevaccination 1944–1964 London measles time series (in the meas
dataset) offers a nice testbed for this assertion.

The below code generates an animated visualization of the reconstruction. Sec-
tion 12.7 discusses making in-line and permanent animations in more detail. A web-
optimized animated gif can be found at https://tinyurl.com/4yb6ta2f.
If z is the fast Fourier transform of the time series, then the trigonometric “signal” of
the k’th frequency is 1

T (∑ f (Re(z)cos(2π(k−1) f ))− Im(z)sin(2π(k−1) f )), where
Re() and Im() represent the real and imaginary parts. We first piece together relevant
bits for the formula and then do the reconstruction in the rec2 object where the
contribution of each frequency is weighed by its amplitude:

# fft
x = meas$London
p = length(x)
z = fft(x)
f = seq(from = 0, length = p, by = 1/p)
a = Re(z)
b = Im(z)
# reconstruction
rec2 = matrix(NA, ncol = p, nrow = p)
for (k in 1:p) {

rec2[, k] = (a * cos(2 * pi * (k - 1) * f) - b * sin(2 *
pi * (k - 1) * f))/p

}

The below code provides a sequential reconstruction of the time series from the
Schuster periodogram.

# fft
x = meas$London
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https://tinyurl.com/4yb6ta2f
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Fig. 7.14: Wavelet reconstructed variability in the 45–60 week range of diphtheria
in Philadelphia during the first half of the twentieth century

p = length(x)
z = fft(x)
f = seq(from = 0, length = p, by = 1/p)
a = Re(z)
b = Im(z)
# reconstruction
rec2 = matrix(NA, ncol = p, nrow = p)
for (k in 1:p) {

rec2[, k] <- (a * cos(2 * pi * (k - 1) * f) - b *
sin(2 * pi * (k - 1) * f))/p

}

Finally, we can visualize the convergence on the original signal using the sequence
of frequencies order by amplitude (highest to lowest importance). In the animation,
the upper right inset shows the log-amplitude associated with each trigonometric
function.
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sim = rep(0, p)
n = 0
samp = order(aˆ2 + bˆ2, decreasing = TRUE)
for(g in samp){
n = n+1
par(mfrow = c(1, 2))
plot(x, ylim = c(0, 11000), ylab = "Incidence",

xlab = "Biweek")
title(paste("nfreq = ", n))
sim = sim + rec2[g,]
lines(sim, col = 2)
par(new = TRUE)
sc = scale((cos(2 * pi * (0:(p - 1)) * f[g]) -

sin(2 * pi * (0:(p - 1)) * f[g]))/p)
plot(sc * (aˆ2 + bˆ2)[g]/max(aˆ2 + bˆ2), type = "l",

col = gray(0.5), ylim = c(-8, 2), axes = FALSE,
xlab = "", ylab = "")

plot(x, sim, ylab = "Reconstructed", xlab = "Observed",
ylim = c(0, 8000))

#Sys.sleep() makes R wait a bit for visalisation
Sys.sleep(.2)
}



Chapter 8
TSIR

8.1 Estimating Parameters in Dynamic Models

There are many strategies for estimating the parameters of dynamic models from
time series data. They differ conceptually in the way they handle demographic and
environmental stochasticity (sometimes referred to jointly as “process error”), ob-
servation error, and partial (missing) observation. The strategies also often vary by
whether the underlying dynamics is thought to be best approximated in continuous
time (differential models) or discrete time (difference models).

In reality, disease dynamics is always affected by some level of demographic
and environmental stochasticity, and observation error comes in the form of both in-
accuracies in observation and missing information. The exposed (latent) class of an
SEIR-like system, for example, is very rarely monitored (tuberculosis perhaps being
an exception). Furthermore, while disease dynamics very rarely play out in discrete
generation (in-host dynamics of Eimeria and sometimes Plasmodium being excep-
tions; Mideo et al., 2013), they also never rarely follow the exponential waiting-time
distributions implicit in ODE models (Fig. 2.6). As discussed in Sect. 2.9, various
types of distributed-delay models or renewal equations can cover the continuum be-
tween fixed (discrete) and exponential distributions—the original SIR formulation
by Kermack and McKendrick (1927) is an early example of how to embrace such
biological detail—but these come at a prize of mathematical/computational over-
head.

The previous implementation of Ferrari et al.’s (2005) removal method (Sect. 3.4)
for fitting the chain-binomial model for a simple epidemic is an example of a model
that assumes that all process error is due to demographic stochasticity (according
to the chain binomial) and that observation error is sufficiently insignificant to be
ignored. The method finds parameters (S0 and β ) that predict an epidemic curve
that most closely (in a likelihood sense) resembles the data. This is an example
of the strategy of trajectory matching; choose parameters that produce a predicted

This chapter uses the following R packages: imputeTS and plotrix.
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trajectory that comes most close to the observed. It is also common to use trajec-
tory matching for a continuous-time SIR model of simple epidemics, but instead
assume that all process error is sufficiently insignificant to be ignored. In this case,
we find parameters that predict prevalence curves that most closely resemble the
data assuming an underlying deterministic epidemic clockwork cloaked only by ob-
servation error (see Chap. 9). A variety of approaches have been proposed to fit
dynamical models to ecological and epidemiological time series models including:

• Trajectory matching: Assume no/negligible stochasticity in transmission dynam-
ics and find parameters that make a model trajectory best line up with observa-
tions (see Sect. 9.3).

• Gradient matching: Fitting ODEs in the presence of significant process noise
(Ellner et al., 2002). The idea is to estimate derivatives dx/dt along the time
series (for example by fitting a spline and calculating its derivatives) and then
relate them to relevant state variables.

• Probe matching was introduced by Kendall et al. (1999), and its statistical prop-
erties were later formalized in Wood’s (2010) synthetic likelihood. The idea is to
choose parameters that make the model most closely reproduce what are deemed
to be the critical dynamical features of the system.

• Hierarchical models using MCMC (e.g., Clark & Bjørnstad, 2004) that has been
much refined as partially observed Markov processes in the pomp package (King
et al., 2015b). See Sect. 11.5 for some usage.

• One of the simpler methods that tries to balance the need for both observational
errors and stochasticity is the time series SIR model (Finkenstädt & Grenfell,
2000; Bjørnstad et al., 2002a; Grenfell et al., 2002) to which this chapter is de-
voted.

8.2 Stochastic Variability

Much environmental forcing is non-predictable environmental stochasticity. In such
cases, stochastic simulation can be very useful.1 One can use stochastic analogues
of the continuous-time deterministic compartmental models using event-based sim-
ulations (see Sect. 9.2) or consider extensions of the chain-binomial model we in-
troduced in Sects. 3.4 and 3.5. This chapter is focused on a variant of the chain-
binomial model dubbed the time series SIR (TSIR) model (Bjørnstad et al., 2002a;
Finkenstädt et al., 2002; Grenfell et al., 2002).

The TSIR model is as follows: If we use a discrete time step equal to the serial
interval of the pathogen (about 2 weeks in the case of infections such as measles,
diphtheria, scarlet fever, and chicken pox), we can write the model (subsuming a
latent period) as

1 It is also possible to use more powerful mathematical approaches in such cases with signal theory
and transfer functions; see Sect. 10.8.
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St+1 = St +Bt − It , (8.1)

λt+1 = βu
St
Nt

Iα
t , (8.2)

where St and It are the numbers of susceptibles and infecteds in pathogen genera-
tion t, Bt is the number of susceptible recruits (births) during the time interval, N
is the population size, and βu is the seasonally forced transmission rate. The α is
an exponent (normally just under 1) that accounts for discretizing the underlying
continuous process (Glass et al., 2003).2 The final variable λt+1 represents the ex-
pectation for the new number of infecteds in generation t+1. The actual number of
infecteds that will appear in generation t+1 will follow some stochastic distribution
around λt+1. For example, It+1 ∼ Po(λt+1) or It+1 ∼ NegBin(λ , It) depending on
the exact assumptions regarding the variability in the underlying process (Bjørnstad
et al., 2002a). The negative binomial that is employed here arises from assuming an
epidemic birth-and-death process in which case the offspring distribution from each
infected follows a geometric distribution (Kendall, 1949), and the sum of It identical
geometrics is a negative binomial with clumping parameter It . The link to the chain
binomial comes about because 1−exp(−φ)� φ , when φ is small, and the binomial
process—for which we need to know the susceptible denominator (which is usually
unknown)—can be approximated with a Poisson or negative binomial distribution
neither of which require known denominators (Bjørnstad et al., 2002a).

Stochasticity may further enter through variable numbers of births or random
variation in the transmission rates. The tsirSim function does stochastic simu-
lation akin to the chain-binomial simulator of Sect. 3.5 but with the possibility of
having stochastic variation in β (controlled by the sdbeta argument in the below
code):

tsirSim = function(alpha = 0.97, B = 2300, beta = 25,
sdbeta = 0, S0 = 0.06, I0 = 180, IT = 520, N = 3300000) {
# Set up simulation
lambda = rep(NA, IT)
I = rep(NA, IT)
S = rep(NA, IT)
# Add initial conditions
I[1] = I0
lambda[1] = I0
S[1] = S0 * N

# Run simulation
for (i in 2:IT) {

lambda[i] = rnorm(1, mean = beta, sd = sdbeta) *
I[i - 1]ˆalpha * S[i - 1]/N

if (lambda[i] < 0) {
lambda[i] = 0

2 The logic behind this tweak is that the model predicts the number of cases several days into the
future, which means that for highly contagious pathogens, it will somewhat overpredict during epi-
demic peaks because the time discreteness does not account for the continuous and rapid depletion
of susceptibles at such times.
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}
I[i] = rpois(1, lambda[i])
S[i] = S[i - 1] + B - I[i]

}
# Return result
list(I = I, S = S)

}

In the function, IT is the length of the time series to be simulated. S0 and I0
are the initial conditions, and B is the susceptible recruitment number during each
serial interval. The parameters in the model are provided with default values. These
values correspond roughly to estimates from the measles time series for London for
the period 1944–1965 (see Sect. 8.5), a city with 3.3 million inhabitants at the time.
The trajectories in time and in the phase plane are (Fig. 8.1)

out = tsirSim()
par(mfrow = c(1, 2))
plot(out$I, ylab = "Infected", xlab = "Time", type = "l")
plot(out$S, out$I, ylab = "Infected", xlab = "Susceptible",

type = "l")

8.3 Estimation Using the TSIR

Estimation using the TSIR came out of a pragmatic attempt at dealing with the
complexities of disease dynamics and incidence data using basic statistical tools. In
its original form, it assumes that process noise is due to demographic stochasticity,
and observation error is in the form of time-invariant’ish underreporting that in large
populations can be adequately corrected for in a deterministic fashion.

Consider the biweekly incidence (number of cases for each 2-week period) of
measles from London between 1944 and 1965 (Fig. 7.8) introduced in Sect. 7.6:

data(meas)
head(meas)

## year week time London B
## 1 44 2 44.00000 180 1725
## 2 44 4 44.03846 271 1725
## 3 44 6 44.07692 423 1725
## 4 44 8 44.11538 465 1725
## 5 44 10 44.15385 523 1725
## 6 44 12 44.19231 649 1725

The incidence is accessed as meas$London. In addition, the dataset contains
columns reporting meas$year and meas$week that combine into meas$time,
and biweekly number of births (meas$B). Birth numbers are annual, so in the
dataset, this number is evenly distributed across the 26 biweeks of each year. We
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Fig. 8.1: A stochastic realization from the TSIR model with demographic stochas-
ticity and parameters corresponding roughly to measles during prevaccination con-
ditions in London. (a) Incidence in time. (b) The phase plane

should be able to use this data to estimate key epidemiological parameters. How-
ever, we somehow have to reconstruct the susceptible time series (and correct for
underreporting). . .

8.4 Inference (Hypothetical)

Given Eqs. (8.1)–(8.2) and time series of I and S, the candidate for estimation is
obvious:

log(It+1) = log(β )+αlog(It)+ log(St)− log(N). (8.3)

Estimate the unknown parameters β and α by a regression of log(It+1) on log(It)
with log(St) and − log(N) as offsets (i.e., the slope for the log(S), and the − log(N)
variables are fixed at unity) or the equivalent generalized linear model with a log
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link. The intercept of this regression would be the estimate of log(β ), and the slope
against log(It) would be the estimate of α . In R, this would go something like:

# Align time series
IT = length(meas$London)
Inow = log(meas$London[2:IT])
Ilag = log(meas$London[1:(IT - 1)])
Slag = log(S[1:(IT - 1)]) #This does not yet exist
# now the regression
glm(Inow ˜ Ilag + offset(Slag) + offset(-N))

8.5 Susceptible Reconstruction

The challenge is that most real datasets do not contain perfect records on the state
variables. For example, the meas data does not contain information on S, and I is
generally underreported. Another challenge is the strong seasonality in transmission
rates that result from aggregation of children during school term but not during
school holidays.

While we do not have observation on susceptibles, we do have information on the
number of births. The idea of susceptible reconstruction was laid out by Bobashev
et al. (2000). Consider how the recursive susceptible equation (Eq. (8.1)) can be
rewritten as

St = S+D0 +
t

∑
k=0

Bk−
t

∑
k=0

Ik/ρ , (8.4)

where S is the mean number of susceptibles, D0 is the unknown deviations around
the mean at time 0, and ρ is the (known or unknown) reporting rate. We can re-
construct the time series Dt of how the susceptible numbers deviate from the mean
value, Dt = St −S, by rewriting (8.4) as

t

∑
k=0

Bk = S+D0 +1/ρ
t

∑
k=0

Ik+Dt , (8.5)

from which it is clear that Dt is the residual from the regression of the cumulative
number of births on the cumulative number of cases. Note that this reconstruction
still works when the reporting rate ρ is unknown because underreporting can be
accounted for by the slope of the cumulative–cumulative regression.

As it turns out, reporting rates sometimes vary subtly through time so it is good to
use a slightly more flexible model than linear regression (Finkenstädt et al., 2002),
for example, a smoothing spline with 5 degrees of freedom (Fig. 8.2).

cum.reg = smooth.spline(cumsum(meas$B), cumsum(meas$London),
df = 5)

D = -resid(cum.reg) #The residuals
plot(cumsum(meas$B), cumsum(meas$London), type = "l",
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Fig. 8.2: Cumulative incidence versus cumulative births. The straight line is the 1-
to-1 reference line

xlab = "Cumulative births", ylab = "Cumuative incidence")
lines(cum.reg)
abline(a = 0, b = 1)

The 1-to-1 line generated by the abline command shows that the cumulative num-
ber of reported cases is less than the cumulative number of births (Fig. 8.2). The
discrepancy is informative because we know from serology that almost all children
were infected with the common childhood infections before the age of 20 in the pre-
vaccine era; Black’s (1959) data, for example, has seroprevalence >95% by age 15
in prevaccination Connecticut (Sect. 5.2). The slope of the cumulative regression,
therefore, is an estimate of the reporting rate. We can get the estimated reporting
rates for each time step from the slope of the fitted spline:

rr = predict(cum.reg, deriv = 1)$y
summary(rr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3485 0.3841 0.4424 0.4522 0.5214 0.5635
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The reporting rate is fairly steady across the 20 years at around 45%. We can create
time series corrected for reporting of both incidence, Ic, and susceptible deviation,
Dc:

Ic = meas$London/rr
Dc = D/rr

To estimate parameters, rewrite the model (Eq. (8.3)) in terms of the data and un-
known parameters on a log-scale (recall that λt+1 is the expected number of cases
in serial interval t+1):

log(λt+1) = log(βu)− log(N)+ log(Dt +S)+αlog(It).

This is almost (but not quite) a linear regression with unknown parameters βu, α , and
S. Before ready to estimate the parameters, however, it is neccesary to consider the
fact that βu varies seasonally (because of the school year), thus the subscript u. The
most flexible model is to assume that each of the 26 biweeks of the year has its own
transmission rate. Under that assumption, there are 28 parameters to estimate (26
β s, α , and S). So define a vector that flags the periodic β s across the 21 years, and
create the three vectors of logged current (lInew) and lagged infecteds (lIold)
and lagged “residual susceptibles” (Dold):

seas = rep(1:26, 21)[1:545]
lInew = log(Ic[2:546])
lIold = log(Ic[1:545])
Dold = Dc[1:545]

Given a value for S, the models fall neatly within the linear regression framework.3

We can therefore use glm to find a profile likelihood estimate of S. It is known
from serology that the average proportion of susceptibles in measles is somewhere
in the 2%–20% range, and given the size of London at the time (3.3M), postulate a
reasonable range of candidate values:

N = 3300000
Smean = seq(0.02, 0.2, by = 0.001) * N
offsetN = rep(-log(N), 545)

The following sets up a vector to store the log-likelihood values corresponding to
each candidate and loop over the candidate values to generate a likelihood profile
for S (Fig. 8.3).

llik = rep(NA, length(Smean))
for (i in 1:length(Smean)) {

lSold = log(Smean[i] + Dold)
glmfit = glm(lInew ˜ -1 + as.factor(seas) + lIold +

offset(lSold + offsetN))
llik[i] = glmfit$deviance/2

3 Though had it not, we could write out the likelihood and use optim or mle2 to find maximum
likelihood estimates as in Chap. 3.
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}
par(mfrow = c(1, 1))
plot(Smean/3300000, llik, ylim = c(min(llik), 25), xlab = "Sbar",

ylab = "Neg log-lik")

The -1 in the regression formula removes the intercept, so that as.factor(seas)
becomes the estimates of the log-β s. Note further that glmfit$deviance holds
-2*log-likelihood, so the negative log-likelihood is 1/2 the deviance.4 The London
estimate for the measles TSIR model is
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Fig. 8.3: The likelihood profile for S from the TSIR applied to the London measles
time series

lSold = log(Smean[which(llik == min(llik))] + Dold)
glmfit = glm(lInew ˜ -1 + as.factor(seas) + lIold +

offset(lSold + offsetN))

4 An alternative to the Gaussian likelihood is to use a counting likelihood such as the Poisson
quasi-likelihood with a log link. For this, the code would be
lnew = Ic[2:546]
glmfit = glm(lnew ∼ -1 +as.factor(seas) + lIold + offset(lSold +
offsetN), family = quasipoisson(link = "log")).
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That is, S is

Smean[which.min(llik)]/3300000

## [1] 0.045

and α is

glmfit$coef[27]

## lIold
## 0.9636908

The log-β s are in glmfit$coef[1:26]. The seasonal β s with SEs are plotted
in Fig. 8.4. The β s vary significantly through the year and are lowest during the
summer holidays. This is consistent with recent diary-based studies that show that
children and youth contact numbers are reduced when away from school (Eames
et al., 2011).

require(plotrix)
beta = exp(glmfit$coef[1:26])
ubeta = exp(glmfit$coef[1:26] + summary(glmfit)$coef[1:26,

2])
lbeta = exp(glmfit$coef[1:26] - summary(glmfit)$coef[1:26,

2])
plotCI(x = c(1:26), y = beta, ui = ubeta, li = lbeta,

xlab = "Biweek", ylab = expression(beta))

8.6 Simulating the TSIR Model

The tsirSim2 is a general function to simulate the seasonally forced TSIR us-
ing the estimated parameters. It performs either a deterministic (type="det") or
stochastic (assuming demographic stochasticity, type="stoc") simulation.

tsirSim2 = function(beta, alpha, B, N, inits = list(Snull = 0,
Inull = 0), type = "det") {
type = charmatch(type, c("det", "stoc"), nomatch = NA)
if (is.na(type))

stop("method should be \"det\", \"stoc\"")
IT = length(B)
s = length(beta)
lambda = rep(NA, IT)
I = rep(NA, IT)
S = rep(NA, IT)

I[1] = inits$Inull
lambda[1] = inits$Inull
S[1] = inits$Snull
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Fig. 8.4: The estimated seasonal β s with SEs from the London measles time series

for (i in 2:IT) {
lambda[i] = beta[((i - 2)%%s) + 1] * S[i - 1] *

(I[i - 1]ˆalpha)/N
if (type == 2) {

I[i] = rpois(1, lambda[i])
}
if (type == 1) {

I[i] = lambda[i]
}
S[i] = S[i - 1] + B[i] - I[i]

}
return(list(I = I, S = S))

}

Simulated dynamics is sensitive to the value of α , and there is evidence that the
TSIR regression is biased with respect to this parameter.5 A simulation using the
estimated parameters (with a small correction in α) is shown in Fig. 8.5. While not
perfect, the model nicely captures the transition from annual to biennial epidemics
as birth rates fall following the post-World War II baby boom.

5 Metcalf et al. (2011a) proposed to use a “Whittle estimator” of α to re-estimate this variable by
matching simulated and observed power spectra.
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sim = tsirSim2(beta = exp(glmfit$coef[1:26]), alpha = 0.966,
B = meas$B, N = N, inits = list(Snull = Dc[1] +
Smean[which(llik == min(llik))], Inull = Ic[1]))

plot(sim$I, type = "b", ylim = c(0, max(Ic)),
ylab = "Incidence", xlab = "Biweek")

lines(exp(lInew), col = "red")
legend("topleft", legend = c("sim", "Ic"), lty = c(1, 1),

pch = c(1, NA), col = c("black", "red"))
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Fig. 8.5: Observed and TSIR simulated dynamics for measles in London 1944–1965

A more comprehensive TSIR analysis across almost 100 years of data is provided
by Becker et al. (2019). This study also introduces a dedicated tsiR package for
R (Becker & Grenfell, 2017).

8.7 Emergent Simplicity

Chapters 4 and 5 focused on the importance of age-structure and age-structured
mixing in shaping real-world disease dynamics. The TSIR model generally attains
a very good fit for long-term measles dynamics (e.g., Fig. 8.5; Grenfell et al., 2002;
Becker et al., 2019) despite seemingly ignoring such age-structured complexities
altogether. . . There is however a mathematical framework to understand this because
when an age-structured S–I system is on the trajectory governed by the underlying
attractor of Eqs. (4.1)–(4.5) introduced in Chap. 4, the aggregate system S̄ and Ī
will follow the “dynamic homogeneity” model proposed by Earn et al. (2000b) and
further discussed by Mahmud (2017). The so-called unity calculations for the SIR
are
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dS̄
dt

=μN− β̂ (t)S̄Ī−μ S̄ (8.6)

dĪ
dt

=β̂ (t)S̄Ī− γ Ī−μ Ī (8.7)

β̂ (t) =
1
S̄Ī

A

∑
i=1

A

∑
j=1

βi j(t)SiI j, (8.8)

where βi j(t) corresponds to seasonal age-specific variation in transmission as laid
out in the intersection between Sects. 4.4 and 6.3, and β̂ (t) is the time-varying
susceptible/prevalence-by-age weighted effective transmission rate. There are two
important insights from this. The first is that when demographies and contact pat-
terns are level, the full age-structured transmission can be captured by less elaborate
models. Grenfell et al. (2006) termed this “emergent simplicity.” The second is that
while the school schedule represents an on/off switch with respect to term-time forc-
ing, the overall FoI and thus effective transmission rate will vary in a more subtle
fashion (as evidenced in Fig. 8.4) because of the differential removal of individuals
of higher risk of exposure and onward transmission versus lower risk individuals.
Demographers have long discussed such modulations of population-level averaged
rates as “frailty effects” or “heterogeneities ruses” (Keyfitz & Littman, 1979; Vaupel
et al., 1979; Vaupel & Yashin, 1985). Emergent simplicity appears to capture broad
dynamic patterns of highly transmissible infections. Bansal et al. (2007) discuss sit-
uations where more elaborate network models are important for providing further
insights. Chapter 14 will visit on this.

8.8 Project Tycho

Bjørnstad et al. (2002a) and Grenfell et al. (2002) expanded on the above TSIR
analysis of measles in London to 60 cities and villages in prevaccination England
and Wales to better understand dynamics and how it scales with community size.
They found that R0 was independent of population size, suggesting that even if
transmission is density dependent, the social clique size does not differ between
large cities and small towns. They speculated that this is because school classes are
relatively similar in size across population numbers. Ferrari et al. (2011) discussed
this within a social network context.

The TSIR has also been used to study the dynamics of rubella (Metcalf et al.,
2011a), hand-foot-and-mouth disease caused by various enteroviruses (Takahashi
et al., 2016), a variety of other childhood diseases (e.g., Metcalf et al., 2009; Mah-
mud et al., 2017) and the in-host dynamics of malaria (see Sect. 8.9).

Dalziel et al. (2016) compiled measles and demographic data consistent with the
level-2 measles data in Project Tycho for 40 cities in the USA (1906–1948) and 40
cities in the UK (1944–1964). The full dataset is available from datadryad.org. The
US portion of the data is in the dalziel dataset.

http://datadryad.org/resource/doi:10.5061/dryad.r4q34
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data(dalziel)

dalziel$pop contains interpolated population sizes from the 10-year census sur-
veys, and dalziel$rec contains the reconstructed number of births. The data are
biweekly to roughly match that the serial interval can use this data to fit the TSIR
to other diseases with a two-week’ish serial interval. The Philadelphia scarlet fever
data is weekly from Jan 1915 to Dec 1947. The disease is caused by streptococcus A
bacterial infection. Before antibiotics, it was an important cause of death in children.
To prepare it for TSIR modeling, delete the occasional 53rd week and aggregate in
two-week intervals:

data(tyscarlet)
tyscarlet = tyscarlet[tyscarlet$WEEK < 53, ]
tyscarlet = tyscarlet[tyscarlet$YEAR > 1914, ]
ag = rep(1:(dim(tyscarlet)[1]/2), each = 2)
scarlet2 = sapply(split(tyscarlet$PHILADELPHIA, ag), sum)

Then merge it with the appropriate part of the dalziel dataset (and impute a
dozen missing values):

require(imputeTS)
philly = dalziel[dalziel$loc == "PHILADELPHIA", ]
philly = philly[philly$year > 1914 & philly$year < 1948,]
philly$cases = na_interpolation(ts(scarlet2))

The susceptible reconstruction is:

cum.reg = smooth.spline(cumsum(philly$rec), cumsum(philly$cases),
df = 10)

D = -resid(cum.reg) #The residuals
rr = predict(cum.reg, deriv = 1)$y
summary(rr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03348 0.09533 0.10971 0.10995 0.13719 0.16678

The reporting rate is around 10% so it is necessary to create a time series corrected
for underreporting of both incidence, Ic, and susceptible deviation, Dc:

Ic = philly$cases/rr
Dc = D/rr
seas = rep(1:26, 21)[1:597]
lInew = log(Ic[2:598])
lIold = log(Ic[1:597])
Dold = Dc[1:597]
N = median(philly$pop)
offsetN = rep(-log(N), 597)

The vector for the profile likelihood on S and loop over all candidates is:
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Smean = seq(0.02, 0.6, by = 0.001) * N
llik = rep(NA, length(Smean))
for (i in 1:length(Smean)) {

lSold = log(Smean[i] + Dold)
glmfit = glm(lInew ˜ -1 + as.factor(seas) + lIold +

offset(lSold + offsetN))
llik[i] = glmfit$deviance

}
Smean[which(llik == min(llik))]/N

## [1] 0.206

Recalling the basic result from Chap. 3 that the fraction of susceptibles is regulated
around s∗ = 1/R0, the estimate suggests an R0 of around 5. The best estimates of α
are:

lSold = log(Smean[which.min(llik)] + Dold)
glmfit = glm(lInew ˜ -1 + as.factor(seas) + lIold + offset(lSold +

offsetN))
# alpha
glmfit$coef[27]

## lIold
## 0.8336856

The log-β s with SEs are shown in Fig. 8.6. The lower transmission during the sum-
mer holiday is conspicuous.

beta = exp(glmfit$coef[1:26])
ubeta = exp(glmfit$coef[1:26] + summary(glmfit)$coef[1:26, 2])
lbeta = exp(glmfit$coef[1:26] - summary(glmfit)$coef[1:26, 2])
plotCI(x = c(1:26), y = beta, ui = ubeta, li = lbeta,

xlab = "Biweek", ylab = expression(beta))

8.9 In-Host Malaria Dynamics

When Plasmodium parasites enter the blood phase of its mammalian host to cause
malaria, it usually causes a period of acute anemia with subsequent rebound from
erythropoiesis (production of red blood cells). The rebound may in part be due to
host immunity or a delayed response to decline in the parasite population because of
depletion of susceptible host cells. Metcalf et al. (2011b, 2012) noted the analogies
between the TSIR-like dynamics of immunizing human pathogens and the within-
host dynamics of malaria-causing parasites. During the blood stage of infection,
infected red blood cells (RBC) burst open in synchrony every 24, 48, or 72h de-
pending on species to release 6–30 merozoites (depending on species).6 Merozoites

6 The harmonic and subharmonics of the Plasmodium circadian rhythm are still an unresolved
mystery (Mideo et al., 2013; Greischar et al., 2014).
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Fig. 8.6: The estimated seasonal β s with SEs for scarlet fever in Philadelphia be-
tween 1914 and 1948

then have a narrow time window to find and invade susceptible cells to start the
next replication cycle. The malaria TSIR model assumes that the number of in-
fected cells at generation t+1 is captured by It+1 = PE,t ItSt , where in this in-host
model It and St are the number of infected and uninfected RBCs and PE,t is the time-
varying effective propagation number (analogous to the β s of the previous sections).
This quantity can be thought of as the product of merozoite burst size, evasion of
host immunity, contact rates between merozoites and uninfected RBCs, and invasion
probability given that a contact has occurred.

We will consider data for the 24h replicating Plasmodium chabaudi mouse para-
site and use daily data from day three to 21 of 10 laboratory mice infected with the
AQ strain as collected by Sylvie Huijben (we will revisit on these data in Sects. 17.7
and 18.4). The chabaudi data is in long format (each measurement on separate
lines). The reshape function can convert this into matrices with the time series
of infected (paras) and uninfected (RBCs) red blood cells for each mouse as lines
(wide format). Some basic further data formatting are:
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data(chabaudi)
#subset RBC data
chabaudirbc = chabaudi[ ,-c(1, 3, 4, 7, 8, 10, 11)]
#Bump up RBC to microliter
chabaudirbc[ ,4] = chabaudirbc[,4] * 10ˆ6
#subset parasitemia data
chabaudipara = chabaudi[ ,-c(1, 3, 4, 7, 8, 9, 10)]

#reshape to wide
chabaudirbcw = reshape(chabaudirbc, idvar = "Ind2",

direction = "wide", timevar = "Day")
chabaudipw = reshape(chabaudipara, idvar = "Ind2",

direction = "wide", timevar = "Day")
#delete duplicate columns
chabaudirbcw = chabaudirbcw[ ,-seq(4, 50, by = 2)]
names(chabaudirbcw)[2] = "Treatment"
chabaudipw = chabaudipw[, -seq(4, 50, by = 2)]
names(chabaudipw)[2] = "Treatment"

#drop last columns of data not counted every day
chabaudipw = chabaudipw[, -c(22:27)]
chabaudirbcw = chabaudirbcw[, -c(22:27)]
#Pull out AQ mice
paras = chabaudipw[1:10, -c(1:2)]
chabaudirbcw = as.matrix(chabaudirbcw[1:10, -c(1:2)])
#Uninfected are total RBCs less infected
RBCs = as.matrix(chabaudirbcw-paras)

The time series of infected and susceptible RBCs are shown in Fig. 8.7. The acute
anemia is very strong.

par(mfrow = c(1, 2), bty = "l")
matplot(t(log(RBCs)), type = "l",xlab = "Day",

ylab = "Uninfected logRBC")
matplot(t(log(paras)),type = "l", xlab = "Days",

ylab = "Infected logRBC")

Finally, the in-host TSIR model can be fit after log-transforming and lagging as
needed:

Tmax = length(paras[1, ]) ##max number of days
Nind = length(paras[, 1]) ##number of individuals
day = matrix(rep(1:(Tmax - 1), each = Nind), Nind, Tmax -

1)
day = c(day)

# Log infected cells
log.para = log(paras[, 2:Tmax])
log.para.lag = log(paras[, 1:(Tmax - 1)])
log.para = unlist(c(log.para))
log.para.lag = unlist(c(log.para.lag))

# Log uninfected cells
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Fig. 8.7: The numbers of infected and susceptible red blood cells in mice infected
by the P.chabaudi AQ strain in 10 different mice

log.rbcs.lag = log(RBCs[, 1:(Tmax - 1)])
log.rbcs.lag = unlist(c(log.rbcs.lag))

Occasionally, the parasite count is below the detection limit. These zeros (leading
to −∞ log values) are best replaced with the minimum observed non-zero values:

log.para[!is.finite(log.para)] =
min(log.para[is.finite(log.para)] , na.rm = TRUE)

log.para.lag[!is.finite(log.para.lag)] =
min(log.para[is.finite(log.para)] , na.rm = TRUE)

The model fitting algorithm is similar to that done for measles, except that Plas-
modium replication occurs in discrete, synchronous cycles (Mideo et al., 2013) so
the model does not need the α exponent introduced in Sect. 8.2 that corrects for
non-discreteness of generations.
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data = data.frame(log.para = log.para, day = day,
log.para.lag = log.para.lag,
log.rbcs.lag = log.rbcs.lag)

fit = glm(log.para ˜ -1 + as.factor(day) +
offset(log.para.lag + log.rbcs.lag), data = data)

Figure 8.8 shows the estimated daily propagation numbers and associated in-host
effective reproductive numbers (RE,t = PE,tSt ). The RE,ts are initially around six,
which is close to (but a little smaller than) the burst size of P. chabaudi merozites.
This drops to around one after a week. Metcalf et al. (2011b) discuss how the drop
in RE reflects a combination of depletion of red blood cells in the early phase and
the action of innate and acquired immunity. The acquired immunity kicks in after
about 2 weeks.

par(mfrow = c(1, 2))
require(plotrix)
ses = summary(fit)$coeff[, 2]
beta = exp(fit$coef)
ubeta = exp(fit$coef + ses)
lbeta = exp(fit$coef - ses)
plotCI(x = c(3:20), y = beta, ui = ubeta, li = lbeta,

xlab = "Day", ylab = expression(P[E]))
points(x = c(3:20), exp(fit$coeff), type = "b", pch = 19)
plotCI(x = c(3:20), y = beta * colMeans(RBCs)[-19], ui = ubeta *

colMeans(RBCs)[-19], li = lbeta * colMeans(RBCs)[-19],
xlab = "Day", ylab = expression(R[E]))

points(x = c(3:20), beta * colMeans(RBCs)[-19], type = "b",
pch = 19)

abline(h = 1, lty = 3)

8.10 A TSIR shinyApp

The tsir.app explores the nonseasonal TSIR model. It can be launched from R
through:

require(epimdr2)
runApp(tsir.app)
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Fig. 8.8: Estimated (a) propagation numbers and (b) effective in-host reproductive
numbers of P. chabaudi in mice infected with the AQ strain

8.11 Malapropos: A Ross–Macdonald Malaria Model

This monograph is primarily devoted to computations regarding directly transmitted
infectious diseases, but it is pertinent to highlight that the conceptual principles dis-
cussed herein also apply to vector-borne diseases. The Ross–Macdonald framework
for example is a large literature on modeling malaria dynamics (Smith et al., 2012).
A version of this model was proposed by Aron and May (1982) as an ODE system
tracking the fraction of infected humans (x) and infected mosquitos (y).
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Fig. 8.9: (a) Flow diagram of the Aron–May version of Ross–Macdonald malaria
transmission model. (b) Isoclines in phase plane with parameter values γ =
0.14/day, a= 0.25/day, b= 0.1, c= 1, μ = 0.14/day, and m= 20

The basic equations due to Aron and May (1982) are (Fig. 8.9a)

dx/dt = (abY/X)y(1− x)− γx (8.9)

dy/dt = acx(1− y)−μy, (8.10)

where Y/X = m is the mosquito-to-human ratio, γ is the human recovery rate (so
1/γ is the human infectious period), 1/μ is the adult mosquito life expectancy, a is
the biting rate (1 / gonotrophic cycle duration), b is the human probability of getting
infected by infected mosquito, and c is the probability of mosquito infection from an
infected human. We can apply similar logic as in Sect. 3.7 to derive the reproduction
number for this system: During the 1/γ infectious period of the host transmission to
mosquitos happens at a rate ac, infected mosquitos are infectious for their lifespan
1/μ and transmit back at a rate abm. Thus R0 =

ac
γ

abm
μ = a2cbm

γμ .
The isoclines in this system are given by the solution to the equations dx/dt = 0

and dy/dt = 0 and partition the phase plane into regions where x and y are increasing
and decreasing according to (Fig. 8.9b)

y=
γx

(abm)(1− x)
(8.11)

y=
cx

acx+μ
, (8.12)

respectively. The endemic equilibrium is

x∗ = (R0 −1)/(R0 +ac/μ) (8.13)

y∗ =
R0 −1
R0

ac/μ
1+ac/μ

. (8.14)

While the model is simplistic in terms of not considering acquired immunity from
lifetime exposure, it is nevertheless useful for considering the fundamental kinetics
of vector-borne infections. The ross.app can be launched via

require(epimdr2)
runApp(ross.app)



Chapter 9
Stochastics

9.1 Preamble: Prevalence versus Incidence

When fitting mechanistic models to data, we have to consider carefully the relation-
ship between the nature of the data versus the nature of the model state variables.
For example, when working with continuous-time S(E)IR models, it is important to
keep in mind that incidence is not prevalence. The results from integrating the com-
partmental models represent prevalence over time (i.e., the number or fraction of a
population that is infected). Most public health data, in contrast, tracks incidence—
the number of new cases in any given time interval. We thus need to do something
more than trying to match simulated prevalence with observed incidence. We there-
fore start with a toy example in which the simulated data actually represents preva-
lence.

When/if one can assume that dynamics is largely unaffected by process noise
(demographic and environmental stochasticity), models can be fit from data using
trajectory matching (e.g., Bhattacharyya et al., 2015). The assumption is that dis-
crepancies between the observations and the predictions from the dynamic model
are due to observational errors. The upside of trajectory matching is that we can
easily fit continuous-time models to variably spaced observations on any/all state
variable, and the downside is that these assumptions are restrictive; though highly
transmissible, seasonally forced, immunizing pathogens in large populations may
effectively erase long-term signatures of stochasticity (Grenfell et al., 2002).1 The
purpose of this chapter is three-fold: To introduce methods for parameter estima-
tion using trajectory matching; before then to introduce algorithms for event-based
stochastic simulation to explore plausible real-world outcomes; and finally to dis-
cuss how these estimations have important bearings on decisions regarding outbreak
response vaccination.

This chapter uses the following R package: deSolve.
1 Yao and Tong (1998; 2000) proposed general statistical time series methods to test for operational
determinism in stochastic dynamic systems.
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9.2 Event-Based Stochastic Simulation

To begin, we consider how to stochastically simulate the continuous-time SIR
model (Eqs. (2.1)–(2.3)). Previously, we considered stochastic simulation using the
discrete-time chain-binomial framework (Sect. 3.4) for plausible epidemic trajecto-
ries. An alternative is to do continuous-time stochastic simulation using an event-
based approach via the Gillespie exact algorithm (Gillespie, 1977) and the associ-
ated τ-leap approximation (Gillespie, 2001). As discussed in Sect. 2.9, the S(E)IR
model (and all compartmental ODEs) implies exponentially distributed waiting
times between individual transitions to other compartments. The Gillespie exact
algorithm takes advantage of this idea. If we for example consider how the states of
the SIR flows (Eqs. (2.1)–(2.3)) should change over time, we expect the following
six possible changes:

• S→ S+1 at rate μN from births
• S→ S−1 at rate μS from deaths
• S→ S−1 and I → I+1 at rate βSI/N from infection
• I → I−1 at rate μI from deaths
• I → I−1 and R→ R+1 at rate γI from recovery
• R→ R−1 at rate μR from deaths

Thus, the system is expected to change by an overall summed rate of r = μN +
μS+βSI/N+μI+ γI+μR. We can therefore draw a random exponential waiting
time with mean r to update a continuous-time clock, then draw a random event from
a multinomial distribution with probabilities given by the relative rates, update the
state variables accordingly, and repeat. . .

Because of the many versions of compartmental models used in studying disease
dynamics, it is useful to write a general-purpose stochastic simulator that can be
applied to any set of rate equations. To this end, we first define a rlist list of
equations corresponding to the rates for the six transitions of the SIR flows. The
quote formalism allows us to set up the list such that all equations can be evaluated
in a single sapply call as the simulation progress.

rlist = c(quote(mu * (S + I + R)), #Births
quote(mu * S), #Sucseptible deaths
quote(beta * S * I /(S + I + R)), #Infection
quote(mu * I), #Infected death
quote(gamma * I), #Recovery
quote(mu * R)) #Recovered death

The transition matrix associated with each SIR event has three columns that corre-
spond to changes in S, I, and R, respectively; the rows correspond to the six possible
events.

emat = matrix(c(1, 0, 0,
-1, 0, 0,
-1, 1, 0,
0, -1, 0,
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0, -1, 1,
0, 0, -1),
ncol = 3, byrow = TRUE)

A general-purpose simulator using the Gillespie exact algorithm is provided by the
gillespie function. The idea is to write a function that is sufficiently robust and
general that it can be applied to event-based stochastic simulation of any model
that fits within a compartmental framework. The function takes five arguments to
accomplish this:

• rateqs A list of rate equations corresponding to each of the possible events
using the quote formalism

• eventmatrix A matrix of changes to each of the state variables associated
with each event

• parameters A vector of parameter values
• initialvals A vector of initial values for the states
• numevents The number of events to be simulated

gillespie = function(rateqs, eventmatrix, parameters,
initialvals, numevents) {
res = data.frame(matrix(NA, ncol = length(initialvals) +

1, nrow = numevents + 1))
names(res) = c("time", names(inits))
res[1, ] = c(0, inits)
for (i in 1:numevents) {

# evaluate rates
rat = sapply(rateqs, eval, as.list(c(parameters,

res[i, ])))
# update clock
res[i + 1, 1] = res[i, 1] + rexp(1, sum(rat))
# draw event
whichevent = sample(1:nrow(eventmatrix), 1, prob = rat)
# updat states
res[i + 1, -1] = res[i, -1] + eventmatrix[whichevent,

]
}
return(res)

}

For the SIR model, an exact Gillespie stochastic simulation assuming an infec-
tious period of 20 days, R0 = 26, and a per capita birth/death rate of one per year (re-
calling that β = R0 ∗ (μ + γ) = 500.5 for the basic SIR model) is shown in Fig. 9.1:

paras = c(mu = 1, beta = 26 * (1 + 365/20), gamma = 365/20)
inits = c(S = 100, I = 2, R = 0)
sim = gillespie(rlist, emat, paras, inits, 1000)
matplot(sim[, 1], sim[, 2:4], type = "l", ylab = "Numbers",

xlab = "Time", log = "y")
legend("topright", c("S", "I", "R"), lty = c(1, 1, 1),

col = c(1, 2, 3))



168 9 Stochastics

0.0 0.5 1.0 1.5

1
2

5
10

20
50

10
0

Time

N
um

be
rs

S
I
R

Fig. 9.1: A Gillespie exact simulation of the stochastic SIR model with μ = 1, γ =
365/20, and R0 = 26, giving a β of 500.5

The Gillespie algorithm provides an “exact” stochastic simulation in the sense
that the time evolution of the system is changing exactly according to a random
realization of the stochastic differential system. It is, however, computationally ex-
pensive as every event is recorded separately. Gillespie’s τ-leap method uses the
Poisson approximation corresponding to the discussion of Sect. 8.2. If we assume
that the interval, Δ t, is sufficiently short that any change in the rates is negligible,
the number of events should be Poisson distributed with summed rates multiplied
by Δ t and multinomially divided among the events according to their relative rates.2

The below tau function is a general τ-leap simulator for the SEIR model or any
other compartmental models such as, for example, Li et al.’s (2017) application to
the Ebola SEIHFR model discussed in Sect. 3.9. The SEIR model has eight possible
events:

• S→ S+1 at rate μN from births
• S→ S−1 at rate μS from deaths

2 Mathematically speaking, the τ-leap implementation of a stochastic SIR model is related
to the chain-binomial model (Eqs. (3.1)–(3.2)) discussed in Sect. 3.4 because Binomial(S,1 −
exp−β IΔ t/N) → Poisson(βSIΔ t/N) as S → ∞ if β IΔ t/N is small, where the latter expression is
the force of infection.
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• S→ S−1 and E → E+1 at rate βSI/N from infection
• E → E−1 at rate μE from deaths
• E → E−1 and I → I+1 at rate σE from becoming infectious
• I → I−1 at rate μI from deaths
• I → I−1 and R→ R+1 at rate γI from recovery
• R→ R−1 at rate μR from deaths

We thus have the following four column event matrices:

emat2 = matrix(c(1, 0, 0, 0,
-1, 0, 0, 0,
-1, 1, 0, 0,
0, -1, 0, 0,
0, -1, 1, 0,
0, 0, -1, 0,
0, 0, -1, 1,
0, 0, 0, -1),

ncol = 4, byrow = TRUE)

The SEIR equations associated with each event are:

rlist2 = c(quote(mu * (S + E + I + R)),
quote(mu * S),
quote(beta * S * I/(S + E + I + R)),
quote(mu * E),
quote(sigma * E),
quote(mu * I),
quote(gamma * I),
quote(mu * R))

A general-purpose τ-leap simulator is:

tau = function(rateqs, eventmatrix, parameters, initialvals,
deltaT, endT) {
time = seq(0, endT, by = deltaT)
res = data.frame(matrix(NA, ncol = length(initialvals) +

1, nrow = length(time)))
res[, 1] = time
names(res) = c("time", names(inits))
res[1, ] = c(0, inits)
for (i in 1:(length(time) - 1)) {

# calculate overall rates
rat = sapply(rateqs, eval, as.list(c(parameters,

res[i, ])))
evts = rpois(1, sum(rat) * deltaT)
if (evts > 0) {

# draw events
whichevent = sample(1:nrow(eventmatrix), evts,

prob = rat, replace = TRUE)
mt = rbind(eventmatrix[whichevent, ], t(matrix(res[i,

-1])))
mt = matrix(as.numeric(mt), ncol = ncol(mt))
# update states
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res[i + 1, -1] = apply(mt, 2, sum)
res[i + 1, ][res[i + 1, ] < 0] = 0

} else {
# if no events in deltaT
res[i + 1, -1] = res[i, -1]

}
}
return(res)

}

With an initial population comprised of 1000 individuals and 1 initial infected, a
stochastically simulated daily incidence for 2 years with measles-like parameters
is:3

paras = c(mu = 1, beta = 1000, sigma = 365/8, gamma = 365/5)
inits = c(S = 999, E = 0, I = 1, R = 0)
sim2 = tau(rlist2, emat2, paras, inits, 1/365, 2)
matplot(sim2[, 1], sim2[, 2:5], type = "l", log = "y",

ylab = "Numbers", xlab = "Time")
legend("bottomright", c("S", "E", "I", "R"), lty = c(1,

1, 1, 1), col = c(1, 2, 3, 4))

Following the virgin epidemic, the inherent birth/death stochasticity leads to low-
amplitude oscillations (Fig. 9.2) according to the resonant periodicity of the SEIR
model (see details in Chap. 10).

9.3 Trajectory Matching

Trajectory matching assumes that the discrepancies between models and data are
due to error of observation. The event-based, stochastic simulation breaks with this
assumption as model discrepancies are due to demographic stochasticity. Let us
nevertheless see if we can fit the SEIR model to the event-based simulation. We first
recall the gradient function for the system:

require(deSolve)
seirmod = function(t, y, parms) {

S = y[1]
E = y[2]
I = y[3]
R = y[4]

with(as.list(parms), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R

3 Recalling that for the SEIR model R0 =
σ

σ+μ
β

γ+μ , these parameters yield an R0 of around 21.
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Fig. 9.2: A τ-leap simulation of the SEIR model using a daily time step for 2 years
assuming μ = 1, β = 1000, an infectious period of 8 days, a latent period of 5 days,
and an initial population comprised of 1000 individuals one of which is infected

res = c(dS, dE, dI, dR)
list(res)

})
}

Using the ideas introduced in Sect. 3.4, define a likelihood function to estimate pa-
rameters. The Gaussian negative log-likelihood is n

2 log(RSS)+ const, where n is
the length of the time series, RSS is the residual sum-of-squares, and the constant
is n(log(n)− log(2π)−1)/2 (Aitkin et al., 2005).4 The function to calculate this is
thus

lfn = function(p) {
times = seq(0, 2, by = 1/365)
start = c(S = 999, E = 0, I = 1, R = 0)
paras = exp(c(mu = p[1], N = p[2], beta = p[3], sigma = p[4],

gamma = p[5]))
out = as.data.frame(ode(start, times = times, seirmod,

4 If in a hurry we can ignore the constant and minimize n
2 log(RSS) because it is the relative

likelihood that matters.
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paras))
n = length(sim2$I)
rss = sum((sim2$I - out$I)ˆ2)
return(log(rss) * (n/2) - n * (log(n) - log(2 * pi) -

1)/2)
}

Calculating the MLEs involves, as previously, minimizing the function:

# initial values for mu, N, beta, sigma, gamma
paras0 = log(c(2, 500, 500, 365/7, 365/7))
fit = optim(paras0, lfn, hessian = TRUE)

The deterministic prediction of the fitted model is shown in Fig. 9.3.

times = seq(0, 2, by = 1/365)
paras = exp(c(mu = fit$par[1], N = fit$par[2], beta = fit$par[3],

sigma = fit$par[4], gamma = fit$par[5]))
start = c(S = 999, E = 0, I = 1, R = 0)
out = as.data.frame(ode(start, times, seirmod, paras))
plot(out$time, out$I, xlab = "Time", ylab = "Prevalence",

type = "l")
lines(sim2$time, sim2$I, col = 2, type = "l")
legend("topright", c("Gillespie simulation", "SEIR fit"),

lty = c(1, 1), col = c(2, 1))

The trajectory-matched fit predicts the virgin epidemic and the next dampened
epidemic well, but not the subsequent stochastically excited low-amplitude cycles
(Fig. 9.3). In addition to finding parameter estimates, we are usually interested in
uncertainty and trade-offs among parameters in producing a fit to the data. . .

9.4 Likelihood Theory 101

Maximum likelihood principles were used in several previous analyses of, for exam-
ple, the chain binomial (Sect. 3.4), the catalytic (Sect. 5.3), and the TSIR (Chap. 8)
models. However, it is useful to discuss likelihood theory in a more formal fashion.5

For this purpose, it is useful to summarize the key results with respect to infer-
ence from elementary likelihood theory with maximum brevity (see, for example,
appendix A of McCullagh & Nelder, 1989):

• Let L(θ |D) be the function that calculates the likelihood for a set of data, D; i.e.,
the probability of observing the data given some values for the parameters, θ .
The values that maximize this probability are the maximum likelihood estimates
(MLEs) of the parameters, θ̂ .

5 Bolker (2008) is an excellent broad discussion on estimation for ecologically realistic models
using a variety of methods.
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Fig. 9.3: SEIR fitted predicted trajectory superimposed on the τ-leap simulation of
the SEIR model

• The negative log-likelihood (− logL= �(θ |D)) shows what θ̂ are the values that
minimize �(θ). If data points are independent, then the joint log-likelihood is
simply the sum of the log-likelihoods over the data points.

• The MLE is a minimum of �, so the score function U(θ) = ∂�/∂θ is zero at the
MLE.

• The likelihood profile graphs how �(θ) changes with θ . The 95% confidence
interval is the set of values of θ for which �(θ) is within χ2(0.95, p)/2 of the
minimum, where p is the number of parameters. The quantity 2�(θ) is referred
to as the deviance, so if we work with the deviance we would use χ2(0.95, p) as
the cut-off.

• The second derivative of �(θ) with respect to θ is called the Fisher informa-
tion, ι(θ) = ∂ 2�/∂θ 2. The inverted information matrix is an approximation of
the variance–covariance matrix of the parameters, so we can obtain approximate
standard errors as the square-root of the diagonal of the inverted information ma-
trix. The approximate correlation matrix is the standardized inverted information
matrix.

• A matrix of second derivatives is generally referred to as a Hessian matrix. If we
call optim(..., hessian=TRUE), R will numerically estimate the hessian
at the minimum, so if the function to be minimized is the negative log-likelihood,
we can obtain approximate SEs and the approximate correlation matrix from this
Hessian.

• If we have two alternative models that are nested—meaning that the more com-
plex model contains all the parameters of the simpler—then we can test for

https://en.wikipedia.org/wiki/Hessian_matrix
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significant model improvement; the difference in the log-likelihood is χ2(d f =
Δ p)/2-distributed, where Δ p is the number of extra parameters in the complex
model.6

We can apply these ideas to the model fit:

# MLEs
round(exp(fit$par), 4)

## [1] 1.5165 642.3009 563.3407 50.3001 69.6786

# Approximate SEs
round(exp(sqrt(diag(solve(fit$hessian)))), 4)

## [1] 1.2744 1.2441 1.2561 1.0224 1.0240

# Correlation matrix (Normalized inverted Hessian)
round(cov2cor(solve(fit$hessian)), 4)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.0000 -0.9976 -0.9972 0.6107 -0.9546
## [2,] -0.9976 1.0000 0.9974 -0.5872 0.9649
## [3,] -0.9972 0.9974 1.0000 -0.6421 0.9543
## [4,] 0.6107 -0.5872 -0.6421 1.0000 -0.4653
## [5,] -0.9546 0.9649 0.9543 -0.4653 1.0000

The true parameter values used in the simulation were μ = 1, N = 1000, β = 1000,
σ = 45.6, and γ = 73. So while the model prediction gives a decent fit, the param-
eter estimates are not particularly accurate. This is where it is useful to apply the
likelihood theory more extensively. From the normalized inverted hessian, we see
that several of the parameters are highly (positively or negatively) correlated, and
several with correlations more extreme than ±0.9. That means that a different pa-
rameter combination may provide a very similar fit to the data. This is an illustration
of identifiability problems because of multicollinearites; with observations only on
the infectious stage, for instance, a relatively short infectious period and high trans-
mission rate will predict a similar trajectory to a relatively short latent period and
a lower transmission rate. Furthermore, a smaller population size and higher birth
rate can result in an identical susceptible recruitment rate of a larger population with
lower birth rate. For inference, it is therefore normally best to inform the analysis
with any known biological quantities; for example, if the latent and infectious pe-
riods are known from household or clinical studies, it may be best not to attempt
to infer these from the time series alone (though, as King et al. 2008 point out
for cholera dynamics, conventional wisdom may not always be consistent with dy-
namical patterns). Moreover, if there are strong correlations, the individual standard
errors (and confidence intervals derived there from) may be a poor representation of
parametric uncertainty. It may then be better to look at pairwise confidence ellipses
(e.g., Bolker, 2008).

6 If the models are non-nested, formal tests are not available but information theoretical rankings
of models using AIC, BIC, AIC weights, etc., are useful (Burnham & Anderson, 2003).
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9.5 SEIR with Error

We can use the ode function from the deSolve package to integrate the SEIR
gradient function (seirmod) introduced in Sect. 6.2 to which we can add noise to
generate a dataset that adheres to the assumption that the dynamics is only affected
by observational noise. A 10 year simulation of weekly data assuming measles’ish
parameters and 6% of initial susceptibles is

times = seq(0, 10, by = 1/52)
paras = c(mu = 1/50, N = 1, beta = 1000, sigma = 365/8,

gamma = 365/5)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
out = as.data.frame(ode(start, times, seirmod, paras))

The jitter function can be used to add some noise to the data (Fig. 9.4),

datay = jitter(out$I, amount = 1e-04)
plot(times, datay, ylab = "Infected", xlab = "Time")
lines(times, out$I, col = 2)

Then define a Gaussian likelihood function,

lfn = function(p, data) {
times = seq(0, 10, by = 1/52)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
paras = c(mu = p[1], N = p[2], beta = p[3], sigma = p[4],

gamma = p[5])
out = as.data.frame(ode(start, times = times, seirmod,

paras))
n = length(data)
rss = sum((data - out$I)ˆ2)
return(log(rss) * (n/2) - n * (log(n) - log(2 * pi) -

1)/2)
}

and estimate parameters using the jittered observations:

paras0 = c(mu = 1/30, N = 1, beta = 1500, sigma = 365/4,
gamma = 365/10)

fit = optim(paras0, lfn, data = datay, hessian = TRUE)

The estimates are

# MLEs:
round(fit$par, 3)

## [1] 0.036 1.031 2179.946 71.197 138.851

# Approximate SEs:
round(sqrt(diag(solve(fit$hessian))), 3)

## [1] 0.003 0.066 200.261 7.584 8.718
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Fig. 9.4: Fraction infectious and jittered data from the SEIR model assuming μ =
0.02, β = 1000, σ = 45.6, and γ = 73/year

# Correlation matrix:
round(cov2cor(solve(fit$hessian)), 3)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1.000 -0.743 -0.330 -0.407 0.374
## [2,] -0.743 1.000 0.820 -0.258 0.204
## [3,] -0.330 0.820 1.000 -0.658 0.714
## [4,] -0.407 -0.258 -0.658 1.000 -0.821
## [5,] 0.374 0.204 0.714 -0.821 1.000

The likelihood framework, again, reveals important multicolinearities among pa-
rameters that highlight uncertainties that will require additional epidemiological
data or clinical measurements in order to be resolved.

Uncertainties regarding appropriate model formulations and parameterizations
are canonical in the face of emerging diseases, and the inverted hessian allows a
quantitation of where parametric uncertainties are strongest. However, from a de-
cision and policy-making point of view Shea et al. (2014) discuss how some un-
certainties are more critical to resolve than others using the value-of-information
protocol. With respect to identifying the critical uncertainties with respect to the
2014 West African Ebola outbreak, Li et al. (2017) used the event-based stochas-
tic framework introduced in Sect. 9.2 for an expected-value-of-perfect-information
(EVPI) analysis to help prioritize fact-finding among the various unknowns. Shea
et al. (2020) provide a succinct introduction to this type of decision-theory analysis
with an associated shinyApp for further exploration.
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9.6 Boarding School Flu Data

The boarding school flu dataset introduced in Sect. 3.6 has an approximate match
between observation and prevalence because the data represents the number of chil-
dren confined to bed each day, and while the average stay in bed (3–7 days) is maybe
a bit different than the infectious period, the durations are comparable.

data(flu)

Recalling the sirmod gradient functions from Sect. 2.3, the likelihood function
assuming normally distributed errors is

lfn2 = function(pp, II, mu = 0, N = 726) {
times = seq(1, 14, by = 1)
start = c(S = N, I = 1, R = 0)
paras = c(mu = mu, N = N, beta = pp[1], gamma = pp[2])
out = as.data.frame(ode(y = start, times = times,

sirmod, paras))
n = length(II)
rss = sum((II - out$I)ˆ2)
return(log(rss) * (n/2) - n * (log(n) - log(2 * pi) -

1)/2)
}

There are two parameters to estimate: β and γ . The time scale is daily so plausible
parameter guesses to be optimized are β = 2 and γ = 0.5.

# beta, gamma
paras0 = c(2, 1/2)
flufit = optim(paras0, lfn2, II = flu$cases, hessian = TRUE)

The estimated parameters and basic reproduction number are

# parameters
flufit$par

## [1] 1.9427860 0.4482372

# R0:
flufit$par[1]/flufit$par[2]

## [1] 4.334281

The R0 estimate is comparable to the estimate made in Chap. 3. The observed and
predicted outbreaks are seemingly a good match (Fig. 9.5):

times = seq(1, 20, by = 0.1)
start = c(S = 762, I = 1, R = 0)
paras = c(beta = flufit$par[1], gamma = flufit$par[2],

N = 763)
out = as.data.frame(ode(start, times = times, sirmod,

paras))
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plot(out$time, out$I, ylab = "Prevalence", xlab = "Day",
type = "l")

points(flu$day, flu$cases)

As discussed in Sect. 3.6, the reproduction number is higher than broadly seen for
influenza presumably due to the high contact rates among pupils within a boarding
school setting.

9.7 Measles

Consider, again, the measles incidence data collected by Doctors Without Borders
(MSF) during the 2003–2004 outbreak in Niamey, Niger (Fig. 9.6; Sect. 3.4) but
using data at a daily resolution. The compiled daily incidence vector y is

y = as.vector(table(niamey_daily))

The challenge for model fitting is to make the SEIR formulation relevant to the
data. The complication is that I represents prevalence (i.e., the current number of in-
fected individuals), while incidence y represents appearance of new cases (i.e., flux)
into the infected class. If recasting the SEIR model to also keep track of cumulative
incidence (K), the differenced K time series (using the diff function) is a pre-
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Fig. 9.5: Predicted and observed influenza prevalence for the 1978 boarding school
data
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diction of incidence (y). The SEIRK model (assuming known latent and infectious
periods of 8 and 5 days, respectively) thus provides a vehicle to link model and data
quantities.

times = unique(niamey_daily$day)
paras = c(mu = 0, N = 1, beta = 5, sigma = 1/8, gamma = 1/5)
start = c(S = 0.999, E = 0, I = 0.001, R = 0, K = 0)

The resultant gradient function is

seirkmod = function(t, x, params) {
S = x[1]
E = x[2]
I = x[3]
R = x[4]
K = x[5]

with(as.list(params), {
dS = mu * (N - S) - beta * S * I/N
dE = beta * S * I/N - (mu + sigma) * E
dI = sigma * E - (mu + gamma) * I
dR = gamma * I - mu * R
dK = sigma * E
res = c(dS, dE, dI, dR, dK)
list(res)

})
}

The likelihood function (assuming Poisson distributed counting errors) for the
unknown transmission rate, β , and initial susceptible number, N, are as per above
protocols. According to the MSF outbreak response protocol, an outbreak is de-
clared once five cases have been confirmed. The unknown initial infectious fraction
is thus 5/N.

lfn4 = function(p, I) {
times = unique(niamey_daily$day)
xstart = c(S = (p[1] - 5)/p[1], E = 0, I = 5/p[1],

R = 0, K = 0)
paras = c(mu = 0, N = p[1], beta = p[2], sigma = 1/8,

gamma = 1/5)
out = as.data.frame(ode(xstart, times = times, seirkmod,

paras))
predinci = c(xstart["I"], diff(out$K)) * p[1]
ll = -sum(dpois(I, predinci, log = TRUE))
return(ll)

}

For starting values assuming initial susceptible numbers N = 11,000 and β = 5, the
optimization is

# N, beta
paras0 = c(11000, 5)
measfit = optim(paras0, lfn4, I = y, hessian = TRUE)
day = 1:230
xstart = c(S = (measfit$par[1] - 5)/measfit$par[1], E = 0,
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I = 5/measfit$par[1], R = 0, K = 0)
paras = c(mu = 0, N = measfit$par[1], beta = measfit$par[2],

sigma = 1/8, gamma = 1/5)
out = as.data.frame(ode(xstart, times = day, seirkmod,

paras))
plot(table(niamey_daily), xlab = "Day", ylab = "Incidence")
lines(out$time, c(xstart["I"], diff(out$K)) * measfit$par[1],

col = 2, lwd = 2)

The estimated effective reproduction number, RE , at the beginning of the outbreak
is comparable to the estimates based on biweekly data using the chain-binomial
framework of Sect. 3.4:

with(as.list(paras), sigma/(sigma + mu) * 1/(gamma + mu) *
beta/N)

## [1] 1.761133
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Fig. 9.6: Predicted and observed measles incidence using the maximum likelihood
estimates from the Poisson likelihood

9.8 Outbreak Response Vaccination

Grais et al.’s (2008) objective in fitting a model to the Niamey outbreak data was
to evaluate the effectiveness of outbreak response vaccination (ORV) in reducing
the burden of disease during an ongoing outbreak. For vaccine preventable diseases,
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there are four broad categories of intervention. Routine vaccination is immuniza-
tions administered during routine pediatric visits. For measles , this typically entails
a first dose at 9–12 months of age, followed by one or two more doses before the
age of five. Because some children may not have full access to routine medical
attention, so-called supplementary immunization activities (SIA) are undertaken in-
termittently in many (often low or mid income) countries. These typically happen
every five to 10 years and have a broader age target group such as 1–15 year olds.
The objective of SIAs is to prop up vaccine-induced herd immunity in the face of
slow buildup of susceptibles from incomplete vaccine cover. Manifestations of such
are for example the resurgence of measles in 1996–1997 in São Paulo, Brazil (Fon-
nesbeck et al., 2018), and in 2010 in Malawi (Kundrick et al., 2018) both areas have
had control of measles prior to these significant flare-ups. Cocoon vaccination dis-
cussed in Sect. 5.5 is the strategy to attempt to socially isolate children too young
for immunization from exposure (Lavine et al., 2011; Althouse & Scarpino, 2015).
The fourth deployment strategy is ORV that is the attempt to aggressively use vac-
cination to stem an ongoing outbreak such as the 2003–2004 epidemic of measles in
Niamey, Niger. At the time, the WHO guidelines were to prioritize palliative care of
measles cases (Grais et al., 2008). The goal of the computational exercise was to ask
the extent to which ORV can help mitigate the burden of disease during accelerating
epidemics of highly transmissible infections.

In the case of the Niamey 2003–2004 outbreak, the Médicine Sans Frontiers
ORV campaign began on day 161 after the beginning of the epidemic with a goal
of vaccinating 50% of all children of ages between 9 months and 5 years. After 10
days, almost 85,000 (57%) of this at-risk group was vaccinated (without knowledge
of previous disease or vaccination status). Assuming that vaccination was at random
with respect to immune status, we can write a modified SEIR function incorporating
a punctuated ORV to study the problem; the vaccine cover is a fraction—effectively
a probability—so this needs to be translated into a rate using the relation discussed
in Sect. 3.2: r=− log(1− p)/D, where D is now the length of the campaign. We can
define two functions to carry out the efficacy calculations. The sirvmod function
integrates the SIR that includes outbreak response vaccination, and the retrospec
function compares predicted epidemic trajectories with and without the ORV.

sirvmod = function(t, x, parms) {
S = x[1]
E = x[2]
I = x[3]
R = x[4]
K = x[5]
with(as.list(parms), {

Q = ifelse(t < T | t > T + Dt, 0, (-log(1 - P)/Dt))
dS = -B * S * I - q * Q * S
dE = B * S * I - r * E
dI = r * E - g * I
dR = g * I + q * Q * S
dK = r * E
res = c(dS, dE, dI, dR, dK)
list(res)

})
}
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retrospec = function(R, day, vaccine_efficacy, target_vaccination,
intervention_length, mtime, LP = 7, IP = 7, N = 10000) {
steps = 1:mtime
out = matrix(NA, nrow = mtime, ncol = 3)
# starting values
xstrt = c(S = 1 - 1/N, E = 0, I = 1/N, R = 0, K = 0)
beta = R/IP #transmission rate
# Without ORV
par = c(B = beta, r = 1/LP, g = 1/IP, q = vaccine_efficacy,

P = 0, Dt = 0, T = Inf, R = R)
outv = as.data.frame(ode(xstrt, steps, sirvmod, par))
fsv = max(outv$K)
# With ORV
par = c(B = beta, r = 1/LP, g = 1/IP, q = vaccine_efficacy,

P = target_vaccination, Dt = intervention_length,
T = day)

outi = as.data.frame(ode(xstrt, steps, sirvmod, par))
fsi = max(outi$K)
res = list(redn = fsi/fsv, out = outv, orv = outi,

B = par["B"], r = par["r"], g = par["g"], q = par["q"],
P = par["P"], Dt = par["Dt"], T = par["T"], R = R)

class(res) = "retro"
return(res)

}

Section 14.2 will discuss S3 class programming more formally; however, as a pre-
view, we define a plot.retro function for objects of class retro returned by
the retrospec function:

plot.retro = function(x) {
plot(x$out[, 1], x$out[, "I"], type = "l", ylim = c(0,

max(x$out[, "I"])), xlab = "Day", ylab = "Prevalence")
polygon(c(x$T, x$T, x$T + x$Dt,

x$T + x$Dt), c(-0.1, 1, 1, -0.1), col = "gray")
lines(x$out[, 1], x$out[, "I"])
lines(x$orv[, 1], x$orv[, "I"], col = "red")
title(paste("Final size: ", round(100 * (x$redn), 1),

"% (R=", x$R,", target=", 100*x$P, "%)", sep=""))
legend(x = "topleft", legend = c("Natural epidemic",

"With ORV"), col = c("black", "red"), lty = c(1, 1))
text(x = x$T + x$Dt, y = 0, pos = 4,

labels = paste(x$intervention_length,
"ORV from ", x$T))

}

Assuming the model is correct and that the vaccine either elicits instantaneous
protection or after two or four weeks for the B and T cell response to mature
(Sect. 5.1), the ORV is predicted to have reduced the epidemic by 25%, 15%, or
8%, respectively:

red1 = retrospec(R = 1.8, 161, vaccine_efficacy = 0.85,
target_vaccination = 0.5, intervention_length = 10,
mtime = 250, LP = 8, IP = 5, N = 16000)

red2 = retrospec(R = 1.8, 161 + 14, vaccine_efficacy = 0.85,
target_vaccination = 0.5, intervention_length = 10,
mtime = 250, LP = 8, IP = 5, N = 16000)
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red3 = retrospec(R = 1.8, 161 + 28, vaccine_efficacy = 0.85,
target_vaccination = 0.5, intervention_length = 10,
mtime = 250, LP = 8, IP = 5, N = 16000)

1 - red1$redn #protection from 1st day (161) of ORV

## [1] 0.2612989

1 - red2$redn #1st day + 14 of ORV

## [1] 0.1509867

1 - red3$redn #1st day + 28 of ORV

## [1] 0.07827277

Figure 9.7 depicts the predicted epidemic curve with and without outbreak re-
sponse vaccination assuming instantaneous protection from vaccine. The key insight
is that for ORVs to work they need to be implemented early (Grais et al., 2008).

plot(red1)
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Fig. 9.7: Epidemic curve with and without outbreak response vaccination starting on
day 161 with instantaneous protection, a target of 50%, a vaccine efficacy of 85%,
a campaign duration of 10 days, and an effective reproduction number of 1.8
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9.9 An ORV shinyApp

The epimdr2 package contains the orv.app with more detailed sensitivity anal-
yses of outbreak response vaccine scenarios. The shinyApp can be launched from
R through:

require(epimdr2)
runApp(orv.app)



Chapter 10
Stability and Resonant Periodicity

10.1 Preamble: Rabies

The rabies virus infects a wide range of mammalian carnivores across the world
with spillovers to non-competent hosts1 including humans. While not always clas-
sified as rabies, there are a wide range of related lyssaviruses of bats that can also
spill over to humans. These viruses are transmitted from saliva during aggressive
encounters involving biting. The incubation period is relatively long 3–7 weeks de-
pending on species as the virus slowly migrates through the peripheral and central
nervous system to the brain. In humans, the typical incubation period is 2–3 months,
which is why, as an unusual case, the vaccine is effective after infection. Rabies is
an interesting case where the incubation period determines the effective latent pe-
riod;2 in competent hosts, virus can present in saliva a week earlier, but it is only
after behavioral changes following the onset of symptomatic disease that onward
transmission begins.

Rabies usually invades a naive host range in spatial waves (spatial aspect of
which will be discussed in Sect. 15.4). This has been documented in great detail
for fox rabies in continental Europe and raccoon rabies in Eastern USA. Raccoon
rabies appeared in Virginia/West Virginia in 1977, before which the area was rabies
free, following some translocation event from Florida/Georgia that at the time was
raccoon rabies endemic.

The rabies dataset collected by CDC is the monthly number of rabid raccoons
by state. The time column starts from first month of invasion for each state (Childs
et al., 2000). The incidence patterns follow the characteristic pattern of major virgin
epidemics followed by a fuzzy but distinct periodic recurrence intervals of around 4
years (Fig. 10.1). Theory should allow us to predict such recurrence intervals.

This chapter uses the following R packages: nleqslv and polspline.
1 In this context, non-competent means host species that has no onward transmission; Sect. 15.1
will discuss interspecific spillover in more detail.
2 Recall the incubation period is the time to onset of symptoms, while the latent period is the time
to new pathogen presentation such as to be ready for onward transmission.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-031-12056-5 10

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12056-5_10&domain=pdf

 11914 62249 a 11914
62249 a
 
https://doi.org/10.1007/978-3-031-12056-5_10


186 10 Stability and Resonant Periodicity

data(rabies)
matplot(rabies[, 2:7], ylab = "Cases", xlab = "Month")
legend("topright", c("CT", "DE", "MD", "MA", "NJ", "NY"),

pch = as.character(1:6), col = 1:6)
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Fig. 10.1: Incidence of raccoon rabies by state since first appearance in Vir-
ginia/West Virginia in 1977 (Childs et al., 2000)

10.2 Linear Stability Analysis

As briefly introduced in Sect. 2.7, linear stability analysis is very useful for two rea-
sons: classification of types of equilibria and the calculation of resonant periodicities
(i.e., recurrence intervals) in the case of stable or unstable foci.

If we work with continuous-time models (ODEs such as the SEIR), equilibria
are stable if all the real parts of eigenvalues of the Jacobian matrix—when evalu-
ated at the equilibrium—are smaller than 0. An equilibrium is: (i) a node (i.e., all
trajectories move monotonically toward/away from the equilibrium) if the largest
eigenvalue has only real parts and (ii) a focus (i.e., trajectories spiral toward or away

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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from the equilibrium) if the largest eigenvalues are a conjugate pair of complex
numbers (a±bı). The resonant period of a focus is 2π/b.3

If we work with discrete-time models such as the TSIR discussed in Chap. 8
or the Nicholson–Bailey parasitoid–host model (see Chap. 16), equilibria are sta-
ble if the absolute value of all the eigenvalues of the Jacobian—when evaluated
at the equilibrium—are smaller than 1. Conditions for nodes versus foci are as for
continuous-time models, but the resonant period for such difference equations is
2π/arctan(b/a).

10.3 Finding Equilibria

To carry out such calculations, we need to construct the Jacobian and gather the
values corresponding to the equilibrium of interest. An equilibrium is where the state
variables do not change. So in the case of ODEs, we may consider three strategies
of decreasing desirability: (i) solve analytically for when all gradient functions are
zero, (ii) solve numerically for when all gradient functions are zero, or (iii) simulate
the ODEs a long time and record the state of the system at the end. The latter is the
worst because it will not find any unstable solutions, and (ii) is less good than (i)
because it is less exact, but (i) may be difficult if you are a biologist working with
complex models.

Consider the SIR model (Eqs. (2.1)–(2.3)). The equilibria occur when dS/dt,
dI/dt, and dR/dt all equal zero.

Strategy 1: Setting N to 1 (i.e., modeling fractions rather than numbers), the disease
free equilibrium (dfe) is {S∗ = 1, I∗ = 0, R∗ = 0}. The endemic equilibrium is as
follows: The I equation of the SIR implies that S∗ = (γ +μ)/β = 1/R0, which when
substituted into the S equation gives I∗ = μ(R0−1)/β , and finally, R∗ =N−I∗−S∗.
Thus the evaluation for a given set of parameters is

parms = c(mu = 1/(50 * 52), N = 1, beta = 2.5, gamma = 1/2)
N = parms["N"]
gamma = parms["gamma"]
beta = parms["beta"]
mu = parms["mu"]
Istar = as.numeric(mu * (beta/(gamma + mu) - 1)/beta)
Sstar = as.numeric((gamma + mu)/beta)
Sstar

## [1] 0.2001538

Istar

## [1] 0.0006147934

3 And a “center” that produces amplitude-neutral oscillations like that seen in the
Lotka–Volterra predator–prey model if it has only imaginary parts.

https://en.wikipedia.org/wiki/Lotka-Volterra_equations
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Strategy 2: For a numerical solution, the nleqslv package solves coupled equa-
tions by any desired level of accuracy. Note, now, that the state variables, x, are
the unknown quantities to solve so the below rootfn function provides the set of
equations that needs to be solved for the value of all zeros.

require(nleqslv)
rootfn = function(x, params) {

r = with(as.list(params), c(mu * (N - x[1]) - beta *
x[1] * x[2]/N, beta * x[1] * x[2]/N - (mu + gamma) *
x[2], gamma * x[2] - mu * x[3]))

r
}
parms = c(mu = 1/(50 * 52), N = 1, beta = 2.5, gamma = 1/2)
ans = nleqslv(c(0.1, 0.5, 0.4), fn = rootfn, params = parms)
ans$x

## [1] 0.2001523463 0.0006147945 0.7992328592

The numerical solution is accurate to the fifth decimal place for the endemic equi-
librium. The unstable disease free equilibrium {S∗ = 1, I∗ = 0,R∗ = 0} also ap-
pears numerically when using this protocol to explore across a wide range of initial
guesses.

ans = grid = expand.grid(seq(0, 1, by = 0.25), seq(0,
1, by = 0.25), seq(0, 1, by = 0.25))

ans[, ] = NA
for (i in 1:nrow(ans)) {

ans[i, ] = nleqslv(as.numeric(grid[i, ]), fn = rootfn,
params = parms)$x

}
ans2 = round(ans, 4)
ans2[!duplicated(ans2), ]

## Var1 Var2 Var3
## 1 1.0000 0e+00 0.0000
## 6 0.2002 6e-04 0.7992

The two equilibria show up.

Strategy 3: This probably should not be used for final analyses because numerically
integrating differential equations is much more fraught than numerically solving
nonlinear equations. However, as a shortcut if there already is a gradient function
defined, one can integrate the equations for the time required to reach equilibrium
and then use those final values.4

sirmod = function(t, y, parameters) {
S = y[1]
I = y[2]

4 NB: Unstable equilibria will not be found with this protocol, and if there are more than one
steady state (as discussed further in Chap. 11), only one will show up depending on chosen initial
conditions.
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R = y[3]
with(as.list(parameters), {

dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dI, dR)
list(res)

})
}

paras = c(mu = 1/(50 * 52), N = 1, beta = 2.5, gamma = 1/2)
equil = ode(y = c(S = 1 - 1e-04, I = 1e-04, R = 0), times = seq(0,

1e+05, by = 1), func = sirmod, parms = paras)
round(tail(equil[, -1], 1), 5)

## S I R
## [100001,] 0.20015 0.00061 0.79923

10.4 Evaluating the Jacobian

If we work on fractions of individuals in each compartment (N = S+ I+R= 1), the
R compartment of the SIR model does not affect dynamics. So for analysis, one only
needs to consider the coupled S–I system. The calculations are easily done using the
general-purpose jacobian function introduced in Sect. 6.3.

STEP 1: classes are S and I

states = c("S", "I")

STEP 2: The list of equations is

elist=c(dS = quote(mu * (N - S) - beta * S * I / N),
dI = quote(beta * S * I / N - (mu + gamma) * I))

STEP 3: Parameters are

parms = c(mu = 1/(50 * 52), N = 1, beta = 2, gamma = 1/2)

STEP 4: For this model, the endemic equilibrium is {S∗ = β/(γ+μ), I∗ = μ(β/(γ+
μ)−1)/β}, and the disease free equilibrium is {S∗ = 1, I∗ = 0}.

eeq = with(as.list(parms), c(S = (gamma + mu)/beta, I = mu *
(beta/(gamma + mu) - 1)/beta))

deq = list(S = 1, I = 0, R = 0)
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STEP 5: Invoke the Jacobian calculator and calculate eigenvalues:

JJ = jacobian(states = states, elist = elist, parameters = parms,
pts = eeq)

# Eigen values are:
eigen(JJ)$value

## [1] -0.00076864+0.02400384i -0.00076864-0.02400384i

The solution is a pair of complex conjugates with negative real parts. So the endemic
equilibrium is a stable focus. The resonant periodicity is

2 * pi/Im(eigen(JJ)$value[1])

## [1] 261.7575

So just over 5 years. Next consider the disease free equilibrium:

deq = list(S = 1, I = 0, R = 0)
JJ = jacobian(states = states, elist = elist, parameters = parms,

pts = deq)
# Eigen values are:
eigen(JJ)$values

## [1] 1.4996153846 -0.0003846154

The leading eigenvalue is real-only and > 0; the disease free equilibrium is an un-
stable node (because R0 > 1). What if the transmission rate is 0.3?

parms = list(mu = 1/(50 * 52), N = 1, beta = 0.3, gamma = 1/2,
S = 1, I = 0)

JJ = jacobian(states = states, elist = elist, parameters = parms,
pts = deq)

# Eigen values are:
eigen(JJ)$values

## [1] -0.2003846154 -0.0003846154

# R0
with(parms, beta/(mu + gamma))

## [1] 0.5995388

The leading eigenvalue is real-only and less than zero; the disease free equilibrium
is a stable node (because R0 � 0.6 is smaller than one). So this system would be
resistant to disease invasion and establishment as previously discussed in Sect. 3.1.
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10.5 Influenza

The mystery of the annual epidemics of influenza that peak in the Northern hemi-
sphere in the Northern winter and in the Southern hemisphere in the Southern winter
(Hope-Simpson, 1981) has been discussed as an exemplar par excellence in resonant
periodicities in epidemiology (Dushoff et al., 2004; Bjørnstad & Viboud, 2016).
Seasonal influenza epidemics are caused by subtypes B, A/H3N2, and A/H1N1 in
various mixtures in any given year. At the aggregate level, the flu can be modeled
as a susceptible–infected–recovered–(re)susceptible (SIRS) system (Axelsen et al.,
2014) with transient immune protection upon recovery lasting around 4–6 years due
to epochal evolution (Koelle et al., 2006). The SIRS model is

dS
dt

= μN
︸︷︷︸

birth

− β I
S
N

︸︷︷︸

infection

+ ωR
︸︷︷︸

resusceptible

− μS
︸︷︷︸

death

(10.1)

dI
dt

= β I
S
N

︸︷︷︸

infection

− γI
︸︷︷︸

recovery

− μI
︸︷︷︸

death

(10.2)

dR
dt

= γI
︸︷︷︸

recovery

− ωR
︸︷︷︸

lost immmunity

− μR
︸︷︷︸

death

, (10.3)

where ω is the rate of loss of immunity (∼ 0.25 year−1). Carrat et al. (2008) suggest
an infectious period (1/γ) of 3.8 days, and Axelsen et al. (2014) suggest an R0 of
2.9. Modeling fractions (N = 1) of the weekly SIRS flu-appropriate parameters are

N = 1
gamma = 7/3.8
omega = 1/(52 * 4)
mu = 1/(52 * 70)
R0 = 2.9

STEP 3: The call for back-calculating β to get the right R0 and gathering parameters
is

# R0 = beta / (gamma + mu)
beta = R0 * (gamma + mu)
paras = c(beta = beta, gamma = gamma, mu = mu, omega = omega)

STEP 4: The endemic equilibrium of the SIRS model is S∗ = 1/R0, I∗ = μ(1−1/R0)

γ+μ− ωγ
ω+μ

,

and R∗ = γI∗/(ω +μ):

Sstar = 1/R0
Istar = mu * (1 - 1/R0)/(gamma + mu - (omega * gamma)/(omega +

mu))
Rstar = gamma * Istar/(omega + mu)
eq = list(S = Sstar, I = Istar, R = Rstar)
eq
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## $S
## [1] 0.3448276
##
## $I
## [1] 0.001802665
##
## $R
## [1] 0.6533697

STEP 1-2: Defining states and equations and applying the jacobian function to
the endemic equilibrium are

#states
states=c("S", "I", "R")

#equations
elist=c(
dS = quote(mu * (1-S) - beta * S * I / N +

omega * R),
dI = quote(beta * S * I / N - (mu + gamma) * I),
dR = expression(gamma * I - (mu +omega) * R))

JJ = jacobian(states = states, elist = elist,
parameters = paras, pts = eq)

Finally, the eigenvalues and resonant frequency from the dominant conjugate pair
predict a stable focus (real parts are negative) with a resonant period of 47 weeks:

round(eigen(JJ)$values, 4)

## [1] -0.0074+0.1332i -0.0074-0.1332i -0.0003+0.0000i

2 * pi/Im(eigen(JJ)$values)[1]

## [1] 47.17804

For the SIRS model, there is an approximate equation for the resonant period
(Keeling & Rohani, 2008): T = 4π/

√

(4(R0 − 1)/(GIGR)− ((1/GR)− (1/A))2),
where A is the mean age of infection (= ω+μ+γ

(ω+μ)(β−γ−μ) ), GI is the infectious period

(= 1/(γ + μ)), and GR is the average duration of immunity (= 1/(ω + μ)). We
can check the accuracy of the approximation against the resonant frequency of the
linearized system.

A = (omega + mu + gamma)/((omega + mu) * (beta - gamma -
mu))

GI = 1/(gamma + mu)
GR = 1/(omega + mu)
T = 4 * pi/sqrt(4 * (R0 - 1)/(GI * GR) - ((1/GR) - (1/A))ˆ2)
T

## [1] 47.11307
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The approximate equation is in very good agreement with the Jacobian-calculated
period.

10.6 Raccoon Rabies

Coyne et al. (1989) developed a compartmental model for rabies in raccoons
(Fig. 10.2). The flow is from susceptible (S), infected but not yet infectious hosts
that eventually become rabid (E1), infected hosts that recover with immunity (E2),
rabid raccoons (I), immune raccoons (R), and vaccinated raccoons (V). The total
number of raccoons (N) is the sum of these. The model is

Fig. 10.2: The flow diagram for the raccoon rabies model of Coyne et al. (1989).
The compartments are susceptible (S), vaccinated (V ), exposed on path to disease
(E1), exposed on path to recovery (E2), rabid (I), and immune (R). Death rates are
assumed density-dependent as numbers approach the carrying capacity with addi-
tional mortality from rabies

The equations are Eqs. (10.4)–(10.10) with parameters as defined in Table 10.1.5

dS
dt

=a(S+R+V )
︸ ︷︷ ︸

birth

− βNSI/N
︸ ︷︷ ︸

infection

− (b+ c+dN)S)
︸ ︷︷ ︸

density-dependent death

− vS
︸︷︷︸

vaccination

(10.4)

dE1

dt
=ΛβNSI/N
︸ ︷︷ ︸

to I

− (b+ c+dN)E1
︸ ︷︷ ︸

density-dependent death

−σE1
︸︷︷︸

to I

(10.5)

dE2

dt
=(1−Λ)βNSI/N
︸ ︷︷ ︸

to I

− (b+ c+dN)E2
︸ ︷︷ ︸

density-dependent death

−σE2
︸︷︷︸

to R

(10.6)

5 The notation has been changed from the original publication to conform to conventions in the
current text.
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dI
dt

= σE1
︸︷︷︸

from E1

− (b+ c+dN)I
︸ ︷︷ ︸

density-dependent death

− αI
︸︷︷︸

disease death

(10.7)

dR
dt

= σE2
︸︷︷︸

from E2

− (b+ c+dN)R
︸ ︷︷ ︸

density-dependent death

(10.8)

dV
dt

= vS
︸︷︷︸

vaccination

− (b+ c+dN)V
︸ ︷︷ ︸

density-dependent death

(10.9)

N =S+E1 +E2 + I+R+V. (10.10)

In this model, transmission is assumed to scale in a density-dependent fashion (βN =
βN) (see Sect. 4.1) so the overall transmission term cancels to βSI in the below
code.

a Intrinsic birth rate 1.34/year
b Intrinsic death rate 0.836/year
r Intrinsic rate of increase (= a−b) 0.504
K Carrying capacity 12.69/km2

d Index of density dependence (=r/K) 0.0397 km2/year
(1−Λ) Probability of recovery 0.20
σ Rate of transition from latents 7.5/year
α Disease-induced mortality 66.36/year
βN Transmission rate 33.25N/year
v Vaccination rate Variable
c Culling rate Variable

Table 10.1: Parameters and values for the Coyne et al.’s (1989) raccoon rabies
model. Transmission related parameters are represented with symbols and host re-
lated parameters by letters

Considering a slightly simplified system without vaccination (so without the V
class and v parameter). The deSolve package can integrate the model using the
“log-trick” introduced in Sect. 2.9 to solve the system in log-coordinates.6

coyne2 = function(t, logx, parms) {
x = exp(logx)
S = x[1]
E1 = x[2]
E2 = x[3]

6 Note again how initial values are log-transformed in start, the first line in the function is x =
exp(logx), and the last line returns dS/S, etc., in place of dS that comes from the chain-rule
of differentiation and the fact that D(logx) = 1/x.

https://en.wikipedia.org/wiki/Chain_rule
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I = x[4]
R = x[5]
N = sum(x)
with(as.list(parms), {

dS = a * (S + R) - beta * S * I - (b + c + d *
N) * S

dE1 = lambda * beta * S * I - (b + c + d * N) *
E1 - sigma * E1

dE2 = (1 - lambda) * beta * S * I - (b + c + d *
N) * E2 - sigma * E2

dI = sigma * E1 - (b + c + d * N) * I - alpha *
I

dR = sigma * E2 - (b + d + c * N) * R
res = c(dS/S, dE1/E1, dE2/E2, dI/I, dR/R)
list(res)

})
}

The integrated system is

times = seq(0, 100, by = 1/520)
paras = c(d = 0.0397, b = 0.836, a = 1.34, sigma = 7.5,

alpha = 66.36, beta = 33.25, c = 0, lambda = 0.8)
start = log(c(S = 12.69/2, E1 = 0.1, E2 = 0.1, I = 0.1,

R = 0.1))
out = as.data.frame(ode(start, times, coyne2, paras))

Figure 10.3 is a plot of the predicted prevalence time series and the dynamics in
the S–I phase plane (anti-logging the log-coordinate variables to convert them to
abundances). The model predicts transient cycles toward the endemic equilibrium.

par(mfrow = c(1, 2))
plot(times, exp(out$I), ylab = "Infected", xlab = "Time",

type = "l")
plot(exp(out$S), exp(out$I), ylab = "Infected",

xlab = "Susceptible", type = "l")

Childs et al. (2000) used this model to study how the predicted inter-epidemic
period compares to the data (Fig. 10.1). We can repeat this analysis by calculating
the resonant frequency of the system. This calculation needs the 5 × 5 Jacobian
matrix and values for the endemic equilibrium.

#states
states=c("S", "E1", "E2", "I", "R")

#equations
elist = c(dS = quote(a * (S + R) - beta * S * I -

d * (S + E1 + E2 + I + R) * S - (b + c) * S),
dE1= quote(lambda * beta * S * I -

d * (S + E1 + E2 + I + R) * E1 - (b + sigma + c) * E1),
dE2 = quote((1-lambda) * beta * S * I -

d * (S + E1 + E2 + I + R) * E2 - (b + sigma + c) * E2),
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Fig. 10.3: Rabies dynamics predicted by the model of Coyne et al. (1989) (a) in time
and (b) in the phase plane using the parameters defined in Table 10.1

dI = quote(sigma * E1 - d * (S + E1 +
E2 + I + R) * I - (b + alpha + c) * I),

dR = quote(sigma * E2 - d * (S + E1 +
E2 + I + R) * R - (b + c) * R))

The already defined coyne2 gradient function can be used to identify the steady
state, so we can use the lazy option (strategy 3):

equil = exp(tail(out[, -1], n = 1))

The Jacobian at the endemic equilibrium and the dominant eigenvalues are

# Evaluate Jacobian elements
JJ = jacobian(states = states, elist = elist, parameters = paras,

pts = equil)
# Eigen decomposition
wh = which.max(Re(eigen(JJ, only.values = TRUE)$values))
round(eigen(JJ)$values, 4)

## [1] -75.8478+0.0000i -8.4686+0.0000i -0.2008+1.9235i
## [4] -0.2008-1.9235i -0.7870+0.0000i
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The dominant eigenvalues are the conjugate pair with a real part of −0.20. The
endemic equilibrium is thus a stable focus with a resonant period of

2 * pi/Im(eigen(JJ)$values[wh])

## [1] 3.266555

Hence, the model predicts recurrent outbreaks with a mean period of 3.3 years dur-
ing the rabies invasion that is 9 months shorter than that observed in the data. Childs
et al. (2000) varied the ρ parameter (the fraction of exposed raccoons escaping in-
fection with immunity) to find a model that more closely matched the data (around
48 months) if recovery is higher than conventional wisdom from the literature. How-
ever, it appears that alternatively a lower carrying capacity closer to that reported by
Rosatte et al. (2007) also produces patterns in good agreement with the empirical
data:

paras["lambda"] = 0.95
paras["d"] = 0.1
out = as.data.frame(ode(start, times, coyne2, paras))
equil = exp(tail(out[, -1], n = 1))
JJ = jacobian(states = states, elist = elist, parameters = paras,

pts = equil)
wh = which.max(Re(eigen(JJ, only.values = TRUE)$values))
2 * pi/Im(eigen(JJ)$values[wh])

## [1] 4.472992

10.7 Critical Host Density

Section 3.1 introduced the notion that for many directly transmitted wildlife dis-
eases, there may be a critical host density below which contact rates are insufficient
to initiate a robust chain of transmission. Anderson et al. (1981) derived an explicit
equation for the critical host density for fox rabies of K = (σ + a)(α + a)/βσ ,
where α is the rate of disease-induced mortality (so 1/average time to death of rabid
foxes), a is the birth rate, β is the transmission rate , and 1/σ is the latent period
(see also Murray et al., 1986). For the slightly more elaborate raccoon rabies model
of Coyne et al. (1989), we can apply the next-generation tools from Sect. 3.11 to ex-
plore this notion further. In the rabies model, the carrying capacity of the host is
K = r/d. By varying d, we can change host density and study resultant changes
in R0. First make the appropriate setup for the next-generation calculations. Next
define the Istates, the vector naming all infected classes, the Flist that con-
tains equations (as quotes) for completely new infections entering each infected
compartment, the Vlist that contains the equations for losses out of each infected
compartment minus the equations for all gains into each infected compartment that
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does not represent new infections but transfers among infected classes with model
parameters and the value of all states at the disease free equilibrium (recall Sect. 3.11
for details).

#STEP 1: Infected classes
istates = c("E1", "E2", "I")

#STEP 2: All new infections
flist=c(dE1=quote(lambda * beta * S * I),

dE2=quote((1-lambda) * beta * S * I),
dIdt=quote(0))

#STEP 3--5:
#Losses from E1, E2, I
Vm1 = quote(d * (S + E1 + E2 + I + R) * E1 + (b + c) * E1)
Vm2 = quote(d * (S + E1 + E2 + I + R) * E2 +

(b + sigma + c) * E2)
Vm3 = quote(d * (S + E1 + E2 + I + R) * I + (b + alpha + c) * I)

#Gained transfers
Vp1 = 0
Vp2 = 0
Vp3 = quote(sigma * E1)

#To Make Vlist, subtract Vp from Vm
V1 = substitute(a - b, list(a = Vm1, b = Vp1))
V2 = substitute(a - b, list(a = Vm2, b = Vp2))
V3 = substitute(a - b, list(a = Vm3, b = Vp3))
vlist = c(V1, V2, V3)

#STEP 7:
#Define parameters
paras = c(d = 0.0397, b = 0.836, a = 1.34, sigma = 7.5,

alpha = 66.36, beta = 33.25, c = 0, lambda = 0.8)

#Specify the disease free equilibrium
df = list(S = 1, E1 = 0, E2=0, I = 0, R = 0)

#STEP 6 and 8:
#Invoke R0 calculator
nextgenR0(Istates = istates, Flist = flist, Vlist = vlist,

parameters = paras, dfe = df)

## [1] 4.230338

So with Coyne et al.’s (1989) default parameters and a carrying capacity of 12.7/km
R0 is around 4.2. Exploring a range of carrying capacities by changing the value of
d indicates a relatively unchanging R0 in the 3–4.5 range that drops rapidly with a
carrying capacity below 5/km2. Nevertheless, the critical host density is predicted as
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low as 0.3/km2 (Fig. 10.4)—a quarter that predicted by Anderson et al. (1981) for
fox rabies—so invasion should be robust across most raccoon populations according
to this model.

d = seq(0.02, 3, by = 0.01)
K = (paras["a"] - paras["b"])/d
R0 = rep(NA, length(d))
for (i in 1:length(d)) {

paras["d"] = d[i]
R0[i] = nextgenR0(Istates = istates, Flist = flist,

Vlist = vlist, parameters = paras, dfe = df)
}
plot(K, R0, type = "l", lwd = 2, ylab = expression(R[0]))
abline(h = 1)
K[which(R0 < 1)[1]]

## [1] 0.2458537

10.8 Advanced: Transfer Functions

We can predict the entire power spectrum of a linearized stochastic system using
transfer functions (Priestley, 1981; Nisbet & Gurney, 1982; Bjørnstad et al., 2004).
In matrix form, the transfer function for a coupled continuous-time system is

T(ϖ) = (Iϖ ı−J)−1A(ϖ), (10.11)

where I is the identity matrix, ϖ is the angular frequency (between 0 and π; so
ϖ/(2 ∗π) and 2 ∗π/ϖ correspond to the frequencies ( f ) and periods discussed in
Sect. 7.4), J is the Jacobian matrix (evaluated at the equilibrium), A is the matrix
of gradients differentiated with respect to the stochastic term(s), and −1 denotes the
matrix inverse.7 If the stochasticity is uncorrelated white noise, the power spectrum
is predicted by the modulus of the transfer function.

Example 1: Let us consider the SIR model from Sect. 2.7 and assume that variabil-
ity enters through stochasticity in β . We first need the equilibrium values for the
linearization:

7 This equation stems from the result that if X̃(ϖ) denotes the Fourier transform of the vector of
state variables, the transform of dX

dt will be X̃(ϖ)ıϖ ; rearranging in matrix form yields X̃(ϖ) =

T̃(ϖ)Ã(ϖ). For discrete-time systems, the transfer function is T̃(ϖ)= (Ĩ−e−ıϖ J̃)−1 ˜A(ϖ) because
the Fourier transform of Xt−1 is X̃(ϖ)e−ıϖ (see example 2 below).
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Fig. 10.4: R0 as a function of carrying capacity for the raccoon rabies model

paras = c(mu = 1/(50 * 52), N = 1, beta = 2.5, gamma = 1/2)
eq = with(as.list(paras), c(S = (gamma + mu)/beta, I = mu *

(beta/(gamma + mu) - 1)/beta))

Next the Jacobian matrix evaluated at the equilibrium is

#states
states=c("S", "I")

#equations
elist = c(dS = quote(mu * (N - S) - beta * S * I / N),

dI = quote(beta * S * I / N - (mu + gamma) * I))

JJ = jacobian(states = states, elist = elist,
parameters = paras, pts = eq)

The A matrix is the linearization with respect to the stochastic term. Assuming
stochasticity in β , the last pieces needed for the transfer function are

a1 = D(elist$dS, "beta")
a2 = D(elist$dI, "beta")
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A = with(as.list(c(paras, eq)), matrix(c(eval(a1), eval(a2)),
ncol = 1))

Id = diag(2)

Finally, evaluate the transfer function (across 500 frequencies between 0 and π):

wseq = seq(0, pi, length = 500)
Fr = vector("list", 500) #set up empty list of matrices
# Loop to fill matrices for each frequency
for (i in 1:500) {

# Solve gives matrix inverse
Fr[[i]] = matrix(solve(Id * (0+1i) * wseq[i] - JJ) %*%

A, ncol = 1)
}

and calculate the theoretical power spectrum from the modulus of the transfer func-
tion:

PS = matrix(NA, ncol = 2, nrow = 500,
dimnames = list(1:500, c("S","I")))

#Power spectra from real and imaginary
# parts of the Fourier transform
for(i in 1:500){

PS[i, ] = sqrt(Re(Fr[[i]])ˆ2 + Im(Fr[[i]])ˆ2)
}
plot(wseq, PS[,2], type = "l", log = "x",

xlab = "Frequency (in radians)", ylab = "Amplitude")
#The dominant period in weeks
2 * pi/wseq[which.max(PS[, 2])]

## [1] 249.5

So the stochastic system with variability in β is predicted to oscillate with a period
of around 250 weeks (just shy of 5 years) (Fig. 10.5). Thus the stochastically ex-
cited cycles have a period that is comparable but slightly longer than the resonant
frequency of the deterministic system (Sect. 2.7).

Example 2: Section 8.2 discussed how to do simulation using the TSIR model with
a stochastic transmission term. We can apply the transfer function theory to this
model. The TSIR model is a discrete-time model, so the transfer function is T̃(ϖ) =

(Ĩ−e−ıϖ J̃)−1Ã. The equilibrium for the TSIR model is S∗ = B1−αN
β and I∗ = B. Let

us consider a city of a million people and a pathogen with an R0 (= β ) of five:

paras = c(B = 800, beta = 5, alpha = 0.97, N = 1e+06)
eq = with(as.list(paras), c(S = Bˆ(1 - alpha) * N/beta,

I = B))
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Fig. 10.5: The full power spectrum of the SIR model with stochasticity in β as
predicted from the transfer functions of the linearized system

Evaluating the relevant matrices (assuming randomness in β ):

#states
states=c("S", "I")
#equations
elist = c(Seq = quote(S-beta * S * Iˆalpha/N+B),

Ieq = quote(beta * S * Iˆalpha/N))
#matrices
JJ = jacobian(states = states, elist = elist,

parameters = paras, pts = eq)

a1 = D(elist$Seq, "beta")
a2 = D(elist$Ieq, "beta")
A = with(as.list(c(paras, eq)),

matrix(c(eval(a1), eval(a2)), ncol = 1))
Id = diag(2)

Recalling that for discrete-time models with dominant eigenvalues being a conjugate
pair of a±bı, the resonant period is 2π/arctan(b/a):

evs = eigen(JJ)$values
2 * pi/atan2(Im(evs[1]), Re(evs[1]))
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## [1] 112.9908

The parameterized model using the deterministic resonant period predicts an inter-
epidemic period of 113 disease generations. For the full stochastic spectrum, the
transfer function is

wseq = seq(0, pi, length = 500)
Fr = vector("list", 500) #Set up empty list of matrices

# Loop to fill those matrices with Fourier
# transforms
for (i in 1:500) {

# Solve gives matrix inverse
Fr[[i]] = matrix(solve(Id - exp((0+1i) * wseq[i]) *

JJ) %*% A, ncol = 1)
}
# Power spectrum
PS = matrix(NA, ncol = 2, nrow = 500, dimnames = list(1:500,

c("S", "I")))
# Power spectra from real and imaginary parts
for (i in 1:500) {

PS[i, ] = sqrt(Re(Fr[[i]])ˆ2 + Im(Fr[[i]])ˆ2)
}
# Peak in spectrum
2 * pi/wseq[which.max(PS[, 2])]

## [1] 110.8889

The peak in the power spectrum from the transfer function is around 111 genera-
tions, so the resonant period is in good agreement with the broader stochastic anal-
ysis.

To compare the predicted power spectrum from the transfer functions against a
simulation, we can use the tsirSim function introduced in Chap. 8. Assuming a
standard deviation in β of one and simulating for 100 years (assuming the generation
time is a week), the first 20 years of the simulation is shown in Fig. 10.6. The figure
suggests a transient period of a couple of years before the dynamics settles down to
stochastically excited recurrent epidemics.

out = tsirSim(B = 800, beta = 5, sdbeta = 1, N = 1e+06,
IT = 100 * 52, I0 = 10, S0 = 0.3)

plot(out$I[1:1040], xlab = "Biweek", ylab = "Incidence",
type = "l")

The spectrum estimated from the simulation using the periodogram (discarding the
first two years of data) is

sfit = spectrum(out$I[-c(1:104)])

As discussed in Sect. 7.4, the classic Schuster periodogram estimates the spec-
tral density of a time series at the canonical frequencies, but with the drawback that
it is not a “consistent” method. In statistics, a consistent method is one where the
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Fig. 10.6: Twenty years of simulated incidence from the TSIR model with stochas-
ticity in transmission

estimate converges on the truth as the sample size increases. For the Schuster pe-
riodogram, the spectral density is estimated at T/2 frequencies, and thus doubling
the length of the time series doubles the number of parameters, which defies con-
sistency. Various window-smoothing approaches have been proposed to ameliorate
this (see for example Priestley, 1981). An alternative to smoothing is to estimate the
spectral density using Kooperberg et al.’s (1995) log-spline method with the lspec
function of the polspline package. Figure 10.7 shows the empirical estimates
and the transfer function predicted spectra for the TSIR model. Theory based on the
linearized system provides an excellent approximation to the empirical estimates for
the stochastically excited but asymptotically stable system (Fig. 10.7).8

require(polspline)
sfit2 = lspec(out$I[-c(1:104)])
plot(wseq, PS[,2], type = "l", ylab = "Amplitude",

xlab = "Frequency (in radians)", xlim = c(0, 0.6))
lines(pi * sfit$freq/0.5,

5000 * sfit$spec/max(sfit$spec), col = 2)
par(new = TRUE)

8 In addition to the discussions in Chap. 6, Chap. 11 will elaborate on the many ways linearized
predictions break down when strong nonlinearities govern epidemic clockworks.
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plot(sfit2, col = 3, xlim = c(0, 0.6), axes = FALSE)
legend("topright", c("Transfer fn", "Periodogram",

"Log-spline"), lty = c(1, 1, 1), col = c(1, 2, 3))

10.9 (Even More) Advanced: Transfer Functions and Delay
Coordinates

While a bit esoteric with respect to the current text, the Hamilton–Caley theorem
shows that any stochastic, autonomous (i.e., unforced), linear, discrete-time multi-
state d-dimensional system can be rewritten as an ARMA (Sect. 7.3) delay-coordinate
system. The significance of this jargon is that any linear(ized) vector system of the
form

Xt = JXt−1 +Aεt , (10.12)

where εt is a stochastic term and other notations, as above, can be rewritten in an
equivalent delay form:

xt = c+b1xt−1 +b2xt−2 + . . .+bdxt−d
︸ ︷︷ ︸

autoregressive

+εt +a1εt−1 + . . .+αqεt−q
︸ ︷︷ ︸

moving average

. (10.13)

This is useful for understanding how dynamics can induce delayed feedbacks and
how the echo of stochastic perturbations propagates through time. It also provides
an alternative route for analyzing systems for which only a subset of variables (e.g.,
one) has been measured. The theorem says it can always be done, but in practice it
can be tedious because of the equivalence between finite AR processes and infinite
MA processes and vice versa. It turns out that transfer functions (Sect. 10.8) are very
helpful for such calculations (Priestley, 1981; Bjørnstad et al., 2004). In its general
analytic form, the discrete-time transfer function takes the rational form:

T (ϖ) ∝
1+a1e−ıϖ + . . .+aqe−qıϖ

1−b1e−ıϖ − . . .bpe−pıϖ , (10.14)

where the a’s and b’s correspond exactly to the coefficients of the ARMA(p, q)
delay-coordinate representation of the system. R does unfortunately not (yet?) have
enough symbolic power to solve the transfer function analytically. However, a pro-
gram such as Mathematica will show that the transfer functions for the I compart-
ment of the linearized stochastic TSIR are

TI(ϖ) =
B

1+β
1+(Bα(β −1)−1)e−ıϖ

1− (1+α −βBα β )e−ıω +αe−2ıω , (10.15)

where B, α , and β are as defined for the TSIR model (Eqs. (8.1) and (8.2)). Theo-
retically, therefore, the model predicts an ARMA(2,1) delay-coordinate structure to
the time series of incidence according to

https://en.wikipedia.org/wiki/Cayley-Hamilton_theorem
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Fig. 10.7: The spectrum of the TSIR model with stochasticity in β as predicted from
the transfer functions of the linearized system with the periodogram and log-spline
density estimate from a simulation (Fig. 10.6) superimposed

It+1 = const+(1+α −βBα β )It −αIt−1 + εt +(Bα(β −1)−1)εt−1, (10.16)

thus lending some mechanistic underpinning to the analysis in Sect. 7.3.
Bjørnstad et al. (2001) used this so-called state-space/delay-coordinate equiv-

alence to study how viruses and parasitoids structurally alter the pattern of de-
layed density-dependent feedbacks in the population dynamics of their insect host.
Bjørnstad et al. (2004) provide some additional worked examples of using transfer
functions to study population dynamics.

10.10 SEIRS and TSIR shinyApps

The seirs.app calculates the resonant periodicity for the SEIRS model, which
is a slight elaboration of the model in Sect. 10.5. The tsir.app from Chap. 8 also
calculates the power spectrum predicted from the transfer function for the TSIR
model to ground-truth it with simulated data. To run:
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require(epimdr2)
runApp(seirs.app)
runApp(tsir.app)

Bjørnstad et al. (2020b) provide an additional shinyApp to investigate the SEIRS
model that can be directly accessed from https://shiny.bcgsc.ca/posepi2/.
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Chapter 11
Exotica

11.1 Too Nonlinear

Chapter 10 discussed how a linear approximation to the perennially nonlinear dy-
namics of infectious disease can provide important insights on invasion, stability,
and resonant periodicity. As remarked by Nisbet and Gurney (1982) more gener-
ally, linear approximation can often provide remarkably useful insights for nonlinear
ecological systems as long as they are not too nonlinear.

From a dynamical system’s point of view, dynamics are considered (approxi-
mately) linear if the system does not “miss-behave” as it approaches (diverges) from
its stable (unstable) fix-points. Thus, while the simple SIR model is mathematically
speaking nonlinear (because of the βSI/N term), its dynamics can be thought of
as being “linear” because of its smooth inward spiraling toward the endemic equi-
librium (the stable focus) and logistic divergence from the disease free equilibrium
(the unstable node) when R0 > 1. However, highly infectious immunizing diseases
have the potential for exhibiting dynamics so nonlinear that crazy things can happen,
things that require a different set of tools. The multiannual and chaotic fluctuations
seen in the seasonally forced SEIR model and measles in the prevaccination USA
(Sect. 6.4) are some such highly nonlinear phenomena. There are however other dy-
namic exotica that can arise when stochasticity and nonlinearity interacts, or when
there are great perturbations (such as introduction of mass vaccination) to the non-
linear epidemic clockworks. The following sections explore this and discuss some
useful tools.

This chapter uses the following R packages: deSolve, pomp and nlts.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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11.2 Chaos

In nonlinear systems, a perturbation will either dissipate or expand as it interacts
with the dynamic clockwork. The hallmark of a chaotic attractor is “sensitive de-
pendence on initial conditions”:1 Two very nearby trajectories will diverge expo-
nentially over time. The standard way to quantify this is through the dominant Lya-
punov exponent

LE = lim
T→∞

1
T

log(
T

∏
t

JtU0), (11.1)

where Jt is the Jacobian matrix evaluated on the point of the attractor at time t, and
for a 2D system (like the TSIR), U0 is the length two unit vector {1,0}. A chaotic
attractor has LE > 0. As an example, the Jacobian of the TSIR model is

Jt =
[

1−βsIα
t /N −βsSt(I

α−1
t α)/N

βsIα
t /N βsSt(I

α−1
t α)/N

]

. (11.2)

We can estimate the Lyapunov exponent numerically by simulating the TSIR a
long time (Grenfell et al., 2002). As an example, consider the measles dynamics
as estimated from the New York time series between 1920 and 1941 (Fig. 11.1)
(Dalziel et al., 2016). We first fit the parameters using the protocol discussed in
Chap. 8; the profile likelihood on S suggests a mean fraction of susceptibles of 0.051.
We follow the estimation protocol of Chap. 8.

The first step is the susceptible reconstruction and correcting for underreporting:

data(dalziel)
NY = na.omit(dalziel[dalziel$loc == "NEW YORK", ])
NY = NY[NY$year %in% c(1920:1940), ]
plot(NY$decimalYear, sqrt(NY$cases), type = "b", xlab = "Year",

ylab = "Sqrt(cases)")
# Susceptible reconstruction and correcting for
# underreporting
cum.reg = smooth.spline(cumsum(NY$rec), cumsum(NY$cases),

df = 5)
D = -resid(cum.reg) #The residuals
rr = predict(cum.reg, deriv = 1)$y
Ic = NY$cases/rr
Dc = D/rr

The second step is estimating the key parameters:

# Align lagged variables
seas = rep(1:26, 21)[1:545]
lInew = log(Ic[2:546])
lIold = log(Ic[1:545])

1 Interestingly, Ruelle (1993) paraphrases Henri Poincaré as defining chance as sensitive depen-
dence on unknown initial conditions as far back as 1908.
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Fig. 11.1: Measles in New York city

Dold = Dc[1:545]
# TSIR fit
N = NY$pop
offsetN = -log(N[1:545])
lSold = log(0.051 * N[1:545] + Dold)
glmfit = glm(lInew ˜ -1 + as.factor(seas) + lIold +offset(lSold +

offsetN))

The tsirSim2 function from Chap. 8 allows simulation of a deterministic trajec-
tory from the fitted model. The result is a highly erratic trajectory in the phase plane
(Fig. 11.2).

sim2 = tsirSim2(beta = exp(glmfit$coef[1:26]), alpha = 0.98,
B = rep(median(NY$rec), 5200), N = median(N),
inits = list(Snull = exp(lSold[1]), Inull = Ic[1]),
type = "det")

Sattr = sim2$S[2601:5200]
Iattr = sim2$I[2601:5200]
plot(Sattr, Iattr, log = "y", type = "l",

xlab = "S", ylab = "I")
points(sim2$S[seq(2601, 5200, by = 26)],



212 11 Exotica

sim2$I[seq(2601, 5200, by = 26)],pch = 19, col = "red")
legend("bottomright", c("Trajectory", "Strobe"),
pch = c(NA, 19), lty = c(1, NA) , col = c("black", "red"))
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Fig. 11.2: The deterministic trajectory of the New York measles TSIR model. The
black line represents the full trajectory. The red dots are the annual stroboscopic
section

Calculating the Lyapunov exponent is a bit involved, so the best is to write a
function to do it. Because we will be wanting to study the attractor in greater de-
tail, we make the function both calculate the Lyapunov exponent and store all the
Jacobian elements evaluated along the attractor.

tsirLyap = function(I, S, alpha, bt, N) {
IT = length(I)
s = length(bt)
j11 = rep(NA, IT)
j12 = rep(NA, IT)
j21 = rep(NA, IT)
j22 = rep(NA, IT)
# initial unit vector
J = matrix(c(1, 0), ncol = 1)
# loop over the attractor
for (i in 1:IT) {
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j11[i] = 1 - bt[((i - 1)%%s) + 1] * I[i]ˆalpha/N
j12[i] = -(bt[((i - 1)%%s) + 1] * S[i] * (I[i]ˆ(alpha -

1) * alpha)/N)
j21[i] = bt[((i - 1)%%s) + 1] * I[i]ˆalpha/N
j22[i] = bt[((i - 1)%%s) + 1] * S[i] * (I[i]ˆ(alpha -

1) * alpha)/N

J = matrix(c(j11[i], j12[i], j21[i], j22[i]),
ncol = 2, byrow = TRUE) %*% J

}
res = list(lyap = log(norm(J))/IT, j11 = j11, j12 = j12,

j21 = j21, j22 = j22, I = I, S = S, alpha = alpha,
bt = bt, N = N)

class(res) = "lyap"
return(res)

}

The function applied to the last 100 years of the simulated dynamics is

nylyap = tsirLyap(I = Iattr, S = Sattr, alpha = 0.98,
bt = exp(glmfit$coef[1:26]), N = median(N))

nylyap$lyap

## [1] 0.0134336

The exponent is positive indicating that the deterministic skeleton of the TSIR model
for measles in New York is a chaotic attractor as concluded by Dalziel et al. (2016).
This contrasts with the negative Lyapunov exponent of measles in London testifying
to the stability of its biennial limit cycle (see below).

11.3 Local Lyapunov Exponents

Bailey et al. (1997) suggested that it is useful to study the local Lyapunov expo-
nents to understand short-term predictability, and also how noise and nonlinearity
will interact in epidemic systems. The idea is that regardless of whether dynamics
is asymptotically stable, cyclic or chaotic, there is likely to be regions in the phase
plane of expansion in which stochastic divergence will be amplified and regions
of contraction where perturbations will be dampened. Grenfell et al. (2002) used
local Lyapunov exponents to understand the remarkable predictability of prevacci-
nation measles in London. Local Lyapunov exponents are similar in nature to the
global exponent, except that rather than evaluating a product of Jacobians across
the attractor, the Jacobians are evaluated locally. Armed with an object produced
with the tsirLyap function, it is easy to write a second function to calculate local
exponents across m-steps along the attractor (or anywhere else in the phase plane,
such as along a “repellor”; see Sect. 11.5). Since the TSIR is a discrete-time model,
contraction occurs if the largest eigenvalue of the Jacobian matrix is inside the unit
circle—thus log(|λ |) < 0 is the cut-off between contraction and expansion. The
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tsirLlyap function calculates the local Lyapunov exponents for outputs from
the tsirLyap function. The parameter m controls the number of iterations along
the attractor on which to calculate the product (Bailey et al., 1997).

tsirLlyap = function(x, m = 1) {
llyap = rep(NA, length(x$I))
for (i in 1:(length(x$I) - m)) {

J = matrix(c(1, 0, 0, 1), ncol = 2)
for (k in 0:(m - 1)) {

J = matrix(c(x$j11[(i + k)], x$j12[(i + k)],
x$j21[(i + k)], x$j22[(i + k)]), ncol = 2,
byrow = TRUE) %*% J

}
llyap[i] = log(max(abs(eigen(J)$values)))/m

}
res = list(llyap = llyap, I = x$I, S = x$S)
class(res) = "llyap"
return(res)

}

For ease of use, we can also write a function to visualize the local exponents:2

plot.llyap = function(x, inches = .5){
pm = x$llyap > 0
plot(NA, xlim = range(x$S), ylim = range(x$I), xlab = "S",

ylab = "I", log = "y")
symbols(x$S[pm], x$I[pm], circles = x$llyap[pm],

inches = inches, add = TRUE)
symbols(x$S[!pm],x$I[!pm], squares = -x$llyap[!pm],

inches = inches, add = TRUE, bg = 2)
}

We can study the measles NY attractor using the local Lyapunov exponents. De-
spite the overall attractor being chaotic, there are distinct areas of contraction asso-
ciated with the collapse of epidemics and post-epidemic troughs in the phase plane
(Fig. 11.3).

nyllyap = tsirLlyap(nylyap, m = 5)
plot(nyllyap, inches = 0.15)

Section 8.3 provided TSIR transmission estimates for prevaccination measles in
London and highlighted the limit-cycle nature of the dynamics. Biweekly trans-
mission estimates were

beta = c(27.71, 43.14, 37.81, 33.69, 31.64, 32.1, 30.16,
24.68, 30.19, 31.53, 30.31, 26.02, 26.57, 25.68, 23.21,
19.21, 17.5, 20.5, 29.92, 35.85, 32.65, 28.34, 31.11,
29.89, 26.89, 39.38)

2 The formalism of S3 class programming will be discussed in a bit more detail in Sect. 14.2.
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Fig. 11.3: Local Lyapunov exponents across the New York city measles attractor.
Positive exponents are shown as open circles, and negative exponents as red squares

The median biweekly birth rate for London was 2083 during this time period, so the
tsirSim2 function can trace out the attractor and calculate associated global and
local Lyapunov exponents.

sim = tsirSim2(beta = beta, alpha = 0.98, B = rep(2083,
5200), N = 3300000, inits = list(Snull = 133894, Inull = 474))

Sattr = sim$S[5149:5200]
Iattr = sim$I[5149:5200]
lonlyap = tsirLyap(I = Iattr, S = Sattr, alpha = 0.98,

bt = beta, N = 3300000)
lonlyap$lyap

## [1] -0.004289374

lonllyap = tsirLlyap(lonlyap, m = 1)

The dominant Lyapunov exponent is negative testifying to the stability of the limit
cycles. We can look in greater detail across the biennial attractor (Fig. 11.4). Inter-
estingly, there is potential for significant divergence during the growth phase of the
minor and major epidemics; however, the post-epidemic convergence is apparently
strong enough to overcome this to result in a strongly dissipative cyclic attractor
(Grenfell et al., 2002; Dalziel et al., 2016).

pm = (lonllyap$llyap > 0)
plot(NA, xlim = c(1, 52), ylim = range(Iattr), xlab = "Biweek",

ylab = "I", log = "y")
symbols((1:52)[pm], Iattr[pm], circles = lonllyap$llyap[pm],

inches = 0.3, add = TRUE)
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symbols((1:52)[!pm], Iattr[!pm], squares = -lonllyap$llyap[!pm],
inches = 0.3, add = TRUE, bg = 2)
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Fig. 11.4: Local Lyapunov exponents across the biennial London measles attractor.
Positive exponents are shown as open circles, and negative exponents as red squares

To visualize the notion of dissipation more clearly, we can plot the long-term de-
terministic attractor with 20 stochastic simulation (assuming demographic stochas-
ticity only) (Fig. 11.5). The simulations show that despite abundant variability—
particularly during the minor epidemics—the trajectories exhibit long-term pre-
dictability, except for the rare stochastic trajectory that escapes onto the opposite-
year coexisting attractor toward the end of the simulations. As an exemplar, Grenfell
et al. (2001) show how the area around Norwich locked on to the opposite-year co-
existing attractor compared to the rest of England and Wales for about 15 years
following World War II before locking into step.

sim = tsirSim2(beta = beta, alpha = 0.98, B = rep(2083,
520), N = 3300000, inits = list(Snull = 133894, Inull = 474),
type = "det")

plot(sqrt(sim$I), ylab = "Sqrt(Cases)", xlab = "Biweek")
for (i in 1:20) {

sim = tsirSim2(beta = beta, alpha = 0.98, B = rep(2083,
520), N = 3300000, inits = list(Snull = 133894,
Inull = 474), type = "stoc")

lines(sqrt(sim$I))
}
sim = tsirSim2(beta = beta, alpha = 0.98, B = rep(2083,

520), N = 3300000, inits = list(Snull = 133894, Inull = 474),
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type = "det")
points(sqrt(sim$I), col = 2)

During the first biweek of 1940, 23 cases of measles were reported in New York
city. Given our estimate of the reporting rate of 22.54% in that biweek, a best guess
of the incidence is 102; correspondingly, the best guess of the number of suscepti-
bles is 402,153. To visualize the “sensitive dependence on initial conditions” of the
chaotic New York measles attractor, we can forward simulate 10 years of dynamics,
assuming there were either 5 more or fewer infecteds (and conversely susceptibles)
during that biweek. The rapid deterministic divergence (Fig. 11.6) is a stark contrast
to the long-term predictability of the London attractor (Fig. 11.5).

sim2 = tsirSim2(beta = exp(glmfit$coef[1:26]), alpha = 0.98,
B = rep(median(NY$rec), 260), N = median(N),
inits = list(Snull = 402153, Inull = 102))

sim3 = tsirSim2(beta = exp(glmfit$coef[1:26]), alpha = 0.98,
B = rep(median(NY$rec), 260), N = median(N),
inits = list(Snull = 402153-5, Inull = 102+5))

sim4 = tsirSim2(beta = exp(glmfit$coef[1:26]), alpha = 0.98,
B = rep(median(NY$rec), 260), N = median(N),
inits = list(Snull = 402153+5, Inull = 102-5))

plot(sim2$I[1:260], type = "l", ylab = "I",
xlab = "Biweek (from 1940)")

lines(sim3$I[1:260], col = 2)
lines(sim4$I[1:260], col = 3)

Fig. 11.5: Twenty years of deterministic dynamics (red circles) with 20 stochastic
simulations of the biennial London measles attractor
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11.4 Coexisting Attractors

Another nonlinear complication is how seasonally forced epidemic systems can
exhibit coexisting attractors3 as, for example, seen in the seasonally forced SEIR
model (Sect. 6.6). Stochastic perturbation can push dynamics between different
basins of attraction leading to erratic dynamics not predicted by basic theory.

One of the many puzzles about whooping cough dynamics is the apparent con-
tradiction between historical herd immunity and historical multiannual epidemics
versus current circulation in adults.4 To reconcile these seemingly mutually ex-
clusive facets of whooping cough epidemiology, Lavine et al. (2011) proposed an
anamnestic hypothesis that immunity to whooping cough may wane over time, but
re-exposure can boost immune memory. This premise leads to the following SIRWS
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Fig. 11.6: 10 years of deterministic dynamics of the chaotic New York city measles
attractor assuming three very similar initial conditions

3 Other than the relatively mundane odd/even major peak reversal illustrated in Fig. 11.5.
4 Modeling chickenpox, a herpes virus that can reactivate in older individuals in the form of zoster,
Ferguson et al. (1996) showed that the SEIR model cannot sustain multiannual (or chaotic) child-
hood dynamics in the presence of “immigration” of the virus from an adult carrier group.
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compartmental model in which W is a waning class that is under the influence of
two competing processes: return to the S class at a rate of 2ω or boost back to the R
class at a rate proportional to the force of infection (β I/N):

dS
dt

= μ(1− p)N
︸ ︷︷ ︸

recruitment

− β IS/N
︸ ︷︷ ︸

infection

− μS
︸︷︷︸

death

+ 2ωW
︸ ︷︷ ︸

wane in

(11.3)

dI
dt

= β IS/N
︸ ︷︷ ︸

infection

− γI
︸︷︷︸

recovery

− μI
︸︷︷︸

death

(11.4)

dR
dt

= γI
︸︷︷︸

recovery

− 2ωR
︸︷︷︸

waning

+κβSW/N
︸ ︷︷ ︸

boosting

+ μ pN
︸︷︷︸

vaccination

− μR
︸︷︷︸

death

(11.5)

dW
dt

= 2ωR
︸︷︷︸

waning

−κβSW/N
︸ ︷︷ ︸

boosting

− 2ωW
︸ ︷︷ ︸

waning

(11.6)

In the absence of boosting, immunity will last for an average of 1/ω year (and
distributed according to a Gamma distribution with a shape parameter of two be-
cause it takes two transitions to move from R back to S; see Sect. 2.9). The parameter
κ scales how sensitive boosting is relative to infection, and p is the fraction of chil-
dren vaccinated at birth thus moving straight to R and thus discounting susceptible
recruitment from births. A surprising finding is that, even in the absence of season-
ality, parts of the parameter space harbor a limit cycle coexisting with a fix-point
attractor. We can use the forward and backward bifurcation algorithm introduced in
Sect. 6.6 to look at this. We first define the gradients (using the log-trick):

sirwmod = function(t, logy, parameters) {
y = exp(logy)
S = y[1]
I = y[2]
R = y[3]
W = y[4]
with(as.list(parameters), {

dS = mu * (1 - p) * N - mu * S - beta * S * I/N +
2 * omega * W

dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R - 2 * omega * R + kappa *

beta * W * I/N + mu * p * N
dW = 2 * omega * R - kappa * beta * W * I/N -

(2 * omega + mu) * W
res = c(dS/S, dI/I, dR/R, dW/W)
list(res)

})
}
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Assuming susceptible recruitment is reduced by vaccination, we can bifurcate on
the p parameter (Fig. 11.7). The forward/backward bifurcation analysis reveals the
coexistence of the fix-point and cyclic attractors when vaccination is in the 20–40%
range.

require(deSolve)
start = log(c(S = 0.06, I = 0.01, R = 0.92, W = 0.01))
res = matrix(NA, ncol = 100, nrow = 5000)
p = seq(0.01, 1, length = 100)
# Forwards
for (i in 1:100) {

times = seq(0, 200, by = 0.01)
paras = c(mu = 1/70, p = p[i], N = 1, beta = 200,

omega = 1/10, gamma = 17, kappa = 30)
out = as.data.frame(ode(start, times, sirwmod, paras))
start = c(S = out[20001, 2], I = out[20001, 3], R = out[20001,

4], W = out[20001, 5])
res[, i] = out$I[15002:20001]
cat(i, "\r")

}
# Backwards
res2 = matrix(NA, ncol = 100, nrow = 5000)
start = c(S = -1.8, I = -5.8, R = 1.9, W = -1.9)
for (i in 100:1) {

paras = c(mu = 1/70, p = p[i], N = 1, beta = 200,
omega = 1/10, gamma = 17, kappa = 30)

out = as.data.frame(ode(start, times, sirwmod, paras))
start = c(S = out[20001, 2], I = out[20001, 3], R = out[20001,

4], W = out[20001, 5])
res2[, i] = out$I[15002:20001]
cat(i, "\r")

}
plot(NA, xlim = range(p), ylim = range(res), ylab = "Log(I)",

xlab = "p")
for (i in 1:100) points(rep(p[i], 2), range(res[, i]))
for (i in 1:100) points(rep(p[i], 2), range(res2[, i]),

col = 2)

Figure 11.8 shows trajectories toward the two attractors assuming 20% vaccina-
tion but with different initial conditions. For the given parameters, the limit cycle
is stable and has a period of 1.8 years, and the fix-point attractor is a stable fo-
cus with a damping period of 1.2 years. Using a seasonally forced version of the
SIRWS model, Lavine et al. (2013) explored the hypothesis that the regime shifts
in prevaccination whooping cough dynamics in Copenhagen (Fig. 11.12) were due
to stochastic switching between a low-amplitude noisy annual attractor and a high-
amplitude multiannual attractor. In the end, the best evidence suggests that the ma-
jor recurrent outbreaks between 1915 and 1925 were instead a fly-by of an unstable
multiannual “almost attractor” (Lavine et al., 2013, see Sects. 11.5 and 11.7).
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Fig. 11.7: The forward (black) and backward (red) bifurcation diagrams of the
SIRWS model across the range of vaccination rates

paras = c(mu = 1/70, p = 0.2, N = 1, beta = 200, omega = 1/10,
gamma = 17, kappa = 30)

start = c(S = -1, I = -5, R = 3.3, W = 0)
times = seq(0, 30, by = 1/52)
out = as.data.frame(ode(start, times, sirwmod, paras))
plot(out$time, exp(out$I), xlab = "Year", ylab = "I",

type = "l", ylim = c(0, 0.05))
start = c(S = -1.8, I = -5.8, R = 1.9, W = -1.9)
times = seq(0, 30, by = 1/52)
out = as.data.frame(ode(start, times, sirwmod, paras))
lines(out$time, exp(out$I), col = 2)

11.5 Repellors/Almost Attractors

Rand and Wilson (1991) studied a seasonally forced SEIR model (Sect. 6.3) of
chickenpox (assuming that shedding from zoster can be ignored). They assumed a
latent period and infectious period of around 10 days and sinusoidally forced trans-
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Fig. 11.8: The two coexisting attractors of the SIRWS model with 20% vaccination
at birth

mission with a β0 of 537/year, a β1 of 0.3, and a birth rate of 0.02. In the absence
of seasonality , we can use the Jacobian calculator from Sect. 6.8 to calculate the
resonant period:

STEP 1 define state variables:

states = c("S", "E", "I", "R")

STEP 2 list of equations:

elist2 = c(dS = expression(mu * (N - S) - beta0 * S *
I/N), dE = expression(beta0 * S * I/N - (mu + sigma) *
E), dI = expression(sigma * E - (mu + gamma) * I),
dR = quote(gamma * I - mu * R))

STEP 3 define parameter values:

cparas = c(mu = 0.02, N = 1, beta0 = 537, beta1 = 0.3,
sigma = 36, gamma = 34.3)
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STEP 4 evaluate endemic equilibrium:

R0 = with(as.list(cparas), sigma/(sigma + mu) * 1/(gamma +
mu) * beta0)

Sstar = 1/R0
Istar = with(as.list(cparas), mu * (1 - 1/R0) * R0/beta0)
Estar = with(as.list(cparas), (mu + gamma) * Istar/sigma)
Rstar = cparas["N"] - (Sstar + Estar + Istar)
eq = list(S = Sstar, E = Estar, I = Istar, R = Rstar)

STEP 5 invoke calculator:

JJ = jacobian(states = states, elist = elist2,
parameters = cparas, pts = eq)

round(eigen(JJ)$value, 2)

## [1] -70.41+0.00i -0.12+2.26i -0.12-2.26i -0.02+0.00i

2 * pi/Im(eigen(JJ)$value[2])

## [1] 2.775299

So the damping period is 2.8 years. The seasonally forced differential equations, in
contrast, predict robust annual epidemics (Fig. 11.9).

times = seq(0, 100, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
cparas = c(mu = 0.02, N = 1, beta0 = 537, beta1 = 0.3,

sigma = 36, gamma = 34.3)
out = as.data.frame(ode(start, times, seirmod2, cparas))
plot(out$time, out$I, type = "l", xlab = "Year", ylab =

"Prevalence", xlim = c(91, 100), ylim = c(0, 0.0015))

The conundrum highlighted by Rand and Wilson (1991) is that stochastic simula-
tions of the model (see Sect. 11.9 for coding details) exhibit dynamics with conspic-
uous regime shifts; periods with the expected somewhat variable annual outbreaks
are interspersed with periods of violent multiannual cycles with a period of around 4
years (Fig. 11.10) that is seemingly completely unrelated to the above calculated res-
onant period of the SEIR model. This thus appears to be a dynamical phenomenon
different to what we have studied previously.

For the stochastic simulations, we build a pomp object using Csnippet (King
et al., 2015b). The Csnippet coding is a bit involved but is detailed in the chapter
appendix (Sect. 11.9), but the final code for the stochastic simulation is

seirp = simulate(
t0 = 0, times = seq(0, 500, by = 1/52),
rprocess = euler(Csnippet(rproc), delta.t = 1/52/20),
skeleton = vectorfield(Csnippet(skel)),
rmeasure = Csnippet(robs),
dmeasure = Csnippet(dobs),
rinit = Csnippet(rinit),
params = c(
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Fig. 11.9: Ten years of simulation of the forced SEIR model parameterized ac-
cording to Rand and Wilson’s (1991) chickenpox model predicts robust annual epi-
demics

iota = 0, beta0 = 537, beta1 = 0.3, sigma = 36,
gamma = 34.3, alpha = 0.015, rho = 0.6, theta = 1,
b = 0.02, mu = 0.02, pop0 = 5e8,
S0 = 0.06, E0 = 0, I0 = 0.001, R0 = 0.939

),
paramnames = c("iota", "beta0", "beta1", "gamma",

"sigma", "alpha", "rho", "theta", "b", "mu", "pop0",
"S0", "E0", "I0", "R0"),

statenames = c("S", "E", "I", "R", "inc", "pop"),
obsnames = "reports",
accumvars = "inc"

)

Simulated deterministic and stochastic trajectories are shown in Figs. 11.9 and 11.10.

detsim = trajectory(seirp, format = "data.frame")
plot(detsim$time, detsim$I/5e+08, type = "l", xlim = c(101,

110), xlab = "year", ylab = "prevalence")
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The annual stroboscopic section of the deterministic and stochastic simulation is
shown in Fig. 11.10b.

par(mfrow = c(1, 2))
stocsim = as.data.frame(simulate(seirp, seed = 3495135,

nsim = 1))
plot(stocsim$time, stocsim$I/5e+08, type = "l", xlim = c(150,

250), xlab = "Year", ylab = "Prevalence")
sel = seq(105, length(stocsim$I), by = 52)
plot(stocsim$S[sel]/5e+08, stocsim$I[sel]/5e+08, log = "xy",

xlab = "S", ylab = "I")
sel2 = sel[401:500]
points(detsim$S[sel2]/5e+08, detsim$I[sel2]/5e+08, col = 2,

pch = 21, bg = 2)

Fig. 11.10: (a) Hundred years of stochastic simulation of the forced SEIR model pa-
rameterized according to Rand and Wilson’s (1991) chickenpox parameters assum-
ing stochasticity in transmission. (b) Annual stroboscopic section of the stochastic
simulation in the S–I phase plane

Rand and Wilson (1991) studied the apparent similarity of the stochastic trajec-
tory in the S–I phase plane (Fig. 11.10) to the quasi-periodic chaotic attractor of
the parametrically nearby model of Sect. 6.4 and Fig. 6.5. They stipulated that the
stochastic dynamics of the deterministically annual system is intermittently gov-
erned by the weakly unstable ghost of the nearby 4-year quasi-periodic chaotic at-
tractor which they termed a repellor, and Eckmann and Ruelle (1985) had previously
dubbed an “almost attractor.” To study this further, we turn to the notion of invasion
orbits.
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11.6 Invasion Orbits

Studying highly nonlinear, stochastic dynamical systems is complicated by the in-
termingling of two different sources of dynamic variability: the variability due to
deterministic instability and the variability due to stochastic forcing (Bjørnstad &
Grenfell, 2001). In order to elucidate this complexity, we may think of the stochas-
tic forcing as a perturbation to the nonlinear system whose laws subsequently will
attempt to return the system to the deterministic attractor. In Sect. 6.3, we discussed
how to study the long-term asymptotic behavior of the seasonally forced SEIR sys-
tem through numeric integration from arbitrary initial conditions and discarding
the initial transient dynamics to provide a bifurcation analysis. Invasion orbits are
the flip-side of this (Rand & Wilson, 1991); systematically distribute initial con-
ditions across the phase plane and numerically integrate the transients to describe
the trajectories toward the deterministic attractor. For linear or approximately linear
systems—in the dynamical systems sense—the invasion orbits will trace monotonic
trajectories toward a stable node and smooth spirals toward a stable focus (as for
example Fig. 2.5). The period of the inward spiral will be determined by the reso-
nant period of the focus as discussed in Chap. 10. For highly nonlinear systems, in
contrast, the return toward the attractor may not be smooth. We can illustrate this
using Rand and Wilson’s (1991) chickenpox SEIR model. We first have to set up a
systematic grid of initial conditions:

starts = expand.grid(S = seq(0.02, 0.1, length = 10),
E = seq(1e-08, 0.0125, length = 10), I = seq(1e-08,

0.005, length = 10))
starts$R = 1 - apply(starts, 1, sum)

For each of these 1000 initial conditions, we simulate the system for 100 years and
then store the annual stroboscopic section (see Sect. 6.5) in the S–I plane. Rand and
Wilson (1991) suggested this is best done after discarding a short burn-in period
(here 5 years) to study the invasion orbits.

#times for integration
itimes = seq(0, 100, by = 1/52)
#points for stroboscopic section
isel = seq(1, length(itimes), by = 52)
#list to fill with results
cporbs = list(S = matrix(NA, ncol = dim(starts)[1],

nrow = length(isel)), I = matrix(NA,
ncol = dim(starts)[1], nrow = length(isel)))

Next integrate to obtain the 1000 invasion orbits:

for (i in 1:dim(starts)[1]) {
out2b = as.data.frame(ode(as.numeric(starts[i, ]),

itimes, seirmod2, cparas))
cporbs$S[, i] = out2b[, 2][isel]
cporbs$I[, i] = out2b[, 4][isel]

}

Finally, the plot of the stroboscopic section of the invasion orbits in the S–I phase
plane with the deterministic attractor superimposed (Fig. 11.11) reveals that the



11.6 Invasion Orbits 227

stochastic simulation is largely governed by the unstable highly nonlinear structure
in the phase plane dubbed variously a “repellor,” a “chaotic saddle,” or an “unstable
manifold.” Eckmann and Ruelle (1985) first referred to this as an “almost attractor.”

# Invasion orbits
plot(as.vector(cporbs$S[-c(1:5), ]), as.vector(cporbs$I[-c(1:5),

]), pch = 20, cex = 0.25, log = "xy", ylab = "I",
xlab = "S")

# Stochastic simulation
sel = seq(105, length(stocsim$I), by = 52)
points(stocsim$S[sel]/5e+08, stocsim$I[sel]/5e+08, col = 2)
# Deterministic attractor
times = seq(0, 1000, by = 1/120)
start = c(S = 0.06, E = 0, I = 0.001, R = 0.939)
out = as.data.frame(ode(start, times, seirmod2, cparas))
sel = seq(120 * 100, length(times), by = 120)
points(out$S[sel], out$I[sel], pch = 21, col = "white",

bg = "white")
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Fig. 11.11: The stroboscopic section of the invasion orbits of the forced SEIR model
traces out the ghost of a chaotic attractor that has lost stability in the region of
parameter space that (Rand & Wilson, 1991) used for their chickenpox model. The
white central circle is the annual deterministic attractor, and the red open circles are
annual strobes from a stochastic simulation
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Rohani et al. (2002) discussed how the multiannual cycles in whooping cough
following vaccination may be explained as the dynamics chasing a periodic almost
attractor akin to Lavine et al.’s (2013) conclusion regarding pertussis regime shifts
in prevaccination Copenhagen.

11.7 Stochastic Resonance

Whooping cough in prevaccination Copenhagen generally exhibited low-amplitude
fuzzy annual epidemics, with the exception of a 10-year period of violent triannual
epidemics starting around 1915 (Fig. 11.12). We can use a wavelet analysis with the
crazy climber ridge finding algorithm (Sect. 7.5) to characterize the transitions in
dynamics (Lavine et al., 2013).

data(pertcop)
require(Rwave)
# Wavelet decompostion
no = 8
nv = 16
a = 2ˆseq(1, no + 1 - 1/nv, by = 1/nv)
wfit = cwt(sqrt(pertcop$cases), no, nv, plot = FALSE)
wspec = Mod(wfit)
# Crazy climber
crcinc <- crc(wspec, nbclimb = 10, bstep = 100)
fcrcinc <- cfamily(crcinc, ptile = 0.5, nbchain = 1000,

bstep = 10)

## There are 1 chains.

Lavine et al. (2013) used the ratio of variation in the multiannual versus high-
frequency part of the wavelet spectrum as a simple measure of the time-varying
signal-to-noise (SNR) ratio in the whooping cough dynamics.

sigind = which((a/52) > 3 & (a/52) < 4)
noiseind = which((a/52) < 0.5)
snr = apply(wspec[, sigind], 1, sum)/apply(wspec[, noiseind],

1, sum)

A composite plot of incidence, wavelet spectrum, and signal-to-noise ratio is shown
in Fig. 11.12 to highlight how the major epidemics are much less noisy than the
low-amplitude cycles. Lavine et al. (2013) fit a seasonally forced SIRWS model
(Eqs. (11.3)–(11.6)) to the data and concluded that the curious run of violent epi-
demics of whooping cough appeared to trace out an unstable multiannual almost
attractor.

par(mfrow = c(3, 1), mar = c(0, 4, 2, 1))
layout(matrix(c(1, 1, 2, 2, 2, 3), ncol = 1))
#Top panel
plot(as.Date(pertcop$date), pertcop$cases, xlab = "",
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ylab = "Sqrt(cases)", type = "l", bty = "l",
xlim = c(as.Date("1901-01-01"),
as.Date("1938-01-01")), xaxt="n", yaxt="n")

axis(2, at = seq(0, 200, by = 100), labels = FALSE)
axis(2, at = seq(50, 250, by = 100), labels = TRUE)
#Mid panel
par(mar = c(0, 4, 0.25, 1))
image(x = as.Date(pertcop$date, origin = "1900-01-07"),

wspec, col = gray((30:10)/32), y = a/52, ylim = c(0,5),
ylab = "Period (year)", main = "", xaxt = "n", yaxt = "n")

contour(x = as.Date(pertcop$date, origin = "1900-01-07"),
wspec, y = a/52, ylim = c(0,5),
zlim = c(quantile(wspec)[4], max(wspec)), add = TRUE)

axis(2, at = 0:4)
ridges = fcrcinc[[1]]
ridges[which(ridges < 1.5 * 10ˆ-5)] = NA
image(x = as.Date(pertcop$date, origin = "1900-01-07"),

y = a/52, z = ridges, add = TRUE, col = "black")
#Bottom panel
par(mar = c(3, 4, 0.25, 1), tcl = -0.4)
plot(x = as.Date(pertcop$date, origin = "1900-01-07"), snr,

type = "l", bty = "l",xaxt = "n", yaxt = "n", ylab = "SNR")
axis.Date(1, at = seq(as.Date("1900-01-01"),

as.Date("1938-01-01"), "years"))

In addition to highlighting the potential influence of unstable manifolds in dis-
ease dynamics, prevaccination Copenhagen whooping cough hints at another exotic
feature of certain nonlinear dynamical systems: increased stochasticity can some-
times increase predictability through a process dubbed stochastic resonance in the
dynamic systems literature (e.g., Wiesenfeld & Moss, 1995; Gammaitoni et al.,
1998). We can illustrate this phenomenon with the stochastically excited seasonally
forced SEIR model introduced in Sect. 11.5. The somewhat involved Csnippets
for pomp are detailed in Sect. 11.9. We simulate 500 years of weekly data across a
range of 126 transmission variances between 0 and 0.025 (given by the alpha vec-
tor). The dynamics is prone to stochastic extinction so, for each parameter set, we
change the pseudorandom seed until a 500-year persistent time series is produced
(using the while loop).

dat = data.frame(time = seq(0, 500, by = 1/52), reports = NA)
sds = rep(NA, 126)
alpha = seq(0,0.025, by = 0.0002)
Smat = Imat = matrix(NA, nrow = 26001, ncol = 126)
for(i in 1:126){

seirp = simulate(t0 = 0, times = seq(0,500,by=1/52),
rprocess = euler(Csnippet(rproc),delta.t = 1/52/20),
skeleton = vectorfield(Csnippet(skel)),
rmeasure = Csnippet(robs), dmeasure = Csnippet(dobs),
rinit = Csnippet(rinit),
params = c(iota = 0, beta0 = 537, beta1 = 0.3,

sigma = 36, gamma = 34.3, alpha = alpha[i],
rho = 0.6, theta = 1, b = 0.02, mu = 0.02, pop0 = 5e8,
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Fig. 11.12: (a) Incidence of whooping cough in Copenhagen. (b) The wavelet spec-
trum reveals a 10-year run of significant 3-year cycles starting around 1915. (c) The
three-year cycles are associated with increased signal-to-noise (SNR) ratio in the
wavelet spectrum

S0 = 0.06, E0 = 0, I0 = 0.001, R0 = 0.939),
paramnames = c("iota", "beta0", "beta1", "gamma",

"sigma", "alpha", "rho", "theta", "b", "mu", "pop0",
"S0", "E0" ,"I0", "R0"),

statenames = c("S", "E", "I", "R", "inc", "pop"),
obsnames="reports", accumvars = "inc")

stocsim <- list()
stocsim$I[26001] = 0
j = -1
while(stocsim$I[26001]==0){

j = j + 1
stocsim = as.data.frame(simulate(seirp,
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seed = 3495131 + j, nsim = 1))
sds[i] = 3495131 + j

}
Imat[, i] = stocsim$I
Smat[, i] = stocsim$S

}

To study stochastic resonance, we simulate the model across a range of stochastic
variabilities in the transmission rate. Following Lavine et al. (2013), we use wavelet
analysis to quantify “predictability” as a function of stochasticity (Fig. 11.13).5

predn = rep(NA, 126)
#Set the number of "octaves" and "voices"
no = 8; nv = 10
#then calculate the corresponding periods
a = 2ˆseq(1, no + 1 - 1 / nv, by = 1 / nv)
sel2 = a < 39 & a < 260 #Multiannual signal
sel = a < 39 #High frequency noise
for(i in 1:126){

wfit = cwt(sqrt(Imat[, i]), no, nv)
wspec = Mod(wfit)
predn[i] = sum(wspec[, sel2])/sum(wspec[sel])

}
plot(alpha, predn, xlab = "Noise variance",

ylab = "’Predictability’")

The wavelet signal-to-noise ratio indicates the curious phenomenon that “pre-
dictability” increases with noise up to a point and then decays (Fig. 11.13). The ef-
fect comes about because with low noise variance, the system rarely interacts with
the high-amplitude quasi-periodic almost attractor and at high noise variance the
stochasticity breaks the epidemiological clockwork, but at intermediate perturba-
tion levels the repellor governs the dynamics.

Stochasticity can also push a dynamical system toward an almost stable multian-
nual cycle, as Lavine et al. (2013) argued was the case of prevaccination whooping
cough in Copenhagen, or toward an almost stable fix-point. The latter for which per-
haps the clearest biological illustration is provided by laboratory colonies of cyclic
populations of the flour beetle Tribolium castaneum (Cushing et al., 1998; Bjørnstad
& Grenfell, 2001). The notion that stochasticity can push a system toward an almost
stable chaotic manifold (as is the case of the seasonally forced chickenpox model of
Rand and Wilson (1991)) led to an interesting discussion of the meaning of “noise-
induced chaos” between Yao and Tong (1994), Dennis et al. (2003), and Ellner and
Turchin (2005).

5 “Predictability” is deliberately written in quotes here because the mid-pass amplitude is not a
true measure of predictability. Section 11.8 will elaborate on this.
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11.8 Predictability: Empirical Dynamic Modeling

The “predictability” measure used in the previous section is not truly a measure of
the level of determinism of the dynamics. Various researchers have proposed to use
some form of nonparametric autoregression—sometimes called nonlinear forecast-
ing (Tong, 1995; Fan et al., 1996) and recently empirical dynamic modeling (Ye
et al., 2015)—in combination with leave-one-out cross-validation to quantify pre-
dictability in empirical time series. These approaches have used nearest-neighbor
methods (Sugihara et al., 1990), kernel regression (Yao & Tong, 1998), and local
polynomials (Fan et al., 1996). The ntls package has implementations of the local
polynomial approaches proposed by Tong and co-workers (Cheng & Tong, 1992;
Fan et al., 1996; Yao & Tong, 1998) building on the locfit package of Loader
(2006). The function ll.order calculates the cross-validation error across a range
of kernel bandwidths and autoregressive lags.6

0.000 0.005 0.010 0.015 0.020 0.025

1.
52

1.
54

1.
56

1.
58

Noise variance

'P
re

di
ct

ab
ilit

y'

Fig. 11.13: “Predictability” measured as the ratio of the wavelet spectrum that falls
in the multiannual region versus the high-frequency region as a function of the
stochastic variance in the transmission rate for the seasonally forced SEIR model

6 The method was originally proposed as a nonparametric method to estimate what time series
statisticians call the “order” and dynamical systems theorists call the “embedding dimension”
(Cheng & Tong, 1992; McCaffrey et al., 1992; Tong, 1995).
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Consider the chickenpox SEIR model across a range of stochasticities in trans-
mission and use ll.order to calculate the cross-validation predictability in annu-
ally strobed versions of the weekly simulations (discarding the first 10 years).

require(nlts)
llcv = rep(NA, 126)
for (i in 1:126) {

llfit = ll.order(sqrt(Imat[seq(521, 26001, by = 52),
i]), step = 1, order = 1:5, bandwidt = seq(0.5,
1.5, by = 0.5), cv = FALSE)

llcv[i] = min(llfit$grid$GCV)
}
plot(llcv ˜ alpha, ylab = "GCV", xlab = "Noise variance")

The action of stochastic resonance due to the almost attractor is readily visible,
as the generalized cross-validation error is lowest for intermediate noise variances
(Fig. 11.14).

In an early application to epidemiology, Sugihara et al. (1990) proposed to use
nonparametric forecasting error as a function of prediction lag to distinguish de-
terministic chaos from noisy limit cycles in measles epidemics. Nonparametric au-
toregression is a completely mechanism-free time series model for the disease dy-
namics (as in contrast to for example the chain binomial or TSIR). We can use the
ll.edm function to check that the method produces dynamics that are in rough
correspondence to the empirical patterns. Consider for example a 10-year segment
of the weekly simulation using the 10th parameter set. We use order (embedding di-
mension) 3 because this is indicated as best fit based on the order-consistent estima-
tor (ll.order). The resultant empirical dynamic model has roughly appropriate
dynamics, though the period is slightly too short (Fig. 11.15).

x = sqrt(Imat[seq(521, 1040, by = 1), 10])
sim = ll.edm(x = x, order = 3, bandwidth = 0.8)
plot(x, type = "b", ylab = "Prevalence", xlab = "Week")
lines(sim, col = 2)
legend("topright", legend = c("Simulation", "EDM"), lty = c(1,

1), pch = c(1, NA), col = c("black", "red"))

11.9 Appendix: Making a Pomp Simulator

Doing the computations involved in Sects. 11.5 and 11.7 is computationally expen-
sive. The pomp package includes a Csnippet function that will compile C code
on the fly to speed up calculations (King et al., 2015b). The following provides the
C code used in the simulations of the stochastic SEIR model.

require(pomp)

The Csnippet for the deterministic skeleton is
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Fig. 11.14: Predictability measured as the generalized cross-validation error of the
optimized nonparametric autoregression as a function of the stochastic variance in
the transmission rate for the seasonally forced chickenpox SEIR model

"
double rate[8]; // transition rates
double trans[8]; // transition numbers

double beta = beta0*(1+beta1*cos(2*M_PI*t)); //transmission
double lambda = (iota+I*beta)/pop; // force of infection

// transition rates
rate[0] = b*pop; // birth of S
rate[1] = lambda; // infection of S
rate[2] = mu; // death of S
rate[3] = sigma; // latent period of E
rate[4] = mu; // death of E
rate[5] = gamma; // recovery of I
rate[6] = mu; // death of I
rate[7] = mu; // death of R

// compute the transition numbers
trans[0] = rate[0];
trans[1] = rate[1]*S;
trans[2] = rate[2]*S;
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Fig. 11.15: Model simulation and dynamics predicted by the nonparametric autore-
gressive (empirical dynamic) model

trans[3] = rate[3]*E;
trans[4] = rate[4]*E;
trans[5] = rate[5]*I;
trans[6] = rate[6]*I;
trans[7] = rate[7]*R;

// balance the equations
DS = trans[0] - trans[1] - trans[2];
DE = trans[1] - trans[3] - trans[4];
DI = trans[3] - trans[5] - trans[6];
DR = trans[5] - trans[7];
Dinc = trans[5]; // incidence from cumulative recovery
Dpop = trans[0] - trans[2] - trans[4] - trans[6] - trans[7]
" -> skel

The Csnippet for the stochastic simulator is

"
double rate[8]; // transition rates
double trans[8]; // transition numbers

double beta = beta0*(1+beta1*cos(2*M_PI*t)); // transmission
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double dW = rgammawn(alpha,dt); // white noise
double lambda = (iota+I*beta*dW/dt)/pop;

// transition rates
rate[0] = b*pop; // birth of S
rate[1] = lambda; // infection of S
rate[2] = mu; // death of S
rate[3] = sigma; // end of latency
rate[4] = mu; // death of E
rate[5] = gamma; // recovery of I
rate[6] = mu; // death of I
rate[7] = mu; // death of R

// compute the transition numbers
trans[0] = rpois(rate[0]*dt); // births are Poisson
reulermultinom(2, S, &rate[1], dt, &trans[1]);
reulermultinom(2, E, &rate[3], dt, &trans[3]);
reulermultinom(2, I, &rate[5], dt, &trans[5]);
reulermultinom(1, R, &rate[7], dt, &trans[7]);

// balance the equations
S += trans[0] - trans[1] - trans[2];
E += trans[1] - trans[3] - trans[4];
I += trans[3] - trans[5] - trans[6];
R += trans[5] - trans[7];
inc += trans[5]; // incidence from cumulative recovery

pop = S + E + I + R;
" -> rproc

pomp wants Csnippets for the observational process also (even if we only use the
object for simulation).

## Observation model simulator (negative binomial)
"
double mean = rho*inc;
double size = 1/theta;
reports = rnbmodinom_mu(size,mean);
" -> robs

## Observation model likelihood (negative binomial)
"
double mean = rho*inc;
double size = 1/theta;
reports = rnbinom_mu(size,mean);

" -> dobs

We need initial conditions:

"
S = nearbyint(pop0*S0);
E = nearbyint(pop0*E0);
I = nearbyint(pop0*I0);
R = nearbyint(pop0*R0);
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pop = S+E+I+R;
inc = 0;

" -> rinit

Finally, the built pomp object is

seirp = simulate(
t0 = 0, times = seq(0,500,by=1/52),
rprocess = euler(Csnippet(rproc),delta.t = 1/52/20),
skeleton = vectorfield(Csnippet(skel)),
rmeasure = Csnippet(robs),
dmeasure = Csnippet(dobs),
rinit = Csnippet(rinit),
params = c(
iota = 0,beta0 = 537,beta1 = 0.3,sigma = 36,
gamma = 34.3,alpha = 0.015,rho = 0.6,theta = 1,
b = 0.02,mu = 0.02,pop0 = 5e8,
S0 = 0.06,E0 = 0,I0 = 0.001,R0 = 0.939),
paramnames = c("iota", "beta0", "beta1", "gamma",

"sigma", "alpha", "rho", "theta", "b", "mu",
"pop0", "S0", "E0", "I0", "R0"),

statenames = c("S", "E", "I", "R", "inc", "pop"),
obsnames="reports",
accumvars = "inc"

)

The pomp package has numerous functions to simulate deterministic and stochastic
trajectories from pomp objects (King et al., 2015b).
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Chapter 12
Spatial Dynamics

12.1 Introduction

Space adds an additional axis to the richness of infectious disease dynamics. For
example, Gog et al. (2014) detailed the diffusive nature of the spread of influenza
A/H1N1pdv and Lau et al. (2017) characterized the geographic spread of the West
African 2014–2015 Ebola outbreak. Walsh et al. (2005) calculated that Ebola was
spreading through gorilla and chimpanzee populations at 50 km/year. Moreover,
Grenfell and Harwood (1997) and Keeling et al. (2004) outlined how spatial spread
may permit long-term persistence through metapopulation dynamics. This part of
the monograph explores the spatial and spatiotemporal dimensions to infectious dis-
ease dynamics. The current chapter introduces the basics of modeling spatial disease
dynamics. Chapter 13 introduces a range of geostatistical methods that are useful for
quantifying spatial and space-time patterns from surveillance data. Chapter 14 dis-
cusses how in addition to geographic space, social space (as eluded to in Sect. 3.8)
can be analyzed and modeled using network methods. Finally Chap. 15 will attempt
to bring a synthesis of Part I and Part II of this monograph through consideration of
invasion, persistence, and eradication of infectious diseases.

12.2 Dispersal Kernels

Pathogens move in space because of movement of transmission stages and in-
fected/susceptible hosts. Spatial patterns arise from landscape heterogeneities, dis-
persal and reaction-diffusion dynamics among spatially dispersed susceptible and
infected individuals. The probability distribution that governs dispersal distances is
often referred to as the dispersal kernel. A variety of functional forms have been pro-

This chapter uses the following R packages: ncf, animation and plotly.
A five minute epidemics MOOC on spatial spread is: https://www.youtube.com/watch?
v=WPjsAdyD1Gg
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posed in the ecological and epidemiological literature (e.g., Mollison, 1991; Clark,
1998; Bjørnstad & Bolker, 2000; Smith et al., 2002a). From the point of view of
basic theory, it is often assumed that dispersal takes an exponential (the proba-
bility of dispersing a distance d ∝ exp(−d/u), where u is the range) or Gaussian
(∝ exp(−(d/u)2)) shape. The exponential model arises, for example, if we assume
dispersal happens in a constant direction with a constant stopping rate. The Gaussian
model arises if the stopping rate is constant but movement direction changes ran-
domly like a Brownian motion. However, other kernels are relevant; Broadbent and
Kendall (1953) calculated the movement probabilities of infectious larvae of a gut
nematode of sheep, Trichostrongylus retortaeformis, that performs a random walk
until it encounters a leaf of grass. Assuming the location of the leaves are according
to a spatially random point process, they showed that the random walk leads to a dis-
persal distance distributions that follows a Bessel K0 function. Ferrari et al. (2006b)
used this kernel in a model of pollinator-vectored plant pathogens. Empirical dis-
persal distributions of free-living organisms typically have an overrepresentation of
rare long-range jumps that are improbable according to these kernels; they are the
so-called fat-tailed kernels (Clark, 1998), which have important consequences for
the speed of spatial spread (Kot et al., 1996).

For human infections, spatially contiguous, diffusive kernels are often a poor
fit to empirical patterns because spread often follows a characteristic hierarchical
fashion (Grenfell et al., 2001, see Sect. 12.9). Infections usually appear in big cities
early, thereafter the timing of epidemics on average happens in an order of descend-
ing size and increasing isolation. This chapter is focused on inferring the shape of
the spread kernel from spatial patterns over time, and then investigate the dynamical
consequences of such spread. We start with considering the simpler diffusive kernels
and then consider the more complicated patterns arising from human mobility.

12.3 Filipendula Rust Data

Jeremy Burdon and Lars Ericson surveyed presence/absence of a fungal pathogen
on a wild plant, Filipendula ulmaria, across islands in a Swedish archipelago (Smith
et al., 2003). The filipendula data contains observations for 1994 ($y94) and
1995 ($y95), with spatial coordinates $X and $Y. There are additionally a large
number of descriptive covariates for each site. Smith et al. (2003) used the data to
estimate the most likely dispersal kernel of the rust. The host plant is an herbaceous
perennial with pathogen spores overwintering on dead tissue. The infections in 1995
thus arose from the spores produced in 1994.

If spores disperse according to, say, an exponential function with range, u, then
the spatial force of infection on any location, i, will be ∝ ∑ j z ju

−1exp(−di j/u),
where z j is the disease status (0/1) in the previous year and di j are the distances to
other locations. The idea is that in each spring, every local group of hosts will be
in the accumulated spore shadow of last year’s infected individuals. This leads to a
metapopulation incidence function model (Hanski, 1994) for the presence/absence
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of rust among all locations from year to year. Figure 12.1 shows the spatial layout
and disease status of the host plants.

data(filipendula)
symbols(filipendula$X, filipendula$Y, circles = rep(1,

162), inches = 0.1, bg = filipendula$y95 + 1, xlab = "X",
ylab = "Y")

symbols(filipendula$X, filipendula$Y, circles = rep(1,
162), inches = 0.05, bg = filipendula$y94 + 1, add = TRUE)

legend("topright", c("infected 94", "infected 95"), pch = c(21,
21), pt.cex = c(1, 2), pt.bg = c(2, 2))
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Fig. 12.1: Presence/absence of the rust on its Filipendula ulmaria host plant in 1994
(large symbols) and 1995 (small symbols). Red is infected. Black is uninfected

As for the basic catalytic (Chap. 4) and TSIR (Chap. 8) models, we can use the
glm framework to estimate the parameters. Since the response variable is binary,
we use logistic regression to calculate a profile likelihood for u. First calculate the
distance matrix among the 162 locations:

dst = as.matrix(dist(filipendula[, c("X", "Y")]))

Arbitrarily assuming a value of u of 10m, the 1995 FoI on each location will be
proportional to:
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u = 10
foi = apply(exp(-dst/u) * filipendula$y94, 2, sum)

The glm function evaluates the likelihood. Recall the deviance of the glm object
is 2 times the negative log-likelihood.

lfit = glm(y95 ˜ foi, family = binomial(), data = filipendula)
lfit$deviance/2

## [1] 69.8527

Figure 12.2 shows the likelihood profile across candidate values for u.

u = seq(1, 20, length = 1001)
llik = rep(NA, length(u))
for (i in 1:length(u)) {

foi = apply(exp(-dst/u[i]) * filipendula$y94, 2, sum)
lfit = glm(y95 ˜ foi, family = binomial(), data = filipendula)
llik[i] = lfit$deviance/2

}
plot(u, llik, type = "l", ylab = "Neg. log-like")
abline(h = min(llik) + qchisq(0.95, 1)/2)

The comparison of the best kernel model with a non-spatial model assuming a ho-
mogenous risk among hosts use the likelihood ratio test introduced in Sect. 9.4;
recall that for nested glm’s (i.e., where the simpler model is nested within the more
complicated model), the difference in deviances is χ2(Δ p)-distributed, where Δ p is
the number of extra parameters in the more complex model. The anova function
provides this calculation in R. Since the above calculations first profiled on u and
then used the value û that minimized the negative log-likelihood—which the glm
object has no memory of—the spmod object has to be corrected for the residual
degrees of freedom ($df - 1) of the spatial model to get the correct likelihood
ratio test. The calculations show that the spatial model gives a significantly better fit
than the non-spatial null model.

uhat = u[which.min(llik)]
foi = apply(exp(-dst/uhat) * filipendula$y94, 2, sum)
spmod = glm(y95 ˜ foi, family = binomial(), data = filipendula)
nullmod = glm(y95 ˜ 1, family = binomial(), data = filipendula)
# correct the df of the spmod
spmod$df.residual = spmod$df.residual - 1
anova(nullmod, spmod, test = "Chisq")

## Analysis of Deviance Table
##
## Model 1: y95 ˜ 1
## Model 2: y95 ˜ foi
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 161 222.10
## 2 159 109.48 2 112.63 < 2.2e-16 ***
## ---
## Signif: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Fig. 12.2: The likelihood profile for the u parameter of the exponential dispersal
kernel. The horizontal line represents the 95% cutoff for the χ2(1)/2 deviation from
the minimum

The alternative Gaussian dispersal kernel takes the form proportional to
exp(−(di j/u)2):

llik2 = rep(NA, length(u))
for(i in 1:length(u)){

foi2 = apply(exp(-(dst/u[i])ˆ2) * filipendula$y94, 2, sum)
lfit2 = glm(y95 ˜ foi2, family = binomial(),

data = filipendula)
llik2[i] = lfit2$deviance/2

}
uhat2 = u[which.min(llik2)]
foi2 = apply(exp(-(dst/uhat2)ˆ2) * filipendula$y94, 2, sum)
spmod2 = glm(y95 ˜ foi2, family = binomial(),

data = filipendula)
spmod2$df.residual = spmod2$df.residual - 1

Figure 12.3 depicts the shape of the competing probability kernels (using appropri-
ate scaling for power exponential functions; the θ -power exponential scales accord-
ing to Γ (1/θ)exp(x)θ ).
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curve((2 / (uhat2 * gamma(1/2))) * exp(-((x/uhat2)ˆ2)), 0, 10,
col = 2, lty = 2, ylab = "Probability", xlab="Meters")

curve((1/(uhat) * gamma(1)) * exp(-x/uhat), 0, 10, add = TRUE)
legend("topright", c("Exponential", "Gaussian"),

lty = c(1, 2), col = c(1, 2))
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Fig. 12.3: The estimated exponential versus Gaussian kernels for the
filipendula rust data

The two spatial models are not nested1 but can be less formally ranked according to
their AICs that supports the exponential model over the Gaussian:

spmod$aic

## [1] 113.4775

spmod2$aic

## [1] 116.6538

12.4 Simulation

In addition to being a statistical method, the binomial spatial model also represents a
metapopulation model for presence/absence of the rust.2 Given the assumed logistic

1 As discussed in Sect. 9.4 these two models are not nested in the sense that one model is a simpler
version of the other so formal likelihood ratio test does not apply.
2 Just like the chain-binomial model in Sects. 3.4 and 3.5, the spatial logistic can be used both as a
statistical method and as a stochastic simulator.
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model (the default for the binomial-family), the regression provides estimates for
logit(p) = c0 + c1φ , where c0 is the logistic intercept and c1 is the slope on the
spatial force of infection (φ ). The inverse link is p = exp(c0 + c1φ)/(1+ exp(c0 +
c1φ)) as previously discussed in Sect. 5.2.

A simulator that stochastically projects the epidemic metapopulation forwards in
time (assuming a fixed host plant distribution) initiated with the state of the system
in 1995 is:

zprev = filipendula$y95
x = filipendula$X
y = filipendula$Y
c0 = spmod$coef[1]
c1 = spmod$coef[2]

Infection probabilities for next year are:

foi = apply(exp(-dst/uhat) * zprev, 2, sum)
logitp = c0 + c1 * foi
p = exp(logitp)/(1 + exp(logitp))

And a stochastic realization is:

znew = rbinom(162, 1, p)
symbols(x, y, circles = rep(1, 162), bg = znew + 1, inches = 0.1,

xlab = "X", ylab = "Y")

The following code animates a stochastic realization for another 100 years (if un-
commented, the Sys.sleep argument makes the computer go to sleep for 0.1s to
help on-screen visualization:

simdat = matrix(NA, ncol = 100, nrow = 162)
for(i in 1:100){

zprev = znew
foi = apply(exp(-dst/uhat) * zprev, 2, sum)
logitp = c0 + c1 * foi
p = exp(logitp)/(1 + exp(logitp))
znew = rbinom(162, 1, p)
simdat[, i] = znew
#Code for in-line animation:
#symbols(x, y, circles = rep(1,162), bg = znew + 1,
#inches = 0.1, xlab = "X", ylab = "Y")
#Sys.sleep(0.1)
}

Figure 12.4 shows the predicted relative spatial risk from the stochastic simulation.
The spatial.plot function in the ncf package is a wrapper for symbols that
plots values larger (smaller) than the mean as red circles (black squares). It shows
that spatial configuration alone can result in heterogenous infection risk across the
metapopulation.
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require(ncf)
mprev = apply(simdat, 1, mean)
spatial.plot(x, y, mprev, ctr = TRUE)

A corollary to this simulation is how specialist plant pathogens may regulate the
spatial distribution of host plant recruitment through locally frequency-dependent
mortality and thus promote species diversity according to the Janzen-Connell hy-
pothesis (e.g., Clark & Clark, 1984; Petermann et al., 2008). Janzen (1970) and
Connell (1971) were both pondering the ecological conundrum of how very many
species of trees can coexist in tropical forests given the tenet of Gause’s competitive
exclusion principle (see e.g., Hardin, 1960). This essentially can be paraphrased as
saying that if two species have the same resource requirements one will outcom-
pete the other.3 Their hypothesis was that if a specialist natural enemy such as a
plant pathogen cast a local spatial shadow-of-mortality on seedlings of a particu-
lar species, then exclusion may not happen because death rates will be positively
frequency-dependent in the neighborhood defined by the spatial kernel.

12.5 Gypsy Moth

Various viruses and parasitoids cause population instabilities and cycles in their in-
sect hosts (see Chap. 16 for additional examples). The 5–10 year cycles in the gypsy
moth (Lymantria dispar) are caused by the ldNPV multicapsid nuclear polyhedrosis
virus (Elkinton & Liebhold, 1990). Larvae get infected when ingesting viral occlu-
sion bodies while feeding on leaves. The virus subsequently kills the larvae to re-
lease more of these infectious particles. There is a strong delayed density-dependent
feedback loop in this system because when hosts are rare very few viral occlusion
bodies are produced leading to negligible transmission; whereas when hosts are
abundant the force of infection becomes very high. USDA Forest Service conducts
surveys each year of defoliation by the gypsy moth across the Northeastern USA to
reveal complex spatiotemporal patterns of locally synchronous but regionally asyn-
chronous outbreaks (see Sect. 13.10). A web-optimized animated GIF of the annual
defoliation across between 1975 and 2002 can be viewed from https://tinyurl.com/
3kp8wm8t.

Spatiotemporal models can help to better understand such dynamics. There are
specialized models for both the local and spatiotemporal dynamics of the gypsy
moth (Dwyer et al., 2000, 2004; Abbott & Dwyer, 2008; Bjørnstad et al., 2010).
Section 12.10 provides a spatially extended gypsy moth model, which, because of
its biological detail, is quite specific to this system and therefore left as an appendix
(Sect. 12.10). Here we instead consider a simpler spatially extended SIR model.

3 This is closely related to Tilman’s (1976) R∗ theory of competitive dominance discussed in
Sects. 3.1 and 3.12.
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Fig. 12.4: Plot of predicted relative risk of rust infection from the metapopulation
model. Risks larger (smaller) than the mean are shown as red circles (black squares).
The size of the symbols reflects the deviation from the mean

12.6 A Coupled Map Lattice SI Model

Coupled map lattice models (CMLs) are constructed by assuming that spatiotempo-
ral dynamics happens in two steps (Kaneko, 1993; Bascompte & Solé, 1995).4 First,
local growth according to some model, for example, the seasonally forced (discrete
time) SI model. Followed, second, by spatial redistribution of a fraction, m, of all
individuals to other neighboring patches.

Because R is a vectorized language one can simulate CMLs very compactly
with a function for the local SI dynamics according to the expectation from the
chain-binomial formulation (Sect. 3.4) followed by matrix-based redistribution. If
we assume a birth/death rate of μ and sinusoidal forcing on the transmission rate
according to β0 + β1 cos(2 ∗ π ∗ t/26) (so there are 26 time steps in a year) and
infected individuals stays infected and infectious for one time step the function to

4 The name refers to how the most stylized of these models assumes a lattice (checker board)
of locations at which local numbers change from one generation to the next according to some
“mapping” rule of onward local change such as the discrete logistic, the Nicholson-Baily model
(see Chap. 16) or, in this case, a discrete-time seasonally forced SI model, followed by spatial
redistribution via some spatial coupling rule.
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simulate dynamics is the below local.dyn. Note, here that S and I are vectors
representing numbers across the locations.

local.dyn = function(t, S, I, b0, b1, mu, N) {
beta = b0 * (1 + b1 * cos(2 * pi * t/26))
I = S * (1 - exp(-beta * I))
S = (1 - mu) * S + mu * N - I
list(S = S, I = I)

}

The next generates the redistribution matrix among the nx–by–ny locations (the
below assumes a 30×30 lattice). Nearest neighbors will be < 2 spatial units apart.
Assuming that the fraction that disperses to neighboring patches is m = 0.25 and
that movement is independent of disease status the redistribution matrix is:

m = 0.25
ny = nx = 30
# generate coordinates
xy = expand.grid(x = 1:nx, y = 1:ny)
# make distance matrix
dst = as.matrix(dist(xy))
# make redistribution matrix with zeros
redist = matrix(0, nrow = ny * nx, ncol = ny * nx)
# populate the matrix so each of the 8 neighbors
# gets their share
redist[dst < 2] = m/8
# the remaining fraction stays put
diag(redist) = 1 - m

The S and I matrices will hold the results from the simulation. Twenty years of
simulation represents IT=520 iterations of the CML model. Assuming that all
patches have S0 = 100 susceptibles and that 1 infected is introduced in location
{x = 10,y = 14} (which is row 400 in the xy coordinate matrix) in the first year
initial conditions are:

IT = 520
S = I = matrix(NA, nrow = ny * nx, ncol = IT)
S[, 1] = 100
I[, 1] = 0
I[400, 1] = 1

The remaining parameters necessary for the local dynamics are:

b0 = 0.04
b1 = 0.8
mu = 0.2/26
N = 100

To simulate the CML model, recalling from Sect. 4.4 that the %*% operator repre-
sents matrix multiplication, so the matrix multiplication of a vector of abundances
with the redistribution matrix will move all individuals appropriately the code is:



12.7 Making Movies 251

for (t in 2:IT) {
# local growth:
tmp = local.dyn(t, S = S[, t - 1], I = I[, t - 1],

b0 = b0, b1 = b1, mu = mu, N = N)

# spatial movement
S[, t] = redist %*% tmp$S
I[, t] = redist %*% tmp$I
# progress monitor
cat(t, " of ", IT, "\r")

}

The simulation can be visualized as an in-line animation. The predicted incidence
from the spatial SI model varies so widely it is useful to transform incidence (using
a fourth-root transform) so that low values shows up better.

x = xy[, 1]
y = xy[, 2]
scIcubed = Iˆ(1/4)/(max(I[, 10:IT]ˆ(1/4)))

for (k in 1:IT) {
symbols(x, y, fg = 2, circles = scIcubed[, k], inches = FALSE,

bg = 2, xlab = "", ylab = "")
Sys.sleep(0.05)

}

Analyses of a variety of host-parasit(oid) CML models (Hassell et al., 1991;
Bjørnstad et al., 1999b; Earn et al., 2000a) have revealed a variety of emergent
spatiotemporal patterns including complete synchrony, waves, spatial chaos , and
frozen Turing patterns named after Alan Turing’s seminal work on “The mathemat-
ics of biological pattern formations” published in 1953 and reprinted in the Bulletin
of Mathematical Biology in 1990 (Turing, 1990). The latter is the term used when
spatially heterogenous but static patterns arise despite identical temporal laws of
diffusion across each location. The emergent spatiotemporal pattern in any given
system depends on the local dynamics and mobility. Chapter 16 will visit on these
other CML models further.

12.7 Making Movies

Permanent animations can be made by writing the plots to a sequence of images
and then use an open-source utility like ImageMagick to convert the sequence to a
movie.5

5 The system() function in R passes the convert and rm calls to the command line. A web-
optimized version of the animated GIF can be viewed on https://git.io/JMnHk. While not using
base R syntax the plotly package is very effective for generating browser-rendered animations.
An example can be found in the nbspat.app shinyApp in Chap. 16.

http://www.imagemagick.org
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for(k in 100:IT){
png(filename = paste("m", 1000 + k,".png", sep = ""))

symbols(x, y, fg = 2, circles = scIcubed[, k],
inches = FALSE, bg = 2, xlab = "",ylab = "")
dev.off()

}
system("convert m*.png -delay 1x8 -coalesce -layers

OptimizeTransparency simovie.gif")
system("rm m*.png")
#For mp4-animation:
#system("convert -delay 5 m*.jpg simovie.mp4")

Alternatively R’s animation package will bypass writing the intermediate im-
age files, but with the downside that the resultant file may be less optimized and
therefore larger and render less well.

require("animation")
ani = function(xy, data) {

x = xy[, 1]
y = xy[, 2]
for (i in 1:dim(data)[2]) {

dev.hold()
symbols(x, y, fg = 2, circles = scIcubed[, i],

inches = FALSE, bg = 2, xlab = "", ylab = "")
ani.pause()

}
}

ani(xy = xy, data = scIcubed)

saveGIF(ani(xy = xy, data = scIcubed))

12.8 Covariance Functions for Spatiotemporal Data

Keeling et al. (2002) discuss how we may understand the emergent complicated
spatiotemporal dynamics of natural enemies in terms of the spatial variance (or as-
sociated autocorrelation) and covariance of the interacting species.6 Bjørnstad and
Bascompte (2001) proposed to calculate auto- and cross-correlation functions from
simulated or real data. We can use the Sncf function in the ncf package to cal-
culate the multivariate spatial correlation function (Bjørnstad et al., 1999b) among
time series (see Chap. 13 for further details on this and other geostatistical meth-
ods). We can further look at the spatial cross-correlation function between suscep-
tibles and infected (Fig. 12.5). The background synchrony for both compartments
(of around 0.3) is due to the common seasonal forcing. The locally higher autocor-
relation at shorter distances is due to emergence of dispersal-induced aggregations

6 Seabloom et al. (2005) provide similar calculations for spatial plant competition models.
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of infected individuals. The negative local cross-correlation is due to the local S-I
cycles.

fitI = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(I[, 261:520]),
resamp = 500)

fitS = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(S[, 261:520]),
resamp = 500)

fitSI = Sncf(x = xy[, 1], y = xy[, 2], z = sqrt(S[, 261:520]),
w = sqrt(I[, 261:520]), resamp = 500)

par(mfrow = c(1, 3))
plot(fitI, ylim = c(-0.1, 1))
plot(fitS, ylim = c(-0.1, 1))
plot(fitSI, ylim = c(-0.2, 0.2))

One interesting additional application is the time-lagged spatial correlation function
(Bjørnstad et al., 2002a). This method may help quantifying wave-like spread. For
example, if considering the spatiotemporal relationship among infected at five time
step lag (Fig. 12.6). The peak in correlation is offset from the origin by somewhere
between five and 10 units. This makes sense, since we assume nearest-neighbor
dispersal so the leading edge should move 5 units vertically/horizontally and 5 ∗√

2 = 7.1 units diagonally during 5 time steps.

fitIlag = Sncf(x = xy[, 1], y = xy[, 2], z = I[, 261:515],
w = I[, 266:520], resamp = 100)

plot(fitIlag, ylim = c(-0.2, 0.2))

Bjørnstad et al. (2002b) used time-lagged spatial correlation functions to show that
parasitoid-host interactions (see Chap.16) lead to diffusive waves of larch tree defo-
liation that travels at 210 km per year in a north-easterly direction across the Euro-
pean Alps. Traveling waves have also been documented in the dynamics of dengue
(Cummings et al., 2004) and the 2009 influenza A/H1N1pdm pandemic (Gog et al.,
2014).

12.9 Gravity Models

Regional spread of human pathogens rarely forms a simple diffusive pattern be-
cause human mobility patterns are more complex; movement may be distant depen-
dent, but overall flow between any two communities also typically depends on the
size (and desirability) of both donor and recipient locations (Fotheringham, 1984;
Erlander & Stewart, 1990). Grenfell et al. (2001), for example, showed that the
spatiotemporal dynamics of measles across all cities and villages in prevaccination
England and Wales exhibited hierarchical waves, in which the timing of epidemics
relative to the big urban conurbations (the donors) depended negatively on distance
but positively on the size of the recipient. Viboud et al. (2006) demonstrated similar
hierarchical spread of seasonal influenza across the states of continental USA. Xia
et al. (2004) and Viboud et al. (2006) showed that metapopulation models where
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Fig. 12.5: Spatial correlation of (a) Infected, (b) Susceptibles, and (c) S-I cross-
correlation as a function of distance. Grey shaded polygons represent the 95% con-
fidence envelopes
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Fig. 12.6: A five-step time-lagged spatial cross-correlation function of predicted
prevalence of the SIR coupled map lattice model

movement among communities follows a generalized gravity formulation approxi-
mate the spatial dynamics of measles and seasonal influenza. The gravity model is
a model of mobility from transportation science that posits that transportation vol-
ume between two communities depends inversely on distance, d, but bilinearly on
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the size, N, of the communities (Fotheringham, 1984; Erlander & Stewart, 1990).
Gravity-like models have since been applied to study the spatial dynamics of a vari-
ety of human infection settings (e.g., Mari et al., 2012; Truscott & Ferguson, 2012;
Gog et al., 2014). The generalized gravity model quantifying the spatial interaction
between locations i and j takes the form θNτ1

i Nτ2
j d

−ρ
i j , where θ , τ1, τ2, and ρ are

non-negative parameters shaping the topology of the spatial interaction network.
The gravity model has at least two important special cases: ρ = 0,τ1 = τ2 = 1 rep-
resenting a mean field model and τ1 = τ2 = 0 representing simple spatial diffusion.
Viboud et al. (2006) proposed a stochastic multipatch SIR model for the spread of
seasonal influenza among the states of continental USA. Here consider a simpler
SIR version of the model (ignoring susceptible recruitment):7

dSi
dt

= −( β Ii
︸︷︷︸

local foi

+ ∑
j 	=i

ι j,iI j
︸ ︷︷ ︸

spatial foi

)Si/Ni (12.1)

dIi
dt

= (β Ii+∑
j 	=i

ι j,iI j)Si/Ni

︸ ︷︷ ︸

transmission in i

− γIi
︸︷︷︸

recovery

(12.2)

dRi

dt
= γIi

︸︷︷︸

recovery

, (12.3)

where ι j,iI j is the gravity-weighted force of infection exerted by state j on state
i. The corresponding code (subsuming the Ni denominator into a state-specific β
parameter for computational convenience) is:

sirSpatmod = function(t, y, parameters) {
L = length(y)/3
i = c(1:L)
S = y[i]
I = y[L + i]
R = y[2 * L + i]
with(parameters, {

beta = beta[i]
dS = -(beta * I + m * G %*% I) * S
dI = (beta * I + m * G %*% I) * S - gamma * I
dR = gamma * I
list(c(dS, dI, dR))

})
}

Here G is the spatial interaction matrix, m is an overall scaling factor, and y is a
vector of length 3L with initial values for all the location. The first 1–L represents

7 Note that this formulation assumes that spatial transmission does not dilute local transmission.
Keeling and Rohani (2002) provide a discussion of this issue. Section 15.7 also considers a model
for which spatial transmission dilutes local transmission.
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initial S’s, (L+1)–2L are initial I’s, and the last (2L+1)–3L are initial R’s. Com-
bining state-level influenza-like ILI data with county-level commuter census data,
Viboud et al. (2006) estimated the gravity parameters to be τ1 = 0.3, τ2 = 0.6, and
ρ = 3.8 The usflu data contains coordinates and populations for each of the con-
tiguous lower 48 states plus the District of Columbia. The gcdist function of the
ncf package generates spatial distance matrices from the latitude/longitude data.

require(ncf)
data(usflu)
usdist = gcdist(usflu$Longitude, usflu$Latitude)

Define a function to generate the spatial interaction matrix given parameters and
distances:

gravity = function(tau1, tau2, rho, pop, distance) {
gravity = outer(popˆtau1, popˆtau2)/distanceˆrho
diag(gravity) = 0
gravity

}
G = gravity(0.3, 0.6, 3, usflu$Pop, usdist)

Finally define initial conditions and parameters scaling β by the Ni denominator
such that R0 is the same in all states (cf. Sect. 4.1). Viboud et al. (2006) were in-
terested in exploring spread in a pandemic setting. Accordingly we assume that
everybody is susceptible except for 1 initial index case arriving in New York.

gamma = 1/3.5
R0 = 1.8
beta = R0 * gamma/usflu$Pop
m = 1/1000/sum(usflu$Pop)
parms = list(beta = beta, m = m, gamma = gamma, G = G)

S = usflu$Pop
R = I = rep(0, length(usflu$Pop))
I[31] = 1
inits = c(S = S, I = I, R = R)

With this the sirSpatmod function can simulate a spatial SIR pandemic across
the USA:

require(deSolve)
times = 0:200
out = ode(inits, times, sirSpatmod, parms)
L = length(usflu$Pop)
matplot(out[, 50 + (1:L)], type = "l", ylab = "Prevalence",

xlab = "Day")

The outbreak peaks are predicted to be staggered because of the hierarchical diffu-
sion of infection across the continent (Fig. 12.7).

8 Viboud et al. (2006) showed that the commuter flows has a fatter tailed kernel (Sect. 12.2) than
predicted by this gravity model which we, for expedience, ignore.
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12.10 Appendix: A Spatial Gypsy Moth Model

Spatiotemporal outbreaks of the gypsy moth are an interesting case study of
pathogen-host spatiotemporal dynamics because of the richness of data (Sects. 12.5
and 13.10), fascinatingly complex dynamics (Dwyer et al., 2004; Bjørnstad et al.,
2010), and detailed mathematical models. Dwyer et al. (2000) combined field and
laboratory measurements to propose a model that captures how the host (N) has one
generation each year with eggs hatching in April–June, while the virus (Z), which
kills infected larvae to produce viruses encased in environmentally long-lived pro-
tein crystals, has a fast transmission cycle during the larval season. Following the
sort of mathematics underlying the final epidemic size equation in Sect. 2.4, Dwyer
et al. (2000) derived an implicit equation for the within season death toll, f , for this
host/pathogen system:
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Fig. 12.7: Simulated influenza dynamics across the continental USA using a mul-
tipatch SIR model with gravity coupling parameterized according to Viboud et al.
(2006)

f = 1−
(

1+
ν̂
μk

(N f +ρZ)
)−k

, (12.4)
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where μ is loss of infectiousness of dead larvae, ν̂ is mean infectiousness, related to
total viral particles in a cadaver, 1/k is the coefficient of variation in infectiousness,
and ρ is relative susceptibility of small versus large larvae. Local inter-annual virus–
host dynamics is accordingly:

Nt+1 = λNt(1− f ) (12.5)

Zt+1 = gNt f , (12.6)

where g is the compound variable of total number of occlusion bodies per cadaver
discounted by their overwinter survival probability.

Because of the need to solve the implicit equation (Eq. (12.4)), the coding of the
gypsy moth spatiotemporal model is a bit more involved than in Sect. 12.6. How-
ever, it still follows the same basic recipe: (i) generate the redistribution matrix,
(ii) define the function for local dynamics and provide parameter values, and (iii)
forward iterate cyclically between local transmission and spatial spread . . .

STEP 1: Generate the redistribution matrix.

ny = nx = 50
# generate coordinates
xy = expand.grid(x = 1:nx, y = 1:ny)
# make distance matrix
dst = as.matrix(dist(xy))
# make redistribution matrix with zeros
redist = matrix(0, nrow = ny * nx, ncol = ny * nx)
# populate the matrix so each of the 8 neighbors
# gets their share
m = 0.05
redist[dst < 2] = m/8
# the remaining fraction stays put
diag(redist) = 1 - m

STEP 2: Local dynamics. The code is a bit laborious because the implicit final epi-
demic equation coded in the fn and ffn functions need to be vectorized (thus the
split(...) and unlist(lapply(...))).

local.dyn = function(NZ) {
# fn implicit function
fn = function(x, paras) {

nu = 0.9
mu = 0.32
k = 1.06
rho = 0.8
with(as.list(paras), (1 - (1 + nu * (N * x + rho *

Z)/(mu * k))ˆ(-k) - x))
}
# ffn function to numerically solve for in-year
# epidemic size at each location:
ffn = function(params) {

uniroot(fn, lower = 0, upper = 1, tol = 1e-09,
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paras = params)$root
}
# code for forward iteration of host and virus
sp = split(NZ, 1:dim(NZ)[1])
ff = unlist(lapply(sp, ffn))
lambda = 74.6
g = 2000
Nnew = lambda * NZ$N * (1 - ff)
Znew = g * NZ$N * ff
return(list(N = Nnew, Z = Znew))

}

STEP 3: Finally simulate the spatiotemporal host-virus dynamics:

IT = 500
N = Z = matrix(NA, nrow = ny * nx, ncol = IT)
N[, 1] = runif(ny * nx)
Z[, 1] = runif(ny * nx)

for (t in 2:IT) {
# local growth:
tmp = local.dyn(data.frame(N = N[, t - 1], Z = Z[,

t - 1]))
# spatial movement
N[, t] = redist %*% tmp$N
# Assuming negligible viral dispersal but virus
# initially present (otherwise redist%*%tmp$Z):
Z[, t] = tmp$Z
# progress monitor cat(t,’ of ’, IT, ’\r’)

}

par(mfrow = c(1, 2))
symbols(xy[, 1], xy[, 2], fg = 2, circles = sqrt(N[, 150]),

inches = 0.1, bg = 2, xlab = "", ylab = "")
symbols(xy[, 1], xy[, 2], fg = 2, circles = sqrt(N[, 350]),

inches = 0.1, bg = 2, xlab = "", ylab = "")

Depending on parameter values, the initial spatially random map is predicted to
give way to outbreaks that produces waves across the landscape (Fig. 12.8a) that
over time erodes into highly clustered but spatially erratic outbreaks (Fig. 12.8b).
The following code provides a plotly animation of the model.

N2 = as.data.frame(N)
N2$x = xy[, 1]
N2$y = xy[, 2]
longN = reshape(N2, direction = "long", varying = 1:IT,

v.names = "N")

require(plotly)
anim = ggplot(longN, aes(x = x, y = y, frame = longN$time)) +

geom_point(size = 4 * longN$N/max(longN$N))
ggplotly(anim)
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Fig. 12.8: Snapshots from the gypsy moth coupled map lattice model from (a) early
and (b) late in the simulation



Chapter 13
Spatial and Spatiotemporal Patterns

13.1 Spatiotemporal Patterns

Spatial and spatiotemporal data analysis is of great importance in disease dynam-
ics for a number of reasons such as looking for space-time clustering, hotspot de-
tection, characterizing invasion waves, and quantifying spatial synchrony. Spatial
synchrony—the level of correlation in outbreak dynamics at different locations—is
of particular significance to acute immunizing infections, because asynchrony may
permit regional persistence of infections despite local chains-of-transmission break-
ing during post-epidemic troughs (Keeling et al., 2004, see Sect. 15.7). Conversely,
spatial synchrony can exacerbate the economic and public health burden because
the resulting regionalized outbreaks can overwhelm logistical capabilities as was
evident in the early part of the 2013–2014 West African Ebola outbreak and the
2020–2021 SARS-CoV-2 pandemic. Spatial statistics is also important in order to
correct for the problem of spurious associations between incidence and environmen-
tal data because spatial autocorrelation violates the assumption of independence.
This is further discussed in Sect. 18.2.

13.2 A Plant-Pathogen Case Study

Pathogenic fungi are generally not very important pathogens of mammals, though a
virulent species of Pseudogymnoascus emerged in North America in 2007 to cause
white-nose syndrome and exert major mortality events of bats (Blehert et al., 2009;
Hoyt et al., 2021). In humans they cause ringworm and several opportunistic in-
fections such as aspergillosis and candidiasis that are of minor importance except
for in immunocompromised people. In various non-vertebrate animal case studies
fungal pathogens have been shown to cause major epizoonoses. For example, As-
pergillus sydowii has recently decimated Caribbean sea fan corals (Bruno et al.,

This chapter uses the following R package: ncf.
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2011) and fungal infections frequently slaughter their way through insect popula-
tions (Hajek & St. Leger, 1994). Fungi are very common pathogens of plants on
which non-systemic pathogens are often called rust. Systemic infections cause dev-
astating disease like Dutch elm disease and chestnut blight. The latter completely
altered the nature of North American hardwood forests when emerging during the
first decade of the twentieth century (Anagnostakis, 1987).

While a bit idiosyncratic, the spatial dataset from Jennifer Koslow’s experiment
on a foliar, non-systemic rust fungus (Coleosporium asterum) that infects the flat-
top goldenrod (Euthamia graminifolia) provides useful illustrations of various geo-
statistical methods. The euthamia data present the severity of rust disease expres-
sion ($score, from 0 to 10) on host-plants planted within mesocosms ($plot) in
an old field near Ithaca in New York State. The mesocosms were in a checkerboard
grid with locations specified by coordinates $xloc and $yloc. Each mesocosm
contained 3 focal E. graminifolia plants. The field also contained naturally occur-
ring E. graminifolia, as well as several other hosts of the rust, most notably the
Canada goldenrod (Solidago canadensis). Two different treatments, species com-
position ($comp, with three levels) and watering treatment ($water, with two
levels), were applied to the mesocosms in a fully factorial design. Finally, to ac-
count for spatial variation the field were divided into four blocks with treatment
combinations randomly assigned within each block.

For some of the analyses we need jittered coordinates because the three plants
within each plot were not given separate coordinates. Figure 13.1 shows the spatial
layout of the study. The vertical lines mark the predefined blocks.

data(euthamia)
euthamia$jx = jitter(euthamia$xloc)
euthamia$jy = jitter(euthamia$yloc)
symbols(y = euthamia$xloc, x = euthamia$yloc,

circles = euthamia$score, inches = 0.1,
xlab = "y", ylab = "x")

abline(v = 47.5,col = 2)
abline(v = 97.5,col = 2)
abline(v = 147.5,col = 2)
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Fig. 13.1: Rust scores from Keslow’s experiment
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13.3 Spatial Autocorrelation

Spatial statistics is a very rich field. This chapter focuses on a subset of methods that
are commonly used in epidemiology involving the notion of spatial autocorrelation.
Legendre (1993) is a great introduction to the use of spatial autocorrelation statistics
in ecological studies in general. While all the methods discussed—such as Mantel
tests, parametric and nonparametric correlation functions, local indicators of spatial
association, etc.—come in canned packages (this chapter uses the ncf package), it
is useful to spend a bit of time on the underlying ideas.

Many geostatistical methods to describe spatial pattern are focused on either
spatial variance (Gary’s C) or spatial correlation (Moran’s I). This chapter largely
focuses on the family of correlational methods. The regular (Pearson’s) product-
moment correlation (ρ ) between two random variables, Z1 and Z2, is defined as:

ρ12 =
(Z1 −μ1)

σ1

(Z2 −μ2)

σ2
,

where μ’s are expectations and σ ’s are standard deviations.1 The autocorrelation
has exactly the same definition and is used when the Z’s are measurements of the
same quantity (e.g., prevalence, incidence, presence/absence, etc.) at different spa-
tial locations (or different times; Sect. 7.2).

The calculation needs to know (or have an estimate of) the values of the μ’s
and σ ’s. In the case of single snapshot spatial data the marginal mean and marginal
standard deviation is normally used.2 For the euthamia rust data (Fig. 13.1) these
quantities are:

n = length(euthamia$score)
# marginal mean:
mu = mean(euthamia$score)
# marginal MLE sd:
sig = sd(euthamia$score) * (n - 1)/n

Using the outer function that provides all pairwise products of two vectors, the
estimated autocorrelation matrix (rho) among all 360 plants is then:

# rescale Zs
zscale = (euthamia$score - mu)/sig
# autocorrelation matrix
rho = outer(zscale, zscale)

Note that while the individual pairwise values are not constrained to be between
−1 and 1, as correlations need to be, the various geostatistical methods discussed
in the following involves manipulations of this matrix to normalize values. Most

1 It is, again, unfortunate that these Greek symbols as used in statistics take a different meaning
than their previous usage in epidemiology, but it cannot be helped since the study of epidemics
leans on so many different fields of science.
2 Note that the geostatistical methods usually use the maximum likelihood estimator of σ rather
than the best linear unbiased (BLUE) estimator; the denominator is n rather than n−1.

https://en.wikipedia.org/wiki/Standard_deviation
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of the methods also require some sort of associated spatial distance matrix. Most
commonly used are the Euclidian distance for UTM coordinates or the great-circle
distance for latitude/longitude coordinates. The Euclidean distance matrix among
all 360 plants in the euthamia dataset is:

dst = as.matrix(dist(euthamia[, c("xloc", "yloc")]))
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Fig. 13.2: Scatterplot of pairwise ρ against pairwise distance

To understand the different geostatistical methods, consider the plot of the paired
autocorrelations as a function of their spatial distance (Fig. 13.2).

plot(dst, rho, cex = 0.1, ylab = expression("pairwise " *
rho), xlab = "Pairwise distance (m)")

With this it is easy to erect a conceptual understanding of many different geostatis-
tical methods.

• Mantel test: An overall test for whether there is any significant relationship be-
tween the elements in the two matrices. This is essentially a test for significant
correlation between ρ and distance.

• Correlogram: The most classic tool of testing how autocorrelation depends on
distance without assuming any particular function. Hack the distance x-axis into

https://en.wikipedia.org/wiki/Great-circle_distance
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segments (given by specifying some distance increment) and calculate the aver-
age ρ within each distance class.3

• Parametric correlation functions: Assume the relationship follows some para-
metric relationship—such as Exponential, Gaussian, or Spherical functions—and
do the appropriate nonlinear regression of ρ on distance. Section 18.2 provides
an example of such fitting via the lme function of the nlme library.

• Nonparametric correlation function: Fit a nonparametric regression (usually a
smoothing spline or a kernel smoother) to the relationship (Hall & Patil, 1994).
This also goes by the name of the spline correlogram (Bjørnstad & Falck, 2001).

• Local indicators of spatial association (LISA): A test for hotspots (Anselin,
1995) specifying a neighborhood size and for each location calculates the average
ρ with all the other locations that belongs to its neighborhood to find areas of
significant above average values.

There are a bunch of other named methods that are variations of these. Several of
which are extensions to when there is multiple observations at each location (such
as a spatial panel of time series), in which case it is natural to estimate the autocor-
relation matrix using the regular correlation matrix. The modified correlogram of
Koenig (1999) is the multivariate extension of the correlogram (see also Bjørnstad
et al., 1999b). The time-lagged spatial cross-correlation function has been used to
study waves of spread (see below and Sect. 12.8). Various other versions allow the
spatial correlation function to vary by cardinal direction (so-called anisotropic cor-
relograms) to investigate directional patterns (Bjørnstad et al., 2002b).

13.4 Testing and Confidence Intervals

An important reason why specialized methods are needed for these analyses, despite
most being conceptually simple, is because while the n original data points may (or
may not) be statistically independent the n2 numbers in the autocorrelation matrix
is obviously very statistically non-independent and the interdependence is very in-
tricate (as nicely discussed and visualized by Rousseeuw and Molenberghs, 1994).
None of the usual ways of testing for significance or generating confidence inter-
vals is therefore applicable. Testing is usually done using permutation tests under
the null hypothesis of no spatial patterns. The correlogram (or Mantel test, or ...) of
the real data should look no different than that of a random re-allocation of obser-
vations to spatial coordinates if the null hypothesis is true. Statistical significance is
calculated by comparing the observed estimate to the distribution of estimates for,
say, 999 different randomized datasets.4 If the observed is more extreme than 950
(990) of the randomized data we conclude that there is significant deviation from

3 The variogram is similar to the correlogram but instead of using the autocorrelation similarity
measure it uses the semivariance dissimilarity measure: (Zi−Zj)

2/2.
4 This produces a total of 1000 known possible outcomes; the 999 we randomly generated plus the
one nature provided.
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spatial randomness at a nominal 5%-level (1%-level). For some of the methods it
is possible to generate confidence envelopes using bootstrapping (resampling with
replacement; Bjørnstad and Falck, 2001). All the above methods are available in
the ncf package.

require(ncf)

13.5 Mantel test

We continue using the euthamia data as a case study:

test1 = mantel.test(M1 = rho, M2 = dst, quiet = TRUE)
test1

## $correlation
## [1] -0.04603662
##
## $p
## [1] 0.000999001
##
## $call
## [1] "mantel.test(M1 = rho, M2 = dst, quiet = TRUE)"
##
## attr(,"class")
## [1] "Mantel"

There is a significant negative association between similarity and distance showing
that the rust data are not spatially random. The Mantel test is a crude tool but it does
reveal that locations near each other tend to be more similar in disease status than
those separated by a greater distance. If instead of having two matrixes have spatial
coordinates and observations the syntax is:

mantel.test(x, y, z, latlon = FALSE)

In this case coordinates can either be Euclidian or latitude/longitude if latlon =
TRUE.

13.6 Correlograms

The correlogram shows how the autocorrelation is a function of distance (Fig. 13.3).
The shape of the correlogram can indicate random, diffusive, or clinal patterns. Ran-
dom patterns show up as a flat non-significant correlogram, diffusive patterns will
have significantly positive values at short distances that tapers off to zero, and gra-
dient patterns will have significantly positive values at short distances and signifi-
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cantly negative values at long distances.5 Legendre and Fortin (1989) provide visual
probes for patterns using various characteristics of the correlogram. The illustration
using the euthamia data is:

test2 = correlog(x = euthamia$xloc, y = euthamia$yloc,
z = euthamia$score, increment = 10)

plot(test2)

The first distance class is significantly positive and the estimated distance to which
the local positive value decays to zero (the x-intercept) is 44 meters indicative of
significant local similarity. There is further evidence of significantly negative auto-
correlation at long distances suggestive of a gradient across the field (Fig. 13.3).

13.7 Nonparametric Spatial Correlation Functions

Finer resolution and confidence intervals can be found using the nonparametric spa-
tial covariance function (Hall & Patil, 1994; Bjørnstad & Falck, 2001):

test3 = spline.correlog(x = euthamia$xloc, y = euthamia$yloc,
z = euthamia$score, quiet = TRUE)

summary(test3)$estimate

## x e y
## estimate 36.53666 5.981457 0.5824953

summary(test3)$quantiles

## x e y
## 0 17.82638 0.005531342 -0.003692403
## 0.025 27.34768 0.409260018 0.126207964
## 0.25 32.96260 3.119520264 0.295493112
## 0.5 36.03922 5.992822095 0.391821835
## 0.75 39.95760 8.451637015 0.517451204
## 0.975 44.19246 12.655055265 0.778859891
## 1 59.30986 15.005569404 1.200445017

The spline.correlogram returns a bunch of stuff; in fact all the summary
statistics I thought might be of relevance in some previous spatial analyses
(Bjørnstad & Falck, 2001). These are:

• estimates: A vector of benchmark statistics.

5 Inhibitory processes such as the Janzen-Connell effect discussed in Sect. 12.4 will produce sig-
nificantly negative values at short distances that tapers off.
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Fig. 13.3: The spatial correlogram for the euthamia rust data. Values that signif-
icantly deviates from that expected under the null hypothesis of complete spatial
randomness are represented by filled black circles

• x: The lowest value at which the function is = 0.6

• e: The lowest value at which the function is = 1/e (i.e., the spatial scale pa-
rameter in the presence of exponential or Gaussian spatial correlation; recall
Sect. 12.2).

• y: The extrapolated value at x= 0.
• quantiles: A matrix summarizing the quantiles in the bootstrap distributions

of the benchmark statistics. The 2.5- and 97.5-percentiles represent the 95% con-
fidence interval.

plot(test3)

6 If correlation is initially negative, the distance calculated appears as a negative measure. This
may seem a little strange, but some locally inhibitory processes predict significant negative local
auto- or cross-correlation (e.g., Seabloom et al., 2005).
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Fig. 13.4: The spline correlogram of the euthamia rust data. The grey polygon
represents the 95% bootstrap confidence envelope

Figure 13.4 shows the estimated correlation function with its bootstrap 95% confi-
dence envelope. The confidence envelope allows comparisons of correlation func-
tions for different datasets to look for significant differences (Bjørnstad et al.,
1999a).

13.8 LISA

The previous methods average across all locations to study how similarity depends
on distance. Local indicators of spatial association (Anselin, 1995) quantify how
similar observations are within neighborhoods of each observation. This can be used
to test for significant spatial hot/cold-spots of disease (Fig. 13.5). For this we have
to define the radius of the neighborhood. Spatial dependence in the euthamia data
decay to zero at around 40m (Fig. 13.4), so we use 20 meters.

test4 = lisa(x = euthamia$yloc, y = euthamia$xloc,
z = euthamia$score, neigh = 20)

plot(test4)
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Fig. 13.5: LISA analysis of Koslow’s rust data (with a 20m neighborhood). Filled
red circles are significant spatial hotspots. Squares are cold-spots. The size of the
symbols reflects how much the disease-score deviates from the mean

13.9 Cross-Correlations

Janis Antonovics and his colleagues have done roadside surveys of antler smut dis-
ease counting number of healthy and diseased wild campions (Silene alba) at the
Mountain Lake Biological field station for more than 20 years (Antonovics, 2004).
The silene data contains the mean number of healthy $hmean and diseased
$dmean plants for each road segment, as well as latitude $lat and longitude $lon
(Fig. 13.6).

data(silene)
symbols(silene$lon, silene$lat, circles = sqrt(silene$dmean),

inches = 0.2, xlab = "Longitude", ylab = "Latitude")
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Fig. 13.6: Burden of antler smut on wild campion at the Mountain Lake field station
(Antonovics, 2004)
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Most geostatistical methods can be extended to consider spatial cross-correlation
between different variables. As an example we can use the silene dataset to in-
vestigate if prevalence is spatially cross-correlated with abundance using the spline
cross-correlogram (Fig. 13.7).

silene$ab = silene$dmean + silene$hmean
silene$prev = silene$dmean/(silene$dmean + silene$hmean)

The square-root transform of the abundance measure helps normalize the variance
of the count data. There is significant positive cross-correlation within a 1 km range
(95% CI: {0.6, 2.9} km) meaning that where the host tends to be abundant, the
pathogen tends to be prevalent.

testcc = spline.correlog(x = silene$lon, y = silene$lat,
z = silene$prev, w = sqrt(silene$ab), latlon = TRUE,
na.rm = TRUE)

plot(testcc)

We can use a spatial cross-correlogram (using 25m distance increments) to study
if presence/absence of rust is spatiotemporally cross-correlated between 1994 and
1995 in the filipendula dataset discussed in Sect. 12.3.
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Fig. 13.7: Spatial cross-correlation of prevalence and abundance in the silene
dataset
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data(filip)
testcc2 = correlog(x = filip$X, y = filip$Y, z = filip$y94,

w = filip$y95, increment = 25)

The local inter-year correlation (corr0) is 0.75 and the first cross-correlation is
significantly positive with a cross-correlogram x-intercept of 148m:7

testcc2$corr0

## [1] 0.7651124

testcc2$x.intercept

## (Intercept)
## 148.939

Locations heavily affected in 1994 were thus also heavily affected in 1995 testifying
to the importance of local contagion and/or habitat heterogeneity in infection risk.
This is an example of a time-lagged cross-correlogram (Bjørnstad et al., 2002b).

13.10 Gypsy Moth

The gypsy moth (Sect. 12.5) was introduced to the northeastern USA in the late
1860s and has spread at a rate of 10–20 km per year since. The larvae eats leaves of
a wide range of trees and shrubs and reaches outbreak densities usually around ev-
ery 10 years. The outbreaks end through epizootics of the Lymantria dispar nuclear
polyhedrosis virus and more recently the entomopathogenic fungus Entomophaga
maimaiga that together kills virtually all larvae following outbreaks. Bjørnstad et al.
(2010) used the nonparametric spatial covariance function to study the spatiotem-
poral patterns in these outbreaks. The gm dataset contains UTM coordinates and
fraction of forests defoliated each year between 1975 and 2002 in 20× 20 km grid
cells across northeast USA. The following characterize the patterns of synchrony
and time-lagged cross-correlation in the outbreak time series:

data(gypsymoth)
sel = apply(gypsymoth$defoliation[,2:28], 1, sum)!=0
#Synchrony:
fit1 = Sncf(gypsymoth$xy[sel, 1]/1000, gypsymoth$xy[sel, 2]/1000,

gypsymoth$defoliation[sel, ], resamp = 500)
#Lag 1 cross-correlation
fit2 = Sncf(gypsymoth$xy[sel, 1]/1000, gypsymoth$xy[sel, 2]/1000,

z = gypsymoth$defoliation[sel, 1:27],
w = gypsymoth$defoliation[sel, 2:28], resamp = 500)

#Lag 2 cross-correlation
fit3 = Sncf(gypsymoth$xy[sel, 1]/1000, gypsymoth$xy[sel, 2]/1000,

z = gypsymoth$defoliation[sel, 1:26],
w = gypsymoth$defoliation[sel, 3:28], resamp = 500)

7 The spline cross-correlogram would give bootstrap confidence intervals on these quantities.
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The outbreaks are highly synchronized out to 200 km, with a regional average out-
break correlation of around 0.2. The time-lagged cross-correlogram show significant
local cross-correlation at the 1-year lag but not 2-year lag, indicating that outbreaks
tend to persist spatially for 2 years before collapsing (Fig. 13.8):

par(mfrow = c(1, 3))
plot(fit1, ylim = c(-0.1, 1))
title("Lag 0")
plot(fit2, ylim = c(-0.1, 1))
title("Lag 1")
plot(fit3, ylim = c(-0.1, 1))
title("Lag 2")

0 200 600 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

C
or

re
la

tio
n

Lag 0(a) (b) (c)

0 200 600 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

C
or

re
la

tio
n

Lag 1

0 200 600 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance

C
or

re
la

tio
n

Lag 2

Fig. 13.8: The (a) nonparametric spatial covariance function, (b) lag one and (c) lag
two cross-correlation function of gypsy moth outbreak data from northeastern USA
between 1975 and 2002



Chapter 14
Transmission on Networks

14.1 Social Heterogeneities

Following the initial exploration of the simplest SIR model in Chap. 2, various chap-
ters have explored a number of elaborations that are important in order to under-
stand many aspects of infectious disease dynamics such as age-structure, season-
ality, and more complex compartmental flows among individuals within a com-
munity. In addition to such heterogeneities which can be categorized according to
covariates/cofactors (age, month, hospital versus community, etc.), there is often
substantial variation that defies such classification. Lloyd-Smith et al. (2005), for
example, identified significant heterogeneities from superspreading events during
the 2003 SARS outbreak. Woolhouse et al. (1997) suggested a 80/20 rule-of-thumb:
for many infections a core of 20% of infected accounts for 80% of onwards trans-
mission. In various previous analyses (such as Chaps. 8 and 9) we obtained good
fits to data using models that ignores such heterogeneities. This begs the question
of what situations allow omission of such variabilities and what situations necessi-
tate their inclusion. Highly transmissible acute directly transmitted pathogens may
punch through most heterogeneities to conform more closely to homogenous epi-
demic models (Grenfell et al., 2006; Bansal et al., 2007). This chapter considers how
one may use network models to think more carefully about social heterogeneities.

As an initial motivator we may consider the subset of the network of 749 sex-
workers/clients from the survey from the so-called P90 project that mapped sex-
ual contacts among 5,493 individuals in Colorado springs between 1988 and 1990.
The study was motivated by the need to assess spread of STDs from risky sex-
ual activities in the face of the then rising HIV pandemic (Klovdahl et al., 1994;
Woodhouse et al., 1994). The cspring data on participation role in the network
(cspring$role: 1=client, 2=worker, 3=both) and the 749-by-749

This chapter uses the following R packages: statnet and vioplot.
Five minute epidemics MOOC introductions to social networks are:
Structure of networks https://www.youtube.com/watch?v=hLwasjKxFoc
Networks and control https://www.youtube.com/watch?v=GBQqhtGAzGc
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binary matrix (cspring$cm) mapping of contacts among the subset are included
in the data list. The statnet package has comprehensive tools for network analy-
sis and visualization for network data.

require(statnet)
data(cspring)
# convert contact matrix to network object
csnwrk = network(cspring$cm, matrix.type = "adjacency",

directed = FALSE)
# set individual attributes to network
set.vertex.attribute(csnwrk, "role", cspring$nodes$type)
network.vertex.names(csnwrk) = c("client", "worker", "both")
plot(csnwrk, vertex.col = cspring$nodes$type)
legend("bottomleft", c("client", "worker", "both"), col = 1:3,

pch = 21, pt.bg = 1:3)

Figure 14.1 uses the network plotting function in the statnet package to show
contacts among the 749 individuals.

A key feature of a social network is the individual level heterogeneity in num-
ber of contacts, because it determines the “individual level reproduction number”
(Lloyd-Smith et al., 2005) that socially underlies the emergence of 80/20-like phe-
nomena.1 The violin plot is a very useful visualization of distributional hetero-
geneities. Figure 14.2a shows the number of links of clients and workers. The
workers have on average nearly 10 clients and clients just over two sex partners.
Conspicuously, the distribution is heavily skewed. A small number of people has a
disproportionate number of contacts (Fig. 14.2b).

require(vioplot)
par(mfrow = c(1, 2))
# violin plot
vioplot(apply(cspring$cm, 2, sum) ˜ cspring$nodes$type,

ylab = "partners", xlab = "(a)", h = 3)
legend("topleft", c("1: client", "2: worker", "3: both"),

box.lty = 0)
# log-log plot
dd = table(apply(cspring$cm, 2, sum))
plot(as.numeric(names(dd)), dd, log = "xy", ylab = "frequency",

xlab = "(b)")

14.2 S Preamble: Objects, Classes, and Functions

There is much coding throughout this monograph on infectious disease dynamics
so it is useful to take a pause to visit a bit more formally on the programming.
The S language which is the foundation of R was constructed using an object-based
logic where each object is assigned a class. The class, in turn, controls printing,

1 Though other heterogeneities like variability in infectiousness (e.g., Leynaert et al., 1998) and
duration of the infectious period and long-term carriage (e.g., Brooks, 1996) are obviously very
important additional contributing factors.
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client
worker
both

Fig. 14.1: A depiction of the Colorado springs sex worker and client network

plotting, and summarizing each object. There are many excellent introductions to
S programming (e.g., Venables & Ripley, 2013). This chapter uses basic S3 class
programming to streamline analysis of epidemics on networks. The basic idea is
this: if the result of some calculation is labeled as class foo, then R will look for
functions print.foo, summary.foo, and plot.foo functions in the search
path when further interacting with the result of the calculation. To illustrate with a
silly example:

foo = function(x) {
res = x
class(res) = "foo"
return(res)

}

print.foo = function(x) {
cat("foo is:\n", x)

}

summary.foo = function(x) {
cat("In summary, foo is:\n", x)

}

plot.foo = function(x) {
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Fig. 14.2: Contact distribution in the Colorado springs sex worker and client net-
work. (a) Violin plot of number of sexual partners for each category. (b) Log-log
plot of frequency of number of sexual partners across the network

plot(NA, type = "n", ylim = c(0, 1), xlim = c(0, 1),
ylab = "")

text(x = seq(0.1, 0.9, by = 0.1), y = seq(0.1, 0.9,
by = 0.1), as.character(x))

}

The result is a fully functional S3 class of R objects:2

2 Though, for a disseminated plot function there should be an opportunity for user customization
through a . . . argument:

plot.foo=function(x, ...){
args.default=list(xlab = ”x”, ylab = ”y”, ylim = c(0,1),
xlim = c(0,1))
args.input=list(...)
args=c(args.default[!names(args.default) %in% names(args.input)], args.input)
do.call(plot, c(list(NA, type = ”n”), args))
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zz = foo("pibble")

which can print,

zz

## foo is:
## pibble

summarize,

summary(zz)

## In summary, foo is:
## pibble

and plot (Fig. 14.3):

plot(zz)

And that is the very basics of S3 class programming.

14.3 Networks

Transmission on social networks bears conceptual similarities to spatial transmis-
sion. The difference being that in spatial models transmission occurs among neigh-
bors in space, and transmission on networks occurs among neighbors in social space.
We can thus use the type of compact code used for CML models (Sect. 12.6) to sim-
ulate epidemics on networks. Two key determinants of invasibility and speed of
spread are the average and the variance (viz. Fig. 14.2) in the number of contacts
on a network (Newman, 2002; Keeling & Eames, 2005; Bansal et al., 2007). As
we saw in the network of spread of gonorrhea (Sect. 3.8) and the Colorado springs
network (Sect.14.1) there is often substantial variation in the number of social con-
tacts due to variation in individual behavior. Recall also Sect. 4.3 which highlighted
strong age-specific variation in contact rates. Social networks tend to change over
time because of seasonal behavioral changes (Eames et al., 2011); however, for this
chapter it is easiest to consider the static network—networks for which contact pat-
terns do not change during the duration of an epidemics—and for which the contact
pattern is more easily characterized by the degree distribution (e.g., Fig. 14.2b) in
which contacts are mapped as edges, and individuals are nodes.3 The degree of an
individual is its number of edges in the network.

text(x = seq(0.1, 0.9, by = 0.1), y = seq(0.1, 0.9, by = 0.1),
as.character(x))}
plot(zz, xlab=”stupid plot”, xlim=c(-0.1, 0.8)).

3 The statnet family of packages (Handcock et al., 2008) have methods for considering dynamic
networks.
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Fig. 14.3: A plot of objects of class foo

14.4 Models of Networks

In the previous spatial coupled map lattice models (Sect. 12.6), transmission was
assumed restricted to the eight nearest neighbors on the lattice, so we can think
of this as an example of a network with a fixed degree of 8. In network theory,
an analogous fixed degree network is constructed as a ring lattice. The associated
matrix that flags neighbors is a particular type of Toeplitz matrix. We can define a
ringlattice function to generate such networks with N nodes and 2K degrees.
Employing the S3 class logic label the result to be of class cm (short for contact
matrix):

ringlattice = function(N, K) {
# N is the number of nodes K is the number of
# neighbors on each side to which each node is
# connected so degree = 2K
CM = toeplitz(c(0, rep(1, K), rep(0, N - 2 * K - 1),

rep(1, K)))
class(CM) = "cm"
return(CM)

}

To further illustrate S3 class programming, the plot.cm function uses basic
trigonometry to visualize a ring network or any other object that is defined as class
cm. The following function lays nodes out in a circle and connect them by their
mutual edges.

plot.cm = function(CM){
N = dim(CM)[1]
theta = seq(0, 2 * pi, length = N + 1)
x = cos(theta[1:N])
y = sin(theta[1:N])
symbols(x, y, fg = 0, circles = rep(1, N),

https://en.wikipedia.org/wiki/Toeplitz_matrix
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inches = 0.1, bg = 1, xlab = "", ylab = "", axes = FALSE)
segx1 = as.vector(matrix(x, ncol = length(x),

nrow = length(x), byrow = TRUE))
segx2 = as.vector(matrix(x, ncol = length(x),

nrow = length(x), byrow = FALSE))
segy1 = as.vector(matrix(y, ncol = length(x),

nrow = length(x), byrow = TRUE))
segy2 = as.vector(matrix(y, ncol = length(x),

nrow = length(x), byrow = FALSE))
segments(segx1, segy1, segx2,

segy2, lty = as.vector(CM))
}

Figure 14.4a depicts a ring lattice with 20 individuals and a fixed degree of four. In
network science there are a number of important models of connectivity.

cm = ringlattice(N = 20, K = 2)
plot(cm)

Watts-Strogatz Networks: Real life social networks typically have heterogeneities
in contact rates and usually exhibit much lower social separation than predicted by
the ring lattice. In the study of small-world networks, Watts and Strogatz (1998)
proposed an algorithm for generating more realistic networks by randomly rewiring
a fraction Prw of the edges of a ring lattice.

wattsStrogatz = function(N, K, Prw) {
# Build a Watts-Strogatz contact matrix from a
# ring lattice, Prw is the rewiring probability
CM = ringlattice(N = N, K = K)
CMWS = CM
tri = CM[upper.tri(CM)]
Br = rbinom(length(tri), 1, Prw) # Break edges
a = 0
for (i in 1:(N - 1)) {

for (j in (i + 1):N) {
a = a + 1
if (Br[a] == 1 & CMWS[i, j] == 1) {

# If ’Br == 1’
CMWS[i, j] = CMWS[j, i] = 0 # break edge
tmp = i
tmp2 = c(i, which(CMWS[i, ] == 1))
# new edge, if already present try
# again
while (any(tmp2 == tmp)) {

tmp = ceiling(N * runif(1))
}
CMWS[i, tmp] = CMWS[tmp, i] = 1 # make new edge

}
}

}

https://en.wikipedia.org/wiki/Watts_and_Strogatz_model
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(a) Ring lattice (b) Watz-Strogatz

(c) Erdos-Renyi (d) Barabasi-Albert

Fig. 14.4: Contact matrix plots of 20 node networks of degree 4. (a) A ring lattice,
(b) a Watts-Strogatz small-world network, (c) an Erdős-Rényi random network, and
(d) a Barabási-Reka scale-free network

class(CMWS) = "cm"
return(CMWS)

}

Figure 14.4b depicts a Watts-Strogatz network with 20 individuals, a mean degree
of 4 and a rewiring probability of 0.3.

cm2 = wattsStrogatz(N = 20, K = 2, Prw = 0.3)
plot(cm2)

We can extend the notion of writing generic functions for class cm objects, to de-
fine a summary function that calculates and optionally plots (Fig. 14.5) the degree
distribution.

summary.cm = function(x, plot = FALSE) {
x = table(apply(x, 2, sum))
res = data.frame(n = x)
names(res) = c("degree", "freq")
if (plot)

barplot(x, xlab = "degree")
return(res)

}
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cm2b = wattsStrogatz(N = 20, K = 4, Prw = 0.3)
summary(cm2b, plot = TRUE)

## degree freq
## 1 6 1
## 2 7 5
## 3 8 8
## 4 9 5
## 5 10 1

The Watts-Strogatz model can scale the degree distribution of theoretical net-
works from the fixed (ring lattice) through small-world (low, but non-zero rewiring)
through to the Erdős-Rényi random graph (Fig. 14.4c) when the rewiring probabil-
ity is one (Erdős & Rényi, 1959). The random graph corresponds to a network with
completely unstructured contact patterns and has a Poisson distributed degree dis-
tribution. The small-world networks (Fig. 14.4b) highlight how a few connections
across a ring lattice will greatly reduce the overall social distancing among individ-
uals.

Barabási-Albert Networks: The Watts-Strogatz model can at most have Poisson-
like variance in degree distribution, so it cannot mimic heavy-tailed distributions
seen in many empirical networks. Barabási and Albert (1999) proposed that such
behavior arises from preferential attachment (rich-get-richer) dynamics. A function
that generates a scale-free network with N nodes and mean degree 2K is:

barabasiAlbert = function(N, K) {
CM = matrix(0, ncol = N, nrow = N)
CM[1, 2] = 1

5 6 7 8 9 10

degree

0
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Fig. 14.5: The degree distribution of the Watts-Strogatz network with 20 individ-
uals, a mean degree of 8 and a rewiring probability of 0.3 as generated by the
summary(..., plot=TRUE) function

https://en.wikipedia.org/wiki/Erdos-Renyi_model
https://en.wikipedia.org/wiki/Barabasi-Albert_model
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CM[2, 1] = 1
for (i in 3:N) {

probs = apply(CM, 1, sum)
link = unique(sample(c(1:N)[-i], size = min(c(K,

i - 1)), prob = probs[-i]))
CM[i, link] = CM[link, i] = 1

}
class(CM) = "cm"
return(CM)

}

Figure 14.4d shows a scale-free network among 20 individuals with mean degree
4. To better visualize the power law heterogeneity in contacts predicted by the
Barabási-Albert model Fig. 14.6 shows a log-log plot for 200 individuals with a
mean degree of 8.

cm3 = barabasiAlbert(200, 4)
ed = summary(cm3)
plot(as.numeric(ed$degree), ed$freq, log = "xy", xlab = "Degree",

ylab = "Frequency")

For large networks the plotting functions in the statnet package introduced in
Sect. 14.1 provides fancier visualization. The network function in the statnet
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Fig. 14.6: A log-log plot of degree distribution from a Barabási-Albert network of
200 individuals with mean degree 8

package converts the contact matrix (of class cm) to a plottable network class
object (Fig. 14.7).
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require(statnet)
plot(network(cm3, directed = FALSE))

14.5 Epidemics on Networks

SIR-like epidemics can be simulated across networks by assuming that an infec-
tion is transmitted across an S–I edge with a probability, τ , per time step (Barbour
& Mollison, 1990; Ferrari et al., 2006a). Following the Reed-Frost version of the
chain-binomial model (Abbey, 1952), the probability of any given susceptible be-
coming infected in a given serial interval is p= 1− (1− τ)y where y is the number
of infected neighbors. If infected are removed with a constant probability, γ , the
infectious period will be geometrically distributed. The sirNetmod function will
simulate a closed SIR epidemic on arbitrary contact matrices and return an object
of class netSir.

Fig. 14.7: Visualization of a Barabási-Albert network among 200 individuals with
mean degree 8 using the statnet package

sirNetmod = function(CM, tau, gamma) {
# generate SIR epidemic on a CM-network CM =
# contact matrix tau = probability of infection
# across an edge gamma = probability of removal

https://en.wikipedia.org/wiki/Reed-Frost_model
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# per time step
N = dim(CM)[1]
I = matrix(rep(0, N), nrow = N, ncol = 1) #First infecteds
S = matrix(rep(1, N), nrow = N, ncol = 1) #First susceptibles
R = matrix(rep(0, N), nrow = N, ncol = 1) #First removed
I1 = sample(1:N, size = 1) #Pick first random infected
I[I1, 1] = 1
S[I1, 1] = 0
t = 1
while (sum(I[, t - 1]) > 0 | t == 1) {

t = t + 1
infneigh = CM %*% I[, t - 1]
pinf = 1 - (1 - tau)ˆinfneigh
newI = rbinom(N, S[, t - 1], pinf)
newR = rbinom(N, I[, t - 1], gamma)
nextS = S[, t - 1] - newI
nextI = I[, t - 1] + newI - newR
nextR = R[, t - 1] + newR
I = cbind(I, nextI)
S = cbind(S, nextS)
R = cbind(R, nextR)

}
res = list(I = I, S = S, R = R)
class(res) = "netSir"
return(res)

}

The summary.netSir and plot.netSir functions for the netSir class are:

summary.netSir = function(x){
t = dim(x$S)[2]
S = apply(x$S, 2, sum)
I = apply(x$I, 2, sum)
R = apply(x$R, 2, sum)
res = data.frame(S = S,I = I,R = R)
return(res)

}

plot.netSir = function(x){
y = summary(x)
plot(y$S, type = "b", xlab = "time", ylab = "", ylim = range(y))
lines(y$I, type = "b", col = "red")
lines(y$R, type = "b", col = "blue")
legend("left", legend = c("S", "I", "R"),

lty = c(1, 1, 1), pch = c(1, 1, 1),
col = c("black", "red", "blue"))

}

Figure 14.8 shows stochastic epidemic spread on scale-free, Watts-Strogatz, ran-
dom, and ring lattice networks.

cm1 = barabasiAlbert(N = 200, K = 2)
cm2 = wattsStrogatz(N = 200, K = 2, Prw = 0.1)
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cm3 = wattsStrogatz(N = 200, K = 2, Prw = 1)
cm4 = ringlattice(N = 200, K = 2)
sim1 = sirNetmod(cm1, 0.3, 0.1)
sim2 = sirNetmod(cm2, 0.3, 0.1)
sim3 = sirNetmod(cm3, 0.3, 0.1)
sim4 = sirNetmod(cm4, 0.3, 0.1)
plot(apply(sim1$I, 2, sum), type = "l", xlab = "Time",

ylab = "Infected")
lines(apply(sim2$I, 2, sum), type = "l", col = "red")
lines(apply(sim3$I, 2, sum), type = "l", col = "red",

lty = 2)
lines(apply(sim4$I, 2, sum), type = "l", col = "blue")
legend("topright", legend = c("RL", "WS(0.1)", "ER", "BA"),

lty = c(1, 2, 1, 1), col = c("blue", "red", "red",
"black"))
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Fig. 14.8: Simulated stochastic epidemics on mean degree 4 ring lattice, Watts-
Strogatz, Erdős-Rényi and Barabási-Reka networks
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14.6 Epidemic Size Distribution

As analyzed in Sect. 2.4, the closed epidemic SIR model predicts the fraction of
individuals likely to be infected during the course of an outbreak in a randomly
mixed population. Given such mixing this fraction is substantial even for a moder-
ate R0 with the approximate expectation that only exp(−R0) will escape infection.
However, as alluded to in Sect. 3.8 this final epidemic size prediction is strongly
dependent on the random mixing assumptions. Also as discussed in Sect. 9.2, even
randomly mixing supercritical (R0 > 1) infections can stochastically burn out dur-
ing the early phase of an emergence leading to a bimodal size distribution of either
a minor stutter or a major outbreak. From a probabilistic point of view this was
discussed already in Bailey’s (1957) and Bartlett’s (1960a) treatises on infectious
disease dynamics.

House et al. (2013) provide a useful overview of various mathematical ap-
proaches to understanding epidemic size distributions. The netSirmod function
provides a simple tool to look at stochastic epidemic size distributions in the face of
the various conceptualizations of social heterogeneities introduced above.

fs = matrix(NA, ncol = 4, nrow = 1000)
for (i in 1:1000) {

cm4 = ringlattice(N = 200, K = 2)
cm3 = wattsStrogatz(N = 200, K = 2, Prw = 0.1)
cm2 = wattsStrogatz(N = 200, K = 2, Prw = 1)
cm1 = barabasiAlbert(N = 200, K = 2)
sim1 = sirNetmod(cm4, 0.15, 0.1)
sim2 = sirNetmod(cm3, 0.15, 0.1)
sim3 = sirNetmod(cm2, 0.15, 0.1)
sim4 = sirNetmod(cm1, 0.15, 0.1)
fs[i, 1] = tail(summary(sim1), 1)[1, 3]
fs[i, 2] = tail(summary(sim2), 1)[1, 3]
fs[i, 3] = tail(summary(sim3), 1)[1, 3]
fs[i, 4] = tail(summary(sim4), 1)[1, 3]

}
fs = data.frame(fs)
names(fs) = c("RL", "WS", "ER", "BA")
require(vioplot)
vioplot(fs/200, h = 0.3, ylab = "Final size", main = "")

The difference in epidemic size distributions is marked despite the epidemic param-
eters being the same (Fig. 14.9). The ring lattice, which only has local connections,
tends to produce smaller outbreaks due to the probabilistic build-up of local herd im-
munity (Ferrari et al., 2006a). The small-world Watts-Strogatz network has distinct
bimodal behavior that reflects how epidemics will either die out early through local
herd immunity unless it transmits across small-world bridges to percolate further
across the network. Random networks and scale-free networks tend to experience
major outbreaks affecting most of the population with the exception of a few chains
that experience early stochastic breaks. Thus supercritical (R0 > 1) stochastic epi-
demics will either stutter early or progress close to the final epidemic size predicted
by the deterministic model (Sect. 2.4).
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Fig. 14.9: Violin plots of the epidemic size distribution on 200 node networks of
degree 4 with a transmission probability τ of 0.15 and a recovery probability γ of
0.1. Ring lattice (RL), Watts-Strogatz (WS) small-world network, Erdős-Rényi (ER)
random network, and Barabási-Reka (BA) scale-free network

The difference in the mean size of the major epidemics of Fig. 14.9 as well as the
difference in acuteness of spread depicted in Fig. 14.8 can be understood in terms of
how network geometry molds R0 even when all else (including transmission τ and
recovery γ probabilities, and mean number of contacts) is constant. For network
SIR models, like those introduced above, R0 and thus spread of infections depends
on both mean number of contacts K and heterogeneity in that number (quantified
by K2) according to R0 = (τ/(τ + γ))(K2 −K)/K) (Bansal et al., 2007). The term
(K2 −K)/K) may be thought of as the inflation factor to the reproduction number
due to the heterogeneities in social contacts. The r0fun function calculates R0

for any given network. The greater the heterogeneity, the greater the cross-network
reproduction number:

r0fun = function(CM, tau, gamma) {
x = apply(CM, 2, sum)
(tau/(tau + gamma)) * (mean(xˆ2) - (mean(x)))/mean(x)

}
r0fun(cm1, 0.3, 0.1) #BA

## [1] 5.138539

r0fun(cm2, 0.3, 0.1) #ER

## [1] 2.325

r0fun(cm3, 0.3, 0.1) #WS

## [1] 2.859375
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r0fun(cm4, 0.3, 0.1) #RL

## [1] 2.25

14.7 Empirical Networks

One can combine the functionality of the statnet package with the above results
on network heterogeneity to revisit on the gonorrhea contact tracing study of De
et al. (2004) from Sect. 3.8.

data(gonnet)
nwt = network(gonnet, directed = TRUE)
x = degree(nwt)[2:89]
mean(x)

## [1] 1.920455

The mean degree is 1.92, but the inflation factor due to the network heterogeneity is
predicted to almost double the R0 of a STD spreading across this network:

(mean(xˆ2) - (mean(x)))/mean(x)

## [1] 1.940828

To simulate an epidemic on the empirical contact tracing study from Sect. 3.8, we
first have to construct an undirected contact network among the 89 members and
next apply the sirNetmod model to plot a plausible stochastic time trajectory and
final infection status across the network:

# Undirected network
cmg = gonnet + t(gonnet)
# Simulate epidemic
cep = sirNetmod(cmg, tau = 0.3, gamma = 0.1)
sm = summary(cep)
par(mfrow = c(1, 2))
inf = ifelse(apply(cep$I, 1, sum) > 0, 2, 1)
nwt = network(cmg, directed = FALSE)
plot(nwt, vertex.col = inf)
matplot(sm, ylab = "Numbers")
legend("right", c("S", "I", "R"), pch = c("1", "2", "3"),

col = c(1, 2, 3))

The simulated epidemic across the network (Fig. 14.10) reveals the feature that the
core group is likely to always be infected but peripheral individuals may escape in-
fection by getting surrounded by removed individuals before getting exposed. Fer-
rari et al. (2006a) discuss how the geometry of a network shapes the likelihood of a
given individual escaping infection.
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Fig. 14.10: A simulated closed epidemic on the gonorrhea contact tracing network
(De et al., 2004). (a) Network infection history (red nodes = infected, black nodes
= escapees). (b) Outbreak trajectory

To consider such effects more carefully, we can simulate an epidemic on the Col-
orado Springs network introduced in Sect. 14.1 and investigate the average degree
(i.e., mean number of social links) of the infected individuals during the course of
the simulation.

data(cspring)
csepi = sirNetmod(cspring$cm, 0.2, 0.1)
# which(csepi$I[,1] == 1): 415, degree=1 Number
# infected
inf = apply(csepi$I, 2, sum, na.rm = TRUE)
# Mean degree of infected
deg = apply(cspring$cm, 2, sum, na.rm = TRUE)
csepi$I[csepi$I == 0] = NA
mdeg = apply(csepi$I * deg, 2, mean, na.rm = TRUE)
symbols(x = 1:length(inf), y = inf, circles = mdeg, inches = 0.2,

ylab = "I", xlab = "time")
legend("topleft", pch = 21, "mean\n degree")

If the first infected is at the periphery of the social network, the initial mean degree
is low but it quickly explodes as the infection reaches an individual in the social core
that results in accelerated dissemination among high-degree individuals (Fig. 14.11).
The epidemic retreat is associated with transmission among less sociable individuals
and, thus, a much reduced mean degree because the high-degree individuals were
differentially depleted from the susceptible pool early on.
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Fig. 14.11: A simulated trajectory of the average degree of infected individuals for a
stochastically realized epidemic on the Colorado Springs network (Klovdahl et al.,
1994; Woodhouse et al., 1994) with a per edge transmission probability τ = 0.2 and
per node recovery probability γ = 0.1 in a case where the random index case is in
the periphery of the social network. Circle size is proportional to mean degree

14.8 Vaccinating Networks

Using social considerations for control of infectious diseases has a centuries long
history, at least starting from the implementation of “quarantining”—the 40-day iso-
lation of seamen on their ships before disembarkation—in the fifteenth century Italy
in the wake of the black death. The complete lockdown of the city of Wuhan on 23
January 2020 in response to early spread of SARS-CoV-2 (Tian et al., 2020) is a
recent example of attempted socio-spatial control of disease spread. Ring vaccina-
tion, a spatial network intervention, was used extensively to create immunological
cordon sanitaire during the final years of smallpox eradication during which vil-
lages would be targeted as soon as a case was discovered (Henderson & Klepac,
2013). Cocooning—the idea of vaccinating all family members of at-risk children
too young for immunization—is a social network intervention recommended to pro-
tect against whooping cough (e.g., Lavine et al., 2011).

In addition to these applications, there are multitudes of mathematical and com-
putational studies on using social network consideration to think about vaccination
strategies and vaccination deployment (Holme & Litvak, 2017). One amusing idea
is “acquaintance vaccination” in the face of limited medical supply: pick random
individuals in a network and ask them to identify a friend to be vaccinated. A friend
of a random individual is likely to have a higher social connectivity and thus be



14.8 Vaccinating Networks 293

more likely to contribute to onwards spread. A slightly less esoteric idea is to try to
use social engineering of vaccine sentiments across a network. Fu et al. (2011) dis-
cussed this as “imitation dynamics”, a form of social diffusion, where positive (or
negative) opinions and adoption practices may spread to help toward herd immunity
for voluntary vaccine programs. Sociologists have discussed how such dynamics
depends on network homophily: The extent to which individuals with similar views
assort preferentially. With strong assortment, diffusion of ideas and sentiments will
be weak whereas with weak assortment influencers may sway general opinions. Ho-
mophily seems to have been an important factor during the SARS-CoV-2 spread in
2020–21 in the USA for which there was limited cross-talk among vaccine positive
and vaccine skeptic segments of the population.

Models of networks and epidemics on networks are a vast literature, so the above
should at best be considered a teaser. For example, it only considers static networks
without births, deaths, or social reconfiguration. It does also not consider network
modularity (Newman, 2006). Homophily is an obvious social process that leads
to highly modular networks. The statnet project and associated statnet package
have a rich set of resources for deeper explorations.

http://statnet.org


Chapter 15
Invasion and Eradication

15.1 Invasion

Pathogens invade new host niches all the time. The global invasion of the human
niche by SARS-CoV-2 during the 2020–22 pandemic is the most recent example, but
cross-species transmission is ubiquitous. In 2009 Influenza A/H1N1pdm09 emerged
and spread globally most likely after a triple recombination of human, avian, and
porcine viral segments (Smith et al., 2009a). The HIV-1 pandemic started in the mid-
twentieth century probably from bushmeat spillover of chimpanzee simian immun-
odeficiency virus, which itself is thought to have originated from spillovers from
other primates, to go global in the 1970s (Hemelaar, 2012). Cross-species trans-
mission is not just an issue of zoonotic spillover or anthropogenic spillback, it is
equally important as spillover among animal species. Among the paramyxoviruses,
Taber and Pease (1990) discuss how tissue tropism generally change more slowly
than host specificity so that host switching is often more constrained by tissue sim-
ilarity than host species identity. Phocine distemper virus, for example, is endemic
to harp seals in the high arctic but have at least twice (in 1988 and 2002) invaded
harbor seal populations of the North sea to cause catastrophic mortality (Hall et al.,
2006).

Lloyd-Smith et al. (2009) provide a comprehensive classification of cross-species
establishment of infectious diseases and thus invasion that recognizes three key
stages:

• Stage II: Primary spillover wherein a pathogen cross the species border but with
no onwards transmission in the secondary host. Human cases of old- and new-
world hantaviruses, Bolivian hemorrhagic arenavirus fever, and Junin arenavirus
are all exemplars of this.

This chapter uses the following R packages: scatterplot3d, raster, gdistance,
maptools, rgdal, maps and ncf.
A five minute epidemics MOOC on spatial spread can be seen on YouTube: https://www.youtube.
com/watch?v=WPjsAdyD1Gg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
O. N. Bjørnstad, Epidemics, Use R!, https://doi.org/10.1007/978-3-031-12056-5 15

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12056-5_15&domain=pdf

 26741 57248 a 26741
57248 a
 
https://www.youtube.com/watch?v=WPjsAdyD1Gg
https://www.youtube.com/watch?v=WPjsAdyD1Gg

 11914 62249 a 11914 62249 a
 
https://doi.org/10.1007/978-3-031-12056-5_15


296 15 Invasion and Eradication

• Stage III: Subcritical (i.e., R0 < 1) establishment results in stuttering chains of
transmission. Lassa fever virus for which Iacono et al. (2015) estimated that
about 20% of cases are human-to-human and the rest are spillover from the
multimammate mouse (Mastomys natalensis) is a good example. So also is an-
other rodent-borne infection, monkey pox, for which Blumberg and Lloyd-Smith
(2013b) estimated a human-to-human R0 of 0.3 that has recently risen to 0.8.
Other notorious examples are the Nipah virus and avian influenzas (Lloyd-Smith
et al., 2009).

• Stage IV represents supercritical (R0 > 1) establishment. To refine Lloyd-Smith
et al.’s (2009) classification, it may be useful to distinguish type IVa which causes
epidemics with failure of long-term establishment from type IVb which causes
long-term endemism in the derived host. HIV, influenza A/H1N1pdm09, and
SARS-CoV-2 are examples of the latter. In humans, Ebola and yellow fever are
examples of the former. On the animal-to-animal side, phocine distemper virus
(PDV) in harbor seals is an interesting example where outbreaks are so violent
that the pathogen burns out of susceptibles to result in IVa dynamics.1

15.2 Stage III Branching Processes

The final epidemic size of Stage III subcritical spillover (sometimes called “cluster
size”) is usually modeled as a Galton-Watson branching process (Farrington et al.,
2003). The model is quite general and can flexibly accommodate within-population
heterogeneities (Blumberg & Lloyd-Smith, 2013b). For illustrative purposes we
may consider the simplest case of subcritical spread in a homogenous host popu-
lation. With homogeneity and assuming the population is sufficient large that sus-
ceptible depletion will not affect the stuttering chain, the offspring distribution (the
number of onwards infected per infected) during a serial interval will follow a Pois-
son distribution with a mean of R0 and the outbreak size distribution, O, will follow
a Borel-Tanner distribution that depends on the initial number of infected, i0 accord-
ing to:

P(O= x|i0) =
i0xx−i0−1Rx−i0

0 e−xR0

(x− i0)!
(15.1)

In addition to Stage III spillover, this model also applies to seeding of new chains
from supercritical communities to communities that, through interventions, have
achieved control. This was the case among areas of lockdown, partial lockdown,
and no interventions during the early SARS-CoV-2 pandemic.2 For illustration con-
sider the predicted outbreak size distribution from an initial i0 of five individuals in
communities with subcritical R0s of 0.5, 0.7 and 0.9:

1 A kin to the failure of persistence of measles in human communities below the critical community
size (Bartlett, 1960b; Grenfell & Harwood, 1997, Sect. 1.3).
2 Engen et al. (2021) discuss an alternative diffusion approximation approach to study this issue.

https://en.wikipedia.org/wiki/Galton-Watson_process
https://en.wikipedia.org/wiki/Borel_distribution
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R0 = 0.5
x = 1:50
i0 = 5
plot(i0 * xˆ(x - i0 - 1) * R0ˆ(x - i0) *

exp(-x * R0)/factorial(x - i0), xlab="Outbreak size",
ylab="Probability", type="p")

R0 = 0.7
points(i0 * xˆ(x - i0 - 1) * R0ˆ(x - i0) *

exp(-x * R0)/factorial(x - i0), pch = 2)
R0 = 0.9
points(i0 * xˆ(x - i0 - 1) * R0ˆ(x - i0) *

exp(-x * R0)/factorial(x-i0), pch=3)
legend("topright", c("0.5", "0.7", "0.9"), pch = 1:3)

For these scenarios, some onwards transmissions are clearly happening with a clus-
ter size mode of seven in the first scenario and 10 in the last scenario, but there
is still a chance of seeing almost 20 cases in the former and 50 cases in the latter
(Fig. 15.1).
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Fig. 15.1: Final epidemic size distributions predicted from the Galton-Watson
branching process assuming a Poisson distributed offspring distribution and sub-
critical spread with R0s of 0.5, 0.7, and 0.9
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Farrington and Grant (1999) used the branching process model to also study the
distribution of lengths of stuttering chains. With the Poisson offspring distribution
and a single introduction they derived that the probability that the chain will be
shorter-or-equal to k generations (i.e., serial intervals) is:

fk = P(G≤ k)∼ e−R0Ek(e
R0e

−R0
), (15.2)

where Ek(x) is the “iterated exponential function”, xx
x...

. So the interpretation of
fk is the cumulative probability of shortness. The distribution with i0 introductions
follows f i0k . As a worked example the chain-length probability depends on i0 for a
pathogen with R0 = 0.9 according to:

# Iterated exponential
Ek = function(k, x) {

out = rep(NA, k + 1)
out[1] = 1
for (i in 2:(k + 1)) {

out[i] = xˆ(out[i - 1])
}
return(out)

}

# cumulative from single introduction
R0 = 0.9
fk = exp(-R0) * (Ek(20, exp(R0 * exp(-R0)))[-1])
i0 = 1
# uncumulate
g = c(fk[1]ˆi0, diff(fkˆi0))
plot(g, ylab = "Probability", xlab = "Length", log = "y",

pch = 16)
# loop from 1 to 10 introductions
for (i0 in 1:10) {

g = c(fk[1]ˆi0, diff(fkˆi0))
lines(g)

}
points(g, pch = 17)
legend("topright", c("1", "10"), pch = 16:17)

With a single introduction the modal length is one, but with a fair chance of getting
secondary and maybe tertiary cases. With five or 10 initial cases the modal chain
length is three and seven, respectively (Fig. 15.2). Obviously, a smaller R0 leads to
shorter typical chains of transmission.

For emerging pathogens with pericritical reproduction numbers above one, we
sometimes see bimodal epidemic distributions with either minor clusters due to
stochastic fadeout early on or major epidemics. Ebola is perhaps a good illustra-
tion with most of the several dozen reported outbreaks being small but two recent
outbreaks in West Africa (2014–2015) and DRC (2016–2018) reaching into the
thousands. Bailey (1957) and Bartlett (1960a) were among the first to study this
bimodality from a theoretical point of view. This bimodality is also clearly seen in
the predicted stochastic spread on social networks discussed in Sect. 14.6.
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Fig. 15.2: Chain-length distributions predicted from the Galton-Watson branching
process assuming a Poisson distributed offspring distribution and subcritical spread
with R0 = 0.9 and size of initial introduction varying from one to 10

15.3 Phocine Distemper Virus

There are two particularly well documented stage IVa animal-to-animal supercritical
spillovers of PDV from arctic harp seals (Pagophilus groenlandicus) to North Sea
harbor seals (Phoca vitulina) and grey seals (Halichoerus grypus) in 1998 and 2002.
Using the type of next-generation formalism of structured transmission discussed in
Sects. 3.9 and 10.7, Klepac et al. (2009) estimated the reproduction number in har-
bor seals during the invasion to be in the 2–2.5 range. Like other morbilliviruses,
PDV causes mortality or lifelong immunity in its hosts. Thus, like for measles, sus-
ceptible recruitment through birth is critical for sustaining chains of transmission.3

In prevaccination USA and UK the measles critical community size was around
300–500k (Fig. 1.2; see also Bartlett, 1960b; Grenfell & Harwood, 1997), which
with a typical birth rate in these countries of around 20 births per thousand per
year indicates that an annual recruitment of around 10k newborns is necessary to
sustain local transmission. During 1920–40, New York city had a population size

3 Though there are Cetacean morbilliviruses documented from rare species of toothed whales
which mode of persistence is not understood (Van Bressem et al., 2014).
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of around seven million people and birth cohorts of around 91k per year. London
during the mid-twentieth century had a population size of three million and annual
birth cohorts of 45k, so both cities were well above CCS recruitment levels. As a
consequence both cities harbored violent sustained recurrent epidemics (Fig. 1.4).

Harbor seal communities (“haul-outs”) in the Northeast Atlantic have numbers
in the hundreds to several thousand (Special Commitee on Seals, 2002), so pup
production is way under the critical recruitment level for sustained transmission
particularly due to the seasonal pulsing of reproduction (Swinton, 1998). The annual
birth cohort of arctic harp seals, in contrast, is estimated to be around a million
(Hammill et al., 2021) thus supporting the tenet that this represents the reservoir
species for spillover to other seals.

Curiously the first reports of PDV in both were reported from the Danish island
of Anholt in the Kattegat sea (55◦20′N,16◦10′E) toward the inlet to the Baltic sea
that is far away from the Arctic PDV reservoir. The pdv dataset holds the number
of dead seals washed ashore across 25 Northern European areas during the 2002
epidemic starting in May and running through the end of the year (Harding et al.,
2002). The chain of transmission ended in late 2002 due to the burnout of sus-
ceptibles. To visualize the invasion we can map the date of early numbers using
cumulative strandings of > 20 as a benchmark (Fig. 15.3).

require(rworldmap)
# Day to 20 deaths
inv = apply(pdv$ts[, -1] < 20, 2, sum)
newmap = getMap(resolution = "low")
plot(newmap, xlim = c(-7, 16), ylim = c(50, 61), asp = 1.5)
# Big circles are early invasion. The ˆ1.5 is to
# increase contrast of early vs late invasion
invsymsize = (-(inv - 275)/275)ˆ1.5
symbols(pdv$coord$lon, pdv$coord$lat, circles = invsymsize,

bg = gray(inv/275), inches = 0.15, add = TRUE)

Seals do not travel over land, so in terms of spatial spread of PDV some measure
of seaway distance should be used. A quick search on rseek.org on converting a map
into a “friction surface” can help identifying the paths of shortest seaway distance.4

The recipe requires several geospatial R packages:

require(raster)
require(gdistance)
require(maptools)
require(rgdal)
require(maps)
# the wrld_simpl data set is from maptools package
data(wrld_simpl)
# make a default world projection
world_crs = crs(wrld_simpl)
world = wrld_simpl

4 Manipulation of geospatial data is an enormous field and the R community has generated a lot
of resources beyond the scope of this text. The code is adopted from stackoverflow.com/questions/
69258889.
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Fig. 15.3: A depiction of the day of > 20 cumulated strandings of harbor seals across
25 locales in Northeastern Europe from early May 2002 through the end of that year.
Large dark circles represents earliest invasion. The largest circle is the Danish island
of Anholt

worldshp = spTransform(world, world_crs)

# rasterize will set ocean to NA
ras = raster(nrow = 1000, ncol = 1000)
worldmask = rasterize(worldshp, ras)
worldras = is.na(worldmask)

# set land to very high friction
worldras[worldras == 0] <- 99
# create a friction object from the raster
tr = transition(worldras, function(x) 1/mean(x), 16)
tr = geoCorrection(tr, scl = FALSE)
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The below code finds the shortest paths among the different seal haul-outs. This
calculation is computationally quite expensive so the friction surface distances are
included in the pdv dataset of the epimdr2 package.

dmat99sc = matrix(NA, ncol = 25, nrow = 25)
par(mfrow = c(1, 2))
plot(A, xlim = c(-10, 20), ylim = c(45, 65))
for(i in 1:25){

# function accCost uses the transition object
# and point of origin
port_origin = structure(as.numeric(pdv$coord[i,3:2]),

.Dim=1:2)
port_origin = project(port_origin,

crs(world_crs, asText = TRUE))
A = accCost(tr, port_origin)
for(k in i:25){

port_destination= structure(as.numeric(pdv$coord[k,
3:2]), .Dim=1:2)

port_destination = project(port_destination,
crs(world_crs, asText = TRUE))

path = shortestPath(tr, port_origin, port_destination,
output = "SpatialLines")

t_path = shortestPath(tr, port_origin, port_destination)
distance = costDistance(tr, port_origin, port_destination)
lines(path, col = grey((i + 26)/56))
dmat99sc[i, k] = dmat99sc[k, i] = distance[1, 1]

}
}
plot(pdv$fs[1, ]/1000,as.vector(inv),

xlab="Friction distance", ylab = "Day")

Figure 15.4a depicts the calculated shortest friction distances by sea between the
haul-outs and Fig. 15.4b shows days to > 20 dead seals against friction surface dis-
tance from Anholt. The strong positive relation to seaway distance testifies to the
spatially contagious nature of the spread of the virus. A similar pattern was seen
during the 1988 epizootic (Swinton et al., 1998).

15.4 Rabies

The eastern US invasion of rabies in raccoons first discussed in Sect. 10.1 is partic-
ularly well documented in Connecticut because the cases were geolocated to indi-
vidual townships. The first reports were from the southwestern corner of the state in
March 1991. By January 1995 the virus had spread throughout the state. Smith et al.
(2002a) and Waller and Gotway (2004) provide a detailed statistical analysis of the
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Fig. 15.4: (a) A depiction of the shortest sea distances between the 25 seal haul-outs
that recorded significant die-offs during the 2002 PDV epizootic. (b) The day of
report of > 20 dead seals against seaway friction surface distance from Anholt for
each of the 25 well documented haul-outs

spatial spread. The data that represents the month of first appearance for each of the
168 townships are in the waller dataset.

data(waller)
head(waller)

## x y month
## 1 103.02200 68.71192 37
## 2 46.41953 28.43884 18
## 3 118.57160 88.25216 41
## 4 63.43697 76.50967 18
## 5 25.31975 91.60060 24
## 6 47.88734 35.93386 18

The x and y coordinates represent the geographic coordinates in kilometers from
the southwestern corner. Following Waller and Gotway (2004) we can visualize the
northeastward invasion of the virus (Fig. 15.5):

require(scatterplot3d)
s3d = scatterplot3d(waller$x, waller$y, waller$month,

scale.y = 0.7, pch = 16, lwd = 2,
color = gray(waller$month/max(waller$month)), type = "h",
box = FALSE, xlab = "Easting", ylab = "Northing",
zlab = "Month", angle = 120)

plane = lm(month ˜ x + y, data = waller)
s3d$plane3d(plane)

Geolocated data on time-to-first-appearance (TFA) provides key information on
rates and directions of spatial invasions of infectious diseases (Waller & Gotway,
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Fig. 15.5: Month of first report of raccoon rabies from March 1991 across 168
townships of Connecticut

2004) and other organisms of concern (Goldstein et al., 2019). A shallow smoothed
surface of TFA across a landscape implies rapid range expansion, whereas slow
spread results in a steep slope. If a spatial surface has a cx slope in the x direction
and a cy slope in the y direction, then the steepest slope which reflect the spatial
turnover is the geometric average of these and the invasion speed is the reciprocal.

Thus, the speed of spread is 1/
√

c2
x + c2

y and the dominant direction of spread (in

radians) is arctan(cy/cx). For the raccoon rabies in Connecticut, the regression sur-
face in Fig. 15.5 implies a speed of spread of about 4 km/month in a dominant 9◦

azimuth direction:

# speed
1/sqrt(plane$coef[2]ˆ2 + plane$coef[3]ˆ2)

## x
## 3.927532

# direction
360 * atan2(plane$coef[3], plane$coef[2])/(2 * pi)

## y
## 9.030879
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In Eurasia the main host of rabies is the red fox. In Western and Central Europe
a half century long enzootic of rabies started in the 1940s with a likely epicenter
from Poland or Russia presumably as a spillover event from domestic dogs with
subsequent spread throughout much of continental Europe. The virus was eventu-
ally eliminated5 from Western Europe in 2008 through an EU-wide concerted effort
of air-deployed oral vaccine baits (Freuling et al., 2013).6 The European fox rabies
enzootic have led to many important disease ecological insights such as the notion of
a critical host density (Anderson et al., 1981) discussed in Sects. 3.1 and 10.7. Fur-
ther important issues showcase how mathematical models can be used to understand
and predict speed of spatial diffusion of infectious disease across a landscape once
nuances in host biology are considered (Murray et al., 1986; van den Bosch et al.,
1990; Mollison, 1991). From the initial epicenter, fox rabies spread at around 30–
60km/year. Appropriate models for spatial spread of infection depend on the nature
of the spatial transmission process such as “distributed contacts” versus “distributed
infected” (Reluga et al., 2006). For spread of human infections parallel notions are
often coined as commuter spread versus migration spread (Keeling & Rohani, 2002;
Keeling et al., 2004).

The notion of spatial kernels introduced in Sect. 12.2 is central to predicting spa-
tial diffusion rates. The study by van den Bosch et al. (1990) assumed that rabies
transmitted among foxes with relatively stable home ranges (and thus a distributed
contact scenario) and derived an approximate formula for the expected wave speed
of c = u

√
2logR0/V , where u is the standard deviation of the spatial transmission

kernel (in this case related to the size of each home range) and V is the serial inter-
val. With a serial interval of about 33 days and a typical home range size, van den
Bosch et al. (1990) predicted a wave speed of 45 km per year at low densities and 30
km/year at high densities, as long as the fox density is above the critical host density
(Anderson et al., 1981, Sect. 10.7) of around 1 fox per km2. Using a “distributed in-
fecteds” scenario assuming foxes diffuse randomly across the landscape during the
course of infection so u is related to the movement of foxes, Murray et al. (1986)
predicted wave-like spread of rabies at a rate c= u

√

2(R0 −1/V (see also Mollison,
1991). With this calculation Murray et al. (1986) predicted a typical wave speed of
around 50 km per year. In contrast to van den Bosch et al. (1990), the latter model
predicts spread to increase with fox density. Mollison (1991) provides a discussion
of different spread formulations, in general, and rabies and other case studies, in
particular.

5 Conventional usage is to use “eliminate” for regional control and “eradicate” for global control;
smallpox and Rinderpest are the only two viruses that have been eradicated through vaccination.
6 https://tinyurl.com/msszkdjw links to visualization of the invasion and elimination of fox rabies
across Switzerland between 1967 and 1999.
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15.5 Initial Control

The Spanish A/H1N1 influenza and SARS-Cov-2 pandemics are both exemplars
of how overwhelmed hospital capacities lead to greatly exacerbated morbidity and
mortality. For these, maxed out critical care units, respirators, and medical staff led
to greatly increased individual severity from infection. Sudden outbreak calamities
with associated breakdowns of health infrastructure also had important indirect con-
sequences as, for example, seen in the cessation of routine vaccination against im-
portant childhood diseases during the 2013–14 West African Ebola epidemic (Taka-
hashi et al., 2015). These examples clearly illustrate that containing the height of
an initial epidemic peak is very important for individual health and overall pub-
lic health burden. The mantra during the early part of the SARS-CoV-2 pandemic
was to “flatten the curve.” A vaccine is an obvious way to slow disease spread and
other pharmaceutical interventions in the form of drugs may mitigate the stress on
the health care system. In the absence of these, a number of non-pharmaceutical
interventions (NPIs) were put in place in most countries.

As discussed throughout this text, the reproduction number is the transmission
rate multiplied by the infectious period and for the closed epidemic (Sect. 3.1) the
peak prevalence is 1−(1+ logR0)/R0. Thus reducing the reproduction number will
flatten the curve. It will also delay the timing of the peak (Bjørnstad et al., 2020a;
Kröger et al., 2021) to allow for better preparedness. The various NPIs helped re-
duce the reproduction number in various ways; the transmission rate itself is the
contact rate multiplied by the probability of infection given a contact, so social
distancing reduce the rate and masking reduce the probability. Quarantining/self-
isolation decrease both the contact rate and stunts the effective infectious period
because infected individuals are not mixing with susceptibles. There are analytic
approximations to the time to peak incidence but they are quite elaborate (Kröger
et al., 2021), so a shortcut is to do numerical analyses using the sirmod function
introduced earlier. Figure 15.6 shows how peak prevalence and the time of the peak
is predicted to depend on the reproduction number.

ip = tp = rep(NA, 201)
R0 = seq(1.2, 2.5, length = 201)
for (i in 1:201) {

times = seq(0, 365, by = 0.01)
paras = c(mu = 0, N = 1, R0 = R0[i], gamma = 1/7)
paras["beta"] = paras["R0"] * (paras["gamma"] + paras["mu"])
start = c(S = 0.99999, I = 1e-05, R = 0) * paras["N"]
out = ode(y = start, times = times, func = sirmod,

parms = paras)
out = as.data.frame(out)
ip[i] = with(as.list(paras), 1 - (1 + log(R0))/R0)
tp[i] = out$time[which.min(abs(out$I - ip[i]))]

}
par(mfrow = c(1, 2))
plot(R0, ip, type = "l", xlab = "Reproduction number",

ylab = "Peak prevalence")
plot(R0, tp, type = "l", xlab = "Reproduction number",
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ylab = "Peak day")
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Fig. 15.6: The predicted (a) peak prevalence and (b) day of the peak as a function
of the reproduction number assuming an infectious period of 7 days with a single
initial infectious individual in a 100k population

Bjørnstad et al. (2020a) provide an interactive online shinyApp to do scenario anal-
ysis of NPI-reduced reproduction numbers, peak and time-of-peak prevalence.

15.6 Synchrony

Elimination—the local control of infectious disease—is generally a matter of lo-
cally deploying pharmaceutical and non-pharmaceutical interventions sufficient to
push the reproduction number below one and thus break the chain of transmission.
Eradication, in contrast, is a conceptually and practically tougher problem because
it involves simultaneously breaking the chains everywhere. Section 1.3 visited on
the notion that pathogens can persist regionally in host-pathogen metapopulations
even if chains break during post-epidemic troughs (Grenfell & Harwood, 1997). As
has been studied in great detail in general ecology, robust metapopulation persis-
tence depends on spatial asynchrony among the coupled local populations (Hanski,
1998). With a high degree of synchrony, troughs will be aligned and there will be lit-
tle opportunity for spatial rescue effects for a pathogen to evade eradication. Keeling
et al. (2004) review how there is a tight interdependence between spatial coupling,
synchrony, and regional persistence. It turns out all three may be strongly affected
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by vaccination. We can visit on this using the historical data from measles across
England and Wales.

Grenfell and Harwood (1997) and Lau et al. (2020) outlined using measles as
the exemplar the difference between source-sink metapopulations, locally coupled
metapopulations, and globally coupled metapopulations. In the latter setting the cou-
pling can either be spatially structured or spatially random. The CMLs discussed in
Sects. 12.6 and 12.10 are examples of models of local coupling. The gravity model
discussed in Sect. 12.9 is a spatially structured, globally coupled formulation. Pre-
vaccination measles was a source-sink metapopulation in which for England and
Wales some 5–10 large cities above the critical community size (Fig. 1.2) sustained
chains of transmission through the troughs to fuel recurrent hierarchical waves of
reintroduction to smaller communities (Grenfell et al., 2001). The m4494 dataset
has the case counts and locations for each of 354 locations (cities and villages) that
have been collated in a geographic fashion such that it represents spatially consistent
time series for each week from 1944 through 1994 (Lau et al., 2020). We can use the
nonparametric spatial covariance function discussed in Chap. 13 to study patterns of
spatial synchrony in 1950–60 pre- and 1980–89, 1990–94 vaccination periods.

require(ncf)
data(m4494)
pre = m4494$year >= 50 & m4494$year < 60
post = m4494$year >= 80 & m4494$year < 90
late = m4494$year > 90
s5059 = Sncf(x = m4494$longlat[, 1], y = m4494$longlat[,

2], z = m4494$measles[, pre], latlon = TRUE)
s8089 = Sncf(x = m4494$longlat[, 1], y = m4494$longlat[,

2], z = m4494$measles[, post], latlon = TRUE)
s90 = Sncf(x = m4494$longlat[, 1], y = m4494$longlat[,

2], z = m4494$measles[, late], latlon = TRUE)
plot(s5059, ylim = c(-0.1, 0.6))
plot(s8089, add = TRUE)
plot(s90, add = TRUE)
legend("topright", c("50-59", "80-89", "90+"), lty = 1,

lwd = 3, col = c(gray(0.6), gray(0.8), gray(0.8)))

The covariance functions reveal local synchrony that decays with distance testi-
fying to a dominance of local coupling particularly in the prevaccination period
(Fig. 15.7). The local and hierarchical coupling is responsible for the gravity-like
spread (Xia et al., 2004; Lau et al., 2020) discussed in Sect. 12.9 and recurrent spa-
tial outbreak waves from large cities to surrounding conurbations (Grenfell et al.,
2001). The relatively high region-wide average correlation of 0.25 (CI: {0.23, 0.27})
is partially due to the shared term-time forcing due to the yearly cycle of opening
and closing of schools. The 1980–1989 period, which had an average vaccine cover
of 73%, also exhibits evidence of distance decay and local coupling with a region-
wide correlation of 0.14 (CI: {013, 0.15}]). In contrast, the epidemics during the
1990–94 period are completely decorrelated (correlation: 0.02) despite recording
56,765 cases during the period. In an elaborate statistical analysis, Lau et al. (2020)
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Fig. 15.7: The nonparametric spatial covariance functions of measles synchrony
against separating distance for the 354 cities and villages in England and Wales in
the 1950–59 prevaccine, 1980–89 early vaccine (mean cover: 71%) and the 90–94
late vaccine period (91% cover)

showed that the decorrelation is associated with a transition in the geometry of spa-
tial coupling in the measles metapopulation. Whereas the probabilistic spread during
the prevaccination era seems to adhere relatively well to predictions of the gravity
model, this gave increasingly way to spatially random seeding of local epidemics as
vaccine cover increased.

15.7 Coupling

Despite frequent local pathogen extinction, persistence may remain if there is spa-
tial contagion among communities that exhibits asynchronous outbreaks. Thus, cou-
pling and synchrony are key properties when it comes to the feasibility of eradica-
tion. The next section (Sect. 15.8) will attempt a more comprehensive synthesis per-
taining to metapopulation persistence and eradication, but first consider these two
factors. Intuition suggests that coupling is a two-edged sword: Too little spatial con-
tagion will result in too infrequent recolonization and regional extinction, but too
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much may result in geographic homogenization and loss of asynchrony, alignment
of troughs and regional extinction. Keeling et al. (2004) studied a spatially extended
stochastic model of whooping cough to verify the idea of enhanced persistence at
intermediate levels. We can revisit this analysis using a simple spatially extended
TSIR model using the transmission parameters estimated for New York measles
in Sect. 11.2. The New York case study is useful because its chaotic dynamics are
prone to extinction during the deep post-epidemic troughs unless communities are
very large (like New York which grew from 5.6M to 7.5M between 1920 and 1940).

# TSIR transmission coefficients
btny = c(32.552, 36.048, 43.163, 36.072, 37.459, 36.692,

32.089, 35.116, 37.03, 29.915, 28.114, 20.413, 18.03,
17.027, 15.855, 15.85, 18.87, 21.152, 26.08, 35.359,
35.859, 34.128, 37.66, 34.19, 27.827, 38.87)

For simplicity the below assumes a metapopulation with p identical patches7 that are
globally coupled with strength c in a commuter fashion. Thus, if the local force of
infection in community i at time t is φi,t = βi,t Ii,t , it will exert a pressure (1−cp)φi,t
on the local susceptibles and contribute additional cφi,t to the force of infection in
each of the other communities. In addition to parameters p and c, the tsirSpat
function takes the same parameters as the tsirSim2 function from Sect. 8.6 except
the list of initial conditions needs to contain two vectors of length p representing
initial susceptibles and infected for each patch.

tsirSpat = function(beta, alpha, B, N, p, c, inits, type = "det"){
type = charmatch(type, c("det", "stoc"), nomatch = NA)
if(is.na(type))

stop("method should be \"det\", \"stoc\"")
IT = dim(B)[1]
s = length(beta)
lambda = matrix(NA, nrow = IT, ncol = p)
I = matrix(NA, nrow = IT, ncol = p)
S = matrix(NA, nrow = IT, ncol = p)

I[1, ] = inits[[1]]
lambda[1, ] = inits[[2]]
S[1,] = inits$Snull
cmat = matrix(c, ncol = p, nrow = p)
diag(cmat) = 1 - c * p
for(i in 2:IT) {

lambda = beta[((i - 2) %% s) + 1]*cmat %*% (I[i -
1,]ˆalpha)*S[i - 1,]/N

if(type == 2) {
I[i,] = rpois(p, lambda)

}
if(type == 1) {

I[i, ] = lambda
}
S[i, ] = S[i - 1, ] + B[i, ] - I[i, ]

7 The code is actually vectorized so can accommodate N as a vector of varying population sizes.
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}
return(list(I = I, S = S))

}

As an illustration, assume five patches and draw initial conditions from the log-
susceptible time series (lSold) and corrected infected time series (Ic) from
Sect. 11.2.8 The first run is assuming no spatial coupling and a simulation for 100
years:

p = 5
pinits = list(Snull = sample(exp(lSold), size = p),

Inull = sample(Ic,size=p))
sim2 = tsirSpat(beta = btny, alpha = 0.98,

B = matrix(median(NY$rec), ncol = p, nrow = 2600),
N = median(N), p = p, c = 0, inits = pinits, type = "stoc")

mean(cor(sim2$I)[upper.tri(cor(sim2$I))])

## [1] NA

matplot(sim2$I, type="l", log="y", xlim=c(0,400),
col = 1, xlab = "biweek", ylab = "I")

In the particular stochastic realization shown in Fig. 15.8 chains of transmission are
all broken by about 10 years (260 biweeks). Armed with this general simulator one
can study how spatial coupling affects local/global extinction rates and synchrony in
the five patch system. The below looks at 100 stochastic realizations across a range
of spatial contagion rates:

#coupling
coup = seq(0, 0.025, by = 0.0005)

sync = gext = lext = matrix(NA, ncol = length(coup), nrow = 100)
for(k in 1:length(coup)){
for(j in 1:100){

sim2 = tsirSpat(beta = btny, alpha = 0.98,
B = matrix(median(NY$rec), ncol = p, nrow = 2600),
N = median(N), p = p, c = coup[k], inits = list(Snull =

sample(exp(lSold), size = p),
Inull = sample(Ic, size = p)), type = "stoc")
#global extinction time
gext[j, k] = 2600 - sum(apply(sim2$I, 1, sum) == 0)
#fraction of local absence before extinction
lext[j, k] = sum(sim2$I[1:gext[j,

k], ] == 0) / (gext[j, k] * p)
#synchrony
sync[j, k] = mean(cor(sim2$I)[upper.tri(cor(sim2$I))])

}
}

8 So for this code to work the previous susceptible reconstruction must be available.
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Fig. 15.8: A stochastic realization of the five patch spatial TSIR model assuming
prevaccination New York transmission patterns and no spatial coupling. All chains
of transmission broke within the first 5–10 years

The results (Fig. 15.9) verify the intuition. With low spatial contagion there is very
little synchrony because of the underlying unstable dynamics and local extinction—
here defined as the fraction of time of local absences among the communities while
the pathogen is still circulating within the metapopulation—is frequent because spa-
tial rescue is infrequent (Fig. 15.9a). As a consequence, the time to global extinc-
tion is short despite the substantial asynchrony (Fig. 15.9b). With strong coupling,
time to global burnout is short and local extinction is relatively high because the
spatial contagion leads to synchronization. There is a goldilocks zone for which
most stochastic realizations predict regional persistence past the 100 year horizon
(Fig. 15.9b).

boxplot(sync, outline = FALSE, xaxt = "n", xlab = "coupling",
ylim = c(0, 1))

boxplot(lext, col = 0, outline = FALSE, , xaxt = "n",
add = TRUE)

legend("right", c("Synchrony", "Local \n extinction"),
pch = 22, pt.cex = 2, pt.bg = c("gray", 0), bty = "n")

boxplot(gext/26, xaxt = "n", xlab = "coupling")
legend("topright", c("Extinction\n time (yrs)"), pch = 22,
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pt.cex = 2, pt.bg = c("gray"), bty = "n")
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Fig. 15.9: (a) Boxplots of synchrony and local rates of extinction. Local rates of ex-
tinction is, here, defined as the fraction of time of local absences while the pathogen
is still circulating within the metapopulation. (b) Time to global extinction as a
function of coupling strength in the five patch metapopulation model. Open circles
represent outlying outcomes among the simulations

15.8 A Synthesis

Eradication equates to regionalized metapopulation non-persistence. As alluded to
in the previous sections forces influencing metapopulation persistence are multitude
and are affected by both local and spatial processes. In the balance are local extinc-
tion, recolonization, coupling, and asynchrony. As a wrap-up of the main part of this
monograph, the nuances and complexities are attempted summarized in Fig. 15.10.

Increased coupling 2© will—all else being equal—enhance persistence because it
leads to rescue from local breaks of chains of transmission (Metcalf et al., 2013). As
highlighted above, this area has been explored in great depth in the general field of
ecology (Hanski, 1998; Hanski & Gaggiotti, 2004). However, coupling in epidemic
metapopulations also 1© leads to loss of asynchrony and thus 4© reduce regional
persistence as detailed in Sect. 15.7 and illustrated in Fig. 15.9 because of resultant
diminished rescue effects.
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Fig. 15.10: A synthetic chart of some processes governing regional persistence as
influenced by mass vaccination

Chapters 6 and 11 discussed the notion of attractors to characterize disease dy-
namics across a spectrum from stable endemicity, annual or multiannual cycles to
chaotic fluctuations. It turns out the nature of the attractor influences regional per-
sistence in two separate but important ways. When seasonality is strong enough
to push dynamics into the erratic regime, 6© post-epidemic troughs tend to be very
deep veering into the Atto-fox territory of (Mollison, 1991) leading to broken chains
of transmission and reduced persistence (Ferrari et al., 2008). Though, as illustrated
in Fig. 15.9 the associated asynchrony may prop up persistence. More curious 5©
is the phenomenon of nonlinear phase-locking. The propensity for synchroniza-
tion is sensitively dependent on the nature of the attractor (Bjørnstad et al., 1999b;
Bjørnstad, 2000). Chaotic dynamics is usually hard to synchronize (Ruxton, 1994)
and may therefore contribute to disease persistence. Stochastic, but asymptotically
stable endemism, will generally inherit synchrony according to the strength of spa-
tial coupling (Kendall et al., 2000). Local limit cycles, in contrast “yearn to syn-
chronize” (Bjørnstad et al., 1999b; Bjørnstad, 2000) through the process of nonlin-
ear phase-locking.9 With low seasonality dynamics are asymptotically stable and
synchrony is governed by coupling. With high seasonality the dynamics is erratic
(Fig. 15.11b) but synchrony is comparable. In contrast, with intermediate seasonal-
ity which result in biennial cycles (Fig. 15.11b), spatial synchrony is almost perfect
(Fig. 15.11a) due to the nonlinear phase-locking. Bjørnstad et al. (1999b) discuss
this in general. Rohani et al. (1999) and Bjørnstad (2000) provides evidence that this
is a true phenomenon in infectious disease dynamics. Rohani et al. (1999) showed
that vaccination resulted in different changes in synchrony for whooping cough and
measles. For whooping cough synchrony increased while for measles it decreased.
For measles this was associated with vaccine-induced loss of cyclicity as per dis-
cussion in Sect. 6.6. For whooping cough Rohani et al. (2002) argued that the gain
of cyclicity was due to the presence of the multiannual almost attractor discussed in
Sect. 11.5.

9 As described by watchmakers centuries ago who noted how clocks hanging on a common wall
would lock-step.
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We can use the spatial TSIR model to investigate the relation between attrac-
tor type and propensity for synchronization. As discussed in Chap. 6, increasing
seasonality pushes dynamics from annual, to cyclic multiannual and to erratic epi-
demics. The following code simulates a 10-patch TSIR model assuming a cou-
pling c = 0.001 and with varying degrees of seasonality for a 30 year time frame.
The among-patch synchrony is assessed from the last 20 years of the simulation
(Fig. 15.11a).

#Fig A
mbtny = mean(btny) #mean beta
p = 10 #number of patches
seasseq = seq(0, 0.3, by = 0.01) #seasonality
sync = gext = lext = matrix(NA, ncol = length(sdseq), nrow = 500)

for(k in 1:length(seasseq)) {#loop over seasonality
for(j in 1:500) { #500 times

bnty = exp(scale(log(btny)) * seasseq[k] + log(mbtny))
sim2 = tsirSpat(beta = bnty, alpha = 0.98,

B = matrix(median(NY$rec), ncol = p, nrow = 780),
N = median(N), p = p, c = 0.001, inits =
list(Snull = sample(exp(lSold), size = p), Inull =
sample(Ic, size = p)), type = "stoc")

gext[j, k] = 780 - sum(apply(sim2$I, 1, sum) == 0)
lext[j,k]=sum(sim2$I[1:gext[j, k], ] ==

0) / (gext[j, k] * p)
#synchrony during year 10-30
sync[j, k] = mean(cor(sim2$I[261:780, ])[upper.tri(

cor(sim2$I[261:780, ]))])
}

}
boxplot(sync, outline = FALSE, xaxt = "n", xlab = "Seasonality",

ylab = "Synchrony")

In addition to charting the level of synchrony, it is instructive to plot annual strobo-
scopic sections as a bifurcation diagram (Fig. 15.11b). Because the TSIR is stochas-
tic, the bifurcation lines are fuzzy; however, the transition from annual, biennial,
and chaotic regimes are clear. The annual regime is associated with synchrony ris-
ing from 0.2. The chaotic regime is associated with synchrony of 0.4–0.5 because
of increased shared seasonality. The biennial cycles are generally almost perfectly
aligned despite the modest spatial coupling—The phenomenon of nonlinear phase-
locking.

#Fig B
seasseq = seq(0, 0.3, by = 0.01) #seasonality
plot(NA, ylim = c(10, 1E4), xlim = range(seasseq),

log="y", ylab="Infected", xlab="Seasonality")
for(k in 1:length(seasseq)) {

bnty = exp(scale(log(btny)) * seasseq[k] + log(mbtny))
sim2 = tsirSpat(beta = bnty, alpha = 0.98,

B = matrix(median(NY$rec), ncol = p,
nrow = 52000 - 20), N = median(N), p = p, c=0.001,
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inits = list(Snull = sample(exp(lSold), size = p),
Inull = sample(Ic, size = p)), type = "stoc")

points(rep(seasseq[k], 2000 - 20), sim2$I[seq(from = 521,
to = 52000, by = 26)], pch = 20, cex = 0.3)

}
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Fig. 15.11: (a) Synchrony versus seasonality. (b) Annual stroboscopic bifurcation
diagram against seasonality

When it comes to introductions of mass-vaccination campaigns, there is an
important notion of a honeymoon period during which diseases are seemingly
fully controlled due to the background of substantial infection-induced immunity
(Scherer & McLean, 2002; Klepac et al., 2013) after which substantial flare-ups
may happen due to creeping buildup of susceptibility due to absence of circula-
tion (Graham et al., 2019, Sect. 9.8). The metapopulation perspective adds to this
by suggesting that in the aftermath of vaccine rollout there may be a period of in-
frequent spatial pathogen spread because of previous spatial epidemic synchrony.
The subsequent change in spatial dynamics may over time give rise to more robust
metapopulation persistence with increasing vaccine-induced asynchrony. Vaccina-
tion, thus, affects spatiotemporal dynamics in multiple ways. First, 7© it decreases
spatial coupling because with lower numbers of susceptibles and infected there is
less opportunity for spatial contagion. Second, 8© because it modulates dynamics to-
ward greater or weaker cyclicity and so affects levels of synchrony and thus propen-
sity for regional persistence. Finally, 9© vaccination generally reduces persistence
because of the more frequent breaks in chains of transmission.
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Chapter 16
Parasitoids

16.1 Introduction

This third part visits on a number of topics that are somewhat tangential to the
main narrative of the monograph but that I have found useful for thinking on and
analyzing data pertaining to infectious spread. The current chapter outlines how
many of the ideas with regards to dynamics, persistence, and control carries over to
other host/enemy systems of concern. Chapter 17 visits on multivariate methods to
better characterize the in-host interactions among pathogens and the immune sys-
tem that are ultimately responsible for shaping onwards transmission and epidemic
flows. Chapter 18 is a brief sampler of how infectious disease processes in space and
time generally lead to autocorrelated data that breach the classic statistical adage of
“identically distributed, independent data” but for which a battery of modern meth-
ods can provide correct inference and additional insights.

16.2 Parasitoid-Host Dynamics

Many of the classic studies of the spatiotemporal dynamics of natural enemies and
their hosts consider parasitoid-host interactions. Parasitoids represent a fascinating
group of insect parasites. Adults are free-living and lay their eggs in larvae (or eggs)
of host insects. Hosts die when the parasitoids complete their development and
adults emerge from the infected hosts. From a dynamical system’s point of view
parasitoid-host interactions share many features with infectious disease dynamics.
It is therefore instructive to cap the discussion of spatiotemporal dynamics with a
discussion of this ecological interaction.

Burnett (1958) conducted a cage experiment involving greenhouse white flies
(Trialeurodes vaporariorum) and its parasitoid Encarsia formosa. The population
was followed for 21 generations (Fig. 16.1). The two populations oscillated in in-
creasingly violent cycles until the parasitoid went extinct.
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Fig. 16.1: Host-Parasitoid dynamics of T. vaporariorum parasitized by E. formosa

data(burnett)
plot(burnett$Generation,

burnett$NumberofHostsParasitized,
type = "b", ylab = "Numbers", xlab = "Generation")

lines(burnett$Generation,
burnett$NumberofHostsUnparasitized,
type = "b", col = 2, pch = 2)

legend("topleft", legend = c("Parasitoid", "Host"),
lty = c(1, 1), pch = c(1, 2), col = c(1, 2))

Nicholson and Bailey (1935) developed the first mathematical model for this
interaction. Assuming random search (with a searching efficiency a) by the par-
asitoids, the probability of escaping parasitation is exp(−aPt) and the number of
host, H, and parasitoids, P, in the next generation is:

Ht+1 = RHt exp(−aPt) (16.1)

Pt+1 = RHt(1− exp(−aPt)), (16.2)

where R is the average number of offspring per hosts. A function for the host-
parasitoid interaction is:

nbmod = function(R, a, T = 100, H0 = 10, P0 = 1) {
# T is length of simulation (number of
# time-steps) H0 and P0 are initial numbers
H = rep(NA, T) #Host series
P = rep(NA, T) #Parasitoid series
H[1] = H0 #Initiating the host series
P[1] = P0 #Initiating the parasitoid series
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for (t in 2:T) {
H[t] = R * H[t - 1] * exp(-a * P[t - 1])
P[t] = R * H[t - 1] * (1 - exp(-a * P[t - 1]))

}

res = list(H = H, P = P)
return(res)

}

The Nicholson-Bailey model predicts that with density-independent growth of the
host (in the absence of parasitism) and random search by the parasitoid there should
be cycles with ever increasing amplitude until the host and/or parasitoid goes extinct
as seen in Burnett’s (1958) experiment. With a host growth rate R of 1.1 and a par-
asitoid searching efficiency a of 0.1, the nbmod function forecasts the Nicholson-
Bailey model and allows a plot of host/parasitoid abundance against time and host-
parasitoid numbers in the phase plane (Fig. 16.2)

sim = nbmod(R = 1.1, a = 0.1)
time = 1:100
par(mfrow = c(1, 2))
plot(time, sim$H, type = "l", xlab = "Generations",
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Fig. 16.2: Simulation of the Nicholson-Bailey model with R= 1.1 and a= 0.1
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ylab = "Host abundance", ylim = c(0, 14))
points(time, sim$P, type = "l", col = "red")
plot(sim$H, sim$P, type = "l", xlab = "Host abundance",

ylab = "Parasitoid abundance")

A sequence of searching efficiencies between 0 and 1 allows an exploration of how
the time to extinction of the host-parasitoid depends on a. The functions which and
min store the time to extinction. The analysis shows the persistence time is greatest
at intermediate search efficiency (Fig. 16.3).

aVals = seq(0, 1, by = 0.01)
tte = rep(NA, length(aVals))
for (i in c(1:length(aVals))){

sim = nbmod(R = 1.1, a = aVals[i], T = 500)
tte[i] = min(which(sim$P == 0))
}

plot(aVals, tte, type = "b", ylab = "TTE",
xlab = "Search efficiency")

Burnett (1958) suggested that R= 2 and a= 0.067 were appropriate values for this
system. The previous model fitting ideas of trajectory matching (Sect. 9.3) finds val-
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Fig. 16.3: Time to extinction (TTE) of the parasitoid as a function of search effi-
ciency in the Nicholson-Bailey model
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ues that minimize the sum-of-squared-errors between observed and predicted abun-
dances to estimate R and a (on a log-scale to make sure they are both strictly positive
quantities):

ssfn = function(par) {
R = exp(par[1])
a = exp(par[2])
sim = nbmod(R, a, T = 22, H0 = 10.1, P0 = 11.9)
ss = sum((burnett$NumberofHostsUnparasitized - sim$H)ˆ2 +

(burnett$NumberofHostsParasitized - sim$P)ˆ2)
return(ss)

}
par = log(c(2, 0.05))
fit = optim(par, ssfn)
exp(fit$par)

## [1] 2.16767130 0.06812596

The fit is close to Burnett’s numbers. Figure 16.4 shows the model prediction using
the MLE best parameters.
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Fig. 16.4: Burnett’s data and predictions by the Nicholson-Bailey model with R =
2.17 and a = 0.07. NB-P and NB-H are the predicted number of parasitoids and
hosts from the model
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sim = nbmod(R = 2.16767, a = 0.06812, T = 22, H0 = 10.1,
P0 = 11.9)

plot(burnett$Generation,
burnett$NumberofHostsParasitized, type = "b",
ylab = "Numbers", xlab = "Generation")

lines(burnett$Generation, sim$P)
lines(burnett$Generation,

burnett$NumberofHostsUnparasitized, type = "b",
col = 2, pch = 2)

lines(burnett$Generation, sim$H, col = 2)
legend("topleft", legend = c("Parasitoid", "NB-P",

"Host", "NB-H"), lty = c(1, 1, 1, 1), pch=c(1, NA, 2, NA),
col=c(1, 1, 2, 2))

16.3 Stability and Resonant Periodicity

Nicholson and Bailey (1935) did a detailed mathematical analysis of their model and
showed that the equilibrium is an unstable focus regardless of parameter values. The
concepts from Chap. 10 hold all relevant results for this analysis. The equilibrium
of the Nicholson-Bailey model is P∗ = log(R)/a, H∗ = log(R)/(a(R− 1)). The
eigenvalues of the Jacobian evaluated at the Burnett experiment equilibrium are:

paras = c(R = 2.17, a = 0.068)
eq = with(as.list(paras), c(P = log(R)/a, H = log(R)/(a *

(R - 1))))
# states
states = c("H", "P")
# equations
elist = c(Heq = quote(R * H * exp(-a * P)), Peq = quote(R *

H * (1 - exp(-a * P))))
# matrices
JJ = jacobian(states = states, elist = elist, parameters = paras,

pts = eq)
eigen(JJ, only.values = TRUE)$values

## [1] 0.83108+0.8638247i 0.83108-0.8638247i

max(abs(eigen(JJ)$values))

## [1] 1.198702

It is an unstable focus since the eigenvalues are a pair of complex conjugates whose
absolute value is greater than one.1 Since this is a difference model, the predicted

period of the outwards spiral is 2π/ tan−1( Im(λ )
Re(λ ) ):

1 Recall that according to local stability theory, stability of discrete-time models requires the abso-
lute value of the largest eigenvalue of the Jacobian evaluated at the equilibrium to be smaller than
one. This is as opposed to continuous-time models for which the requirement is that the real part
of the dominant eigenvalue must be smaller than zero.

https://en.wikipedia.org/wiki/Stability_theory
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2 * pi/atan2(Im(eigen(JJ)$values[1]), Re(eigen(JJ)$values[1]))

## [1] 7.807961

To revisit on how stability analysis can elucidate how the cycle period depends on
key parameters (Sect. 10.2) we can, for example, investigate its dependence on host
growth rate (Fig. 16.5):

RVals = seq(1.1, 3, by = 0.1)
per = rep(NA, length(RVals))
for(i in 1:length(RVals)){

paras = c(R = RVals[i], a = 0.068)
eq = with(as.list(paras), c(P = log(R)/a,

H= log(R) /(a*(R-1))))
JJ = jacobian(states = states, elist = elist,

parameters = paras, pts = eq)
per[i] = 2 * pi/atan2(Im(eigen(JJ)$values[1]),

Re(eigen(JJ)$values[1]))
}
plot(RVals, per, type = "b", xlab = "R", ylab = "Period")

The higher the host growth rate, the faster the outwards spiral.
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Fig. 16.5: Resonant period of the unstable Nicholson-Bailey model as a function of
host growth rate
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16.4 Biological Control

Parasitoids have been used for biocontrol of agricultural pest through the ages (Mur-
doch et al., 1985). Successful biocontrol requires that the natural enemy such as a
parasitoid keeps the pest consistently below an economic threshold. The inherent
instability predicted by the Nicholson-Bailey model is at odds with successful bio-
control by parasitoids. Many different model modifications have been analyzed to
understand when stable regulation can happen. These include: (i) long-lived adult
hosts, (ii) density-dependent host growth, (iii) heterogeneity in risk such as aggre-
gated attack rates, spatial heterogeneity, host refugia, and (iv) interference among
parasitoids (Murdoch et al., 2003). May (1978) proposed by replacing the Poisson
attack assumption with a negative binomial distribution with aggregation parameter
k that heterogeneity in risk can stabilize dynamics toward stable successful control.
He coined a CV2 rule which says that if the coefficient of variation in attack rate is
greater than 1, the host-parasitoid dynamics stabilizes and control can be achieved.
The CV for the negative binomial is 1/

√
k. May’s (1978) host-parasitoid model is:

Ht+1 = RHt(1+
aPt
k )−k (16.3)

Pt+1 = RHt(1− (1+ aPt
k )−k). (16.4)

For a shinyApp of this model see below. Finally, (v) as with infectious diseases,
host-parasitoid interactions can persist even with local non-persistence through re-
gional consumer–resource metapopulation dynamics. . .

16.5 Larch Bud Moth

Parasitoids cause violent fluctuations in the dynamics of the larch bud moth across
the European Alps. Historical records show recurrent traveling waves of defoliation
every 9 years for centuries (Bjørnstad et al., 2002b; Johnson et al., 2010).2 Turchin
(2003) developed a model of the interactions among the larch bud moth, its par-
asitoids and the host plant. Johnson et al. (2004) showed that a spatial extension
of this model predicts the observed waves. However, for the more general purpose
of considering spatiotemporal host-parasitoid dynamics it is useful to consider the
simpler spatially extended Nicholson-Bailey model.

2 https://tinyurl.com/2v6tusp3 shows an animated GIF of the Larch bud moth defoliation between
1960 and 2000.
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16.6 Host-Parasitoid Metapopulation Dynamics

In ecology the type of coupled map lattice models introduced in Chap. 12 was orig-
inally introduced in the context of parasitoid-host dynamics (Hassell et al., 1991;
Bjørnstad & Bascompte, 2001; Johnson et al., 2004). Hassell et al. (1991) high-
lighted the importance of allowing for different mobility of the host and parasitoid.
Define Dh as the proportion of host that disperses to neighboring patches and Dp the
proportion of parasitoid that disperses. Hassell et al. (1991) showed that changing
these can shift the spatial dynamics between spatial chaos, waves or frozen Tur-
ing spatial heterogeneity. A Nicholson-Bailey CML along the lines introduced in
Chap. 12 is:

# Dh is proportion of hosts that disperses Dp is
# proportion of parasitoids that disperses
Dh = 0.5
Dp = 0.7
# xlen is width of the lattice (E-W) ylen is height
# of the lattice (N-S)
xlen = 30
ylen = 30

The hp.dyn function defines the function to update the local abundances of hosts
and parasitoids according to the Nicholson-Bailey model. Previous densities of host,
h, and parasitoids, p, need to be supplied as arguments to the function, in addition
to the host growth rate (R) and parasitoid search efficiency a.

hp.dyn = function(h, p, R, a) {
# hnew is the post-interaction host density
hnew = R * h * exp(-a * p)
# pnew is the post-interaction parasitoid
# density
pnew = R * h * (1 - exp(-a * p))
# the two vectors of results are stored in a
# ’list’
res = list(h = hnew, p = pnew)
return(res)

}

The spatial coordinates and the distance matrix are:

xy = expand.grid(1:xlen, 1:ylen)
dmat = as.matrix(dist(xy))

The redistribution matrices are calculated by checking if the distance in dmat is
smaller than two, thus flagging all populations that are first neighbors. Each neigh-
bor is assumed to receive a fraction Dh/8 of the focal host abundance and a fraction
Dp/8 of the parasitoids. The fractions that do not disperse (1-Dh and 1-Dp) are
along the diagonal of the redistribution matrices:
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kh = ifelse(dmat < 2, Dh/8, 0)
kp = ifelse(dmat < 2, Dp/8, 0)
diag(kh) = 1 - Dh
diag(kp) = 1 - Dp

Finally construct matrices to store results and set starting conditions for the simula-
tion. IT is number of generations to be simulated. The initial conditions are zeros
everywhere except for an arbitrary population (in this case location 23) which starts
with four hosts and one parasitoid:

IT = 600
hmat = matrix(NA, nrow = xlen * ylen, ncol = IT)
pmat = matrix(NA, nrow = xlen * ylen, ncol = IT)
hmat[, 1] = 0
pmat[, 1] = 0
hmat[23, 1] = 4
pmat[23, 1] = 1

The coupled map lattice formulation assumes, as in Chap. 12, a two-stage process
of first local growth (using the hp.dyn function) followed by redistribution accord-
ing to the host and parasitoid dispersal matrices using matrix multiplication (%*%).

for (i in 2:IT) {
# growth
tmp = hp.dyn(h = hmat[, i - 1], p = pmat[, i - 1],

R = 2, a = 1)
# redistribution
hmat[, i] = tmp$h %*% kh
pmat[, i] = tmp$p %*% kp
cat(i, " of ", IT, "\r") #progress monitor

}

The following is code to make an in-line animation of the last 100 generations for
the parasitoid:

# plot the last 100 generations for the parasitoid
for (i in 1:100) {

x = xy[, 1]
y = xy[, 2]
z = pmat[, i + 500]
symbols(x, y, fg = 2, circles = z, inches = 0.1, bg = 2,

xlab = "", ylab = "")
Sys.sleep(0.1) #this is to slow down the plotting

}

and the code to write frames to the disk to make a permanent web-optimized movie
using ImageMagick is:

for (k in 1:50) {
png(filename = paste("Pplot", k, ".png", sep = ""))
x = xy[, 1]
y = xy[, 2]

https://imagemagick.org
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z = pmat[, k + 500]
symbols(x, y, fg = 2, circles = z, inches = 0.1, bg = 2,

xlab = "", ylab = "")
dev.off()

}
system("convert Pplot*.png -delay 500 -coalesce

-layers OptimizeTransparency cml2.gif")
system("rm Pplot*.png")

Low mobility of both host and parasitoid (e.g., Dp = Dh = 0.1) leads to spa-
tially chaotic dynamics and high mobility (e.g., Dh = 0.5, Dp = 0.7) leads
to waves (Hassell et al., 1991).3

16.7 Parasitoid-Host shinyApps

The epimdr2 package contains a shinyApp to study the negative binomial parasi-
toid-host model discussed in Sect. 16.4. It can be launched through:

require(epimdr2)
runApp(may.app)

The nbspat.app shinyApp animates the spatially extended host-parasitoid model
discussed in Sect. 16.6. It can be launched through:

require(epimdr2)
require(plotly)
runApp(nbspat.app)

3 Animated gifs of the two dynamic regimes are on:
https://tinyurl.com/5n7y94v5 and
https://tinyurl.com/mryjr28a.
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Chapter 17
Quantifying In-Host Patterns

17.1 Motivation

This chapter is somewhat tangential to the main text but it does loosely loop back
to the discussion in Sect. 1.2 on how patterns of in-host persistence are important
determinants of population-level dynamics. In-host dynamics results from replica-
tion rates of pathogens as molded by the innate and adaptive branches of the host
immune system. For example, using the TSIR as a tool for understanding plasmod-
ium replication rates, Metcalf et al. (2011b, see also Sect. 8.9) documented a strong
dose-response effect whereby the innate branch seemingly is able to slow the growth
from low inocula but not subsequent anemia in the infected mice. Kamiya et al.
(2020) provide further discussion of such dose-response effects and consequences
for onwards transmission.

Many different immune pathways are regulated through chemical signaling. Gra-
ham et al. (2007) reviewed how key signals such as the various cytokines affect
in-host pathogen trajectories with an emphasis on chatter during coinfections. It is
therefore instructive to study how assemblages of immune markers are triggered
to respond to infections. This and Chap. 18 use some haphazardous case studies to
introduce some statistical methodology (“beyond multiple t-tests”) that may help
elucidate the patterns in data. The datasets are chosen because they have been made
publicly available and represent the sort of data that are commonly collected in lab-
oratory experiments.

17.2 Two Experiments

The mouse malaria dataset was introduced in Sect. 8.9 and will be further discussed
in Sect. 18.4. It represents daily counts of parasitized and non-parasitized red blood
cells from several different Plasmodium chabaudi strains. This species of rodent

This chapter uses the following R packages: ade4 and MASS.
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malaria has a synchronized life-cycle in which merozoites will infect red blood cells
to replicate and burst out at night to invade other red blood cells (Mideo et al., 2013;
Greischar et al., 2014). A small fraction of parasites are committed to become sexual
gametocytes that can infect mosquitos for onwards transmission (Greischar et al.,
2016).

The second dataset is from a coinfection study of Feline Immunodeficiency Virus
in domestic cats (Roy et al., 2009). Like HIV, FIV is a retrovirus that targets vari-
ous white blood cells and uses its generic reverse transcriptase enzyme to transcribe
RNA into complementary cDNA that is inserted into the host genome by the inte-
grase enzyme. The experiment was design to study why the feline strain (FIV f ) is
so virulent while the cougar (Puma concolor) strain (FIVp) cause no disease. The
experiment showed that FIV f infections in cats is attenuated by prior infection with
FIVp. The data were collected from twenty cats that were experimentally infected
with FIV. The background details leading to the data that will be used as illustra-
tion of several multivariate statistical methods are that 10 cats were infected with
FIVp on day zero and 10 were sham inoculated. On day 28 five cats from each
group were inoculated with FIV f and the other 10 cats were again sham inoculated.
This resulted in four treatment groups: C (control, only sham inoculation), P (FIVp

on day zero and sham on day 28), F (sham on day zero, FIV f on day 28) and D
(dual infection, FIVp on day zero and FIV f on day 28). A variety of cytokines and
cell counts that were thought to relate to protective immunity were measures ap-
proximately every seven days. Details of the experiment can be found in Roy et al.
(2009).

17.3 Data

The full datasets from the two experiments can be found in the epimdr2 package,
but for the purpose of illustrating the methods we will consider subsets of the data.
For the FIV analysis we focus on the multivariate measures on days 31 and 59 to
create two datasets Day31 and Day59, three and 30 days, respectively, after the
second treatment (the FIV f inoculation). In preparation for analyses some columns
that are extraneous or were not measured on these days are stripped and lines with
missing values are removed (using na.omit). Each row is labeled with the animal
Id.

data(fiv)
Day31 = fiv[fiv$Day == 31, ]
dimnames(Day31)[[1]] = Day31$Id
Day31 = na.omit(Day31[, -c(1, 14, 15, 16)])
Day59 = fiv[fiv$Day == 59, ]
dimnames(Day59)[[1]] = Day59$Id
Day59 = na.omit(Day59[, -c(1, 14, 15, 16)])

For the malaria analysis we also strip some unnecessary columns that are extraneous
so as to focus on the red blood cell count (RBC).

https://en.wikipedia.org/wiki/Reverse_transcriptase
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data(chabaudi)
chabaudirbc = chabaudi[, -c(1, 3, 4, 7, 8, 10, 11)]

In addition to the long format used for the repeated measures analysis (Sect. 18.4),
we need “wide” formatted data (denoted . . . w) for both the principal component
analysis (PCA) and linear discriminant analysis (LDA). The wide formatted data
is constructed using reshape. The -seq(4,50,by = 2) strips extraneous
columns generated during the reshaping. The names(...)[2] =
"Treatment" renames column 2.

chabaudirbcw = reshape(chabaudirbc, idvar = "Ind2",
direction = "wide", timevar = "Day")

chabaudirbcw = chabaudirbcw[, -seq(4, 50, by = 2)]
names(chabaudirbcw)[2] = "Treatment"

17.4 PCA of the FIV Data

The FIV data has variables representing counts of various effector cells (lympho-
cytes, neutrophils and CD4, CD8B, CD25 T cells), virus load (provirus and overall
viremia), and measurements on a number of cytokines (IFNγ , IL-4, IL-10, IL-12,
TNFα). Cytokines are signaling molecules that helps orchestrate the immune re-
sponse. The goal of the experiment was to elucidate what immunological condi-
tions best distinguished sever from attenuated infections relative to the base line of
control animals.

Principal component analysis is the simplest ways to explore multivariate data.
The idea is to think of the data as residing in a hyper volume were each axis (v)
corresponds to a variable. The PCA summarizes the dominant variability by pro-
jecting the data onto a set of rotated axes that are linear combinations of the original
axes (v̇1 = c1v1 + c2v2 + . . .). The first axis is constructed so as to spread out the
data points. Each subsequent axis spreads out the remaining variability under the
constraint that they have to be orthogonal to previous axes. In the parlance of mul-
tivariate statistics, the c’s are called the loadings (or sometimes column scores) and
the coordinates of each datum in the rotated space are the scores (or row scores).
The biplot visualizes the analysis by plotting the loadings as vectors and the scores
as points in the space spanned by the first and second PCA axes. Base R con-
tains the princomp function, but the ade4 package has refined statistical and
graphical methods for such analyses. According to the French protocol (Dray &
Dufour, 2007), as implemented in the ade4 package, biplot-like decompositions
are referred to as duality diagrams (because of the vectors and points); thus the
naming of dudi.pca for principal component analysis. We use the dudi.pca
function to elaborate on the biplot. By providing an explicit fac argument repre-
senting each treatment we can add group means as well as group ellipses (which
reflect within-group variability) to the biplot using the s.class function.1 The

https://en.wikipedia.org/wiki/Cytokine
https://en.wikipedia.org/wiki/Principal_component_analysis
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add.scatter.eig function adds a histogram that shows the relative importance
of each PCA axis (Fig. 17.1).

require(ade4)
pca31 = dudi.pca(Day31[, 1:11], scannf = FALSE, nf = 5)
# select 5 axes
groups = Day31$Treatment
s.arrow(dfxy = pca31$co[, 1:2] * 8, ylim = c(-7, 9), sub = "Day 31",

possub = "topleft", csub = 2)
s.class(dfxy = pca31$li[, 1:2], fac = groups, cellipse = 2,

axesell = FALSE, cstar = 0, col = c(2:5), add.plot = TRUE)
add.scatter.eig(pca31$eig, xax = 1, yax = 2, posi = "bottomright")

 d = 5  Day 31  d = 5 

 CD4 
 CD8B 

 CD25 

 FAS_L  FAS 

 IFNg 
 IL_10 

 IL_12 

 IL_4 

 lymphocyte 

 neutrophils 

 Day 31 

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
 C 

 D 

 F  P 

 Eigenvalues 

Fig. 17.1: A biplot of the PCA of the in-host measurement in the FIV experiment
on day 31 (three days after FIVp inoculations) with group ellipses and eigenvalues
superimposed

On Day 59 patterns are starting to resolve and treatment units are starting to sep-
arate with FIV f infected cats having low white blood cell lymphocyte counts and
very high viral loads while the dual infected cats have very attenuated infection
(Fig. 17.2). In its natural cougar host FIVp prevalence is high but the virus appears
to be largely avirulent (Biek et al., 2006).2

1 Numerically, the PCA decomposition is done through the eigen-decomposition of the correlation
matrix of the original data (unless scale=FALSE in which case the decomposition is of the
variance–covariance matrix) for which each eigenvalue represents the relative importance of each
PCA axis and the eigenvectors represents the loadings.
2 Virgin et al. (2009) provide a review of the many chronic viral infections of humans that all
appears to be largely avirulent.
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Fig. 17.2: The day 59 analysis. (a) Boxplot of viral load by treatment (C = Control,
D = Dual infection, F = Fiv f infection, P = Fivp infection). (b) The biplot of in-host
immune measures with group ellipses and eigenvalues superimposed

par(mfrow = c(1, 2))
boxplot(fiv$viremia[fiv$Day == 59]/10000 ˜ fiv$Treatment[fiv$Day ==

59], ylab = "Viral load", xlab = "Treatment")
pca59 = dudi.pca(Day59[, 1:11], scannf = FALSE, nf = 5)
groups = Day59$Treatment
s.arrow(dfxy = pca59$co[, 1:2] * 7, xlim = c(-9, 9), ylim = c(-1,

5), sub = "Day 59", possub = "topleft", csub = 2)
s.class(dfxy = pca59$li[, 1:2], fac = groups, cellipse = 2,

axesell = FALSE, cstar = 0, col = c(2:5), add.plot = TRUE)
add.scatter.eig(pca59$eig, xax = 1, yax = 2, posi = "bottomleft")

17.5 LDA of the FIV Data

In contrast to the PCA which broadly explores the overall variability in multivariate
data, discriminant analysis explicitly considers group membership (such as exper-
imental treatment or other types of grouping) and asks what linear combination of
response variables (a kin to the loadings of a PCA) allows for the best discrimination
among groups. The MASS package has the lda function to do such analysis. Since
the variables are heterogeneous in nature we normalize each prior to the analysis by
applying the scale function to each of the first eleven columns of the dataset.
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require(MASS)
Day31sc = Day31
Day31sc[, 1:11] = apply(Day31[, 1:11], 2, scale)

The lda function needs a group∼response formulation. The LDA plot de-
picts the discrimination among the groups along the dominant discriminant axes
(Fig. 17.3).

lda31 = lda(Treatment ˜ CD4 + CD8B + CD25 + FAS + IFNg +
IL_10 + IL_12 + lymphocyte + neutrophils + TNF_a,
data = Day31sc)

plot(lda31)
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Fig. 17.3: The LDA of in-host measurement in the FIV experiment on day 31
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Figure 17.3 shows how discriminant axis 1 clearly discriminates between the Dual
(D)/Cougar (P) and the Control (C)/Feline (F) groups. Axis 2 separates the Dual (D)
group from the Cougar (P) group. Axis 3 provides imperfect separation between the
Control (C) group and the Feline (F) group. We can further check how the predicted
LDA group assignments compare to the true treatment groupings:

pr = predict(lda31, method = "plug-in")$class
table(pr, Day31sc$Treatment)

##
## pr C D F P
## C 2 0 1 0
## D 0 5 0 0
## F 1 0 3 0
## P 0 0 0 5

For the most part the discrimination is good, but as Fig. 17.3 suggests there is some
difficulty in discriminating between the C and F group on day 31; there is one mis-
classification among the groups.

To see how the group-informed LDA ordination differs from the PCA we can rep-
resent the LDA analysis as a biplot (Fig. 17.4). The first two lines in the below code
calculates the coordinates of each cat along the first two LDA axes to be compatible
with the ADE4 package plotting functions. The discrimination is largely along LDA
axis one.

ld1 = as.matrix(Day31sc[,attr(lda31$terms,
"term.labels")])%*%matrix(lda31$scaling[, 1], ncol = 1)

ld2 = as.matrix(Day31sc[,attr(lda31$terms,
"term.labels")])%*%matrix(lda31$scaling[, 2], ncol = 1)

groups = Day31$Treatment

contribs = lda31$svd/sum(lda31$svd)
s.arrow(dfxy = lda31$scaling[,1:2], sub = "Day 31",

possub = "topleft", csub = 2)
s.class(dfxy = cbind(ld1, ld2) * 2.5, fac = groups,

cellipse = 2, axesell = FALSE, cstar = 0,
col = c(2:5), add.plot = TRUE)

add.scatter.eig(contribs, xax = 1, yax = 2,
posi = "bottomright")

The analysis for the data from day 59 shows that the discrimination among all four
groups is very good by this time (Fig. 17.5). The linear discriminant axis 1 separates
treatments C from D/F and P and LD 2 separates F from the other treatments.

Day59sc = Day59
Day59sc[, 1:11] = apply(Day59[, 1:11], 2, scale)
lda59 = lda(Treatment ˜ CD4 + CD8B + CD25 + FAS +

IFNg + IL_10 + IL_12 + lymphocyte + neutrophils +
TNF_a, data = Day59sc)

pr = predict(lda59, method = "plug-in")$class
table(pr, Day59sc$Treatment)
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Fig. 17.4: The linear discriminant analysis of the day 31 data represented as a biplot

##
## pr C D F P
## C 5 0 0 0
## D 0 5 0 0
## F 0 0 5 0
## P 0 0 0 4

ld1 = as.matrix(Day59sc[,attr(lda59$terms,
"term.labels" )])%*%matrix(lda59$scaling[, 1], ncol = 1)

ld2 = as.matrix(Day59sc[,attr(lda59$terms,
"term.labels" )])%*%matrix(lda59$scaling[, 2], ncol = 1)

groups = Day59$Treatment

contribs = lda59$svd/sum(lda59$svd)
s.arrow(dfxy = lda59$scaling[,1:2], sub = "Day 59",

possub = "topleft", csub = 2)
s.class(dfxy = cbind(ld1, ld2), fac = groups, cellipse = 2,

axesell = FALSE, cstar = 0 , col = c(2:5), add.plot = TRUE)
add.scatter.eig(contribs, xax = 1, yax = 2,

posi = "bottomright")

The severe disease (treatment F) is associated with reduction in counts of several
cell types and modulation of the expression of various cytokines with up-regulation
of various interleukins and down-regulation of IFN-γ and TNF-α .
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Fig. 17.5: The LDA of Day 59 as a biplot

17.6 MANOVA of the FIV Data

In addition to the exploratory analysis provided by PCA and LDA we may also
want to do a formal multivariate test between treatment groups. The most tradi-
tional approach is through the use of multivariate analysis of variance (manova).
The manova function has many test options. The Hotelling T 2 is the multivariate
version of the t-test. According to the R help pages, the Pillai-Bartlett statistic is
recommended by Hand and Taylor (1987) and is the default. There are many as-
sumptions involved (including multivariate normality).

Y = cbind(Day59sc$CD4, Day59sc$CD8B, Day59sc$CD25,
Day59sc$FAS, Day59sc$IFNg, Day59sc$IL_10,
Day59sc$IL_12, Day59sc$lymphocyte,
Day59sc$neutrophils, Day59sc$TNF_a)

X = Day59$Treatment
mova59 = manova(Y ˜ X)
summary(mova59, test = "Pillai")

## Df Pillai approx F num Df den Df Pr(>F)
## X 3 2.1078 1.8901 30 24 0.05676 .
## Residuals 15
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

While this provides a formal significance value, the MANOVA is in some ways less
informative than the previous more descriptive analyses.
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17.7 PCA of the Mouse Malaria Data

The mouse malaria data were previously analyzed using the in-host TSIR model in
Sect. 8.9. A preliminary PCA of the red blood cell time series reveals that the fate
of the animals completely dominates the patterns since RBCs were scored as 0 after
death (Fig. 17.6).

require(ade4)
dead = ifelse(chabaudirbcw[,27] == 0, "dead", "alive")
pcarbc = dudi.pca(chabaudirbcw[, 3:27], scale = FALSE,

scannf = FALSE, nf = 5)
s.arrow(dfxy = pcarbc$co[, 1:2] * 3, xlim = c(-10, 10),

ylim = c(-5, 5), sub = "RBC", possub = "topleft", csub = 2)
s.class(dfxy = pcarbc$li[, 1:2]*.3, fac = as.factor(dead),

cellipse = 2, axesell = FALSE, cstar = 0 ,
col = c(2:7), add.plot = TRUE)

add.scatter.eig(pcarbc$eig, xax = 1, yax = 2,
posi = "bottomright")
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Fig. 17.6: The biplot of the RBC time series of the mouse malaria experiment
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The strains are known to have different virulence, with the CB strain causing the
most severe disease, so deaths are not random (the dead were seven CB, two AT,
one BC, zero AQ and zero control). However, it is instructive to omit the 11 animals
that died and redo the analysis to characterize the finer details in the progression of
disease.3 Because the measurements are all of the same nature (all RBC counts),4

it is most informative to do the analysis based on the variance–covariance matrix as
specified by the scale = FALSE argument.

chabaudirbcw2 = chabaudirbcw[dead == "alive",]
groups = chabaudirbcw2$Treatment
pcarbc2 = dudi.pca(chabaudirbcw2[, 3:27], scale = FALSE, scannf =

FALSE, nf = 5)
s.arrow(dfxy = pcarbc2$co[, 1:2] * 3, xlim = c(-4,9),

ylim = c(-5,5), sub = "RBC", possub = "topleft", csub = 2)
s.class(dfxy = pcarbc2$li[,1:2] * 0.3, fac = groups, cellipse = 2,

axesell = FALSE, cstar = 0 , col = c(2:7), add.plot = TRUE)
add.scatter.eig(pcarbc2$eig, xax = 1, yax = 2,

posi = "bottomright")
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Fig. 17.7: The biplot of the RBC time series of the mouse malaria experiment ex-
cluding animals that died

As is often the case when doing eigen-decompositions of covariances all the load-
ings are of the same sign (arrows are pointing in the same direction) along axis one

3 An approach that uses all available data would be to code dead RBCs as NAs and do a PCA with
missing data using nonlinear iterative partial least-squares (nipals) as done by Roy et al. (2009).
4 As opposed to the FIV data that is comprised of cytokine, virus, and cell measures with very
different scales so that a PCA analysis based on the correlation matrix is most appropriate.
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(Fig. 17.7). This first axis is therefore broadly called the means effect, in this case
meaning that individuals with more positive axis one scores tend overall to suffer
less severe anemia (with control animals suffering none). Clearly the main driver
of the variation in the dataset is between control and treatment animals. There is,
however, some further level of separation among the treatment animals along the
second axis.

17.8 FDA of the Mouse Malaria Data

It is possible to get some deeper insights into the differences revealed by the PCA by
considering how the mouse data is of a functional nature. That is, we can consider
each of the time series of RBC counts as sampled along a curve through time. With
this perspective one can ask how each curve can be thought of as being generated
by adding or subtracting underlying component curves.5 Generally speaking this
multivariate approach is referred to as a functional data analysis (FDA; Ramsay &
Silverman, 1997; Bjørnstad et al., 1998).

While specialized packages exist, we can treat the PCA as a simple FDA by
considering the loadings along each axis to comprise a component time series—a
so called empirical orthogonal function (EOF) (Castro et al., 1986; Bjørnstad et al.,
1996)—and the scores for each individual as a weight of how much of that EOF
to add or subtract to reconstitute the data. Figure 17.8 depicts the loadings of axis
one and two as EOFs and how their addition or subtraction, corresponding to having
positive or negative scores, these EOFs modulate the shape of the overall average
curve among all experimental animals.

par(mfrow = c(1, 2))
# Gets the experimental days
day = unique(chabaudi$Day)
# Calculate the average time series
avg = apply(chabaudirbcw2[, 3:27], 2, mean)
plot(day, avg, type = "b", ylim = range(chabaudirbcw2[,

3:27]), ylab = "RBC", xlab = "Day")
title("Mean +/- 1 SD eof 1")
lines(day, avg + 1 * pcarbc2$co[, 1], col = 2, type = "b",

pch = "+")
lines(day, avg - 1 * pcarbc2$co[, 1], col = 2, type = "b",

pch = "-")
plot(day, avg, type = "b", ylim = range(chabaudirbcw2[,

3:27]), ylab = "RBC", xlab = "Day")
title("Mean +/- 1 SD eof 2")
lines(day, avg + 1 * pcarbc2$co[, 2], col = 2, type = "b",

pch = "+")
lines(day, avg - 1 * pcarbc2$co[, 2], col = 2, type = "b",

pch = "-")

5 In some sense analogous to how a time series can be reconstructed as a weighted sum of trigono-
metric curves as discussed in Sect. 7.11.
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Fig. 17.8: The PCA of the RBC time series represented as a functional data analysis.
Open circles are the average trajectories and red “+” and “-” show how the time
series are molded by the (a) first and (b) second EOF

The analysis offers some new insights. As previously suggested, axis one measures
the overall anemia. Animals with positive scores experience less anemia. Axis two,
in contrast, is more interesting as it reveals that the second most important pattern
broadly distinguishes animals that have peak anemia before day 10 (negative scores;
broadly comprised of individuals infected with the BC clone) versus the other more
slowly progressing infections (positive scores) that have peak anemia around day
15. To confirm the interpretation we can plot the actual time series for the 10 most
extreme mice along the first and second EOF axes (Fig. 17.9).

par(mfrow = c(1, 2))
so = order(pcarbc2$li[, 1])
plot(day, t(chabaudirbcw2[so[1], 3:27]), type = "l", ylab = "RBC",

xlab = "Day")
for (i in 1:5) lines(day, t(chabaudirbcw2[so[i], 3:27]))
for (i in 36:41) lines(day, t(chabaudirbcw2[so[i], 3:27]),

col = 2, lty = 2)
so = order(pcarbc2$li[, 2])
plot(day, t(chabaudirbcw2[so[1], 3:27]), type = "l", ylab = "RBC",

xlab = "Day")
for (i in 1:5) lines(day, t(chabaudirbcw2[so[i], 3:27]))
for (i in 36:41) lines(day, t(chabaudirbcw2[so[i], 3:27]),
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col = 2, lty = 2)
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Fig. 17.9: The RBC time series for the five animals with highest (lowest) scores
along the (a) first and (b) second axes. Black lines represent the five mice with the
most negative scores and red dashed lines represent the mice with the most positive
scores

The dominant feature is thus the depth of anemia and the subdominant feature is
whether peak anemia is early or late.

While descriptive multivariate analysis is a vast field of statistics, the above sam-
pling is an attempt to highlight some applications and methodologies that may be
useful when considering the type of in-host experimental data commonly collected
in the study of infectious diseases.



Chapter 18
Non-Independent Data

18.1 Non-Independence

Many infectious disease experiments result in non-independent data because of spa-
tial autocorrelation across fields (such as discussed in Chap. 13), repeated mea-
sures on experimental animals (such as the in-host Plasmodium data discussed in
Sect. 8.9), or other sources of correlated experimental responses among experimen-
tal units (such as the possibility of correlated infection fates among the rabbit litter-
mates discussed in Sect. 5.2). Statistical methods that assume independence of ob-
servations are not strictly valid and/or fully effective on such data (e.g., Legendre,
1993; Keitt et al., 2002). Mixed-effects models and generalized linear mix-effects
models (GLMMs) have been/are being developed to optimize the analysis of such
data (Pinheiro & Bates, 2006; Bolker et al., 2009; Bates et al., 2015).

While this full topic is outside the main scope of this text, it is very pertinent
to analyses of disease data, so we will study the three case studies as a sampler of
things to consider.

require(nlme)
require(ncf)
require(lme4)
require(splines)

18.2 Spatial Dependence

The rust example introduced in Sect. 13.2 (Fig. 13.1) can be used to illustrate two
approaches to accounting for spatial dependence in disease data: (i) random blocks
versus (ii) spatial regression. Recall that this experiment looked at severity of a foliar
rust infection on three focal individuals of flat-top goldenrods in each of 120 plots

This chapter uses the following R package: nlme, ncf, lme4 and splines.
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across a field divided into four blocks. The experimental treatments were watering or
not and whether surrounding non-focal host plants were conspecifics only, a mixture
of conspecifics and an alternative host (the Canadian goldenrod) or the alternative
host only.

As in the spatial pattern analysis, jittered coordinates allow application of
some methods that require unique coordinates for each data point.

data(euthamia)
euthamia$jx = jitter(euthamia$xloc)
euthamia$jy = jitter(euthamia$yloc)

The randomized block design is the most classic way to deal with spatial depen-
dence.1 It serves two purposes. First, by randomly allocating treatments it frees
experimental effects from underlying spatial structures that could cause spurious
conclusions. Second, by stratifying observations into blocks the design enhances the
power of the experiment by allowing for variability caused by unknown broader spa-
tial heterogeneities. The lme function of the nlme package can be used to illustrate
two random effect models of increasing nestedness. The first considers individuals
in the blocks depicted in Fig. 13.1. The second considers plots nested in blocks.

fit = lme(score ˜ comp + water, random = ˜1 | block,
data = euthamia, na.action = na.omit, method="ML")

fit2 = lme(score ˜ comp + water, random = ˜1 | block / plot,
data = euthamia, na.action = na.omit, method="ML")

A likelihood-ratio test provides a check for the better fit. The likelihood ratio test
(provided by the anova function) shows that the more nested model provides the
most parsimonious fit among the two candidates.

anova(fit, fit2)

## Model df AIC BIC logLik Test
## fit 1 6 1178.570 1201.887 -583.2850
## fit2 2 7 1072.312 1099.515 -529.1561 1 vs 2
## L.Ratio p-value
## fit
## fit2 108.2578 <.0001

The intervals call shows that the between-plot variance is about twice as large
as the between-block variance and that watered plots have a significantly higher rust
burden.

intervals(fit2)

## Approximate 95% confidence intervals
##
## Fixed effects:

1 I have always found it amusing that this most foundational idea in experimental design and
statistics was published by R.A. Fisher on the 6th page of a paper in the Journal of the Ministry of
Agriculture under the heading “A useful method” (Fisher, 1926).
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## lower est. upper
## (Intercept) 0.9175659 1.4180556 1.9185452
## compSOL -0.2457869 0.2083333 0.6624535
## compSYM -0.1666202 0.2875000 0.7416202
## watermesic 0.2597680 0.6305556 1.0013431
##
## Random Effects:
## Level: block
## lower est. upper
## sd((Intercept)) 0.1396334 0.3436512 0.8457586
## Level: plot
## lower est. upper
## sd((Intercept)) 0.7755296 0.9150862 1.079756
##
## Within-group standard error:
## lower est. upper
## 0.7315988 0.8001735 0.8751759

18.3 Spatial Regression

The above randomized block mixed-effects models is an example of the classic
solution to analyzing experiments with spatial structure. An alternative is to formu-
late a regression model that considers the spatial dependence among observations
as a function of separating distance. To investigate how proximate observations on
different experimental treatments may be spatially autocorrelated, we can explore
the spatial dependence among the residuals from a simple linear analysis of the
data using the nonparametric spatial covariance function (as implemented in the
spline.correlogram function in the ncf package) discussed in Chap. 13. The
simple regression model that ignores space altogether is:

fitlm = lm(score ˜ comp + water, data = euthamia)

The spatial correlation function among the residuals of the fit are (Fig. 18.1):

fitc = spline.correlog(euthamia$x, euthamia$y, resid(fitlm))

The nonparametric spatial correlation function reveals strong local spatial autocor-
relation that decays to zero around 38m (with a CI of 31–43m).

plot(fitc, ylim = c(-0.5, 1))

The gls function from the nlme package can be used to fit spatial regression mod-
els (Pinheiro & Bates, 2006). This function fits mixed models from data that have
a single dependence group, i.e., one spatial map, one time series, etc.2 There are
many possible models for spatial dependence as arising, for example, from spatial

2 With multiple groups the lme function provides appropriate fits; see Sect. 18.4.



348 18 Non-Independent Data

0 50 100 150 200

-0
.5

0.
0

0.
5

1.
0

Distance

C
or

re
la

tio
n

Fig. 18.1: The spline correlogram of the residuals from the regression model of the
euthamia rust data

processes such as those discussed in Sect. 12.2. As an illustration compare the ex-
ponential model (which assumes the correlation to decay with distance proportional
to exp(−d/u) where d is distance and u is the scale) and the Gaussian model (pro-
portional to exp(−(d/u)2). [The nugget flag in the below code means that the
autocorrelation function is not anchored at one at distance zero.] We can compare
these to the non-spatial model (fitn) and the best random block model (fit2)
using the Akaike Information Criterion mentioned in Sect. 9.4.

fite = gls(score ˜ comp + water, corr = corSpatial(form =
˜ jx + jy, type = "exponential", nugget = TRUE),
data = euthamia, na.action = na.omit, method="ML")

fitg = gls(score ˜ comp + water, corr = corSpatial(form =
˜ jx + jy, type = "gaussian", nugget = TRUE),
data = euthamia, na.action = na.omit, method="ML")

fitn = gls(score ˜ comp + water, data = euthamia,
na.action = na.omit, method="ML")

ai=matrix(c(extractAIC(fite),
extractAIC(fitg), extractAIC(fitn),
extractAIC(fit2)), ncol=2, byrow=TRUE)

dimnames(ai)=list(c("fite", "fitg", "fitn", "fit2"),
c("edf", "aic"))
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ai

## edf aic
## fite 7 1056.903
## fitg 7 1059.139
## fitn 5 1199.881
## fit2 7 1072.312

The AICs show that the exponential model provides the best fit. Moreover, the spa-
tial regression model provides a better fit than the nested random effect model. This
is presumably because of the gradual decay in correlation with distance (Fig. 18.1).

summary(fite, corr = FALSE)

## Generalized least squares fit by maximum likelihood
## Model: score ˜ comp + water
## Data: euthamia
## AIC BIC logLik
## 1056.903 1084.105 -521.4513
##
## Correlation Structure: Exponential spatial
## correlation
## Formula: ˜jx + jy
## Parameter estimate(s):
## range nugget
## 9.4619981 0.3383328
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 1.4591343 0.2485970 5.869477 0.0000
## compSOL 0.1911232 0.2016895 0.947611 0.3440
## compSYM 0.2241991 0.1997320 1.122500 0.2624
## watermesic 0.5336263 0.1573116 3.392161 0.0008
##
## Correlation:
## (Intr) cmpSOL cmpSYM
## compSOL -0.412
## compSYM -0.412 0.552
## watermesic -0.298 0.033 0.015
##
## Standardized residuals:
## Min Q1 Med Q3
## -1.3689448 -0.7647249 -0.1463925 0.6243239
## Max
## 3.9923094
##
## Residual standard error: 1.254221
## Degrees of freedom: 360 total; 356 residual

The parametrically estimated range of 9.8m is a bit longer (but within the confidence
interval) of the e-folding scale (5.5m) estimated via the spline correlogram; 1-nugget
= 0.64 is comparable (but a little greater) than the 0.55 y-intercept. We can use the
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Fig. 18.2: A variogram plot of the fitted and observed spatial dependence for the
spatial regression model

Variogram function from the nlme package to see if the spatial model adequately
reflects the spatial dependence (Fig. 18.2). It looks like a plausible fit.

plot(Variogram(fite))

18.4 Repeated Measures

Repeated measurements usually result in non-independent data because of the in-
herent serial dependence. We can explore this notion using the data on anemia of
mice infected of Plasmodium chabaudi introduced in Sect. 8.9 and analyzed further
in Chap. 17 with lots of measurements taken. Consider the red blood cell counts
(RBCs) on days three through 35 of mice infected by one of the five different strains
as well as the control group. The sample sizes per treatment were 10 for AQ, BC,
CB, and ER, seven for AT and five for control because eleven of the animals died
during the course of the experiment. The chabaudi dataset is in long format.3 As
for previous analyses, some columns are extraneous in order to focus on the RBC
count:

data(chabaudi)
chabaudirbc = chabaudi[, -c(1, 3, 4, 7, 8, 10, 11)]

3 With repeated measures data one intermittently move between use both long format with one
line for each observation and wide format with one line for each experimental unit.
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Fig. 18.3: RBC counts of control and P. chabaudi-infected mice. Each panel repre-
sent a different parasite strain

The repeated measures analyses require a groupedData object from the nmle
package. The below call declares how the RBC counts represent time series for
each mouse. Note that mice that died are scored by zero RBC count in the data set
and that these zeros end up dominating patterns. It is best to rescore these data as
missing (NA), and plot the grouped data object to visualize the anemia by treatment
(Fig. 18.3).

RBC = groupedData(RBC ˜ Day | Ind2, data = chabaudirbc)
RBC$RBC[RBC$RBC == 0] = NA
plot(RBC, outer = ˜Treatment, key = FALSE)

The obvious main difference is between control and treatments, but the maximum
and timing of the anemia varies somewhat among strains as previously discussed in
Sect. 17.8. To test for significant differences lme can build a repeated measures
model. In the simplest case, the standard conventions are to model the time series
using day as an ordered factor and assume the treatment effect to be additive. The
random= ∼ 1 | Ind2 call in the formula assumes there to be individual vari-
ation in the intercept (but not the slopes) among individuals. The ACF function of
the nlme package4 shows evidence of serial dependence in the residuals from the

4 Different from the previously employed acf function from R base.
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Fig. 18.4: Serial dependence as quantified using the ACF function on the repeated
measures mixed-effects model of the chabaudi data

fit. As is apparent from the autocorrelation plot there is temporal autocorrelation in
the residuals out to at least 4 days (Fig. 18.4).

mle.rbc = lme(RBC ˜ Treatment + ordered(Day), random = ˜1 |
Ind2, data = RBC, na.action = na.omit, method = "ML")

plot(ACF(mle.rbc))

As with spatial dependence (Sect. 18.3), there are many models for serial depen-
dence. The below use a first order autoregressive AR(1) process. This is specified by
the correlation = corAR1(form = ∼ Day|Ind2) function call. Note
that this is one of a variety of time series models available in the nlme package, the
most general of which is the ARMA(p, q) model discussed in Sect. 7.3.

mle.rbc2 = lme(RBC ˜ Treatment + ordered(Day), random = ˜1 |
Ind2, data = RBC, correlation = corAR1(form = ˜Day |
Ind2), na.action = na.omit, method = "ML")

mle.rbc2

## Linear mixed-effects model
## Data: RBC
## Log-likelihood: -1568.255
## Fixed: RBC ˜ Treatment + ordered(Day)
## (Intercept) TreatmentAT
## 5.860494309 0.024586193
## TreatmentBC TreatmentCB
## 0.947853117 -0.022048465
## Treatmentcontrol TreatmentER
## 1.560872851 0.325308683
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## ordered(Day).L ordered(Day).Q
## 3.339300000 6.015597509
## ordered(Day).C ordered(Day)ˆ4
## -5.057192257 1.498354649
## ordered(Day)ˆ5 ordered(Day)ˆ6
## 0.067695099 -0.600409959
## ordered(Day)ˆ7 ordered(Day)ˆ8
## 1.352000127 -1.122142721
## ordered(Day)ˆ9 ordered(Day)ˆ10
## -0.394162545 0.312998475
## ordered(Day)ˆ11 ordered(Day)ˆ12
## -0.673514349 -0.122937927
## ordered(Day)ˆ13 ordered(Day)ˆ14
## 0.219014886 0.378460147
## ordered(Day)ˆ15 ordered(Day)ˆ16
## 0.191963472 0.180627944
## ordered(Day)ˆ17 ordered(Day)ˆ18
## -0.024392052 0.032617128
## ordered(Day)ˆ19 ordered(Day)ˆ20
## -0.142080994 -0.046539002
## ordered(Day)ˆ21 ordered(Day)ˆ22
## -0.054854991 -0.039333282
## ordered(Day)ˆ23 ordered(Day)ˆ24
## -0.210031799 0.006591632
##
## Random effects:
## Formula: ˜1 | Ind2
## (Intercept) Residual
## StdDev: 0.0002332905 1.327223
##
## Correlation Structure: ARMA(1,0)
## Formula: ˜Day | Ind2
## Parameter estimate(s):
## Phi1
## 0.7088701
## Number of Observations: 1104
## Number of Groups: 52

The Phi1 parameter of 0.7088 represents the estimated day to day correlation, which
is substantial. We can plot the predicted and observed correlation. The AR(1) model
seems to be a nice fit (Fig. 18.5).

tmp = ACF(mle.rbc2)
plot(ACF ˜ lag, data = tmp)
lines(0:15, 0.7088ˆ(0:15))

Moreover, a formal likelihood-ratio test provided by the anova function reveals
that the correlated error model provides a significantly better fit to the data:

anova(mle.rbc, mle.rbc2)

## Model df AIC BIC logLik
## mle.rbc 1 32 3834.369 3994.583 -1885.184
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Fig. 18.5: An ACF plot of the fitted and observed serial dependence for the repeated
measures regression model

## mle.rbc2 2 33 3202.510 3367.731 -1568.255
## Test L.Ratio p-value
## mle.rbc
## mle.rbc2 1 vs 2 633.8586 <.0001

Statistically, the time-by-treatment interaction model that assumes that trajectories
are treatment specific, rather than the additive model, is better still:

mle.rbc3 = lme(RBC ˜ Treatment * ordered(Day), random = ˜1 |
Ind2, data = RBC, correlation = corAR1(form = ˜Day |
Ind2), na.action = na.omit, method = "ML")

anova(mle.rbc2, mle.rbc3)

## Model df AIC BIC logLik
## mle.rbc2 1 33 3202.510 3367.731 -1568.255
## mle.rbc3 2 153 3163.654 3929.679 -1428.827
## Test L.Ratio p-value
## mle.rbc2
## mle.rbc3 1 vs 2 278.8557 <.0001

Finally we can plot the predicted values against time (filtering out predictions for the
missing values in the original data) (Fig. 18.6). There is a distinct ordering following
from the virulence of the strains:

pr = predict(mle.rbc3)
RBC$pr = NA
RBC$pr[!is.na(RBC$RBC)] = pr
plot(RBC$pr ˜ RBC$Day, col = as.numeric(RBC$Treatment),

pch = as.numeric(RBC$Treatment), xlab = "Day",
ylab = "RBC count")

legend("bottomright",
legend = c("AQ", "AT", "BC", "CB", "Control", "ER"),
pch = unique(as.numeric(RBC$Treatment)), col = 1:6)
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Fig. 18.6: Predicted and observed anemia levels for the best-fitting repeated mea-
sures model

Modeling time as an ordered factor is quite parameter wasteful (the full inter-
action model has 153 parameters). A flexible more economic approach may be to
model time using the sort of smoothing splines introduced in Sect. 5.4. The follow-
ing example uses B-splines with five degrees of freedom (Fig. 18.7). The qualitative
features are similar to the more parameter rich model (Fig. 18.6):

mle.rbc4 = lme(RBC ˜ Treatment * bs(Day, df = 5),
random = ˜1 | Ind2, data = RBC, correlation =
corAR1(form = ˜ Day | Ind2),

na.action = na.omit, method = "ML")
pr = predict(mle.rbc4)
RBC$pr = NA
RBC$pr[!is.na(RBC$RBC)] = pr
plot(RBC$pr ˜ RBC$Day, col = as.numeric(RBC$Treatment),

pch = as.numeric(RBC$Treatment), xlab = "Day",
ylab = "RBC count")

legend("bottomright",
legend = c("AQ", "AT", "BC", "CB", "Control", "ER"),

pch = unique(as.numeric(RBC$Treatment)), col = 1:6)
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Fig. 18.7: Predicted and observed for the repeated measures RBC data using a spline
model in time

18.5 Sibling Correlation

Bordetella bronchiseptica is a respiratory infection of a range of mammals (e.g.,
Bjørnstad & Harvill, 2005). Its congeners, B. pertussis and B. parapertussis, cause
whooping cough in humans, but B. bronchiseptica is usually relatively asymp-
tomatic (though it can cause snuffles in rabbits and kennel cough in dogs). The
data comes from a commercial rabbitry which breeds NZW rabbits to study trans-
mission paths in the colony. The data is from the same study as used to study the
age-specific force of infection in Sect. 5.2. Nasal swabs of female rabbits and their
young were taken at weaning (∼ 4 weeks old). A total of 86 does and 408 kits was
included in the study (Long et al., 2010).

data(litter)

To investigate if (i) offspring of infected mothers have an increased instantaneous
risk of becoming infected and (ii) if offspring of the same litter tended to have the
same infection fate because of within-litter transmission, we can use a random effect
generalized linear mixed (GLMM) logistic regression, with litter as a random effect.
Some data formatting prepares for the analysis:

tdat = data.frame(lsize = as.vector(table(litter$Litter)),
Litter = names(table(litter$Litter)),

anysick = sapply(split(litter$sick, litter$Litter), sum))
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ldat = merge(litter, tdat, by = "Litter")
ldat$othersick = ldat$anysick - ldat$sick
ldat$anyothersick = ldat$othersick > 0
ldat$X = 1:408

Here, the concern is with whether litter mates share correlated fates. Unlike for
spatial or temporal autocorrelation, there are no canned functions to quantify this
correlation. However, following the discussion of autocorrelation in Sect. 13.3, it
is easy to customize appropriate calculations. In the below, the first double-loop
makes a sibling-sibling contact matrix (along the lines of the ideas introduced in
Chap. 14), tmp, that flags kittens according to litter membership. After, tmp2 is the
scaled binary sick vector that flags whether or not an animal was infected, and
tmp3 is the similarity matrix. Finally mean(tmp3*tmp) provides the within-
litter autocorrelation in infection status averaged across all litters.

tmp = matrix(NA, ncol = length(ldat$Litter),
nrow = length(ldat$Litter))
for(i in 1:length(ldat$Litter)) {

for(j in 1:length(ldat$Litter)) {
if(ldat$Litter[i] == ldat$Litter[j]) {
tmp[i, j] = 1

}
}

}
diag(tmp) = NA
tmp2 = scale(ldat$sick)[,1]
tmp3 = outer(tmp2, tmp2, FUN="*")
mean(tmp3 * tmp, na.rm = TRUE)

## [1] 0.5302508

The within-litter correlation of 0.53 represents a substantial interdependence in in-
fection risk among litter mates. Since the response variable is binary (infected versus
non-infected) lme does not apply. Instead we can use the lmer function from the
lme4 package (Bates et al., 2015) and specify that the response is binomial using
the family argument. The AICs compare the fit that incorporates the within-litter
correlation (fitL) with the fit that assumes independence (fit0). The appropriate
independence fit is generated by declaring that each of the 408 individuals are in
their own group (variable X in the data set).

fitL = glmer(sick ˜ msick + lsize + Facility + anyothersick +
(1 | Litter), family = binomial(), data = ldat)

fit0 = glmer(sick ˜ msick + lsize + Facility + anyothersick +
(1 | X), family = binomial(), data = ldat)

ai = matrix(c(extractAIC(fitL), extractAIC(fit0)), ncol = 2,
byrow = TRUE)

dimnames(ai) = list(c("fitL", "fit0"), c("edf", "aic"))
ai

## edf aic
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## fitL 7 291.0263
## fit0 7 316.5853

The litter-dependent model is clearly best (no surprise given the strong empirical
intra-litter correlation). The summary of the best model reveals that the key predictor
of infection fate is whether or not a sibling was infected (anyothersickTRUE).
The infection status of the mother is insignificant. The mixed-effect logistic regres-
sion thus reveals that the most important route of infection is likely to be sib-to-sib
transmission (Long et al., 2010).

summary(fitL, corr = FALSE)

## Generalized linear mixed model fit by maximum
## likelihood (Laplace Approximation)
## Family: binomial ( logit )
## Formula:
## sick ˜ msick + lsize + Facility + anyothersick +
## (1 | Litter) Data: ldat
##
## AIC BIC logLik deviance df.resid
## 291.0 319.1 -138.5 277.0 400
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.7277 -0.3199 -0.1333 -0.0386 13.2186
##
## Random effects:
## Groups Name Variance Std.Dev.
## Litter (Intercept) 2.077 1.441
## Number of obs: 407, groups: Litter, 52
##
## Fixed effects:
## Estimate Std. Error z value
## (Intercept) -3.43236 2.32298 -1.478
## msick 2.74171 1.65447 1.657
## lsize -0.37908 0.19153 -1.979
## FacilityT3 1.15833 0.80626 1.437
## FacilityT9 -0.01773 0.68553 -0.026
## anyothersickTRUE 2.88387 0.71564 4.030
## Pr(>|z|)
## (Intercept) 0.1395
## msick 0.0975 .
## lsize 0.0478 *
## FacilityT3 0.1508
## FacilityT9 0.9794
## anyothersickTRUE 5.58e-05 ***
## ---
## Signif. codes:
## 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



18.6 The End 359

18.6 The End

This concludes the text of the 2nd edition of “Epidemics: Models and Data using
R”. While the 3rd part is somewhat eclectic it was collated in the spirit that some
methodology and associated code is very easy to find, but other bits less so. The
last three chapters may be seen as providing some additional biological/dynamic
perspectives on infectious disease dynamics and otherwise as a repository of more
obscure R code.
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