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Abstract. Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR)
enables us to probe the microstructural arrangement of cardiomyocytes
within the myocardium in vivo and non-invasively, which no other imag-
ing modality allows. This innovative technology could revolutionise the
ability to perform cardiac clinical diagnosis, risk stratification, prognosis
and therapy follow-up. However, DT-CMR is currently inefficient with
over six minutes needed to acquire a single 2D static image. Therefore,
DT-CMR is currently confined to research but not used clinically. We
propose to reduce the number of repetitions needed to produce DT-
CMR datasets and subsequently de-noise them, decreasing the acquisi-
tion time by a linear factor while maintaining acceptable image qual-
ity. Our proposed approach, based on Generative Adversarial Networks,
Vision Transformers, and Ensemble Learning, performs significantly and
considerably better than previous proposed approaches, bringing single
breath-hold DT-CMR closer to reality.
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1 Introduction

Diffusion Tensor Cardiac Magnetic Resonance (DT-CMR) is the only medical
imaging modality that allows us to non-invasively interrogate the micro-structure
of the beating heart at a scale and resolution that other modalities cannot achieve
[16]. In clinical research studies, DT-CMR has been shown to be useful in pheno-
typing several cardiomyopathies such as hypertrophic cardiomyopathy (HCM)
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and dilated cardiomyopathy (DCM) by quantitatively analysing the microstruc-
tural organisation and orientation of cardiomyocytes within the myocardium.
DT-CMR also has the additional advantage of not requiring any contrast agent,
which may be burdensome for patients with reduced kidney function [19].

In its current state, the acquisition time prevents clinical translation as
around six minutes are needed to acquire a single 2D slice. For a typical acquisi-
tion protocol we require a minimum of three slices (basal, mid, apical), at least
7 different diffusion encoding steps and two time points of the cardiac cycle (sys-
tole and diastole), totalling 60 breath-holds and 90 min and making it clinically
unfeasible. The long scan times have various source, but, most importantly, the
protocol acquires multiple repetitions of each image to increase the signal-to-
noise ratio (SNR) and to reduce motion-related artefacts. In this study, we will
tackle the problem by reducing the number of repetitions.

Our contribution, shown in Fig. 1, is a novel deep-learning framework that can
be used to reduce the number of repetitions used in the DT-CMR acquisition.
Using fewer averages leads to lower SNR, and deep learning can be used to
recover the original full-repetition data. This allows us to greatly reduce the
total acquisition time with minimal loss of image quality. This method could
potentially be adopted to acquire a DT-CMR scan in only one breath hold while
maintaining acceptable quality, reducing the scan time from several minutes to
well under a minute.

2 Background

2.1 DT-CMR

DT-CMR measures the diffusion pattern of water molecules in every voxel of
the imaged tissue and approximates it with a 3D tensor. As the free diffusion of
water in the tissue is constrained by the shape of cardiac muscle microstructure
for every voxel, studying the extracted 3D tensors has been shown to give us
information related to the shape and orientation of the cardiomyocytes in the
imaged tissue.

In-vivo DT-CMR requires the rapid acquisition of multiple single-shot
diffusion-weighted images with diffusion encoded in at least six different 3D
directions. Single-shot encoding acquisitions translate to low SNR images. Low
SNR is also an inherent issue in DT-CMR as we measure the signal lost due to
diffusion. Therefore, multiple repetitions are commonly acquired to increase the
quality of the signal. While improving the SNR, this also translates to longer
acquisition times and extra breath-holds for the patient. Our clinical research
protocol requires approximately 12 breath-holds for every single DT-CMR slice
at a single time point in the cardiac cycle. The series of signal intensities is then
fitted to a rank-2 diffusion tensor using a linear least-square (LLS) [11] fitting
or alternatively more advanced linear and non-linear iterative methods [6].

The cardiac diffusion tensor information is commonly visualised and quanti-
fied through four per-voxel metric maps: Mean Diffusivity (MD) that quantifies
the total diffusion in the voxel (higher corresponds to more diffusion), Fractional
Anisotropy (FA) that quantifies the level of organisation of the tissue (higher
corresponds to a higher organisation), Helix Angle (HA) and Second Eigenvector
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Fig. 1. Proposed deep learning framework. From left to right, we can see the original
input data comprised of several repetitions that are then averaged to increase the SNR
and reduce artefacts. This averaged data is then used to compute (noisy) diffusion
tensors using a least squares tensor fit. From the noisy tensors we can then compute
noisy DT-CMR maps (lower central part of the image). In our proposed framework we
use an ensemble of deep-learning models to de-noise the diffusion tensors and therefore
obtain better DT-CMR maps (shown on the right).

(E2) Angle (E2A) that quantify the 3D orientation and shape of the tissue in
the voxel [2,12].

2.2 De-noising in DT-CMR

There are several ways to approach the task of reducing the number of repetitions
used to compute the DT-CMR maps. In our proposed approach, we will see how
we treat it as de-noising task where the goal is to produce de-noised diffusion
tensors from noisy tensors.

De-noising is the process of removing noise from a given signal with the aim
of restoring the original noise-free version of the signal. In a number of studies
the noise is assumed to come from a known distribution, giving rise to models
that work on this assumption to remove it [25], while some other studies instead
do not make any assumption on the source of the noise and produce models
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that are more robust to real-world noise [3]. In recent years, deep learning-based
de-noising has been extremely popular, both applied to photographs [23] and
to other types of signals, such as MRI data [10,15], CT data [5], audio data
[23], and point clouds [9]. Focusing on de-noising models designed for imag-
ing data, Batson et al. [3] used a U-Net model and a self-supervised approach
to blindly de-noise images without using an assumed noise distribution. Park
et al. [17] trained a de-noising model on unpaired CT data using a GAN model.
More recently, Vision Transformers have also been used to tackle the de-noising
problem [4,13,20,24].

Phipps et al. [18] used a residual-learning approach to de-noise the diffusion
weighted images prior to the tensor calculation to reduce the number of acqui-
sitions required to produce high-quality DT-CMR maps. In our previous work
[21], our group also showed how a U-NET-based model can be successfully used
to predict de-noised tensors directly from noisy images.

3 Methods

The study is divided into two main sections: (1) the analysis of how the num-
ber and choice of repetitions affect the quality of the DT-CMR maps and (2)
our proposed deep-learning-based de-noising procedure and the validation of its
results.

3.1 Data Acquisition

All data used in this work was approved by the National Research Ethics Service.
All subjects gave written informed consent.

All the data were acquired using a Siemens Skyra 3T MRI scanner and more
recently a Siemens Vida 3T MRI scanner (Siemens AG, Erlangen, Germany)
with diffusion weighted stimulated echo acquisition mode (STEAM) single shot
echo planar imaging (EPI) sequence with reduced phase field-of-view and fat sat-
uration, TR = 2RR intervals, TE = 23 ms, SENSE or GRAPPA R = 2, echo train
duration = 13 ms, at a spatial resolution of 2.8× 2.8× 8.0 mm3. Diffusion was
encoded in six directions with diffusion- weightings of b = 150 and 600 s/mm2 in a
short-axis mid-ventricular slice. Additionally, reference images were also acquired
with minimal diffusion weighting, named here as “b0” images. All diffusion data
were acquired under multiple breath-holds, each with a duration of 18 heartbeats.
We used a total of 744 DT-CMR datasets, containing a mixture of healthy vol-
unteers (26%, n = 197) and patient (74%, n = 547) scans acquired in either the
diastolic pause (49%, n = 368) or end-systole (51%, n = 376). The patient data
comes from several conditions including 31 amyloidoses, 45 dilated cardiomyopa-
thy (DCM), 11 Fabry’s disease, 48 HCM genotype-positive-phenotype-negative
(HCM G+P-), 66 hypertrophic cardiomyopathies (HCM), 4 hypertensive DCM
(hDCM), 246 acute myocardial infarction (MI), 7 Marfan’s syndrome, and 89
in-recovery DCM (rDCM).
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3.2 Data Preparation

The mean number of repetitions was 12 ± 2.0 for b0 images; 10 ± 2.2 for
b = 600 s/mm2 images; and 2 ± 0.6 for b = 150 s/mm2. These datasets, contain-
ing all acquired data, were used to calculate the reference tensor results for each
subject using a newly developed tool written in Python and validated against
our previous post-processing software [22] . Before tensor calculation, all the
diffusion images were assessed visually, and images corrupted with bulk motion
artefacts were removed. Subsequently, all remaining images were registered with
a multi-resolution rigid sub-pixel translation algorithm [8], manually thresholded
to remove background features. Lastly, the left ventricle (LV) myocardium was
segmented excluding papillary muscle.

Tensors were calculated with an LLS fit of all the acquired repetitions and
respective diffusion weightings and directions [11]. The tensors were then used
to compute the DT-CMR maps that we considered as the ground truth for all
the comparisons in the study.

We were also able to dynamically create three new datasets with an increas-
ingly reduced number of repetitions. We assessed the quality or the DT-CMR
maps produced from different subsets of repetitions (e.g., using the first N repe-
titions vs using the last N repetitions, see Sect. 3.3). We proposed three choices
for the numbers of repetitions that result in three datasets:

– 5BH. Four repetitions of b0 and b600, and one repetition of b150. This acqui-
sition would require 5 breath-holds.

– 3BH. Two repetitions of b0 and b600, and one repetition of b150. This acqui-
sition would require 3 breath-holds.

– 1BH. One repetition of b0 and b600 only. This acquisition would require 1
breath-hold.

For the purpose of training a deep-learning model, the data was also randomly
augmented with random rotation and random cropping.

3.3 The Effect of Repetitions

In a standard DT-CMR acquisition, we acquire several repetitions to reduce the
effect of noise and motion. To do so, we ask the patient to hold and resume their
breathing at fixed intervals.

First, we quantitatively studied how the number of repetitions (and breath-
holds) affects the quality of the maps. We compared the maps produced from
all available breath-holds with maps computed from M repetitions where M
represents a number smaller than the number of available repetitions for the
patient. We repeated the process separately for the four maps.

Secondly, we analysed how choosing different repetition subsets affects the
final quality of the DT-CMR acquisition. We defined five different methods to
select a subset from the eight original repetitions: (1) we selected the first M
repetitions (First, F); (2) we selected the central M repetitions (Centre, C);
(3) we used the last M repetitions (Last, L); (4) uniformly random repetition
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sampling (Random, R); (5) based on the clinician’s observation that the first
breath-hold is usually lower-quality due to the patient adjusting to holding and
resuming their breath, we selected the first M + 1 repetitions and discarded the
first one (First+1, F1).

3.4 Deep-Learning-Based De-noising

In this study, we developed and trained a deep-learning model based on the
current state-of-the-art architectures for image de-noising to improve the quality
of noisy DT-CMR tensors produced from the low-breath-holds datasets described
above.

Input and Output. The output of all the models reported here is the diffusion
tensor components. As the tensors are represented by a rank-2 symmetric matrix,
they only contain six unique components: for a 3× 3 matrix D we only need the
upper triangular elements to represent it. All input and output images were
cropped to be 128 × 128 pixels in size. Thus, the output is a 128 × 128 image
with 6 channels. For the input we compared different approaches: building on our
previous work, we used the average diffusion weighted images as input, resulting
in 13 channels for the 5BH and 3BH datasets (1 b0 + 6 b600 + 6 b150) and 7
channels for the 1BH dataset (1 b0 + 6 b600). Alternatively, we also experimented
with de-noising diffusion tensors directly, which translated to a six-channel input
image.

We had two types of inputs: diffusion-weighted images (DWI) or diffusion
tensors. In the case of DWI, the images were normalised in the range [0, 1] by
dividing them by the maximum value present in the dataset. The background
pixels were also replaced with zeros. The diffusion tensors were instead either
normalised by a fixed amount (500) that was empirically found to make most
values in the range [−1, 1] or normalised by performing channel-wise z-score
normalisation across the whole dataset. In the latter case, the normalisation was
undone before computing the maps.

The data were randomly divided into three parts: a training set, a valida-
tion set, and a test set with ratios of 80:10:10 respectively. In order to ensure
consistency, all the experiments maintained the same random split.

Model. We compared our new model with our previous work as the setting
is extremely similar to the one proposed here and we had obtained promising
results. In our previous setting, we used a U-Net model with six encoders and
six decoders. Each encoding layer consisted of two blocks, each containing a
convolution layer, a batch normalisation layer and the leaky ReLU activation
function; after the two blocks, a max-pooling operator was applied. Each decod-
ing layer consisted of two blocks: the first one contained a transpose convolution,
a concatenation operation, batch normalisation, and the leaky ReLU activation;
the second one instead consisted of a convolution, batch normalisation, and the
leaky ReLU activation. The concatenation was between encoding and decoding
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layers as per the original U-Net formulation. This baseline model contained a
total of 31 million trainable parameters.

We proposed several modifications to the baseline above. To show the effect
of these changes, we progressively introduced them on the baseline model to
show how they affected the quality of the output. In these experiments, we kept
the main structure of the model unchanged and we did not modify the training
hyperparameters. Specifically, in order, we experimented with:

1. U-NET image-to-tensor baseline model.
2. Baseline with channel normalisation (BL+CN): the output tensors were nor-

malised with a channel-wise z-score normalisation.
3. Baseline with tensor-to-tensor training (BL+T2T): the input type was

changed from images to tensors, making the task a tensor de-noising task.
This also allowed us to use residual learning for our training, improving con-
vergence and performance. For this experiment, the tensors were only nor-
malised by dividing all the values by a fixed amount.

4. BL+CN with tensor to tensor (BL+CN+T2T): similarly to BL+T2T, the
training was performed on a tensor-to-tensor de-noising task, but in this case,
the input and target tensors were normalised with z-score normalisation.

5. BL+CN+T2T with multiple datasets (BL+CN+multiT2T): multiple repe-
tition strategies were used simultaneously for the training (First, Centre,
Last). This made significantly better use of the available training data and
effectively increased the size of the dataset by a factor of 3 (although using
non-independent data for the training).

State of the art (SOTA) models in image de-noising and image restoration
were also investigated: Restormer [24] and Uformer [20]. These models were
trained with Channel Normalisation and multi tensor-to-tensor.

Finally, we investigated a novel model that made use of all the additions pro-
posed above based on SOTA models. Specifically, we expanded on the Uformer
architecture by using it as the generator of a generative adversarial network. The
Uformer is a U-Net-like Transformer-based architecture that uses LeWin blocks
and residual connections to form a hierarchical encoder-decoder network.

We, therefore, proposed the WGANUformer (WGUF) by adding a Patch-
GAN discriminator [7] and an adversarial loss to a Uformer. The model was
trained with a Wasserstein objective function and with weight clipping as per
Arjovsky et al. [1] as it combats mode collapse and has been proved to converge
to optimality, unlike other GAN formulations.

A schematic representation of the architecture and training procedure can
be found in Fig. 1.

Training. All training was performed using a workstation with Ubuntu 18.04,
CPU Intel i7-10700k, 64 GB of RAM, and an NVIDIA RTX 3080 GPU (Python
3.8 with PyTorch 1.9). The training required a total of 215 GPU-hours, resulting
in an estimated 30 kg CO2eq.

During training, a mean absolute error was used as the loss function. For
the baseline-based models, other parameters included an Adam optimiser with
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a learning rate = 10−4, beta1 = 0.9, beta2 = 0.999; a batch-size of 8 images and
500 epochs. These parameters and CNN design were optimised empirically based
on our pilot study results. The WGANUformer was trained as per Loshchilov
et al. with the AdamW optimiser [14], a learning rate = 10−4, beta1 = 0.9,
beta2 = 0.999, weight decay alpha = 0, a batch-size of 8 tensors for 500 epochs.
All models were trained from scratch without any pre-training.

In all our experiments, we report the metrics computed on the never-seen-
before test set using the model that produced the lowest validation loss.

3.5 DT-CMR Post-processing

For the computation of all metrics and maps, we post-processed the data with
an in-house developed software written in Python. For the post-processing, each
subject in the dataset was processed several times:

– Initially to obtain the reference tensor parameter results using all available
repetitions.

– Every time we computed a dataset with a reduced number of repetitions
we performed the same steps (image registration, thresholding, and segmen-
tation). When training the models using images as input, we replaced the
tensor calculation process with the model prediction.

– To produce a comparison, we also computed the conventional LLS tensor fit
from the reduced datasets. All the comparisons are voxel-wise.

3.6 DT-CMR Maps Comparison

Four DT-CMR maps representing different aspects of the diffusion of water
within the tissue were chosen as output. These maps represent different physical
properties and need to be compared with appropriate metrics.

HA and E2A are angular maps with values between −90◦ and 90◦. When
comparing these maps, we were interested in the direction of the vector corre-
sponding to the angle but not its orientation. This means that any two angles
with a 180◦ difference should be identical and two angles with a 90◦ difference
should have the maximum distance. For HA and E2A we then reported the Mean
Angle Absolute Error (MAAE):

MAAE(X,Y ) =
1

NM

N∑

i=0

M∑

j=0

{∣∣X(i,j) − Y (i,j)
∣∣ , if

∣∣X(i,j) − Y (i,j)
∣∣ < 90◦

180◦ − ∣∣X(i,j) − Y (i,j)
∣∣ , otherwise

(1)
For MD and FA, as they are scalar maps, we therefore reported the Mean

Absolute Error (MAE) between de-noised and target maps.
In the experiments below, we reported the MAAE and MAE across all the

voxels in the left ventricle (i.e., ignoring the background and the right ventricle).
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Statistical Analysis. We treated all results as non-parametric as we were
unable to assure normal distributions in the test subjects. The statistical sig-
nificance threshold for all tests was set at P = 0.05. Intersubject measures are
quoted as median [interquartile range].

4 Results

4.1 The Effect of Repetitions

From Table 1, no significant differences were found between the distribution of
errors for HA, E2A, and FA for all the pairs of strategies only containing First,
Centre, First+1, and Last. There is, instead, a significant difference (P< 0.05)
in distributions between the Random strategy compared to the other strategies
for these metrics (with few non-significant exceptions for FA in 3BH and 5BH).
When analysing the MD MAE errors, we found that the pairwise significance
pattern we had observed for the other metrics does not hold and we did not
recognise any clear pattern.

4.2 Deep-Learning-Based De-noising

We report the results of our experiments on tensor de-noising in Table 2.

Training Additions. Channel normalisation brought an overall improvement
compared to the baseline, especially when considering metrics computed from
datasets with a higher number of repetitions. On the other hand, tensor-to-tensor
training on its own appeared to be unstable, greatly benefiting some metrics
while making some others worse (e.g., HA for 1BH compared to FA for 5BH)
with no discernible pattern. By combining the two, we obtained a model that was
more stable than one with T2T only but with slightly worse performance than
using only CN. Nonetheless, T2T opened the doors to multi-tensor-to-tensor
training, which brought a remarkable improvement to all metrics compared to a
naive T2T approach.

State-of-the-Art Models. Between the two explored SOTA models, Restomer
consistently outperformed Uformer at the cost of a much longer and
computationally-expensive training (13 h vs 3 h on our machine). For this reason,
the Uformer was chosen for further exploration.

GAN Uformer and Ensemble Learning. The addition of a discriminator
and its associated loss to the training produced tensors that better encoded
angular information but that encode scalar information marginally worse.

The best possible model given our training additions and architectural
choices was produced by an ensemble of five Wasserstein GAN Uformer models
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Table 1. MAAE and MAE for HA, E2A, MD and FA for the different sampling
scheme choices compared to using all the available repetitions. We also report the
statistical significance of comparing the distributions of pairs of repetitions strategies.
This provides information on whether two repetitions-sampling strategies produce the
same distribution of errors across our dataset or not. In this context, a green background
signifies that we can reject the null hypothesis that the errors belong to the same
distribution according to the Kolmogorov–Smirnov test.

Dataset Scheme HA MAAE E2A MAAE

1BH

First 25.69 [4.95] C L F1 R 33.66 [4.77] C L F1 R

Centre 25.93 [5.26] F L F1 R 33.86 [4.57] F L F1 R

Last 25.94 [4.91] F C F1 R 33.87 [4.33] F C F1 R

First+1 25.69 [4.82] F C L R 33.57 [4.70] F C L R

Random 26.60 [4.78] F C L F1 34.36 [4.48] F C L F1

3BH

First 20.10 [4.62] C L F1 R 28.13 [5.45] C L F1 R

Centre 20.12 [4.75] F L F1 R 28.24 [5.04] F L F1 R

Last 20.23 [4.89] F C F1 R 28.22 [4.94] F C F1 R

First+1 20.09 [4.63] F C L R 28.23 [5.33] F C L R

Random 21.02 [4.74] F C L F1 29.03 [5.07] F C L F1

5BH

First 13.90 [4.13] C L F1 R 20.98 [5.28] C L F1 R

Centre 13.97 [4.08] F L F1 R 21.02 [5.30] F L F1 R

Last 14.07 [4.05] F C F1 R 20.89 [5.08] F C F1 R

First+1 14.06 [4.00] F C L R 21.07 [5.27] F C L R

Random 14.68 [4.26] F C L F1 21.78 [5.51] F C L F1

Dataset Scheme MD MAE (×105) FA MAE (×102)

1BH

First 14.69 [5.51] C L F1 R 19.50 [4.59] C L F1 R

Centre 15.75 [6.39] F L F1 R 19.80 [4.72] F L F1 R

Last 15.58 [6.52] F C F1 R 19.45 [4.82] F C F1 R

First+1 14.44 [5.30] F C L R 19.50 [4.57] F C L R

Random 15.72 [6.52] F C L F1 20.41 [5.01] F C L F1

3BH

First 9.76 [3.93] C L F1 R 14.13 [3.92] C L F1 R

Centre 9.63 [3.76] F L F1 R 13.99 [4.04] F L F1 R

Last 10.12 [4.36] F C F1 R 14.03 [3.72] F C F1 R

First+1 9.64 [3.91] F C L R 14.05 [3.92] F C L R

Random 8.85 [3.38] F C L F1 14.49 [4.05] F C L F1

5BH

First 6.24 [2.68] C L F1 R 9.05 [3.05] C L F1 R

Centre 6.32 [2.76] F L F1 R 8.93 [3.02] F L F1 R

Last 6.50 [2.92] F C F1 R 8.90 [2.96] F C F1 R

First+1 6.16 [2.69] F C L R 8.90 [3.05] F C L R

Random 5.86 [2.42] F C L F1 9.27 [2.85] F C L F1
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(WGUFx5). Using even a naive bagging ensemble greatly improved all metrics
for all datasets compared to using a single model.

All metrics except for MD for 1BH and MD for 5BH were significantly
improved by our final model compared to the baseline (Wilcoxon signed-rank
test, P< 0.05). Our best performing model is the result of a naive bagging
ensembling of five WGANUformer models (WGUFx5). The results show that
even a naive bagging ensemble improves stability and validation performance,
and reduces the variance of the output, all desirable properties in a medical
setting.

Table 2. DT-CMR maps errors for all the deep-learning models we experiment with.
The table is divided into three sections, one per dataset (1BH, 3BH, 5BH) and also
include the error for the linear approximation method of the maps (Least squares). In
bold and underlined we report, respectively, the best and second best results for each
metric and dataset.

Model HA E2A MD (×105) FA (×102)

1BH

WGUFx5 + CN + multi T2T 11.55 [4.45] 21.79 [7.28] 6.45 [3.35] 9.16 [4.32]

WGUF + CN + multi T2T 12.03 [4.51] 22.82 [8.61] 7.12 [3.20] 8.62 [3.71]

Restomer + CN +multi T2T 12.07 [4.85] 22.88 [7.61] 6.49 [3.35] 9.70 [4.07]

Uformer + CN +multi T2T 12.18 [4.47] 23.08 [6.27] 6.52 [3.36] 8.91 [4.12]

BL + CN + multi T2T 11.92 [4.30] 22.17 [7.18] 6.44 [3.57] 9.26 [4.04]

BL + CN + T2T 12.73 [5.11] 25.04 [8.38] 6.16 [3.05] 10.15 [4.73]

BL + T2T 13.03 [4.74] 26.16 [8.10] 6.03 [3.03] 10.70 [4.86]

BL + ChanNorm 13.60 [5.05] 24.80 [8.94] 6.30 [6.14] 9.44 [3.99]

Baseline (BL) 13.86 [4.36] 25.90 [7.69] 6.14 [2.98] 8.93 [3.45]

Least squares 20.80 [8.06] 31.62 [7.00] 11.40 [3.25] 17.06 [4.65]

3BH

WGUFx5 + CN + multi T2T 10.05 [3.86] 18.81 [6.04] 5.02 [2.11] 7.69 [3.72]

WGUF + CN + multi T2T 10.25 [4.21] 19.56 [6.33] 5.31 [2.04] 8.06 [3.57]

Restomer + CN + multi T2T 10.38 [4.11] 19.41 [5.82] 5.72 [2.04] 7.48 [3.20]

Uformer + CN + multi T2T 10.42 [4.18] 19.86 [7.13] 5.43 [2.11] 7.26 [3.36]

BL + CN + multi T2T 10.73 [5.01] 20.21 [6.92] 5.57 [2.01] 8.38 [3.19]

BL + CN + T2T 11.33 [5.30] 22.12 [7.84] 5.54 [2.75] 9.55 [5.17]

BL + T2T 12.57 [5.65] 22.46 [7.40] 5.96 [2.53] 10.09 [4.01]

BL + ChanNorm 12.85 [4.90] 21.62 [6.86] 5.37 [1.93] 8.57 [3.17]

Baseline (BL) 12.00 [5.25] 24.34 [6.56] 5.39 [1.78] 8.35 [3.12]

Least squares 15.11 [7.56] 23.85 [6.61] 7.88 [3.39] 12.09 [4.07]

5BH

WGUFx5 + CN + multi T2T 8.39 [3.80] 15.56 [6.46] 4.67 [1.89] 6.30 [2.85]

WGUF + CN + multi T2T 8.54 [4.15] 16.58 [6.07] 4.53 [2.00] 6.61 [3.11]

Restomer + CN + multi T2T 8.66 [3.82] 15.57 [6.67] 4.73 [1.81] 6.79 [2.80]

Uformer + CN + multi T2T 8.75 [4.03] 16.07 [6.43] 4.48 [1.75] 6.44 [2.48]

BL + CN + multi T2T 8.45 [4.25] 16.30 [6.99] 4.79 [2.03] 6.71 [2.79]

BL + CN + T2T 9.54 [5.44] 17.20 [7.34] 5.71 [2.69] 9.23 [3.91]

BL + T2T 9.77 [4.90] 17.77 [7.15] 4.59 [1.80] 7.78 [3.12]

BL + ChanNorm 10.81 [4.11] 18.92 [6.60] 4.16 [1.74] 6.96 [2.43]

Baseline (BL) 10.94 [3.80] 19.61 [5.37] 4.11 [2.14] 8.03 [3.34]

Least squares 9.79 [4.26] 17.20 [5.51] 6.10 [2.67] 8.30 [2.93]
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5 Discussion

5.1 Breath-Hold Choice

From our results on the breath-hold repetition sampling patterns, we can draw
several conclusions on how the patient behaviour affects the quality of the maps:

– Despite the clinician’s intuition, no significant conclusion can be drawn about
the difference in errors between the First and the First+1 protocols.

– There is no clear pattern for the pairwise significance of the results within a
dataset, suggesting that there are other factors that affect the quality of the
maps besides the sampling pattern.

– Lower numbers of breath-holds produce far fewer significant results compared
to higher-breath-holds datasets (44/80 for BH1, 46/80 for BH3 and 48/80 for
BH5). This can be attributed to the higher variability of errors due to the
effect of the singular bad acquisition on the final quality of the maps. Such
effect is instead smoothed out when considering the maps produced from a
larger number of repetitions, making the error distributions more similar to
each other.

Keeping the statistical significance in mind, First, Centre, or Last sampling
strategies seem a reasonable choice as they have lower error and no significant
difference in error distributions. The exception is for MD, for which the difference
is sometimes significant. For this reason, we decided to train our models on
the First, Centre, and Last strategies, but to only use the First strategy for
the validation and test sets. Notice that the data acquired with the First+1
strategy was not used for the training as it contains a considerable amount
of redundancy with that acquired with the First scheme. This also mirrors a
real clinical acquisition situation, where choosing the first M repetitions is the
shortest option in terms of the number of breath-holds for the patient. Any other
strategy would require us to acquire and discard some data, which is not feasible
in a clinical setting where the aim is to minimise the scan time for the patient.

5.2 Deep-Learning-Based De-noising

Our proposed additions to the training (channel normalisation, tensor-to-tensor
training and multi-tensor-to-tensor training) have a beneficial effect if we con-
sider the errors on the DT-CMR derived maps. This is due to various reasons:

– Channel normalisation simplifies the training, allowing the network to not
focus on rescaling the output to match the input range for each channel
individually.

– Tensor-to-tensor training completely changes the training objective. In our
previous work, we had trained a model to compute de-noised tensors from
noisy images, effectively replacing the linear optimisation problem (LSS).
This corresponds to training the model on two tasks simultaneously: de-
noising and tensor computation, making the overall convergence harder. In



Faster Diffusion Cardiac MRI with DL-Based Breath Hold Reduction 113

our new proposed setting, we simplify the training objective by removing the
tensor-computation aspect and only leaving the de-noising part of the train-
ing. Moreover, this allowed us to make use of the existing literature in the
well-studied field of image de-noising, while our previous approach (image-
to-tensor) proposed a model for a completely novel task with no existing
literature.

– Making use of multiple sampling patterns from our available data also gave
us an advantage over previous work by allowing us to greatly increase the
size of the dataset used for the training without the need to scan additional
patients.

Our final model, WGUFx5, draws from the SOTA in camera images de-noising
uses several novel blocks to encode local information by using local self-attention
and hierarchical feature encoding. All these additions produce a definite improve-
ment in our tensor de-noising task.

Finally, according to the literature, a bagging ensemble reduces the variance
of the prediction and therefore suggests that previous models were inadvertently
overfitting to the training set, despite our efforts to prevent it. The ensemble
strategy in our setting can be therefore interpreted to act as a regulariser.

6 Conclusion

DT-CMR has the potential to revolutionise the ability to non-invasively image
and assess the microstructural organisation of the myocardium underlying car-
diac pathology, but it is held back from clinical translation by its long acqui-
sition times. Here, we proposed to tackle the problem by reducing the number
of repetitions used in a classical DT-CMR acquisition protocol, which linearly
reduced the total acquisition time, but also decreased SNR. When choosing the
repetition selection scheme, we demonstrated that the choice of breath-hold had
no statistically significant effect on the final quality of the DT-CMR maps. We
also proposed several improvements on existing deep learning models, that, com-
bined, may lead to a significant and considerable step towards single-breath-hold
DT-CMR acquisition for clinical use.
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