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Abstract. Dual-tracer positron emission tomography (PET) imaging
can provide the concentration distribution of two tracers in the body in a
single scan, helping to better diagnose and understand diseases. However
dual-tracer PET imaging separation is a challenging problem because of
indistinguishable gamma photon pairs. In this work, we propose a two-
dimensional convolutional network to separate the reconstructed mixed
activity images, with the aid of channel attention modules to pay atten-
tion to both spatial and temporal information, which play an important
role in the separation. Simulation experiments with different tracer pairs,
scanning times, and phantoms are conducted to verify the generaliza-
tion and robustness of the method to noise and individual differences.
And its performance is also evaluated with real datasets. These results
demonstrate the proposed method might have strong potential for the
dual-tracer PET imaging.

Keywords: Dual-tracer PET imaging · Separation · Deep learning ·
Spatiotemporal information

1 Introduction

Positron Emission Tomography (PET), a powerful medical imaging technique,
is often used to identify distribution of radiolabeled probes at molecular level
and becomes an extremely effective diagnostic aid. Dynamic dual-tracer PET
can provide more comprehensive spatiotemporal information than single-tracer
PET in one scan, which saves time and cost while improving the accuracy of diag-
nosis and helping doctors choose more effective treatment options [1]. However,
since the gamma photon pairs emitted by different tracers have the same energy
(both 511 keV), it is difficult to distinguish different tracer signals in dual-tracer
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PET imaging. Currently, methods for imaging the concentration distribution of
two tracers in one scan are mainly divided into traditional methods and deep
learning methods. Traditional methods [2–4] require additional information and
are affected by tracer pairs and injection intervals. In contrast, deep learning
methods do not suffer from these limitations and can achieve good separation
effect because of their powerful feature learning capabilities.

At present, deep learning methods to achieve dual-tracer signal separation are
mainly divided into two categories. The first method starts from mixed images,
reconstructed from EM or MAP methods. Time activity curves (TACs) show the
changes in the concentration value of a pixel on the image at different time frames,
and TACs are extracted from these images for separation, such as stacked auto-
encoder (SAE) [5], deep belief network (DBN) [6,7] and mask-based bidirectional
gated recurrent unit (MB-BGRU) [8]. The limitation of these methods is to sepa-
rate the signal of each pixel without considering the spatial information. Another
type of method is to use a three-dimensional convolutional network to reconstruct
and separate the activity images of a single tracer directly fromthemixed sinogram,
such asFBP-CNN [9] andmulti-task learning three-dimensional convolutional net-
work [10]. Although these methods can focus on both temporal and spatial infor-
mation, the large amount of parameters in the network makes training difficult.
Considering that reconstruction in a neural network consumes a lot of memory, or
there are no constraints, the generalization is limited and a large amount of data is
required [11]. This work proposes a method starting from the reconstructed activ-
ity images, that can focus on both temporal and spatial information, and has fewer
network parameters, low training cost, and stronger generalization and robustness.

This work proposes a two-dimensional convolutional neural network based on
U-net to separate two single-tracer activity images from the reconstructed dual-
tracer activity images. Convolutional networks can handle spatial information.
Considering that temporal information is as important as spatial information
during dynamic dual-tracer PET imaging, we input the activity images of a
series of time frames into the network and take the number of time frames as
the initial number of feature channels, and focus on the time information by
adding channel attention mechanisms to the network. Compared with 3D-CNN
(the separation network part in FBP-CNN) which simultaneously focuses on
spatiotemporal information, this network has ten times fewer parameters. We
set up four sets of simulation experiments to verify the generalization of the net-
work to sampling protocol, tracer pair and phantom shape, robustness to noise
and kinetic parameter variation range, and the performance of the method is
demonstrated with real experiments. We compare this method with MB-BGRU
method and 3D-CNN method, using different evaluation metrics, our method
can outperform with about 10 times faster.

2 Methodology

2.1 Dual-Tracer PET Imaging Model

The model for simultaneous injection of dual-tracer PET imaging can be
described as:
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Xdual(t) = GY dual(t) + e(t) (1)

Y dual(t) = Y I(t) + Y II(t) (2)

where t represents time, Xdual is the dual-tracer sinogram obtained by PET
scan, G is the system matrix, Y dual is the dual-tracer activity images, which is
composed of Y I and Y II of the two tracers injected separately, and e is the noise
generated by sampling process. This work starts from the mixed activity images
reconstructed from the sinogram and uses the proposed network to obtain Y I

and Y II .

2.2 Network Architecture

We designed the network structure on the basis of U-net [12], as shown in Fig. 1.
Considering dynamic PET imaging, we input the dual-tracer activity images of
the same slice at different time frames into the network. Because it is a two-
dimensional convolution network, the number of feature map channels at the
beginning is the number of time frames. The convolutional layers in the network
are followed by a batch normalization layer and a Leaky ReLU activation layer,
except the activation function of the last convolutional layer is softplus. There
are two convolutional layers before and after each change in the number of fea-
ture channels. The convolutional layer will eliminate some details of the image,
so we add a skip connection pointing from the input of the first convolutional
layer to the output of the second convolutional layer. At the end of U-net, two
channel attention modules [13] are added. Because the channel dimension is ini-
tially represented by the number of time frames, the channel attention module is
designed to improve the utilization of temporal information. Finally, the network
outputs a stacked activity images of the two tracers.

2.3 Loss Function and Evaluation Metrics

Loss Function. The loss function we used in the training process was composed
of mean square error (MSE) and structural similarity index (SSIM), as follows:

L = α[MSE(ŷ1, y1) + MSE(ŷ2, y2)]− β[ln
1 + SSIM(ŷ1, y1)

2
+ ln

1 + SSIM(ŷ2, y2)

2
] (3)

where α and β are weighting factors that balance MSE and SSIM, we tested the
performance of different combinations using grid search and finally set to 1 and
0.02 respectively in the training process; ŷ1 and ŷ2 represent the predicted image
and y1 and y2 are the ground truth image, where subscripts 1 and 2 represent
two tracers, respectively. MSE evaluates the difference between each pixel in the
predicted image and the ground truth image, SSIM measures image similarity
in terms of luminance, contrast and structure. MSE and SSIM can be calculated
as:

MSE(ŷ, y) =
∑N

i=1(ŷi − yi)2

N
(4)
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Fig. 1. A schematic diagram of the network structure, the feature channels will change
each time downsampling or upsampling, and the number of feature channels in each
layer is marked in the figure. Two channel attention mechanisms are added at the end
of the network (see the lower left corner for details), and finally a stacked activity
images of the two tracers is output.

SSIM(ŷ, y) =
(2μyμŷ + c1)(2σyŷ + c2)

(μ2
y + μ2

ŷ + c1)(σ2
yσ

2
ŷ + c2)

(5)

where N is the number of pixels, μy, σy and σyŷ are mean of y, standard deviation
of y and covariance of y and ŷ, c1 and c2 are constants used to prevent the
denominator from being zero, related to the range of pixel value in ground truth
image.

Evaluation Metrics. We used MSE, Multi-scale SSIM (MS-SSIM) [14] and
Peak Signal to Noise Ratio (PSNR) to assess the separated activity images qual-
ity. MS-SSIM considers the resolution, and is a combination of SSIM calculated
separately after scaling the two pictures from large to small. PSNR is defined
as:

PSNR = 10 · log10[ y2
max

MSE(ŷ, y)
] (6)

where ymax is the maximum value of the image.
The image has singular points due to noise, so before calculating the loss

function and evaluating the results, the image should be normalized to a common
range. The normalization method is as follows:

ynorm =
y − min(y)

max(y) − min(y)
(7)

where min(·) gets the minimum value of the image pixel value, max(·) gets the
maximum value of the image pixel value.
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3 Experiments and Results

3.1 Simulation Datasets and Implementation Details

The three-dimensional Zubal phantom (128 pixel× 128 pixel× 40 slice) [15] is
mainly used in the simulation, and this phantom has five regions of interest
(ROI). We used the parallel compartment model to simulate the dynamic spatial
distribution of the tracer. The kinetic parameters describing the velocity of the
tracer movement between different ROIs are obtained in real experiments in the
literature [16–18]. To generate more data, we randomly select kinetic parameters
from a Gaussian distribution with mean values of the true experimental values.
In the simulation experiment, we used different tracer pairs with different half-
lives. Tracers with long half-lives require longer scanning time. Each scanning
time has 18 time frames. The details of sampling protocol setting are shown in
Table 1. Each set of experiments generates 1200 sets of dynamic PET data, each
set of data contains 18 time frames, of which 960 sets are used for training, 120
sets are used for validation, and 120 sets are used for testing. The training set,
validation set and test set have different kinetic parameter. Since the sinogram
needs a system matrix to reconstruct the activity images, which consumes a lot of
memory in the network, we use the Filtered Back-projection (FBP) reconstruc-
tion algorithm to obtain the activity image (128 pixel× 128 pixel× 18 frame) and
input it into the network for subsequent separation.

Table 1. Details of sampling protocol setting

Tracer Scanning time Scanning protocol
18F-FDG/11C-FMZ 40 min 2× 60 s + 2× 90 s+14× 150 s

50 min 3× 60 s + 7×140 s + 8× 230 s

60 min 2× 60 s + 6× 180 s + 10× 240 s
11C-FMZ/11C-acetate 30 min 4×30 s+12× 110 s + 2× 180 s

We input the dual-tracer activity images into the network for separation, and
the respective activity images of the two tracers are used as the ground truth of
the network. The optimizer of the network is Adam, the learning rate is set to
0.0002 during the training process, the batch size is 8, and a total of 100 epochs
are trained.

3.2 Simulation Experiments

18F-FDG+11C-FMZ. For the first and second sets of experiments, we selected
the tracer pair 18F-FDG and 11C-FMZ. Due to the large difference in half-life
of these two tracers (110 min and 20.4 min), we set the scanning time to 40 min,
50 min and 60 min, and generated 1200 sets of data (10 group kinetic parameters
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× 3 scanning time × 40 slice) to form the datasets with a ratio of 8:1:1 for
training, validation and testing. We trained and tested it using proposed network
and 3D-CNN network, considering that this phantom has the first two ROIs per
slice, we calculated the average pixel value on the first two ROIs of each frame
for both methods, resulting in six TAC curves. Figure 2 shows these TAC curves,
it can be seen that both methods apply different sampling protocols, but for the
first tracer (18F-FDG), the 3D-CNN method deviates seriously, our method is
closer to the ground truth, and it can be seen that using the channel attention
module can better focus on temporal information.

Fig. 2. TAC curve comparison chart. Each row is an ROI area, followed by 40 min,
50 min and 60 min. There are six TAC curves in each figure, blue and orange represent
ground truth, green and red represent the results of the proposed method, and purple
and brown represent 3D-CNN results. (Color figure online)

We superimpose random noise on the simulated sinogram, the signal-to-noise
ratios (SNR) are 19 dB, 12 dB and 6 dB respectively, and trained and tested them
respectively. Each data set has 1200 sets of data as before. The results are shown
in Fig. 3, which shows the activity images of the 17th, 26th and 35th slices, with
two ROIs, three ROIs, and five ROIs, respectively. It can be seen that as the
signal-to-noise ratio decreases, the noise artifacts become larger, but still present
a clear and smooth image, which is not much different from the ground truth.
It reflects the high robustness of the network to noise.
11C-FMZ+11C-acetate. For the third set of experiments, we selected the
tracer pair 11C-FMZ and 11C-acetate. The difference from the previous group
is that the half-life of the previous group of tracers is about 5 times different,
this group of tracers has the same half-life. Because of the short half-life of
this set of tracer pair, we set the scanning time to 30 min. We randomly gener-
ate varying kinetic parameters by Gaussian to simulate physiological differences
between individuals. In order to explore the performance of the network in the
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(a) (b)

Fig. 3. Separation results of the 17th, 26th and 35th slices at SNR of 19 dB, 12 dB and
6 dB. (a) 18F-FDG, (b) 11C-FMZ.

case of large individual differences, we set the variance of Gaussian random to
10%, 15% and 20% of the mean, and each group has 1200 sets of data (30 group
kinetic parameters × 40 slice). Figure 4(a)–(c) shows the profile of the separation
results using the proposed network and MB-BGRU network. It can be seen that
when the variation range of the kinetic parameters becomes larger, the deviation
between the activity images and the ground truth of the two networks becomes
larger, but the proposed network has less deviation and clearer boundaries than
the MB-BGRU network, which shows that the network has good robustness
to the differences between individuals, demonstrating the importance of paying
attention to spatial information. Figure 4(d) and (e) show the evaluation met-
rics MS-SSIM and PSNR of the two networks in each group of experiments. The
larger the value, the better the effect. It can be seen that our method outper-
forms MB-BGRU in both metrics, further verifying the superiority of proposed
method.

Three Two-Dimensional Phantoms. In the fourth set of experiments, we
selected another three two-dimensional phantoms. They are two-dimensional
Zubal complex brain phantom, Zubal thorax phantom and Hoffman simple brain
phantom (64 pixel× 64 pixel). Each phantom has different ROIs, corresponding
to different tissues or organs. We chose three tracer pairs 18F-FDG and 18F-
FLT, 62Cu-ATSM and 11C-DTBZ, 18F-FLT and 11C-FMZ. These tracer pairs
have the same or very different half-lives, the shorter half-life of the radionu-
clide adopts the shorter scanning time, and a total of 90 sets of data (10 group
kinetic parameters × 3 scanning time × 3 phantoms) are generated. The ratio
for training and testing is 4:1. The results are shown in Fig. 5. It can be seen
that for each phantom, the network achieves a certain separation effect, which
proves the generalization of the network to different organ structures.
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(a)

(b)

(c)

(d) (e)

Fig. 4. Profiles of separation results using the proposed network and MB-BGRU net-
work at different ranges of kinetic parameters. The black line represents the label, the
green line represents the proposed method, and the red line represents the MB-BGRU
method. The range from top to bottom is (a) 10%, (b) 15%, (c) 20%. (d) The MS-
SSIM values of the proposed method and the MB-BGRU method on different tracers
for different ranges of kinetic parameters. (e) Similar to (d), the value of PSNR. (Color
figure online)
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(a) (b) (c)

Fig. 5. The separation results of the three phantoms, the first row is the ground truth,
the second row is the separation result of the proposed network, and the third row is
the absolute error map.

3.3 Real Experiments

Studies have shown that in certain brain regions, mitochondria-related energy
exhaustion may precede glycolysis-related hypometabolism due to pathologically
confirmed early neurodegeneration in Alzheimer’s disease [19]. 18F-BCPP-EF
can image the activity of mitochondrial complex I, and 18F-FDG can measure
the local brain glucose metabolism rate, so the simultaneous use of these two
tracers can obtain more information in the study of neurodegenerative diseases,
which has clinical significance. We used a high-resolution small animal PET scan-
ner (SHR-38000; Hamamatsu Photonics KK, Hamamatsu, Japan) to perform
dynamic PET scans of five male rhesus monkeys (rhesus macaques) weighing
4.7–8.7 kg, sequentially injected with two tracers and at intervals of more than
one week to ensure complete metabolism of the tracer in the body. We used a
scanning time of 120 min (6× 10 s + 2× 30 s + 8× 60 s + 10× 300 s + 6× 600 s) to
obtain 32 frames of dynamic PET data. The acquired raw data is listmode, con-
verted to sinogram and reconstructed with Iterative 3D Dynamic Raw-Action
Maximum Likelihood Algorithm (3D-DRAMA). Considering that the recon-
structed image may be noisy, we performed Gaussian smoothing on the recon-
struction result as the ground truth for network separation. To reduce errors
caused by multiple scans, we summed the unsmoothed data from two single-
tracer scans as a dual-tracer activity images. We chose the data of four monkeys
as the training set and the data of the other monkey as the test set.
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(a) (b)

Fig. 6. Separation results of the proposed method, 3D-CNN and MB-BGRU on real
data, from top to bottom are the 6th, 18th and 30th frames of the same slice. (a)
18F-FDG, (b) 18F-BCPP-EF.

The experimental results are shown in Fig. 6. The proposed network, 3D-
CNN and MB-BGRU are used for training and testing respectively, and the
activity images of frames 6, 18 and 30 are shown in turn. It can be seen that
the separation results of 3D-CNN are somewhat blurred, and even obvious noise
appears. Our method and MB-BGRU perform better, but for the 6th frame, the
proposed method is closer to the ground truth than MB-BGRU. Table 2 shows
the quantitative results of the three networks, although the proposed network
has a lower average of some metrics in 18F-FDG than the MB-BGRU network,
it has a smaller standard deviation. At the same time, for the same amount of
data, the training time is less, the speed is about 10 times that of the other two.
The proposed method can obtain better quality separation results in less time.

4 Discussion

The network proposed in this work is designed on the basis of U-net, mainly
adding channel attention mechanisms to focus on time information. In order
to prove that the proposed method is more effective than U-net, we use the
original U-net and our method to train and test on the first set of simulation
data, respectively, and obtain their respective evaluation metrics as shown in
Fig. 7(a)–(c). The smaller the MSE, the better, and the larger the MS-SSIM
and PSNR, the better. It can be seen that the proposed method is superior to
the original U-net in evaluation metrics, and has a smaller standard deviation.
Figure 7(d) shows the TAC curves of ROI1 and ROI2 at different sampling times,
for the tracer 18F-FDG, both methods perform well, but for another tracer, our
method is closer to the ground truth than the original U-net, especially after
the fourth frame. The proposed method performs better on separation and also
demonstrates the importance of considering temporal information.
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Table 2. The evaluation metrics of the three methods in the real experiment.The value
in front is the average, the ± is followed by the standard deviation

Metrics Tracer Proposed method 3D-CNN MB-BGRU

MSE 18F-FDG 0.0016± 0.00031 0.00026± 0.00084 0.0016± 0.00051
18F-BCPP-EF 0.00085± 6.56e-5 0.0019± 0.00054 0.0025± 0.00067

MS-SSIM 18F-FDG 0.952± 0.0024 0.923± 0.0067 0.956± 0.0061
18F-BCPP-EF 0.968± 0.0012 0.947± 0.0045 0.945± 0.0080

PSNR 18F-FDG 28.04± 0.81 26.08± 1.23 28.24± 1.47
18F-BCPP-EF 30.71± 0.33 27.34± 1.20 26.20± 1.21

The loss function of this method uses two weighting factors α and β to
balance MSE and SSIM. We set α to 1, and β to 0.1, 0.05, 0.02 and 0.01 in
turn, and use loss functions of different proportions to train and test on the first
set of simulation data. Figure 7(e) and (f) represent the MSE and PSNR under
different proportions, it can be seen that the best performance is obtained when
α is set to 1 and β is set to 0.02.

However, there are some problems to be solved. First, the method is to sep-
arate the dual-tracer signals from the reconstructed mixed activity images, so
the result is limited by the accuracy of the traditional reconstruction algorithm.
Second, considering the problems of tracer dose matching and physiological dif-
ferences caused by multiple scans, the mixed activity images that we input into
the network in both simulation and real experiments are reconstructed from
the addition of two tracer sinograms. However, in practice, the scanning results
obtained after the simultaneous injection of two tracers may not be the simple
addition of two single tracers after injection. It is possible that the concentra-
tion of one tracer is higher than the concentration of another tracer due to the
dose of tracer, human absorption, etc. Third, this work is mainly to prove the
availability of the proposed method in dual-tracer PET imaging. The experi-
ments are mainly based on phantom images, and no specific clinical application
is analyzed. In future work, we can consider adding reconstruction modules and
constraints to the neural network to improve the accuracy of the reconstructed
activity images with less memory loss, and also need to consider the injection
dose ratio of the tracer concentration. At the same time, the analysis of the spe-
cific physiological structure should be considered, whether it meets the clinical
requirements needs further research.
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(a) (b) (c)

(d)

(e) (f)

Fig. 7. Boxplots of evaluation metrics obtained using the proposed method and the
original U-net, each boxplot from left to right is 18F-FDG (the proposed method),
18F-FDG (original U-net), 11C-FMZ (proposed method), 11C-FMZ (original U-net).
(a) MSE, (b) MS-SSIM, (c) PSNR. (d) TAC curves of ROI1 and ROI2 under different
sampling protocols, blue and orange represent ground truth, green and red represent
the results of the proposed method, and purple and brown represent original U-net
results. (e) and (f) represent the MSE and PSNR obtained using different scaled loss
functions, and the two lines represent different tracers.
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5 Conclusion

This paper proposed a deep learning network framework based on U-net to sepa-
rate the mixed dual-tracer activity images into two single-tracer activity images.
Compared with the method that separates TACs after extracting TACs from
the mixed activity images, this method takes spatial information into account.
Compared with the 3D convolutional network, by adding channel attention mod-
ules to pay attention to temporal information, it can take less time to obtain
a good-quality single-tracer activity images. We verify the superiority of this
method in simulation experiments and real experiments. Four sets of simula-
tion experiments verify the generalization of the network to sampling protocols,
tracer pairs, and phantom shapes, and robustness to noise and kinetic parame-
ter variations. Real experiments also prove that this method outperforms other
networks in evaluation metrics and image quality.
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