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Abstract. Colonoscopy is widely recognised as the gold standard pro-
cedure for the early detection of colorectal cancer (CRC). Segmentation
is valuable for two significant clinical applications, namely lesion detec-
tion and classification, providing means to improve accuracy and robust-
ness. The manual segmentation of polyps in colonoscopy images is time-
consuming. As a result, the use of deep learning (DL) for automation of
polyp segmentation has become important. However, DL-based solutions
can be vulnerable to overfitting and the resulting inability to generalise
to images captured by different colonoscopes. Recent transformer-based
architectures for semantic segmentation both achieve higher performance
and generalise better than alternatives, however typically predict a seg-
mentation map of h

4
× w

4
spatial dimensions for a h×w input image. To

this end, we propose a new architecture for full-size segmentation which
leverages the strengths of a transformer in extracting the most impor-
tant features for segmentation in a primary branch, while compensating
for its limitations in full-size prediction with a secondary fully convolu-
tional branch. The resulting features from both branches are then fused
for final prediction of a h × w segmentation map. We demonstrate our
method’s state-of-the-art performance with respect to the mDice, mIoU,
mPrecision, and mRecall metrics, on both the Kvasir-SEG and CVC-
ClinicDB dataset benchmarks. Additionally, we train the model on each
of these datasets and evaluate on the other to demonstrate its superior
generalisation performance.

Code available: https://github.com/CVML-UCLan/FCBFormer.

Keywords: Polyp segmentation · Medical image processing · Deep
learning

1 Introduction

Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide; e.g.,
in the United States, it is the third largest cause of cancer deaths, with 52,500
CRC deaths predicted in 2022 [27]. In Europe, it is the second largest cause of
cancer deaths, with 156,000 deaths in 27 EU countries reported in 2020 [7].
c© The Author(s) 2022
G. Yang et al. (Eds.): MIUA 2022, LNCS 13413, pp. 892–907, 2022.
https://doi.org/10.1007/978-3-031-12053-4_65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12053-4_65&domain=pdf
http://orcid.org/0000-0002-3794-5513
http://orcid.org/0000-0001-7195-2509
https://github.com/CVML-UCLan/FCBFormer
https://doi.org/10.1007/978-3-031-12053-4_65


FCN-Transformer Feature Fusion for Polyp Segmentation 893

Colon cancer survival rate depends strongly on an early detection. It is com-
monly accepted that most colorectal cancers evolve from adenomatous polyps
[26]. Colonoscopy is the gold standard for colon screening as it can facilitate
detection and treatment during the same procedure, e.g., by using the resect-
and-discard and diagnose-and-disregard approaches. However, colonoscopy has
some limitations; e.g., It has been reported that between 17%–28% of colon
polyps are missed during colonoscopy screening procedures [18,20]. Importantly,
it has been assessed that improvement of polyp detection rates by 1% reduces
the risk of CRC by approximately 3% [4]. It is therefore vital to improve polyp
detectability. Equally, correct classification of detected polyps is limited by vari-
ability of polyp appearance and subjectivity of the assessment. Lesion detection
and classification are two tasks for which intelligent systems can play key roles
in improving the effectiveness of the CRC screening and robust segmentation
tools are important in facilitating these tasks.

To improve on the segmentation of polyps in colonoscopy images, a range of
deep learning (DL) -based solutions [8,13,14,17,19,22,28,30,32,37] have been
proposed. Such solutions are designed to automatically predict segmentation
maps for colonoscopy images, in order to provide assistance to clinicians perform-
ing colonoscopy procedures. These solutions have traditionally used fully con-
volutional networks (FCNs) [1,9,10,13–15,17,25,28,39]. However, transformer-
based architectures [24,32–34,36] have recently become popular for semantic seg-
mentation and shown superior performance over FCN-based alternatives. This is
likely a result of the ability of transformers to efficiently extract features on the
basis of a global receptive field from the first layers of the model through global
attention. This is especially true in generalisability tests, where a model is trained
on one dataset and evaluated on another dataset in order to test its robustness to
images from a somewhat different distribution to that considered during training.
Some studies have also combined FCNs and transformers/attention mechanisms
[3,8,19,22,30,37] in order to combine their strengths in a single architecture
for medical image segmentation, however these hybrid architectures do not out-
perform the highest performing FCN-based and transformer-based models in
this task, notably MSRF-Net [28] (FCN) and SSFormer [32] (transformer). One
significant limitation of most the highlighted transformer-based architectures is
however that the predicted segmentation maps of these models are typically of a
lower resolution than the input images, i.e. are not full-size. This is due to these
models operating on tokens which correspond to patches of the input image
rather than pixels.

In this paper, we propose a new architecture for polyp segmentation in
colonoscopy images which combines FCNs and transformers to achieve state-
of-the-art results. The architecture, named the Fully Convolutional Branch-
TransFormer (FCBFormer) (Fig. 1a), uses two parallel branches which both start
from a h × w input image: a fully convolutional branch (FCB) which returns
full-size (h × w) feature maps; and a transformer branch (TB) which returns
reduced-size (h4 × w

4 ) feature maps. The output tensors of TB are then upsam-
pled to full-size, concatenated with the output tensors of FCB along the channel
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Fig. 1. The architectures of a) FCBFormer, b) the transformer branch (TB), c) the
fully convolutional branch (FCB), d) the prediction head (PH), e) the improved local
emphasis (LE) module, f) the residual block (RB).

dimension, before a prediction head (PH) processes the concatenated tensors into
a full-size segmentation map for the input image. Through the use of the Ima-
geNet [5] pre-trained pyramid vision transformer v2 (PVTv2) [34] as an image
encoder, we encourage the model to extract the most important features for
segmentation in TB. We then randomly initialise FCB to encourage extraction
of the features required for processing outputs of TB into full-size segmentation
maps. TB largely follows the structure of the recent SSFormer [32] which predicts
segmentation maps of h

4 × w
4 spatial dimensions, and which achieved the current

state-of-the-art performance on polyp segmentation at reduced-size. However, we
update the SSFormer architecture with a new progressive locality decoder (PLD)
which features improved local emphasis (LE) and stepwise feature aggregation
(SFA). FCB then takes the form of an advanced FCN architecture, composed
of a modern variant of residual blocks (RBs) that include group normalisation
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[35] layers, SiLU [12] activation functions, and convolutional layers, with a resid-
ual connection [11,29]; in addition to dense U-Net style skip connections [25].
PH is then composed of RBs and a final pixel-wise prediction layer which uses
convolution with 1×1 kernels. On this basis, we achieve state-of-the-art perfor-
mance with respect to the mDice, mIoU, mPrecision, and mRecall metrics on the
Kvasir-SEG [16] and CVC-ClinicDB [2] datasets, and on generalisability tests
where we train the model on one Kvasir-SEG and evaluate it on CVC-ClinicDB,
and vice-versa.

The main novel contributions of this work are therefore:

1. The introduction of a simple yet effective approach for FCNs and transformers
in a single architecture for dense prediction which, in contrast to previous
work on this, demonstrates advantages over these individual model types
through state-of-the-art performance in polyp segmentation.

2. The improvement of the progressive locality decoder (PLD) introduced with
SSFormer [32] for decoding features extracted by a transformer encoder
through residual blocks (RBs) composed of group normalisation [35], SiLU
activation functions [35], convolutional layers, and residual connections [11].

The rest of this paper is structured as follows: we first define the design
of FCBFormer and its components in Sect. 2; we then outline our experiments
in terms of the implementation of methods, the means of evaluation, and our
results, in Sect. 3; and in Sect. 4 we give our conclusion.

2 FCBFormer

2.1 Transformer Branch (TB)

The transformer branch (TB) (Fig. 1b) is highly influenced by the current state-
of-the-art architecture for reduced-size polyp segmentation, the SSFormer [32].
Our implementation of SSFormer, as used in our experiments, is illustrated in
Fig. 2. This architecture uses an ImageNet [5] pre-trained pyramid vision trans-
former v2 (PVTv2) [34] as an image encoder, which returns a feature pyramid
with 4 levels that is then taken as the input for the progressive locality decoder
(PLD). In PLD, each level of the pyramid is processed individually by a local
emphasis (LE) module, in order to address the weaknesses of transformer-based
models in representing local features in the feature representation, before fusing
the locally emphasised levels of the feature pyramid through stepwise feature
aggregation (SFA). Finally, the fused multi-scale features are used to predict the
segmentation map for the input image.

PLD takes the tensors returned by the encoder, with a number of channels
defined by PVTv2, and changes the number of channels in the first convolu-
tional layer in each LE block to 64. Each subsequent layer, except channel-wise
concatenation and the prediction layer, then returns the same number of chan-
nels (64).
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The rest of this subsection will specify the design of TB in the proposed FCB-
Former and how this varies from this definition of SSFormer. The improvements
resulting from our changes are then demonstrated in the experimental section of
this paper.

Fig. 2. The architecture of our implementation of SSFormer.

Transformer Encoder. As in SSFormer, we used the PVTv2 [34] for the
image encoder in TB, pre-trained on ImageNet [5]. The variant of PVTv2 used
is the B3 variant, which has 45.2M parameters. This model demonstrates excep-
tional feature extraction capabilities for dense prediction owing to its pyramid
feature representation, contrasting with more traditional vision transformers
which maintain the size of the spatial dimensions throughout the network, e.g.
[6,24,31]. Additionally, the model embeds the position of patches through zero
padding and overlapping patch embedding via strided convolution, as opposed
to adding explicit position embeddings to tokens, and for efficiency uses linear
spatial reduction attention. On this element we do not deviate from the design
of SSFormer.

Improved Progressive Locality Decoder (PLD+). We improve on the
progressive locality decoder (PLD) introduced with SSFormer using the archi-
tecture shown in Fig. 1b (PLD+), where we use residual blocks (RBs) (Fig. 1f) to
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overcome identified limitations of the SSFormer’s LE and SFA. These RBs take
inspiration from the components of modern convolutional neural networks which
have seen boosts in performance due to the incorporation of group normalisation
[35], SiLU activation functions [12], and residual connections [11]. We identified
SSFormer’s LE and SFA as being limited due to a lack of such modern elements,
and a relatively low number of layers. As such, we modified these elements in
FCBFormer to form the components of PLD+. The improvements resulting from
these changes are shown through ablation tests in the experimental section of
this paper.

As in SSFormer, the number of channels returned by the first convolutional
layer in the LE blocks 64. Every subsequent layer, except channel-wise concate-
nation, then returns the same number of channels (64).

2.2 Fully Convolutional Branch (FCB)

We define the fully convolutional branch (FCB) (Fig. 1c) as a composition of
residual blocks (RBs), strided convolutional layers for downsampling, nearest
neighbour interpolation for upsampling, and dense U-Net style skip connections.
This design allows for the extraction of highly fused multi-scale features at full-
size, which when fused with the important but coarse features extracted by the
transformer branch (TB) allows for inference of full-size segmentation maps in
the prediction head (PH).

Through the encoder of FCB, we increase the number of channels returned
by each layer by a factor of 2 in the first convolutional layer of the first RB
following the second and fourth downsampling layers. Through the decoder of
FCB, we then decrease the number of channels returned by each layer by a factor
of 2 in the first convolutional layer in the first RB after the second and fourth
upsampling layers.

2.3 Prediction Head (PH)

The prediction head (PH) (Fig. 1d) takes a full-size tensor resulted from concate-
nating the up-sampled transformer branch (TB) output and the output from the
fully convolutional branch (FCB). The PH predicts the segmentation map from
important but coarse features extracted by TB by fusing them with the fine-
grained features extracted by FCB. This approach for the combination of FCNs
and transformers for dense prediction to the best of our knowledge has not been
used before. As shown by our experiments, this approach is highly effective in
polyp segmentation and indicates that FCNs and transformers operating in par-
allel prior to the fusion of features and pixel-wise prediction on the fused features
is a powerful basis for dense prediction. Each layer of PH returns 64 channels,
except the prediction layer which returns a single channel.
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3 Experiments

To evaluate the performance of FCBFormer in polyp segmentation, we con-
sidered 2 popular open datasets, Kvasir-SEG [16]1 and CVC-ClinicDB [2]2, and
trained our models using the implementation detailed in Sect. 3.1. These datasets
provide 1000/612 (Kvasir-SEG/CVC-ClinicDB) ground truth input-target pairs
in total, with the samples in Kvasir-SEG varying in the size of the spatial dimen-
sions while all samples in CVC-ClinicDB are of 288 × 384 spatial dimensions.
All images across both datasets contain polyps of varying morphology. These
datasets have been used extensively in the development of polyp segmentation
models, and as such provide strong benchmarks for this assessment.

3.1 Implementation Details

We trained FCBFormer to predict binary segmentation maps of h × w spa-
tial dimensions for RGB images resized to h × w spatial dimensions, where we
set h,w = 352 following the convention set by [8,32,37]. We used PyTorch,
and due to the aliasing issues with resizing images in such frameworks which
have recently been brought to light [23], we used anti-aliasing in our resizing
of the images. Both the images and segmentation maps were initially loaded
in with a value range of [0, 1]. We then used a random train/validation/test
split of 80%/10%/10% following the convention set by [8,15,17,28,32], and ran-
domly augmented the training input-target pairs as they were loaded in during
each epoch using: 1) a Gaussian blur with a 25 × 25 kernel with a standard
deviation uniformly sampled from [0.001, 2]; 2) colour jitter with a brightness
factor uniformly sampled from [0.6, 1.4], a contrast factor uniformly sampled
from [0.5, 1.5], a saturation factor uniformly sampled from [0.75, 1.25], and a hue
factor uniformly sampled from [0.99, 1.01]; 3) horizontal and vertical flips each
with a probability of 0.5; and 4) affine transforms with rotations of an angle
sampled uniformly from [−180◦, 180◦], horizontal and vertical translations each
of a magnitude sampled uniformly from [−44, 44], scaling of a magnitude sam-
pled uniformly from [0.5, 1.5] and shearing of an angle sampled uniformly from
[−22.5◦, 22◦]. Out of these augmentations, 1) and 2) were applied only to the
image, while the rest of the augmentations were applied consistently to both
the image and the corresponding segmentation map. Following augmentation,
the image RGB values were normalised to an interval of [−1, 1]. We note that
performance was achieved by resizing the segmentation maps used for train-
ing with bilinear interpolation without binarisation, however the values of the
segmentation maps in the validation and test sets were binarised after resizing.

We then trained FCBFormer on the training set for each considered polyp
segmentation dataset for 200 epochs using a batch size of 16 and the AdamW
optimiser [21] with an initial learning rate of 1e−4. The learning rate was then
reduced by a factor of 2 when the performance (mDice) on the validation set

1 Available: https://datasets.simula.no/kvasir-seg/.
2 Available: https://polyp.grand-challenge.org/CVCClinicDB/.

https://datasets.simula.no/kvasir-seg/
https://polyp.grand-challenge.org/CVCClinicDB/
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did not improve over 10 epochs until reaching a minimum of 1e−6, and saved
the model after each epoch if the performance (mDice) on the validation set
improved. The loss function used was the sum of the binary cross entropy (BCE)
loss and the Dice loss.

For comparison against alternative architectures, we also trained and eval-
uated a selection of well-established and state-of-the-art examples, which also
predict full-size segmentation maps, on the same basis as FCBFormer, includ-
ing: U-Net [25], ResUNet [38], ResUNet++ [17], PraNet [8], and MSRF-Net
[28]. This did not include SSFormer, as an official codebase has yet to be made
available and the model by itself does not predict full-size segmentation maps.
However, we considered our own implementation of SSFormer in an ablation
study presented at the end of this section. To ensure these models were trained
and evaluated in a consistent manner while ensuring training and inference was
conducted as the authors intended, we used the official codebase3 provided for
each, where possible4 and modified this only to ensure that the models were
trained and evaluated using data of 352 × 352 spatial dimensions and that the
same train/validation/test splits were used.

Some of the codebases for the existing models implement the respective model
in TensorFlow/Keras, as opposed to PyTorch as is the case for FCBFormer. After
observing slight variation in the results returned by the implementations of the
considered metrics in these frameworks for the same inputs, we took steps to
ensure a fair and balanced assessment. We therefore predicted the segmentation
maps for each assessment within each respective codebase, after training, and
saved the predictions. In a separate session using only Scikit-image, we then
loaded in the targets for each assessment from source, resized to 352× 352 using
bilinear interpolation, and binarised the result. The binary predictions were then
loaded in, and we used the implementations of the metrics in Scikit-learn to
obtain our results. Note that this was done for all models in each assessment.

3.2 Evaluation

We present some example predictions for each model in Fig. 3. From this, it can
be seen how FCBFormer predicts segmentation maps which are generally more
consistent with the target than the segmentation maps computed by the exist-
ing models, and which demonstrate robustness to challenging morphology, high-
lighted by cases where the existing models are unable to represent the boundary
well. This particular strength in segmenting polyps for which the boundary is
less apparent is likely a result of the successful combination of the strengths of
transformers and FCNs in FCBFormer, leading to the main structures of polyps
being dealt with by the transformer branch (TB), while the fully convolutional

3 ResUNet++ code available: https://github.com/DebeshJha/ResUNetPlusPlus.
PraNet code available: https://github.com/DengPingFan/PraNet.
MSRF-Net code available: https://github.com/NoviceMAn-prog/MSRF-Net.

4 For U-Net and ResUNet, we used the implementations built into the ResUnet++
codebase (available: https://github.com/DebeshJha/ResUNetPlusPlus).

https://github.com/DebeshJha/ResUNetPlusPlus
https://github.com/DengPingFan/PraNet
https://github.com/NoviceMAn-prog/MSRF-Net
https://github.com/DebeshJha/ResUNetPlusPlus
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branch (FCB) serves to ensure a reliable full-size boundary around this main
structure. We demonstrate this in Fig. 4, where we show the features extracted
by TB and FCB, and the predictions, for examples from the Kvasir-SEG [16]
test set. The predictions are shown for the model with FCB, as defined, as well
as for the model without FCB, where we concatenate the output of TB channel-
wise with a tensor of 0’s in place of the output of FCB. This reveals how the
prediction head (PH) performs with and without the information provided by
FCB, and in turn the role of FCB in assisting with the prediction. The most
apparent function is that FCB highlights the edges of polyps, as well as the
edges of features that may cause occlusions of polyps, such as other objects in
the scene or the perimeter of the colonoscope view. This can then be seen to
help provide a well-defined boundary, particularly when a polyp is near or partly
occluded by such features.

Fig. 3. Example inputs and targets from the Kvasir-SEG test set [16] and the predic-
tions for FCBFormer and the considered existing architectures. FF is FCBFormer, PN
is PraNet, MN is MSRF-Net, R++ is ResUNet++, RU is ResUNet, and UN is U-Net.
Each model used for this was the variant trained on the Kvasir-SEG training set.

Primary Evaluation. For each dataset, we evaluated the performance of the
models with respect to the mDice, mIoU, mPrecision, and mRecall metrics,
where m indicates an average of the metric value over the test set. The results
from these primary assessments are shown in Table 1, which show that FCB-
Former outperformed the existing models with respect to all metrics.

We note that for some of the previously proposed methods, we obtain worse
results than has been reported in the original papers, particularly MSRF-Net
[28]. This is potentially due to some of the implementations being optimised for
spatial dimensions of size 256 × 256, as opposed to 352 × 352 as has been used
here. This is supported by our retraining and evaluation of MSRF-Net [28] with
256×256 input-targets, where we obtained similar results to those reported in the
original paper. We therefore present the results originally reported by the authors
of each model in Table 2. Despite the potential differences in the experimental
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Fig. 4. Visualisation of the features returned by TB and FCB (channel-wise average),
and the with/without FCB predictions for examples from the Kvasir-SEG [16] test set.

set up, it can be seen that FCBFormer consistently outperforms other models
with respect to the observed mDice, one of the most important metrics out of
those considered, and also outperforms other models with respect to mRecall
on the Kvasir-SEG dataset [16], and mPrecision on the CVC-ClinicDB dataset
[2]. FCBFormer can also be seen to perform competitively with respect to the
mIoU.

Table 1. Results from our primary assessment.

Dataset Kvasir-SEG [16] CVC-ClinicDB [2]

Metric mDice mIoU mPrec. mRec. mDice mIoU mPrec. mRec.

U-Net [25] 0.7821 0.8141 0.7241 0.8450 0.8464 0.7730 0.8496 0.8796

ResUNet [38] 0.5133 0.3792 0.5937 0.5968 0.5221 0.4120 0.6151 0.5895

ResUNet++ [17] 0.8074 0.7231 0.8991 0.7874 0.5211 0.4126 0.5633 0.5693

MSRF-Net [28] 0.8586 0.7906 0.8933 0.8774 0.9198 0.8729 0.9222 0.9308

PraNet [8] 0.9011 0.8403 0.9034 0.9272 0.9358 0.8867 0.9370 0.93888

FCBFormer (ours) 0.9385 0.8903 0.9459 0.9401 0.9469 0.9020 0.9525 0.9441

Generalisability Tests. We also performed generalisability tests following the
convention set by [28,32]. Using the same set of metrics, we evaluated the models
trained on the Kvasir-SEG/CVC-ClinicDB training set on predictions for the full
CVC-ClinicDB/Kvasir-SEG dataset. Such tests reveal how models perform with
respect to a different distribution to that considered during training.
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Table 2. Results originally reported for existing models. Note that U-Net and ResUNet
were not originally tested on polyp segmentation, and as such we present the results
obtained by the authors of ResUNet++ [17] for these models. For ease of comparison,
we include the results we obtained for FCBFormer in our primary assessment.

Dataset Kvasir-SEG [16] CVC-ClinicDB [2]

Metric mDice mIoU mPrec. mRec. mDice mIoU mPrec. mRec.

U-Net [25] 0.7147 0.4334 0.9222 0.6306 0.6419 0.4711 0.6868 0.6756

ResUNet [38] 0.5144 0.4364 0.7292 0.5041 0.4510 0.4570 0.5614 0.5775

ResUNet++ [17] 0.8133 0.7927 0.7064 0.8774 0.7955 0.7962 0.8785 0.7022

MSRF-Net [28] 0.9217 0.8914 0.9666 0.9198 0.9420 0.9043 0.9427 0.9567

PraNet [8] 0.898 0.840 − − 0.899 0.849 − −
FCBFormer (ours) 0.9385 0.8903 0.9459 0.9401 0.9469 0.9020 0.9525 0.9441

The results for the generalisability tests are given in Table 3, where it can
be seen that FCBFormer exhibits particular strength in dealing with images
from a somewhat different distribution to those used for training, significantly
outperforming the existing models with respect to most metrics. This is likely a
result of the same strengths highlighted in the discussion of Fig. 3.

Table 3. Results from our generalisability tests.

Training data Kvasir-SEG [16] CVC-ClinicDB [2]

Test data CVC-ClinicDB [2] Kvasir-SEG [16]

Metric mDice mIoU mPrec. mRec. mDice mIoU mPrec. mRec.

U-Net [25] 0.5940 0.5081 0.6937 0.6184 0.5292 0.4036 0.4613 0.8481

ResUNet [38] 0.3359 0.2425 0.5048 0.3307 0.3344 0.2222 0.2618 0.8164

ResUNet++ [17] 0.5638 0.4750 0.7175 0.5908 0.3077 0.2048 0.3340 0.4778

MSRF-Net [28] 0.6238 0.5419 0.6621 0.7051 0.7296 0.6415 0.8162 0.7421

PraNet [8] 0.7912 0.7119 0.8152 0.8316 0.7950 0.7073 0.7687 0.9050

FCBFormer (ours) 0.8735 0.8038 0.8995 0.8876 0.8848 0.8214 0.9354 0.8754

As in our primary assessment, we also present results reported elsewhere.
Similar generalisability tests were undertaken by the authors of MSRF-Net [28],
leading to the results presented in Table 4. Again, we observe that FCBFormer
outperforms other models with respect to most metrics.

Ablation Study. We also performed an ablation study, where we started from
our implementation of SSFormer given in Fig. 2, since an official codebase has
yet to be made available, and stepped towards FCBFormer. We refer to our
implementation of SSFormer as SSFormer-I. This model was trained to predict
segmentation maps of h

4×w
4 spatial dimensions, and its performance in predicting
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Table 4. Results from the generalisability tests conducted by the authors of MSRF-
Net [28]. Note, ResUNet [38] was not included in these tests. For ease of comparison,
we include the results we obtained for FCBFormer in our generalisability tests.

Training data Kvasir-SEG [16] CVC-ClinicDB [2]

Test data CVC-ClinicDB [2] Kvasir-SEG [16]

Metric mDice mIoU mPrec. mRec. mDice mIoU mPrec. mRec.

U-Net [25] 0.7172 0.6133 0.7986 0.7255 0.6222 0.4588 0.8133 0.5129

ResUNet++ [17] 0.5560 0.4542 0.6775 0.5795 0.5147 0.4082 0.7181 0.4860

MSRF-Net [28] 0.7921 0.6498 0.7000 0.9001 0.7575 0.6337 0.8314 0.7197

PraNet [8] 0.7225 0.6328 0.7888 0.7531 0.7293 0.6262 0.7623 0.8007

FCBFormer (ours) 0.8735 0.8038 0.8995 0.8876 0.8848 0.8214 0.9354 0.8754

full-size segmentation maps was then assessed by upsampling the predictions to
h×w using bilinear interpolation then binarisation. We then removed the original
prediction layer and used the resulting architecture as the transformer branch
(TB) in FCBFormer, to reveal the benefits of our fully convolutional branch
(FCB) and prediction head (PH) for full-size segmentation in isolation of the
improved progressive locality decoder (PLD+), and we refer to this model as
SSFormer-I+FCB. The additional performance of FCBFormer over SSFormer-
I+FCB then reveals the benefits of PLD+. Note that SSFormer-I and SSFormer-
I+FCB were both trained and evaluated on the same basis as FCBFormer and
the other considered existing state-of-the-art architectures.

The results from this ablation study are given in Tables 5 and 6, which indi-
cate that: 1) there are significant benefits of FCB, as demonstrated by SSFormer-
I+FCB outperforming SSFormer-I with respect to most metrics; and 2) there
are generally benefits of PLD+, demonstrated by FCBFormer outperforming
SSFormer-I+FCB on both experiments in the primary assessment and 1 out of
2 of the generalisability tests, with respect to most metrics.

Table 5. Results from the primary assessment in the ablation study. For ease of com-
parison, we include the results we obtained for FCBFormer in our primary assessment.

Dataset Kvasir-SEG [16] CVC-ClinicDB [2]

Metric mDice mIoU mPrec. mRec. mDice mIoU mPrec. mRec.

SSFormer-I 0.9196 0.8616 0.9316 0.9226 0.9318 0.8777 0.9409 0.9295

SSFormer-I+FCB 0.9337 0.8850 0.9330 0.9482 0.9410 0.8904 0.9556 0.9307

FCBFormer 0.9385 0.8903 0.9459 0.9401 0.9469 0.9020 0.9525 0.9441
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Table 6. Results from the generalisability test in the ablation study. For ease of com-
parison, we include the results we obtained for FCBFormer in our generalisability tests.

Training data Kvasir-SEG [16] CVC-ClinicDB [2]

Test data CVC-ClinicDB [2] Kvasir-SEG [16]

Metric mDice mIoU mPrec. mRec. mDice mIoU mPrec. mRec.

SSFormer-I 0.8611 0.7813 0.8904 0.8702 0.8691 0.7986 0.9178 0.8631

SSFormer-I+FCB 0.8754 0.8059 0.8935 0.8963 0.8704 0.7993 0.9280 0.8557

FCBFormer 0.8735 0.8038 0.8995 0.8876 0.8848 0.8214 0.9354 0.8755

4 Conclusion

In this paper, we introduced the FCBFormer, a novel architecture for the segmen-
tation of polyps in colonoscopy images which successfully combines the strengths
of transformers and fully convolutional networks (FCNs) in dense prediction.
Through our experiments, we demonstrated the models state-of-the-art perfor-
mance in this task and how it outperforms existing models with respect to several
popular metrics, and highlighted its particular strengths in generalisability and
in dealing with polyps of challenging morphology. This work therefore repre-
sents another advancement in the automated processing of colonoscopy images,
which should aid in the necessary improvement of lesion detection rates and
classification.

Additionally, this work has interesting implications for the understanding
of neural network architectures for dense prediction. The method combines the
strengths of transformers and FCNs, by running a model of each type in par-
allel and concatenating the outputs for processing by a prediction head (PH).
To the best of our knowledge, this method has not been used before, and its
strengths indicate that there is still a great deal to understand about these
different architecture types and the basis on which they can be combined for
optimal performance. Further work should therefore explore this in more depth,
by evaluating variants of the model and performing further ablation studies. We
will also consider further investigation of dataset augmentation for this task,
where we expect the random augmentation of segmentation masks to aid in
overcoming variability in the targets produced by different annotators.
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