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Abstract. Recent non-linear ultrasound imaging methods estimate
acoustic tissue properties, such as speed-of-sound (SOS), density, and
compressibility, among others. These methods can be used to generate 2D
reconstructions of the properties of inner structures of the breast for fur-
ther analysis. Due to differences in the acoustic properties between can-
cerous and normal tissues, these reconstructions are particularly attrac-
tive for computerized analysis. In this work, we explored the feasibility
of using radiomic analysis on SOS images for breast lesion detection.
We performed an in-silico analysis of SOS slices extracted from 120 3D
virtual breast phantoms and built a system based on radiomic features
extracted from SOS images for the detection of breast masses. We mea-
sured the performance of the system in terms of the area under the ROC
curve (AUC) with 95% confidence intervals (CI). We also compared the
performance of lesion detection from SOS images against a model trained
with synthetic mammograms generated from the same breast phantoms.
Radiomic analysis on SOS images yielded statistically significant results
with AUCs of 0.73 (CI: 0.64–0.82), 0.89 (CI: 0.83–0.95), and 0.94 (CI:
0.89–0.98) at pixel-size of 1.5, 2.0 and 2.5 mm respectively. Radiomic
analysis on mammograms showed lower performance with an AUC of
0.62 (CI: 0.52–0.72). Our evidence suggests that the use of SOS images,
paired with radiomic analysis, could aid on the detection of breast masses
that are hard to recognise using digital mammography. Further investi-
gation on ultrasound-based reconstruction of SOS images of the breast
is warranted.

Keywords: Ultrasound · Mammography · Full waveform inversion ·
Breast cancer · Lesion detection · Radiomic analysis

1 Introduction

As of 2021, breast cancer was the most diagnosed cancer in women in the United
Kingdom and one of the leading causes of cancer-related deaths. Early cancer
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detection is crucial for better patient prognosis, and mammography is the pri-
mary screening modality used for this task. The utility of mammography screen-
ing has been reflected in a reduction on breast cancer mortality [5]. Despite its
advantages, mammography has the downside of exposing the patient to ionising
radiation, and has been shown to have a decreased sensitivity in radiologically
dense breasts due to the overlaying of dense tissues [9]. As an alternative to mam-
mography, ultrasound-based imaging is a non-invasive, radiation-free modality
that uses high-frequency sound waves to retrieve information about the inner
structures of the breast. Although breast ultrasound has a higher false positive
rate, and often requires to be supplemented by mammography for screening pur-
poses, it has shown a higher sensitivity in denser breasts and better diagnostic
accuracy on younger patients than digital mammography [4,29].

Due to the advantages of ultrasound imaging, the research community has
invested a lot of efforts in improving this technique as well as in developing
new ultrasound-based imaging methods [23,26]. Ultrasound imaging uses high
frequency sound waves to scan the interior of an organ. Reconstruction methods,
such as full-waveform inversion (FWI) solve the wave equation using all the
information in the recorded wavefield, including multiple scaterring, dispersion
and diffraction effects [24,28]. As a result, modern ultrasound-based imaging
techniques allow for a more accurate estimation of acoustic properties of the
tissue. FWI has shown superior reconstruction capacities than other ultrasound
techniques when tested on data representing a slice enclosing a cancerous mass
[18].

For diagnosis and screening purposes, we believe that one of the main advan-
tages of ultrasound imaging compared to mammography is the direct estimation
of acoustic tissue properties that are more suitable for the detection of cancer-
related anomalies. Specifically, ultrasound allows for the estimation of speed-of-
sound (SOS) propagation in the tissue. Previous researchers have measured dif-
ferences between the values of these properties in cancerous and non-cancerous
tissues [13,20]. As a result, we hypothesise that ultrasound-based imaging is
more suitable for fully-automated, quantitative analysis of the images. Specif-
ically, we propose that radiomic anaysis of SOS images can be used to detect
breast lesions. Radiomic analysis refers to computerised methods that use texture
features extracted from medical images for quantitative analysis [12]. Radiomic
analysis has shown encouraging performance for breast cancer diagnosis using
mammography [1] and classic ultrasound images [15].

In order to test our hypothesis, we conduct an in-silico experiment to measure
the performance of automatic lesion detection using SOS images of breasts by
means of fully-automated, computerised radiomic features. For this purpose,
we generated 3D digital breast phantoms corresponding to 60 healthy breasts
and 60 breasts with lesions. Subsequently we build a lesion detection system
based on radiomic features extracted from SOS images. For comparison purposes,
we generated mammograms of the same breast phantoms by simulating X-ray
propagation. Our results demonstrate that radiomic analysis on SOS images at
pixel-size(Δ) of 1.5, 2.0 and 2.5 mm (AUCs of 0.73, 0.89, and 0.94) significantly
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outperforms radiomic analysis in the mammograms (AUC of 0.62). Our findings
suggest that SOS images can be used for lesion detection via radiomics analysis.
This highlights the potential of ultrasound based imaging and the exploration
of imaging modalities that can characterise different acoustic properties of the
tissue.

2 Materials and Methods

In this section we describe how we generated a virtual breast cohort for the
in-silico experiments as well as the proposed method for the detection of breast
lesions from SOS images. Specifically, the generation of 3D breast phantoms and
SOS images are described in Sects. 2.1 and 2.2, respectively. Because we compare
our approach with radiomic analysis in mammography images, we also describe
the generation of synthetic mammograms in Sect. 2.3. Finally, in Sect. 2.4, we
describe the extraction of radiomic features and the construction of the lesion
detection model.

2.1 Virtual Breast Cohort

The generation of digital breast phantoms is an open problem in the community
and several modelling systems have been developed to date [3,17,30]. The aim
is to generate realistic and anatomically accurate models often utilised for the
development and validation of new imaging techniques [10]. For our experiments,
we used the simulation software developed for the Virtual Imaging Clinical Trial
for Regulatory Evaluation (VICTRE). The VICTRE project was carried out by
the U.S. Food and Drug Administration in order to reproduce virtual clinical
trials, which are often expensive in time and resources [2,25]. We selected this
simulator due to its adoption in the evaluation of X-ray breast imaging systems
[10,19]. The VICTRE simulator generates voxelised breast phantoms with a
pixel-size of 50µm that contain the different tissues of the breast [7], with the
possibility of inserting spiculated masses and calcifications. The phantoms are
customisable in total volume, fat percentage, distance from the chest wall to the
nipple, and other physiological characteristics. Figure 1 shows an example of a
breast phantom and corresponding 2D slices. The different tissue types in the
breast phantom and their properties are described in Sect. 2.2.

For our experiments, we generated a virtual cohort consisting of 120 sub-
jects: 60 phantoms without a spiculated mass (controls) and 60 phantoms with
a spiculated mass (cases) with a volume of 77.7 mm3 and diameter of 5 mm. The
only difference between cases and controls phantoms is the insertion of the spic-
ulated mass in the cases. In order to conduct experiments in a realistic cohort,
we simulated four types of breast phantoms, each reflecting different glandular-
ity types. As reference, we used the distribution of glandurality types found in
case-control studies of screening mammography (see [21]). Table 1 summarizes
the main features of our virtual cohort.
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Fig. 1. (a) Visualisation of a virtual 3D breast phantom. (b) Slices taken at different
positions along the X axis. Each colour identifies a different type of tissue in the slices.

Table 1. Summary of the virtual cohort.

Glandularity type Mean percent density (%) Mean volume (cm3) No. phantoms (%)

Dense 50 141.8 4

Heterogeneously dense 41 255.7 48

Scattered fibroglandular 25 497.7 56

Fatty 17 749.1 12

2.2 Speed-of-Sound Images

In order to assess the feasibility of using SOS images for lesion detection, we gen-
erate a stack of bidimensional SOS slices from each 3D breast phantom. Previous
works have investigated and measured SOS values in both normal and cancer-
ous breast tissue [6,14]. Therefore, we extract 2D SOS images by replacing each
tissue type in the phantoms by their corresponding SOS values as reported in
the literature. In Table 2, we summarise the SOS values used for each type of
tissue. This approach assumes an ideal reconstruction process of the SOS images.
In practice, the quality of the SOS slices obtained via ultrasound imaging will
depend on several variables, such as the imaging architecture and the reconstruc-
tion techniques. The investigation of imaging architectures and reconstruction
techniques for ultrasound-based imaging of the breast is beyond the scope of this
work and the utilisation of ideally-reconstructed SOS images is sufficient for our
feasibility study.
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Table 2. Speed-of-sound (SOS) propagation values for each type of tissue. Tissues are
ordered in increasing value of SOS.

Tissue Speed-of-sound propagation [m/s] Reference

Fat 1440.0 Hasgal et al.., 2012 [8]

Glandular 1505.0 Hasgal et al.., 2012 [8]

Water 1520.0 Ramirez et al.., 2017 [22]

Ligament 1525.0 Foster et al., 1984 [6]

Lesion 1572.0 Foster et al., 1984 [6]

Artery 1578.2 Hasgal et al.., 2012 [8]

Vein 1578.2 Hasgal et al.., 2012 [8]

Duct 1588.0 Klock et al.., 2016 [11]

Muscle 1588.4 Hasgal et al.., 2012 [8]

Nipple 1624.0 Hasgal et al.., 2012 [8]

Skin 1624.0 Hasgal et al.., 2012 [8]

Fig. 2. SOS images for different pixel-sizes. From left to right: 1.0, 1.5, 2.0, 2.5 and
3.0 mm.

Previous work has demonstrated the generation of ultrasound-based recon-
structions with pixel-size (Δ) down to 0.5 mm [16]. These pixel-sizes are an order
of magnitude lower than in mammography, in which pixel-size of 0.05 mm are
readily attainable by modern mammographic systems. In order to assess the
impact of the pixel-size on the performance of the system, we generate SOS
images at pixel-sizes between 1.0 mm and 3.0 mm (see Fig. 2).

2.3 Digital Mammography Simulation

Being the most widely used breast screening modality, we used radiomic analysis
of mammograms for comparison. For this purpose, we generated digital mam-
mograms from each of the virtual phantoms of the study cohort. Specifically,
we used the open-source X-ray imaging simulation code MC-GPU [2], in order
to simulate the image acquisition process of an actual mammography acquisi-
tion device, namely, a Siemens Mammomat Inspiration. MC-GPU is a GPU-
accelerated Monte Carlo simulation of X-ray interaction with matter; the code
models the source, primary radiation beam, scattering and absorption events,
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and direct-conversion detector, among other aspects that influence mammogra-
phy acquisition. For each phantom, we simulated the physical compression of the
breast in the craniocaudal direction using VICTRE, and obtained one cranio-
caudal mammography image, thus rendering a dataset of 120 mammograms, 60
cases, and 60 controls. Due to differences in breast volume, the image size of the
mammograms were 1000 × 2010 pixels for dense and heterogeneous phantoms,
and 1500× 2010 pixels for scattered and fatty phantoms. The pixel size in every
case was 85µm.

2.4 Lesion Detection

We built a system for the detection of lesions in SOS images in two phases. In
the training phase, we train a slice classifier that takes one SOS slice as input
and generates a score with the likelihood of a lesion. In the second phase, the
testing phase, the slice classifier is used to generate a score in each SOS slice of
a test phantom, and a greedy classifier estimates the score at the breast level.
We refer to this second phase as the breast classifier. To construction of the slice
classifier and the breast classifier are detailed below.

Slice classifier: as shown in Fig. 3, the slice classifier is trained with SOS images
extracted from the controls and the cases, with each phantom of the training set
contributing with one SOS image. Because the lesions only occupy a very small
volume of the 3D breast phantoms, SOS images in the cases are selected so that
the lesion is visible. In the controls, the SOS images are selected on the same
position as in the corresponding case. This allows to generate a training set of
2D SOS images with and without lesions. Figure 4 shows a pair of SOS images
with and without lesions.

Radiomic

analysis

Model

trainingControls

Cases

Slice

classifier

Training set

Fig. 3. Training of the slice classifier.
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Fig. 4. Example of SOS images used to train the slice classifier. (a) SOS image from
a case retrieved at a position where the lesion is visible. The lesion is highlighted by
the red square. (b) SOS image from the control corresponding to the same case and
position of (a). (Color figure online)

Back to the slice classifier in Fig. 3, each image in this training set goes
through a radiomic analysis block in order to extract texture descriptors. The
aim or radiomic analysis is to generate quantitative measures that describe the
textural appearance of the image. In turn, these measures are used to build
insightful models with supervised machine learning algorithms; in the case at
hand, the model corresponds to a classification model to differentiate SOS images
with and without lesions.

By their working principles, radiomic features can be categorised in five
groups: statistical features, which describe the histogram of gray level values of
the image; gray-level co-occurrence features that describe the statistical spatial
distribution of co-occurrent pixel intensities; gray-level run-length features that
describe the consecutive intensity values of the image (run-lengths); structural
features that describe the topological and geometric elements that constitute
the image; and finally, spectral features, which are features calculated from the
frequency-spatial domain of the image. In this work, we extract 33 radiomic fea-
tures from the breast region in our dataset using OpenBreast [21]. OpenBreast
is an open source tool for radiomic analysis.

Finally, the model training block in Fig. 3 uses extracted radiomic features to
build the slice classifier by means of logistic regression with sequential forward
feature selection [27].

Breast classifier: from the training phase, the slice classifier should be able
to classify SOS images with and without lesions. However, at testing time, each
breast phantom is comprised of a full stack of 2D SOS images, whereas the
potential location of the lesions is unknown. For this reason, the aim of the
breast classifier is to analyse the full stack of SOS images of a phantom in order
to generate a single estimate at the breast level.

Because SOS images are generated by slicing the 3D breast volume, not all
SOS images in the stack have useful information. As shown in Fig. 5, the trailing
2D slices of a phantom correspond to the nipple region, whereas the leading slices
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correspond to the pectoralis muscle. For this reason, the slices at the trailing 10%
and leading 30% of the breast volume are discarded, and only the SOS images
of the remaining breast volume are processed.

90%
100%

30%

0%

Fig. 5. Selection of slices between 30% and 90% for the subsequent analysis by the
breast classifier.

Once the relevant slices have been selected by the procedure described above,
the slice classifier that was trained in the previous stage is used to generate a
classification score for each 2D slice in the breast. This generates an ordered
sequence of scores, Score 1 to Score n in Fig. 6. In order to attenuate noise in
the score estimate in individual slices, the greedy classifier of Fig. 6 works by
computing a 3-tap moving average on the sequence of scores and retrieves the
maximum score value of the sequence. This is a very simple method that yields
a high score as long as the slice classifier detects at least one slice with a lesion
in the full stack of slices of the breast.

Slice

classifier

Score 1

Score 2

Score 3

.

.

Score n 

Greedy

classifier
Score at 

breast level

Fig. 6. Breast classifier. The input is a stack of n SOS images and the output is a
single score for the breast.
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Table 3. AUC of the slice classifier using different pixel-sizes of SOS images.

Pixel-size (Δ) [mm] AUC (95% Confidence interval)

1.0 0.81 (0.74–0.89)

1.5 0.88 (0.81–0.94)

2.0 0.97 (0.94–1.00)

2.5 0.95 (0.90–0.99)

3.0 0.96 (0.93–1.00)

3 Experiments and Results

For all experiments, the results reported correspond to a randomised 5-fold cross
validation. In each fold, the slice classifier is built using SOS images retrieved only
from the training set and the breast classifier generates a score for each virtual
breast in the test set. Performance was measured in terms of the area under
the receiver operating characteristic (ROC) curve (AUC). The ROC curve is a
graphical plot that illustrates the diagnostic ability of a binary classifier system.

3.1 Performance at the Slice Level

Because the breast classifier fully relies on the performance of the slice classifier,
in this section we first report the performance in the classification of SOS images.
At the image level, the greedy classifier is not used nor needed. Experiments are
performed under the same conditions for each pixel-size of SOS images, namely
1.0, 1.5, 2.0, 2.5, and 3.0 mm. Results at slice level are presented in Table 3.
As highlighted in that table, SOS images at 2.0 mm pixel-size yield the best
performance at the image level.

3.2 Performance at the Breast Level

In this section, we report the results on lesion detection at the breast level. For
comparison purposes, we also performed radiomic analysis of synthetic mam-
mographic images generated as described in Sect. 2.3. For this purpose, in each
mammogram, we process a region of 17× 17 mm2 enclosing the location of each
lesion (i.e. see Fig. 7a) for the extraction of radiomic features and the construc-
tion of a lesion classifier, as shown in Fig. 7b. Performance results at the breast
level are presented in Table 4. In this case, SOS images outperform mammog-
raphy at all pixel-sizes, with the 2.5 mm pixel-size having the best performance.
Figure 8 shows the ROC curve for the three top performing pixel-sizes using SOS
images and the ROC curve of the model trained using mammography.

4 Discussion

The results show that the use of SOS images outperforms synthetic mammo-
grams to detect breast lesions in pixel-sizes between 1.0 and 2.5 mm. The pixel-
size that performs the highest at the breast level is 2.5 mm. Figure 9a shows
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Table 4. AUC for the breast classifier using different pixel-sizes of SOS images and
compared whit the mammography.

Modality Pixel-size (Δ) [mm] AUC (95% Confidence interval)

SOS image 1.000 0.67 (0.57–0.77)

1.500 0.73 (0.64–0.82)

2.000 0.89 (0.83–0.95)

2.500 0.94 (0.89–0.98)

3.000 0.59 (0.49–0.69)

Mammography 0.085 0.62 (0.52–0.72)

Fig. 7. Construction of lesion classifier for mammograms. (a) The region of interest
corresponds to an area of 17 × 17 mm2 surrounding the location of the spiculated
mass. (b) Training of the classifier.

the distribution of case and control scores using the breast classifier at 2.5 mm
pixel-size, and Fig. 9b shows the distribution of scores using the lesion classifier
on digital mammograms. This figure shows that the scores estimated using SOS
images allow for a more clear discrimination between cases and controls than
mammograms. The lower performance obtained using mammography images can
be explained by the overlapping of the different breast tissues: since mammog-
raphy can be roughly described as a projection of the breast internal structures,
overlapping can have a masking effect on small elements with similar radiation
density to the surrounding tissues.

Figure 10 shows the output scores, after the 3-tap moving average, for each
slice of the stack of images corresponding to a case and its respective control. In
said figure, scores are very similar for most case and control slices. However, for
the slices close to the centre of the lesion (vertical green line), there are notable
differences. This behaviour clearly discriminates cases from controls.
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Fig. 9. Distribution of scores in cases and controls for: (a) the breast classifier using
SOS images at pixel-size of 2.5 mm, and (b) the lesion classifier using mammograms.
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Fig. 10. Scores of the slice classifier for each slice of the stack of images corresponding
to a case and its respective control. The green line represents the position of the lesion
center. (Color figure online)

The sequential forward feature selection technique finds the most relevant fea-
tures that the logistic regressor uses for the classification. Overall, when training
the slice classifier using SOS images, the most relevant features were: statistical,
gray-level co-occurrence, and gray level path length features, while for the lesion
classifier using digital mammograms, the most relevant features were: structural
and spectral features (see Table 5).

In this work we used SOS images that would be an ideal reconstruction of
the speed of sound parameters for the breast tissues. In a real life scenario,
different imaging architectures and reconstruction algorithms could affect the
quality and noise level of the reconstructed images. In addition, we considered
one type of lesion, spiculated masses with a volume of 77.7 mm3; these lesions are
among the most common malignant breast lesions. Future work should take into
consideration the impact of the image quality on performance, as well as explore
the impact of lesion size variability and consider the detection of other elements
of interest, such as microcalcifications, which are typically more problematic in
ultrasound imaging.
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Table 5. Features selected by the model after the forward sequential feature selection,
for each pixel-size of SOS images and mammography.

Feature group Feature SOS images Mammography

1.000 mm 1.500 mm 2.000 mm 2.500 mm 3.000 mm 0.085 mm

Statistical features Minimum gray-level value x
Maximum gray-level value x x x x

Mean gray-level value x

Gray-level range x x x x

Gray-level variance x

Entropy

Skewness x x

Kurtosis x x x x

5th percentile x

30th percentile x

70th percentile x

90th percentile

Balance 1 x x

Balance 2 x x

Co-ocurrence features Energy
Correlation x x

Contrast x x

Homogeneity x

Entropy x x x

Run-length features Run-length non-uniformity x x x
Gray-level non-uniformity x

Long run emphasis

Short run emphasis

Run percentage

High gray-level run x

Low gray-level run x

Structural features Gradient energy x
Gradient variance x x

Modified laplacian

Spectral features Wavelet sum x
Wavelet variance

Wavelet ratio

Fractal dimension

5 Conclusions

In this work, we studied the feasibility of utilising speed-of-sound (SOS) prop-
agation images of the breast for the detection of breast lesions via radiomic
analysis. We performed an in-silico test, obtaining SOS images from a cohort of
120 3D synthetic phantoms, that were subsequently analysed at the breast level
to detect breast lesions. We compared the performance of using SOS images
against using the most common imaging modality for breast cancer diagnosis
and detection, namely mammography. The results show that the performance
using SOS images at the breast level outperforms mammography at pixel-sizes
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between 1.0 and 2.5 mm. This indicates that using these novel ultrasound-based
imaging modalities as an adjunct for breast lesion detection would be feasible.
It also shows the importance of exploring imaging modalities that can resolve
tissue descriptors that are not classically used, such as speed SOS.

Novel methods for ultrasound-based medical imaging have recently been
developed. These novel methods have the ability to construct a profile of some
physical properties of the organ, such as SOS. More common imaging modali-
ties for breast cancer screening, such as mammography or breast tomosynthesis,
have the downside of being essentially projections of the breast; their capacity
to resolve areas of interest depends on the attenuation contrast between breast
elements, but the superposition of tissues, and the similar radio-density of inter-
esting elements such as cancerous masses and fibroglandular tissue, can obscure
these areas and result in missed cases. The use of novel technologies that allow
for the characterisation of other properties of the breast, and other types of
2D visualisations such as SOS profiles at specific positions in the organ, could
be explored to overcome the obstacles encountered with currently widespread
modalities.
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