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Abstract. Contrastive learning has proven useful in many applications
where access to labelled data is limited. The lack of annotated data is
particularly problematic in medical image segmentation as it is difficult
to have clinical experts manually annotate large volumes of data such as
cardiac structures in ultrasound images of the heart. In this paper, We
propose a self supervised contrastive learning method to segment the left
ventricle from echocardiography when limited annotated images exist.
Furthermore, we study the effect of contrastive pretraining on two well-
known segmentation networks, UNet and DeepLabV3. Our results show
that contrastive pretraining helps improve the performance on left ventri-
cle segmentation, particularly when annotated data is scarce. We show
how to achieve comparable results to state-of-the-art fully supervised
algorithms when we train our models in a self-supervised fashion followed
by fine-tuning on just 5% of the data. We show that our solution outper-
forms what is currently published on a large public dataset (EchoNet-
Dynamic) achieving a Dice score of 0.9252. We also compare the perfor-
mance of our solution on another smaller dataset (CAMUS) to demon-
strate the generalizability of our proposed solution. The code is available
at (https://github.com/BioMedIA-MBZUAI/contrastive-echo).

Keywords: Contrastive learning · Segmentation · Echocardiography ·
Ultrasound · SimCLR · BYOL · Self-supervised

1 Introduction

Echocardiography is a valuable diagnostic tool in cardiovascular disease as it
can rapidly locate the presence of some abnormalities within the heart. This
involves the quantification of heart structures such as the left ventricle. However,
there is a lot of room for error in this process due to factors such as operator
variability, patient’s characteristics e.g. high body mass index, or low image
quality compared to other imaging modalities [1].
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Deep learning solutions can help automate the annotation process, but they
are limited by the quantity and quality of labelled training data which can be
difficult or expensive to obtain. For the problem of left ventricle segmentation
in particular, previous works have had some success in detecting and quantify-
ing heart abnormalities but there is room for improvement, potentially with the
acquisition of more data [12]. Since annotation of the raw data is cumbersome,
self-supervised learning helps make use of unlabelled data that does not require
input from clinical experts. In similar tasks such as view classification of echocar-
diography images, contrastive pretraining on unlabelled data showed impressive
improvements in results [3]. This indicates that there is a potential benefit for
segmentation problems given that the features learned for classification should
not be too dissimilar.

2 Related Work

In this section, we aim to give a brief revisit to important concepts which our
paper investigates. We believe this is important to make our work clearer to a
wide range of audiences.

2.1 Segmentation Networks

We investigate two well-known segmentation networks, UNet [17] and
DeepLabV3 [5], which have demonstrated huge success in many segmentation
problems and this is why we have chosen them. UNet is a fully convolutional
network that consists of a contracting path (encoder) and an expanding path
(decoder) in a U-shaped architecture. Features are extracted by the contract-
ing path and then upsampled gradually by the expanding path, with skip con-
nections between corresponding layers in the contracting and expanding paths.
The second network is DeepLabV3 which has initially shown great performance
on semantic segmentation of natural images. It introduces an Atrous Spatial
Pyramid Pooling (ASPP) module [4] that utilizes atrous (dilated) convolutions
at different rates to solve the problem of object scale variations in addition to
expanding the receptive field while keeping the feature maps’ spatial dimensions.
ASPP consists of multiple dilated convolutions at different rates stacked in par-
allel followed by a concatenation of the outputs of said convolutions. Features
from the encoder are passed through the ASPP module before upsampling back
to the original resolution. In the following subsection, we review the use of these
two networks in echocardiographic left ventricle segmentation.

2.2 Ventricular Segmentation

One example pertaining to the use of deep learning in ventricular segmentation
made use of a UNet to segment the left ventricle in more than 1500 images from
ultrasound videos of 100 patients [18]. The network was trained on the output
of another segmentation algorithm that used a Kalman filter. Expert annotation



682 M. Saeed et al.

was only available for 52 of the images, so the dataset was expanded by auto-
matically annotating more examples using the Kalman filter based algorithm.
Consequently, the UNet trained on this data was able to achieve a Dice score of
0.87, outperforming the previous algorithm.

Later work by [14] proposed a modification to the UNet architecture by
combining it with a feature pyramid network. This was trained for left ventricle
segmentation on the publicly available Cardiac Acquisitions for Multi-structure
Ultrasound Segmentation (CAMUS) dataset [13] which consists of two- and four-
chamber ultrasound images from 500 patients. Testing was then done on an
external dataset of 137 four-chamber view images. Results showed that this
architecture outperformed other state-of-the-art methods, achieving a Dice score
of 0.953 on the test set.

Recent work proposed ResDUnet [2], which is a new deep learning method
based on UNet, that integrates cascaded dilated convolution to extract fea-
tures at difference scales, and deploys an improved version of the residual blocks
instead of the standard UNet blocks to ease the training task. ResDUnet out-
performs state-of-the-art methods on the CAMUS dataset with a Dice score of
0.951 compared to 0.939 with a standard UNet.

Furthermore, [16] attempted the same task, training on their large publicly
available EchoNet-Dynamic dataset [15], containing 20,060 annotated images
from 10,030 patients. A DeepLabV3 [5] network was chosen for this task and
obtained a Dice score of 0.9211.

2.3 Contrastive Learning

Whilst there are multiple published contrastive learning algorithms in the liter-
ature, we have chosen to investigate two commonly used ones, namely SimCLR
and BYOL.

SimCLR. SimCLR [7] is a popular framework for self-supervised contrastive
learning, used to learn representations from unlabelled data. In essence, SimCLR
creates two augmented versions of every input image. For each minibatch, one pair
of augmented images coming from the same original image is chosen as the positive
pair. All other pairs coming from different input images are considered negative
pairs. The aim then becomes to maximize the agreement within the positive pair
while simultaneously maximizing the disagreement between the positive pair and
all the negative pairs. The framework begins with a base encoder which is a typical
feature extractor such as a ResNet-50 [10]. A projection head is added on top of
this to map the encoded representation to a new space in which a contrastive loss
based on cosine similarity is applied. Figure 1 gives an overall view of how SimCLR
works.

BYOL. Meanwhile, Bootstrap Your Own Latent (BYOL) [9] uses a similar
contrastive approach to SimCLR but without negative pairs, and for this reason
we chose it to compare the effect of this difference on the contrastive pretrain-
ing. It always uses a single pair of images which are transformed versions of
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Fig. 1. SimCLR framework applied to the echo images. The goal of the contrastive
loss is to attract the positive pairs by maximizing their agreement, while repelling the
negative pairs by maximizing their disagreement.

the same input. The framework allows representation learning by making use
of two networks (called the online and target network). The online network is
trained to predict the output of the target network. Meanwhile, the target net-
work’s weights are updated with just an exponential moving average of the online
network. The two networks are mostly identical, having an encoder (usually a
ResNet-50), followed by a projection head which linearly projects the encoder’s
features onto a different space. The only difference is that the online network
has an added predictor head, which is simply another linear projection. Figure 2
outlines the architecture. During training, the online network learns by attempt-
ing to maximize the agreement between the outputs from the two networks by
minimizing a contrastive loss which simplifies to twice the negative of the cosine
similarity between the two networks’ outputs.

3 Methods

In this paper, we developed a solution to segment the left ventricle in echocardio-
graphic images that is based on self-supervised contrastive learning. We argue
why this could be a better approach than full supervision. This section describes
the used data, the setup and the conducted experiments.
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Fig. 2. BYOL framework applied to the echo images. The aim is for the two networks
to eventually produce a common representation given differently augmented versions
of the same input image.

3.1 Datasets

EchoNet-Dynamic. The EchoNet-Dynamic dataset [15] consists of 10,036
videos of apical four-chamber (A4C) view for patients who had an echocardiog-
raphy between 2016 and 2018 at Stanford Health Care. Each video (encoded in
RGB) consists of a sequence of 112 × 112 2D images extracted from the Digital
Imaging and Communications In Medicine (DICOM) file and labeled with the
corresponding left ventricle tracing, ejection fraction (EF), volume at end-systole
(ES) and volume at end-diastole (ED) by expert sonographers. For each video,
two frames (ES and ED) are annotated with manual segmentation. To the best
of our knowledge this is currently the largest publicly available dataset for left
ventricle segmentation, making it ideal for our contrastive task, given that it has
a large amount of both labelled and unlabelled data.

CAMUS. The Cardiac Acquisitions for Multi-structure Ultrasound Segmen-
tation (CAMUS) dataset [13] contains scans of 500 patients who underwent
echocardiography at the University Hospital of St Etienne in France. Each
patient’s data is labelled with the corresponding left ventricle ejection frac-
tion (EF) and volumes at end-systole (ES) and end-diastole (ED). Annota-
tions include tracings of the left ventricle endocardium, myocardium and the
left atrium (LA) for both apical two-chamber (A2C) and apical four-chamber
(A4C) views of the heart. Training and testing sets consist of 450 annotated
and 50 unannotated videos, respectively. We found that 50 patients are missing
from the training set, resulting in data of only 400 patients for the training set.
We have chosen this small dataset to investigate the importance of contrastive
learning while experimenting with limited data.
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3.2 Experimental Setup

We experiment with SimCLR and BYOL pretraining (pretext task) for left ven-
tricle segmentation on the EchoNet-Dynamic and CAMUS datasets. First, we
pretrained a DeepLabV3 backbone (ResNet-50 with atrous convolutions [5]) and
a UNet backbone (original UNet encoder) with both SimCLR and BYOL. For
the pretraining, unlabelled frames from the datasets are used. Thereafter, the
pretrained backbones were used to train the segmentation networks, DeepLabV3
and UNet (downstream task). Figure 3 outlines the overall experiment setup. The
downstream segmentation experiments were done with 100%, 50% 25% and 5%
of the available labelled data. In addition, we compare the SimCLR and BYOL
pretrained backbones to randomly initialized and ImageNet pretrained (fully
supervised) ones to see if self-supervision is beneficial. For evaluation, the Dice
similarity coefficient (DSC) is used as a metric.

DSC = 2 ∗ intersection

intersection + union
(1)

Fig. 3. Overall experimental setup: The encoders are first trained on unlabelled data
using SimCLR and BYOL. The pretrained weights are then loaded into DeepLabV3
and UNet to train on labelled data for the task of left ventricle segmentation.

All images were resized to 224 × 224 pixels for both the pretext and down-
stream tasks, since we keep the same setup used in SimCLR [7]. Bilinear
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interpolation was used for the input images and nearest neighbour interpola-
tion was used for the masks.

Pretext Task. All backbones were pretrained for 300 epochs on two NVIDIA
A6000 GPUs. DeepLabV3 backbones were trained with a batch size of 128 (64
per device) and UNet backbones were trained with a batch size of 256 (128 per
device). An Adam optimizer was used for the pretraining with a learning rate
of 1e−3 for SimCLR and 0.2 for BYOL. These were chosen experimentally. For
both SimCLR and BYOL, we use the augmentation strategy proposed in the
SimCLR paper to see if these contrastive learning algorithms work out of the
box for ventricular segmentation. The augmentations consist of random resized
cropping (scales = [0.08, 1.0], aspect ratios = [0.75, 1.33]), color distortions
(jittering with brightness = 0.8, contrast = 0.8, saturation = 0.8 and hue = 0.2),
Gaussian blurring (kernel size = 23) and random horizontal flipping, following
the default settings in [7].

Downstream Task. The segmentation tasks were trained on a single A6000
GPU with a batch size of 128. A Madgrad [8] optimizer was used because it was
found to converge better and faster than other optimizers and hyperparameters
were selected experimentally. The base learning rate was 1e−4 for DeepLabV3
experiments and 1e−5 for UNet experiments.

3.3 EchoNet-Dynamic Experiments

The two annotated ES and ED frames from every video were used for the down-
stream task, resulting in 14,920 images for training, 2,576 for validation and
2,552 for testing. This is the same setup as the original EchoNet-Dynamic paper
to allow a fair comparison and ensure that the sets are separated by patient.
Meanwhile, for pretraining, the unlabelled frames in between ES and ED were
used. One random frame between ES and ED was used for each patient. This
was done to avoid having frames that are too similar to each other. As a result,
the pretraining training set consisted of 7460 images, and the validation set
contained 1288 images.

3.4 CAMUS Experiments

For the downstream task, the 400 available annotated videos were split into 300
for training, 50 for validation and 50 for testing. Two frames (ES and ED) were
taken from each video, leading to a training set of 600 images, a validation set
of 100 images and a testing set of 100 images. For pretraining, a random frame
(not including ES or ED frame) was taken from each of the 300 training videos.
In addition, to create a validation set, a random frame from each of the videos in
the unannotated CAMUS test set was used. These are samples from the held out
CAMUS test set that were not used anywhere else in our experiments. Overall,
the pretraining task used 300 training images and 50 validation images.
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Table 1. Summary of experiments conducted on the EchoNet-Dynamic dataset with
different fractions of data for the downstream task.

No. Pretraining Network Dice (SD) 100% Dice (SD) 50% Dice (SD) 25% Dice (SD) 5%

1 – DeepLabV3 0.9204 (0.0483) 0.9164 (0.0490) 0.9090 (0.0559) 0.8920 (0.0718)

2 ImageNet DeepLabV3 0.9229 (0.0461) 0.9175 (0.0605) 0.9142 (0.0625) 0.8968 (0.0778)

3 SimCLR DeepLabV3 0.9252 (0.0476) 0.9242 (0.0452) 0.9190 (0.0509) 0.9125 (0.0548)

4 BYOL DeepLabV3 0.9209 (0.0636) 0.9042 (0.1027) 0.8938 (0.0906) 0.8816 (0.1111)

5 – UNet 0.9151 (0.0557) 0.9100 (0.0583) 0.9046 (0.0675) 0.8915 (0.0814)

6 SimCLR UNet 0.9185 (0.0493) 0.9157 (0.0571) 0.9078 (0.0619) 0.9048 (0.0653)

7 BYOL UNet 0.9070 (0.0718) 0.8959 (0.0775) 0.8768 (0.0997) 0.8318 (0.1284)

Table 2. Summary of experiments conducted on the CAMUS dataset with different
fractions of data for the downstream task.

No. Pretraining Network Dice (SD) 100% Dice (SD) 50% Dice (SD) 25% Dice (SD) 5%

1 – DeepLabV3 0.9095 (0.0272) 0.8941 (0.0369) 0.8731 (0.0646) 0.7803 (0.1517)

2 ImageNet DeepLabV3 0.9286 (0.0250) 0.9217 (0.0420) 0.9120 (0.0456) 0.8539 (0.0930)

3 SimCLR (C) DeepLabV3 0.9105 (0.0509) 0.8862 (0.0606) 0.8851 (0.0569) 0.8450 (0.1109)

4 SimCLR (E) DeepLabV3 0.9311 (0.0424) 0.9219 (0.0543) 0.9234 (0.0554) 0.9123 (0.0490)

5 BYOL (C) DeepLabV3 0.8189 (0.0777) 0.6202 (0.1275) 0.5727 (0.1263) 0.0084 (0.0269)

6 BYOL (E) DeepLabV3 0.8347 (0.1303) 0.7552 (0.1318) 0.6321 (0.1363) 0.5729 (0.2316)

7 – UNet 0.9125 (0.0263) 0.8921 (0.0415) 0.8883 (0.0506) 0.8006 (0.1864)

8 SimCLR (C) UNet 0.9102 (0.0498) 0.8965 (0.0663) 0.8597 (0.1031) 0.8013 (0.1102)

9 SimCLR (E) UNet 0.9296 (0.0506) 0.9224 (0.0798) 0.9248 (0.0596) 0.9077 (0.0574)

10 BYOL (C) UNet 0.8162 (0.1304) 0.7810 (0.1263) 0.7063 (0.1417) 0.0520 (0.0907)

11 BYOL (E) UNet 0.8824 (0.0746) 0.8366 (0.1073) 0.7984 (0.1418) 0.7256 (0.1720)

*(E): Pretrained on EchoNet-Dynamic data, (C): Pretrained on CAMUS data

4 Results

Tables 1 and 2 show the quantitative results of the experiments that were con-
ducted, for the EchoNet-Dynamic and CAMUS datasets respectively. Qualitative
results from selected models are also shown in Fig. 4.

4.1 EchoNet-Dynamic

As Table 1 shows, our proposed self supervised method which uses DeepLabV3
with a SimCLR pretrained backbone outperformed all other methods (including
the EchoNet-Dynamic [15] baseline - 0.9211 Dice), regardless of the amount of
data. In fact, with only 5% of the data, our method produces results (0.9125 Dice)
that are close to fully supervised training with all of the available data (0.9229
Dice). Furthermore, with the UNet architecture, SimCLR was found to be benefi-
cial although the improvement was minor. We also found ImageNet pretraining to
perform better than random initialization. However, BYOL did not have any sig-
nificant benefit over ImageNet pretraining or even random initialization. Finally,
DeepLabV3 performed better than UNet in the segmentation task.
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Easy Case Difficult Case

Fig. 4. Qualitative results using an ImageNet backbone with 100% data (blue), a Sim-
CLR backbone with 100% data (green), a SimCLR backbone with 5% data (yellow)
with DeepLabV3 and a BYOL backbone with 100% data (orange) with DeepLabV3
on the EchoNet-Dynamic dataset for two cases. Right: Case where predictions are
close to the ground truth (red). Left: More difficult case where predictions have more
discrepancy. (Color figure online)
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4.2 CAMUS

Results on the CAMUS dataset are shown in Table 2. When pretrained on
CAMUS, SimCLR backbones (0.9105 Dice) were found to perform worse than
ImageNet pretrained backbones (0.9286 Dice). However, SimCLR backbones
pretrained on the EchoNet-Dynamic dataset showed better performance (0.9311
Dice), exceeding both random initialization and ImageNet pretrained backbones.
This was the case for both DeepLabV3 and UNet. Meanwhile, BYOL backbones
continued to show worse performance on the CAMUS dataset as well, espe-
cially when pretrained on the CAMUS dataset itself. When finetuned on only
5% of the data, these backbones showed extremely poor performance, failing the
downstream segmentation task. Pretraining with EchoNet-Dynamic improved
the BYOL backbones, which achieved a Dice score of up to 0.7256 when fine-
tuned on 5% of the data and up to 0.8824 when finetuned on 100% of the data.

5 Discussion

The experiments have shown that our proposed self supervised method with
SimCLR outperforms the same method which uses BYOL when it comes to
pretraining backbones for left ventricle echocardiography segmentation. We also
noticed that BYOL is less stable than SimCLR. However, the purpose of the
experiments was to study the use of these models with minimal changes and see
how they perform out-of-the-box, without extensive tuning. This may be part
of the reason why BYOL has shown suboptimal performance.

The main difference between the two self supervised frameworks is the fact
that BYOL only uses positive pairs, trying to maximize agreement between
two augmented versions of a single image (positive pair) and hence find a com-
mon representation for them. Conversely, SimCLR tries to maximize agreement
between the differently augmented versions of an image (positive pair) while also
maximizing disagreement between that image and augmented versions of other
images (negative pairs). Meanwhile, BYOL’s contrastive learning is implicit and
indirectly dependent on the differences between the original images. In our exper-
iments, we use a random frame from each video to introduce some dissimilarity
between the original images, however it seems like this is not as effective as the
transformations that SimCLR uses.

Furthermore, contrastive learning requires large amounts of data to produce
good results, which is why pretraining on the CAMUS dataset with only 400
samples was not beneficial (rows 3 & 6 in Table 2). Hence, it makes sense for
EchoNet-Dynamic pretraining to be more beneficial and its ability to work with
a different dataset shows that generalizable features were learned from the pre-
training (rows 4 & 9 in Table 2).

Apart from contrastive learning, the experiments also suggest that
DeepLabV3 is more effective than UNet for echocardiography segmentation
(compare rows 3 & 6 in Table 1). In general, what makes DeepLabV3 perform
well is its ASPP module that captures multi-scale representations of high level
features extracted by the encoder, making it more resistant to changes in object
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scales (in this case the size of heart structures), which do vary depending on the
heart cycle and the anatomy of the patient’s heart.

6 Conclusion

While contrastive learning is an open research problem, we conclude from our
experiments that vanilla SimCLR pretraining could lead to an improvement in
cardiac ultrasound segmentation, especially when annotated data for the down-
stream task is limited. However, it is crucial to pretrain on a large enough dataset
to provide good results. Further experimentation could lead to a better under-
standing of contrastive learning frameworks in the context of cardiac ultrasound
imaging. For example, there is room for improvement on the augmentation strat-
egy used in the SimCLR paper because it targeted natural images not med-
ical images. Optimizing the choice of augmentations might lead to significant
improvements and is a good direction for future work in this area. Furthermore,
it was out of the scope of this paper to investigate different UNet or DeeplabV3
variations such as nnUNet [11] and DeeplabV3+ [6] and hence this may be a
good research direction to investigate. Additionally, both SimCLR and BYOL
are sensitive to batch sizes and require very large batch sizes for optimal perfor-
mance. Regardless, our work has shown that SimCLR does work with minimal
changes and moderate resources.
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