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Abstract. Early breast cancer diagnosis and lesion detection have been
made possible through medical imaging modalities such as mammog-
raphy. However, the interpretation of mammograms by a radiologist is
still challenging. In this paper, we tackle the problems of whole mam-
mogram classification and local abnormality detection, respectively, with
supervised and weakly-supervised approaches. To address the multi-scale
nature of the problem, we first extract superpixels at different scales. We
then introduce graph connexions between superpixels (within and across
scales) to better model the lesion’s size and shape variability. On top of
the multi-scale graph, we design a Graph Neural Network (GNN) trained
in a supervised manner to predict a binary class for each input image.
The GNN summarizes the information from different regions, learning
features that depend not only on local textures but also on the superpix-
els’ geometrical distribution and topological relations. Finally, we design
the last layer of the GNN to be a global pooling operation to allow for a
weakly-supervised training of the abnormality detection task, following
the principles of Multiple Instance Learning (MIL). The predictions of
the last-but-one GNN layer result in a superpixelized heatmap of the
abnormality probabilities, leading to a weakly-supervised abnormality
detector with low annotations requirements (i.e., trained with image-
wise labels only). Experiments on one private and one publicly available
datasets show that our superpixel-based multi-scale GNN improves the
classification results over prior weakly supervised approaches.

Keywords: Mammography - Superpixels - Graph - GNN -
Classification * Detection + Segmentation

1 Introduction

Breast cancer is the most common cancer in women worldwide [7]. Early-stage
screening through mammography has demonstrated strong efficacy in reducing
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mortality caused by breast cancer. The detection of abnormal areas is a key step
in the diagnosis process. However, since mammograms are 2D X-ray projections,
the abnormal lesions can be overshadowed by superimposing high-density tissues.

Current deep learning methods built on Convolutional Neural Networks
(CNN) have demonstrated good performances in the automated analysis of indi-
vidual mammograms, e.g., for the tasks of malignant image or region classifica-
tion [1,3]. To improve the ability to detect small lesions (e.g., calcifications) at
higher resolutions, a common alternative are patch-wise classification or detec-
tion approaches [15,16]. For instance, Shen et al. [16] proposed converting a patch
classifier into a whole image classifier by modifying the last layers of the network.
Instead, Ribli et al. [15] opt for an object detector approach (Faster RCNN [8]).
Fully supervised patch-wise approaches such as [15,16] require region-wise delin-
eations of the lesions, which are not part of clinical protocols. Removing the need
for lesion delineations, Choukroun et al. [4] proposed a weakly-supervised Multi-
ple Instance Learning (MIL) approach, where the model for patch predictions is
trained from image-wise labels only. Our approach is also weakly supervised but
we rely on superpixels instead of patches which later allows for detailed abnor-
mality region segmentation. To cope with the variability of both lesion’s size and
shape, we rely on a multi-scale graph representation of the mammogram where
each node represents a superpixel at a specific scale, and each superpixel regroups
neighboring pixels sharing common characteristics (e.g., pixel intensity) [2].

Despite mammograms being 2D uniform grids, abnormalities do not appear
at a single scale, nor are uniformly distributed in the Euclidean space. Motivated
by those two facts, we introduce an alternative representation of the image based
on a multi-scale graph and model the classification task with a Graph Neural
Network (GNN).

Graphs are powerful representation tools used to model the structure of
the underlying domain in medical imaging [10]. GNNs contextualize patch-level
information from their neighbors through message passing, thus enabling learn-
ing from both individual node features and the graph topological information.
Few recent works have addressed the analysis of mammographic images with
GNNs. In Du et al. [6], the authors introduced the fully supervised Graph Atten-
tion Networks (GAT) for mono-view mammography image classification. Their
model relies on a multi-scale graph representation of the mammogram, where
each node corresponds to a squared patch in a specific scale and zooming oper-
ations from radiologists are modeled as connections between neighboring scales.
Graphs have also been useful for modeling intrinsic geometric and semantic rela-
tions between ipsilateral views (Liu et al. [12]).

In this paper, we propose the supervised learning of the mono-view mammo-
gram classification task and the weakly-supervised learning of the abnormality
detection task, both based on a single multi-scale graph and a Graph Convolu-
tional neural Network (GCN) which only needs image-wise ground truth class
labels for training. Unlike Du et al.’s graph [6], where relationships between
scales are independent, our graph draws connections within and across scales,
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i.e., between each superpixel and its spatial neighbors in the same scale and
between neighboring superpixels in different scales.

In practice, our method assigns a set of features for each node in the multi-
scale graph by applying a customized encoder (denoted as Backbone). The
multi-scale graph and the node features are then fed to a GCN which outputs a
global classification of the mammogram along with multi-scale heat-maps used
for lesion detection by adaptive thresholding.

The model is trained on an in-house private dataset (PRV) and then eval-
uated on both the private dataset and a public dataset (INB), both of them
consisting of mammograms from different populations, countries of origin, and
acquired with different mammography system vendors. The experimental val-
idation shows that our proposed method yields competitive global classifica-
tion results while outperforming state-of-the-art weakly-supervised methods for
lesion detection on an unseen manufacturer dataset. To the best of our knowl-
edge, our learning framework scheme is the first weakly supervised method reach-
ing an AUC score of around 0.83 for breast-wise classification.

2 Methods

Let a breast imaging exam be composed of a mammogram Z, corresponding
to a Craniocaudal (CC) or a Medio-lateral oblique (MLO) view. Our goal is to
perform a breast cancer screening classification, intended to capture the presence
of malignant regions on the mammogram. We treat a mammogram as benign
when it has no or benign lesions only. We consider an image as malignant if
it contains at least one malignant lesion. In this context, we propose a deep
learning framework, as depicted in Fig. 1. The framework takes as input a breast
image (mammogram) and an approximate range of possible lesion’s sizes, then
outputs a prediction of the probability of the presence of a malignant region
in the image, and a region-wise prediction on different scales useful for lesion
detection but also improving the interpretability of the model.

The framework is composed of three independent modules: the first module
consists of a multi-scale over-segmentation of the mammogram based on the
superpixels and a multi-scale graph generation. The second block is the feature
extraction module, which computes the feature vectors of the nodes, i.e., the
features assigned to each superpixel. Finally, the last module is a GCN taking as
input both the node features and the multi-scale graph to output the probability
of malignancy for every node and the whole mammogram. In the following, we
give a detailed description of the three modules.

2.1 Multi-scale Graph Generation

Multi-scale Oversegmentation. To allow for better detection of malignant
regions with variable sizes, we adapt the method proposed in Hang. et al. [9]
to over-segment the mammogram Z at several scales into superpixels. To gen-
erate the region candidates for each scale, we rely on a modified version [14]
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Fig. 1. Overview of the proposed learning framework consisting of three modules: a
multi-scale graph generation module (a), a feature extraction module (b) and a graph
convolutional neural network module (c). The framework requires as input a mammo-
gram, the lesion’s size range and the number of desired scales as input, and outputs a
probability of malignancy for the whole image and an associated region-wise heatmap.

of the Scalable Simple Linear Iterative Clustering (SSLIC) algorithm proposed
by Lowekamp et al. [13]. This modified version allows us to modulate the com-
pactness parameter according to the variance of the superpixel features. As a
result of this step, we obtain a multi-scale clustering S = {S1, Ss, ..., Sar}, with
Sy the superpixel oversegmentation at scale m and M the number of scales.
Equivalently, S can be seen as a collection of N superpixels s; (with different
sizes and shapes) resulting from all the scales such that & = {s;}¥ ;.

Graph Generation. In order to capture intra-scale and inter-scale relation-
ships in the mammogram Z, i.e., between sub-regions inside a specific scale and
between corresponding superpixels in different scales respectively, we build a
multi-scale graph. More precisely, given the image Z and its multi-scale super-
pixel clustering S, we build a graph G = {V, &} consisting of a finite set V
of vertices and a set of edges £. Each vertex in V corresponds to a superpixel
s; € S, therefore ||V|| = N. To build £, we connect each vertex in V with its 4
neighbors in the spatial (2D) domain (i.e., top, bottom, left, and right), and its
2 neighbors across scales (i.e., nearest smaller and the nearest larger scales). An
illustration of the resulting multi-scale (ms-graph) is shown in Fig. 1.a. A binary
adjacency matrix A € [0, 1]V *¥ is associated to the multi-scale graph, such that
each entry a; ; is set to 1 if there is an edge connecting the two vertices s; and
s;, otherwise, a; ; is set to 0.
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2.2 Node Features Extraction

Furthermore, we extract relevant features for each node in the graph i.e., for each
superpixel s;, and store them in the " row x; of a feature matrix X. We use a
weakly supervised Resnet22 [19], trained on mammograms with a MIL approach,
to extract features vectors {x;}. In the rest of the paper, we denote this network
as the Backbone B. To apply B to a node, we first compute a bounding-box
around each superpixel s;. We then resize the extracted patch to fit the input
size of the backbone network (i.e., the size of the original training patches). At
the output of this module, we get the node features matrix X € RY*Pin where
D;,, is the dimensionality of the feature vector of each node.

2.3 Graph Convolutional Neural Network

Once the multi-scale graph is built, and the extracted features assigned to the
nodes, we aim at exploiting the relationships between superpixels along with
their deep features to classify the mammogram and provide an output class
(benign or malignant). To do so, we rely on a GCN fed with the graph G as
shown in Fig. 1.

From the architecture standpoint, the network is composed of four graph
convolutional layers. Each layer GCN,, (with n € {1,...,4}) is composed of
a graph convolutional operator, as defined in Kipf et al. [11], followed by an
activation function and a dropout layer. Each GCN,, gets as input the fea-
ture matrix from the previous layer H,,_; (X for the first layer) and provides
as output the transformed matrix H,. The final output node feature matrix
H,, = H; € RV*Pout contains the node representation encoding both graph
structural properties and node features. In our case, we fix Dy, to 1 for binary
malignancy probability. The feature matrix H,,; is aggregated with a global
maximum graph pooling layer, retaining only the node with the maximum value
hmaz- A non linear activation layer (a sigmoid function denoted as o(+)) is then
applied on A4, to obtain the probability of malignancy. The prediction for the
entire image is computed as:

¥ = o(fo(hmaz)) (1)

where fy represents the whole GCN architecture with parameters 6 trained with
an image-wise weighted cross-entropy loss.

2.4 Implementation Details

The weakly-supervised backbone encoder is trained using a Resnet22 architec-
ture respecting the MIL training strategy. In order to compute the features of a
specific node in the graph, we use the backbone encoder and extract 256 features
from the second but last layer. Our Multi-Scale Graph Convolutional Network
(MSGCN) model is trained following the same strategy (i.e., MIL) using the
library DGL [20] with PyTorch [5] in backend. The training was performed using
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Adam optimizer with an initial learning rate of 5-10~* and default parameters.
For the graph convolutional layers, we used a weight decay factor of 1-107°.
All the experiments were trained for at least 10000 epochs. While training the
GCN, we apply a dropout with a probability of 0.1 at each layer and we used a
batch size of 64. The model was trained on NVIDIA A100 GPU.

The input to our framework is a pre-processed mammogram. The prepro-
cessing consists of the following steps: the right breasts are horizontally flipped
to align the breast to the left of the image. The background is cleaned to remove
labels using triangle thresholding; the cleaned mammograms are then cropped
to the bounding box around the breast to avoid using background information;
the cropped images are resized to a height of 3072 pixels. To increase the con-
trast of the resized mammogram, we perform histogram stretching between the
intensities corresponding to the 2"¢ percentile and the 99*" percentile. We finally
normalize the intensity values between 0 and 1.

3 Experimental Results

3.1 Experimental Setup

Datasets. Experiments are performed on mammograms originating from differ-
ent populations, locations (countries), and mammography system vendors. More
precisely, we evaluate our model on two different datasets: a private dataset man-
aged in-house, and a public dataset. The former, denoted as PRV, is composed
of 3162 Full Field Digital Mammography (FFDM) images from four different
vendors, namely Fujifilm, GE, Hologic, and Planmed. For all the malignant mam-
mograms, pixel-level annotations of the lesions, drawn by the clinical experts,
are provided (only used for evaluation). The publicly available INbreast dataset
is composed of 410 FFDM images from the Siemens mammography system. Sim-
ilar to PRV, images have pixel-level annotations for each lesion delineated by
an expert radiologist. In the following, we refer to this dataset as INB. The
distributions of the two classes (benign/normal or malignant) in both datasets
are given in Table 1.

Table 1. Composition of the datasets

Dataset | Samples | Benign Malignant Train set | Test set
PRV 3162 1597 (50.5%) | 1565 (49.5%) | 2658 504
INB 410 310 (75.6%) | 100 (24.4%) 0 410
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In order to evaluate the proposed approaches, we used PRV for training and
testing while keeping the same samples in the test set as done in the baseline.
We split the remaining train set into 80—20 train/validation splits while keeping
the validation set balanced. We used the full INB dataset for evaluation as well
as a subset defined in [18] for a fair comparison to similar works.

The superpixels are generated at 4 different scales for both datasets, and
their statistics are given in Table 2, and shown in Fig. 2.
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Fig. 2. Lesion’s size’s distribution in both datasets: INB and PRV. The red vertical
lines and gray zones correspond to the average and standard deviation (in mm? of
superpixel’s size in each scale respectively) (Color figure online)

Table 2. Average and standard deviation (in mm?) of the superpixel’s size in each
scale in both datasets.

Scales | PRV ‘INB

Average size (std)
0 56.57 (20.59) | 63.36 (9.73)
1 113.09 (59.09) | 126.52 (19.39)
2 226.15 (117.75) | 252.04 (38.59)
3 452.17 (234.87) | 502.67 (76.96)

Evaluation Protocol. We evaluate the performance of our learning framework
for three tasks: global classification (image-wise and breast-wise), lesion detec-
tion, and lesion segmentation. We used breast-wise, image-wise, and pixel-level
ground-truths to evaluate the proposed model for breast-wise/image-wise malig-
nancy classification and local detection/segmentation. To evaluate our model at
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a breast-level, we average breasts’ malignancy predictions when the breast is
composed of several mammograms.

The Area Under the Curve (AUC) was used as a metric to assess the per-
formance for image-wise classification. As for the local detection assessment,
the Area under the Free-Response ROC Curve (AUFROC) and the TPRQFPPI
metric were used. Dice Score was used to measure the malignant lesions segmen-
tation performance.

3.2 Evaluation of the Proposed Framework

In this section, we focus on the analysis of the performance of our learning
scheme in the context of two tasks: the global image/breast classification and
abnormal region detection tasks.

Ablation Study of Multi-scale Features. In order to show the interest of
the multi-scale representation, we start with an ablation study of the scales
parameter given as input to our learning framework. More precisely, choosing
one or more scales implies generating a one-scale graph or a multi-scale graph
respectively. Node features are extracted accordingly. In each case, both the
graph and the node features are fed to the GCN.

In Table 3, we report the image-wise classification AUC obtained with vary-
ing scale parameters. We observe that the scale 0 and 3 have the lowest AUC for
image-wise classification, while the performance using scales 1 or 2 reaches 0.77.
The difference in terms of performance can be explained by the fact that super-
pixels in scales 0 and 3, with an average isotropic size of around 175 and 479 pixels
(Table 2) respectively, had to be resized before being fed to the feature extractor
module. The sub-optimal resizing procedure generates blur or noise artifacts in
the interpolated patch. Moreover, exploiting the features originating from scale
1 and scale 2 simultaneously (i.e., 1&2) improves the classification performance
to reach an AUC of 0.80, similarly to the performance with scales 1&2&3. This
shows that the GCN is able to mix the information originating from multiple
scales, leading to an improvement in the classification performance. With no
benefit observed when adding scale 3, for the rest of the analysis, we will focus
on scales 1 and 2 to generate the graph and node features.

Table 3. Scales ablation with MSGCN on PRV dataset.

Scales 0 1 2 3 1&2 | 1&3 | 2&3 | 1&2&3
Image-wise AUC | 0.57|0.77 | 0.77 | 0.65  0.80 | 0.65|0.73 | 0.80
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Fig. 3. Illustration of two types of lesions with different sizes (a calcification cluster
in the first row, and a mass in the second row), along with their respective heatmaps
generated at different scales and the aggregated MSGCN heat-map.

Patches vs Superpixels vs MSGCN. Having fixed the scales to consider in
MSGCN, we show here the interest of each of the modules in our framework
by comparing the classification and detection performances against 2 related
schemes:

— The Backbone (B) scheme, based on the Backbone network, fed with square
patches of size 256 x 256 and a stride of 128. This approach uses neither
superpixels, the multi-scale graph, nor the GCN.

— The Superpixel-based Backbone (BSP) scheme where we rely on the features
extracted from the superpixels at two scales (1&2) (with our multi-scale graph
generation module) and perform direct whole image classification, without
entering the GCN module.

For the evaluation of the detection task, we rely on the intermediate compu-
tation of activation maps. Our MSGCN leverages the topological and textural
information of the multiple scales to provide a node embedding that is suitable
for both classification and detection tasks. Indeed, by design, the model does not
only provide a malignancy probability for the whole image but also hands over
a probability for each node in the multi-scale graph, yielding a set of activation
maps M(Gm) with m being the scale. We create the final activation map Mg for
an image, by aggregating the activation maps with a maximum pooling across
scales. To each pixel on the mammogram, we assign the maximum activation
obtained for this pixel over the whole set M(Gm). Examples of the resultant acti-
vation maps for two lesions are shown in Fig.3. The superpixel-based scheme
BSP provides also a set of activation maps ./\/lgm) that are also aggregated into a
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single map Mg with a similar max pooling operation. The patch-based scheme
B also gives, by design, the direct activation map for an image, corresponding
to the patch-wise predictions before the last aggregation step of B. Activation
maps for Mg and Mp can be seen in Fig. 4.

From the above activation maps, we can detect the malignant regions using an
adaptive thresholding procedure. In Table 4, we can see the results of image-wise,
breast-wise classification, and abnormality detection obtained when using the
three schemes: B, BSP and our Multi-scale Superpixels Graph Neural Network
denoted MSGCN.

Classification. Table4 shows that MSGCN allows a better classification
(image-wise and breast-wise) compared to the backbone approach B on the
public dataset INB. Indeed, in Pelluet et al. [14], we had shown that superpix-
els are suitable for a finer segmentation of lesions and thus we expect features
extracted from the finer segmentation better capture the information about the
lesion. Moreover, GNNs are efficient in summarizing and propagating informa-
tion between different scales. The simpler patch-based backbone patches app-
roach B gives a high AUC for global classification at the expense of lower detec-
tion performance.

Detection. In order to evaluate the detection performance i.e., the ability to
detect and accurately localize malignant lesions, we evaluated the predicted
heatmaps using the FROC curve on all findings (excluding distortions) on
INB. To plot the curves, we applied thresholds on the probability values of
the heatmaps Mp, Mg and M. Figure4 shows the activation maps obtained
with the 3 approaches: Mp, Mg, and M. In the case of the method B, only
one activation map is provided. This is not optimal knowing the statistical dis-
tribution of the lesion’s size shown in Fig. 2. Instead, aggregating the MSGCN
heatmaps across scales provides a better detection, having learned the embed-
ding of superpixels features at different scales simultaneously. Table4 shows an
improvement of the TPR, from 0.52 when using Mp, to 0.73 with Mg, at the
expense of a higher FPPI. The best detection performance is obtained with
MSGCN (M) which reaches a TPRQFPPI of 0.98@1.01 increasing the initial
backbone’s TPR and FPPI by 88.4% and 71.2%, respectively. The increase of
the FPPI can be explained by the communication of bad predictions between
neighboring nodes in the multi-scale graph.

Comparative Performance Analysis Against State-of-the-Art Meth-
ods. We evaluate our methods against three state-of-the-art learning methods,
two of which are fully supervised approaches [15,17] and one is a weakly super-
vised method [21]. The results are shown in Table 5.

— For the abnormality detection task, evaluation is only performed on the malig-
nant images of the INB dataset for a fair comparison with the state-of-the-
art. To generate the results for Shen et al. [17], the publicly available model



646 G. Pelluet et al.

Table 4. Performance of MSGCN, B and BSP in terms of image-wise and breast-wise
classification on the full INB dataset.

Method Test set | Supervision | Train data | TPRQFPPI | Image-wise AUC | Breast-wise AUC
B F w Private 0.52@0.59 0.8 0.8

BSP F w Private 0.73@0.74 0.80 0.82

MSGCN | F W Private 0.98@1.01 | 0.82 0.83

was used. The TPRQFPPI was recomputed using their top 2% pooling, as
suggested in the original paper.

— For the classification task, results of [21] are taken from [18] where they were
also evaluated on the same subset of the INB dataset. The full dataset INB
is used for evaluation against the fully supervised learning method [15]. For a
fair comparison with the work of Wu et al. [21], Shen et al. [17], and Ribli et
al. [15], we compute breast-wise AUC on an image subset of the test dataset
INB.

Table 5. The performance of our scheme compared to state-of-the-art methods on the
INBreast dataset. For the test set: F' corresponds to the full INBreast dataset, and S is
for the test subset defined in Stadnick et al. [18]. As for the supervision, the methods
are fully supervised (Fully) if they need pixel-wise ground truth labels for training.
They are weakly supervised (W) if they only require only image-wise ground truth
labels.

Method Test set | Supervision | Train data TPRQFPPI | Breast-wise AUC
Wu [21] S Fully Private NA 0.80
Ribli [15] S Fully Private & DDSM | NA 0.97
MSEGCN (ours) | S w Private NA 0.90
Ribli [15] F Fully Private & DDSM | 0.90@0.30 0.95
Shen [17] F w Private 0.97@1.94 0.82
MSEGCN (ours) | F w Private 0.98@1.01 | 0.83

Our method shows better results when compared to Wu et al. [21], with an
improvement of 11.25% on the breast-level AUC while our method is weakly
supervised. The best performance on the INB subset is yielded by the fully-
supervised method of Ribli et al. [15], with a breast-wise AUC of 0.97.

Furthermore, the proposed method MSGCN improves the detection perfor-
mance with a TPRQFPPI of 0.98@1.01, in comparison to other weakly and fully
supervised methods, as shown in Table5 and Fig.5. However, Ribli et al. [15]
achieves the lowest FPPI=0.3, yielding a very low number of false positives.
Finally, while the fully supervised model of [15] outperforms all the other meth-
ods with a breast-wise AUC of 0.95, our method performs relatively well with a
TPRQFPPI of 0.98@1.01 on the INB among the three weakly supervised meth-
ods (relying only on whole-image labels), with a higher TPR and fewer false
negatives. This shows that our model is generalizable to datasets from other
manufacturers.
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Fig. 4. Two examples of segmentation maps obtained from the merged heatmaps Mpg
and Mpg with a threshold of 0.5. The second column corresponds to the Backbone
heatmap extracted from the Backbone network. The 6" column corresponds to the
merged heatmap resulting from aggregating M and Mg Aggregated (i.e., the 2"% and
the 5" column). The last column illustrates the resulting heatmap after aggregating
Mgp and Mg (i.e., the second and the 9** columns).

3.3 A Finer Lesion Segmentation with Superpixels

To further illustrate the interest of using a superpixel-based segmentation, we
evaluated the lesion segmentation which we can obtain by applying a merging
operation on activation maps as explained below. More precisely, to exploit the
superpixel ability to adhere to object boundaries for lesion segmentation, we
generated two new activation maps M pg and M pg, by merging the information
from Mp with Mg or Mg (e.g. Fig.4, 5" and 9*" column) respectively. This
is performed using a simple average aggregation as shown in Eq. 2.

_ sum(Mp, Mg)
Teem e ©)

sum(Mp, Mg)

Mas = ===

In Fig. 4, we provide two examples of the obtained heatmaps for two different
lesion’s sizes. We can see that with heatmaps (Mpg and Mpg), the merged
information retains the boundaries of the superpixels which leads to a better
loyalty to the lesion borders. This performance is also noticeable looking at
the DICE score in Table5. We can see that a better performance in terms of
segmentation for all malignant lesions is obtained using our merged heatmap
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M pg with Dice Scores of 0.37, outperforming the backbone B and the backbone
applied to superpixels bounding-boxes BSP which both have a DICE of 0.30.
Although the MSGCN brings a better detection performance, it has a lower
DICE score of 0.13. Indeed, the aggregation of the different scales appears to be
not optimal for segmentation. This issue will be tackled in a future investigation
(Table6).

Table 6. Segmentation methods on INB

Methods Supervision | Train data | TPRQFPPI | Dice
Shen [17] w Private 0.97@1.94 |0.34
Agarwal [3] Fully OPTIMAM | 0.95@1.14 | NA
B (ours) W Private 0.52@0.59 |0.30
BSP (ours) w Private 0.73@0.74 | 0.30
MSGCN (ours) | W Private 0.98@1.01 |0.13
BG (ours) A4Y% Private 0.94@1.03 |0.28
BS (ours) W Private 0.93@1.03 |0.37
FROC DICE
1.0
4 /V . 035 //
0.8 v 0.30
o — BS 0 0.25
= 0.6 — BG .‘é
- gsp 0201 _ BS
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Fig. 5. FROC curve and Dice Score representation of detection performance on the
full INBreast dataset.

4 Conclusion

In this work we proposed a new learning framework for mammography classi-
fication and lesion detection/localization based on graph neural networks. We
build our method on top of a backbone feature extraction module, and then
improve its reliability in terms of classification, detection, and segmentation.
To do so, we rely on three modules i) a novel multi-scale graph representation
of the mammogram to model the zoom-in radiologist operation, allowing the
backbone model to better capture relevant information at different scales; ii)
deep features obtained for superpixels at different scales are then fed along with
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the graph; and iii) graph neural network to enable message passing between
superpixels within and between scales. The lesion segmentation performance is
improved when using superpixels which adhere well to object boundaries. Our
weakly-supervised method based on a multi-scale graph improves the classifica-
tion and detection results over the patch-based baseline, and compares well to
state-of-the-art approaches, which do not consider graphs.

It is worth noting that the actual proposed model (MSGCN') propagates
the information uniformly through the local neighborhood without taking into
account individual pair-wise correlations which can be different between neigh-
boring superpixels. In order to improve the performance of the model, we will
consider adding weights to the graph edges in future work.
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