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Abstract. Automatic image-based disease severity estimation generally
uses discrete (i.e., quantized) severity labels. Annotating discrete labels
is often difficult due to the images with ambiguous severity. An easier
alternative is to use relative annotation, which compares the severity
level between image pairs. By using a learning-to-rank framework with
relative annotation, we can train a neural network that estimates rank
scores that are relative to severity levels. However, the relative annotation
for all possible pairs is prohibitive, and therefore, appropriate sample
pair selection is mandatory. This paper proposes a deep Bayesian active-
learning-to-rank, which trains a Bayesian convolutional neural network
while automatically selecting appropriate pairs for relative annotation.
We confirmed the efficiency of the proposed method through experiments
on endoscopic images of ulcerative colitis. In addition, we confirmed that
our method is useful even with the severe class imbalance because of its
ability to select samples from minor classes automatically.

Keywords: Computer-aided diagnosis · Learning to rank · Active
learning · Relative annotation · Endoscopic image dataset

1 Introduction

For image-based estimation of disease severity, it is common to prepare training
samples with severity labels annotated by medical experts. Standard annota-
tion (hereafter called absolute annotation) assumes discretized severity labels.
However, absolute annotation is often difficult to even for medical experts. This
is because disease severity is not discrete in nature, and thus there are many
ambiguous cases. For example, when annotating medical images with four dis-
crete labels (0, 1, 2, and 3), they will frequently encounter medical images with
a severity of 1.5.

A promising alternative annotation approach is Relative annotation, which
compares two images for their severity and attaches a relative label that indicates
the comparison result. Figure 1 shows the characteristics of absolute and relative
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Fig. 1. Characteristics of absolute and relative annotations

annotations to endoscopic images of ulcerative colitis (UC). Relative annotation
is far easier than absolute annotation and is expected to be stable even for
real-valued targets [8].

Using image pairs with relative annotation, it is possible to train a ranking
function f(x) that satisfies f(xi) > f(xj) for a pair (xi, xj) where xi shows a
higher severity than xj . By training f(x) with many image pairs, it will give
larger rank scores for severer images; in other words, the rank score f(x) can be
used as the severity level of x. As discussed later, the training process of f(x) can
be combined with representation learning to have a feature representation for
better ranking. A convolutional neural network (CNN) is, therefore, a natural
choice to realize f(x).

A practically important issue in the above learning-to-rank framework with
relative annotations is that we must select appropriate image pairs to annotate
from all possible pairs. This is because we have N(N −1)/2 possible pairs for N
image samples. Even if individual relative annotations are easy, it is intractable
to annotate all of them. In other words, careful selection of image pairs to be
annotated is essential to fully demonstrate the efficiency of relative annotation.
A naive selection strategy is a random selection; however, it easily overlooks
minor but important samples, which often appear in medical applications.

In this paper, we propose a deep Bayesian active-learning-to-rank that fully
maximizes the efficiency of relative annotation for efficient image-based severity
estimation. The technical novelty of the proposed method is to introduce an
active learning technique into the learning-to-rank framework for selecting a
less number of effective sample pairs. Active learning has been studied [2] and
generally takes the following steps. Firstly, a neural network is trained with a
small amount of annotated samples. The trained network then suggests other
samples to be annotated. These steps are repeated to have enough amount of
the annotated training samples.

For suggesting important samples to be annotated, we employ an uncertainty
of the samples. If we find two samples with high uncertainty about their rank
score, a new relative annotation between them will be useful to boost the rank-
ing performance. For this purpose, we employ Bayesian CNN [4] to realize a
ranking function because it can give an uncertainty of each sample. In summary,
our deep Bayesian active-learning-to-rank uses Bayesian CNN for ranking with
representation learning and uncertainty-based active learning.

As an experimental validation of the efficiency of the proposed method, we
perform UC severity estimation using approximately 10,000 endoscopic images
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collected from the Kyoto Second Red Cross Hospital. Quantitative and qualita-
tive evaluations clearly show the efficiency of the proposed framework. Especially,
we reveal that the proposed method automatically selects minor but important
samples.

The main contributions of this paper are summarized as follows:

– We propose a deep Bayesian active-learning-to-rank that can rank the image
samples according to their severity level. The proposed method can auto-
matically select important image pairs for relative annotation, resulting in
learning with a less number of relative annotations.

– Through UC severity estimation experiments, we demonstrated that the pro-
posed method could suppress the number of relative annotations while keep-
ing ranking performance.

– We also experimentally confirmed that the proposed method shows robustness
to class imbalance by its ability to select minor but important samples.

2 Related Work

The application of deep learning to UC severity estimation has been studied [11,
12]. UC is a chronic inflammatory bowel disease with recurrent inflammation
and ulcer recurrence in the colon. Accurate evaluation of treatment effects is
important because the type and dosage of treatment medicines are adjusted
in accordance with the condition of the patient with UC. Recently, Schwab
et al. [10] proposed an automatic UC severity estimation method for treatment
effectiveness evaluation. Their method assumes a weakly supervised learning
scenario because full annotation of all captured images is too costly. Since it
uses absolute annotation, it will suffer from ambiguous labels, as noted above.

Active learning has been widely applied to medical image analysis [14,16].
Active learning selects the samples whose annotations are most effective for
further learning from the unlabeled samples. Many uncertainty-based sampling
techniques have been proposed to select highly uncertain samples as informative
samples. Nair et al. [7] proposed a method using active learning for medical
image analysis with uncertainty obtained from a Bayesian CNN. This method
deals with an orthodox classification task with absolute annotation and thus
does not assume any relative annotation and learning-to-rank.

In the natural language process (NLP) field, Wang et al. [13] recently intro-
duced deep Bayesian active learning to learning-to-rank. Although their method
sounds similar to ours, its aim and structure, as well as application, are totally
different from ours. Specifically, it aims to rank sentences (called answers) to
a fixed sentence (called a query) according to their relevance. For this aim, its
network always takes two inputs (like f(xi, xj)) whereas ours takes a single
input (like f(xi)). From these differences, it is impossible to use it for the active
annotation task and thus even to compare ours with it.
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Fig. 2. Overall structure of proposed deep Bayesian active learning-to-rank for severity
estimation of medical image data.

3 Deep Bayesian Active-Learning-to-Rank

3.1 Overview

Figure 2 shows an overall structure of the proposed deep Bayesian active-
learning-to-rank. The proposed method is organized in an active learning frame-
work using Bayesian learning and learning-to-rank for severity estimation of med-
ical image data; experts progressively add relative annotations to image pairs
selected based on the uncertainty provided by a Bayesian CNN while training
the Bayesian CNN based on the learning-to-rank algorithm.

The deep Bayesian active-learning-to-rank consists of three steps. In Step
1, for initial training, a small number of image pairs are randomly sampled
from the unlabeled image set and then annotated by medical experts. In Step
2, a Bayesian CNN is trained with the labeled image pairs for estimating rank
scores and the uncertainties of individual training samples. In Step 3, images
to be additionally labeled are selected on the basis of estimated uncertainties,
having the medical experts annotate the additionally selected images via relative
annotation. Steps 2 to 3 are repeated K times to train the Bayesian CNN while
progressively increasing the number of labeled image pairs.

3.2 Details

More details of each step are explained as follows.

Step 1: Preparing a Small Number of Image Pairs for Initial Training.
A set with a small number of annotated image pairs D0

L is prepared for initial
training as follows. First, given an unlabeled image set comprising N unlabeled
images, we randomly sample r% of them (i.e., R = rN/100 image samples).
Then, to form a set of R pairs (instead of all possible R(R − 1)/2 pairs), one of
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the R−1 samples is randomly paired for each of the R samples1. Relative labels
are attached to these image pairs by medical experts. For an image pair (xi, xj),
a relative label Ci,j is defined as follows:

Ci,j =

⎧
⎨

⎩

1, if xi has a higher level than xj ,
0.5, else if xi and xj have the same level,
0, otherwise.

(1)

After this step, we have the annotated image pair set D0
L = {(xi, xj , Ci,j)} and

|D0
L| = R.

Step 2: Training a Bayesian CNN. A Bayesian CNN is trained as a ranking
function with the labeled image pair set D0

L. The CNN outputs a rank score that
predicts the severity of the input image along with the uncertainty of the predic-
tion. In training, we employ a probabilistic ranking cost function [1] to conduct
learning-to-rank with a neural network and Monte Carlo (MC) dropout [3,4] for
approximate Bayesian inference.

Let f(·) be a ranking function by a CNN with L weighted layers. Given an
image x, the CNN outputs a scalar value f(x) as the rank score of x. We denote
by Wl the l-th weight tensor of the CNN. For a minibatch M sampled from D0

L,
the Bayesian CNN is trained while conducting dropout with the loss function
LM defined as follows:

LM = −
∑

(i,j)∈IM

{Ci,j log Pi,j + (1 − Ci,j) log(1 − Pi,j)} + λ
L∑

l=1

‖Wl‖2F , (2)

where IM is a set of index pairs of the elements in M, Pi,j = sigmoid(f(xi) −
f(xj)), λ is a constant value for weight decay, and ‖ · ‖F represents a Frobenius
norm. In Eq. (2), the first term is a probabilistic ranking cost function [1],
which allows the CNN to train rank scores, and the second term is a weight
regularization term that can be derived from the Kullback-Leibler divergence
between the approximate posterior and the posterior of the CNN weights [3]. The
CNN is trained by minimizing the loss function LM for every minibatch while
conducting dropout; a binary random variable that takes one with a probability
of pdropout is sampled for every unit in the CNN at each forward calculation, and
the output of the unit is set to zero if the corresponding binary variable takes
zero.

The rank score for an unlabeled image x∗ is predicted by averaging over the
output of the trained Bayesian CNN with MC dropout as y∗ = 1

T

∑T
t=1 f(x∗;ωt),

where T is the number of MC dropout trials, ωt is the t-th realization of a set
of the CNN weights obtained by MC dropout, and f(·;ωt) is the output of f(·)
given a weight set ωt.
1 The strategy of making pairs is arbitrary. Here, we want to annotate all of the
R samples at least one time while avoiding O(R2) annotations and thus take this
strategy.
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The uncertainty of the prediction is defined as the variance of the posterior
distribution of y∗. This uncertainty is used to select images to be annotated in the
next step, playing an important role in achieving active learning. The variance
of the posterior distribution, Varq(y∗|x∗)[y∗], is approximately calculated using
MC dropout as follows:

Varq(y∗|x∗)[y∗] = Eq(y∗|x∗)[(y∗)2] − (
Eq(y∗|x∗)[y∗]

)2

≈ 1
T

T∑

t=1

(f(x∗;ωt))
2 −

(
1
T

T∑

t=1

f(x∗;ωt)

)2

+ const., (3)

where q(y∗|x∗) is the posterior distribution estimated by the model. The constant
term can be ignored because the absolute value of uncertainty is not required in
the following step.

Step 3: Uncertainty-Based Sample Selection. A new set of annotated
image pairs is provided based on the estimated uncertainty and relative annota-
tion. We estimate the rank scores and the related uncertainties for the unlabeled
images, using the trained Bayesian CNN and select s% of images with high
uncertainty. Image pairs are made by pairing the selected images in the same
manner as Step 1, and medical experts attach relative annotations to the image
pairs. The newly annotated image pairs are added to the current annotated
image pair set D0

L. The Bayesian CNN is retrained with the updated D1
L. Steps

2 and 3 are repeated K times while increasing the size of the annotated set Dk
L

(k = 0, . . . , K).

4 Experiments and Results

To evaluate the efficiency of our active-learning-to-rank, we conducted experi-
ments on a task for estimating rank scores of ulcerative colitis (UC) severity. In
the experiments, we quantitatively compared our method with baseline methods
in terms of the accuracy of relative label estimation, that is, the correctness of
identifying the higher severity image in a given pair of two endoscopic images.
We also evaluated the relationship between the human-annotated absolute labels
and the estimated rank scores.

In addition, we analyzed the reason why our method successfully improved
the performance of relative label estimation. Especially, we analyze the relation-
ship between the uncertainty and class prior and show that our uncertainty-
based sample selection could mitigate the class imbalance problem and then
finally improve the performance.

4.1 Dataset

In order to analyze the relationship between the absolute severity and the esti-
mated severity scores, we used a dataset that has absolute severity labels (called
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Fig. 3. Examples of endoscopic images of ulcerative colitis at each Mayo (severity).

Mayo score) for UC. A Mayo score was annotated for each image on a four-level
scale (Mayo 0–3) by multiple medical experts carefully2. Figure 3 shows exam-
ples of Mayo scores in the dataset. According to Schroeder et al. [9], Mayo 0 is
normal or endoscopic remission. Mayo 1 is a mild level that shows erythema,
decreased vascular pattern, and mild friability. Mayo 2 is a moderate level that
shows marked erythema, absent vascular pattern, friability, and erosions. Mayo 3
is a severe level with spontaneous bleeding and ulceration. The dataset consists
of 10, 265 endoscopic images from 388 patients captured in the Kyoto Second Red
Cross Hospital3. It should be noted that the dataset has imbalanced class priors,
which is a typical condition in medical image analysis. Specifically, it contains
6,678, 1,995, 1,395, and 197 samples for Mayo 0, 1, 2, and 3, respectively.

To evaluate relative label-based methods, we made a set of pairs of two images
and gave relative labels for each pair based on the Mayo labels. For N training
samples, the number of possible pairs is too large (O(N2)) to train the network
with various settings; we, therefore, made a limited number of pairs for training
data by random sampling. Specifically, we used N pairs (instead of O(N2) pairs)
by selecting one of the N − 1 samples for each of the N samples. (In Sect. 3.2,
R samples of the initial set are also selected from these pairs.) We consider this
setting reasonable since it used all the original samples, and we could conduct
the experiments in a realistic running time. Also, note that this setting is typical
for evaluating learning-to-rank [6,15,17].

Five-fold cross-validation was conducted for all comparative methods. The
data were divided into training (60%), validation (20%), and test (20%) sets
by patient-based sampling (that is, each data did not contain an image from
the same patient). Note that the above pair image preparation was done after
dividing the training, validation, and test sets for a fair evaluation. It indicates
that each set did not contain the same image. As the performance metrics, we

2 During this absolute annotation process, medical experts might encounter ambiguous
cases due to the discretized severity, as noted in Sect. 1. However, this ambiguity was
minimized through careful observation by multiple experts. In other words, reliable
absolute annotation is very costly, and this fact is the motivation of this work.

3 This study was approved by the Ethics Committee of the Kyoto Second Red Cross
Hospital.
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used the accuracy of estimated relative labels, which is defined as the ratio of
the number of correctly estimated relative labels over all the pairs.

4.2 Implementation Details

We used DenseNet-169 [5] as the backbone of the Bayesian CNN. The model
was trained with dropout (pdropout = 0.2) and weight decay (λ = 1×10−4) in
the convolutional and fully connected layers. We used Adam as the optimization
algorithm and set the initial learning rate to 1×10−5. All image data were resized
to 224 × 224 pixels and normalized between 0 and 255.

In all experiments, our method incrementally increased the training data
during K = 6 iterations by selecting effective samples (s = 5% of training data)
and adding them to the initial training data (r = 20% of all training images).
In total (after six iterations), the ratio of the labeled data used for training was
50% (r+sK = 20+5×6). The number of estimations for uncertainty estimation
was set to T = 30.

4.3 Baselines

To demonstrate the effectiveness of our method, we compared our method with
three baseline methods: 1) Baseline, which trained by randomly sampled (r +
sK =) 50% pairs of training data, which indicates that the same number of
pairs were used in the proposed method; 2) Baseline (all data), which uses all
N training pairs (i.e., 100%), which indicates the number of training data was
as twice as that of the proposed method; 3) Proposed w/o uncertainty-based
sampling (UBS), which also incrementally increased the training data during
K iterations but the additional training data was selected by random sampling
(without using uncertainty-based sampling); For a fair comparison, we used the
same backbone (DenseNet-169 based Bayesian CNN) for all the methods. Given
an input image, all methods used the mean of rank scores of T = 30 times
estimation as the rank score.

4.4 Evaluation of Relative Severity Estimation

As the accuracy evaluation, we measured the correctness of the estimated rank
scores in a relative manner. Specifically, given a pair of images (xi, xj) where xi

shows a higher severity, the estimation is counted as “correct” if f(xi) > f(xj).
For the test data, we prepared two types of pairs.

“Overall”: The pairs were randomly made among all Mayo. Specifically, we
selected images in test images so that the number of samples in each Mayo score
was the same and then randomly made the pairs among the selected images.
Using this test dataset, we evaluated the overall performances of the comparative
methods. However, this test data may contain many easy pairs, that is, a pair
of Mayo 0 (a normal image) and Mayo 3 (a high severity image), whose image
features are very different, as shown in Fig. 3. Thus it is easy to identify the
relative label.
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Table 1. Quantitative performance evaluation in terms of accuracy of estimated rela-
tive labels. ‘*’ denotes a statistically significant difference between the proposed method
and each comparison method (p < 0.05 in McNemar’s test.).

Method Labeling ratio Overall Neighboring

0–1 1–2 2–3 Mean

Baseline 50% 0.861∗ 0.827 0.837 0.628 0.763∗

Baseline (all data) 100% 0.875 0.855 0.870 0.635 0.785∗

Proposed w/o UBS 50% 0.856∗ 0.818 0.842 0.634 0.763∗

Proposed 50% 0.880 0.787 0.871 0.736 0.797

“Neighboring”: We prepared the neighboring pairs that contain the images of
neighboring-level Mayo, such as Mayo 0–1, Mayo 1–2, and Mayo 2–3 pairs. It is
important for clinical applications to compare the severity of difficult cases. This
estimation is more difficult since the severity gradually changes in neighboring
Mayo, and these image features are similar. Using this test dataset, we evaluated
the performance of methods in difficult cases.

Table 1 shows the mean of the accuracy of estimated rank scores for each
method in five-fold cross-validation. A labeling ratio denotes the ratio of the
number of labeled images that were used for training, and ‘*’ indicates that
there were significant differences at p < 0.05 by multiple statistical comparisons
using McNemar’s tests.

In the results of “Overall,” the accuracy of Baseline and Proposed w/o UBS
were comparable because these methods used the same number of training pairs.
Baseline (all data) improved the accuracy compared to these two methods by
using the larger size (twice) of training data. Surprisingly, our method was better
than Baseline (all data), although the training data of ours is half of that of
Baseline (all data) with the same settings, that is, the network structure and the
loss. As analyzed in the later Sect. 4.5, this difference comes from class imbalance.
Since this dataset has a severe class imbalance, that is, the samples in Mayo 0
were 33 times of those in Mayo 3, it was difficult to learn the image features
of highly severe images. In such severe imbalance cases, even if the number of
training data decreases, appropriate sampling could mitigate the class imbalance
and improve the accuracy.

In the results of “Neighboring” (difficult cases), the proposed method was also
better than all the comparative methods in the mean accuracy of the neighboring
pairs. In particular, the proposed method improved the accuracy in the case
“Mayo 2–3” over 10%. Since the accuracy of image comparisons at high severity
is important for evaluating treatment effects, the proposed method is considered
superior to the other methods in clinical practice. In the case “Mayo 0–1”, the
accuracy of the proposed method was lower than that of the comparison methods
because the number of labeled samples for Mayo 0 and 1 was reduced due to the
mitigation of class imbalance.
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Fig. 4. Accuracy of estimated relative labels of Baseline (blue), Proposed w/o UBS
(green), and Proposed (red) at each labeling ratio. The black dotted line indicates the
results of Baseline (all data). (Color figure online)

Fig. 5. Box plots of estimated rank scores at each Mayo. Initial was measured under
the initial condition at the labeling ratio of 20%. Performance of Baseline and Proposed
were measured at the labeling ratio of 50%. If the distributions of each Mayo score have
less overlap, the estimation can be considered reasonable.

Figure 4 shows the changes of the accuracy at each iteration in both test
datasets “Overall” and “Neighboring.” The horizontal axis indicates the label-
ing ratio, the vertical axis indicates the mean accuracy in cross-validation, and
the black dot line indicates the results of Baseline (all data), which used the 100%
of the training data. This result shows the effectiveness of our uncertainty-based
active learning. Our method (red) increased the accuracy with the number of
training data, and the improvement was larger than the other methods. In con-
trast, for Baseline (blue) and Proposed w/o UBS (green), it was not always
true to increase the accuracy by increasing the training data. As a result, the
improvements from the initial training data were limited for them.

Figure 5 shows box plots of the estimated rank scores of three methods at
each Mayo score. Here, the vertical axis indicates the estimated rank score, and
“Initial” indicates the method that trained the network using only the initial
training data without iterations (20% of training data). In this plot, if the dis-
tributions of each Mayo score have less overlap, the estimation can be considered
reasonable. In Initial and “Baseline,” the score distributions in Mayo 2 and 3
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significantly overlapped. In contrast, our method improved the overlap distribu-
tions. This indicates that the estimated rank scores were more correlated to the
Mayo scores.

Fig. 6. Class proportion of the accumulated sampled images at iteration K = 0 (label-
ing ratio is 20%), 3 (35%), and 6 (50%). When the labeling ratio was 20%, the class pro-
portion was the same between Baseline and Proposed. The proposed method selected
many samples of minor classes (Mayo 2 and 3) and mitigated the class imbalance
problem.

Fig. 7. Box plots of model uncertainty in each class. Performance of Baseline and
Proposed were measured at the labeling ratio of 50%. In Baseline, the uncertainty of
minor classes (Mayo 2 and 3) was higher than that of major classes. In Proposed, the
uncertainty of Mayo 2 and 3 decreases since the class imbalance was mitigated.

4.5 Relationship Between Uncertainty and Class Imbalance

As described in Sect. 4.4, we considered that improvement by our method is
because our uncertainty-based sampling mitigated the class imbalance. There-
fore, we investigated the relationship between the uncertainty and the number of
the Mayo labels of the sampled images from the training data during iterations.

Figure 6 shows the number of sampled images by uncertainty-based sampling
at each class when the labeling ratio was 20% (k = 0), 35% (k = 3), and 50% (k =
K = 6), where the vertical axis indicates the average numbers of five-fold cross-
validation. The initial training data (k = 0) has a class imbalance in accordance
with that in all the training data due to random sampling. In 35% and 50%, the
sampled images by Baseline have a similar class imbalance to that in the initial
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Fig. 8. Examples of changes in the rank score along with the capturing order in a
sequence. The horizontal axis indicates the capturing order, and the vertical axis indi-
cates the estimated rank score (red) and the Mayo score (blue). (Color figure online)

training data. This class imbalance affected the performance improvements even
though the number of training images increased, and thus the improvement was
limited. In contrast, our uncertainty-based sampling selected many samples of
the minor Mayo level; that is, the samples of Mayo 2 and 3 increased with
iteration; therefore, the class imbalance was gradually mitigated with iteration.
Consequently, the accuracy of relative label estimation was improved by our
method despite the half size of training data compared to Baseline (all data).

Figure 7 shows the distributions of the model uncertainty of each class in
training data. In “Baseline,” the uncertainty of the minor classes (Mayo 2 and
3) was higher than the major classes (Mayo 0 and 1). After six iterations of
active learning (that is, the labeling ratio is 50%), the class imbalance was mit-
igated, as shown in Fig. 6, and the uncertainty of Mayo 2 and 3 was lower than
those of “Baseline.” This indicates that the uncertainty is correlated to the class
imbalance; the fewer samples of a class are, the higher uncertainty is. Therefore,
our uncertainty-based active learning, which selects the higher uncertainty sam-
ples as additional training data, can select many samples of the minor classes
and consequently mitigate the class imbalance problem. This knowledge is useful
for learning-to-rank tasks in medical image analysis since severe class imbalance
problems often occur in medical images.

4.6 Application Using the Estimated Rank Score

This section shows an example of the clinical applications of the proposed
method. In UC severity diagnosis, endoscopic images are acquired in sequence
while the endoscope is moved through the colon. In clinical, a doctor checks
all the images and finds the most severe images, and diagnoses the severity of
the UC. To facilitate this diagnosis process, it is useful to show the estimated
severity score along with the capturing order. Figure 8 shows three examples of
the changes in the rank score (severity), where the horizontal axis indicates the
capturing order in a sequence, and the vertical axis indicates the estimated rank
score. These sequences were taken from different patients and were not used in
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the training data. In these results, the estimated rank scores (red) were similar
to the Mayo scores (blue) that were annotated by medical doctors. Case 1 was a
sequence of a patient with a mild disease level. The severity was low in the entire
region. Case 2 and 3 were sequences of patients with moderate and severe disease
levels. In these examples, we can observe that the severe areas were biased in
the order of the sequence; the severity was high at the beginning and the end
of the sequence, but it was low in the middle of the sequence. Using this graph,
medical doctors can easily check if the disease is severe or not and find the severe
areas and check them. In addition, it is also easy to show both cases before and
after treatment and diagnose the recovery of the disease.

5 Conclusion

In this paper, we proposed a deep Bayesian active-learning-to-rank for efficient
relative annotation. The proposed method actively determines effective sample
pairs for additional relative annotations by estimating the uncertainty using a
Bayesian CNN. We first evaluated the accuracy and the efficiency of the pro-
posed method with an experiment about the correctness of the relative severity
between a pair of images. The results indicate the usefulness of uncertainty-based
active learning for selecting samples for better ranking. We also revealed that
the proposed method selects minor but important samples and thus shows the
robustness to class imbalance.

The limitation of the proposed method is that it provides rank scores instead
of Mayo scores that medical experts are familiar with. If an application needs
Mayo score-like rank scores, an additional calibration process is necessary. The
proposed method is very general and applicable to other severity-level estimation
tasks—this means more experiments on different image datasets are important
for future tasks.
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