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Abstract. Human visual attention has recently shown its distinct capa-
bility in boosting machine learning models. However, studies that aim
to facilitate medical tasks with human visual attention are still scarce.
To support the use of visual attention, this paper describes a novel
deep learning model for visual saliency prediction on chest X-ray (CXR)
images. To cope with data deficiency, we exploit the multi-task learning
method and tackle disease classification on CXR simultaneously. For a
more robust training process, we propose a further optimized multi-task
learning scheme to better handle model overfitting. Experiments show
our proposed deep learning model with our new learning scheme can
outperform existing methods dedicated either for saliency prediction or
image classification. The code used in this paper is available at [webpage,
concealed for double-blind review].
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1 Introduction

Recent work in machine learning and computer vision have demonstrated advan-
tages of integrating human attention with artificial neural network models, as
studies show that many machine vision tasks, i.e., image segmentation, image
captioning, object recognition, etc., can benefit from adding human visual atten-
tion [36].

Visual attention is the ability inherited in biological visual systems to selec-
tively recognize regions or features on scenes relevant to a specific task [3], where
“bottom-up” attention (also called exogenous attention) focuses on physical
properties in the visual input that are salient and distinguishable, and “top-
down” attention (also called endogenous attention) generally refers to mental
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strategies adopted by the visual systems to accomplish the intended visual tasks
[44]. Early research on saliency prediction aims to understand attentions trig-
gered by visual features and patterns, and thus “bottom-up” attention is the
research focus [3]. More recent attempts, empowered by interdisciplinary efforts,
start to study both “bottom-up” and “top-down” attentions, and therefore the
terms, saliency prediction and visual attention prediction, are used interchange-
ably [53]. In this paper, we use the term saliency prediction as the prediction of
human visual attentions allocations when viewing 2D images, containing both
“bottom-up” and “top-down” attentions. 2D heatmap is usually used to repre-
sent human visual attention distribution. Note that saliency prediction studied
in this paper is different from neural network’s saliency/attention which can be
visualized through class activation mapping (CAM) by [63] and other methods
[15,48,51]. With the establishment of several benchmark datasets, data driven
approaches demonstrated major advancements in saliency prediction (review in
[2] and [60]). However, saliency prediction for natural scenes is the primary focus,
and more needs to be done in the medical domain. Hence, we intend to study the
saliency prediction for examining chest X-ray (CXR) images, one of the most
common radiology tasks worldwide.

CXR imaging is commonly used for the diagnosis of cardio and/or respiratory
abnormalities; it is capable of identifying multiple conditions through a single
shot, i.e., COVID-19, pneumonia, heart enlargement, etc. [6]. There exists mul-
tiple public CXR datasets [20,61]. However, the creation of large comprehensive
medical datasets is labour intensive, and requires significant medical resources
which are usually scarce [9]. Consequently, medical datasets are rarely as abun-
dant as those for non-medical fields. Thus, machine learning approaches applied
on medical datasets need to address the problem of data scarcity. In this paper,
we exploit the multi-task learning for a solution.

Multi-task learning is known for its inductive transfer characteristics that
can drive strong representation learning and generalization of each component
task [8]. Therefore, multi-task learning methods partially alleviates some of the
major shortcomings in deep learning, i.e., high demands for data sufficiency and
heavy computation loads [11]. However, to apply multi-task learning methods
successfully, challenges still exist, which can be the proper selection of component
tasks, the architecture of the network, the optimization of the training schemes
and many others [11,62]. This paper investigates the proper configuration of a
multi-task learning model that can tackle visual saliency prediction and image
classification simultaneously.

The main contributions of this paper are: 1) development of a new deep
convolutional neural network (DCNN) architecture for CXR image saliency pre-
diction and classification based on UNet [47], and 2) proposal of an optimized
multi-task learning scheme that handles overfitting. Our method aims to out-
perform the state-of-the-art networks dedicated either for saliency prediction or
image classification.



596 H. Zhu et al.

2 Background

2.1 Saliency Prediction with Deep Learning

DCNN is the leading machine learning method applied to saliency prediction
[22,30,31,43]. Besides, transfer learning with pre-trained networks was observed
to boost the performance of saliency prediction [31,41,42]. A majority of DCNN
approaches are for natural scene saliency prediction, and so far, only a few stud-
ied the saliency prediction for medical images. By [5], the generative adversarial
network is used to predict expert sonographer’s saliency when performing stan-
dard fetal head plane detection on ultrasound (US) images. However, the saliency
prediction is used as a secondary task to assist the primary detection task, and
thus, the saliency prediction performance failed to outperform benchmark pre-
diction methods in several key metrics. Similarly, by [25], as a proof-of-concept
study, the gaze data is used as an auxiliary task for CXR image classification,
and the performance of saliency prediction is not reported in the study.

2.2 CXR Image Classification with Deep Learning

Public datasets for CXR images enabled data driven approaches for automatic
image analysis and diagnosis [33,50]. Advancements in standardized image classi-
fication networks, i.e., ResNet [18], DenseNet [19], and EfficientNet [55], facilitate
CXR image classification. Yet, CXR image classification remains challenging, as
CXR images are noisy, and may contain subtle features that are difficult to
recognize even by experts [6,28].

3 Multi-task Learning Method

As stated in Sect. 1, component task selection, network architecture design, and
training scheme are key factors for multi-task learning. We select the classifica-
tion task together with the saliency prediction based on the fact that attention
patterns are task specific [26]. Radiologists are likely to exhibit distinguishable
visual behaviors when different patient conditions are shown on CXR images
[38]. This section introduces our multi-task UNet (MT-UNet) architecture, and
derives a better multi-task training scheme for saliency prediction and image
classification.

3.1 Multi-task UNet

Figure 1 shows the architecture of the proposed MT-UNet. The network takes
CXR images, x ∈ R1×H×W , where H and W are image dimensions, as input,
and produces two outputs, predicted saliency ys ∈ R1×H×W , and predicted
classification yc ∈ RC , where C is the number of classes. As the ground truth
for ys is human visual attention distribution, represented as a 2D matrix whose
elements are non-negative and sum to 1, ys is normalized by Softmax before
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Fig. 1. MT-UNet architecture. The solid blocks represent 3D tensors, RF×H×W , where
F , H, and W denote feature (channel), height and width dimensions, respectively. The
solid circles represent 1D tensors. Arrows denote operations to the tensors. Numbers
above some of the solid blocks stand for the number features in tensors.

output from MT-UNet. Softmax is also applied to yc before output so that the
classification outcome can be interpreted as class probability. For the simplicity
of notation, batch dimensions are neglected.

The proposed MT-UNet is derived from standard UNet architecture [47]. As
a well-known image-to-image deep learning model, the UNet structure has been
adopted for various tasks. For example, the UNet is appended with additional
structures for visual scene understanding [21], the features from the bottleneck
(middle of the UNet) are extracted for image classification tasks [25], and by
combining UNet with Pyramid Net [35], features at different depth are aggre-
gated for enhanced segmentation [40]. What’s more, the encoder-decoder struc-
ture of UNet is utilized for multi-task learning, where the encoder structure is
used to learn representative features, along with designated decoder structures
or classification heads for image reconstruction, segmentation, and/or classifica-
tion [1,64]. In our design, we apply classification heads (shaded in light green
in Fig. 1), which are added not only to the bottleneck but also the ending part
of the UNet architecture. This additional classification specific structure aggre-
gates middle and higher-level features for classification, exploiting features learnt
at different depths. The attention heads perform global average pooling opera-
tions to the 4D tensors, followed by concatenation, and two linear transforms
(dense layers) with dropout (rate = 25%) in the middle to produce classification
outcomes. The MT-UNet belongs to the hard parameter sharing structure in
multi-task learning, where different tasks share the same trainable parameters
before branched out to each tasks’ specific parameters [58]. Having more train-
able parameters in task specific structures may improve the performance for that
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task at the cost of introducing additional parameters and increasing computa-
tional load [11,58]. In our design, we wish to avoid heavy structures with lots of
task specific parameters, and therefore, task specific structures are minimized.
In Fig. 1, we use yellow and green shades to denote network structures dedicated
for saliency prediction and classification, respectively.

3.2 Multi-task Training Scheme

Balancing the losses between tasks in a multi-task training process has a direct
impact on the training outcome [58]. There exist multi-task training schemes [10,
16,27,49], and among which, we adopt the uncertainty based balancing scheme
[27] with the modification used in [34,65]. Hence, the loss function is:

L =
1
σ2

s

Ls +
1
σ2

c

Lc + ln(σs + 1) + ln(σc + 1) (1)

where Ls and Lc are loss values for ys and yc, respectively; σs > 0 and σc > 0
are trainable scalars estimating the uncertainty of Ls and Lc, respectively; σs

and σc are initialized to 1; ln(σs + 1) and ln(σc + 1) are regularizing terms to
avoid arbitrary decrease of σs and σc. With Eq. 1, we know that σ values can
dynamically weigh losses of different amplitudes during training, and loss with
low uncertainty (small σ value) is prioritized in the training process. L > 0. Given
ys and yc with their ground truth ȳs and ȳc, respectively, the loss functions are:

Ls = H(ȳs,ys) − H(ȳs), (2)

Lc = H(ȳc,yc) (3)

where H(Q,R) = −Σn
i Qi ln(Ri) stands for cross entropy of two discrete dis-

tributions Q and R, both with n elements; H(Q) = H(Q,Q) stands for the
entropy, or self cross entropy, of discrete distribution Q. Ls is the Kullback-
Leibler divergence (KLD) loss, and Lc is the cross-entropy loss. By observing
Eq. 2 and Eq. 3, we know that only the cross entropy terms, H(·, ·), generate
gradient when updating network parameters, as the term −H(ȳs) in Ls is a
constant and has zero gradient. Therefore, we extend the method in [27], and
use 1

σ2 to scale a KLD loss (Ls) as that for a cross-entropy loss (Lc).
Although the training scheme in Eq. 1 yields many successful applications,

overfitting for multi-task networks still can jeopardize the training process, espe-
cially for small datasets [59]. Multiple factors can cause overfitting, among which,
learning rate, r > 0, shows the most significant impact [32]. Also, r generally
has significant influences on the training outcome [52], making it one of the most
important hyper-parameters for a training process. When training MT-UNet, r
is moderated by several factors. The first factor is the use of an optimizer. Many
optimizers, i.e., Adam [29] and RMSProp [57], deploy the momentum mechanism
or its variants, which can adaptively adjust the effective learning rate, re, during
training. As a learning rate scheduler is often used for more efficient training,
it is the second factor to influence r. The influence of r from a learning rate
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Fig. 2. Training process visualization with Eq. 1

scheduler can be adaptive, i.e., reduce learning rate on plateau (RLRP), or more
arbitrary, i.e., cosine annealing with warm restarts [37]. By observing Eq. 1, we
know that an uncertainty estimator σ for a loss L also serves as a learning rate
adaptor for L, which is the third factor. More specifically, given a loss value L
with learning rate r, the effective learning rate for parameters with a scaled loss
value L

σ2 is r
σ2 .

Decreasing r upon overfitting can alleviate its effects [12,52], but Eq. 1 leads
to increased learning rate upon overfitting, further worsening the training pro-
cess. This happens because training loss decreases when overfitting occurs, reduc-
ing its variance at the same time. Thus, σ decreases accordingly, which increases
the effective learning rate, thus creating a vicious circle of overfitting. This phe-
nomenon can be observed in Fig. 2, where changes of losses and σ values during
a training process following Eq. 1 are presented. We can see from Fig. 2(a), at
epoch 40, after an initial decrease in both the training and validation losses,
the training loss start to decrease acceleratedly while the validation loss start to
amplify, which is a vicious circle of overfitting. A RLRP scheduler can halt the
vicious circle by resetting the model parameters to a former epoch and reduc-
ing r. Yet, even with reduced r, a vicious circle of overfitting can remerge in
later epochs. The mathematical proof of the aforementioned vicious circle of
overfitting is presented in Appendix A.

To alleviate overfitting, we propose the use of the following equations to
replace Eq. 1:

L =
1
σ2

s

Ls + Lc + ln(σs + 1), (4)

L = Ls +
1
σ2

c

Lc + ln(σc + 1). (5)

The essence of Eqs. 4 and 5 is to fix the uncertainty term for one loss in Eq. 1
to 1, so that the flexibility in changing effective learning rate is reduced. With
the uncertainty term fixed for one component loss, Eqs. 4 and 5 demonstrate
the ability to alleviate overfitting and stabilize the training process. It is worth
noting that Eqs. 4 and 5 cannot be used interchangeably. We need to test both
equations to check which can achieve better performances, as depending on the
dataset and training process, overfitting can occur of different severity in all
component tasks. In this study, the training process with Eq. 5 achieves the best
performance. Ablation study of this method is presented in Sect. 5.
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4 Dataset and Evaluation Methods

We use the “chest X-ray dataset with eye-tracking and report dictation” [25]
shared via PhysioNet [39] in this study. The dataset was derived from the
MIMIC-CXR dataset [23,24] with additional gaze tracking and dictation from an
expert radiologist. 1083 CXR images are included in the dataset, and accompa-
nying each image, there are tracked gaze data; a diagnostic label (either normal,
pneumonia, or enlarged heart); segmentation of lungs, mediastinum, and aortic
knob; and radiologist’s audio with dictation. The CXR images in the dataset are
in resolutions of various sizes, i.e., 3056×2044, and we down sample and/or pad
each image to 640×416. A GP3 gaze tracker by Gazepoint (Vancouver, Canada)
was used for the collection of gaze data. The tracker has an accuracy of around
1◦ of visual angle, and has a 60 Hz sampling rate [66].

Several metrics have been used for the evaluation of saliency predic-
tion performances, and they can be classified into location-based metrics and
distribution-based metrics [4]. Due to the tracking inaccuracy of the GP3 gaze
tracker, location-based metrics are not suited for this study. Therefore, in this
paper, we follow suggestions in [4] and use KLD for performance evaluation.
We also include histogram similarity (HS), and Pearson’s correlation coefficient
(PCC) for reference purposes. For the evaluation of classification performances,
we use the area under curve (AUC) metrics for multi-class classifications [14,17],
and the classification accuracy (ACC) metrics. We also include the AUC met-
rics for each class: normal, enlarged heart, and pneumonia, denoted as AUC-Y1,
AUC-Y2, and AUC-Y3, respectively. In this paper, all metrics values are pre-
sented as median statistics followed by standard deviations behind the ± sign.
Metrics with up-pointing arrow ↑ indicates greater values reflect better perfor-
mances, and vice versa. Best metrics are emboldened.

5 Experiments and Result

5.1 Benchmark Comparison

In this subsection, we compare the performance of MT-UNet, with benchmark
networks for CXR image classification and saliency prediction. Detailed training
settings are presented in Appendix B.

For CXR image classification, the benchmark networks are chosen from the
top performing networks for CXR image classification examined in [13], which are
ResNet50 [18] and Inception-ResNet v2 (abbreviated as IRNetV2 in this paper)
[54]. Following [25], we also include a state-of-the-art general purpose classifica-
tion network: EfficientNetV2-S (abbreviated as EffNetV2-S) [56] for comparison.
For completeness, classification using standard UNet with additional classifica-
tion head (denoted as UNetC) is included. Results are presented in Table 1, and
We can see that MT-UNet outperforms the other classification networks.

For CXR image saliency prediction, comparison was conducted with 3 state-
of-the-art saliency prediction models, which are SimpleNet [46], MSINet [30] and
VGGSSM [7]. Saliency prediction using standard UNet (denoted as UNetS) is
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Table 1. Performance comparison between classification models.

Metrics MT-UNet UNetC EffNetv2-S IRNetv2 ResNet50

ACC ↑ 0.670 ± 0.018 0.593 ± 0.009 0.640 ± 0.037 0.640 ± 0.017 0.613 ± 0.013

AUC ↑ 0.843 ± 0.012 0.780 ± 0.006 0.826 ± 0.015 0.824 ± 0.014 0.816 ± 0.010

AUC-Y1 ↑ 0.864 ± 0.014 0.841 ± 0.007 0.852 ± 0.013 0.862 ± 0.016 0.845 ± 0.015

AUC-Y2 ↑ 0.912 ± 0.008 0.840 ± 0.003 0.901 ± 0.015 0.897 ± 0.011 0.896 ± 0.015

AUC-Y3 ↑ 0.711 ± 0.027 0.597 ± 0.018 0.653 ± 0.017 0.633 ± 0.036 0.622 ± 0.022

Table 2. Performance comparison between saliency prediction models.

Metrics MT-UNet UNetS SimpleNet MSINet VGGSSM

KLD ↓ 0.726 ± 0.004 0.750 ± 0.002 0.758 ± 0.009 0.748 ± 0.003 0.743 ± 0.007

PCC ↑ 0.569 ± 0.004 0.552 ± 0.002 0.545 ± 0.008 0.557 ± 0.002 0.561 ± 0.005

HS ↑ 0.548 ± 0.001 0.540 ± 0.001 0.541 ± 0.002 0.545 ± 0.001 0.545 ± 0.003

also included for reference. Table 2 shows the result, where MT-UNet outper-
forms the rest. Visual comparisons for saliency prediction results are presented
through Table 4 in Appendix C.

5.2 Ablation Study

To validate the modified multi-task learning scheme, ablation study is performed.
The multi-task learning schemes following Eqs. 1, 4, and 5 are compared, and
they are denoted as MTLS1, MTLS2, and MTLS3, respectively. Please note
that the best-performing MTLS3 is used for benchmark comparison in Sect. 5.1.
Figure 3 shows the training process for MTLS2 and MTLS3. With Figs. 2 and
3, we can see that overfitting occurs both for MTLS1 and MTLS2, but the
overfitting is reduced in MTLS3. The training processes shown in Figs. 2 and 3
are with optimized hyper-parameters. The resulting performances are compared
in Table 3. We can see that MTLS3 outperforms the rest learning schemes both
in classification and in saliency prediction.

To validate the effects of using classification head that aggregates features
from different depths, we create ablated versions of MT-UNet that use features
from either the bottleneck or the top layer of the MT-UNet for classification,
denoted as MT-UNetB and MT-UNetT, respectively. Results are presented in
Table 3. We can see that MT-UNet generally performs better than MT-UNetT
and MT-UNetB.
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Table 3. Ablation study performance comparison.

Metrics MTLS1 MTLS2 MTLS3 MT-UNetB MT-UNetT

KLD ↓ 0.730 ± 0.007 0.738 ± 0.006 0.726 ± 0.004 0.730 ± 0.003 0.734 ± 0.007

CC ↑ 0.566 ± 0.005 0.563 ± 0.005 0.569 ± 0.004 0.568 ± 0.003 0.561 ± 0.007

HS ↑ 0.547 ± 0.002 0.545 ± 0.002 0.548 ± 0.001 0.548 ± 0.001 0.544 ± 0.003

ACC ↑ 0.649 ± 0.041 0.638 ± 0.019 0.670 ± 0.018 0.653 ± 0.013 0.649 ± 0.011

AUC ↑ 0.832 ± 0.019 0.832 ± 0.010 0.843 ± 0.012 0.836 ± 0.009 0.847 ± 0.008

AUC-Y1 ↑ 0.859 ± 0.014 0.861 ± 0.015 0.864 ± 0.014 0.859 ± 0.007 0.883 ± 0.005

AUC-Y2 ↑ 0.906 ± 0.016 0.913 ± 0.005 0.912 ± 0.008 0.907 ± 0.011 0.910 ± 0.006

AUC-Y3 ↑ 0.682 ± 0.035 0.672 ± 0.010 0.711 ± 0.027 0.694 ± 0.023 0.695 ± 0.025

Fig. 3. Multi-task learning schemes comparison

6 Discussion

In this paper, we build the MT-UNet model and propose a further optimized
multi-tasking learning scheme for saliency prediction and disease classification
with CXR images. While a multi-task learning model has the potential of enhanc-
ing the performances for all component tasks, a proper training scheme is one
of the key factors to fully unveil its potentiality. As shown in Table 3, MT-UNet
with the standard multi-task learning scheme may barely outperform existing
models for saliency prediction or image classification.

Several future work could be done to improve this study. The first would
be the expansion of the gaze tracking dataset for medical images. So far, only
1083 CXR images are publicly available with radiologist’s gaze behavior, lim-
iting extensive studies of gaze-tracking assisted machine learning methods in
the medical field. Also, more dedicated studies on multi-task learning methods,
especially for small datasets, can be helpful for medical machine learning tasks.
Overfitting and data deficiency are the lingering challenges encountered by many
studies. A better multi-task learning method may handle these challenges more
easily.
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A Mathematical Derivation of Vicious Circle
for Overfitting

Let L ≥ 0 be the loss for a task, T , and σ > 0 be the variance estimator for L
used in Eq. 1. Therefore, the loss for T following Eq. 1 can be expressed as:

L =
L

σ2
+ ln(σ + 1). (6)

The partial derivative of L with respect to σ is:

∂L
∂σ

= −2L

σ3
+

1
σ + 1

. (7)

During a gradient based optimization process, to minimize L, σ converges to
the equilibrium value (σ remains unchanged after gradient descend) which is
achieved when ∂L

∂σ = 0. Therefore, the following equation holds when σ is at its
equilibrium value, denoted as σ̃:

L =
σ̃3

2σ̃ + 2
(8)

which is calculated by letting ∂L
∂σ = 0. Let f(σ̃) = L, σ̃ > 0, we can calculate

that:
df(σ̃)
dσ̃

=
σ̃2(2σ̃ + 3)
2(σ̃ + 1)2

> 0, ∀σ̃ > 0. (9)

Therefore, we know that f(σ̃) is strictly monotonically increasing with respect
to σ̃, and hence the inverse function of f(σ̃), f−1(·), exists. More specifically, we
have:

σ̃ = f−1(L). (10)

As a pair of inverse functions share the same monotonicity, we know that σ̃ =
f−1(L) is also strictly monotonically increasing. Thus, when L decreases due to
overfitting, we know that σ̃ will decrease accordingly, forcing σ to decrease. The
decreased σ leads to an increase in the effective learning rate for T , forming a
vicious circle of overfitting.

B Training Settings

We use the Adam optimizer with default parameters [29] and the RLRP sched-
uler for all the training processes. The RLRP scheduler reduces 90% of the
learning rate when validation loss stops improving for P consecutive epochs,
and reset model parameters to an earlier epoch when the network achieves the
best validation loss. All training and testing are performed with the PyTorch
framework [45]. Hyper-parameters for optimizations are learning rate r, and P
in RLRP scheduler. The dataset is randomly partitioned into 70%, 10% and
20% subsections for training, validation and testing, respectively. The random
data partitioning process preserves the balanced dataset characteristic, and all
classes have equal share in all sub-datasets. All the results presented in this paper
are based on at least 5 independent training with the same hyper-parameters.
NVIDIA V100 and A100 GPUs (Santa Clara, USA) were used.
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C Saliency Map visualization

Table 4. Visualization of predicted saliency distributions. The ground truth and pre-
dicted saliency distributions are overlaid over CXR images. Jet colormap is used for
saliency distributions where warmer (red and yellow) colors indicate higher concen-
tration of saliency and colder (green and blue) colors indicate lower concentration of
saliency.
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