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Abstract. For computer vision systems based on artificial neural networks,
increasing the resolution of images typically improves the performance of the
network. However, ImageNet pre-trained Vision Transformer (ViT) models are
typically only openly available for 2242 and 3842 image resolutions. To deter-
mine the impact of using higher resolution images with ViT systems the per-
formance differences between ViT-B/16 models (designed for 3842 and 5442

image resolutions) were evaluated. The multi-label classification RANZCR CLiP
challenge dataset, which contains over 30,000 high resolution labelled chest X-
ray images, was used throughout this investigation. The performance of the ViT
3842 and ViT 5442 models with no ImageNet pre-training (i.e. models were only
trained usingRANZCRdata) was firstly compared to see if using higher resolution
images increases performance. After this, a multi-resolution fine-tuning approach
was investigated for transfer learning. This approach was achieved by transferring
learned parameters from ImageNet pre-trainedViT3842 models,which had under-
gone further training on the 3842 RANZCR data, to ViT 5442 models which were
then trained on the 5442 RANZCR data. Learned parameters were transferred via
a tensor slice copying technique. The results obtained provide evidence that using
larger image resolutions positively impacts ViT network performance and that
multi-resolution fine-tuning can lead to performance gains. The multi-resolution
fine-tuning approach used in this investigation could potentially improve the per-
formance of other computer vision systems which use ViT based networks. The
results of this investigation may also warrant the development of new ViT variants
optimized to work with high resolution image datasets.
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1 Introduction

When developing artificial neural networks for computer vision tasks, increasing the
resolution of images used for training and inference often improves the performance of
the network. Intuitively, this is because higher resolution images contain more informa-
tion that can be used by the network. However, once a certain image size is reached the
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performance gained from increasing image resolution will plateau. For EfficientNet [1]
and EfficientNetV2 [2], models pre-trained on ImageNet are available that can use 2242

image resolutions (B0 model variants) to 6002 image resolutions (B7 model variants).
These Convolutional Neural Networks (CNNs) provide good examples of increased
classification accuracy on the ImageNet benchmark [3] when using higher image reso-
lutions and also how accuracy begins to plateau once a given image resolution (6002)
is reached. It should be noted that the image resolution at which performance begins to
plateaus will likely be different depending on the dataset.

Image resolution has also been shown to have an important effect on CNNs when
evaluating their performance on test datasets and for transfer learning applications. Tou-
vron et al. [4] used a light-weight parameter adaptation of a CNN to allow larger image
resolutions to be used while testing the network (the main aim was to fix the resolu-
tion discrepancy seen by CNNs between training and testing). Touvron et al. showed
that test performance increased when using higher resolution images (up to a plateau
value) than those the CNN was trained on. Kolesnikov et al. [5] investigated methods
to improve the generalization of CNNs for transfer learning tasks by altering network
architecture (e.g. replacing Batch Normalization with Group Normalization). They also
showed that fine-tuning CNNs to the test dataset resolution can improve transfer learning
performance.

In the original Vision Transformer (ViT) paper [6] the authors fine-tuned the ViT
network at higher resolution (3842) than that used in pre-training (2242) and attained
higher accuracies on popular image classification benchmarks (including ImageNet)
when using 3842 ViT models when compared to 2242 ViT models. This was achieved
by keeping the image patch size the same, which results in the ViT network having a
larger sequence of patches. However, ViT networks for image resolutions larger than
3842 were not created and trained/fine-tuned in the original paper.

More recently, the rules determining howViTmodels scale have been investigated by
scaling ViTmodels and characterizing the relationships between error rate, data require-
ments and computing power [7]. This resulted in the creation of the ViT-G/14 model
variant [7] which was trained on extremely large proprietary datasets (e.g. JFT-300M)
using 2242 image resolutions before being fine-tuned using the same extremely large
proprietary datasets with 5182 image resolutions. The ViT-G/14 model, which contains
approximately two billion parameters, attained previous state-of-the-art on ImageNet
with 90.45% top-1 accuracy (top-1 accuracy relates to where the highest class predic-
tion probability is the same as the target label). However, for many users the current
hardware requirements needed to train the ViT-G/14 network or use it for transfer learn-
ing tasks would be prohibitively expensive. It would be even more challenging to use
ViT-G/14 as an encoder for dense prediction (e.g. segmentation or monocular depth
estimation) tasks due to even more parameters being needed within the models.
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The work presented in this paper details the results of an investigation to take a
multi-resolution fine-tuning approach (whereby networks are trained through transfer
learning, initially on low resolution images before being fine-tuned on higher resolutions
versions of these images) and apply this directly to transfer learning applications relating
to medical image analysis using ViT systems. To the best of the authors knowledge, this
is the first time that multi-resolution fine-tuning has been applied directly to medical
imaging for ViT systems. The medical image dataset used in this investigation consists
of over 30,000 chest X-rays (taken to evaluate the positioning of multiple catheters) and
allows the multi-label classification performance of ViT models to be evaluated. Firstly,
a performance comparison between ViT 3842 and ViT 5442 networks with no prior
training (i.e. models were only trained using RANZCRCLiP data) was conducted. After
the initial performance comparison showed that using larger image sizes is beneficial,
a multi-resolution fine-tuning approach was applied directly to the RANZCR CLiP
transfer learning task. This was achieved by transferring learned network parameters (via
a tensor slice copying technique) from ImageNet pre-trained ViT 3842 models, which
had undergone further training on the 3842 RANZCR CLiP data, to newly initialized
ViT 5442 models which were further trained on the 5442 RANZCR CLiP data. Results
provide strong evidence that this approach increases multi-label classification accuracy
and that using higher image resolution can improve network performance.

2 Method

2.1 Image Dataset Selection

TheRoyalAustralian andNewZealandCollege ofRadiologists (RANZCR)Catheter and
Line Position (CLiP) challenge dataset consists of over 30,000 high resolution (typically
greater than 20002) labelled chest X-ray images [8]. The aim of the original dataset chal-
lenge [9] was to detect the presence and position of different catheters and lines within
chest X-ray images. The positions of the inserted catheters/lines are important since if
they are poorly placed, they can worsen the patient’s condition. There are four types
of catheters/lines: Endotracheal Tube (ETT), NasoGastric Tube (NGT), Central Venous
Catheter (CVC) and Swan-Ganz Catheter (SGC). The ETT, NGT and CVC can be cate-
gorized as ‘Normal’, ‘Borderline’ or ‘Abnormal’ and the SGC is either ‘Present’ or ‘Not
Present’ hencemaking this amulti-label classification problemwith 11 classes. Themet-
ric used to evaluate the multi-label classification performance in the original challenge
was the ‘One vs Rest Area Under Curve Receiver Operator Characteristic’ (AUC-ROC)
and this metric is used to evaluate performance of models within this investigation. The
RANZCR CLiP dataset was selected for this transfer learning investigation due to the
high resolution of the images and because classifying the placement of catheters/lines
likely requires analysis of fine detail within the images (Fig. 1).



538 K. Fitzgerald et al.

Fig. 1. Example of a cropped X-ray image region (from the RANZCR CLiP database) [8] gener-
ated using two different original image resolutions. This demonstrates potential information loss
as the image size decreases.

2.2 Multi-resolution Fine-Tuning for Transfer Learning

When using the PyTorch deep learning framework for transfer learning, it is necessary to
load weights from pre-trained models into your current model. This commonly requires
that the tensors containing the parameters of the models match in name, shape, and size.
Therefore, using larger image sizes as input into a ViT model which has been trained on
smaller sized images would not be immediately possible. To overcome this limitation,
it is possible to copy parameters (in the form of tensor slices) from pre-trained ViT
models and insert these into the tensors (which are either the same size or are larger)
of a new ViT model capable of processing higher resolution images. This tensor slice
copying technique also allows other network design features of the new ViT model to
be changed whilst still making use of the original pre-trained ViT model parameters.
Examples of such network design features include: fully connected layer ratio, image
embedding size, network depth and number of attention heads.

As an example, comparing a standard (i.e. ViT-B/16) ViT 5442 model to a standard
pre-trained ViT 3842 model shows that only the size and shape of the Layer 2 tensor
changes, while for all other layers the size and shape of tensors is identical. Therefore,
the learned ViT 3842 model parameters can be transferred via tensor slice copying to
every layer of the 5442 ViT model. Specifically, for Layer 2 it is possible to either: (1)
ignore the ViT 3842 Layer 2 tensor learned parameters and leave the Layer 2 tensor of
the ViT 5442 with its original initialization state; or (2) transfer the ViT 3842 Layer 2
tensor learned parameters to the Layer 2 tensor of the ViT 5442 which only partially fills
the tensor.

In this investigation parameters from ImageNet pre-trained ViT-B/16 3842 models
[6, 10] were inserted via the tensor slice copying technique into a newly createdViT 5442

ViT-B/16 models which had an increased fully connected layer ratio (4.25 compared to
4 in the original ViT 3842 model). All possible parameters were transferred meaning
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that some ViT 5442 layer tensors would have been only partially filled (i.e. option (2)
from the previous paragraph) (Table 1).

Table 1. Comparison of the first four layers of a ViT 5442 network and ViT 3842 ViT network.
Only the size of Layer 2 changes between the models, all other layer sizes match.

Image input size (3842) (5442)

No. parameters 86,094,341 86,539,781

Layer 1 size [1, 1, 768] [1, 1, 768]

Layer 2 size [1, 577, 768] [1, 1157, 768]

Layer 3 size [768, 3, 16, 16] [768, 3, 16, 16]

Layer 4 size [768] [768]

2.3 Fold Selection and PyTorch Model Training

The RANZCR CLiP data was split into twenty folds (using a typical K-Fold random
stratified sampling approach) with care also being taken to ensure that no data leakage
occurred (e.g. data from a given patient was always contained in the same fold). Due
to hardware limitations (all training and validation was run on a single Nvidia 3090
GPU) and the need for repeat runs using different random number seeds, it was not
possible to use all twenty folds for cross validation in the transfer learning investigation.
Instead six folds consisting of the three highest scoring and three lowest scoring AUC
ROC validation scores were selected after the twenty-fold cross validation study was
conducted using an ImageNet pre-trained ViT 3842 network [6, 10] which underwent
additional training on the RANZCR CLiP data. This found that the highest scoring
validation folds were 14, 8 and 10, with the lowest scoring validation folds being 2,
20 and 12. After six epochs of training overfitting began to occur. The results of the
twenty-fold cross validation study are displayed in Fig. 2. No data augmentation or
image pre-processing was conducted (Fig. 2).

Before conducting the transfer learning investigation, a performance comparison
between ViT 3842 and ViT 5442 models with no prior ImageNet training was conducted
(i.e. only RANZCR CLiP data was used for training and validation) for each of the six
folds selected.

For the investigation into the multi-resolution fine-tuning approach which can be
directly applied to transfer learning, the model states of ImageNet pre-trained ViT 3842

models which underwent additional training on the RANZCR CLiP data were saved for
each of the six folds investigated. The saved ViT 3842 model states after epoch three
of training were then transferred to the corresponding ViT 5442 networks using the
tensor slice copying technique. ViT 5442 networks were then trained on the RANZCR
CLiP data, hence allowing for a multi-resolution fine-tuning approach. For each fold, six
ViT 5442 model runs were then conducted using different random number generation
seeds. An additional six ViT 3842 model runs were conducted using different random
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Fig. 2. Comparison of the three highest scoring and three lowest scoring AUC ROC validation
scores from the twenty-fold cross validation scoping study conducted using a pre-trainedViT 3842

network which underwent additional training on the RANZCR CLiP data. Overfitting begins to
occur after approximately six epochs.

number generation seeds. These repeat runs were conducted to give confidence that
improvements in performance are not down to the small random variability of network
predictions. The different random number generation seeds impact the order of how
image batches are loaded. In order to focus on the effects of image resolution, the PyTorch
training settings and hyperparameters were kept the same between runs. However, it is
likely that the training process followed in the original ViT paper [6] is heavily optimized
compared to that used this investigation (Table 2).
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Table 2. PyTorch training settings and parameters used in this investigation.

PyTorch training option Selected setting

Optimizer Adam

Loss function BCEWithLogitsLoss

Learning rate 1.00e-05

Learning rate decay factor 0.95

Image batch size 4

MLP dropout rate 0.1

Residual path dropout rate 0.1

Attention dropout rate 0.1

3 Results

3.1 ViT 3842 vs ViT 5442 Model Comparison with no Prior Training

The results of the performance comparison between theViT 3842 andViT 5442 networks
which had no pre-training for the six folds investigated (i.e. only trained using RANZCR
CLiPdata) are presented inFig. 3. It canbe seen that the average,maximumandminimum
(shown with error bar range) AUC ROC validation scores of the six folds investigated
are higher for the ViT 5442 network (after eight training epochs) when compared to the
3842 ViT network. Numerical values of the maximum achieved AUC ROC validation
scores for each fold investigated are presented in Table 3.

These results provide further evidence of how increasing image resolution can
increase the performance of deep learning image classification systems and that this
relationship is valid for ViT systems. However, the maximum achieved AUC ROC val-
idation scores for each fold are significantly lower for the ViT 5442 network with no
pre-training compared to those of the ImageNet pre-trained ViT 3842 network shown in
Fig. 2. This necessitates the need for multi-resolution fine-tuning which can be directly
applied to transfer learning tasks (Fig. 3 and Table 3).

3.2 Multi-resolution Fine Tuning

The results of the multi-resolution fine-tuning approach directly applied to the transfer
learning task of medical image multi-label classification are visualized for each fold
using box plots (showing theminimum,maximum, quartiles andmedian validationAUC
ROC scores) in Fig. 4. Apart from for fold 14, the maximum and median AUC ROC
scores achieved using the ViT 5442 network are higher than those obtained using the ViT
3842 network. However, even though themaximum achieved accuracies are significantly
higher when pre-training is used, the magnitude of the performance increase between
ViT 5442 networks and ViT 3842 networks is smaller compared to when no pre-training
was used.
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Fig. 3. Comparison of the average, maximum and minimum AUC ROC validation scores of the
six folds investigated for the ViT 3842 and ViT 5442 networks.

Table 3. ViT 3842 and ViT 5442 maximum achieved AUC ROC validation scores for each fold
when no pre-training is used.

Fold 3842 5442 Difference

14 0.7666 0.7812 0.0146

8 0.7749 0.7885 0.0136

10 0.7571 0.7651 0.0080

2 0.7506 0.7747 0.0241

20 0.7561 0.7602 0.0042

12 0.7185 0.7488 0.0303

These results provide further evidence that multi-resolution fine-tuning can improve
network performance and that, importantly, this approach can be directly applied to
transfer learning tasks using ViT systems (Fig. 4 and Table 4).
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Table 4. Maximum achieved AUC ROC validation scores for each fold for ViT 3842 pretrained
networks and ViT 5442 networks using the multi-resolution fine-tuning approach.

Fold 3842 5442 Difference

14 0.8756 0.8725 −0.0031

8 0.8763 0.8830 0.0067

10 0.8653 0.8689 0.0036

2 0.8496 0.8559 0.0063

20 0.8496 0.8615 0.0119

12 0.8439 0.8519 0.0080

Fig. 4. Box plots showing the minimum, maximum, quartiles and median validation AUC ROC
scores of the repeat runs of the six folds investigated for the ViT 3842 (red) and ViT 5442 (blue)
networks. (Color figure online)

4 Discussion

Theperformance comparison between theViT3842 andViT5442 networkswhich had no
pre-training strongly demonstrate how using larger image resolutions positively impacts
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ViT network performance. This is further supported by the results of themulti-resolution
fine-tuning approach which found that the ViT 5442 network slightly outperformed the
ViT 3842 network for five out of the six folds tested.

The multi-resolution fine-tuning approach could potentially impact the performance
of other computer vision systems designed for dense prediction tasks (e.g. monocular
depth estimation) which use pre-trained ViT models as encoders. An example of such a
system would be the Dense Prediction Transformer (DPT) [11] which previously held
state-of-art performance on certainmonocular depth challenges (such asNYU-DepthV2
[12]). The DPT used the original ViT 3842 ImageNet pretrained network as the encoder
starting point. In addition, the multi-resolution fine-tuning approach for direct transfer
learning may also be applicable to new ViT systems (such as the Vision Longformer
[13]) being developed.

It is likely that further improvements could be made to the multi-resolution fine-
tuning approach used in this study. The training method used is likely to not be as
optimized as that used in the original ViT paper [6] and any improvements made to
the training process could further increase the performance of the ViT 5442 networks.
The tensor slice copying technique could also be improved as the approach used in
this study directly copied Layer 2 learned parameters from the ViT 3842 network to
Layer 2 of the ViT 5442 network. Layer 2 represents learned image embeddings with
positional encodings and using a more complex approach to transfer these particular
learned parameters to the ViT 5442 network could help during fine-tuning. For example,
in the original ViT paper [6] the authors performed 2D interpolation of the pre-trained
position embeddings, according to their location in the original image, for resolution
adjustment. This would also ensure that all parameters in Layer 2 are updated rather
than some parameters keeping their randomly initialized value which could potentially
be adversely impacting gradient calculations.However, preliminary investigationswhich
left all Layer 2 parameters in their randomly initialized state had only marginally worse
performance compared to partially filling the Layer 2 tensor, suggesting that adverse
effects on the gradient calculations are minimal. Examining all twenty folds rather than
the six selected folds would also reduce possible bias and conducting more runs for each
fold would give even higher confidence in the results obtained. Applying the developed
transfer learning approach to other imaging problems and investigating performance
would allow external validation of the methods used.

Since the performance gains of the ViT 5442 networks were essentially attained
by changing the number of patches used, this might also justify the development of
new ViT network variants designed specifically to work with larger image sizes but
with network design parameters which are not as extreme as the ViT-G/14 variant (i.e.
significantly reduced network depth and total parameter number). Pre-training and fine-
tuning of these ViT networks with higher image resolutions (e.g.>5002) than those used
in the original ViT paper (2242 and 3842) using large image databases (e.g. ImageNet
dataset variants) could lead to significant performance increases. Such models would
likely have hardware requirements that wouldmake them accessible to a large number of
users/developers and also make them suitable for use in encoder-decoder style systems
for dense prediction tasks.



Multi-resolution Fine-Tuning of Vision Transformers 545

5 Conclusion

The impact of using ViT networks with higher resolution images (compared to those
typically used for training on ImageNet dataset variants) on a multi-label classification
problem has been evaluated. The dataset used in this investigation was the RANZCR
CLiP challenge dataset which consists of over 30,000 high resolution labelled chest
X-ray images [8].

A performance comparison between two ViT-B/16 networks [6, 10], which had no
pre-training, designed to workwith 3842 and 5442 image resolutions has been conducted
on the RANZCR CLiP medical image multi-label classification task. The ViT 5442

network outperforms the ViT 3842 network for all six of the data folds that were tested.
A multi-resolution fine-tuning approach was applied to ViT 5442 networks directly

for the RANZCR CLiP medical image multi-label classification task. To achieve this,
ImageNet pre-trained ViT 3842 model states, after three epochs of additional training on
theRANZCRCLiP dataset, were saved. TheViT 3842 model stateswere then transferred
to ViT 5442 models using a tensor slice copying technique and the 5442 models were
then trained on the RANZCR CLiP dataset. The results of this approach show that the
ViT 5442 network outperformed the ViT 3842 network for five out of the six data folds
that were tested.

The results obtained provide strong evidence that using larger image resolutions
positively impacts ViT network performance. This may justify the development of new
ViTnetwork variants (with significantly less computational requirements than the current
state-of-the-art ViT-G/14 variant) designed to work with higher image resolutions (i.e.
greater than 3842). Such variants would likely be more accessible to a larger number of
users and may also be suitable for use in encoder-decoder systems for dense prediction
tasks. The performance of existing encoder-decoder systems for dense prediction tasks,
which useViTbased systems as encoders,may also receive transfer learningperformance
increases by using multi-resolution fine-tuning approaches similar to that used in this
investigation.
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