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Abstract. Deep learning methods have shown promising performance
in medical image semantic segmentation. The cost of high-quality anno-
tations, however, is still high and hard to access as clinicians are pressed
for time. In this paper, we propose to utilize the power of Vision
Transformer (ViT) with a semi-supervised framework for medical image
semantic segmentation. The framework consists of a student model and
a teacher model, where the student model learns from image feature
information and helps teacher model to update parameters. The con-
sistency of the inference of unlabeled data between the student model
and teacher model is studied, so the whole framework is set to min-
imize segmentation supervision loss and consistency semi-supervision
loss. To improve the semi-supervised performance, an uncertainty esti-
mation scheme is introduced to enable the student model to learn from
only reliable inference data during consistency loss calculation. The app-
roach of filtering inconclusive images via an uncertainty value and the
weighted sum of two losses in the training process is further studied. In
addition, ViT is selected and properly developed as a backbone for the
semi-supervised framework under the concern of long-range dependen-
cies modeling. Our proposed method is tested with a variety of evalua-
tion methods on a public benchmarking MRI dataset. The results of the
proposed method demonstrate competitive performance against other
state-of-the-art semi-supervised algorithms as well as several segmenta-
tion backbones.

Keywords: Semi-supervised learning · Image semantic segmentation ·
Vision transformer

1 Introduction

Medical image semantic segmentation is an essential computer vision task with
a wide range of applications including robotic surgery, clinical diagnosis, and
image alignment. The goal of image semantic segmentation is to classify each
pixel of an input image as to whether or not it is part of a Region Of Interest
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Fig. 1. The framework of semi-supervised uncertainty-aware mean teacher transformer
network for medical image segmentation

(ROI) or background. Various deep-learning-based methods haven been widely
studied in medical imaging community. The Encoder-Decoder style of Convolu-
tional Neural Network (CNN) is one of the most commonly used segmentation
techniques i.e. U-Net [14], and many researchers have studied 3D convolution,
atrous convolution, residual learning, attention mechanism with U-Net for a
wide range of medical imaging tasks which results in a family of U-Net such
as 3D UNet, ResUNet, DenseUNet, Attention-UNet for MRI, ultrasound, CT
segmentation [3,5,11,20,21]. There are three main concerns are yet to be fur-
ther studied: a) the success of deep learning methods relies on a large amount of
high-quality annotation data, which is high-cost, time consuming, and difficult
to access especially in the clinical domain, b) the semantic feature information
cannot be sufficiently condensed and transferred through traditional deep CNN
layers or down/up-sampling operations, c) the limitation of the receptive fields
in CNNs is not able to model long-range feature information. On order to tacke
this challenge, Transformers [18] which use a pure self-attention architecture to
model long-range dependencies in natural language processing without CNN are
currently studied in the computer vision community. In a similar vein, we pro-
pose a ViT network in a semi-supervised manner with uncertainty estimation
scheme for medical image semantic segmentation.

We first present a semi-supervised framework that effectively leverages the
unlabeled data by encouraging consistent predictions of the same input under
different perturbations. Following the Mean Teacher [17] to overcome limitation
of Temporal Ensembling [7], the framework consists of the student model and
the teacher model where the student model is able to update parameters with
gradient descent, and teacher model is updated as an exponential moving average
of the student weights. The whole training process is to minimize the segmenta-
tion supervision loss between student’s machine segmentation (MS) and ground
truth (GT), and consistency semi-supervision loss between the teacher’s MS and
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the student’s MS. Secondly, inspired by uncertainty estimation [6,23], we uti-
lized Monte Carlo Dropout [6] to estimate the uncertainty with cross-entropy,
thus enable student-teacher gradually learn from properly filtering reliable and
valuable feature information. And then, to tackle the lack of semantic feature
information being transferred through the CNN multi-layers and pooling, we
introduce a pure self-attention-based ViT [4] as the semantic segmentation back-
bone. The segmentation performance benefits from a context model from Natural
Language Processing [18], which is also helpful in computer vision especially in
pixel-level classification tasks [8]. Finally, the evaluation results demonstrate our
method’s promising performance against other state-of-the-art semi-supervised
methods. Ablation studies include proposed ViT against different CNN-based
backbones, several approaches of filtering uncertainty map, and the assumption
of different ratio of labeled data provided for training are also explored.

2 Methodology

In the task of semi-supervised learning, L, U, T normally denote labeled training
dataset, unlabeled training dataset, and testing set. We denote a batch of labeled
data as (X,Y gt) ∈ L, (X,Y gt) ∈ T, and a batch of only raw data as (X) ∈ U
in unlabeled dataset, where X ∈ R

h×w representing a 2D image. Y t,Y s are
the dense map predicted by the teacher ViT ft : X �→ Y t, and student ViT
fs : X �→ Y s, respectively. Ls : (Y s,Y gt) �→ R,Lc : (Y s,Y t) �→ R represent
supervised segmentation loss, and semi-supervised consistency loss. In general,
the training is to update the parameter of student ViT fs aiming to minimize
the combined loss L, which is detailed in Eq. 1. Exponential Moving Average
(EMA) [17] is utilized to update parameters of teacher ViT ft from student
ViT fs in each training iteration. Uncertainty estimation scheme is applied in
Lc that enable ft to properly guide the training of fs with the certain part of
inference. The proposed framework is sketched in Fig. 1. Details of the framework
including semi-supervised mean teacher with uncertainty estimation scheme, and
segmentation ViT, are discussed in Sects. 2.1 and 2.2.

2.1 Semi-supervised Learning Framework

Inspired by temporal ensembling [7], mean teachers [17], and uncertainty-aware
self-ensembling [23], we propose a semi-supervised mean teacher framework with
uncertainty estimation scheme for medical image semantic segmentation. The
framework is designed to effectively leverage the unlabeled data by encouraging
consistent predictions from different perturbations. In each training iteration,
the student ViT fs is updated with gradient decent to minimize the combined
loss Ls + λLc = L, which is detailed in Eq. 1. λ for Lc is calculated based on
consistency ramp-up method, because it can enable both fs, ft can properly make
a consistency prediction, and also allow whole framework is able to put more
focus on unlabeled data [7] during training process. In the end of each training
iteration, EMA is utilized to update parameters of ft, and the prediction of ft
is more likely to be correct than fs after a series of study [17].
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To further improve semi-supervised performance by enabling ft guide fs to
learn feature information via semi-supervised consistency loss Lc, i.e. study
on the region where with confident and reliable inference should be utilized
to calculate for Lc. We hereby propose uncertainty-aware scheme to enable fs
is optimized with Lc only on confident and reliable inference images. Uncer-
tainty estimation of inference of each pixel, and the approach of filtering the cer-
tain/uncertain inference are hereby introduced. Uncertainty estimation is mainly
based on the Monte Carlo Dropout [6] on ft, where 8 times stochastic forward
passes with dropout and input Gaussian noise. In semantic segmentation task,
each pixel is classified with the probability p of ROI, and it is calculated as
p = 1

T

∑
t p

′
t as dropout is utilized, where p′ is the probability before dropout.

The cross-entropy of predictive U is selected as the metric to estimate the uncer-
tainty of targets [23], and it is calculated as U = −∑

p log p. Therefore, only
the region of reliable targets provided by ft (including both ROI and back-
ground) are filtered by a threshold τ for fs to be trained with consistency semi-
supervision loss Lc, which is detailed in Eq. 2. The supervision segmentation loss
Ls is detailed in Eq. 3.

L = αLs(fs(X),Y gt) + λLc(ft(X), fs(X)) (1)

Lc(ft(X), fs(X)) =
‖I(U < τ) � (ft(X) − fs(X))2‖1

2‖I(U < τ)‖1 + ε
(2)

Ls(fs(X),Y gt) =
1
2
(CrossEntropy(fs(X),Y gt) + Dice(fs(X),Y gt)) (3)

where ε = 10−6, τ is the threshold which is modified in each training iteration
based on ramp-up approach. In this way, less data will be removed in training
process that enable student model to gradually learn from certain to less certain
feature information. λ is a factor for Lc which is also modified in each training
iteration which make the whole framework move focus on minimizing the Ls to
Lc of training process [23].

2.2 Segmentation Transformer

Semantic feature information is essential in semantic segmentation. The image
feature, however, is going to be blurred after multiple layers of CNN encoding.
In U-Net, copy and crop are utilized between encoder and decoder to make suffi-
cient semantic feature information been transferred through CNN which results
in dominant position in segmentation [14]. The boundary of ROI, especially the
information of edge response, can be lost after CNN layers and pooling lay-
ers which is harmful for performance [25]. In this section, we introduce a pure
self-attention-based vision transformer without CNN for semantic segmentation
aiming to achieve sufficient global image context modeling. The model is inspired
by Transformer [18], Vision Transformer [4], DETR [2], and Segmentor [16]. The
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setting of ViT encoder and ViT mask decoder are discussed in this section, and
the technical hyper-parameters setting details was introduced in Sect. 3.2.

As shown in Fig. 1, a sequence of patches X ′ = [x′
1 · · · x′

N ]� ∈ R
N×P 2

is processed from an medical image X ∈ R
h×w, where P is the patch size,

and N = h×w
P 2 is the number of patch from each input image. Each patch

is then flatten into a 1D vector and been projected with patch embedding
X0 = [E1 · · · EN ]�, E1···N ∈ R

D×P 2
. The positional embeddings to collect posi-

tional information pos = [pos1 · · · posN ]� ∈ R
N×D are added, and the final input

sequence of tokens for encoder is Z0 = X0 + pos. The transformer encoder con-
sists of a multi-headed self-attention (MSA) block followed by a point-wise MLP
block of two layers. Residual connections and layer normalization (LN) are both
applied in each block. The details of MSA and MLP block for feature learning
are demonstrated in Eq. 4, 5, where i ∈ 1 · · · L, and L is the number of layers
in encoder. The self-attention mechanism is composed of three point-wise linear
layers mapping tokens to intermediate representations: quires Q, keys K, and
values V , which is introduced in Eq. 6. In this way, the transformer encoder
maps input sequence Z0 = [z0,1 · · · z0,N ] with position to ZL = [zL,1, ..., zL,N ].
All these settings are following by [4]. In this way, the much richer sufficient
semantic feature information are fully used in the encoder.

Ai−1 = MSA(LN(Zi−1)) + Zi−1 (4)

Zi = MLP(LN(Ai−1)) + Ai−1 (5)

where MSA is calculated by:

MSA(Z ′) = softmax(
QK√

D
)V , (6)

and the Q,K,V are given by:

Q = LinearQ(Z ′),K = LinearK(Z ′),V = LinearV(Z ′) (7)

The sequence of ZL is then decoded to dense map S ∈ R
h×w×k as segmen-

tation results via a transformer mask decoder, where k is the number of classes.
The decoder acts as mapping patch from encoder and unsample to pixel-level
probability of dense map [16]. The learnable class embedding cls is processed
with ZL in mask decoder same with transformer encoder with M layers. The
output patch sequence is then reshaped to a 2D mask and been bilinearly upsam-
pled to the original image size as prediction results. In transformer mask decoder,
both class embedding and patch sequence are jointly processed, and semantic
segmentation mask is finally inferenced.

3 Experiments

3.1 Datasets

In this experiment, a MRI cardiac segmentation dataset is selected from the
automated cardiac diagnosis MICCAI Challenge 2017 [1]. It consists of 100 dif-
ferent patients divided into 5 evenly distributed subgroups including normal,
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myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy,
and abnormal right ventricle. We use 44,025 232×256 images from 100 patients.
All images are resize to 256×256. 20% of images are selected as testing set, and
the rest of dataset is for training. The ratio of assumed labeled data/training set
is 10% for direct comparison experiment with similarity measures and difference
measures against other semi-supervised methods, other segmentation backbones,
and ablation studies, 1%, 2%, 3%, 5%, 10%, 15% and 20% for direct comparison
with IOU against other semi-supervised methods.

3.2 Training Details

Our code has been developed under Ubuntu 20.04 in Python 3.8.8 using Pytorch
1.10 [12] and CUDA 11.3 using four Nvidia GeForce RTX 3090 GPU with 24 GB
memory, and Intel (R) Intel Core i9-10900K. All the baseline algorithms are
directly utilized from [10], and the ViT for segmentation purpose is based on [16]
from [15] and TIMM library [22]. The runtime averaged around 3.5 h, including
the data transfer, model training, inference and evaluation. All semi-supervised
methods are trained with same settings, i.e. training for 30,000 iterations then
been tested directly, batch size is set to 24, optimizer is SGD, and learning rate
is initially set to 0.01, momentum is 0.9, and weight decay is 0.0001. After multi-
times experiments, we finally come up with a proper hyper parameters setting
for segmentation ViT which achieve the best results with limited computation
resources(6GB in GPU memory costs): The patch size is 16×16, the number of
multi-attention heads is 6, the number of layers L of encoder is 12, normalization
method is same with Transformer [18], and the number of layers M of decoder
is 2.

3.3 Evaluation

Our proposed semi-supervised method is compared with mean teachers [17],
deep adversarial network [24], adversarial entropy minimization for domain
adaptation [19], uncertainty-aware self-ensembling model [23], and deep co-
training [13] as semi-supervised baseline methods with U-Net [14] as back-
bone. The direct comparison experiments are conducted with a variety of eval-
uation metrics including similarity measures: Dice, IOU, Accuracy, Precision,
Recall/Sensitivity, Specificity, which are the higher the better. We also investi-
gate difference measures: Relative Volume Difference (RVD), Hausdorff Distance
(HD), Average Symmetric Surface Distance (ASSD), which are the lower the
better.

3.4 Results

Figure 2 illustrates some examples of raw images, and MS against GT where
Yellow, Red, Green and Black represent as True Positive, False Positive, False
Negative and True Negative pixel, respectively. Example raw images with uncer-
tainty map, and mask of certain image in three different training stages are illus-
trated in Appendix. The best result was in Bold, and quantitative results are
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Raw Image

DAN

ADVENT

MT

UAMT

MT+ENet

UAMT+ENet

MT+Transformer

Semi-Seg-Transformer

True Positive False Positive False Negative True Negative

Fig. 2. The example raw images and inference results on testing set (Color figure
online)

detailed in Table 1 and Table 2. The evaluation results demonstrate that pro-
posed method promising performance against other semi-supervised methods.
Figure 3 gives a systematic review of how the IOU varies when 1%, 2%, 3%,
5%, 10%, 15% and 20% of the training set is labeled. More details of quanti-
tative analysis for different assumed ratio of labeled data given is illustrated in
Appendix.

3.5 Ablation Study

In order to analyze the effects of each of the proposed contributions and their
combinations, extensive ablation experiments have been conducted. Table 3
annotates with � the use of the mandatory mean teacher for semi-supervise
purpose, demonstrating how the removal of uncertainty estimation compromises
the overall performance. The model is selected and tested with U-Net [14],
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Table 1. Direct comparison with similarity measures on cardiac MRI testing set (the
higher, the better)

Model Dice IOU Acc Pre Rec/Sen Spe

[17] 0.8567 0.7494 0.9895 0.7903 0.7903 0.9977

[24] 0.5395 0.3694 0.9480 0.4172 0.7631 0.9557

[19] 0.8612 0.7563 0.9896 0.9258 0.8051 0.9973

[23] 0.8347 0.7164 0.9873 0.8683 0.8037 0.9949

[13] 0.8787 0.7836 0.9908 0.9248 0.8370 0.9972

Ours 0.8821 0.7891 0.9910 0.9288 0.8398 0.9973

Table 2. Direct comparison with difference measures on cardiac MRI testing set (the
lower, the better)

Model RVD HD ASSD

[17] 0.3715 28.5797 6.4947

[24] 2.2593 145.4982 49.5673

[19] 0.2669 20.3860 4.7762

[23] 0.3925 27.2209 6.4702

[13] 0.2630 21.0363 4.3865

Ours 0.2732 13.1815 3.7085

Fig. 3. The IOU performance on test set with different ratio of labeled/total training
set

E-Net [12], and proposed segmentation ViT. Further experiments under the
assumption of fully supervised learning are also conducted annotated with full�
in Table 3. Our proposed ViT with uncertainty estimation scheme shows promis-
ing performance especially in IOU and sensitivity in both semi-supervised and
fully-supervised manner, respectively. The extended experiments of threshold
setting of τ and weight λ of Ls in training process is illustrated in Appendix.
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Table 3. Ablation studies on contributions of architecture and modules (the higher,
the better)

Mean teacher Uncertainty aware Model IOU Sen Spe

� UNet 0.7494 0.7903 0.9977

� � UNet 0.7164 0.8037 0.9949

� ENet 0.7549 0.8314 0.9958

� � ENet 0.7460 0.8529 0.9941

� Ours 0.7840 0.8405 0.9970

� � Ours 0.7891 0.8398 0.9973

� � UNet 0.7924 0.8409 0.9975

� � ENet 0.7549 0.8696 0.9937

� � Ours 0.8173 0.9137 0.9951

4 Conclusion

Our semi-supervised uncertainty-aware segmentation is successful in using
ViT for medical image semantic segmentation via a mean teacher framework.
Experimental results on the public MRI dataset demonstrate our method’s
promising performance compared against both supervised and semi-supervised
existing methods. In the future, multi-task learning and multi-view learning
which potentially improve semi-supervised learning performance will be further
studied.

A Appendix

Table 4 gives detailed systematic IOU results under different assumptions of the
ratio of labeled to total data, on the MRI Cardiac test set. It is pleasantly remark-
able to see serviceable results being obtained with a proportion of labelled data
as small as 1%, 2%, or 3% of the total. Given the small set of type-specific anno-
tations that exist, they can now be put to good use by pairing them with large
amounts of unlabeled data and making them available through our proposed
method.

Table 4. The IOU results under different assumption of ratio of label/total data on
MRI cardiac test set (the higher, the better)

1% 2% 3% 5% 10% 15% 20%

[17] 0.1776 0.1457 0.4034 0.4536 0.7533 0.8354 0.8411

[24] 0.2331 0.2230 0.3010 0.3007 0.3694 0.5155 0.6130

[19] 0.1649 0.1309 0.2543 0.3538 0.7563 0.8345 0.8356

[23] 0.1486 0.1334 0.2480 0.3341 0.7163 0.8180 0.8029

[13] 0.1372 0.1232 0.3790 0.4912 0.7836 0.7990 0.8265

Ours 0.4531 0.6500 0.6900 0.7256 0.7891 0.8165 0.8282
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Table 5 and Table 6 reports the different approaches to modify the threshold
τ of filtering certain or uncertain pixels with uncertainty estimation scheme, and
the weight λ of loss Lc in each training iteration. We explore the fixed value,
exponential ramp up [7], linear ramp up, cosine ramp down [9] and variants of
them. Details of exponential ramp up, linear ramp up and cosine ramp down
is illustrated in the following Eq. 8, 9, 10, respectively. Each experiment is con-
ducted with different approaches under the other one either τ or λ is fixed with
exponential ramp up. The results illustrates different approaches of updating
τ , λ in each training iteration cannot significantly improve the performance of
proposed method, and all other experiments for τ , λ is with exponential ramp
up.

τorλ = e−5×(1−titeration/tmaxiteration)
2

(8)

τorλ = titeration/tmaxiteration) (9)

τorλ = 0.5 × (cosine(π × titeration/tmaxiteration) + 1) (10)

Table 5. Ablation studies on the threshold setting of uncertainty in training process
(the higher, the better)

Threshold Model IOU Acc Pre Sen Spe

Threshold 0.2 UNet 0.7465 0.9889 0.8895 0.8229 0.9958

Threshold 0.5 UNet 0.7480 0.9891 0.9048 0.8119 0.9965

Threshold 0.8 UNet 0.7042 0.9862 0.8299 0.8231 0.9930

Exponential Ramp Up UNet 0.7543 0.9892 0.8895 0.8324 0.9957

Linear Ramp Up UNet 0.7179 0.9866 0.8189 0.8534 0.9922

Cosine Ramp Down UNet 0.7046 0.9861 0.8230 0.8305 0.9926

0.6 * Exponential Ramp Up UNet 0.7321 0.9879 0.8588 0.8324 0.9943

0.6 * Linear Ramp Up UNet 0.7354 0.9883 0.8852 0.8130 0.9956

0.6 * Cosine Ramp Down UNet 0.8552 0.9889 0.8931 0.8205 0.9959

0.8 * Exponential Ramp Up UNet 0.7240 0.9874 0.8528 0.8275 0.9941

0.8 * Linear Ramp Up UNet 0.7326 0.9882 0.8836 0.8109 0.9956

0.8 * Cosine Ramp Down UNet 0.7674 0.9899 0.9017 0.8374 0.9962

1.2 * Exponential Ramp Up UNet 0.7326 0.9882 0.8834 0.8109 0.9956

1.2 * Linear Ramp Up UNet 0.7304 0.9876 0.8458 0.8426 0.9936

1.2 * Cosine Ramp Down UNet 0.7493 0.9889 0.8807 0.8340 0.9953

1.4 * Exponential Ramp Up UNet 0.8359 0.9874 0.8724 0.8024 0.9951

1.4 * Linear Ramp Up UNet 0.8167 0.9856 0.8305 0.8034 0.9932

1.4 * Cosine Ramp Down UNet 0.7427 0.9884 0.8638 0.8412 0.9945



504 Z. Wang et al.

Table 6. Ablation studies on the weight setting of consistency loss in training process
(the higher, the better)

Weight Model IOU Acc Pre Sen Spe

Threshold 0.2 UNet 0.5243 0.9723 0.6238 0.7667 0.9808

Threshold 0.5 UNet 0.3956 0.9567 0.4719 0.7101 0.9670

Threshold 0.8 UNet 0.4052 0.9703 0.6667 0.5082 0.9894

Exponential Ramp Up UNet 0.7105 0.9870 0.8613 0.8023 0.9946

Linear Ramp Up UNet 0.7149 0.9868 0.8357 0.8319 0.9932

Cosine Ramp Down UNet 0.7547 0.9894 0.9044 0.8201 0.9964

0.6 * Exponential Ramp Up UNet 0.7723 0.9900 0.8978 0.8467 0.9960

0.6 * Linear Ramp Up UNet 0.7586 0.9896 0.9069 0.8227 0.9965

0.6 * Cosine Ramp Down UNet 0.7742 0.9900 0.8908 0.8554 0.9956

0.8 * Exponential Ramp Up UNet 0.7110 0.9864 0.8216 0.8408 0.9924

0.8 * Linear Ramp Up UNet 0.7248 0.9875 0.8559 0.8256 0.9942

0.8 * Cosine Ramp Down UNet 0.7178 0.9869 0.8376 0.8338 0.9933

1.2 * Exponential Ramp Up UNet 0.7432 0.9887 0.8854 0.8223 0.9956

1.2 * Linear Ramp Up UNet 0.5596 0.9742 0.6363 0.8227 0.9805

1.2 * Cosine Ramp Down UNet 0.7509 0.9891 0.8955 0.8230 0.9960

1.4 * Exponential Ramp Up UNet 0.6968 0.9864 0.8621 0.7482 0.9948

1.4 * Linear Ramp Up UNet 0.6557 0.9832 0.7807 0.8037 0.9906

1.4 * Cosine Ramp Down UNet 0.7550 0.9893 0.8979 0.8259 0.9961

Figure 4 sketches randomly selected raw images with their corresponding
uncertainty maps, and masks generated by proposed method at three different
stages (from the beginning to the end) of the training process. In uncertainty
maps, yellow represents the teacher ViT ft is uncertain of prediction with the
given pixels, and blue represents the teacher ViT ft is certain of prediction with
the given pixels. The uncertainty map is gradually moving from yellow to green
in the training process as shown in Fig. 4. The threshold of certainty estimation
is then applied with uncertainty map which results in masks, where the white
represents that the prediction by teacher ViT ft is certain enough to guide the
student ViT fs i.e. for calculation the consistency loss Ls, and the black repre-
sents that the pixels with uncertainty is temporally unavailable to be considered
in consistency semi-supervision loss calculation. Please remind that both the
background and ROI can be certain with the white simultaneously. Some typ-
ical example masks illustrates that model is only uncertain with the boundary
of ROI as shown in Fig. 4, and finally the framework is very likely to be certain
with the whole image with a proper threshold setting, that the uncertainty map
is going to be blue, mask is going to be white in the end of training process.
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Fig. 4. Sample uncertainty maps, masks, and raw images during the training process
(Color figure online)
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