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Abstract. The neonatal cortical surface is known to be affected by
preterm birth, and the subsequent changes to cortical organisation have
been associated with poorer neurodevelopmental outcomes. Deep Gen-
erative models have the potential to lead to clinically interpretable mod-
els of disease, but developing these on the cortical surface is challenging
since established techniques for learning convolutional filters are inappro-
priate on non-flat topologies. To close this gap, we implement a surface-
based CycleGAN using mixture model CNNs (MoNet) to translate spher-
icalised neonatal cortical surface features (curvature and T1w/T2w cor-
tical myelin) between different stages of cortical maturity. Results show
our method is able to reliably predict changes in individual patterns
of cortical organisation at later stages of gestation, validated by com-
parison to longitudinal data; and translate appearance between preterm
and term gestation (>37 weeks gestation), validated through comparison
with a trained term/preterm classifier. Simulated differences in cortical
maturation are consistent with observations in the literature.

Keywords: Geometric deep learning · Cortical surfaces ·
Neurodevelopment

1 Introduction

Deep Generative modelling presents enormous opportunities for medical imaging
analysis: from image segmentation [8,9,13,40], registration [39], motion correc-
tion and denoising [1,23,30,42], to anomaly detection [4,14,45] and the devel-
opment of clinically interpretable models of disease progression [2,3,25]. Image-
to-image translation is a type of generative modelling problem where images
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are transformed across domains, in a way that preserves their content. Common
image-to-image translation tasks include transforming between imaging modal-
ities [15,36,41] and to increase image resolution [11,17,44], though the methods
used are general to any sets of imaging domains or classes, and can be applied
to both 2D and 3D imaging data (see [43] for a full review of GANs in medical
imaging).

The application of deep learning on surfaces, including medical surfaces, has
been hindered by the mathematical incompatibility of data structures with non-
flat topologies to conventional approaches for convolutional filtering. In response,
the field of geometric deep learning (gDL) has emerged to extend deep learning
to domains such as graphs, surfaces and meshes [7]. gDL is yet to produce a
singular approach and numerous, often competing, tools and methods have been
developed.

In this paper, we aim to develop surface-to-surface translation models of the
developing cortex sensitive to individual changes in cortical maturation. Such
difference maps could act as imaging biomarkers of interest to clinicians, since
the negative impact of preterm birth on neurodevelopmental outcome remains
an area of active research [5,29]. This task is too challenging for traditional imag-
ing analysis methods due to the significant variation in functional and structural
organisation of human cortices, even amongst healthy populations. The hetero-
geneity is present in neonatal cortical surface patterns from an early stage, which
then undergo rapid and complex cortical maturation during development, which
are further obfuscated by the impact of preterm birth. These factors make this
task a fitting domain for the use of gDL, and gDL models have already been
shown to achieve state of the art performance for neurodevelopmental phenotype
regression and on cortical segmentation, when benchmarked against classical
methods [10,12,35,37,46]. To achieve this, we adapt the CycleGAN framework
[47] with methods from gDL for use on surfaces.

2 Methods

The CycleGAN framework [47] is a well-established method for unsupervised
bidirectional image-to-image translation across two domains. This is achieved
with a pair of generators that learn mappings from a source domain to a target
domain, trained adversarially to a corresponding pair of discriminators that dif-
ferentiate between real and synthetic images. Traditionally, these generators and
discriminators are Euclidean CNNs but in this work, we retain the architecture
but replace the convolutions with a surface-compatible convolution operation
from the MoNet model [28]. CycleGANs produce realistic images and do not
require paired examples, which can be practically difficult to acquire in medical
imaging. These fit in with our overall aim of generating realistic, subject-specific
cross-domain difference maps that can identify individual deviations from normal
morphological development.
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2.1 Model Architecture

The following adaptions were made to the original CycleGAN [47] to facilitate
application on surfaces:

Geometric Convolutions: All surface convolutions are implemented using
MoNet Gaussian Mixture Model convolutions (GMMConv) [28]:

(f � g)(x) =
J∑

j=1

gjDj(x)f

Dj(x)f =
∑

y∈N (x)

wj(u(x, y))f(y), j = 1, . . . , J

(1)

where f, g are the input and filter respectively, D(x)f is a parameterisable patch
operator that determines how the data is extracted from the surface before being
weighted by the filter. Its general form is given in equation (1), with x a point
on the surface, y a point in the defined neighbourhood of x, and w a kernel
applied to the pseudo-coordinates u(x, y) that define how the neighbourhood
of an individual point is weighted relative to its neighbours on the surface. In
MoNet, the weighting function w takes a Gaussian form:

wj(u) = exp(−1
2
(u − μj)TΣ−1

j (u − μj)) (2)

where Σj and μj are learnable d×d and d×1 covariance matrix and mean vector
of a Gaussian kernel, respectively. The covariances are further restricted to diag-
onal form. In this paper, Gaussian kernels are defined using a two dimensional
(J = 2) local pseudo-coordinate system defined as the vector difference between
neighbouring points on the surface in polar coordinates. This is pre-computed.

Icospheric Pooling: Since GMMConv has no transposed convolution, and does
not reduce the dimensionality of the data, we require pooling and unpooling
layers adapted for the surface. This can be challenging for general surfaces,
but icospheres of different resolutions may be generated from each other by
iterative barycentric interpolation (Fig. 1). This allows us to define a native
down/upsampling method on the icosphere; the former as a direct downsample
of the data by including only points of the lower icosphere (e.g. the red points
in Fig. 1), and the latter as a mean-unpool operation where the new points
are the average of their direct neighbours during the upsampling process. Skip
connections are also added to make the generator a U-net.

Training: The network is optimised following the protocol of a standard Cycle-
GAN [47], which learns mappings GX : X → Y and GY : Y → X, through
adversarial training. Unpaired images {x, y} are input through each of the Gen-
erators, G, to produce synthetic images {x̂X , ŷX} and {x̂Y , ŷY } from generators



472 A. Fawaz et al.

Fig. 1. Icosahedrons can be efficiently up and downsampled to different resolutions.
New points are generated by barycentric interpolation of existing points. Our down-
sampling process simply keeps the points of the lower resolution icosphere while dis-
carding the rest (e.g. to downsample from 4 V to 2 V, keep the points shown in red).
Our upsampling procedure mimics the upsampling of the icospheres but with the new
points added as an average of the existing points within its neighbourhood. (Color
figure online)

GX and GY respectively. The identity loss penalises each generator for changing
an image already in its domain i.e. it forces x̂X ≈ x, and ŷY ≈ y. The dis-
criminators Dx and DY attempt to classify the true from synthetic images of
their respective classes. Finally, the synthetic output of one generator is fed into
the other X → Y → X in order to generate a recovered image. The cycle loss
penalises each generator for failing to reproduce the original image during this
cycle.

We use an L1 loss for the cycle and identity losses, and an MSE loss for the
adversarial loss. All networks are trained with an Adam optimizer with learning
rate = 0.002, betas = [0.9, 0.99]. We set the real and false labels to 0.9 and 0.1 to
help avoid discriminator overfitting. Networks were trained for 250 epochs.

The data is augmented with non-linear warps to represent realistic varia-
tions. These were generated offline by creating surface meshes warped by very
small random displacements in the vertices, and resampling the original data
onto these warped surface meshes by barycentric interpolation [12]. 100 warped
counterparts are created for each image in our dataset. Each imaging modality
was normalised to between 0 and 1 across the dataset.

3 Experimental Methods and Results

3.1 Data

All of the data used are part of the third release of the publically available
Developing Human Connection Project (dHCP) dataset, consisting of cortical
surface meshes and metrics, derived from T1-weighted and T2-weighted MRI
images, processed and registered as described in [27] and references therein
[16,20,21,33]. We utilise left cortical hemispheres scanned between 25 and
45 weeks post-menstrual age (PMA) with myelination and cortical curvature
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metrics initially registered to a 32k-vertex sphere using Multimodal Surface
Matching (MSM) [31,32] and upsampled to a regular icosphere. The data set
contains 419 neonates born at term (>=37 weeks gestational age (GA)) and
161 born preterm (<37 weeks gestational age), where 45 preterm subjects were
scanned twice, once at birth and once at term-equivalent age (TEA), giving a
total of 625 scans.

(a) (b)

Fig. 2. A bar chart showing the distribution of subjects’ PMA at Scan in weeks for (a)
Experiment 1 and (b) Experiment 2.

3.2 Experiment 1: Cortical Maturity

In this experiment, the objective was to simulate healthy cortical maturation;
thus the two domains to be translated between were: A) preterm infants’ first
scans (PMA <37 weeks); and B) healthy term controls. We exclude the later
scans of preterm subjects to avoid modelling atypical cortical maturation, giving
a total of 530 subjects: 419 term/111 preterm (as shown in Fig. 2a).

A spatio-temporal atlas of cortical maturation maps is available for the dHCP
data [6], and shows a general increase in myelination around the brain, but espe-
cially strongly along the central sulcus (somatosensory cortex), the posterior
portion of the lateral fissure (auditory cortex), and at higher scan ages, around
the calcarine sulcus (visual cortex). By 28 weeks, all the primary sulci are formed
and there are already heterogeneities in cortical structure. These sulci are ini-
tially smooth but become significantly more folded during development, and the
cortical surface further increases in complexity by the emergence of tertiary sulci.
Our model must be able to preserve and extend the existing folding patterns of
an immature brain in its predictions.

The presence of longitudinal data in the form of preterm subjects’ second
scans allows us to quantitatively evaluate our model’s predictions by comparing
the actual appearance of a preterm subject’s later scan to the model’s matured
prediction based on the same subjects first scan. We analyse these both quan-
titatively, via the image similarity metric Peak Signal to Noise Ratio (PSNR),
and qualitatively by visual comparison. We compare the images as a whole and
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by individual modality (myelination/curvature). If the model represents cortical
maturation, the model’s synthetic predictions would be expected to be more
similar to the later second scans than the original first scans. However, we would
expect some differences due to variation around the age at scan and the impact
of preterm birth on cortical development.

Figures 3a and b show the predicted surface to surface translation for low-
to-high PMA of two different subjects’ myelination and curvature respectively,
displaying only the lateral view for clarity. The first, second and third columns
show, in order, the original first scans, the true second scans and the synthetic
scans produced by the model. The final column is a difference map between the
model input and the model output. Each row shows a different subject and it can
be seen that the model correctly predicts the broad structural changes expected
in both myelination and curvature for both subjects. The relative homogeneity of
myelination makes it easy to see that the model has correctly learned to simulate
subject development.

Changes in curvature are more subtle and display greater heterogeneity across
subjects and so are the better benchmark of performance. The preservation of
cortical folding patterns is a key factor required for proper modelling of curvature
and we see that our model does this well for both subjects despite significant
topological differences between the two. Further, we observe that the model has
added significant branching to most sulci, particularly the superior temporal
sulcus which increases greatly in folding. The model has created new smaller
folds in the temporal lobe, the parietal lobe and the frontal lobe and, extended
existing sulci throughout. In the second row, the model even correctly predicts
a change in the topology of a sulcus in the frontal lobe, which is split by a gyrus
as a it develops (shown by the red circle).

Figure 4a is a scatterplot showing the quantified similarity between the sec-
ond scans, which acts as a fuzzy ’ground truth’, and the model’s synthetic aged
scans as compared to the first original scan, plotted against PMA at second
scan. The results show that, in almost every case, the model predictions demon-
strate a significant increase in similarity to the second scan compared to the
original. The exceptions are mostly confined to subjects with second scans at
low PMA. The results are summarised in the boxplots in Fig. 4b, where the
synthetic images are of greater similarity than the originals over both modali-
ties individually and combined. We observe that, whilst synthetically generated
curvature is consistently improved, there is a greater variation in myelination
with a tail of synthetic images with low image similarity to the second scans.
Visual inspection reveals that this discrepancy is responsible for the reduction
in image similarity of synthetic images for low PMA second scans due to the
model’s predictions being significantly more mature than both the first and sec-
ond scans in these cases, as seen in Fig. 3c where the predicted myelination is
significantly greater than found in the second scan, but still consistent with
expected development. This discrepancy is a consequence of the discontinuous
nature of cycleGAN translations.
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(a)

(b)

(c)

Fig. 3. Low to high PMA translation for the (a) myelination and (b) curvature modal-
ities of two different subjects. The synthetic aged model predictions (column 3) are
closer to the later second scans (column 2) than the original first scans (column 1).
The fourth column gives the difference map between model input and model output.
The red circles indicate a region of folding where the model correctly predicted a change
in topology as the sulcus was split into two during development. (c) Myelination pre-
diction for a subject with low PMA (39 weeks) at second scan showing the relative
immaturity of the second scan myelination compared to the model prediction, result-
ing in a higher image similarity to the original first scan than to the model prediction.
(Color figure online)
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(a) (b)

Fig. 4. (a) Image similarity of original first scans vs synthetic aged images compared to
the same subject’s second scans, given by Peak Signal-to-Noise Ratio (PSNR). PSNR
is plotted against PMA at second scan in weeks. Green lines indicate that the synthetic
images are closer to the second scan than original first scans, and red lines indicate a
reduction in image similarity. (b) Box plots comparing the range of image similarities
as measured by PSNR of original first scans and synthetic aged scans to second scans,
split by the full scan (both modalities), then by each modality individually. (Color
figure online)

3.3 Experiment 2: Prematurity

In this experiment, the aim is to translate between preterms’ second scan and
healthy term controls, in order to predict the impact of preterm birth on each
individual’s cortical maturation. We exclude preterm first scans (PMA at scan
<37 weeks) to only model the effect of preterm birth at term equivalent ages
(TEA), leaving a total of 514 neonatal subjects (419 term/95 preterm). A plot
of the cohort used is shown in Fig. 2b.

In this case, there can be no ground truth examples scanned at multiple
birth ages, so to validate we train a classifier with same architecture as the
discriminator to predict prematurity and apply it to our model’s predictions.
Our classifier obtained an accuracy of 94% on the raw dataset, but our cycleGAN
model’s synthetic images had an overall 78% success rate in fooling the classifier,
and in the other 22% of cases reduced the classifiers confidence by a significant
margin.
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Figure 5 shows a subject (true GA at birth 40 weeks, PMA at scan 44 weeks)
(column 1) that has been translated from term age to a synthetic preterm
age (column 2). The image fools our classifier which predicts prematurity with
p = 0.96 for the synthetic preterm and p = 0.22 for the original term subject.
The difference map (column 3) shows that myelination is decreased overall but
remains broadly unchanged in structure. The folding patterns are completely
unchanged but there is a noticeable increase in overall curvature, and it can be
seen from the difference map that increases in curvature are more pronounced
along the gyri (folds), not the sulci. Comparing these observations to existing
work, we note that increased overall cortical curvature has previously been asso-
ciated with preterm birth when compared to age-equivalent fetuses [24], and
when compared with normal term infants [26], with curvature especially high
across a number of gyri. Increased curvature has also been implicated as a prog-
nostic biomarker of adverse neurodevelopment [19]. Shimony et al. [34] also found
increased overall curvature in preterm neonates compared to term neonates, with
increased localised curvature around the gyri, but could not positively determine
that the metric was predictive of preterm birth due to the differences in folding
patterns between subjects obfuscating the measure - an issue circumvented here
as we compare like-for-like subjects through our cycleGAN.

Fig. 5. Original term (columns 1–2) to synthetic premature (columns 3–4) image trans-
lation with difference map (columns 5–6). Subject’s true GA at birth is 40 weeks and
was scanned at 44 weeks PMA. Classifier predicts Pprem = 0.22 for the original term
image and Pprem = 0.96 for the synthetic premature image.

4 Conclusion

By integrating MoNet into a CycleGAN model, we developed a generative
surface-to-surface translation model of cortical maturation that shows accurate,
realistic, subject-specific predictions of future myelination and curvature, vali-
dated on longitudinal ground truth data. We also developed a model that trans-
formed surfaces between term/preterm classes, producing outputs that fooled a
pretrained classifier and showed structural differences in line with what has been
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observed in the literature. The primary issue with our models was that the Cycle-
GAN architecture is limited to transformation between discrete classes when this
is a fundamentally a problem of continuous interpolation. There are a number of
different generative models that do allow continuous representation that would
be able to interpolate smoothly between scan ages, with which gDL could be
adapted. One class of methods utilise variational encodings such as variational
autoencoders (VAEs) [18], and VAE-GANs [22], although the authors found
that attempts to adapt these methods to surface domains were unsuccessful,
with models unable to capture individual cortical folding variation and collaps-
ing to group averages. A more powerful example of this applied to volumetric
cortical data is the iCAM architecture [3], which encodes separate variational
disentangled spaces for content and age, which may be more amenable to adap-
tation with gDL. There are further alternatives that utilise direct conditioning
on latent variables such as conditional VAEs and conditional GANs, but these
too are more commonly associated with conditioning on classes, not continuous
variables. Again more complex variations of these models have been successfully
applied to the volumetric brain [38] that may be successfully adapted to the
surface.
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