
Proton Density Fat Fraction of Breast
Adipose Tissue: Comparison of the Effect

of Fat Spectra and Initial Evaluation
as a Biomarker

Isobel Gordon1,2(B) , George Ralli2 , Carolina Fernandes2 ,
Amy Herlihy2 , and Sir Michael Brady2,3

1 Nuffield Department of Women’s and Reproductive Health, University of Oxford,
Oxford, England

isobel.gordon@new.ox.ac.uk
2 Perspectum Ltd., Oxford, England

3 Department of Oncology, University of Oxford, Oxford, England

Abstract. The composition of breast adipose tissue has been shown to
vary according to disease state. Proton density fat fraction (PDFF) is a
quantitative MR biomarker which has not yet been thoroughly examined
in the characterisation of breast fat; this work therefore explores the esti-
mation of breast-specific PDFF. An MR spectrum derived from healthy
breast fat is shown to perform significantly better in PDFF calculation
of breast adipose tissue amongst a healthy cohort than either 6-peak
or 9-peak subcutaneous fat spectra. Calculated PDFF values of breast
adipose tissue suggest a similar composition between healthy breast fat
and gluteal fat and a reference value of 91.6± 3.0% PDFF is found for
healthy breast adipose tissue. Early results indicate that localised regions
of lowered adipose PDFF are visible in proximity to both invasive and
non-invasive breast cancer; this may be indicative of the inflammation
and browning of mammary fat around tumour cells.
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1 Introduction

Breast cancer is the single most common cancer in the UK [1] and the world-
wide leading cause of cancer death amongst women [24]. Early detection of breast
cancer greatly improves prognosis; this has led to nationwide screening of asymp-
tomatic women. These screening initiatives exclusively use mammography and
are restricted to postmenopausal women typically above the age of 50. The
effectiveness of mammography is dramatically reduced in radiologically ‘dense’
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breasts [16], which have a high proportion of fibrous, functional tissue compared
to fatty tissue. Breast density has been found to be the single most important
risk factor for breast cancer in postmenopausal women [6] and thus the reporting
of breast density is mandatory in most US states and several other territories.

High-risk younger women and postmenopausal women with dense breasts are
increasingly offered ‘abbreviated’ MRI with protocols which include dynamic
contrast enhanced MRI (DCE-MRI). DCE-MRI is primarily used to aid visu-
alisation of increased localised vascularity that may indicate the presence of a
tumour. This scan requires the injection of a contrast agent which is poorly toler-
ated by many patients and has a wide array of side effects. DCE-MRI also takes
a substantial proportion of the MR imaging time, even in ‘abbreviated’ proto-
cols, and is at best semi-quantitative. Current breast MRI protocols focus on
detecting localised potential tumour regions despite increasing evidence show-
ing that the composition of the breast parenchyma is important for assessing
both pathology and cancer risk [6,28]. Quantitative characterisation of the whole
breast parenchyma, rather than only the tumour, could enable the health of the
whole breast to be examined and thereby lead to improved estimation of risk
and improved patient care.

Proton density fat fraction (PDFF) is a quantitative MR biomarker which has
been used extensively in the diagnosis, staging, and monitoring of non-alcoholic
fatty liver disease (NAFLD) [22] and non-alcoholic steatohepatitis (NASH) [8].
Henze Bancroft et al. [4] recently demonstrated the use of proton density water
fraction (PDWF) as a biomarker of mammographic breast density. However,
PDFF has not yet been thoroughly studied as a useful metric in breast tissue
characterisation itself. Initial work in this area is promising; a recent study by
Hisanaga et al. [13] found that the fat fraction of adipose tissue around invasive
breast cancer was associated with lymph node metastasis.

PDFF is typically quantified from multi-echo chemical shift encoded (CSE)
MRI acquisitions, which exploit the different precession frequencies of fat and
water to estimate fat content. These acquisitions are typically short and entirely
non-invasive. Analysis of CSE-MRI acquisitions has typically used both the mag-
nitude and phase information of the MRI signal to determine PDFF. However,
such complex information may not be readily available in the clinical setting,
and the inclusion of complex data can introduce artefacts which may impact
PDFF quantification. Triay Bagur et al. [3] recently introduced a magnitude-
only method (MAGO) to estimate liver PDFF which has been demonstrated to
be robust to imaging artefacts.

To date, the incorporation of a breast-specific fat spectrum into PDFF cal-
culation has not been studied. For example, Henze Bancroft et al. [4] assumed
breast fat and subcutaneous fat to be equivalent, whilst the IDEAL-IQ fat frac-
tion maps used in Hisanaga et al. [13] employ a liver-specific fat spectrum.

Human adipose tissue may generally be classified into two subtypes: brown
adipose tissue (BAT), which is primarily used for heat generation, and white
adipose tissue (WAT) which is predominantly used for energy storage. The PDFF
of white and brown adipose tissue has been approximated through determination
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of PDFF in supraclavicular and gluteal adipose tissue [9]. BAT was found to have
significantly lower PDFF than WAT; this is reflective of the lower lipid content
and higher intracellular water content of BAT.

White adipocytes may differentiate into brown-like (‘beige’) adipocytes in a
process referred to as ‘browning’. Importantly, breast cancer tumour growth has
been associated with the browning of mammary fat close to the tumour [23,26].
Moreover, Bos et al. [5] found larger volumes of BAT throughout the body in
patients with cancer whilst Cao et al. [7] found three times as much BAT in
breast cancer patients compared to patients with other cancers.

Furthermore, the release of proinflammatory cytokines has been associated
with decreased lipid content in cancer-adjacent adipose tissue [18] and inflam-
mation of adipose tissue has been found to be associated with both ductal car-
cinoma in situ [2] and invasive breast cancer [25]. Moreover, perilesional oedema
may be found in proximity to invasive breast cancer; this may correlate to the
aggressiveness of the disease [19].

We hypothesise that lower PDFF in breast adipose tissue may be asso-
ciated with the browning and inflammation of mammary fat, or with perile-
sional oedema, and thereby associated with tumour growth. This may either be
localised, further aiding the detection and categorisation of tumours, or spread
through the breast, improving assessment of breast cancer risk.

This work explores the estimation of breast-specific PDFF. Firstly, adipose
tissue is segmented within the highly heterogeneous breast structure. Next, the
performance of five different fat spectra in the calculation of breast adipose
PDFF is examined and values are reported across a healthy cohort. Finally,
PDFF is examined in the adipose tissue immediately surrounding both cysts
and cancerous lesions.

2 Methods

2.1 Data Acquisition

Participants were imaged in the prone position on a Siemens Magnetom Aera
1.5T scanner (Siemens Healthineers AG, Erlangen, Germany) using a bilateral
18-channel breast coil (Siemens Healthineers AG, Erlangen, Germany). Partic-
ipants were scanned with a 3D axial 6-echo (TE1 = 1.81 ms, delta TE = 1.95
ms) gradient echo protocol designed to minimize T1 bias with a small flip angle
(5◦). The following additional acquisition parameters were used: TR = 15.0 ms,
reconstructed in-plane resolution 1.7× 1.7 mm2, slice thickness 2.0 mm, acquired
matrix size 128× 128, FOV 440 × 399 mm2, bandwidth 1560 Hz/Px. Typically,
80 slices covered the whole of both breasts, though this number was adjusted
to ensure full coverage of larger breasts. For a scan with 80 slices, the acquisi-
tion time was 2 min and 19 s. Nine participants were additionally scanned with
a multi-slice 2D axial 6-echo gradient echo sequence. The parameters were: TE1
= 1.30 ms, delta TE = 2.00 ms, TR = 14.0 ms, flip angle 5◦, reconstructed in-
plane resolution 1.7× 1.7 mm2, slice thickness 10.0 mm, slice distance factor 50%,
acquired matrix size 128× 128, FOV 440 × 399 mm2, bandwidth 1560 Hz/Px,
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acquisition time 8 s. Five slices were acquired in the breasts with the position of
the central slice matching that of the 3D CSE sequence described above. This
sequence, referred to as ‘LMS IDEAL’ in Triay Bagur et al. [3], has been used
extensively for quantification of PDFF in the liver and was acquired for com-
parative purposes; note that full coverage of the breast is not obtained with this
2D acquisition. In addition to these two gradient echo sequences, a high resolu-
tion T1-weighted volumetric scan was obtained for purposes of localisation and
anatomical identification.

Forty-six female volunteers were scanned for this study; ethical approval was
granted by South Central Ethics (NHS REC 20/WS/0110). Forty-two partic-
ipants were healthy with no known breast lesions, whilst two volunteers had
known breast cysts but were otherwise healthy. The healthy cohort was defined
as these forty-four women. In addition, one participant had confirmed ductal
carcinoma in situ (DCIS) in the left breast and one participant had confirmed
invasive ductal carcinoma (IDC) in the right breast. Both participants with con-
firmed cancer underwent biopsy on a date at least 4 weeks prior to the MRI
scan. The mean age of participants was 41 years (range 24–78 years). Written
informed consent was obtained from all subjects prior to scanning.

Fig. 1. MR spectra of a participant with no suspicious findings in MR images (desig-
nated ‘healthy’) (left) and a participant with invasive ductal carcinoma (IDC) (right).

2.2 Spectroscopic Analysis

Breast adipose MR spectroscopic data was derived from Freed et al. [10]. The
group acquired a three-dimensional sagittal 144-echo gradient-echo sequence
with a low flip angle and a bandwidth 694 Hz. A Fourier transform was applied
to each voxel with corrections for phase and eddy currents to produce an MR
spectrum. A region of interest (ROI) was drawn in the breast adipose tissue; the
final spectrum for each patient was found by averaging across all voxels in the
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ROI. As Freed et al.’s work concentrated on determining the relative amplitudes
of just five select peaks in breast fat, we re-analysed the spectra to determine
the relative amplitude of all peaks. We analysed two MR spectra provided by
Freed et al.: one from the breast adipose tissue of a woman with no suspicious
findings in MR images (designated ‘healthy’) and one from the breast adipose
tissue of a woman with known invasive ductal carcinoma (IDC) (Fig. 1).

To minimize differences in linewidth, the free induction decay (FID) of the
spectra were first multiplied by an exponential filter so that the methylene (‘B’)
peak in both spectra had the same linewidth. A spectral model was fitted to
the data consisting of a linear baseline and 10 Lorentizian line profiles, each of
which corresponded to one of the 10 fat peaks identified by Freed et al. The data
was fitted to this model using a non-linear least squares approach. The positions
of the Lorentzian peaks were initially set to literature values but allowed to
vary during the fit. The R2 of the final fit to the spectral data was 0.997 in
the spectrum taken from the participant with IDC, and 0.998 in the spectrum
taken from the healthy participant. Finally, the area under each peak was found
through integrating the Lorentzian equation associated with each peak across
the whole spectrum (Table 1).

Table 1. Chemical shift values and relative areas of the fitted fat peaks in the MR
spectra of the breast adipose tissue of a participant with no suspicious findings in MR
images (designated ‘healthy’) and a participant with invasive ductal carcinoma (IDC).

Healthy IDC

Peak label Chemical shift (ppm) Relative area (%) Chemical shift (ppm) Relative area (%)

J 5.32 4.15 5.32 5.25

I 5.22 1.90 5.21 1.42

H 4.24 1.07 4.29 0.43

G 4.16 1.06 4.17 1.82

F 2.77 0.87 2.79 0.64

E 2.23 6.67 2.23 6.32

D 2.02 7.81 2.03 6.96

C 1.61 3.38 1.59 4.26

B 1.30 66.73 1.30 64.64

A 0.89 6.37 0.89 8.26

2.3 PDFF Map Generation

The 6-echo gradient echo CSE data were processed using the MAGO algo-
rithm [3] to produce maps of proton density fat fraction (PDFF) (Fig. 2). This
confounder-corrected CSE method uses an input of a multi-peak spectral model
for fat. The raw echo data was processed 5 separate times, each time using
a different multi-peak spectral model. The spectral models included the two
ten-peak breast fat spectra derived above, a nine-peak spectrum derived from
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subcutaneous adipose tissue [11], a six-peak spectrum derived from subcuta-
neous adipose tissue [21] and a six-peak spectrum derived from liver fat [12].
Whilst the composition of liver fat and breast adipose tissue are different, the
liver fat spectrum is readily available in the clinical setting and well described
in literature, therefore it was included in this analysis to enable assessment of
its applicability to breast fat in PDFF quantification.

Fig. 2. Examples of central slices of PDFF maps calculated from 3D CSE-MRI.

2.4 Body Masking

A body masking approach was used to separate the breasts from surrounding
noise in the PDFF maps. Initial masks were computed in the water and fat
images separately by first square-root transforming the image intensities and
computing an Otsu threshold. The two masks were morphologically opened using
a spherical structuring element with a radius of 3 pixels and then combined into
one mask with a logical OR operation. Morphological closing was then applied
to the combined mask using the same spherical structuring element to produce
the body mask shown in Fig. 3a.

To segment the breasts away from the body outline, the chest wall was man-
ually delineated on the central slice of the proton density fat image. A line
was drawn beneath each breast which extended out to the tip of the axillae, as
shown in Fig. 3b. A mask was produced to include all pixels above this delin-
eation which was then combined with the body mask calculated in Fig. 3a. This
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produced a mask of both breasts as shown in Fig. 3b. Figure 3c shows the result-
ing whole breast segmentation for the 3D CSE acquisition across three different
participants.

2.5 Segmentation of Adipose Tissue from Fibrous Tissue

Breast tissue is highly heterogeneous, often containing thin strands of fibrous
tissue distributed amongst adipose tissue. To separate fibrous tissue from adipose
tissue, the monogenic signal was used as described in Ralli et al. [20] using a
log-Gabor filter. Five filters were used with wavelengths 2, 3, 4, 5 and 6 pixels
and a σ/f0 ratio of 0.5 was used. For each CSE acquisition, phase symmetry was
computed for the echo image that provided the highest contrast between fibrous
and fatty tissue; this was the first echo time in the 3D CSE acquisition and the
fourth echo time in the 2D CSE acquisition.

Fig. 3. Overview of segmentation of the whole breast a) Body mask produced from
proton density water and fat images using morphology - one example slice shown b)
Manual chest delineation combined with body mask to form mask of each breast c)
Example whole breast masks produced using 3D CSE acquisitions.

Phase symmetry is computed from the responses of the even (log-Gabor)
and odd (Riesz-transformed log-Gabor) filters. Phase symmetry measures the
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extent to which the even filter response dominates the odd response, and thus
quantifies the extent to which a given voxel contains a symmetric feature. It
was hypothesised that thin pieces of fibrous tissue surrounded by adipose tissue
would have high phase symmetry values. An Otsu threshold was applied to the
calculated phase symmetry map to provide a mask which identified thin strands
of fibrous tissue.

Whilst the use of phase symmetry maps provided excellent identification of
thinner segments of fibrous tissue, larger homogeneous clumps of fibrous tissue in
the breast exist, and are especially prevalent amongst younger women. The edges
of these areas are readily identified in the phase symmetry maps but the phase
symmetry within a homogeneous region of fibrous tissue is approximately equal
to the phase symmetry within a homogeneous region of fatty tissue. Therefore
a purely phase-symmetry-based approach cannot readily identify these larger
areas of fibrous tissue. This is demonstrated in the phase symmetry maps shown
in the second column of Fig. 4, where thin strands of fibrous tissue are clearly
identified but larger areas of fibrous tissue are not. An additional step ensured
larger areas of fibrous tissue were identified and excluded from the masking of
breast adipose tissue.

Fig. 4. Overview of adipose tissue segmentation, shown in a single slice of the 3D
CSE acquisition for a participant with fatty breasts (top) and a participant with dense
breasts (bottom). Left to right: the raw echo image; the phase symmetry map; the
PDFF map with the breast mask calculated in Fig. 3b applied; the PDFF map with
the threshold determined from multi-modal Gaussian histogram analysis applied; the
PDFF map with both the histogram threshold applied and the phase symmetry mask
applied.

For each dataset, the whole breast mask (Fig. 3b) was applied to the central
slice of the PDFF map calculated using the healthy breast fat spectrum. A
histogram was plotted of all PDFF values within this slice. As shown in Fig. 5,
a multi-modal Gaussian model with three peaks was fitted to a kernel-smoothed
estimate of the histogram using a non-linear least squares approach. The three
peaks were hypothesised to correspond to: fibrous tissue (lowest PDFF values),
adipose tissue (highest PDFF values) and mixed voxels. A threshold to exclude
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remaining areas of fibrous tissue was found by calculating the three sigma upper
boundary for the central peak as shown in Fig. 5. This was hypothesised to
correspond to the PDFF value at which 99.7% of fibrous-tissue-containing voxels
were excluded. For each case, the calculation of this threshold value from the
histogram distribution was reviewed, and when the multi-modal Gaussian model
did not fit well (for example, in very fatty breasts where the two peaks containing
fibrous tissue are sparsely populated), a manual threshold was selected through
examination of the histogram distributions.

Fig. 5. Left: Example histogram of PDFF values within the central slice of the breast
along with the probability density function of the histogram (not to scale). Right:
Multi-modal Gaussian fitting to the probability density function of the histogram of
PDFF values, showing identification of the threshold value.

To produce the final PDFF maps containing only breast adipose tissue the
whole breast mask, the phase symmetry mask and the thresholding value deter-
mined from histogram analysis were all applied to the calculated PDFF maps.
An overview of this process is shown for two example cases in Fig. 4.

3 Results

3.1 Variation in PDFF with Different Fat Spectra

The variation in PDFF resulting from the use of different fat spectra was mea-
sured through examination of the mean PDFF value in the breast adipose tissue
of the healthy cohort, using the 3D CSE acquisition for each case. The mean
R2 value for the fit in the breast adipose tissue was also calculated. To obtain
a measure of the PDFF of breast fat in each case, the mean PDFF value was
calculated within the adipose tissue in the central 40 slices, corresponding to
an axial slice stack of 8 cm. This central slice stack was used to exclude the
effect of a phase-encoded motion artefact observed in the peripheral slices of the
acquisition which contained minimal breast tissue.
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Fig. 6. Left: Box plot displaying variation in mean PDFF of breast adipose tissue
as measured with 3D CSE-MRI using different fat spectra. Right: Box plot display-
ing variation in mean R2 of PDFF fitting using different fat spectra. Left to right:
Healthy breast fat spectrum, breast fat spectrum from participant with IDC, 9-peak
subcutaneous fat spectrum, 6-peak subcutaneous fat spectrum, liver fat spectrum.

Figure 6 shows the distribution in measurement of breast adipose tissue
PDFF and R2 values across five different fat spectra. A significant difference
was found in PDFF values calculated using the healthy breast fat spectrum
and those calculated using the IDC fat spectrum (Wilcoxon rank sum test, p
= 0.028). Additionally, a significant difference was found in PDFF values cal-
culated using the healthy breast fat spectrum and those calculated using the
9-peak subcutaneous fat spectrum (p = 0.043). The 6-peak subcutaneous fat
spectrum described by Ren et al. [21] demonstrated a very clear over-estimation
of PDFF compared to all four other fat spectra (p << 0.001 for all comparisons).
The PDFF values produced using the liver fat spectrum were not found to be
significantly different to those produced using healthy breast fat (p = 0.238).

The overestimation in PDFF calculation of the 6-peak subcutaneous spec-
trum is reflected in its significantly lower distribution of R2 values compared to
other fat spectra (p = 0.0029 compared to liver fat spectrum, p << 0.001 for all
other comparisons). Utilising the 6-peak liver fat spectrum was found to have
significantly poorer R2 performance than using the healthy breast fat spectra (p
= 0.0456) or the 9-peak subcutaneous fat spectrum (p << 0.001). Though the
9-peak subcutaneous fat spectrum was found to have the highest median R2,
manual review of PDFF images showed that use of this spectrum often resulted
in areas of artificially low PDFF due to poor fitting, as shown in Fig. 7. However,
as these areas of artificially low PDFF were typically segmented out during the
thresholding step described in the Sect. 2.5, such areas of poor fitting are not
reflected in Fig. 6.
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Fig. 7. Example PDFF map showing region of poor fitting using 9-peak subcutaneous
fat spectrum (right) compared to using healthy breast fat spectrum (left).

To demonstrate this, for each case the mask calculated from the PDFF map
generated with the healthy breast fat spectrum was applied to all the PDFF
maps fitted with different spectra. This mask was manually reviewed against the
high resolution T1-weighted acquisition to ensure that it excluded only regions
of fibrous tissue and that any areas of adipose tissue which may be poorly fitted
would still be included in the mask. As shown in Fig. 8, using the same mask
across the different PDFF maps did indeed force these areas of poor fitting to be
included. This resulted in the R2 of PDFF fitting using the 9-peak subcutaneous
fat spectrum (median R2 0.951) being significantly lower than that using the
healthy breast fat spectrum (median R2 0.960, p-value of Wilcoxon rank sum
test = 0.0085).

Utilising the healthy breast fat spectra, the median PDFF across breast
adipose tissue in a healthy cohort was found to be 91.6± 3.0% (IQR 90.5–93.7%).

Fig. 8. Box plot displaying variation in mean R2 of PDFF fitting in breast adipose
tissue using the 3D CSE sequence and different fat spectra whilst applying the same
adipose tissue mask derived from the use of the healthy breast fat spectrum to all data.
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Franz et al. [9] found the PDFF of gluteal fat to be 90.8± 4.5% (IQR 81.4–96.2%)
when measured with 3D 6-echo CSE-MRI, therefore suggesting similar adipose
composition between healthy mammary and gluteal fat.

3.2 Variation in PDFF Calculation Between 2D and 3D CSE
Acquisitions

Agreement between the 2D and 3D 6-echo gradient echo CSE acquisitions was
assessed through calculation of the 95% Bland-Altman limits of agreement across
the nine participants in the healthy cohort who were scanned with both acquisi-
tions (Fig. 9). The mean PDFF value in the central slice was calculated for the
2D and 3D acquisitions, using the healthy volunteer breast fat spectrum. The
95% limits of agreement were −0.72% to 5.54% PDFF, with a bias of 2.41%
(2.41± 3.13%), suggesting that the 3D acquisition typically measures a higher
PDFF value within adipose tissue compared to the 2D acquisition. No trend
was observed across the Bland-Altman plot, suggesting that the bias remains
reasonably constant across varying PDFF values.

Fig. 9. Bland-Altman plots showing agreement between PDFF values of the breast
adipose tissue in a healthy cohort calculated in the central slice of the 2D and 3D CSE
acquisitions (left) and agreement between PDFF values of the breast adipose tissue in
a healthy cohort calculated in left and right breasts (right). The 95% upper and lower
limits of agreement are displayed (dotted lines), along with the confidence intervals for
each limit of agreement (solid vertical lines).

3.3 Variation in PDFF Between Left and Right Breast

Agreement in PDFF measurement between left and right breast adipose tissue
was assessed in the healthy cohort through calculation of the 95% Bland-Altman
limits of agreement (Fig. 9). The mean PDFF value across the central slice
stack of the 3D-CSE acquisition described in Sect. 3.1 was calculated for each
participant’s left breast and right breast, using the healthy volunteer breast fat
spectrum. The 95% limits of agreement were −1.46% to 2.60% PDFF with a
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bias of 0.57% (0.57± 2.03%), demonstrating high agreement between the PDFF
in breast adipose tissue found in each breast. No trend was observed in left-right
breast PDFF agreement across varying PDFF values.

3.4 Variation in PDFF of Perilesional Adipose Tissue

The PDFF of breast adipose tissue immediately surrounding breast lesions was
measured through application of user-drawn ROIs to single slices in the 3D CSE
acquisition (Fig. 10). This was carried out in one participant with DCIS, one
participant with IDC and in two participants with known breast cysts. The mean
PDFF values extracted from the ROI in the adipose tissue around each lesion
and the mean PDFF of the adipose tissue across the whole slice are displayed
in Table 2. Breast cysts which were adjacent to adipose tissue were selected for
measurement; note that cyst 2 and cyst 3 were present in the same participant,
whilst cyst 1 was taken from a separate participant.

Fig. 10. Example images showing DCIS lesion: PDFF map (left) with user-drawn ROI
(shown in blue) in surrounding adipose tissue and high resolution T1-weighted image
at most similar slice location (right). (Color figure online)

ROIs were drawn in two adjacent PDFF slices where DCIS was identified and
four adjacent slices where IDC was identified. Regions of partial voluming were
excluded from the user-drawn ROIs, and inclusion of fibrous tissue was avoided
through comparison to the high resolution T1-weighted images acquired at the
most similar slice location. The difference in the PDFF of mammary fat around
the lesion to the PDFF of mammary fat across the whole slice was found to be
larger with DCIS than cysts, with a mean difference of 4.5% PDFF compared
to 0.4% PDFF. The difference between the PDFF of perilesional adipose tissue
and the PDFF of adipose tissue across the whole slice was found to be largest
of all in the participant with IDC, with a mean difference of 5.6%.
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Table 2. Table showing mean PDFF of breast adipose tissue surrounding different
lesion types alongside the mean PDFF of all breast adipose tissue in the slice containing
the lesion. The difference between these values for each lesion is shown, as well as the
mean difference for each lesion type.

DCIS IDC Cysts

Slice 1 Slice 2 Slice 1 Slice 2 Slice 3 Slice 4 Cyst 1 Cyst 2 Cyst 3

Mean PDFF around lesion (%) 87.5 87.1 86.2 84.3 85.3 83.5 88.6 90.1 91.6

Mean PDFF throughout slice (%) 91.8 91.8 90.3 90.7 90.4 90.3 89.2 89.8 92.5

Difference (%) 4.3 4.7 4.1 6.4 5.1 6.8 0.6 −0.2 0.9

Mean Difference (%) 4.5 5.6 0.4

4 Discussion

An MR spectrum derived from the adipose tissue of a participant designated
as healthy was shown to perform significantly better in breast adipose PDFF
calculation than either 6-peak or 9-peak subcutaneous fat spectra. Calculated
PDFF values of breast adipose tissue in a healthy cohort suggested a similar
composition between breast fat and gluteal fat and the median PDFF across a
healthy cohort was found to be 91.6± 3.0%; this may have use as a reference
value to compare pathology against. Early results indicated that adipose tissue
surrounding both invasive and non-invasive cancers demonstrated lowered PDFF
values which may be reflective of the browning or inflammation of mammary fat.

Phase symmetry maps enabled identification of thinner strands of fibrous
tissue but did not identify larger areas of fibrous tissue such as those often seen
in dense breasts. Whilst the use of multi-modal Gaussian fitting of histograms
to provide a threshold for the exclusion of larger areas of fibrous tissue was
successful, often voxels containing adipose tissue were excluded along with the
fibrous tissue. Since the aim of this paper was to examine the PDFF of adipose
tissue, exclusion of adipose voxels is preferable to inclusion of voxels containing
fibrous tissue. However, for future work where precise identification of areas
fibrous tissue may be required, we will explore other methods which do not
dispose of spatial information, for example the use of phase asymmetry (rather
than phase symmetry) to identify larger areas of homogeneous tissue.

Whilst the 9-peak subcutaneous fat spectrum showed the best R2 perfor-
mance when masks were individually calculated for the different PDFF maps,
application of the same mask across the PDFF maps demonstrated the increased
prevalence of regions of poor fitting when using this subcutaneous fat spectrum.
This suggests that an alternative fat spectrum should be used in breast adipose
PDFF calculation to ensure accurate quantification throughout the whole breast.
When the same mask was applied to all PDFF maps, the R2 performance was
distinctly highest when using the healthy breast fat spectrum.

A significant difference was found amongst a healthy cohort in the PDFF
values calculated with a healthy breast fat spectrum and a breast fat spectrum
taken from a participant with invasive ductal carcinoma. This finding may prove
to be an issue for the use of PDFF as a biomarker of the breast, as it may suggest
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the need for a fat spectrum particular to the patient’s disease state. However,
before this conclusion can be made, PDFF calculation with these two spectra
would need to be evaluated in a cohort of patients with breast cancer and the
effect of spectra from other participants, both those who are healthy and those
who have cancer, should be examined. Additionally, the effect of this difference
on disease identification with PDFF would need to be assessed; any bias incurred
by use of an imperfect spectrum may not effect the sensitivity of PDFF to disease.
For example, in Sect. 3.4, the same fat spectrum was used in PDFF calculation
across a cohort with varying disease states and a differentiation between benign
and malignant lesions was still observed.

The performance of the PDFF fitting was lowest when using the 6-peak liver
fat spectrum and the 6-peak subcutaneous fat spectrum which may suggest that
identification of more peaks within the fat spectrum leads to improved PDFF
fitting within breast adipose tissue. However, the actual PDFF values calculated
using the healthy breast fat spectrum were not significantly different from those
calculated when using the liver fat spectrum. This suggests potential utility of the
liver fat spectrum in measurement of breast adipose PDFF, thereby supporting
the IDEAL-IQ maps used in the work of Hisanaga et al. [13].

High agreement and negligible bias were observed between left and right
breast adipose PDFF in a healthy cohort, suggesting similar tissue composition.
The bias seen in the comparison of 3D CSE PDFF to 2D CSE PDFF could result
from the substantially thicker slice used in the 2D CSE acquisition. This may
result in the inclusion of small pieces of fibrous tissue within voxels which are
identified as containing only adipose tissue, thus lowering the estimate of PDFF
compared to that of the 3D CSE acquisition.

Early results from a single invasive ductal carcinoma case agree with the
findings of Hisanaga et al. [13] that the fat fraction of breast adipose tissue is
distinctly lowered around invasive cancers. Excitingly, perilesional adipose fat
fraction was also found to be distinctly lowered around ductal carcinoma in situ,
suggesting potential utility of breast adipose PDFF as a biomarker of early-stage,
non-invasive cancer.

Whilst these lowered fat fraction values could be caused by the inclusion of
voxels with partial voluming artefact in the ROI, the difference between breast
adipose PDFF across the whole slice and the PDFF around the lesion was found
to be distinctly greater in both cancer cases than in the cases with cysts. This
result agrees with the finding that increased browning of mammary fat occurs
in proximity to cancerous lesions compared to benign lesions [26]. The lowered
fat fraction values in proximity to cancer may also be reflective of inflammation
or possibly oedema in the case of the participant with invasive cancer. Data
from more participants with cancer, particularly non-invasive subtypes, must be
processed and a less variable method of identifying the ROIs around lesions must
be found before this result can be reported as significant. An improved method
would account for varying amounts of fibrous tissue in proximity to the lesions.
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There are several limitations associated with this study. Firstly, the segmen-
tation of whole-breast adipose tissue is currently semi-automatic, requiring user
intervention to delineate the chest wall and identify the tips of the axillae. An
improved method could use machine learning to identify these anatomical mark-
ers, such as that demonstrated by Wei et al. [27]. Secondly, whilst R2 has proven
to be a valuable metric in assessing both the quality of PDFF maps [17] and
the performance of different spectral models in PDFF map generation [14], it is
not a definitive metric of the accuracy of PDFF calculation. This is not possible
without ground truth measurement of fat content, such as that acquired histo-
logically. Computation of other metrics such as the Cramer-Rao lower bound
would further aid evaluation of the different spectral models in PDFF calcula-
tion. Thirdly, when the same adipose tissue mask was applied to PDFF maps
generated with different spectra for the analysis shown in Fig. 8, the mask cho-
sen was that calculated from the PDFF map processed with the healthy breast
fat spectrum. This mask was chosen as it was manually reviewed to accurately
include breast adipose tissue and not to exclude any regions of artificially lowered
PDFF, such as those shown in Fig. 7. To avoid bias which may be incurred by
applying an adipose tissue mask calculated using a particular fat spectrum, an
improved method would apply a mask calculated from a separate MR sequence
and co-register back to the CSE-MRI sequence. Finally, biopsy-induced effects
such as oedema may affect the PDFF of adipose tissue adjacent to lesions. The
biopsy for both participants with confirmed cancer was completed at least 4
weeks prior to their MRI scan, compliant with the guidelines in Ko et al. [15],
though future work should include assessment of fat adjacent to needle-naive
tumours.

To our knowledge, this work is the first to implement a breast-specific fat
spectrum into the calculation of breast adipose PDFF and the first to have
reported this parameter in a healthy cohort. We believe that with additional
work across a more varied patient cohort, this parameter has exciting potential
to characterise the breast parenchyma and identify early-stage cancer growth.
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