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Abstract. We investigate the problem of automatic cardiomegaly diag-
nosis. We approach this by developing classifiers using multimodal data
enhanced by two image-derived digital biomarkers, the cardiothoracic
ratio (CTR) and the cardiopulmonary area ratio (CPAR). The CTR
and CPAR values are estimated using segmentation and detection mod-
els. These are then integrated into a multimodal network trained simul-
taneously on chest radiographs and ICU data (vital sign values, labora-
tory values and metadata). We compare the predictive power of different
data configurations with and without the digital biomarkers. There was
a negligible performance difference between the XGBoost model con-
taining only CTR and CPAR (accuracy 81.4%, F1 0.859, AUC 0.810)
and black-box models which included full images (ResNet-50: accuracy
81.9%, F1 0.874, AUC 0.767; Multimodal: 81.9%, F1 0.873, AUC 0.768).
We concluded that models incorporating domain knowledge-based digital
biomarkers CTR and CPAR provide comparable performance to black-
box multimodal approaches with the former providing better clinical
explainability.

Keywords: Cardiomegaly · Multimodal approach · Domain
knowledge · Digital biomarkers · Data fusion · Deep learning · Chest
X-ray · Cardiothoracic ratio · Segmentation · Detection

1 Introduction

There is a worldwide shortage of trained radiologists [27,28]. The application
of automated radiograph labelling and diagnosis algorithms to support clinical
staff has the potential to increase the efficiency of clinical workflows and reduce
demand on radiology services. A tool which accurately identifies pathology, as
part of an appropriate care pathway, has the potential to increase the quality
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Yang et al. (Eds.): MIUA 2022, LNCS 13413, pp. 13–27, 2022.
https://doi.org/10.1007/978-3-031-12053-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-12053-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-12053-4_2


14 B. Duvieusart et al.

of care worldwide. This paper approaches the problem of creating an automatic
labelling tool for cardiomegaly.

Cardiomegaly, an abnormal enlargement of the heart, may result from many
cardiac conditions, such as coronary artery disease or congenital heart disorders.
Often cardiomegaly is first identified by examining a patient’s cardiothoracic
ratio (CTR), calculated by taking the ratio of the cardiac width to the thoracic
width on a posterior-anterior projection of a chest X-ray. The cardiac width is
measured as the horizontal distance between the leftmost and rightmost extremes
of the cardiac shadow, and the thoracic width is measured as the horizontal
distance from the inner margin of the ribs at the level of the hemidiaphragm.
A CTR of 0.5 is usually classed as the upper limit for normal cardiac size and
hence commonly used as the delimiter of cardiomegaly.

The increased availability of large publicly-available clinical imaging datasets
has accelerated the use of computer vision and machine learning techniques to
identify the CTR by using edge detection [14] or convolutional neural networks
[25,33]. While CTR is an important and widely accepted first metric to identify
cardiomegaly, there are inherent limitations. CTR values are prone to inaccu-
racies as both the cardiac and thoracic widths are dependant on many factors,
such as the dilation of cardiac chambers, respiratory phase and body posture. It
is known that this method risks flagging false-positives, causing many patients
with suspected cardiomegaly to be subjected to further imaging. Despite these
concerns, the CTR is still a fundamental tool for identifying cardiomegaly due
to its simplicity and since false-positives are considered a more acceptable error
type in clinical settings.

A clinician can compensate for the uncertainties associated with using only
CTR values by synthesising all available patient data from multiple modalities,
including patient metadata, vital signs and blood test results to refine a diagnosis
of cardiomegaly and identify the underlying pathology. Multimodal approaches
in machine learning have been tested to various degrees, such as through combin-
ing medical images with basic demographics to predict endovascular treatment
outcomes [30], or classifying skin lesions using a combination of dermoscopic
images and patient age and sex [7]. There have also been efforts to use multi-
modal data to classify cardiomegaly by combining imaging data, with extensive
non-imaging data (patient metadata, lab results, and vital signs) [10].

In this paper, we consider the classification of cardiomegaly by mimicking
existing diagnostic pathways - we combine domain knowledge in the form of two
image-derived digital biomarkers with imaging and non-imaging data from the
Intensive Care Unit (ICU). The digital biomarkers used here are CTR and the
cardiopulmonary area ratio (CPAR), the latter being a proxy for the cardio-
thoracic area ratio which has been used to evaluate cardiac function [19]. While
CTR is the classic clinical value, it only measures horizontal expansion, while the
CPAR provides a more holistic measure of cardiac enlargement. We assess the
predictive power of models using different combinations of data modalities: imag-
ing data, non-imaging ICU data and combination of imaging and non-imaging
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data. Finally, we compare models incorporating domain knowledge-based digital
biomarkers CTR and CPAR with the black-box multimodal approaches.

2 Data and Methods

2.1 Data Sources

We used four publicly available databases: MIMIC-CXR [9,17], MIMIC-IV [9,
16], JSRT [31] and Montgomery County [2,15].

MIMIC-IV Database. This database contains medical data for 382,278 patients
from the Beth Israel Deaconess Medical Center Intensive Care Units between
2008 and 2019. MIMIC-IV is structured into three sections: core (patient meta-
data, ward transfers), icu (vital sign time series, ICU procedures), and hosp
(laboratory results, prescriptions).

MIMIC-CXR Database. This is a large publicly available database which con-
tains 227,835 studies for 65,379 patients (a subset of the MIMIC-IV patients)
from 2011 to 2016 collected from the Beth Israel Deaconess Medical Center
Emergency Department. Each study contains one or more chest radiographs
taken from different positions for a total of 377,110 images. Additionally, each
study is accompanied by a semi-structured free-text radiology report describing
the the findings of the radiologist. In this study we primarily use MIMIC-CXR-
JPG [18] which is derived from MIMIC-CXR, containing the same images in the
JPG format instead of the original DICOM format. While there is a certain loss
of information by using JPG, the DICOM format can be difficult to use and
comprehend, hence JPG format is preferred.

JSRT Database. The Japanese Society of Radiological Technology (JSRT) data-
base is a publicly available database of posterior-anterior chest radiographs col-
lected from medical centers in Japan and the USA. The database consists of 247
chest radiographs. The associated database, Segmentation Chest Radiographs
[8], provides segmentation masks of lungs and heart.

Montgomery County Database. This is a publicly available database of chest
radiographs collected from the Tuberculosis control program by the Department
of Health and Human Services of Montgomery County, USA. It contains 138
chest radiographs, and contains segmentation masks of lungs.

2.2 Dataset Preparation

We prepared two new datasets, described below, one to train and test digital
biomarkers models and the second to train and test the cardiomegaly classifiers.

CTR Dataset. The CTR dataset was created to train and test the models used
to calculate the image-based digital biomarkers CTR and CPAR. It combines
the JSRT, Montgomery County and MIMIC-CXR databases containing a total
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of 585 chest radiographs (247 from JSRT, 138 from Montgomery County, and
200 from MIMIC-CXR), and their associated segmentation masks for the heart
and lungs. The JSRT database has an associated database, Segmentation Chest
Radiographs, which contains segmentations of the heart and lungs. For Mont-
gomery County Database, we used the included lung segmentations and supple-
mented this with manual, clinician supervised, segmentations of the heart. For
MIMIC-CXR, we selected 200 random posterior-anterior chest radiographs with
labels fracture, consolidation and support devices. Any samples also present in
the cardiomegaly dataset, described below, were removed. Lung and heart seg-
mentation masks for MIMIC-CXR images were manually completed under the
supervision of a clinician. The manually completed segmentations will be released
in due course.
Cardiomegaly Dataset. The cardiomegaly dataset was used to train and test the
cardiomegaly classifiers. It combines data from MIMIC-CXR-JPG and MIMIC-
IV. MIMIC-CXR-JPG comes with four cardiomegaly labels: positive, negative,
uncertain and no mention. These labels were extracted from two natural lan-
guage processing tools, NegBio [23] and CheXpert [13]. We only used images
where both tools agreed on the label and further removed all uncertain and no
mention labels, since in the last case we could not exclude cardiomegaly. This
criteria reduced the size of the MIMIC-CXR dataset to 54,954 studies (81,346
radiographs) for 23,303 patients.

Cardiomegaly is identified from posterior-anterior radiographs, to avoid the
unnatural enlargement of the cardiac silhouette which may occur from the
anterior-posterior view. As such, we linked ICU stays from MIMIC-IV with
the closest radiographic study containing a posterior-anterior chest radiograph,
within a window of 365 days before the patient entered the ICU and up to 90
days after the discharge (see Fig. 1). This was completed using a unique patient
across the MIMIC-CXR-JPG and MIMIC-IV datasets. This produced a dataset
of 2,774 multimodal samples, each sample contains chest radiographs and ICU
vital sign values, laboratory results and patient metadata. For more details see
[10].

Fig. 1. We merged the closest radiographic study within a time window of 365 days
prior to ICU admission and 90 days after release to the data collected during the
patient’s ICU stay.
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2.3 Pre-processing

Imaging Data. To improve model robustness images were re-sized to squared
images (244 pixels for cardiomegaly prediction, 256 for segmentation) and pixel
values were normalized before input to models under both test and train con-
ditions. Under train conditions only, we also performed standard data augmen-
tation steps including random vertical and horizontal flips and random rotation
up to 10◦.

Non-imaging Data. Patient metadata was combined with time-series data such
as vital sign recordings, using summary statistics such as minimum, maximum,
and mean values.

2.4 Models

Heart and Lung Detection. For the detection of hearts and lungs from chest
radiographs, we implemented a Faster R-CNN [26] architecture with a ResNet-50
backbone [12] which was pre-trained on ImageNet [5]. Faster R-CNN has shown
previously to perform well in clinical object detection tasks [29]. Independent
models were trained for heart and lung detection, each model was trained for
300 epochs using the Adam optimiser [20] with a learning rate reduced by a
factor of 0.5 on validation intersection over union (IoU) loss plateau. The model
iteration with the lowest validation IoU loss was saved.

Heart and Lung Segmentation. For the segmentation of heart and lungs from
chest radiographs we implemented a Mask R-CNN [11] architecture with a
ResNet-50 backbone which was pre-trained on ImageNet. Mask R-CNN archi-
tectures have shown to provide good results in clinical segmentation tasks [6].
For detection, independent models were trained for heart segmentation and lung
segmentation. Each model was trained for 300 epochs using the Adam optimiser
and with a learning rate which reduced by a factor of 0.5 on validation IoU
loss plateau. In order for the loss to be comparable to the detection, bounding
boxes were used to calculate IoU loss. To find the bounding boxes the output
masks were made into binary masks using Otsu thresholding [22]. The model
iteration with the lowest validation IoU loss was saved. In order to have a metric
to evaluate the masks, Dice loss [21] was also calculated for predicted masks.

Cardiomegaly Classification with Non-imaging Data. For cardiomegaly classifica-
tion using non-imaging ICU data as well as the derived digital biomarkers CTR
and CPAR (all stored in tabular format), we implemented XGBoost algorithms
[4]. XGBoost is known to perform well for similar classification tasks, especially
on sparse data [3,24]. A weighted cross-entropy loss was implemented for train-
ing. For these XGBoost models we optimised learning rate, maximum tree depth,
and tree sub-sample (the fraction of the database sampled to train each tree)
through grid search. The XGBoost model which used only CTR and CPAR val-
ues as features had a lower max tree depth, than XGBoost models using the ICU
non-imaging data. The exact numerical values of the model hyperparameters can
be found in Table 1.
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Cardiomegaly Classification with Imaging Data. For cardiomegaly classification
using images only, we implemented a ResNet-50 architecture pre-trained on Ima-
geNet. This architecture was shown to provide state-of-the-art results with radi-
ology classification tasks, achieving 0.84 accuracy in classifying cardiomegaly on
the CheXpert database [1]. The ResNet-50 algorithm uses a cross-entropy loss
function with an Adam optimizer and cyclical learning rates [32]. The network
was trained in two stages, for the first 15 epochs we trained only the fully con-
nected layers, before unfreezing the convolutional layers and training the full
network at a lower maximum learning rate as the optimal maximum learning
rate bounds vary [32]. The numerical values for the learning rate bounds can be
found in Table 1.

Cardiomegaly Classification with Multimodal Imaging and Non-imaging Data.
For classification of cardiomegaly using the multimodal dataset we implemented
the network structure proposed in Grant et al. [10]. This architecture combines
imaging (chest radiographs) and non-imaging data (metadata, vital sign values,
laboratory values and digital biomarkers) by concatenating outputs of the X-ray
feature block and the ICU feature block into the joint feature block (shown in
Fig. 2). This method has provided good performance [10] and was used to inte-
grate the digital biomarkers, CTR and CPAR, into the classification process.
The training was again completed using the Adam optimizer, cyclical learning
rates, binary cross-entropy and was completed in two stages. The convolutional
layers of the ResNet in the X-ray feature block are frozen and all fully connected
layers in the network are trained for 15 epochs with cyclical learning rates. Once
the ResNet layers were then unfrozen, the model was trained for 45 epochs with
cyclical learning rates using a lower max learning rate. As above, the numerical
values for the learning rate bounds and other parameters describing the multi-
modal network can be found in Table 1. The concatenation layer used to merge
the two modalities uses 32 nodes from the X-ray feature block and 16 nodes
from the ICU feature block.

2.5 CTR and CPAR: Computation and Model Integration

To compute the CTR and CPAR values, we trained the segmentation and detec-
tion models described in Sect. 2.4. To do this we split the CTR dataset into train
(80%), validation (10%) and test (10%) subsets; each subset containing a con-
sistent proportion of the JSRT, Montgomery County, and MIMIC databases.
Individual models were trained for heart detection, heart segmentation, lung
detection and lung segmentation.

CTR Computation. The CTR was computed as the ratio of the widths of the car-
diac and pulmonary bounding boxes. To find cardiac and pulmonary bounding
boxes we investigated four methods: detection, segmentation, best score ensem-
ble, and average ensemble. For the detection method, bounding boxes output
by the Faster R-CNN models were used directly. For the segmentation method,
masks output by the Mask R-CNN models were first passed though Otsu thresh-
olding to give a binary mask. From the binary masks cardiac and pulmonary
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Table 1. Numerical values of hyperparameters used in different models.

Model Hyperparameter Value

XGBoost Learning rate 0.1
Tree sub-sample 0.75
Max tree depth 8 (Tabular models)

3 (CTR only model)
ResNet Network depth ResNet-50

Learning rate bounds 1e−05–1e−02 (stage 1)
2e−05–1e−03 (stage 2)

Multimodal CNN depth ResNet-50
ICU Network size 3 Fully connected layers
Learning rate bounds 1e−05–1e−02 (stage 1)

2e−05–1e−03 (stage 2)

bounding boxes for the heart and the lungs were found. For the best score
ensemble method each sample was passed through both the Faster R-CNN and
Mask R-CNN models. The cardiac and pulmonary predictions with the highest
score were then selected as the final heart/lung bounding box. For the average
ensemble method, each X-ray image was passed through both the Faster R-CNN
and Mask R-CNN models. The cardiac and pulmonary predictions were found
by producing a point wise average of the bounding box corner coordinates. The
methods with the highest IoU on the test set were used to select the final cardiac
and pulmonary bounding boxes in the multimodal network.

CPAR Computation. CPAR was computed using the area of the Otsu thresh-
olded masks produced from the segmentation models. The areas of binary masks
were used as the cardiac and pulmonary areas and the CPAR was calculated by
finding the ratio of the two areas.

Integration of CTR and CPAR into the Multimodal Network. To combine the
image-derived digital biomarkers CTR and CPAR with the cardiomegaly clas-
sifiers the two methods described above were integrated into the pre-processing
stage of our multimodal approach as shown in Fig. 2. CTR and CPAR are com-
bined with the pre-processed ICU data and passed either to the XGBoost models
(non-imaging data only) or to the multimodal network via a feedforward neural
network in the ICU feature block.

When training the various modality combinations for cardiomegaly classi-
fication we used 5-fold stratified cross-validation, each fold is independent of
the others with no image repeated between folds and each fold having a similar
positive/negative label distribution. When training each combination, four folds
were combined for train data and the last fold was split in half for the validation
and test data.
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Fig. 2. In the pre-processing step, data is split into tabular (non-imaging ICU data
and digital biomarkers) and imaging formats. To generate the biomarkers radiographs
are normalised and passed into the segmentation and detection blocks to extract car-
diac and pulmonary bounding boxes and masks; then, the CTR bock uses the results
from assembled model to find the CTR and CPAR values. The digital biomarker values
(CTR and CPAR) are subsequently combined with the non-imaging ICU data (meta-
data, vital signs, and lab results) into a tabular format. Next, the image data and the
combined tabular data are handled either by intermediate or early fusion approach.
For the intermediate fusion approach, the image data is augmented and features are
extracted by a ResNet-50 in the X-ray feature block. The tabular data is handled via a
feedforward neural network in the ICU feature block. Finally, the imaging features are
combined with the non-imaging features in the joint feature block via a concatenation
layer. Alternatively, for the early fusion approach, predictions are obtained from the
tabular data alone via an XGBoost model.

3 Results

3.1 CTR Computation

The performance of the R-CNN model configurations on the CTR test sets
is summarised in Table 2 in the form of average IoU scores calculated on the
bounding boxes and average precision scores (i.e. area under the curve on a
smoothed precision-recall curve) at threshold IoU values of 0.75, 0.85, and 0.95.
Additionally, the Dice scores of heart and lung Mask R-CNN models on test
sets using the thresholded binary masks were calculated; the heart and lung
segmentation models having Dice scores of 0.906 and 0.937, respectively.

For cardiac bounding boxes the best score ensemble model showed the
strongest performance with an average IoU score of 0.836 over the test set. For
pulmonary bounding boxes the strongest model is the averaged prediction ensem-
ble model with an average IoU score of 0.908 over the test set. As such, these two
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ensemble models were integrated in the multimodal cardiomegaly classification
network to find cardiac and thoracic widths and CTR values. An example of
output predictions by each model type and by a combination of the best models
is given in Fig. 3.

Table 2. IoU score and AP at IoU thresholds of 0.75, 0.85, and 0.95 for bounding
boxes found using Fast R-CNN, Mask R-CNN, and ensemble models on test data.

Model IoU score AP@0.75 AP@0.85 AP@0.95

Heart Detection 0.810 0.900 0.398 0.020
Heart Segmentation 0.834 0.963 0.678 0.028
Heart Ensemble (best) 0.836 0.966 0.681 0.028
Heart Ensemble (avg) 0.833 0.954 0.572 –
Lungs Detection 0.853 0.970 0.636 0.100
Lungs Segmentation 0.894 1.0 0.963 0.088
Lungs Ensemble (best) 0.852 0.970 0.638 0.100
Lungs Ensemble (avg) 0.908 1.0 0.938 0.218

3.2 Multimodal Classification

The performance of models with and without the image-derived digital biomark-
ers CTR and CPAR are summarised in Table 3 using accuracy (Acc), F1-Score
(F1), and area under the receiver operating characteristic curve (AUC). The
results scores are averaged over 5-fold cross-validation.

The XGBoost model on non-imaging ICU data showed a distinctly weaker
performance (72.4% accuracy) compared to the ResNet-50 on imaging data only
(81.9% accuracy), and multimodal network using imaging and non-imaging ICU
data (81.9% accuracy). All models which included the digital biomarkers (CTR
and CPAR) had comparable performance with accuracy ranging from 81.0%
(multimodal network with digital biomarkers) to 82.1% (non-imaging ICU data
with digital biomarkers). Overall, all models which included image derived infor-
mation, either in the form of the digital biomarkers, or direct input of images,
had similar level of performance with a accuracy range of 1.1%.
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Fig. 3. Example output of different methods for finding the bounding boxes and their
corresponding calculated CTR values. The best output uses the best score model for
cardiac bounding box and averaged model for pulmonary bounding boxes.

Table 3. Performance for different modality combinations with and without digital
biomarkers, values averaged over 5-fold cross-validation, with standard deviation in
brackets. *includes both digital biomarkers, CTR and CPAR. **includes images, ICU
data, and digital biomarkers

Data used Model type Acc F1 AUC

Images ResNet-50 0.819 (0.015) 0.874 (0.010) 0.767 (0.029)

ICU data XGBoost 0.723 (0.030) 0.807 (0.022) 0.651 (0.034)

Images + ICU data Multimodal 0.819 (0.017) 0.873 (0.013) 0.768 (0.018)

CTR* XGBoost 0.814 (0.014) 0.859 (0.011) 0.810 (0.012)

ICU data + CTR* XGBoost 0.821 (0.019) 0.860 (0.012) 0.813 (0.011)

All** Multimodal 0.810 (0.012) 0.872 (0.009) 0.732 (0.014)

4 Discussion

4.1 Principal Findings

In this work, we considered the classification of cardiomegaly by combining
domain knowledge digital biomarkers CTR and CPAR with imaging and non-
imaging ICU data. Our results suggest that the multimodal and image-based
models are unable to extract additional information beyond what is captured by
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models trained on CTR and CPAR only. Thus, in the context of cardiomegaly,
complicated black-box models may be replaced with carefully curated digital
biomarkers, which convey critical clinical information.

4.2 Comparison to Related Works

Sogancioglu et al. [33] compared the predictive power of a black box image clas-
sifier to a CTR-based model for cardiomegaly classification, and achieved state
of the art results with the later. The CTR-based model outperformed the clas-
sic image classification, with AUC values of 0.977 and 0.941, respectively. The
conclusions presented in Sogancioglu et al., are in line with the results produced
in this work, as the XGBoost model using only CTR and CPAR had an AUC
of 0.810, outperforming the ResNet-50 (AUC of 0.767). However, there is a sig-
nificant difference in the performance of the models in this work compared to
their counterparts in Sogancioglu et al., this may be attributed to larger training
datasets, cleaner data, and better models. Firstly, the classifiers in Sogancioglu
et al. were trained on 65, 205 samples, this contrast to the 2, 774 samples used
in this work. Additionally, Sogancioglu et al. excluded any samples where the
cardiac boundary was difficult to find, these samples were a notable cause of
misclassifications in this work. Lastly, Sogancioglu et al. claimed that the qual-
ity of the segmentation models is the most important factor in determining the
performance of the CTR-based classifier. Their models performed well achieving
IoU scores of 0.87 and 0.95 for heart and lung segmentation respectively. This
compares favourably to the IoU scores achieved in this work, 0.836 for heart and
0.907 for lung detection. This may partially be attributed to a larger amount
of higher quality data, as Sogancioglu et al. again excluded challenging sam-
ples; they used a total of 778 filtered samples to train the segmentation models,
compared to 585 unfiltered samples in this work.

For multimodal classification of cardiomegaly, Grant et al. [10] is most
relevant, comparing unimodal and multimodal approaches. The multimodal
approaches included images, patient metadata, as well as extensive ICU data.
The multimodal approach (accuracy of 0.837 and AUC of 0.880) marginally out-
performed the image-only ResNet-50 (accuracy of 0.797 and AUC of 0.840), and
greatly outperformed the non-imaging only model (accuracy of 0.700 and AUC
of 0.684). Results achieved by Grant et al. are comparable to the results from
this work, as the multimodal approaches outperform unimodal ones, with a large
drop in performance if no images or image-derived data is included (i.e. no raw
images or image-derived biomarkers).

4.3 Strengths and Weaknesses of the Study

Automated Image Classification. An advantage of automatic image labelling tools
is that they often avoid cognitive biases. For instance, after making an initial
pathological finding on a radiograph, a clinician is less likely to identify further
pathological features - a form of premature conclusion bias. Since automatic tools
are not subject to this bias, their addition to clinical workflows may increase
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the pick-up rates of secondary pathologies. In the specific context of this paper,
cardiomegaly may be an indicator of many underlying cardiac pathologies and is
associated with higher short-term mortality [34], hence the early identification of
cardiomegaly is vital. The automatic identification of cardiomegaly can therefore
serve as preventative care and a screening tool for cardiac pathologies.

Domain-Based Digital Biomarkers. The CTR (and CPAR) are a clinically valu-
able diagnostic tools showing high performance when used with classification
models (e.g. XGBoost). Since they contain clinically relevant information, their
use alongside patient medical data allows the models to more closely imitate
the holistic approach taken by clinicians and more accurately reflects existing
diagnostic pathways. Hence, leading to a higher degree of confidence in model
predictions.

Misclassification Errors. We estimated the digital biomarkers CTR and CPAR
values using Mask R-CNN and Fast R-CNN models. Figure 4 shows common
cases of false positives and negatives from the XGBoost model trained using the
digital biomarkers. The common causes of misclassification are interference from
other pathologies leading to inaccurate cardiac and thoracic widths and models’
failures to accurately identify the heart.

Fig. 4. False positive and false negative classifications from XGBoost model trained
using only digital biomarkers. Suspected causes of error for the respective images are:
(a) area of parenchymal opacity around heart hides heart boundary leading to inaccu-
rate cardiac bounding box; (b) R-CNN models failed to correctly identify image-right
boundary of heart; (c) pleural effusion in image-left lung causing pulmonary bounding
box width to be smaller than thoracic width; (d) R-CNN models failed to identify
heart.

Label Errors. The cardiomegaly labels were derived from the free text reports
associated with chest radiographs. These labels may contain errors since the
radiographs alone may be insufficient for definitive cardiomegaly diagnosis. Also,
the automatic label extraction from the free test reports may be another source
of error [13,23]. It is known that these procedures can introduce noise and affect
model performance [18]. We took steps to mitigate these errors by employing
the procedures described in Sect. 2.2.
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