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Abstract. In scoring systems used to measure the endoscopic activ-
ity of ulcerative colitis, such as Mayo endoscopic score or Ulcerative
Colitis Endoscopic Index Severity, levels increase with severity of the
disease activity. Such relative ranking among the scores makes it an
ordinal regression problem. On the other hand, most studies use cat-
egorical cross-entropy loss function to train deep learning models, which
is not optimal for the ordinal regression problem. In this study, we pro-
pose a novel loss function, class distance weighted cross-entropy (CDW-
CE), that respects the order of the classes and takes the distance of the
classes into account in calculation of the cost. Experimental evaluations
show that models trained with CDW-CE outperform the models trained
with conventional categorical cross-entropy and other commonly used
loss functions which are designed for the ordinal regression problems. In
addition, the class activation maps of models trained with CDW-CE loss
are more class-discriminative and they are found to be more reasonable
by the domain experts.

Keywords: Ordinal regression · Ulcerative colitis · Computer-aided
diagnosis · Mayo endoscopic score · Deep learning · Medical imaging

1 Introduction

Deep learning (DL) methods are widely used in the field of gastrointestinal
endoscopy for problems such as detection of polyps, artifacts, Barrett’s esoph-
agus, and cancer analysis [3,4,11,25,27]. In particular, recent studies have
reported successful results for the estimation of the endoscopic activity of ulcer-
ative colitis (UC) from colonoscopy images [19,38]. UC is a chronic condition
caused by persistent inflammation of the colon mucosa and accurate assessment
of the disease severity plays a key role in monitoring and treating the disease.
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However, there are substantial intra- and inter-observer variability in the grad-
ing of endoscopic severity [22] and use of computer-aided diagnosis of the UC
can eliminate subjectivity and help experts in the monitoring process. On the
other hand, more work, such as validation on external datasets and providing
better explainability, are needed to increase their adoption in clinics [19].

Scoring systems for UC, such as Mayo endoscopic score (MES) [30] or Ulcer-
ative Colitis Endoscopic Index of Severity (UCEIS) [40], have several levels (0–3
for MES and 0–8 for UCEIS), which increase in relation to the severity of the
disease. Since there is a ranking between the class scores, this problem can be
handled as an ordinal regression (or ordinal classification) problem. Although
there are many studies on UC endoscopic activity estimation, only a few of these
exploit ordinality information. In this study, we propose a novel non-parametric
loss function, which respects the ordinal nature of the problem and calculates
the cost accordingly.

The main contributions of this paper are as follows:

1. A new loss function called Class Distance Weighted Cross-Entropy (CDW-
CE) is proposed, which can be used in training convolutional neural networks
(CNN) estimating the endoscopic severity of UC.

2. Three separate CNN architectures are trained using cross-entropy, CORN
framework [33], cross-entropy with an ordinal loss term (CO2) [2], ordinal
entropy loss (HO2) [2], and CDW-CE. These networks are used to compar-
atively evaluate the effect of these particular loss functions in estimation of
endoscopic severity of UC.

3. We demonstrate through Class Activation Map (CAM) visualizations that
models trained with CDW-CE are more class-discriminative and provide bet-
ter explainability, which are key factors in adoption of computer-aided diag-
nosis systems for clinical use.

2 Related Work

There has been increasing interest in automatically estimating the UC severity
from colonoscopy images. Alammari et al. [1] proposed a 9-layer simple CNN
architecture to classify frames in colonoscopy videos. They reported that the
model can process the 128 × 128 pixel images in real-time with 67.7% test set
accuracy. Stidham et al. [34] performed one of the earliest comprehensive studies
on a large dataset and employed an advanced CNN architecture Inception-v3
[37] to classify images according to MES. Ozawa et al. [23] used GoogLeNet
[36] to classify images into three MES levels (Mayo 0, Mayo 1, and Mayo 2–
3) due to lack of severe cases. Takenaka et al. [39] used Inception-v3 [37] to
estimate endoscopic remission, histologic remission, and UCEIS score using one
of the largest datasets used in studies. Bhambhvani et al. [8] used ResNext-101
model on publicly available HyperKvasir dataset. Yao et al. [41] developed a fully
automated system that can estimate MES score for the colonoscopy video. Kani
et al. [17] employed ResNet18 model to classify MES, severe mucosal disease
diagnosis, and remission. Gottlieb et al. [12] estimated the MES and UCEIS for
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full-length endoscopy videos where the annotation is only provided for the video
itself rather than the individual frames. Schwab et al. [31] used a multi-instance
learning approach with ordinal regression methods to estimate UC severity from
both frame-level and video-level MES labels. Becker et al. [13] proposed an end-
to-end fully automated system to estimate MES from raw colonoscopy videos
directly. They employed a quality checking model to extract readable frames
and weak MES labels obtained by the colon-segment-wise scores were assigned
to them to train the UC grading model. Different to the previous approaches
employing the existing DL models, Luo et al. [20], proposed a new architecture
called UC-DenseNet which combines CNN, RNN, and attention mechanisms.
Sutton et al. [35] compared many state-of-the-art CNN models on HyperKVasir
[9] dataset and reported that DenseNet121 [16] outperformed the other models.

Ordinal categories are common in many real-world prediction problems, espe-
cially in the healthcare domain. Several loss functions have been introduced
recently to use in conjunction with CNNs. Niu et al. [21] transformed an ordi-
nal regression problem into a series of binary classification sub-tasks based on
the work of Li et al. [18]. They applied this approach to age estimation from
face images and reported better results compared to other ordinal regression
approaches such as metric learning and widely used cross-entropy loss function.
Although the proposed method provided better results, there were rank inconsis-
tencies in the output classification subtasks. Cao et al. [10] proposed a consistent
rank logits (CORAL) framework for rank-consistencies by weight sharing in the
penultimate layer. They reported that the CORAL framework provided both
rank consistency and superior results compared to the previous approaches. Shi
et al. [33] proposed Conditional Ordinal Regression for Neural Network (CORN)
framework to relax the constraint on the penultimate layer of the CORAL frame-
work to increase neural network’s capacity by introducing conditional proba-
bilities. The authors reported that the CORN approach performs better than
previous methods. A major disadvantage of CORN-like approaches is that they
require a change in the model architecture (output layer) and labeling structure.
Another approach for ordinal regression problems is to integrate unimodality in
the loss function [2,7]. This approach enforces unimodality by punishing incon-
sistencies in the posterior probability distribution among adjacent labels. The
punishing term is generally added next to the main loss function, where cross-
entropy is used mostly. Albuquerque et al. [2] employed a unimodality approach
for the cervical cancer classification by using cross-entropy and entropy losses as
main loss functions and reported better performance results compared to other
approaches. Through the manuscript, cross-entropy and entropy loss with uni-
modality loss terms will be referred to as CO2 and HO2 respectively as in [2].
Another class of the methods is to use regression to predict a single continuous
value at the output or using sigmoid activation function on top of it to limit pre-
diction in [0, 1], then using thresholds or probability distributions to convert the
output into discrete levels [5,6]. However, regression-based approaches assume
fixed distances between classes and encoding specific parametric distributions
(e.g., Gaussian, Poisson) at the network output restricts the model and prevents
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scaling to a large number of classes [6]. Moreover, tuning parameters in para-
metric distributions presents another challenge. Regression-based approaches or
methods enforcing parametric distributions have been shown to be inferior to
other methods in many studies [2,7].

Among the studies in the literature, only Schwab et al. [31] employed two
ordinal regression approaches. In their first approach, they applied a CORN-
like framework by transforming the output layer into multiple binary subtasks.
In their second approach, their models output a continuous value between 0
and 3, and classes are assigned according to the thresholds; however, optimum
class thresholds are determined using a search on the dataset, which limits the
generalizability of the proposed method. Furthermore, it is not trivial to derive
a confidence value for the assessment due to the numeric value, and the method
is not compatible with the CAM visualization techniques as it has a single node
at the output layer which is responsible for all classes.

In this study, we propose a novel non-parametric loss function called CDW-
CE. CDW-CE can be used in conjunction with any model and does not require
any changes in the model architecture or labeling structure. Moreover, it does
not require setting any thresholds or enforcing a probability distribution and is
compatible with CAM visualization techniques.

3 Class Distance Weighted Cross-Entropy

3.1 Motivation

Cross-entropy loss function, which is widely used in classification tasks, does not
take into account how probabilities of the predictions are distributed among the
non-true classes (Eq. 1):

CE = −
N−1∑

i=0

yi × log ŷi = − log ŷc (1)

where i is the index of the class in the output layer, c is the index of ground-truth
class, y is the ground-truth label, and ŷ is the prediction. Since one-hot encoding
is used for the ground-truth labels of the classes at the output layer, yi = 0
∀i �= c. Eventually, cross-entropy loss only evaluates the predicted confidence of
the true class. However, when there is a ranking among the output classes, class
mispredictions become important, too. For example, in an ordinal class structure
from 0 to 9, predicting 0 for class 9 is much worse than predicting 8. A better
loss function would evaluate this ranking and penalize more if the predictions
are away from the true class (see Table 1). Since the predictions farther from the
correct classes are not penalized more than the closer classes, cross-entropy is
not an optimum loss function for the ordinal classes.
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Table 1. Three sample cases that result in the same cross-entropy loss where Class 0
is the true class. Assuming that the classes have an ordinal relation, a more suitable
loss function should favor Case 1 by assigning the lowest cost and Case 3 should have
the highest cost.

Classes Case 1 Case 2 Case 3

0 0.6 0.6 0.6

1 0.3 0.1 0

2 0.1 0.3 0.1

3 0 0 0.3

3.2 Class Distance Weighted Cross-Entropy Loss Function

We propose a non-parametric loss function CDW-CE that evaluates the confi-
dences of non-true classes instead of the true class confidence as in cross-entropy
(Eq. 2). Firstly, we penalize how much each misprediction deviates from the true
value using log loss. Since one-hot encoding is used for encoding the class labels
for multi-class classification problems, predicted confidences for the non-true
classes should be equal to zero. Secondly, we introduce a coefficient for the loss
of each class, which utilizes the distance to the ground-truth class and increases
in relation to that distance.

CDW-CE = −
N−1∑

i=0

log(1 − ŷi) × |i − c|α (2)

where c is the index of the ground-truth class and power term α is a hyperparam-
eter that determines the strength of the coefficient. Eventually, the logarithmic
function inside the summation is calculated for every non-true class.

4 Experiments

4.1 Dataset

LIMUC dataset [26], a publicly available UC dataset labeled according to the
MES, was used to train CNN models that employ different loss functions. There
are 11276 images from 564 patients in the LIMUC dataset and all images have
been reviewed and annotated by at least two expert gastroenterologists. All
images have a size of 352 × 288 and Mayo score distribution is as follows: 6105
(54.14%) Mayo 0, 3052 (27.7%) Mayo 1, 1254 (11.12%) Mayo 2, and 865 (7.67%)
Mayo 3. 15% of the images (1686 images from 85 patients) have been used
as the test set and the rest (9590 images from 479 patients) for the 10-fold
cross-validation by forming train-validation set pairs. All splittings have been
performed at the patient-level, randomly, and preserving class ratios.
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Table 2. Experiment results for all Mayo scores.

Loss function ResNet18 Inception-v3 MobileNet-v3-Large

QWK

Cross-entropy 0.8296 ± 0.014 0.8360 ± 0.011 0.8302 ± 0.015

CORN 0.8366 ± 0.007 0.8431 ± 0.009 0.8412 ± 0.010

CO2 0.8394 ± 0.009 0.8482 ± 0.009 0.8354 ± 0.009

HO2 0.8446 ± 0.007 0.8458 ± 0.010 0.8378 ± 0.007

CDW-CE 0.8568 ± 0.010 0.8678 ± 0.006 0.8588 ± 0.006

F1

Cross-entropy 0.6720 ± 0.026 0.6829 ± 0.023 0.6668 ± 0.028

CORN 0.6809 ± 0.014 0.6832 ± 0.013 0.6847 ± 0.020

CO2 0.6782 ± 0.014 0.6846 ± 0.016 0.6793 ± 0.012

HO2 0.6856 ± 0.016 0.6901 ± 0.008 0.6741 ± 0.030

CDW-CE 0.7055 ± 0.021 0.7261 ± 0.015 0.7254 ± 0.010

Accuracy

Cross-entropy 0.7566 ± 0.015 0.7600 ± 0.012 0.7564 ± 0.011

CORN 0.7591 ± 0.009 0.7600 ± 0.008 0.7613 ± 0.012

CO2 0.7601 ± 0.008 0.7654 ± 0.008 0.7572 ± 0.009

HO2 0.7625 ± 0.011 0.766 ± 0.010 0.7583 ± 0.005

CDW-CE 0.7740 ± 0.011 0.7880 ± 0.011 0.7759 ± 0.010

MAE

Cross-entropy 0.2581 ± 0.018 0.2526 ± 0.013 0.2563 ± 0.012

CORN 0.2517 ± 0.012 0.2497 ± 0.010 0.2480 ± 0.012

CO2 0.2497 ± 0.011 0.2404 ± 0.008 0.2524 ± 0.010

HO2 0.2460 ± 0.011 0.2424 ± 0.011 0.2487 ± 0.005

CDW-CE 0.2300 ± 0.011 0.2147 ± 0.010 0.2272 ± 0.011

4.2 Training Details

Three commonly used CNN architectures, ResNet18 [14], Inception-v3 [37], and
MobileNet-v3-large [15] have been trained with different loss functions. ResNet
and Inception model families are commonly used architectures for UC sever-
ity estimation [8,13,23,31,34,39,41]. MobileNet-v3-large is a more recent model
that stands out with its speed and performance, making it a suitable choice for
real-time UC severity estimation from video frames. Random rotation (0◦–360◦)
and horizontal flipping were used as data augmentation and weights were ini-
tialized from pretrained models on IMAGENET dataset [29]. Adam optimizer
with a learning rate of 2e − 4 and learning rate scheduling with a scaling factor
of 0.2 was applied if there were no increase in the validation set accuracy for
the last 10 epochs. Early stopping was used to terminate training when perfor-
mance did not increase in the last 25 epochs. The best model checkpoint on the
validation set of each fold is used for the performance measurement on the test
set. PyTorch framework [24] were used for the implementation of the study and
CNN models were adapted from TorchVision package.

The proposed model has been evaluated against three state-of-the-art
approaches specifically designed for the ordinal regression tasks: CORN frame-
work, CO2, and HO2 and cross-entropy (CE) loss function is used as the main
baseline. For the training of CO2 and HO2 models, main loss function (either
cross-entropy or entropy loss) is scaled with a λ coefficient as in original paper
implementation. Hyperparameter tuning for the λ were performed using values
in {0.1, 0.01, 0.001} by performing 10-fold cross validation.
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Table 3. Experiment results for remission classification.

Loss function ResNet18 Inception-v3 MobileNet-v3-Large

Kappa

Cross-entropy 0.8077 ± 0.023 0.8074 ± 0.021 0.8122 ± 0.018

CORN 0.8191 ± 0.021 0.8077 ± 0.022 0.8203 ± 0.016

CO2 0.8185 ± 0.020 0.8243 ± 0.011 0.8067 ± 0.020

HO2 0.8318 ± 0.015 0.8251 ± 0.015 0.8283 ± 0.018

CDW-CE 0.8521 ± 0.016 0.8598 ± 0.012 0.8592 ± 0.012

F1

Cross-entropy 0.8419 ± 0.018 0.8420 ± 0.017 0.8451 ± 0.016

CORN 0.8511 ± 0.016 0.8425 ± 0.018 0.8523 ± 0.013

CO2 0.8513 ± 0.015 0.8561 ± 0.009 0.8404 ± 0.017

HO2 0.8618 ± 0.012 0.8565 ± 0.011 0.8583 ± 0.015

CDW-CE 0.8785 ± 0.013 0.8847 ± 0.010 0.8842 ± 0.010

Accuracy

Cross-entropy 0.9436 ± 0.009 0.9432 ± 0.007 0.9456 ± 0.005

CORN 0.9473 ± 0.007 0.9429 ± 0.008 0.9473 ± 0.006

CO2 0.9461 ± 0.008 0.9479 ± 0.004 0.9444 ± 0.006

HO2 0.9507 ± 0.005 0.9485 ± 0.005 0.9504 ± 0.005

CDW-CE 0.9566 ± 0.005 0.9590 ± 0.003 0.9588 ± 0.005

4.3 Evaluation Metrics

Quadratic Weighted Kappa (QWK) is used as the main performance metric as
it is suitable for both imbalanced and ordinal data. In addition, Mean Absolute
Error (MAE), which is a commonly used performance metric in ordinal regression
problems, accuracy, and macro F1 metrics are given in Table 2. In addition to the
MES prediction, inflammatory bowel disease (IBD) experts are also interested
in the estimation of endoscopic remission (Mayo 0 or 1) and moderate to severe
disease (Mayo 2 or 3) as defined in the European Medicine Agency and the
US Food and Drug Administration guidelines on UC drug development [28].
Trained CNN models for MES estimation were used for remission classification
performance measurements by grouping the related Mayo subscores, without any
new training. Cohen’s Kappa, F1, and accuracy scores for remission classification
are reported in Table 3.

Each CNN model has been trained on a different fold and performance mea-
surements were obtained on the initially separated test set; as a result, each
architecture has ten different results. Reported performance results in Tables 2
and 3 refer to the average and standard deviation of 10 folds. To observe how
much the performance of each class changes with CDW-CE compared to cross-
entropy for three different models, confusion matrices are demonstrated in Fig. 1
for both all Mayo classes and remission classification. Confusion matrices pro-
duced for each fold were normalized across true labels, then, the mean confusion
matrix was obtained by getting the average of 10 normalized confusion matrix.
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Fig. 1. Mean confusion matrix of each CNN model trained with CE and CDW-CE for
all Mayo classes and remission classification.

4.4 Penalization Factor Analysis

Power term α in the CDW-CE loss provides a control over to what extent the
more distant classes are penalized. As the α increases, the distant classes are
penalized more intensely. However, this penalization factor may vary depending
on external factors such as the dataset, number of labels, and the employed CNN
model. We have analyzed different α values to determine the optimum for each
CNN model. The results in Tables 2 and 3 for CDW-CE are the results of the
models trained with the experimentally determined optimum α. For each CNN
model, mean and standard deviation of the QWK scores for varying α are given
in Fig. 2.

5 Class Activation Maps (CAM)

To make a CNN model’s decision more transparent and interpretable, several
visualization techniques have been proposed [32,42]. CAM visualizations allow
observation of the prominent regions used by the models in making their predic-
tions, which is a particularly important aspect in the medical domain. Models
which make their predictions using similar regions with the experts would be
more likely to be adopted and build more trust with end-users. Such visualiza-
tions can also be used as an another comparison criteria and allow assessing
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Fig. 2. Change of mean and standard deviation of QWK scores according to varying
α for three models.

different models when their performances are similar (i.e., models with more
reasonable activation maps can be chosen instead of others even if their perfor-
mances are exactly the same). In addition, it provides a means for developers
to debug their approach and check any potential biases in the model’s predic-
tions [32]. We have generated CAM visualizations using the technique in [42].
Since CAM is produced specifically for each class, it highlights the class-specific
discriminative regions only for the target class. In Fig. 3, two ResNet18 models
trained with CE and CDW-CE losses are used to generate CAMs for different
images in the test set. Although both models correctly predict the class scores
for the given examples, their CAMs differ considerably.

To make a quantitative evaluation of CAMs produced by two models trained
with different loss functions, we asked three IBD experts to choose which one
was more compatible with symptomatic areas in the tissue (i.e., more aligned
with the regions they considered in their decision making). We also allowed them
to specify that both are equally reasonable, when they are not able to decide
between two CAM visualizations. We showed the experts a total of 240 images
(60 images from each class), which were correctly predicted by the two models.
Only the original image and the two CAM visualizations overlaid onto original
images were shown to experts. CAM images produced by the models for each
new image were randomly named as AI-1 (Artificial Intelligence 1) and AI-2.
Clinicians were asked to make a choice between three options without having
the knowledge of model-CAM visualization correspondence (Fig. 4).

6 Results and Discussion

Table 2 shows that CE loss is the worst performing among all models, indicating
that this widely used loss function is not optimal and approaches taking ordinal-
ity into account are more preferable. Unimodality approaches compare favorably
to CORN framework for the ResNet18 and Inception-v3 models and only behind
for the MobileNet-v3-large model; however, with an insignificant margin. HO2
results are mostly better than CO2, which is aligned with results reported in the
literature [2]. CDW-CE outperforms other approaches in all experiments. For all
models, CDW-CE results refer to the training with the optimum α, which are 5,
6, and 7 for the ResNet18, Inception-v3, and MobileNet-v3-large, respectively.
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Fig. 3. Original images (top row) and their CAM visualizations of the ResNet18 model
trained with CE (middle row) and CDW-CE (bottom row) losses. The model trained
with CDW-CE highlights broader and more relevant areas related to the disease.

Similar performance comparison can also be observed for remission classification
in Table 3. CO2 and CORN framework have very similar performances. On the
other hand, HO2 outperformed CORN framework for all models indicating that
it is better at centering estimations around the true class. CDW-CE loss has the
highest score for all performance metrics and CNN models. When we observe
the individual class performances, Fig. 1 shows that CDW-CE loss significantly
reduces the mispredictions which are in two-class distance or more to the true
class. Although sensitivity of edge classes (Mayo 0 and Mayo 3) remained the
same or even decreased for some models, intermediate classes (Mayo 1 and Mayo
2) are increased significantly for all models. Due to high cost given to farther
mispredictions, CDW-CE centers the wrong estimates mostly in classes with
one neighborhood distance. Since mispredictions are more close to true classes
in CDW-CE, we observe an increase in remission and non-remission sensitivities
for the remission classification.

Figure 2 reveals that different models may have different optimum α param-
eters. While the performance increases as the α increases and gets to the opti-
mum value, the model accuracy decreases sharply beyond it. As the α is an
exponential term, increasing it beyond the optimum value results in high cost
making the training unstable, resulting in an increase in standard deviation
of cross-validation results (Fig. 2). Power analysis shows that a relatively high
penalty given to distant classes (that can be counterintuitive at first) allows
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Fig. 4. User interface provided to the experts displays the CAM visualizations alongside
the image. Experts are asked to evaluate the spots used in decision making process of
CE and CDW-CE and choose the one which they think is more reasonable to them
(i.e., more aligned with their decision making).

better optimization of the model training (for α = 5, 2-level neighborhood coef-
ficient (25) = 32 and 3-level neighborhood coefficient (35) = 243). Nevertheless,
α is not a very sensitive parameter for performance as Fig. 2 shows that even the
training with non-optimum α values outperforms the baseline and other ordinal
approaches.

The experimental results show that using a loss function that penal-
izes distant mispredictions provides better optimization compared to previous
approaches. While CDW-CE penalizes the mispredictions according to their dis-
tance to true class, it does not restrict the network to employ a single node
at the output layer as it is in metric learning or regression-based approaches.
Moreover, CDW-CE does not enforce fixed distances between classes and does
not enforce any parametric distribution. Experiments show that, for the given
problem where there are four distinct classes, the optimum α value is around
six. We speculate that the α is susceptible to dataset, number of classes, and
the employed model architecture; therefore, we recommend trying at least a few
different values when deciding it. As Fig. 2 shows, as the α increases, network
training becomes unstable (i.e., cross-validation results vary a lot), so it is pos-
sible to get a high performance randomly from a single training. To avoid this
trap, it is necessary to use methods such as cross-validation or multiple training
with different seeds when deciding the α.

Training models with the proposed CDW-CE loss does not only improve per-
formance but also provide better explainability through the CAM visualizations.
The model trained with CDW-CE highlights more relevant and discriminative
regions compared to the model trained with CE for all Mayo scores. Sample
CAM visualizations in Fig. 3 show that using CDW-CE loss trains the model to
extract more compatible features with the disease symptoms, leading to better
performance. The CAM regions extracted by CDW-CE generally appear to be
wider; however, these expansions were towards relevant regions rather than unre-
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Fig. 5. Assessment results of CAM visualizations of models trained with CE and CDW-
CE by experts. The percentage values experts found both visualizations equally rea-
sonable are as follows: 37.7%, 31.1%, 57.8%, 62.8%, 47.4%, respectively.

lated regions. Therefore, it can be said that CDW-CE has semantically captured
better features. The average of the three experts’ choices is shown in Fig. 5. The
experts found that the CAM visualizations of the model trained with CDW-CE
are more reasonable than the model trained with CE for all Mayo classes. On
average, the experts found nearly half of the images equally reasonable (47.4%)
and the rate of selecting CDW-CE is two times more than the Cross-entropy
(35.0% vs. 17.6%). Providing more reasonable CAM compatible with disease
symptoms along with the high estimation performance increases the trust for the
usage of the computer-aided diagnosis systems in clinics. As CDW-CE increases
interpretability, transitioning to the clinic will also be accelerated.

MES for UC consists four distinct classes; therefore, experiments performed
in this work are only compared for four levels. To what extend CDW-CE loss
performs well should be investigated on different datasets, such as cervical cancer
(7 levels of diagnosis) or diabetic retinopathy (5 levels of diagnosis) analysis.
To test its capability in problems with higher number of classes, non-medical
datasets, such as age estimation from face images, can be used. In addition,
although the compared ordinal regression approaches are the state-of-the-art,
other approaches based on regression setting can be experimented to extend the
work.

7 Conclusion

In this study, we have proposed a novel non-parametric loss function designed to
penalize the incorrect class predictions for the UC endoscopic severity estimation
task. Incorrect classifications are weighted with a term that is in relation to its
distance to the true class. Results show that a high penalty to the mispredicted
distant classes is very important as experiments show that the optimal α can be
a relatively large number. Extensive experiments show that the proposed loss
function improves the performance significantly compared to the commonly used
cross-entropy and several ordinal regression approaches. Training with CDW-CE
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does not only provide higher performance but also the models’ CAM visualiza-
tions are more aligned with the experts opinions, which is expected to contribute
positively to their clinical adoption. The proposed approach can be adapted to
any problem with an ordinal category structure in medical as well as non-medical
applications. In the future, we are planning to investigate its use in other ordinal
regression problems.
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