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Abstract. Identifying cells in microscopic images is a crucial step
toward studying image-based cell biology research. Cell instance seg-
mentation provides an opportunity to study the shape, structure, form,
and size of cells. Deep learning approaches for cell instance segmentation
rely on the instance segmentation mask for each cell, which is a labor-
intensive and expensive task. An ample amount of unlabeled microscopic
data is available in the cell biology domain, but due to the tedious and
exorbitant nature of the annotations needed for the cell instance seg-
mentation approaches, the full potential of the data is not explored.
This paper presents a weakly supervised approach, which can perform
cell instance segmentation by using only point and bounding box-based
annotation. This enormously reduces the annotation efforts. The pro-
posed approach is evaluated on a benchmark dataset i.e., LIVECell,
whereby only using a bounding box and randomly generated points on
each cell, it achieved the mean average precision score of 43.53% which
is as good as the full supervised segmentation method trained with com-
plete segmentation mask. In addition, it is 3.71 times faster to annotate
with a bounding box and point in comparison to full mask annotation.
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1 Introduction

Cell segmentation is regarded as the cornerstone of image-based cellular research.
Studying cell migration, cell count, cell proliferation, cell morphology, cellu-
lar interactions, and cellular events like cell death are all possible with ade-
quate cell segmentation. Deep learning approaches for instance cell segmentation
[3,7,8,16,17,19,20] are showing promising results, but they rely heavily on pre-
cise full mask supervision for training. Manually annotating a groundtruth mask
for each cell is a very labor-intensive, expensive, complex, and time-consuming
task. For the natural object dataset like COCO [10], it takes on average 79.2 s
per instance to create a polygon-based object mask. The bounding box for the
objects is approximately 11 times faster i.e., 7 s [13]. When it comes to image-
based cellular research, the LIVECell dataset [3] is the largest dataset of its kind
to date. LIVECell is composed of more than 1.6 million cells. On average it con-
tains more than 313 cells per image, which is way more than any other label-free
cell segmentation dataset [17,19]. Some images in the LIVECell dataset contain

Fig. 1. Point2Mask-based instance annotation combines object bounding boxes
with points that are sampled randomly inside each box and annotated as the cell (blue)
or background (red). We demonstrate that 6 annotated points per instance are faster
to collect than the standard cell masks and such groundtruth is sufficient to train the
proposed pipeline to achieve 99.2% of its fully supervised performance on the LIVECell
dataset. (Color figure online)
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Table 1. Annotation time for different supervision types on the LIVECell dataset.
Labeling as many as 6 points per cell instance instead of the fully supervised (segmen-
tation mask) annotation takes 26.96% of the total time spent on annotating the full
mask for each cell and is 3.71x faster, assuming that it takes 7 and 0.9 s to draw the
bounding box and point annotation respectively.

Annotation
supervision

Total time (sec)
(mask/bbox+points)

Percentage of
time spent on
full mask

Times faster
than full mask
(x)

Full mask 46 100% -

1-point 7.9 17.17% 5.82

2-point 8.8 19.13% 5.23

4-point 10.6 23.04% 4.34

6-point 12.4 26.96% 3.71

8-point 14.2 30.87% 3.24

10-point 16 34.78% 2.88

more than 3,000 cell instances, which can be overly complex, time-consuming,
and labor-intensive to manually annotate each cell in a high cell density envi-
ronment with overlapping cells. Annotating cells in microscopic images is more
challenging than the objects in natural images [10] because cells overlap, and
the cell boundaries are also very difficult to identify in crowded images. When
preparing LIVECell, it took 46 s on average to create segmentation masks, which
if we consider the total number of cells in the training data for the LIVECell
dataset is more than 13,213 h spent on annotating the masks.

It is important to mention that LIVECell dataset (which is the largest anno-
tated microscopic cell dataset) contains only 8 type of cells which is only a
fraction of more then 200 different cells types found in human body [14]. This
means that an ample amount of unlabeled image-based cellular data is avail-
able in the cell biology domain, but due to the tedious and exorbitant nature of
annotations required for the cell instance segmentation approaches, the data is
not being used to its full potential. To boost the research in cell biology, it is
pivotal to have high-performing systems, which can accurately segment cells and
for these methods, it is necessary to have a large number of labeled datasets,
which are unfortunately labor-intensive. To tackle that issue, we have proposed
a pipeline for weakly supervised cell segmentation, Point2Mask, which considers
the bounding box for each cell and the point labels instead of the full mask. The
point labels are sampled randomly inside each bounding box as shown in Fig. 1.
The annotation required for the proposed Point2Mask can be divided into three
steps. First, the bounding boxes need to be drawn, which takes ∼7 s per cell.
After that, random point annotations inside each bounding box are automati-
cally generated. As the last step, random points generated inside each bounding
box are classified by an annotator as belonging to the foreground (cell) or back-
ground, which takes around ∼ 0.9 seconds per point. Table 1 provides insights
into the annotation time required for different supervision types. If we only
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consider a single point for each cell and the bounding box for training, it takes
17.17% of the total time spent on the full mask annotation for all the cells in the
LIVECell dataset and is 5.82x faster. For 6 points per cell type, it takes 26.96%
of the fully supervised annotation time. The main contributions of this study
are as follows:

1. An end-to-end pipeline for weakly supervised point-based cell segmentation
using Mask R-CNN [5], Feature pyramid Network with ResNet-50 [6], and
bilinear interpolation.

2. Extensive evaluation of the proposed method by increasing point labels for
each cell instance to analyze the impact on the performance. Achieved 96.51%
to 99.16% of the fully supervised performance using Point2Mask weakly
supervised cell segmentation with only 1- to 6-points label per cell instance
with a significant reduction in the time required for annotating the data for
training.

3. Performed per cell type evaluation to analyze the relationship between the
morphological characteristics of different cell cultures like size and the number
of point labels required.

2 Related Work

Deep learning-based cell segmentation has evolved drastically in the last decade
with the development of the U-net proposed by Ronneberger et al. [16] in 2015.
With only 35 images trained U-net model, it outperformed all the other contes-
tants in the 2015 ISBI cell tracking and segmentation challenge. The success of
U-net prompted a chain of valuable research in the image-based cellular research
with the development of algorithms like DeepCell [22] and Usiigaci [20]. Khalid
et al. (2021) [7] proposed a pipeline for cell and nucleus segmentation using the
EVICAN dataset [17]. Edlund et al. (2021) proposed anchor-free and anchor-
based pipelines for the cell segmentation using the LIVECell dataset [3]. Khalid
et al. (2021) [8] proposed a pipeline to perform cell-type aware segmentation in
microscopic images using the EVICAN dataset.

Weakly supervised cell segmentation is an active area of research with many
different variations of the weak supervision i.e., image tags [12,25], points [2,24],
missing annotations [4]. Zhou et al. (2018) [25] proposed a promising method
for weakly supervised instance segmentation using only class labels of objects
appearing in an image. Although this work does not primarily concern itself
with cell instance segmentation but object segmentation in general, the app-
roach was also tested on microscopy images and some underlying ideas were
developed further to fit the domain [12]. In this method, image regions that pro-
duce a particularly high prediction response for a class called class peak responses
are backpropagated through a network and mapped to object regions that are
high in information. This procedure then allows for full instance masks to be
retrieved. Another popular method to make use of weak labels for cell segmen-
tation is using point annotations instead of full pixel-wise mask annotations.
Zhao et al. (2020) [24] propose weakly supervised training schemes that only
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use point annotations to achieve results comparable to those of fully supervised
models. In their paper, they propose three distinct methods and compare them
to several baseline methods, such as U-Net [16] and the Pyramid-Based fully
convolutional network [18]. The first approach, a self-training scheme, updates
the output segmentation mask by feeding back the current prediction of the
network. For this task, the network is pre-trained using the initial point annota-
tions and a cross-entropy loss, and then a self-training loss is introduced which
composes the network’s previous prediction with the previous label and uses it
as a new label in a feedback loop. The second approach is a co-training scheme
that uses two subsets of the initial dataset and self-trains two networks on them
separately. The resulting models then supervise each other’s learning process,
guided by a newly defined co-training loss that combines the predictions of both
models. A third approach is a hybrid approach, leveraging the advantages of the
better-converging self-training approach and the potentially better segmenta-
tion results of the co-training scheme. Guerrero-Pena et al. (2019) [4] introduce
a method to tackle the frequent problem of missing or incorrect annotations
in microscopy images. The method introduced in the paper proposes three key
points to improve the effectiveness of deep learning models when trained on
incomplete annotation. The first point is to introduce a loss function that helps
separate cells by operating in three distinct classes and classifying underrep-
resented regions. The second point is introducing a weight-aware map model
which is especially useful for contour detection and generalization. The third
point consists of data augmentation specifically crafted for the weaknesses of a
typical microscopy dataset, i.e. strengthening potentially weak signals on edges
by adjusting the intensity of regions that contain shared edges of multiple cells.

All these approaches for weakly supervised cell segmentation are trained on
small scale datasets like the PHC [11,21] and Phase100 [23] dataset used in [24],
contains 230 and 100 images respectively. This amount of data is too small to
enable a trained CNN (Convolutional Neural Network) model to generalize to
images beyond its training dataset or for a valid comparison between different
supervision approaches. In addition to that, these approaches for weakly super-
vised cell segmentation are overly complex.

3 Point2Mask: The Proposed Approach

Figure 2 provides a system overview of our Point2Mask weakly supervised cell
segmentation approach. The proposed pipeline is composed of Feature Pyramid
Network [9] with ResNet-50 [6], Region Proposal Network, and Mask R-CNN [5]
as the prediction head, which is detailed below.

3.1 Backbone Network for Feature Extraction

The purpose of this block is to extract feature maps from the input image at
different scales. The feature extraction module of the proposed methodology is
composed of Feature Pyramid Network [9] along with ResNet-50 [6]. Feature
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Fig. 2. System overview of the Point2Mask pipeline for weakly supervised cell segmen-
tation. Input image is passed to the proposed pipeline and the output image with cell
detection and segmentation is produced.

Pyramid Network (FPN) extracts features from the images using a pyramid
scheme. It utilizes deep convolutional networks (CNNs) for computing features.
FPN combines low resolution, semantically strong features with high resolution,
semantically weak features. It takes a single-scale image as an input and outputs
feature maps of proportional size at multiple levels by operating on a bottom-up
pathway, top-down pathway, and lateral connections. The bottom-up pathway
uses a normal feed-forward CNN architecture to compute a hierarchy of features
consisting of feature maps at various scales. The output of each CNN layer
is used later in the top-down pathway via lateral connections. The output of
each convolution layer of ResNet-50 is used in the top-down pathway which
constructs higher resolution layers from the semantic rich layer. As the final
task, the FPN applies a 3× 3 convolution operation on each merged map to
overcome the aliasing effect after the upsampling to generate the final feature
map.

3.2 Region Proposal Network for Cell Region Detection
and Groundtruth Matching

Following the extraction of multi-scale features from the backbone network, these
features are then passed onto a Regional Proposal Network (RPN) [15]. The
primary focus of RPN is to detect regions that contain objects and match them
to the groundtruth. This process is performed by generating anchor boxes on the
input image which are then matched to the groundtruth by taking Intersection
over Union (IoU) between anchors and groundtruth. If IoU is larger than the
defined threshold of 0.7, the anchor is linked to one of the groundtruth boxes and
assigned to the foreground. If the IoU is greater than 0.3 and smaller than 0.7, it
is considered background and otherwise ignored. The anchor strides and aspect
ratio parameter used to detect and segment objects in MS-COCO [10] dataset
overlooks most of the small cell instances when transferred to this task. Unlike
MS-COCO [10] and other commonly used image datasets, the area of some cells
especially BV-2 cell culture in the LIVECell [3] dataset is exceedingly small.
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After extensive experimentation, the anchor sizes and anchor aspect ratios were
selected that fit adequately for the task. The details about the anchor parameters
are given in Sect. 6. Now that we have the anchor boxes which are assigned to
the foreground having shapes like the groundtruth boxes, the next step is anchor
deltas calculation which is the distance between groundtruth and anchors. At
the final stage of RPN, we choose 3,000 region proposal boxes from the predicted
boxes by using non-maximum suppression [1].

3.3 Prediction Head

After the successful generation of proposals, the next block in our pipeline is the
prediction head. At the prediction head, we have groundtruth boxes, proposal
boxes from RPN, and feature maps from FPN. The job of the prediction head is
to predict the class, bounding box, and binary mask for each region of interest.
We are using Mask R-CNN [5] as the prediction head, which is an extension of
Faster R-CNN [15] by adding a mask branch. Faster R-CNN gives two outputs for
each object in an image, classification of the object in an image, and a bounding
box around the object. In Mask R-CNN, a third branch is added that outputs an
object mask in addition to the other two outputs. The extra branch is composed
of Fully Convolutional Network (FCN) which predicts the mask for each RoI in
a pixel-to-pixel manner.

In a fully supervised training setting with a mask available for each cell,
Mask R-CNN is trained by extracting a matching regular grid of labels from
groundtruth masks. On the contrary, for point supervision, predictions are
approximated in the locations of groundtruth points from the prediction on the
grid using bilinear interpolation (see Fig. 3). Bilinear interpolation is a resam-
pling method that estimates a new pixel value by using the distance weighted
average of the four nearest pixel values. When we have prediction and the
groundtruth labels at the same points, similar loss as with full supervision can
be applied and its gradient will be propagated with bilinear interpolation. Once
we have predictions and groundtruth labels at the same points, a loss can be
applied in the same way as with full supervision and its gradients will be prop-
agated through bilinear interpolation. In our experiments, we use cross-entropy
loss on points.

4 Dataset

LIVECell dataset [3] has been used in this study, which is the largest fully anno-
tated dataset in image-based cellular research. It contains more than 1.6 million
cells in 5,239 images. The images in the dataset are from eight morphologically
distinct cell cultures. On average, the LIVECell dataset contains 313 cells per
image which is exceedingly high as compared to the EVICAN dataset [17], which
contains an average of 5.7 cells per image. That is the reason we opted for the
LIVECell dataset for this study. LIVECell train set contains 3,188 images with
over 1.03 million cell instances. The validation and the test data contain 539 and
1,512 images with 1,84,371 and 4,67,874 instances, respectively.
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Fig. 3. Point2Mask supervision illustration. For a 6× 6 prediction mask on the
regular grid (green color indicates foreground prediction i.e., cell), the predictions are
obtained at the exact location of the groundtruth points (Cell and the background
groundtruth points are indicated by red and blue respectively) with bilinear inter-
polation. The cell contour line is only for illustration purposes. (Color figure online)

For fully supervised training, original LIVECell data with full masks are used
for training. For Point2Mask, the mask from the LIVECell dataset is discarded
and six different point labels (1, 2, 4, 6, 8, 10) are generated automatically and
randomly for each cell of the training data. The point can either be on the cell
or anywhere inside or on the edge of the bounding box. If the point annotation
is on the cell, it is assigned a point label of 1, and otherwise 0.

5 Evaluation Metrics

To evaluate the performance of the proposed pipeline we are following the stan-
dard COCO evaluation protocol [10] with some modifications as reported in [3]
for the area ranges. Average Precision (AP) is the precision averaged across
all unique recall levels. Mean Average Precision (mAP) is the mean of aver-
age precision across all N classes. For the evaluation, we have reported mean
average precision for both object detection and segmentation tasks at different
IoU thresholds of 0.5 (mAP50), 0.75 (mAP75), and 0.5:0.95 in the steps of 0.05
(mAP). To identify the performance of the model on objects of varied sizes, we
have also included mAP for different area ranges. Objects with area less than
320µm2 (corresponding to 500 pixels) belong to APs (small). APm (medium)
is for the objects in area ranges of 320µm2 to 970µm2 (corresponding to 1500
pixels) and APl (large) is for objects with area larger than 970µm2.
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6 Experimental Setup

We have designed two different experimental settings to evaluate the perfor-
mance of the proposed pipeline for the point-supervised weak cell segmentation.
In the first experimental setting, namely point2Mask vs fully supervised method
and impact of validated annotated points, we have performed several experi-
ments with different annotation supervisions using the LIVECell dataset. In the
second experimental setting, namely impact of validated annotated points on
different cell cultures, the models trained in the first experimental setting under
different annotation supervisions are evaluated on test sets of individual cell cul-
tures to analyze the performance of the different numbers of point annotations
for each cell culture.

Training for all the experiments used a stochastic gradient descent-based
solver with a base learning rate of 0.02 and momentum of 0.9. The anchor sizes
and aspect ratios for all settings were set after careful consideration of the cell’s
pixel area in the images. Anchor sizes and aspect ratios were set to 8, 16, 32,
64, 128, and 0.5, 1, 2, 3, 4 for all the settings, respectively. The checkpoints for
evaluation were chosen based on the higher validation average precision.

The pixel means and pixel standard deviation for the dataset were calcu-
lated as 128 and 11.58, respectively. For data augmentation, images are flipped
horizontally on a random basis to reduce the risk of over-fitting. All training
used multi-scale data augmentation, meaning that image sizes were randomly
changed from the original 520×704 pixels to size with the same ratios, but the
shortest side was set to one of (440, 480, 520, 580, 620) pixels.

6.1 Point2Mask vs Fully Supervised Method and Impact
of Validated Annotated Points

In this experimental setting, the objective is to perform weakly supervised cell
segmentation for different point annotations as well as fully supervised cell seg-
mentation with a full mask for each cell. All the experiments are performed
under the same settings. For point-supervised cell segmentation, six different
training experiments are performed with 1-,2-,4-,6-,8-, and 10-point labels per
cell instance instead of a full mask.

The checkpoints at 3,000 have been chosen for 1-, 10-points, and full mask
training settings, and 2,9500 for 4-,6-, and 8-point training settings on the basis
of higher validation average precision.

Results. Table 2 shows the overall detection and segmentation average preci-
sion scores of the proposed pipeline on the LIVECell dataset. For the full mask
supervision setting, we are getting detection and segmentation AP scores of
43.12% and 43.90% respectively. The area ranges scores show that the model is
performing best for the cells of larger areas. For the 1-point supervision, we are
getting AP scores of 42.67% and 43.27% for detection and segmentation tasks,
respectively. 1.01% improvement in performance is seen for 2-point supervision
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Table 2. Overall detection and segmentation results on different Intersection over
union threshold and area range for full mask supervision and N -point supervision.
The best results are represented in bold.

Train supervision AP AP50 AP75 APs APm APl

Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg. Det. Seg.

Full mask 43.12 43.90 78.94 78.07 43.26 45.75 44.31 42.30 43.01 43.33 47.01 51.92

1-point 42.67 42.37 78.71 77.58 42.46 42.96 43.91 41.33 42.16 41.37 46.19 48.64

2-point 42.75 42.86 78.49 77.62 42.81 43.79 43.95 41.53 42.81 42.30 46.61 50.38

4 points 43.01 43.17 79.50 77.91 42.96 44.60 43.97 41.68 43.07 42.77 47.24 51.40

6 points 43.32 43.53 79.69 78.18 43.31 44.93 44.54 42.06 43.31 43.31 46.97 51.52

8 points 42.97 43.41 78.86 78.00 43.18 44.83 43.95 41.83 42.54 42.77 46.94 51.44

10 points 42.93 43.40 78.71 77.97 43.10 44.81 44.12 41.80 42.81 43.04 47.01 51.65

in comparison to the 1-point supervision. Similarly, 1.01% gain in performance
is achieved for the 4-point supervision as compared to the 2-point supervision.
For the 6-point supervision, we are getting the best results with an AP score of
43.53% for segmentation. For the 8- and 10- point supervision, we are getting a
decline in the performance for cell segmentation.

6.2 Impact of Validated Annotated Points on Different Cell
Cultures

In this experimental setting, we are mostly concerned with finding the inter-
link between the morphological properties of the cells and the number of point
annotations required for each different cell culture. The models trained in exper-
imental setting 1 are evaluated on the individual test set of each cell culture.

Table 3. Per class mask average precision results for full mask supervision and N -point
supervision. The best results are represented in bold.

Train supervision A172 BT-474 BV2 Huh7 MCF7 SH-SY5Y SkBr3 SK-OV-3

Full mask 35.45 38.13 52.88 49.90 34.66 21.56 65.20 50.67

1-point 33.39 37.24 51.99 46.98 33.64 19.26 64.03 47.29

2-point 34.80 37.43 51.97 48.89 34.07 20.55 64.08 48.97

4-point 35.17 37.97 52.23 49.61 34.07 20.92 64.65 49.82

6-point 35.26 38.78 52.20 49.57 34.91 21.32 64.80 49.82

8-point 35.11 37.67 52.27 49.65 34.29 21.08 64.52 49.83

10-point 35.18 38.01 52.13 49.76 34.31 21.61 64.66 50.21

Results. Table 3 gives insights into per class AP scores for different point-
supervised training settings. For the cell culture A172 and BT-474, the best
performance is achieved by 6-point supervision. When we analyze the area of the
A172 cells in the LIVECell dataset, it is observed that more than 50% of the cells



Point2Mask: A Weakly Supervised Approach 149

belong to the medium area range (320µm2 to 970µm2). The best performance
is achieved by the 10-point supervision for the cell cultures Huh7 and SK-OV-3
because more than 48% and 59% of the cells in these cell cultures respectively
have cells in a large area range (larger than 970µm2). For the cell culture BV-2,
the best performance is seen across the 6-point supervision, but the interesting
thing to notice is that for the 1-point supervision, we are getting 99.5% of 6-
point annotation performance with 6x less time spent on the annotation. From
these observations, we can conclude that the morphological characteristics like
the size of the cells in the dataset can give insights into how many points are
enough to achieve the best performance for each cell culture.

7 Analysis and Discussion

Fig. 4. Training with a different number of points. Proposed approach trained
on LIVECell with as few as 6 labeled points per cell instance (P6) achieves 43.53%
mask AP with decline in the score for more labeled points.

In this section, we discuss the results of the point-supervised weak cell seg-
mentation pipeline for both experimental settings. In experimental setting 1
(Point2Mask vs Fully supervised method and impact of validated annotated
points), 6 different points and full mask annotation were used for training.
Results in Table 2 show that we have achieved 96.51% to 99.16% of the fully
supervised performance by using weakly supervised cell segmentation with only
1- to 6-points label per cell instance with a significant reduction in the time
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Fig. 5. Inference results using the models trained on the different number of point
annotations and full mask. The solid yellow line represents the groundtruth mask for
each cell and the dotted red line represents the prediction made by the model. The
red, green, blue, and purple columns represent the inference results obtained from
the models trained on 1,2,6,10-point annotations and full mask respectively. Each row
represents the inference result from an image from different cell culture. (Color figure
online)

required for annotating the data for training. Figure 4 presents the mask AP
scores on the LIVECell test set with a different number of points used for train-
ing. For the 1-point supervision (P1), we have achieved a mask AP score of
42.37%, which is 96.51% of the fully supervised trained model performance
under the same settings. Similarly, for 2- (P2) and 4-point supervisions (P4),
we have achieved 97.63% and 98.34% of the full supervision performance. For
the 6-point supervision (P6), we have achieved the best performance in terms of
mask AP with the score of 43.53%, which is 99.16% of the fully supervised per-
formance. For the 8-(P8) and 10-point(P10) supervision, the performance starts
to decline compared to 6-point(P6) with mask AP scores of 43.41% and 43.40%
respectively.
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In experimental setting 2 (Impact of validated annotated points on different
cell cultures), we aimed to find the connection between the morphological char-
acteristics of the cells and the N point supervision required to get the optimal
performance. From the analysis of the results in Table 3, it can be seen that for
the cultures which contain cells in the small area ranges like BV2, minimal point
supervision yields optimal results. For the cells in the medium area ranges like
A172, BT-474, and SkBr3, the best performance is achieved with 6-point super-
vision. Similarly, 10-point supervision outputs the best performance for the cell
cultures in large area ranges like Huh7 and SK-OV-3. These findings can help
the annotators and the biologists in targeted point annotation according to the
morphological characteristics of the different cell cultures.

Figure 5 shows the inference results on some samples using the models trained
on the different number of point annotations and full mask. The solid yellow lines
are the groundtruth mask for each cell and the dotted red lines are the predictions
made by the model. The red, green, blue, and purple columns are the inference
results obtained from the models trained on 1-,2-,6-,10-point annotations, and
full mask, respectively. Each row shows the qualitative performance of different
supervisions on the identical image from different cell culture for comparison.
AP50 on top of every prediction sub-image is the segmentation average precision
score at the IoU threshold of 0.5. For the image in the first row belonging to cell
culture A172, the 1-point supervision model performs best with an AP50 score
of 97.29%. The best performance for the image in the second row (BV-2) is seen
across the model trained with 6-point supervision. For the image in the third row
belonging to the SH-SY5Y cell culture, the best performance is recorded against
the 10-point supervision model. The last 2 images in the fourth and the fifth
row belong to SkBr3 cell culture. The best performance for both the images can
be seen against the model trained on 1- and 6-point supervision, respectively.

We have achieved close to the full supervision performance by reducing the
time required to annotate the data by a significant amount compared to the full
mask annotation. In this study, quality assurance time has not been considered
for both the full mask and the point annotations. Quality assurance for point
labels in overlapping cells in crowded images can sometimes take more time than
drawing the full mask. Even with the 1-point supervision for training, we are
getting more than 96% of the fully supervised performance. As explained earlier,
annotation of cells in microscopic images is a very labor-intensive and expensive
task and requires expert knowledge of the biomedical staff. One single image
of the cell culture BV2 can contain up to 3,000 cell instances, which can be
very time-consuming and complex to annotate. With the help of the proposed
pipeline, we can annotate the data semi-automatically by using the proposed
pipeline for weakly supervised cell segmentation to generate a mask for each
cell, which can then be improved by the annotators in case of false positive or
missed detection. Also, the findings of experimental setting 2 can help us decide
how many point annotations are required for specific cell culture according to
its morphological properties.
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8 Conclusion

In this study, we have proposed a pipeline for weakly supervised cell segmentation
using point annotations. Point2Mask generates a mask for the cell, providing just
the bounding box and the point labels. With the help of the proposed pipeline,
we have achieved 99.16% of the fully supervised performance with just 6-point
labels instead of drawing a full mask. With only 0.84% loss in the performance
compared to the fully supervised setup, significant amount of time required for
the fully supervised training can be saved. The performance achieved for a 1-
point label per cell instance e, 96.51%, is still adequate and can save an ample
amount of time spent on labeling the full mask for each cell. The findings of
this paper can help biologists and doctors to save enough time in labeling the
data and can expedite the field of medicine and disease diagnosis to a great
extent. With the help of the results in this study, we have proved that we can
not only reduce the time and the cost required for the full annotation, but we
can also reduce the amount of expert knowledge required from the biologists
to draw the boundaries of each cell. An abundant amount of unlabeled image-
based cellular data is available, which can be semi-automatically annotated using
the proposed pipeline for weakly supervised cell segmentation. Furthermore, we
have also pointed out the relationship between morphological characteristics
of different cell cultures and the number of point annotations required. These
findings can help biologists to design the targeted point annotation for specific
cell cultures.
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