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Abstract. Expansion of neck adipose tissue (NAT) is an understudied
trait in obesity biology. NAT can be quantified using dual X-ray absorp-
tiometry (DXA), a tool commonly used in body composition studies.
However, the neck region is not defined in standard regional outputs
from a body composition DXA acquisition; instead, quantifying NAT
relies on a scanner-dependent software, where manual input is required
to define a non-standard region of interest. This makes specialised body
composition studies at scale very time-consuming. We thus developed an
automated pipeline for NAT estimation from DXA using convolutional
neural networks. We investigated whether predicting measurements with
a prior step of cropping a region of interest, using automatic landmark
prediction, was better than directly predicting from the entire image. We
then compared our proposed architecture to the ResNet50 architecture,
a well known model used as a basis for transfer learning experiments in
many tasks including classification and regression. For the direct and the
two-step prediction, both models displayed high performance accuracy.
The anatomical landmark placement model performed within three pix-
els accuracy, and NAT estimation errors for both models were within less
than 2.5% points of mean absolute error. However, the proposed model
outperformed ResNet50 in the direct prediction, where ours had a mean
absolute error of 2.42 against 5.58 for ResNet50. To ensure that the direct
predictions are specifically focusing on neck fat, and that the results did
not arise from chance correlations with other adipose tissue depots, we
generated activation maps which highlighted that the network is focusing
on the neck region. This work will enable large-scale population analyses
of non-standard regions of interests across a variety of DXA analyses.
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1 Introduction

The expansion of upper body fat depots is strongly associated with adverse
metabolic outcomes; opposite to those of the lower body [11]. In certain
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adiposity redistribution syndromes, such as Cushing’s disease, obesity hypoventi-
lation syndrome and familial partial lipodystrophy, there is a marked accumula-
tion of neck adipose tissue (NAT), also accompanied by elevated cardiometabolic
risk [17]. The neck region is an upper body fat depot comprising both white and
thermogenic brown adipose tissue (BAT), the latter of which appears positively
associated with metabolic health [2]. It has been speculated that abdominal
adiposity is linked to BAT transdifferentiation and replacement by white tissue
[3,13]. In the absence of easy and reproducible methods to quantify NAT at
scale, investigators have used neck circumference (NC) as a proxy measure. NC
has demonstrated strong relationships with visceral adipose tissue; an ectopic
fat depot associated with adverse cardiometabolic consequences [16], and type
2 diabetes [4]. NC, however, does not delineate tissue composition, confound-
ing direct NAT measurements due to the effect of neck lean tissue. In addition,
studies directly assessing NAT using computed tomography (CT) at a single slice
neck vertebral level have suggested positive relationships between NAT volume
and cardiometabolic risk [1,21]. However, these small studies did not examine
the full length of the neck region, and were limited to healthy cohorts. Dual
X-ray Absorptiometry (DXA) is a reliable modality for determining tissue com-
position [22], specifying the weight and ratios of fat to lean tissue, as opposed
to CT-based NAT.

DXA is commonly used for body composition analyses, allowing efficient all-
around quantification of fat and lean tissue. It is fast, inexpensive and involves
a low radiation dose exposure, which has made it a standard tool for measuring
body composition in large cohorts such as the Oxford Biobank (OBB) [12] and
the UK Biobank [20]. The standard regional body composition output, auto-
matically included in DXA scans, consists of arm, leg, trunk as well as further
subdivisions such as the abdominal and gluteofemoral regions. Additional algo-
rithms within the scanner platforms are used for the quantification of visceral fat
content. The neck region is not part of any standard output, requiring the man-
ual definition and construction of regions of interest (ROI) for analysis, which
renders it difficult and time-intensive to perform NAT estimations at scale.

Although DXA imaging is commonly used in body composition, it is a less
commonly studied imaging modality in the image processing literature. DXA
image processing studies generally deal with the skeletal system, for exam-
ple covering bone segmentation [9], scoliosis prediction [10] or osteoporosis
detection [8].

In this study, we have developed and evaluated a two-stage automated end-
to-end pipeline for estimation of NAT fat to lean mass ratio in % from DXA
images acquired from the OBB, enabling automated estimation of NAT at scale.
Analysing these values alongside biochemical parameters from the OBB will
thence allow for an in-depth investigation into the role of NAT in metabolic
health.
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2 Methods

We used the DXA images of 495 OBB participants for this study, including
72 type 2 diabetics. Each individual data set consisted of two images, one low
energy X-ray (mostly delineating the soft tissue) and one high energy (mostly
delineating the skeletal structure), as well as the NAT mass percentage within
a manually defined ROI. The quantitative image software output used as labels
in this study came from the GE Lunar iDXA enCORE platform. For each set of
images, we manually placed the neck ROI defined at four anatomical landmarks
and saved their coordinates: first, two at the level of the right and left lung apices
and second, two at the lowest margins of the mandible on the right and the left
hand sides. An example of the two X-ray images acquired during a DXA scan
are shown in Fig. 1A-B, and the respective neck ROIs for the same subject in
Fig. 1C-D. For model training, we performed tenfold data augmentation. This
included horizontal flipping, translations of a random number of pixels (−16 to
16), and also small random rotations (−2 to 2◦C), in order to realistically simu-
late different subjects of various heights and positioned in various orientations.
We kept the data for 95 subjects completely apart for final evaluation and we
performed all prototyping and parameter tuning experiments with the 400 other
data using an 80–20 training and validation split.

In this study, we compare two pipelines for NAT estimation, one predicting
the measurement from the entire image and one using a prior step of cropping
a ROI of the neck region, as previous studies have shown deep learning tasks
to improve when an intermediate step of localisation is added into the pipeline
[6,14].

The pipeline using cropped data for prediction consists of two parts: first, the
ROI placement, and second; estimation of NAT using the cropped neck ROI, as
delineated by the four landmarks. For the first part, we trained a U-net [18] to pre-
dict the four coordinates of the neck ROI landmarks. We created label ROI images
using the neck landmark coordinates, where each coordinate was represented by a
point spread function (PSF) consisting of a Gaussian blur with standard deviation
of four pixels, centred on the four landmark coordinates, as has been done by others
for landmark detection [23]. We also normalised the two channels of input data as
well as the ROI label image. We show an example ROI label image in Fig. 2A. Our
U-net-basedmodel has six resolution levels, doubling the number of convolution fil-
ters from 64 to 512 in the first four encoding levels, and 512 filters for the fifth, sixth,
and the bottom. Each convolutional block has a filter size 3, stride of 2 instead of
pooling, batch normalisation and a leaky ReLU activation. The decoding blocks
at the same resolution levels match the encoding blocks in terms of filter numbers,
and have deconvolutions instead of convolutions. The output layer has a sigmoid
activation. We trained the models for 15 epochs minimising a F1 score loss function
using the Adam optimiser and a learning rate of 0.002 with decay 0.005. We then
calculated the centroids of the final output map predicted by the ROI placement
model. We repeated training ten times for the ROI placement-model and assessed
performance through mean absolute error (MAE) of euclidean distance in pixels
for each of the four landmarks compared to the ground truth coordinates on a held
out test set of 95 images.
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Fig. 1. Example of DXA images and corresponding neck ROI: A) low attenuation
energy X-ray, B) high energy X-ray, C) neck ROI of low and D) high attenuation
energy X-ray.

For NAT estimation, we adapted a recently published methodology for brain
age prediction by Peng et al. [15]. The authors propose a simple fully convo-
lutional neural network that predicts a probability for the age of the subject
from 3D brain MRI. Their proposed architecture consists of five convolutional
layers followed by two fully connected layers. Our proposed model is constructed
using two kinds of convolutional blocks. First: RCX , a residual block made
up of two successive convolutions with X filters of size 3, batch normalisation
and ReLU activation where the input and the output of the block are con-
nected by a skip-connection followed by max-pooling. Second: two fully convolu-
tional layers (convolutions of filter size 1), FCX . The architecture is as follows:
RC64−RC128−RC256−RC512−RC1024−FC256−FC65. The first FC has ReLU
activation, and average pooling as in [15], and the final output has a softmax acti-
vation. The network input consists of the neck ROIs of both channels extracted
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Fig. 2. Graphic representation of the pipelines. Left: two-step prediction showing ROI
placement using U-Net (A) and Neural network output estimation of NAT (B). The
green distribution represents the true value and magenta for our estimation. Right:
direct prediction.

from X-ray images of input size 128× 128. The final layer predicts a probability
distribution, between 0 and 65, instead of 0 to 50 as in [15]. We selected the range
from 0 to 65 to capture the range of the ground truth labels (which ranged from
NAT of 7.3% to 53.6%) that we converted into Gaussian distribution centred
around the value used as labels. We found the model performance to improve
when training was performed minimising categorical cross-entropy and not the
Kullback-Leibler divergence loss, as used in Peng et al. [15]. During model pro-
totyping experiments, we explored various values of standard deviation, σ, for
the Gaussian distribution around the NAT estimation label (1, 3, 5, 7.5, 10) and
found the most robust and repeatable results to be obtained from σ = 5. We
set the number of epochs to 65, after observing that the exploratory training
runs, which went on for 100 epochs, converged around epoch 65. We trained the
NAT estimation model using the Adam optimiser and a learning rate of 0.01
and decay of 0.001. The output of the network is a probability distribution, and
we calculate the final predicted NAT percent values as the mean of the dis-
tribution. We repeated training ten times and assessed performance via MAE
and root mean square error (RMSE) in percentage points using the 95 held out
testing set. Figure 2 shows a graphic describing the pipeline, 1A) showing the
ROI placement, 1B) the NAT estimation, and 2) showing the direct prediction
pipeline.
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We also trained models predicting NAT from the entire top half (containing
the neck region) of the DXA images without performing a landmark prediction
and ROI cropping step. For both the direct and two-step methods, we compared
our proposed architecture against ResNet50 [7]. ResNet50 is a version with 50
layers of the well-known ResNet architecture, which was the first to introduce
residual learning. For our ResNet50 comparison experiments, we used trans-
fer learning to retrain the model for NAT prediction. We substituted the final
activation layer with the same fully connected layer with 65 outputs as in our
proposed model, before retraining it. We also performed visual checks of the
activation maps generated using guided back-propagation [19] (adapting code
from https://github.com/experiencor/deep-viz-keras/) to ensure that the direct
predictions are specifically focusing on neck fat, and that the results are not
arising from a chance correlation with other adipose tissue depots. All experi-
ments presented in this paper, including transfer learning experiment using the
pre-trained ResNet50 model, were performed using Keras [5].

3 Results

The ROI placement metrics are summarised in Table 1, where we give the MAE
for each landmark in pixels (euclidean distance) when compared to the manual
placement on the held out test set of 95 data. The results show that the network
is able to predict the four landmarks within less than three pixels accuracy. The
NAT estimation metrics for both methods using our model and ResNet50 are
summarised in Table 2, where we show that the networks in all experiments are
able to predict NAT within a few percentage points. We show examples of low,
medium, and high NAT out-of-sample subjects in Fig. 3. The first column are the
low attenuation X-ray images, the middle columns show the predicted landmark
PSF centroids in red superimposed on top of the manually placed ground truth
PSFs in white, and the third column shows the network output (magenta) and
the distribution centred on the ground truth NAT value (green). We can see
in those examples that the network slightly overestimates (by 1.1% points) the
low NAT and slightly underestimates (by 2.36% points) the high NAT. We show
activation maps using our proposed direct prediction model in Fig. 4.

Table 1. ROI placement performance metrics. The error of the coordinates of the four
individual landmarks are given in euclidean distance in pixels (resolution 0.23mm2).

Landmark Top left Top right Bottom right Bottom left

Mean absolute error 2.0 2.5 1.9 2.1

https://github.com/experiencor/deep-viz-keras/
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Fig. 3. ROI and NAT estimation on three out-of-sample data for the two-step model.
First column is the low energy X-ray, second the four landmarks (red = estima-
tion, white = PSFs centred on manual landmarks), third the predicted distribution
(magenta) and ground truth label (green).

Table 2. Root Mean Square Error and Mean Absolute Error of NAT prediction from
two-step and direct methods using the model proposed in this work and ResNet50. The
values shown in the table are in percentage points.

Model Root mean square error Mean absolute error

ResNet50 (two-step) 3.03 2.26

This work (two-step) 2.97 2.36

ResNet50 (direct) 6.68 5.58

This work (direct) 3.04 2.42
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Fig. 4. Activation maps for six examples of direct NAT estimation using our model,
highlighting areas around the neck as the strongest contributors to the model NAT
output.

4 Discussion and Conclusion

In this study, we have developed an automatic solution for NAT composition
estimation from DXA imaging. We have shown through our experiments that
the two proposed methods are able to perform NAT predictions within a small
margin of error. Compared to ResNet50, our model to performed better when
predicting NAT using the entire image foregoing the cropping step, for which
both models performed similarly well. In order to further increase confidence
when applying our model to a large cohort, we will increase the training dataset,
with a focus on enriching with more extreme NAT values. This method of pre-
dicting parameters from DXA images using deep learning will enable a fast way
to estimate NAT in the Oxford Biobank at scale, which would have otherwise
required many months of manual labour. There is further potential to apply this
to other DXA-containing Biobanks, allowing the investigation of specific disease
cohorts where NAT is of interest (e.g. Cushing’s, familial partial lipodystrophy,
obesity hypoventilation syndrome). On top of that, we can easily measure neck
diameter using the distance between the predicted landmarks from the ROI
model. As most of the existing data is on NC, we will use this to confirm pre-
viously established relationships between NC and metabolic health [1,21]. Our
research may enable additional parameters to be learnt, and further regions to
be predicted in other large-scale image analyses.
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