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Abstract The presence of fault in a structure may lead to catastrophic failure if it 
remains undetected. So the damage diagnosis is an essential part in health monitoring 
of structures. Damage in a structure leads to change in the dynamic response which 
will be helpful for diagnosis of the structure. The relation between modal response 
and damage vector is in such a way that there exist unique change in response for 
unique damage. So damage detection is an inverse problem where it is required to 
relate the modal response to the damage state. 

Problems of damage detection are too intricate and the distinct boundary between 
crisp values cannot be identified for expressing the damage level and measurement 
deltas. Thus, mapping technique like Fuzzy Logic Inference System (FLIS) can 
be used for such problems. A fuzzy logic will operate on linguistic variables and 
associate the data (structural response) with the damage conditions and provide 
output as level of damage and damage location. 

In this study, the change of modal response due to damage in a cantilever beam is 
investigated and a FLIS is designed for the structural health monitoring purpose. The 
change in natural frequency is the measurement delta. FLIS is designed using data 
pool obtained from Finite Element (FE) analysis of different damaged scenarios of 
the specimen. The FLIS is tested with noise up to 20% and it is found to be robust 
against small contamination in measurement deltas. 

Keywords Structural health monitoring · Fuzzy logic · Modal response · Damage 
detection 

1 Introduction 

Damage detection is an essential part of structural health monitoring. Damage can 
be defined as “a deficiency or deterioration in the strength of a structure caused 
by external loads, environmental conditions, or human errors” [1]. Detection of
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fault characteristics are necessary that too in non-destructive way so that the down 
time can be minimized resulting in low cost structural health monitoring [2]. The 
Damage detection methodologies based on their nature has been classified into clas-
sical method, Finite element method, AI method and other miscellaneous methods 
[3]. The fuzzy inference system is an AI based scheme useful in predicting damages. 
The fuzzy logic is an inference system which works on predefined rules on fuzzy 
sets. The fuzzy sets include members of set with continuously graded membership 
ranging from 0 to 1. [4]. 

Presence of fault in a structure consequently results in changes of its performance. 
This changes can be quantified by studying the changes in frequency, mode shapes 
and maximum extent of free vibration and so on [5]. There exist substantial changes 
in natural frequency when there is increase in flexibility due to fault. In beams 
maximum changes are observed at location of higher bending moment [6], also the 
magnified view of mode shapes are useful in identification of crack location [5]. 
Sazonov et. al. [7] detected damage by mode shapes and curvature of mode shape 
by forming fuzzy logic to mimic human like decision making process. The inverse 
problem of damage detection was studied by Vestroni and Capecchi [8], they related 
the amount and quality of data required for damage detection and showed the process 
of finding the optimum number of natural frequency required to locate and quantify 
the damage uniquely. The use of natural frequency is popular because it is simple 
to determine [1]. Das and Pahri [9] formulated fuzzy logic based crack detection 
system and compared its performance with experimental results, the fuzzy logic 
system show quick response within nanoseconds. Pawar and Ganguli [1] have given  
detail procedure to use genetic fuzzy logic inference system for fault diagnosis in 
various type of structures like beam, composite tube etc. Ashigbi et. al. [10] provided 
crack in beam like structure by saw cut and fuzzy logic was designed by comparing the 
modal frequency in damaged and undamaged condition measured from experiment 
as well as with the analytical method. The study concluded that more clustered data 
pairs will be helpful in better prediction by fuzzy rule base. 

The present study include the design of fuzzy logic for a steel cantilever beam 
on the basis of the change in modal responses, calculated numerically by FE anal-
ysis of beam in undamaged and damaged condition, there after forming the fuzzy 
logic. Fuzzy logic with artificial neural network based supervised learning was used 
for automatic forming of membership function and rule by Wenning Yu et. al. [11]. 
To determine the health status of a structure or machine Swayer et al. [12] used  
the principle of continuum damage mechanics to identify the location and extent 
of the damage, fuzzy logic was formulated by monitoring the static, eigenvalue, 
and dynamic responses. Angelov and Filev [13] designed fuzzy logic first with 
limited information and then modifying the existing rule base, this evolving approach 
provided summarized rule base and compact fuzzy logic. Pawar and Ganguli [14] 
related the damage, in composite tube, in the form of matrix cracking with the changes 
in natural frequency and a robust genetic fuzzy inference system was designed by 
incorporating the effect of noise in measurement deltas. Chandrasekhar and Ganguli 
[15] provided details of probabilistic variation of measurement deltas due to various 
uncertainty and discussed its implication on fuzzy logic damage detection scheme
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and fuzzy logic architecture was created and tested for contaminated measurements 
due to the uncertainties involved. Ganguli [1] developed fuzzy logic system for struc-
tural health monitoring of helicopter rotor blade, fuzzy logic system showed 100% 
correct prediction of four damage cases for noise level up to 15%. The present study 
utilizes C++ codes for reading the measurement deltas and writing command for 
forming fuzzy logic system using the fuzzy logic tool box in MATLAB. 

Vimal et.  al. [16] provide the damage as decrease in mass and detection of crack 
was done by first four natural frequencies. Ganguli [15] provided the damage by 
changing the Young’s modulus of elasticity of the elements in finite element model. 
Das and Parhi [17] provide the damage as a cut of various relative depth. In the present 
study damage parameter is defined as various cut depth as percentage of overall depth 
of 2 mm wide cut at five different locations along the longitudinal direction of the 
cantilever beam. The dynamic response of the cantilever beam is evaluated by finite 
element analysis in ABAQUS. Fuzzy logic deals with partial truth. Fuzzy logic is a 
logic which maps the given numerical input to a linguistic output (a word or a group 
of words). This property is useful in classifications of the data in such a manner that 
output is not affected by the uncertainty of data. Thus, in present study the output 
has been tested with contaminated measurement deltas. 

2 Theoretical Background 

A FLIS is an inference scheme which maps the input and output of a problem. In other 
words it is an inference engine which evaluates and executes a set of predefined rules 
connecting the input and output of a problem. Fuzzy means vague. It is different from 
Boolean logic which understand only true and false. Fuzzy logic deals with partial 
truth. 

In FLIS, the system reads measured structural responses (numerical or crisp 
values) and then convert them into the fuzzy sets (linguistic variables). The inference 
scheme processes the damage implication through reading and implementing the 
related rules in the knowledge base and the supplied fuzzy states. The output of this 
implication procedure is a fuzzy vector, which can also be defuzzified with different 
methods to get numerical value, describing possible damage levels of predefined 
regions in the structure. 

2.1 Terminologies 

Input and Output. For damage detection problems change in any structural 
response which is occurred as the consequence of the change in the stiffness of 
the structure or part of the structure because of prevailing damage, can be used. 
Natural frequencies are the input and the output are damage location and severity.
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Fuzzy Set. A set in which every member has a degree of membership. A fuzzy set 
is a set in the form of ordered pairs. 

Fuzzy Rules. The fuzzy rules are usually of the form of “if–then” statements. The 
‘If’ part is the antecedent part and then part is known as the consequent part. The 
two fuzzy parts are connected with words like AND, OR, NOT, etc. 

For example, 

“If X is A1 and Y is B1, then  Z is C1” 

Fuzzifier. It performs the fuzzification and maps numbers into fuzzy sets. This 
number-to-word transformation is very important in fuzzy logic, as all further oper-
ations such as rules are performed on the words. If the input is relative change in 
first natural frequency, it can be fuzzified as linguistic measures ‘F1R1’, ‘F1R2’ for 
two different measurements of first frequency. The appropriate choices of linguistic 
variable and associated range of measurement deltas depend on the problem and can 
be different for different problems. 

Defuzzifier. In some case if the output is required as numerical value, then defuzzifier 
is used. Defuzzifier maps the linguistic term (output) into a numerical or crisp value. 
For our problem we can either get the output as a linguistic variable indicating a 
portion (or range of length) of structure where fault is present or as a crisp value 
indicating the location of fault. The former has more significance as the latter one is 
subjected to accuracy of defuzzification methods. 

There are several methods of defuzzification presented by Ross T.J. [18] in the  
present study centroid method is used. In this method the centroid of the output area 
is calculated and the crisp value corresponding to the same is called the output of 
the fuzzy logic. This method is more appealing because it takes into consideration of 
whole area. It doesn’t give higher weightage to the part of output area with relatively 
higher membership value. 

It can be expressed as given in Eq. (1), 

y∗ =
∫

μ(y)ydy
∫

μ(y)dy  
(1) 

where, y∗ is the defuzzified value and
∫
signifies the algebraic integration. 

3 Problem Formulation 

A steel cantilever beam is taken for forming FLIS based SHM scheme for detection 
of presence of fault along the span. The problem is solved by earlier researchers 
also. The basic problem of cantilever beam for genetic fuzzy logic formation was 
done by Pawar et.al [1]. The geometric and material properties of the beam has been
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taken from Chandrupatla and Belegundu [19]. The cantilever beam is as shown in 
the Fig. 1. 

The beam has been indicated with the distance from the fixed end as the fraction of 
the span length (L). The SHM scheme is designed to provide the damage parameter 
and the location of the fault. In the present study the damage is provided in five 
different locations marked in Fig. 1. The information about the beam’s material and 
geometric properties is as shown in the Table 1 (Chandrupatla and Belegundu [19]). 

For damage detection, the reference baseline can be formed with numerically 
obtaining the first eight natural frequencies of cantilever beam in bending. For numer-
ical simulation the beam behavior can be depicted as an Euler–Bernoulli beam. In 
Fig. 1 reference coordinate system can be assumed x as 0 at the fixed end and x equals 
to L at the tip. The natural frequencies of the beam can be numerically calculated by 
solving the partial differential equation given in Eq. (2), 

∂2 

∂x2

(

E I  
∂2 y 

∂x2

)

+ m 
∂2 y 

∂t2 
= 0 (2)  

Here, E is the Young’s modulus of elasticity, and I is the moment of inertia. The 
above equation has no exact solution, it can be solved by using finite element method. 
The problem can be expressed as an eigenvalue problem involving Global Stiffness 
Matrix [K] and Global Mass Matrix [M] stated as in Eq. (3), 

K φ = ω2 Mφ (3)

Fig. 1 Steel cantilever beam 

Table 1 Geometric and material properties of cantilever beam 

Material and Geometric properties Values 

Material Steel 

Young’s modulus of elasticity (E) 2.00 × 105 N/mm2 

Poisson’s ratio (ν) 0.3 

Cross sectional area (A) 240 mm2 

Moment of inertia (I) 2000 mm4 

Mass density (ρ) 7840 × 10–9 kg/ mm3 



826 A. Sharma et al.

Fig. 2 Steel cantilever beam with damage provided as 2 mm wide cut 

In the above equation, φ and ω are the eigenvector (mode shape) and eigenvalue 
(natural frequency). 

The cantilever beam is modelled in ABAQUS, was meshed for a size of 1.75 mm 
for both undamaged and damaged beam. Based on the computing limitations, the 
mesh size as well as the cut width (2 mm) is decided, the cut width is chosen slightly 
greater than the mesh size. The element used in the finite element analysis is a 10-
nodded quadratic Tetrahedron element designated as C3D10. The eight different 
damage cases were introduced at five location namely, 0.1L, 0.3L, 0.5L, 0.7L & 
0.9L from the fixed end of cantilever beam as shown in the Fig. 2. Thus, forty finite 
element models were created and modal analysis was performed. The values of first 
eight natural frequency was found for all the models. 

The steel beam has to be damaged at various location, since a crack or a cut will 
better represent the damage. So in the present study, cut of various depth dcut was 
made in the beam for inducing damage. The cut was provided on the top side of the 
cantilever beam throughout the width of the beam. The depth of cut varies in the 
proportion of the actual depth of beam, dundamaged as its percentage like 10%, 20%, 
up to 80%. For example, if the damage parameter is D3 then the depth of cut is 3 mm. 
The damage parameter used in the present study, is mathematically shown in Eq. (4), 

Din% = 100 
dcut 

dundamaged 
(4) 

The damage D is discretized into eight different linguistic variables shown in 
Fig. 3. It can be expressed by the following representation, 

T (Din%) = {D1, D2, D3, D4, D5, D6, D7, D8}

For fuzzification of measurement deltas, the whole universe discourse was clas-
sified into different sets in the form of F(N)R(n), where linguistic terms F and R 
indicate the frequency and range, N and n are the indices representing N th frequency
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Fig. 3 Membership functions for damage parameter in D (%)

and nth range respectively. Gaussian membership function with a standard deviation 
(σ ) of 15% of the measurement delta is used for fuzzification. 

The membership function (μ) used here is as follows in Eq. (5), 

μ(Δz) = μ(100 ∗ (Δω/ω)in%) = e−0.5( x−m 
σ )

2 

(5) 

where ω and Δω are frequency and change in frequency, m is the mid-point of fuzzy 
sets. 

The membership function plots for measurement delta corresponding to the first 
and eighth mode focused in the range 0 to 200 is shown in Fig. 4. Table 2 gives the 
midpoint of the fuzzy sets used for fuzzification of measurement deltas.

The above plot shows only a part of the universe discourse for better visualization 
of the membership plot; for example, the actual plot of the eighth measurement delta 
is in the universe discourse of 0 to 982.143. The first and eighth measurement deltas 
can be expressed in 25 discretized linguistic variables as follows, 

T (ΔZ1) = {F1R1, F1R2, F1R3, F1R4, F1R5, F1R6, F1R7, F1R8, F1R9, 
F1R10, F1R11, F1R12, F1R13, F1R14, F1R15, F1R16, F1R17, F1R18, 
F1R19, F1R20, F1R21, F1R22, F1R23, F1R24, F1R25}. 
T (ΔZ8) = {F8R1, F8R2, F8R3, F8R4, F8R5, F8R6, F8R7, F8R8, F8R9, 
F8R10, F8R11, F8R12, F8R13, F8R14, F8R15, F8R16, F8R17, F8R18, 
F8R19, F8R20, F8R21, F8R22, F8R23, F8R24, F8R25}. 

The C++ codes are made in such a way that the overlappingΔZ ranges within± 2σ 
are discarded and unique ΔZ ranges have been retained. It automatically provides 
the standard deviation of the plot as the absolute value of 15% of the ΔZ. Thus
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Fig. 4 Memberships function for (a) ΔZ1 (b) ΔZ8

the specified linguistic variable will easily cover variation of measurement deltas. 
The above Gaussian variation of memberships of measurement deltas are chosen so 
that the small changes in measurement deltas can be incorporated and the results 
obtained are robust against the contamination. The effect of noise in the form of 
random deviation in the measurement deltas was introduced in the data pool. The 
effect can be mathematically expressed as,

ΔZnoisy = ΔZ(1 ± ε ∗ α) (6) 

where, ΔZnoisy is the changed measurement delta, α is the noise level say 10%, 15% 
etc. and ε is the random number between 0 to 1.
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4 Numerical Results 

4.1 Frequencies in Undamaged Condition 

The first eight natural frequencies for the beam is as shown in Table 3, 
Using the above reference frequencies, the percentage change in frequencies due 

to various damages was calculated, and the same was scaled up by multiplying a 
constant 100 so that small damage cases are also identified uniquely. This consti-
tutes eight measurement deltas. The changes in the dynamic response are obtained 
as expected. The first measurement delta is plotted against the changing damage 
parameter for damage at different locations in Fig. 5. 

Table 3 Natural frequencies in the translation (y direction) 

Natural frequency Calculated value (Hz) 

First 22.702 

Second 142.09 

Third 397.06 

Fourth 775.84 

Fifth 1277.8 

Sixth 1900.4 

Seventh 2640.4 

Eighth 3494.5 

Fig. 5 Damage parameter, D (%) versus measurement delta 1, ΔZ1 due to damage at various 
locations from the fixed end of the cantilever beam
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Table 4 Fuzzy rules 

Rule 
no. 

Measurement deltas Damage Location 

1 F1R14 F2R7 F3R6 F4R2 F5R12 F6R1 F7R7 F8R8 D1 0.1L 

2 F1R17 F2R11 F3R9 F4R1 F5R9 F6R3 F7R10 F8R11 D2 0.1L 

3 F1R19 F2R14 F3R10 F4R1 F5R12 F6R5 F7R12 F8R14 D3 0.1L 

4 F1R21 F2R16 F3R12 F4R4 F5R15 F6R6 F7R14 F8R17 D4 0.1L 

5 F1R22 F2R17 F3R13 F4R2 F5R17 F6R8 F7R16 F8R19 D5 0.1L 

6 F1R23 F2R19 F3R15 F4R3 F5R19 F6R11 F7R17 F8R20 D6 0.1L 

The plot shows that the value of measurement delta is higher corresponding to 
the presence of fault near the fixed end and negligible when fault is near to the free 
end. 

4.2 Fuzzy Logic Rule Base 

The measurement deltas were fuzzified into linguistic form, thus written as fuzzy 
rules. There are a total of unique forty rules, from which six rules for damage at 
location 0.1L are shown in Table 4 as follows, 

On the basis of the above rules, fuzzy logic inference system will be able to predict 
the damage cases. For example, the fuzzy logic inference system will interpret rule 
no. 1 as, 

If
ΔZ1 is F1R14 and ΔZ2 is F2R7 and ΔZ3 is F3R6 and ΔZ4 is F4R2 and ΔZ5 
is F5R12 and ΔZ6 is F6R1 and ΔZ7 is F7R7 and ΔZ8 is F8R8 
Then, 
Damage is D1 at location 0.1L 

4.3 Test with Noisy Data 

The presence of noise in the data may lead to the failure of the damage detection 
scheme. The FLIS is robust to these noises because of its spread of inputs in the 
form of Gaussian membership function. 40 rules stated above were tested with two 
different level of noises. The noises were introduced in the measurement deltas as 
stated in Eq. (6). The values of some results showing the prediction by FLIS are 
mentioned in Table 5. It shows the damage prediction by the Rule no. 1 and 13 with 
random noises for α = 15%.



832 A. Sharma et al.

Ta
bl
e 
5 

Pr
ed
ic
tio

n 
of
 d
am

ag
es
 b
y 
th
e 
FL

IS
 

R
ul
e 
no
.

M
ea
su
re
m
en
t d

el
ta
s

D
am

ag
e 
%

L
oc
at
io
n 

R
ul
e 
1

40
.5
3

14
.7
8

2.
52

−0
.9

26
.6
1

9.
47

15
.5
3

18
.6
0

10
0.
1L

 

C
on

ta
m
in
at
ed
 m

ea
su
re
m
en
ts

42
.6
2

12
.9
7

2.
54

−1
.0
1

28
.7
1

8.
61

13
.2
4

16
.4
3

10
0.
1L

 

41
.1
6

15
.8
4

2.
28

−0
.9
4

28
.0
7

8.
37

13
.6
6

19
.1
5

10
0.
1L

 

44
.2
9

15
.3
6

2.
35

−0
.8
8

23
.4
8

10
.4
2

15
.5
5

17
.5
1

10
0.
1L

 

45
.9
2

14
.5
6

2.
53

−0
.9
0

27
.9
6

10
.7
3

14
.0
1

18
.7
8

10
0.
1L

 

R
ul
e 
13

46
4.
30

11
8.
24

49
0.
38

17
0.
53

62
.6
1

58
6.
22

23
5.
20

4.
86

50
0.
3L

 

C
on

ta
m
in
at
ed
 m

ea
su
re
m
en
ts

43
0.
10

11
5.
03

44
1.
47

18
5.
91

66
.4
1

53
8.
69

23
1.
80

5.
30

50
.1
0

0.
3L

 

39
6.
07

13
5.
02

51
4.
85

18
7.
13

64
.5
4

65
6.
38

22
8.
35

4.
76

50
.0
0

0.
3L

 

40
0.
59

13
3.
82

52
6.
50

14
7.
43

67
.0
2

53
1.
26

21
4.
88

4.
56

50
.0
0

0.
3L

 

48
5.
71

11
3.
64

55
5.
02

16
2.
68

59
.5
8

66
9.
36

22
5.
39

5.
57

50
.2
0

0.
3L



Fuzzy Logic-Based Inference System … 833

Table 6 Success rate SR for 
different value of α α in % No. of rules checked No. of acceptable 

prediction 
SR (%) 

15 320 319 99.68 

20 320 319 99.68 

The noises are made in a random fashion and for each level of noises 320 trial 
have been performed. The success rate (SR) can be defined as the ratio of number of 
trial in which a rule is giving correct results to the total number of trials. The Table 
6 shows the success rate FLIS for two values of α. 

5 Conclusion 

A fuzzy logic rule base has been formulated for the prediction of location of damage, 
which is very useful for SHM. The procedure has been demonstrated by its application 
in a steel cantilever beam. It is observed that the fuzzy rules were capable of detection 
damages cases which were provided as the rules. 

To check the reliability of the prediction, random noises within 20% was intro-
duced in the measurement deltas and the working of fuzzy logic was checked. It 
is noted that the success rate of the prediction is as high as 99.68%. It shows the 
robustness of the fuzzy logic against uncertainty dues to material properties and 
modeling. More robustness can be achieved with more data and more number of 
damage location. 

C++ codes prepared are capable of handling large data, thus by creating FE model 
of the other structures with choosing appropriate damage parameter and measurement 
deltas, FLIS can be used for other structures also. 
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