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Abstract A variety of geophysical methods can be used to acquire measurements
to estimate a subsurface model. However, each method typically yields a different
model and it can be challenging to merge with those obtained using other methods.
We need to be able to combine the data from different geophysical methods
to obtain a more detailed and consistent subsurface model. In this chapter, we
present a scheme for cooperative inversion of seismic and gravity measurements.
This scheme performs iteratively full-waveform inversion (FWI) and gravimetric
inversion to minimize the misfit between the observed and synthetic data. We
explain how to use the adjoint-state method to compute the gradient needed for
FWI, the constrained conjugate gradient least-squares method to compute the
gravimetric inversion, and how to incorporate petrophysical relationships to merge
these methods in a cooperative scheme. The final system to be solved is large and
sparse, hence the implementation relies on a large sparse matrix storage and high-
performance computing. Finally, we show examples using the proposed inversion
scheme and compare the results with those of FWI. The cooperative scheme yields
more accurate models than those obtained from FWI with negligible additional
computational cost.
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1 Introduction

Exploration geophysicists have developed a variety of methods to probe the subsur-
face using measurements that can be gathered on the ground. The interpretation of
the data from these geophysical methods yields an assortment of subsurface models,
and the conundrum is to merge these models into a unified model that better reflects
the geometry and properties of the area of interest and fits all the available data.

Among the exploration-geophysics methods, the seismic method has been
particularly successful. This method was at the heart of the energy transition that
took place over one century ago [13] and continues to be widely used with an
ever increasing number of applications [47]. Over its long history, this method has
evolved together with the technology, becoming the basis for other state-of-the-art
methods such as Full Waveform Inversion (FWI) [11].

FWI [38, 39] is a powerful seismic-imaging method used to estimate a seismic-
velocity model such that the discrepancies between observed and synthetic seismo-
grams are minimized. This method has become a popular [44] and in the recent
years has improved, reducing the computational cost and enhancing the resolution
of seismic images.

FWI consists of three main steps performed iteratively. The first step is to do
the forward modeling starting from an initial model to compute the synthetic data,
and obtain the residual by subtracting the observed data. Several authors have used
the Finite Difference Method (FDM) [2, 43] for waveform modeling, however, the
Finite Element Method [26], the Spectral Element Method (SEM) [22] or other
methods can also be used. The second step is to back-propagate the residual wave
field to obtain the adjoint field. This step includes computing a cross-correlation
between the forward and the adjoint wavefield and adding over all the data points
to obtain a velocity gradient. This is the well-known adjoint method [32], which
reduces significantly the computational cost because only two forward modelings
are required in each iteration of the inversion process. In the final step, the velocity
model is updated by adding to the starting model the scaled velocity gradient using
a line-search method to determine the increment. If the observed and synthetic
data do not match, these steps are repeated until a stopping criterion is reached.
This methodology has provided good results for stratigraphic and predominantly
horizontal layered models. Despite the good results both in acoustic and elastic
media, density variations have largely been ignored [44].

The gravimetric data is directly linked to the density variations in the subsoil. The
observed data can be the gravity or the gravity gradient tensor on the surface [49].
As in FWI, the interpretation of this data relies on solving the forward problem.
Several forward modeling methods exist to compute gravity anomalies by solving
Poisson’s equation for the gravitational potential. Among the best-known methods
is the analytical solution for prismatic bodies [4, 29], however, solutions for other
geometries are readily available [16, 20, 37, 46]. In this work, we will use the
solution for uniform rectangular prisms to be congruent with the grid used in finite
differences for waveform modeling.
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Gravimetric inversion (GI) for density estimation is a linear problem. This
method is well known for estimating structures with horizontal changes of mass
distribution. The solution is straightforward using Gauss-Newton minimization [35]
to obtain a density model inverting the square matrix on a single step. This method
is widely used by geophysicists because of its fast convergence, however, it is
computationally expensive and unfeasible for large-scale problems. One alternative
to this problem is to use the Conjugate Gradient Least Squares (CGLS) method.
This method solves the inverse problem without the need to form and store the
square matrix [35].

Nowadays, the exploration of a region of interest for underground resources
requires the measurements of several geophysical datasets which need to be
interpreted for characterization. Joint inversion allows integrating these different
datasets into a consistent Earth-property model. Usually the strategy consists in
combining all the methods into one single inverse problem. Vozoff and Jupp [45]
were the first to perform joint inversion for different geophysical data sets, namely
resistivity and magnetotelluric data. Following this, numerous methodologies and
different geophysical data-inversion schemes emerged for the reduction of non-
uniqueness and ambiguity in the interpretation of the Earth model. Depending on
the constraints in the optimization problem, the joint inversion schemes can be
classified into petrophysical, structural, or statistical. Petrophysical joint inversion
is based on empirical relationships of the model parameters [23, 27, 48], structural
joint inversion seeks to minimize the cross product of the gradient of each model
parameter [14, 15] and statistical joint inversion tries to solve the problem attaching
to each grid cell of the model a mean point (fuzzy c-mean) depending on the number
of c-means [31, 33].

The cooperative inversion of seismic and gravimetric data has attracted sig-
nificant attention since these methods complement each other and both theories
depend on the density. For example, Roy et al. [34] performed first-arrival travel
time inversion jointly with gravity data using very-fast simulated annealing. Other
groups have done further work using seismic and gravity data [9, 24, 25, 41]. In
particular, Blom et al. [6] stressed the importance of density in geological processes
and studied the role of density using seismic and gravimetric data, concluding that
density estimation requires a strong a priori model to be able to determine it as an
independent parameter.

In this work, we present a novel method to obtain a unified inverted model using
FWI and GI in a sequential and cooperative scheme. This chapter is divided into five
sections, Sect. 1 being the introduction. Section 2 presents the forward modeling on
a geophysical framework and is divided in two parts for gravimetric and seismic data
modeling. For gravity, we discuss Newton’s law of universal gravitation and present
the forward modeling based on the response of a rectangular body. For seismic
modeling, we give a brief introduction to elastodynamic theory and the forward
modeling for elastic and acoustic media. Section 3 discusses the inverse problem
and follows the same organization as Chap. 2 for each geophysical method. We first
present the general basis on inverse theory. Then we discuss the separate inversion
for eachmethod and present the the sequential inversion. The results are presented in
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Sect. 4 for two synthetic models using using conventional and cooperative inversion.
The conclusions are included in Sect. 5.

2 Forward Modeling of Geophysical Data

This section presents the theoretical framework for the gravimetric and seismic
geophysical methods. For the gravity data, we present the solution of Newton’s Law
of gravitation for a parallelepiped of constant density. For seismic data, we discuss
the wave equations for elastic and acoustic media and show how to solve them using
finite-difference methods.

2.1 Gravimetric Forward Modeling

Newton’s law of gravitation [5] provides the gravitational potential φ at an
observation point r due to a body on Earth with density distribution ρ (Fig. 1) as

φ(r) =
∫

�

γ
ρ(r′)

‖r − r′‖dV, (1)

where γ = 6.672 × 10−11 m3kg−1s−2 is the universal gravitation constant, r′ is
the position for each differential element of density over the volume � and ‖.‖
denotes the vector norm. The gravity acceleration field is given by the gradient of

Fig. 1 Observation vector r and position vector r′ for each differential volume element dr′ for a
continuous of density ρ in Cartesian coordinates system
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the potential,

g(r) = ∇φ(r). (2)

Consider an arbitrary continuous body of density ρ in Cartesian coordinates (Fig. 1),
the components of the gravity acceleration are given by

gx(x, y, z) = ∂φ

∂x
= γ

∫
�

ρ
x − x ′

[
(x − x ′)2 + (y − y ′)2 + (z − z′)2

]3/2 dx ′dy ′dz′,

(3)

gy(x, y, z) = ∂φ

∂y
= γ

∫
�

ρ
y − y ′

[
(x − x ′)2 + (y − y ′)2 + (z − z′)2

]3/2 dx ′dy ′dz′,

(4)

gz(x, y, z) = ∂φ

∂z
= γ

∫
�

ρ
z − z′

[
(x − x ′)2 + (y − y ′)2 + (z − z′)2

]3/2 dx ′dy ′dz′.

(5)

In this work, we consider only the vertical component of the gravity acceleration
gz, as usually done in geophysics.

2.2 Gravimetric Forward Modeling

In order to compute the gravimetric response at any observation point on the
surface, we need a discretization of the Earth model. Given that Eq. 5 is valid for
a continuous body of arbitrary shape and density distribution and taking advantage
of the superposition theorem for Newton’s law of gravitation, the Earth model can
be discretized as a set of rectangular prism of constant density (Fig. 2). For each
prism, the analytic solution of Eq. 5 is given by Banerjee and Das Gupta [3]

gz =

⎧⎪⎨
⎪⎩γ

[
z tan−1

(
xy

z|�r|
)

−x ln (y + |�r|)−y ln (x + |�r|)
]∣∣∣∣

�x ′
2

�x ′
1

∣∣∣∣∣
�y ′

2

�y ′
1

∣∣∣∣∣∣
�z′

2

�z′
1

⎫⎪⎬
⎪⎭ ρ,

(6)

where the prime coordinates are the corners of the prism, |�r| = √
x2 + y2 + z2,

�x ′
k = x−x ′

k,�y ′
k = y−y ′

k and�z′ = z−z′
k k = 1, 2. This expression corresponds

to the gravity measurement at the point (x, y, z) due to the prism and the part within
the braces is the gravity kernel.
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Fig. 2 Rectangular prism of constant density ρ. The coordinates xi , yi , zi are the corners of the
prism for i = 1, 2

A typical data acquisition is done on the surface for Ns observation points
(gravimetric stations), hence gz = [

gz1 , gz2 , · · · , gzNs

]T ∈ R
Ns . Considering a

model parametrization of M = nx × ny × nz prisms where nx, ny and nz are
the number of prisms for x, y and z directions respectively, a model vector can
be arranged as mρ = [ρ1, ρ2, · · · , ρM ]T ∈ R

M . Given this vector notation, the
corresponding matrix for the kernel A in index notation is

Aij =γ

[
zi tan

−1
(

xiyi

zi |�ri |
)

−xi ln (yi + |�ri |)−yi ln (xi + |�ri |)
]∣∣∣∣

�x′
2j

�x′
1j

∣∣∣∣∣∣
�y′

2j

�y′
1j

∣∣∣∣∣∣∣∣

�z′
2j

�z′
1j

,

(7)

where A ∈ R
N×M , thus the gravity data vector can be represented in a matrix form

as

gz = Amρ, (8)

corresponding to the forward modeling of the gravimetric data. This is a linear
problem with respect to density.
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2.3 Waveform Forward Modeling

An elastic body is governed by the generalized Hooke’s law. For small deformations
and ignoring attenuation, the stress and strain are directly proportional as

τ = c : ε, (9)

where τ is the stress tensor, ε the strain tensor, c represents the fourth-order
stiffness tensor containing the constants that characterize the elastic properties of
the solid, and : is the double dot product for tensors. In index notation, Eq. 9 can be
represented as

τij = cijklεkl . (10)

for i, j, k, l = 1, 2, 3. Taking into consideration that the strain is proportional to the
gradient of the displacement [1], ε = 1

2

[∇u + (∇u)T
]
, Eq. 10 can be written as

τij = cijkl
∂uk

∂xl

, (11)

where uk = {
ux(x, t), uy(x, t), uz(x, t)

}
is the displacement vector. Following [1]

and assuming that the elastic body is subject to Newton’s second law (F = ma)
normalized over a volume, an equation relating displacement and stresses can be
obtained

ρ
∂2ui

∂t2
= ∂τij

∂xj

+ fi, in �, (12)

where � is the spatial domain, fi represent an external force per unit volume,
ρ is the density and the acceleration is written as the second derivative of the
displacement ui . The elastodynamic wave equation is obtained combining Eqs. 11
and 12, to obtain

ρ
∂2ui

∂t2
− ∂

∂xj

[
cijkl

∂uk(x, t)

∂xl

]
= fi, (13)

valid for heterogeneous, elastic and anisotropic media, ignoring attenuation or
viscoelastic effects. In this work, only isotropic media will be considered. In this
case, the stiffness tensor is reduced to

cijkl = λδij δkl + μ(δikδjl + δilδjk), (14)

where λ and μ are the Lamè parameters and δij is the Kronecker delta function.
Substituting Eq. 14 into 13 and reducing indexes, the elastic wave equation for
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isotropic media is obtained as follows

ρ
∂2ui

∂t2
= ∂

∂xi

(
λ
∂uj

∂xj

)
+ ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ fi. (15)

The media parameters of the wave equation were reduced to 3: Lamè’s first
parameter λ, the shear modulus μ, and the density ρ. There are other ways to write
Eq. 15 depending on the choice of the elastic parameters, for example, the bulk
modulus κ = λ + 2

3μ is commonly used instead of λ. In general, these parameters

can be expressed in terms of the P-wave velocity, VP =
√

λ+2μ
ρ

, and the S-wave

velocity, VS =
√

μ
ρ
, which will be the parameters estimated on the inverse problem.

The elastodynamic wave equation can be simplified considering the wave
propagation through acoustic media (fluids, melted bodies, liquid bodies) where
there are no shear forces and therefore μ = 0. Substituting this in Eq. 13 and
defining P = λ∇ · u, we obtain

1

λ

∂2P(x, t)
∂t2

− ∇ ·
[
1

ρ
∇P(x, t)

]
= f̃ (x, t), (16)

where the scalar field P is the pressure propagated in the media due to an external
force f̃ . For constant density, this expression is simplified to the well-know acoustic
wave equation

1

V 2
P

∂2P(x, t)
∂t2

− ∇2P(x, t) = f̃ (x, t), (17)

where V 2
P = λ

ρ
is the P-wave velocity. Let ∂� be the boundary of � and n̂ be

the outward unit normal vector defined in the boundary. The boundary can be
decomposed as ∂� = 
D ∪
N , 
D ∩
N = ∅, where 
D and 
N are the boundaries
where Dirichlet and Neumann conditions are defined. The boundary conditions for
Eq. 17 are given by

P = PD on 
D, (18)

∇P · n̂ = PN on 
N. (19)

Despite the fact that this equation is valid for acoustic media, it is often used for
forward modeling in elastic media, FWI and RTM since it is computationally less
expensive than the elastodynamic wave equation and, more importantly, the results
are acceptable for many applications.

In order obtain the synthetic seismograms for displacement, velocity or pressure,
Eqs. 15 and 17 need to be solved under some initial conditions. Among the most
used techniques for wave propagation, we have FDM for acoustic [2] or elastic
media [21], SEM for acoustic [8] or elastic media [22] and Finite Difference using
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Staggered Grids (SGFD) for elastic media [43]. In this work, the acoustic wave
equation will be solved using FDM and the elastic wave equation using SGFD.

Consider the following standard-grid discretization for the space–time domain

tn = n�t, n = 0, 1, 2, ..., nt , (20)

xi = x0 + i�x, i = 1, 2, 3, ..., nx, (21)

yj = y0 + j�y, j = 1, 2, 3, ..., ny, (22)

zk = z0 + k�z, k = 1, 2, 3, ..., nz, (23)

Pn
i,j,k = P(xi, yj , zk, tn), (24)

where nx, ny and nz are the total number of grid points in each direction, nt is the
number of time steps, �x, �y, �z and �t are the spatial and time increments, and
x0, y0 and z0 are the coordinates of the reference point. First, let us consider the
acoustic problem. The discrete form for the spatial and time derivatives is given by
Alford et al. [2]

Pn+1
i,j,k = 2Pn

i,j,k − Pn−1
i,j,k + V 2

P �t2
(
D2

xP n
i,j,k + D2

yP n
i,j,k + D2

zP n
i,j,k

)
, (25)

where D2
x , D2

y and D2
z are the discrete operators for the second derivative. For

example, the second-order discrete operator for the second derivative centered at
x is given by

(
∂2P

∂x2

)
n

= Pn
i+1,j,k − 2Pn

i,j,k + Pn
i−1,j,k

�x2 + O(�x2) (26)

with O(�x2) the truncation error. For this order, only 3 grid points in time are
required to compute the second derivative of the pressure. Since the resolution
depends on the parametrization of the velocity model in space, it is preferable to use
more grid points for x, y and z, as seen in Table 1 for second derivatives for different
orders of precision. The visual representation of the reference and neighbouring
nodes for the discretization of the acoustic wave equation in 2D is shown in Fig. 3.

The numerical simulation of Eq. 26 involves the recursive computation of the
pressure P over the time steps nt . However, this recursive computation can
present incremental error over time because of the truncation of the approximated
solution or because of the machine rounding error. In order to set the discretization
parameters such that the errors are bounded, a Von Neumann analysis is required.
Based on the work of Alford et al. [2], a stability condition can be obtained
by substituting a plane-wave solution into Eq. 26 and performing some standard
algebraic simplifications, to obtain

�t ≤ �x

vMAX
√

nD

(
M∑
i=1

am

)−1/2

, (27)
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Table 1 Central differences coefficients for second order derivative for accuracies of 2, 4, 6 and
8th order with uniform grid spacing

Approximation at x = 0

central differences

Order of

accuracy↓ −4 −3 −2 −1 0 1 2 3 4

2 1 −2 1

4 − 1
12

4
3 − 5

2
4
3 − 1

12

6 1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1
90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

Fig. 3 Visual representation
of a standard grid
discretization for a 2D
acoustic media for the
pressure field P

where vMAX is the maximum value of the velocity model,
∑M

i=1 am is the sum over
the coefficients of Table 1 for each order of precision excluding the central point,
and nD = 1, 2, 3 is the dimension (1D, 2D, or 3D). This condition is very important
for the inverse problem; given that it depends on the maximum velocity, the velocity
model obtained has to be inspected in every iteration for stability.

In order to simulate the wave propagation in time a source has to be applied at
any point of the space. In this example and in all the following results for this work,
a Ricker wavelet is used, given by

w(t) = 2(πν)2
{
1 − 2 [πν (t − t0)]2

}
e−[πν(t−t0)]2 (28)

where ν is the peak frequency of the pulse and t0 is the time shift. The Ricker wavelet
is also called the Mexican-hat wavelet because of its distinctive shape (see Fig. 4 for
t0 = 0.0 and ν = [2, 5, 10, 15, 25] Hz). For low frequencies the wavelet becomes
wider and vice versa for high frequencies.

Concerning wave propagation in elastic media, FDM with a standard grid has
grid-dispersion problems when there are significant contrast of properties [10],
therefore, the forward modeling will be performed using Staggered Grid Finite
Differences (SGFD) [43]. The isotropic wave equation can be expressed as the
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Fig. 4 Ricker wavelet function for peak frequencies 2,5,10,15 and 25 Hz. The function is centered
at t0 = 0

following set of equations

ρ∂ttux = ∂xτxx + ∂yτxy + ∂zτxz + fx, (29)

ρ∂ttuy = ∂xτxy + ∂yτyy + ∂zτyz + fy, (30)

ρ∂ttuz = ∂xτxz + ∂yτyz + ∂zτzz + fz, (31)

τxx = (λ + 2μ)∂xux + λ(∂yuy + ∂zuz), (32)

τyy = (λ + 2μ)∂yuy + λ(∂xux + ∂zuz), (33)

τzz = (λ + 2μ)∂zuz + λ(∂xux + ∂yuy), (34)

τxy = μ(∂yux + ∂xuy), (35)

τxz = μ(∂zux + ∂xuz), (36)

τyz = μ(∂zuy + ∂yuz). (37)

The discretization of the elastodynamic wave equation in the displacement-stress
formulation is given by Virieux [43]

[ux ]
n+1
i+1/2,j,k = 2[ux]ni+1/2,j,k − [ux]n−1

i+1/2,j,k (38)

+ �t2
[
bx(Dxτxx + Dyτxy + Dzτxz + fx)

]n
i+1/2,j,k ,
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[
uy

]n+1
i,j+1/2,k = 2[uy]ni,j+1/2,k − [uy]n−1

i,j+1/2,k (39)

+ �t2
[
by(Dxτxy + Dyτyy + Dzτyz + fy)

]n
i,j+1/2,k ,

[uz]
n+1
i,j,k+1/2 = 2[uz]ni,j,k+1/2 − [uz]n−1

i,j,k+1/2 (40)

+ �t2
[
bz(Dxτxz + Dyτyz + Dzτzz + fz)

]n
i,j,k+1/2 ,

for the displacement calculated on midpoints of the grid. This time Dx , Dy and Dz

are the discrete operators for the first derivative in a staggered grid and b = 1/ρ.
For stresses

[τxx]ni,j,k = [
(λ + 2μ)Dxux + λ(Dyuy + Dzuz)

]n
i,j,k

, (41)

[τyy]ni,j,k = [
(λ + 2μ)Dyuy + λ(Dxux + Dzuz)

]n
i,j,k

, (42)

[τzz]ni,j,k = [
(λ + 2μ)Dzuz + λ(Dxux + Dyuy)

]n
i,j,k

, (43)

[τxy]ni+1/2,j+1/2,k = [
μxy(Dyuz + Dxuy)

]n
i+1/2,j+1/2,k . (44)

[τxz]ni+1/2,j,k+1/2 = [μxz(Dzux + Dxuz)]ni+1/2,j,k+1/2 . (45)

[τyz]ni,j+1/2,k+1/2 = [
μyz(Dzuy + Dyuz)

]n
i,j+1/2,k+1/2 . (46)

The simplification from 3D to 2D media is straightforward ignoring the y-depen-
dent terms. The finite difference coefficients for staggered grid are shown in the
Table 2. Figure 5 shows a visual representation of a staggered grid.

Table 2 Central differences coefficients for first order derivatives for accuracies of 2, 4, 6 and 8th
order with uniform grid spacing corresponding to staggered grid

Approximation at x = 0

x−coordinates at nodes

Order of

accuracy↓ − 7
2 − 5

2 − 3
2 − 1

2
1
2

3
2

5
2

7
2

2 −1 1

4 1
24 − 9

8
9
8 − 1

24

6 − 3
640

25
384 − 75

64
75
64 − 25

384
3
640

8 5
7168 − 49

5120
245
3072 − 1225

1024
1225
1024 − 245

3072
49
5120 − 5

7168
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Fig. 5 Visual representation
of a staggered grid
discretization for a 2D elastic
media in terms of
displacements (ux and uz)
stresses (τxx, τzz and τxz)

Fig. 6 Illustration of the
concept of forward and the
inverse problems

3 Inverse Theory for Geophysical Data

This section presents the basic concepts of inverse theory, providing the theoretical
framework for GI and FWI for heterogeneous acoustic or elastic media, with an
emphasis on the adjoint-state method for FWI. Starting from an Earth model, the
forward problem computes theoretical data which will be compared to real data
observations. Conversely, the inverse problem starts from the data and aims to
compute an Earth model. A simple illustration of this statement is shown in Fig. 6.
In general, the inverse problem is computationally more intensive, requires more
sophisticated techniques and the interpretation of the results is more involved due
to insufficient, inaccurate, noisy or inconsistent data [19]. In order to solve inverse
problems, the following elements are essential in its formulation (see Table 3)

• Data,
• Model parameters,
• Forward problem,
• Cost/Objective/Error/Misfit function, and
• Optimization method.

Let us define a general formulation for inverse theory. The function (F) that
involves such elements needs to be stated. The objective function (also known as
cost, error or misfit function) compares the differences between the observed and
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Table 3 Elements of inverse theory, where N is the number of data points and M the number of
model parameters. In general N �= M

Data vector dobs = [d1 d2 d3 · · ·dN ]T
Model vector m = [m1 m2 m3 · · ·mM ]T
Forward modeling dcal = F(m)

Objective function Q = Q(dobs,dcal|m)

synthetic data vectors as follows

Q(m) = ‖d − F(m)‖p , (47)

where ‖·‖p is the Lp norm and Q the objective function. A general form of the Lp

norm [28] is defined as

‖v‖ :=
[

N∑
i=1

|vi |p
]1/p

∀ v ∈ R
n, (48)

whereN is the number of data points and p determines the norm order. Some typical
norms are

L1 : ‖d − F(m)‖1 :=
N∑

i=1

|di − Fi(m)| (49)

L2 : ‖d − F(m)‖2 :=
[

N∑
i=1

|di − Fi(m)|2
]1/2

(50)

L∞ : ‖d − F(m)‖∞ := max
i

|di − Fi(m)| . (51)

The L2 norm is used more often in geophysical applications, however, the L1
norm is also largely studied despite the fact that it has a discontinuity in the
derivative. When using the L2 norm, it is often more practical to work with the
square of the objective function, Q = Q2. For illustration purposes, we show in
Fig. 7 a comparison of a straight-line fit using the L1, L2 and L∞ norms. Notice
that the norms for higher values of p are more biased towards outliers.
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Fig. 7 Lp norm for some values of p corresponding to the fit of a straight line y = F(x) = ax+b

3.1 Gravimetric Inversion

The objective function for density estimation due to measurements of the vertical
component of the acceleration (gobsz ) using the L2 norm is given by

Q(mρ) =
Ns∑
i=1

∣∣∣∣∣
∣∣∣∣∣
gobszi

− gcalzi

σgzi

∣∣∣∣∣
∣∣∣∣∣
2

+ α2
reg||Dmρ ||2, (52)

where αreg is the regularization parameter,D is the discrete operator for the gradient
and σgzi

is the standard deviation of the ith data point. Solving the least-squares
problem from Eq. 52 using Gauss-Newton method [35] an estimated modelmρ can
be obtained as

mρ =
[
AT C−1

dd A + αregDT D
]−1

AT C−1
dd g

obs
z , (53)

whereC−1
dd is the diagonal covariancematrix andA is given in equation7. This least-

squares implementation requires to store and invert a square matrix with dimensions
depending on the discretization of the model, namely, M × M . We need a fine
discretization of the model to achieve a good resolution for the seismic inversion
and therefore the joint inversion, nevertheless, we may encounter storage problems
in a straight-forward implementation of Eq. 53.

An alternative to solving Eq. 53 is the use of the Conjugate Gradient Least
Squares (CGLS) method. This method minimizes the objective function of Eq. 52
without the need to form and store the square matrix from Eq. 53 [35] using a
conjugate gradient technique. This method requires as an input G and d to find a
solution, in this case, the density model (mρ) for Gmρ = d, these matrices are
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given by

G =
[
C−1/2

dd A
αregD

]
(54)

d =
[
C−1/2

dd gobsz

0

]
, (55)

in this case, the matrix G will be large and sparse due to the discrete operations for
the Tikhonov regularization, the model vectormρ is not modified.

3.2 Acoustic Full Waveform Inversion

We now proceed to describe the methodology of Acoustic Full Waveform Inver-
sion (AFWI). The least-squares functional for minimizing the misfit between the
observed and the synthetic pressure due to a single shot is given by the L2 norm of
the residual

Q = 1

2

∑
r

∫ T

0

[
P obs

r − P cal
r

]2
dt, (56)

where P obs
r is the observed pressure and P cal

r is the synthetic pressure computed
using Eq. 17. T is the total recording time and r denotes the index for the receiver.
Implicitly the P cal

r depends on the model parameter m as P cal
r = P cal

r (m). This
model needs to be found in such a way Eq. 56 is minimized. Taking the derivative
with respect to a model perturbation

∂Q = −
∑

r

∫ T

0

∫ [
P obs

r − P cal
r

]
δP (x, t)dt, (57)

where δP is a perturbation of P aiding to compute the Frèchet derivative, which
represents the sensibility for each data point and for each model parameter. This
derivative is computed by making a small perturbation in each model parameter
and performing a forward modeling for each data point, therefore M × N forward
modelings are needed to obtain the derivative, which is impractical to implement
even with the advances in computational resources, therefore, alternative methods
for minimizing the problem are required.

A more efficient way to minimize Eq. 56 relies on the use of the adjoint state
method for the acoustic waveform. Let us minimize the augmented misfit function
subject to the wave equation multiplied by an arbitrary, well behaved and derivable
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Lagrange multiplier � := �(x, t) remaining to be defined [32] then

Q = 1

2

∑
r

∫ T

0

∫
�

[
P obs

r − P cal
r

]2
δ(x − xr ) d3x dt (58)

−
∫ T

0

∫
�

�

[
1

V 2
P

∂2P

∂t2
− ∇2P − f

]2

d3x dt,

notice that the last term of Eq. 58 is zero, corresponding to the wave equation acting
as constriction, therefore the problem is consistent. Taking the total derivative

δQ = −
∑

r

∫ T

0

∫
�

[
P obs

r − P cal
r

]
δ(x − xr )δPd3xdt

−
∫ T

0

∫
�

�

[
− 2

V 3
P

∂2P

∂t2

]
d3x dt

−
∫ T

0

∫
�

�

[
1

V 2
P

∂2δP

∂t2
− ∇2δP

]
d3x dt,

(59)

where the source is considered as independent of the model parameter perturbation.
Notice that the perturbation δP appears on the first and last term. In the last term,

the linear operator of the wave equation (L = 1
V 2

P

∂2

∂t2
−∇2) is acting over δP which

is a computation that we are looking to avoid. For this, let us first integrate by parts
two times for t as

∫ T

0
�

[
∂2δP

∂t2

]
dt =

(
�

∂δP

∂t

)∣∣∣∣
T

0
−

(
∂�

∂t
δP

)∣∣∣∣
T

0
+

∫ T

0

[
∂2�

∂t2

]
δP dt .

(60)

Setting �(x, t = T ) = ∂�
∂t

(x, t = T ) = 0, yields

∫ T

0
�

[
∂2δP

∂t2

]
dt =

∫ T

0

[
∂2�

∂t2

]
δPdt, (61)

this means that the second derivative is a self-adjoint operator (L = L∗). For the
Laplacian operator ∇ the same procedure can be done, setting the correct boundary
conditions in space. Consider the last term of Eq. 59,

∫
�

�
[
∇2δP

]
d3x. (62)



146 R. U. Silva-Ávalos et al.

Taking into consideration the identity ψ∇2φ − φ∇2ψ = ∇ · (ψ∇φ − φ∇ψ),
then
∫

�

�
[
∇2δP

]
d3x =

∫
�

δP
[
∇2�

]
d3x +

∫
�

∇ · [�∇δP − δP∇�] d3x. (63)

Applying Gauss theorem on the last term of the equation

∫
�

∇ · [�∇δP − δP∇�] d3x =
∫

∂�

[�∇δP − δP∇�] · n̂dS, (64)

where the integral was changed from volumetric to surface. In order to cancel the
boundary integral in the above equation, we set the following boundary conditions
for δP and � [12]

δP = 0, on 
D, ∇δP · n̂ = 0, on 
N, (65)

and

� = 0, on 
D, ∇� · n̂ = 0, on 
N. (66)

Therefore,

∫
∂�

[�∇δP − δP∇�] · n̂dS = 0. (67)

In this way, Eq. 59 can be rewritten as

δQ = −
∑

r

∫ T

0

∫
�

[
P obs

r − P cal
r

]
δ(x − xr )δP d3x dt (68)

−
∫ T

0

∫
�

�

[
− 2

V 3
P

∂2P

∂t2

]
d3x dt

−
∫ T

0

∫
�

[
1

V 2
P

∂2�

∂t2
− ∇2�

]
δP d3x dt,

= −
∫ T

0

∫
�

{
1

V 2
P

∂2�

∂t2
− ∇2� +

∑
r

[
P obs

s − P cal
s

]
δ(x − xr)

}
δP d3x dt

−
∫ T

0

∫
�

�

[
− 2

V 3
P

∂2P

∂t2

]
d3x dt . (69)
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Let us define the Lagrange multiplier � in such a way that the first term of Eq. 69 is
canceled. Then

1

V 2
P

∂2�

∂t2
− ∇2� = −

∑
r

[
P obs

r − P cal
r

]
δ(x − xr ), (70)

which corresponds to another wave equation using the residuals at the seismogram
locations as a source. The importance of this result relies on the computation of the
gradient without the need to compute the perturbation of P and therefore Frèchet
derivatives, instead, a single additional forward modeling needs to be performed
using the same wave propagation method but with the residuals as a source. Finally,
to give more meaning to the Lagrange multiplier let us define �(x, t) ≡ P †(x, T −
t) , thus the gradient

∂V = 2

V 3
P

∫ T

0
P †(x, T − t)

∂2P(x, t)
∂t2

dt, (71)

which is a convolution of the pressure and adjoint wave fields. Using multiple
seismic sources requires a summation as follows

∂V = 2

V 3
P

ns∑
s

∫ T

0
P †(x, T − t)

∂2P(x, t)
∂t2

dt . (72)

where ns is the total number of shots. Notice that the pressure and adjoint wavefields
are computed in opposite directions for the time stepping: P(x, t) is going forward
in time and P †(x, T − t) is going backward in time.

3.3 Gradient Based Optimization

With the velocity gradient, we can update the velocity model minimizing the
cost of 56, but first let us illustrate how such gradient is constructed. Consider
the modified Marmousi model and a starting 2D velocity model of Fig. 8. This
model involves slightly folded layers similar to a bookshelf sliding fault system
and a discordance event at the bottom. The velocity range was shortened to 1500–
3500 km/s covering a depth of 1000 m and a horizontal distance of 2000 m on a grid
of nx = 200 and nz = 100 grid nodes. The starting model is a smoothed version
(Gaussian smoothing) of the true velocity model and the water layer is considered to
be known in both models. Table 4 summarizes the parameters used for the forward
modeling and the construction of the gradient for this example. The parameters
satisfy the stability condition of Eq. 27 for a 10th order FDM in 2D media. The
receivers and sources locations are equally spaced along the surface, 10m spacing
between seismograms and 20m spacing for sources (shots). For this example, the
seismic traces are shown in Fig. 9 for some shots. This data acquisition correspond
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Fig. 8 Modified Marmousi velocity model (left) and starting velocity model (right). The velocity
was shortened to 3500 m/s

Table 4 Parameters used for
the construction of the
gradient for the Marmousi
model

Parameter Value Unit Description

xMIN 0 m Starting horizontal distance

xMAX 2000 m Final horizontal distance

zMIN 0 m Starting depth

zMAX 1000 m Final depth

nx 200 Grid nodes for x

nz 100 Grid nodes for z

T 2 s Recording time

nt 1500 Grid nodes for t

vMAX 3500 m/s Maximum velocity

f 15 Hz Ricket wavelet’s peak frequency

nr 200 Number of receivers

ns 100 Number of sources

Fig. 9 Synthetic seismic data acquisition for the Marmousi model example at shots number 20,
40, 60, 80 and 100 corresponding to 200 receivers equally spaced along the surface
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Fig. 10 Velocity gradient for several source locations xs = 0, 500, 1000, 1500 and 2000 using
the whole stream of receivers (200). The white star represents the different source positions. The
bottom right gradient consist on the addition of all gradients

to the observed data vector Pobs ∈ R
N , N = ntnrns , which in this case is a vector

of 1500× 200 × 100 = 30 Million data elements.
Let us consider several source positions at the surface, xs = 0, 500, 1000, 1500

and 2000 m for a depth z = 0. The gradient for each source as well as the gradient
stacked for all sources (∂V = ∑

∂Vi) is shown at Fig. 10. Each gradient exhibits
more sensibility beneath its position at the surface, even though the surface is fully
covered with receivers. While the image is not clear for each one, the addition of all
gradients into a single one produces a velocity gradient with fine resolution.

Computing the gradient is readily parallelizable. We implemented this part of
our problem using Message Passing Interface (MPI) in Fortran 90 and compute
the gradient for each source in parallel in a computer cluster.1 Taking advantage

1 We used the cluster Lamb of the supercomputing lab at the Specialized Labs System of the Earth
Sciences Division of CICESE. Each node is equipped with 20 cores and we used for all examples
5 nodes, for a total of 5×20=100 MPI cores, equal to the number of sources.
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Fig. 11 Illustration of a cost
function as a function of the
steps αi . An ideal step size
would be the one leading
closer to the global minimum

of the fact that each source-gradient computation is independent of the others, we
compute each gradient simultaneously following Eq. 71, then Eq. 72 is obtained
by combining the values from all processes into a main MPI core using an
MPI_ALLREDUCE operation.

The total gradient (Fig. 10 bottom right) resembles the footprint of the layers for
the Marmousi model and it is similar to a typical seismic migration. This velocity
model is added to the starting model using a scalar factor that needs to be carefully
chosen. The gradient-based optimization minimizes Eq. 56 by updating the velocity
model iteratively as follows

Vn+1 = Vn + αn∂V, (73)

where the scalar αn is the step length which represents how much the current
model Vn moves along the direction ∂V at the n-th iteration. The efficiency of the
minimization depends on the choice of the step αn which can lead to local or global
minima as illustrated in Fig. 11.

There are several algorithms for the search of the optimal step length αn [30].
For this work we used a step line search method using interval reduction. Consider
the range of values of steps α1 < α2 < α3 < · · · < αk with k the number of test
points with their respective costs cost1, cost2, cost3, · · · , costk . In this method, we
select the value of α which corresponds to the minimum cost. If the minimum cost
corresponds to the first test value then for the next iteration a zoom in is performed
for the test points [α1, α2, α3, · · · , αk] × zoom with zoom < 1, on the other hand
if the optimal step correspond to the final point test a zoom out is performed as

[α1, α2, α3, · · · , αk]/zoom. A typical value of zoom is
√
5−1
2 corresponding to the

reciprocal of the Golden ratio. The evaluation of the cost function for k different step
sizes is computationally expensive, however, it is compensated by the effectiveness
due to the optimal choice of αn. The AFWI iterative scheme combining all the
components is shown in algorithm 1.

Continuing with the example from Fig. 8 and Table 4, we show in Fig. 12 the
inversion results at some of the iterations. For this example we used 10 test points
in the step line search method (k = 10). In the first 10 iterations the stratigraphic
features are recovered. Thereafter, the velocity values at each point of the model are
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Fig. 12 Velocity Marmousi
model after some iterations of
FWI. The true velocity model
is at the bottom-right

steadily recovered, with more resolution on the central part of the survey. The final
velocity model after 228 iterations (Fig. 12 bottom left) closely resembles the true
model.

To further illustrate how AFWI works, we show in Fig. 13 the seismogram from
the station at (1000, 0) m with 5% of Gaussian noise and the seismograms computed
using the starting and final models. Notice that the seismogram from the final model
closely follows the observed seismogram.

A more accurate indicator for the quality of the FWI iterative process is the
analysis of the objective function for each iteration (Fig. 14). The objective function
for this example is reduced faster at early iterations and becomes slower for later
iterations, because the stratigraphic information has been recovered first and, at the
end of the process, only the velocity value is getting recovered slowly.

Algorithm 1: Typical AFWI process

Data: Observed pressure P obs[nt , nr , ns ], starting velocity model V
Input : FWI iterations niter .
for iiter = 1 : niter do

Computes forward modeling and adjoint field;
Performs step-line search for α;
Update velocity model Viter+1 = Viter + α∂V

Output: Velocity model V , data residual R[nt , nr , ns ]
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Fig. 13 Seismogram comparison for starting (red) and final (blue) synthetic data with respect to
the observed data corresponding to a single source and a single receiver for the Marmousi model
FWI example

Fig. 14 Objective function (cost, misfit) reduction for 228 iterations of FWI for the Marmousi
model example
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3.4 Elastic Full Waveform Inversion

The tools and algorithm applied to the acoustic case can be used for Elastic FWI
(EFWI) by replacing the forward modeling. The objective function for EFWI is
given by

Q(m) = 1

2

∑
s

∑
r

∫ T

0
||uobsr,s − ucalr,s ||2 dt, (74)

where uobsr,s is the observed displacement and ucalr,s is the synthetic displacement
computed using the elastodynamic wave equation. T is the total time of recording,
r is the receiver index and s is the source index. The displacements can be ux ,
uy and/or uz (or velocities vx , vy , vz) for a model m which depends on the Lamè
parameters and density (or velocities VP and VS).

As in the acoustic case, the direct minimization of Eq. 74 involves the com-
putation of the perturbations, which increase even more the computational cost
for elastic media because the displacement (or velocity) fields are vectors. The
same procedure as AFWI can be pursued using the adjoint-state method. The
mathematical deduction of the gradients will not be detailed, however, notice that
the second-order derivatives are self-adjoint operators. See [42] for further details
of the adjoint method for elastic media.

For an isotropic media we require the gradients for density (δρ), shear modulus
(δμ) and bulks modulus (δκ ), given by Tromp et al. [42]

δρ(x) = −
∑

r

∫ T

0
ρ(x)u†(x, T − t) · ∂2t u(x, t) dt (75)

δμ(x) = −
∑

r

∫ T

0
2μ(x)D†(x, T − t) : D(x, t) dt (76)

δκ(x) = −
∑

r

∫ T

0
κ(x)[∇ · u†(x, T − t)][∇ · u(x, t)] dt (77)

where : is a double dot product operator between tensors, and D denotes the
deviatoric strain, defined as

D = 1

2

[
∇u + (∇u)T

]
− 1

3
(∇ · u)I. (78)

Notice that these computations involve more complex operations than in the
acoustic case. The adjoint deviatoric strain D† is computed using the equation for
D but using u†. The elastic gradient can be expressed in terms of the shear-wave
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Fig. 15 Source—receiver
geometry for the computation
of the elastic kernels. Taken
from [42]

velocity

δVS (x) = 2

(
δμ − 4

3

μ

κ
δκ

)
, (79)

and the compressional-wave velocity

δVP (x) = 2

(
1 + 4

3

μ

κ
δκ

)
, (80)

then, a step line search can be used to obtain the model parameters iteratively.
Following the work of Tromp et al. [42], the source-receiver geometry for an
isotropic elastic media with homogeneous properties (Fig. 15) is used.

Following the same procedure as in the previous section for acoustic media, the
wave propagation for the horizontal displacement and the back-propagation for the
adjoint horizontal displacement is shown in Fig. 16 for 52 seconds of recording time.
For illustration purposes, the P-wave velocity kernel is shown in the third column.
The gradient shows the so-called banana-doughnut shape, which is related to the ray
path [42].

3.5 Cooperative Inversion

In a joint-inversion scheme, different geophysical forward problems are solved to
obtain a consistent Earth-property model that matches the respective data sets mea-
sured at the surface. Usually, the strategy consists of combining all the parameters
into one objective function, leading to a large system of often disparate parameters
[34]. There are mainly three types of joint inversion techniques, depending on the
construction of the cost function:

• Petrophysical joint inversion, where the models are constrained by an empirical
relationship [6, 25, 34, 36],
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Fig. 16 Regular displacement ux and adjoint displacement u
†
x wave propagation for 52 seconds

of recording time for the construction of the P-wave velocity kernel

• Structural joint inversion [14, 15], where the functional is used to match the
structure for both models trough the cross gradient, and

• Statistical joint inversion, e.g. using the fuzzy c-means technique [31, 33].

We will focus on the petrophysical joint inversion to combine FWI and GI.
We propose a cooperative and sequential approach in which we solve at different
stages for the densities and velocities. The resulting system is, therefore, more
manageable and there is more control over the parameters at each stage. We call
this a cooperative strategy to distinguish it from the joint strategies that solve
all the geophysical parameters together at every iteration. Unlike conventional
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joint inversions, where the problem is to minimize a two-part objective function
(e.g. seismic and gravity errors), this cooperative inversion is based on alternately
minimizing the errors in seismic and gravity data iteratively [36]. The main reasons
to perform these sequentially are to increase robustness, reduce the computational
cost, and keep always a strong control in the GI, avoiding the natural behavior of this
potential method to yield shallower models. Furthermore, in the proposed scheme
we do not need to impose depth-dependent weights or constraints to the GI to avoid
shallower models, this is achieved instead by using the velocity model from FWI as
the a priori gravimetricmodel. Another advantage of this approach is that, regardless
of the model obtained from fitting a gravity anomaly, the total mass is uniquely
recovered as implied by Gauss’ theorem [18]. This means that, although gravity
is a low-resolution geophysical tool, it does provide unique information linked to
the velocity model. We seek to minimize the gravimetric data constrained with the
velocity model obtained after an FWI process using the following objective function

Q(mρ) =
Ns∑
i=1

∣∣∣∣∣
∣∣∣∣∣
gobszi

− Amρ

σgzi

∣∣∣∣∣
∣∣∣∣∣
2

+ α2
reg||∇mρ ||2 + β2||mρ − mρ(V )||2, (81)

where mρ is the density model obtained using a petrophysical relationship as a
function of the velocity model obtained from AFWI or EFWI. β is the parameter
that weights the role on the inversion of seismic versus GI. Higher values of β yield
results closer to the seismic model and vice versa. Our results will focus more on the
velocity model from FWI to avoid shallower models due to a weakly-restricted GI.
Then the density model will give feedback to the velocity model using an empirical
relationship for the next FWI iteration. We use the following relationship from
Gardner et al. [17] as petrophysical constraint,

mρ(V ) = ρ = ρ0V
k0
P , (82)

with ρ0 = 0.31 g/cm3 and k0 = 0.25. Other density-velocity petrophysical
relationships are readily available in the literature and can easily be incorporated into
our proposed scheme. For example, Brocher [7] computed the following polynomial
fits for density as a function of velocity

ρ(g/cm3)=1.6612VP(km/s)−0.4721V 2
P +0.0671V 3

P − 0.0043V 4
P +0.000106V 5

P,

(83)

and velocity as a function of density

VP (ρ) = 39.128ρ − 63.064ρ2 + 37.083ρ3 − 9.1819ρ4 + 0.8228ρ5. (84)
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These are valid for densities between 2.0 < ρ < 3.5 g/cm3 and velocities in
the range 1.5 < VP < 8.5 km/s respectively. However, since both of Brocher’s
equations are based on polynomial fits, they are not inversely related. An iterative
procedure using Eqs. 83 and 84 will not lead to the same velocity-density values. For
example, starting from a velocity of 3500m/s, a density of 2.318 g/cm3 is computed
using Eq. 83, then, using Eq. 84 to get the corresponding velocity, we obtain a value
of 3692.34m/s, a change of 192.34m/s (5.49%). Therefore, since we require that
the two functions be inverse of each other, we would have to do some adjustments
to incorporate these petrophysical relations into our scheme.

The CGLS method is implemented in a straightforward way modifying G and d
from Eqs. 54 and 55 as follows

G =
⎡
⎢⎣
C−1/2

dd A
αregD
βI

⎤
⎥⎦ , (85)

dCG =
⎡
⎢⎣
C−1/2

dd gobsz

0
βmρ(VP )

⎤
⎥⎦ , (86)

where I is the identity matrix. Once again, G is a large and sparse matrix. For
example, for a discretization with nx = 5, ny = 4 and nz = 3, we would have
a matrix of 15,600 element, of which only 1706 are non zero elements (a sparsity of
10.9%, see Fig. 17), whereas the square matrix of a Gauss-Newton implementation
would have to store 3600 elements. The procedure to solve the system Gm = dCG

is shown in algorithm 2 [35]. An efficient implementation of this algorithm requires
that all the matrices be stored in a sparse representation, we use Coordinate Format
(COO) sparse matrices for this.

In summary, this cooperative inversion scheme for gravity and seismic data
consists of the following iterative steps: From a starting velocity model, we
perform FWI to update the velocity model, then, using Gardner’s density-velocity
relationship, we perform constrained GI to update the density model, finally, using
Gardner’s velocity-density relationship, a velocity model is obtained that will be the
starting model to solve FWI.
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Fig. 17 Large sparse
structure of the matrix G for
the CGLS method. The blue
spots represent non-zero
elements and the white spaces
zero elements
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Algorithm 2: CGLS algorithm to iteratively solve the problem Gm = dCG

Data:
m0, d0 = dCG, r0 = GT dCG

p0 = r0, t0 = Ap0, n-iterations
Result: model mk

while k < n and ||rk || < 10−15 do
αk = ||rk−1||2/||tk−1||2
mk = mk−1 + αkpk−1
dk = dk−1 − αktk−1

rk = GT dk

βk = ||rk ||2/||rk−1||2
pk = rk + βkpk−1
tk = Gpk

k ← k + 1

4 Results

In order to test the proposed cooperative inversion algorithm and demonstrate its
advantages, we apply this method on two synthetic examples for 2D elastic media.

4.1 EFWI: Marmousi Model

Let us consider again the Marmousi model. The geometry and parameters are the
same as those of the example in Sect. 3.3 (see Fig. 8 and Table 4). The S-wave
velocity is computed using VS = VP /

√
3 and the density is obtained using Gardner

petrophysical relationship; the models for VS and ρ are not shown. Only the vertical
component of the displacement is considered and we use 10 test points for the step
line search. We did not add Gaussian noise to the data in this example.

Fig. 18 The final velocity model after 100 iterations of EFWI for the Marmousi example
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The velocity model obtained after 100 iterations, shown in Fig. 18, resembles
the stratigraphic information of the Marmousi model (Fig. 8). This result shows
spurious artifacts in the final model. This problem is attributed to the problem of the
limited bandwidth of the observed data [40]. The artifacts are also related to the S-
waves since they are usually not present in AFWI. These artifacts yield small errors
between the observed and computed seismograms but contaminates the iterative
process and affect the convergence.

The convergence of the EFWI iterative process can be analysed from the
behaviour of the objective function. We observe from Fig. 19 that the objective
function for this example converges fast at early iterations and becomes stagnant for
later iterations. This is mostly due to the presence of the spurious artifacts mentioned
before.

We show in Fig. 20 the observed and computed seismograms for the station
located at (1000, 0) m corresponding to the 20th source located at (404.04, 0) m.
Overall, the seismogram for the final model closely approximates the observed data.
The phase of all the events is matched very well, however, there are discrepancies

Fig. 19 Normalized objective function for the Marmousi model using EFWI

Fig. 20 Seismogram comparison of starting (red) and final (blue) synthetic data for EFWI with
the observed data (black) corresponding to a single source and a receiver located at (1000, 0) m
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in the amplitudes. Unfortunately, these results can not be improved using more
iterations, we would have to rely on the implementation of additional techniques
to get a better approximation.

4.2 EFWI: Texas-Shaped Model

For this example, we created a laterally heterogeneous layered model covering
a horizontal distance of 2000m and a depth of 1000m for both seismic and
gravimetric data. Beneath the low-velocity layers, we place a structure with the
shape of Texas, as shown in Fig. 21a. The shallow layers have lower velocities
(between 1500 and 2000m/s) with respect to the deepest layer (∼3500m/s). The
S-wave velocity is computed using VS = VP /

√
3 and we used Gardner’s density-

velocity relationship to obtain the density model. Notice that the maximum velocity
used for this example is 3500m/s, hence Gardner’s equation applies to this example.
We use the same discretization parameters from the previous example (Table 4).

The initial model and the result after 48 iterations are shown in Fig. 21b, c.
The top layers show many spurious artifacts similar to those in the previous
example. These artifacts persist if we continue iterating the method. The objective
function, shown in Fig. 22, exhibits a convergent behaviour until 40th iterations
where stagnation is reached.

4.3 Cooperative Inversion: Marmousi Model

Let us apply the cooperative scheme on the Marmousi model (Fig. 8). We used the
same model parameters of Table 4, with the addition of 200 equispaced gravimetric
stations in the surface. The true velocity model and the starting model are the same
as in the AFWI example of Sect. 3.3, and the S-wave velocity and density models
are the same as in Sect. 4.1.

In order to compare the result, we performed 100 iterations of the cooperative
inversion and show the results, together with those of EFWI, in Fig. 23. Incorporat-
ing GI helps to eliminate the spurious artifacts and smooths the model (Fig. 23b).
This is because GI acts as a filter in the cooperative inversion. Each iteration has
a computational cost of 75 minutes for EFWI and 76 minutes for the cooperative
scheme.
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Fig. 21 (a) Texas-shape true velocity model, and (b) and its smoothing set as a starting model. (c)
Final velocity model after EFWI
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Fig. 22 Normalized misfit for seismic data for the Texas-shape model after EFWI

Fig. 23 Marmousi final velocity model obtained using (a) conventional EFWI, and (b) the
cooperative inversion (EFWI and GI).
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4.4 Cooperative Inversion: Texas-Shaped Model

As a final example, let us apply cooperative inversion to the Texas-shaped model of
Fig. 21a. The true velocity model, the starting model and other parameters are the
same as in Sect. 4.2. The final velocity model after 48 iterations is shown in Fig. 24
together with the results of EFWI to facilitate the comparison. Comparing Fig. 24a,
b, we observe that cooperative inversion reduces the artifacts that pollute the
EFWI results. The density models obtained from conventional GI and cooperative
inversion are shown in Fig. 25. Figure 25a shows the typical behavior of conven-
tional GI of giving preference to shallower models, whereas the model obtained
from cooperative inversion (Fig. 25b) yields significantly better model. In order to
illustrate the data fit, we show in Fig. 26 the seismograms for a station at (1000, 0)
m from a source at (404.04, 0) m, and the gravimetric anomaly. The seismogram for
the final model show a good agreement with the observed seismogram, with small
discrepancies in phase and amplitude (Fig. 26a). The computed gravimetric anomaly
has small discrepancies with the observed anomaly (Fig. 26b). We emphasize that

Fig. 24 Texas-shape final velocity model after 48 iterations, comparison between (a) conventional
EFWI, and (b) the cooperative inversion
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Fig. 25 Texas-shape final density model after 48 iterations, comparison between (a) conventional
gravimetric inversion (GI), and (b) the cooperative inversion

the cooperative inversion does not aim to exactly fit all the data but to obtain a
realistic model.

A comparison of the seismic misfit for EFWI and the cooperative scheme is
presented in Fig. 27. The misfits exhibit a similar reduction at earlier iterations,
however, later the cooperative inversion adjusts better the seismic traces given the
elimination of the artifacts.



166 R. U. Silva-Ávalos et al.

Fig. 26 Data fit for the Texas-shape model after 48 iterations of the cooperative scheme. (a)
Vertical-displacement seismograms for a station at (1000, 0) m from a source at (404.04, 0) m,
and (b) Observed and computed gravity anomaly

Fig. 27 Normalized misfit reduction for seismic data for cooperative inversion (red) and separated
inversion (blue)
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5 Conclusions

We have developed a cooperative scheme that combines GI and FWI. The methods
are combined in an iterative scheme based on petrophysical relationships that can
be used to characterize typical geological environments found in real field data such
as irregular high velocity bodies embedded in complex horizontal layers, thrust and
dominoes fault systems, for both acoustic and elastic media.

The synthetic examples for elastic media show that both methods converge as
long as the starting model is acceptable and FWI has more weight in the cooperative
inversion algorithm. The models recover the stratigraphic part, the fault dip, the
discordances and the top and shape of the high velocity and density bodies. The
weights in the cost function play a critical role in the trade off between the
convergence rate and the accuracy of the resulting models. Further analysis is
required to determine optimal weights.

Comparing the results obtained by separate and cooperative inversion, we
observe that the cooperative scheme helps improve the density models of GI by
constraining them to the FWI models. FWI also benefits from the cooperative
inversion, avoiding the saturation in parts of the model and reducing the presence
of the spurious reflectors. Finally, the sequential implementation of the cooperative
scheme has a negligible additional computational cost compared to the classical
FWI.

Acknowledgments We want to thank CONACYT and CeMIEGeo for their financial support. The
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Specialized Labs System of the Earth Sciences Division of CICESE.
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