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Preface

This volume proposes an integral approach to studying the geophysics of Earth. It
is motivated by a variety of phenomena from nature with deep and direct impacts
in our lives. Such events may evolve across a large range of spatial and time scales
and may be observed in the ocean, the atmosphere, the volcanic surface, as well as
underground.

The physical laws dictating the evolution of such phenomena lead to the unifying
theme of this manuscript, that is, the mathematical and computational modeling of
flows and waves. Consequently, the underlying models are given in terms of partial
differential equations (PDEs) whose solutions are approximated using numerical
methods, thus providing simulations of the aforementioned phenomena, which are
to be given the appropriate geophysical validation and interpretation.

The outline of the book is as follows. The first chapter considers rapidly
rotating convectively driven flows in extreme parameter regimes, which are of
relevance in geophysical and astrophysical settings. The underlying model is
the rapidly rotating Rayleigh-Bénard convection (RRRBC) primitive equations. It
is well known that laboratory explorations and direct numerical simulations of
the governing equations are limited. Consequently, alternative methodologies are
required. For instance, the chapter introduces an asymptotic reduction based on
small Rossby (Ro) number. The resulting equations, the non-hydrostatic balanced
geostrophic equations (NHBGE), form a closed system in which the small parameter
Ro no longer appears. The asymptotic procedure eliminates the impediments to
using the primitive equations to describe geophysical and astrophysical flows.
In particular, the reduced equations describe four important dynamical regimes:
cellular convection, convective Taylor columns, convective plumes, and geostrophic
turbulence. Some of these are relevant to both astrophysical and oceanographic
applications. The latter connects the chapter that follows.

Chapter 2 deals with interactions of the ocean and the atmosphere, with emphasis
on wave theory. The chapter is concerned with some important applications related
to the influence of ocean surface waves on present challenging issues. One particular
issue is the gas transfer across the interface and its potential impact on climate and
its changes. Another one is the upper ocean dynamics and the behavior of surface
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currents and drift, greatly associated with transport of pollutants and objects on
the sea surface. It is noteworthy that the chapter develops the underlying theory,
complementing it with data to provide insightful information on the air-sea transfer
mechanisms. The aim is to obtain the best knowledge in that respect, in order to
be able to predict in the most appropriate fashion the ocean-atmosphere exchange
processes of greenhouse gases for instance, and in due course to predict climate and
its changes through the use of powerful numerical models.

As illustrated by the first two chapters, in recent decades, computational
resources have made possible the simulation of complex phenomena. While the
first chapter delves into the mathematical physics to understand geophysical flows,
the second chapter relies on data and observation. Both use numerical methods to
complement their respective theses. It is apparent that an in depth knowledge of
these methods is essential. Thus, Chap. 3 provides a state-of-the-art contribution
for one of such methods. Namely, the work proposes a second-order accurate and
robust numerical method for the conservative level-set approach, which is applied
for capturing the interface between two fluids. The first two chapters include
problems of this sort. The exposition will appeal to a numerical specialist, and
specifics of the method are included. For instance, the time integration is based on a
method that allows the selection between complete explicit and implicit first-order
time formulations or a second-order Crank-Nicolson (implicit) method. The space
discretization is based on a finite-volume method on prisms elements consisting
of unstructured triangular grids on the horizontal directions and several layers in
the vertical. Numerical results for three-dimensional simulations require significant
computational time to be carried out. Thus, the entire code is developed in parallel.
The parallelization of the algorithm is based on a domain decomposition into several
sub-domains in the horizontal direction, one for each parallel process, and a parallel
solution of the linear system using a multi-color SOR (MSOR) method.

The second part of the book deals with problems associated to solid Earth.
In Chap. 4, granular flows in volcanic environments are considered. As a primer,
continuum models can be used for modeling this flow phenomenon. However, unlike
the equations governing Newtonian fluids, such as the Navier-Stokes equations,
granular models may require additional terms that take into account frictional and
collisional loss of energy both between particles and between the medium and its
substrate. Also, they fail to describe phenomena inherent to the granularity of the
medium, such as particle-size segregation and high-speed ejection of individual
particles. This failure can be of crucial importance when assessing hazard maps for
locations prone to rock avalanches and pyroclastic density currents. Consequently,
the chapter focuses instead on the description of discrete models. These models
take into account the mechanics of individual particles and are used to explain
the behavior of granular flows. This approach uses molecular dynamics (MD)
algorithms, which first calculate the sum of forces experienced by each of the
individual grains, and afterwards solve the equations of motion with an appropriate
integrator. The basics of the method are fully described. An application to active
volcanoes is presented.



Preface vii

Chapter 5 addresses geophysical exploration of underground resources. The
exploration of a region of interest requires the measurements of several geophysical
datasets which need to be interpreted for characterization. A scheme for cooperative
inversion of seismic and gravity measurements is presented. The seismic method has
been particularly successful, becoming the basis for other state-of-the-art methods
such as full waveform inversion (FWI). FWI is a powerful seismic-imaging method
used to estimate a seismic-velocity model such that the discrepancies between
observed and synthetic seismograms are minimized. The gravimetric inversion
method is an inversion method (GI) for density estimation. This method is well
known for estimating structures with horizontal changes of mass distribution. The
solution is straightforward using Gauss-Newton minimization to obtain a density
model inverting the square matrix on a single step. This method is widely used
by geophysicists because of its fast convergence. However, it is computationally
expensive and unfeasible for large-scale problems. Full-waveform inversion (FWI)
and gravimetric inversion (GI) are carried out in tandem. First, FWI is used to
estimate a seismic-velocity model. Then, using Gardner’s density-velocity rela-
tionship, GI is performed to update the density model. Again, using Gardner’s
velocity density relation, a velocity model is obtained and the process is iterated. For
FWI, minimization is approximated by a gradient-based algorithm. To compute the
gradient, the adjoint state method is used. For the reader’s convenience, gravimetric
and waveform forward modeling are introduced, as well as the numerical methods
of solution. Results are illustrated with the well-known Marmousi model, a highly
nontrivial benchmark problem in the literature.

The last chapter deals also with wave phenomena. The motivation is the use of
electromagnetic methods in geophysics exploration to map the resistive structure of
the subsurface using instruments that work at low induction numbers (LINs). These
methods have been successfully applied to archaeological studies, groundwater
characterization, contaminant migration, and mineral alteration mapping. To inter-
pret electromagnetic measurements, the electric and magnetic fields are computed
by solving numerically the Maxwell’s equations in the low induction-number
domain. The geophysical applications under study lead to high scale computations.
Consequently, the differential forms of Maxwell’s equations are solved using the
parsimonious finite-difference method. Such method is implemented in Fortran and
parallelized with OpenMP.

Acknowledgments The editors thank the Mexican Research Center in Mathe-
matics for its hospitality. Both editors were partially supported by the grants
UNAM-DGAPA-PAPIIT IN112222 & Conacyt A1-S-17-634. The co-editor G. H-D
would like to thank the hospitality of NorthWest Research Associates and the
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Geostrophic Turbulence and the
Formation of Large Scale Structure

Edgar Knobloch

Abstract This Chapter summarizes recent progress in understanding rapidly rotat-
ing convectively driven flows. The emphasis is on the behavior in extreme parameter
regimes of relevance in geophysical and astrophysical settings. These regimes are
described by an asymptotically reduced system of equations valid in the limit of
small Rossby numbers. The equations describe four regimes as a scaled Rayleigh
number ˜Ra increases: a disordered cellular regime near threshold, a regime of
weakly interacting convective Taylor columns at larger ˜Ra, followed for yet larger
˜Ra by a breakdown of the convective Taylor columns into a disordered plume
regime characterized by reduced heat transport efficiency, and finally by a turbulent
state called geostrophic turbulence. Properties of these states are described and
illustrated using direct numerical simulations of the reduced equations. These
simulations reveal that geostrophic turbulence is unstable to the formation of large
scale barotropic vortices or jets, via a process known as spectral condensation.
The details of this process are quantified and its implications explored. The results
are corroborated via direct numerical simulations of the governing Navier-Stokes
equations. In the presence of lateral boundaries robust boundary zonal flows
resembling topologically protected edge states in chiral systems are present.

1 Introduction

Typical flows of astrophysical and geophysical relevance represent a challenge for
both laboratory explorations and direct numerical simulations of the governing
equations. In rapidly rotating flows this is for two reasons: the very large Reynolds
numbers governing such flows, requiring high spatial resolution, and the low values
of the Rossby number (equivalently, the Ekman number) for such flows implying
the presence of high frequency inertial waves requiring high temporal resolution.
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2 E. Knobloch

These requirements make direct numerical simulation of such flows inaccessible
even to state of the art computers. Likewise laboratory experiments, particularly
those mounted on a rotating turntable, are limited in size and hence the Reynolds and
Rossby numbers that can be reached. These considerations motivate the alternative
approach that is explored in this chapter.

Planetary scale rotating flows are described by a very successful theory called
quasigeostrophy [42]. Briefly, the theory is based on the idea that large scale,
rapidly rotating flows are in approximate geostrophic balance, i.e., that in the low
Rossby number regime the Coriolis force is balanced by pressure gradients. This
type of balance is seen in everyday weather maps, where air masses circulate
counterclockwise or cyclonically around low pressure regions and clockwise or
anticyclonically around regions of high pressure. Fluid motions that govern what we
call weather develop on top of this balanced flow, and are described by the equations
of quasigeostrophy, obtained by going to next order in powers of the Rossby number
Ro � 1. Here Ro = UL/f , where U represents a typical horizontal flow velocity,
L its horizontal scale and f is the local rotation rate at latitude �, f = 2� sin �.

The quasigeostrophic description implies that the flow is horizontal at leading
order in Ro, i.e., that the flow is nearly hydrostatic. This type of approximation
therefore works well for planetary scale flows in the atmosphere or the oceans
such as the Gulf Stream (Fig. 1) but does not apply in regions where vertical, i.e.
nonhydrostatic, flows are important [25, 40]. An important example is provided by
the regions where the thermohaline circulation descends to the bottom of the ocean,
as occurs in the Labrador Sea (Fig. 2). Other situations where the quasigeostrophic
description breaks down arise in convectively driven flows since convection is
fundamentally nonhydrostatic.

Fig. 1 The quasigeostrophic
description applies to large
scale flows such as the Gulf
Stream

Motivation: Balanced flows (hydrostatic)

Rotational constraint

Ro =
U
f0L

� 1

Stable stratification

Fr =
U
NL

� 1

Wide aspect ratios

H
L

� 1 MODIS image of the Gulf Stream,
4/20/2005, NASA
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Motivation: Balanced flows (nonhydrostatic)

Rotational constraint

Ro =
U
f0ff L

� 1

WeaWW k stratification

FrFF =
U
NL

= O(1)

Columnar flows

H
L

> 1
Jones and Marshall [25]

Fig. 2 Nonhydrostatic but rotationally constrained flows are present in the Labrador Sea where
the thermohaline circulation dives towards the bottom of the ocean

At first sight it appears that nonhydrostatic processes cannot be included within
the quasigeostrophic approximation. This is indeed true for large scale phenomena.
However, convective forcing generally occurs on smaller scales and we show below
that a nonhydrostatic quasigeostrophic description can be developed, that applies to
geostrophically balanced flows on these small scales when the corresponding Ro
remains small.

Figure 3 shows an example of such a convectively driven flow in the laboratory.
The figure shows a side view of a rotating tank experiment, heated from below
and cooled from above, and visualized using a liquid crystal suspension with the
property that warm regions turn blue and cold regions turn red. The figure shows

Fig. 3 Side view of a rotating convection experiment with H = 6 cm, �T = 2.6 ◦C, � =
14.3 rpm. From [45]
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Fig. 4 Top view of the same experiment. From [45]

a snapshot of a state consisting of Taylor-Proudman columns that extend from the
bottom to the top (rising warm regions) or from the top to the bottom (descending
cold regions). Figure 4 shows a top view, well away from the lateral walls, showing
a ‘gas’ of cyclonic (red) and anticyclonic (blue) structures. Observe that cyclonic
structures dominate at the top of the layer.

Figure 5 shows the basic parameter plane of the problem for a thermally forced
horizontal layer at the North Pole. In (a) we show a log-log plot of the Taylor number
Ta = E−2, proportional to the square of the rotation rate �, on the horizontal axis
and the Rayleigh number, a dimensionless measure of the temperature difference
�T across the layer, on the vertical axis. The solid line represents the onset of
convective instability in an unbounded layer, Rac(Ta), from [6] and reveals that
rotation has a stabilizing effect: a larger Ra is required to generate motion at larger
Ta. Panel (b) superposes some of the experiments, including those of Sakai [45]
on this plot, providing an indication of the parameter regime that is accessible to
laboratory experiments. Geophysical or astrophysical flows are characterized by
much larger values of these parameters, in the region of 1020, well outside of the
realm of both laboratory experiments and direct numerical simulations (DNS).
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Fig. 5 (a) The (Ta, Ra) parameter plane, where Ta = E−2 is the Taylor number and Ra is
the Rayleigh number. (b) The asymptotic wedge, shaded in blue. In (b) the heavy dashed line
represents Roconv = 1 while the thin dashed line represents Roconv = 0.01. Here Roconv ≡
Uconv/�L = √Ra/σE is the convective Rossby number, E ≡ ν/2�H 2 is the Ekman number
and σ ≡ ν/κ is the Prandtl number

Figure 5b shows two lines of constant convective Rossby number Roconv. Flows
with Roconv � 1 are beginning to be affected by the presence of rotation, while
those for which Roconv � 0.01 are strongly impacted, a regime that is difficult
to access in the laboratory. In the following we shall be interested in exploring
the wedge region shaded in blue corresponding to strongly rotationally constrained
flows with Ra − Rac = O(1), i.e. fully developed flows of this type. Since we are
interested in geophysical and astrophysical conditions, we explore this regime in the
limit of very large Ra and very large Ta.
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2 Asymptotic Reduction of the Primitive Equations

In order to explore this regime we nondimensionalize the primitive equations
describing rapidly rotating Rayleigh-Bénard convection (RRRBC) using an arbi-
trary horizontal length L and an arbitrary horizontal velocity U :

ut + u · ∇u+ 1

Ro
ẑ× u = −P∇p + �T ẑ+ 1

Re
∇2u, (1)

Tt + u · ∇T = 1

Pe
∇2T , (2)

∇ · u = 0, (3)

where

Ro = U

2�L
, P = P̃

ρ0U2 , Re = UL

ν
, Pe = UL

κ
, � = −gαT̃ L

U2 . (4)

Here u ≡ (u, v,w) is the velocity field in Cartesian coordinates relative to a frame
rotating with angular velocity 2� and T is the temperature field (equivalently, the
buoyancy field), and the Boussinesq approximation is employed. The dimensionless
parameters specifying the system are the Rossby number Ro, the pressure scale P

and the buoyancy parameter �. Dissipative effects are measured by the Reynolds
number Re and the Péclet number Pe. Note that the magnitudes of these parameters
depend on the scales of interest, and that Ro is a derived quantity, in contrast to
Raconv which may be fixed a priori.

In the following we suppose that Ro ≡ ε � 1 and consider scales L for which
L/H = ε, i.e. tall, thin structures like those revealed in the Sakai experiment. Here
H is the dimensional layer depth. Motivated by this choice of L relative to the
(presumed fixed) depth H we scale Eqs. (1)–(3) according to

∂x → ε−1∂x, ∂y → ε−1∂y, ∂z → ε−1∂z + ∂Z, ∂t → ε−2∂t + ∂τ .

The slow spatial scale Z is required by the boundary conditions at top and bottom.
The fast timescale ε2 is the inertial wave timescale while the O(1) timescale τ

represents the time scale for adjustment of the mean temperature profile.
We now sketch the main steps in the derivation of the reduced equations valid in

the limit Ro→ 0. See [28, 29] for a detailed derivation. We suppose that u ∼ v ∼
w = O(1) in order to incorporate nonhydrostatic effects, and perform an asymptotic
expansion in ε with T = T + εθ , and � = O(ε−1), P = O(ε−1). Here the overbar
indicates averaging over x and t , i.e. over fast scales. At O(ε−1) this Ansatz leads
to geostrophic balance:

ẑ× u⊥ = −∇⊥p, ∇⊥ · u⊥ = 0
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and hence to

u⊥ = (−ψy,ψx), ψ ≡ p.

Here ∇⊥ ≡ (∂x, ∂y). Thus the pressure p is nothing but the streamfunction for the
horizontal flow, as seen in weather maps.

At O(1) the vertical vorticity ω ≡ ∇2⊥ψ and vertical velocity w satisfy

∂tω + J [ψ,ω] − ∂Zw = Re−1∇2⊥ω, (5)

∂tw + J [ψ,w] + ∂Zψ = �θ + Re−1∇2⊥w. (6)

Here J [ψ, (·)] ≡ u⊥ · ∇⊥(·) represents advection by the horizontal flow. It follows
that vertical vorticity is advected by the horizontal flow and intensified by vertical
stretching. Vertical velocity is likewise advected but is generated in response to the
term ∂Zψ which is nothing but the vertical pressure gradient.

At O(ε1) we obtain the fluctuating buoyancy equation

∂t θ + J [ψ, θ ] +w∂ZT = Pe−1∇2⊥θ, (7)

and the mean buoyancy equation

∂τ T + ∂Zwθ = Pe−1∂ZZT . (8)

Thus the temperature fluctuation θ is advected horizontally and generated via
vertical transport of the mean temperature, while the mean thermal profile adjusts
on the slow time τ owing to a nonzero divergence of the vertical convective heat
flux. In each equation the error is O(Ro) and so becomes asymptotically small as
Ro→ 0.

The above equations arise as solvability conditions for a sequence of linear
inhomogeneous problems on the fast scale together with the requirement of
impenetrable boundaries at top and bottom. The latter imply that the fast scale z

drops out in the leading order description of the flow. The resulting equations form
a closed system in which the small parameter Ro no longer appears, thereby relaxing
spatial resolution requirements, since Ekman boundary layers no longer need to be
resolved, as well as temporal resolution requirements since high frequency inertial
waves are no longer present. In other words, the asymptotic procedure sketched
above eliminates the primary impediments to using the primitive equations to
describe geophysical and astrophysical flows. Moreover, it appears that the adopted
scaling of the dependent fields together with the choice of the horizontal scale L are
uniquely determined by the closure requirement.

The above equations have a broad regime of applicability: Ro � 1. This regime
includes a wide range of horizontal scales L but for laboratory applications it is
useful to connect these equations to the predictions of linear theory. Since these are
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determined by dissipative processes we choose Ro = E1/3, where E = ν/2�H 2 is
the Ekman number, so that L/H takes its onset value L/H = O(E1/3) [6], and take
U = ν/L to obtain the rescaled system

∂tω + J [ψ,ω] − ∂Zw = ∇2⊥ω + O(E1/3) (9)

∂tw + J [ψ,w] + ∂Zψ = σ−1RaE4/3θ +∇2⊥w + O(E1/3) (10)

∂tθ + J [ψ, θ ] +w∂ZT = σ−1∇2⊥θ + O(E1/3) (11)

∂τ T + ∂Zwθ = σ−1∂ZZT + O(E1/3), (12)

where Ra ≡ gα�T H 3/νκ is the usual Rayleigh number and σ ≡ ν/κ is the
Prandtl number; for consistency we assume that RaE4/3 = O(1), σ = O(1). These
equations are to be solved subject to the boundary conditions

w = ψZ = θ = 0, T = 1, on Z = 0, (13)

w = ψZ = θ = 0, T = 0, on Z = 1, (14)

obtained by applying the same asymptotic expansion to the boundary conditions.
Note that the resulting boundary conditions are stress-free implying that Ekman
pumping from the boundaries becomes subdominant in this regime [33]. In the
following we solve these equations with periodic boundary conditions (PBC) in
the horizontal.

The equations constitute a closed reduced system referred to as NHBGE (non-
hydrostatic balanced geostrophic equations). In contrast to the primitive equations
they depend on the Rayleigh number and the Ekman number only in the combination
˜Ra ≡ RaE4/3, assumed to beO(1). In the asymptotic wedge Ra is large to overcome
the stabilizing effects of rotation, while E is small.

2.1 Properties of the NHBGE

The NHBGE have the following beneficial properties: they

• eliminate thin Ekman boundary layers; thermal layers remain
• filter out fast inertial waves on O(E1/3H) vertical scales as can be seen from the

inviscid dispersion relation for isothermal modes ∝ exp i(λt + k⊥ · x⊥ + kzZ):

λ2
reduced =

k2
z

k2⊥
, cf. λ2

NS =
k2
z

k2⊥ + E2/3k2
z

.
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• predict the correct critical Rayleigh number Rac and onset wavelength λc appro-
priate to the limit E → 0, viz., Rac ≈ 8.6956E−4/3 and λc ≈ 4.8154E1/3H for
steady onset [6].

These facts allow us to integrate the NHBGE with less resolution and much larger
time step than required when solving the primitive equations. In the following we
report on the solutions of these equations on a domain of nondimensional size
20λc× 20λc× 1 with PBC in the horizontal plane and the boundary conditions (13)
and (14) in the vertical. To solve the equations the horizontal directions were
discretized using Fourier-Galerkin modes in the x and y directions. The vertical
direction was treated using Chebyshev-tau discretization [19] allowing for an
efficient clustering of gridpoints in the remaining thermal boundary layers near the
top and bottom of the fluid layer. All directions were dealiased using the standard
2/3 rule. Integration in time was done using the semi-implicit Runge–Kutta scheme
developed in [50], which is formally third-order accurate in time for the nonlinear
terms and second-order accurate for the linear terms. However, the parameters were
chosen to minimize the coefficient of the second-order error and in practice the
method yields third-order accuracy in time. In all cases the computations were
initialized using either a small amplitude random temperature fluctuation θ or a
small amplitude unstable roll pattern.

Note that the NHBGE

• describe asymptotically precisely the fluid problem even though they do not look
like the primitive equations

• are fully three-dimensional
• are fully nonlinear
• moreover, they are D4+̇T 2-symmetric, i.e., the equations are equivariant under

translations in the x and y directions (modulo the spatial period) together with
invariance under x ↔ −x and x ↔ y. It follows there is no handedness to the
flow at leading order. Thus the number of cyclonic and anticyclonic vortices is
expected to be the same as E→ 0, unless spontaneous symmetry-breaking leads
to the prevalence of one or other vortex type.

Two additional properties are useful. For the Prandtl numbers considered here the
system rapidly equilibrates to a statistically steady state with ∂τ T ≈ 0 although this
mean state may drift over long times owing to the formation of large scale structures.
In the equilibrated state Eq. (11) yields the relation

wθ∂ZT = − 1

σ
|∇⊥θ |2, (15)

while (12) yields

1

σ
∂ZT = wθ − Nu

σ
, (16)

where Nu is the Nusselt number, i.e. the total heat flux across the layer normalized
by the flux which would be achieved in the absence of motion. These two equations
provide an exact relation between the gradient of the mean temperature ∂ZT , the
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thermal dissipation rate |∇⊥θ |2, and Nu,

∂ZT = −1

2
Nu± 1

2

[

Nu2 − 4|∇⊥θ |2
]1/2

. (17)

This result provides an upper bound for the thermal dissipation rate, namely
|∇⊥θ |2 ≤ Nu2/4. For sufficiently supercritical Rayleigh numbers, the − sign
describes the dynamics in the thermal boundary layer while the + sign describes
the well-mixed bulk; the transition between the two must therefore occur where
|∇⊥θ |2 = Nu2/4. This relation determines the width of the thermal boundary layers
at the top and bottom but is special to rapidly rotating convection. In nonrotating
Rayleigh-Bénard convection (16) is replaced by

wθ∂ZT + 1

2
∂Zwθ2 = − 1

σ
|∇⊥θ |2 + 1

σ
θ∂2

Zθ

and this relation is not closed and no similar characterization holds.
In addition, the NHBGE admit exact single mode solutions of the form

(ψ,w, θ) = Re{(σ−1A(Z), σ−1B(Z),C(Z)) exp ik⊥ · x}, where [26, 27]

d2B

dZ2 − k2⊥Nu˜RaB

(

1+ 1

2k2⊥
|B|2

)−1

= 0; Nu−1 =
∫ 1

0

(

1+ 1

2k2⊥
|B|2

)−1

dZ.

This is a nonlinear eigenvalue problem for the Nusselt number Nu given ˜Ra which
can be used to generate highly nonlinear (but unstable!) states for large ˜Ra as shown
in Fig. 6.

Fig. 6 (a) The eigenfunction |B(Z)| and (b) the mean temperature profile T (Z) for square pattern
convection at different values of ˜Ra ≡ RaE4/3. Dashed lines show the results for steady convection
with kc = |k⊥| = 1.3048 while solid lines show the corresponding results for oscillations in the
form of standing squares at σ = 0.4574 and kc = 0.8867. Oscillatory convection with PBC in a
plane is only present for σ < σ ∗ ≈ 0.676605 [10] and is therefore omitted from what follows.
From [27]
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Fig. 7 Snapshot of the temperature fluctuation θ in the low Rossby number regime. Hot (red) and
cold (blue) convective Taylor columns span the entire depth of the layer but are shielded by a sheath
in which θ takes the opposite sign. Parameters: ˜Ra = 40, σ = 7. From [20]

The reduced equations describe four distinct dynamical regimes, depending on
the values of the scaled Rayleigh number ˜Ra and the Prandtl number σ [32, 51]:

• Cellular convection (C)
• Convective Taylor columns (T)
• Convective plumes (P)
• Geostrophic turbulence (G)

Nonlinear but cellular convection is the first state that appears as ˜Ra crosses the
instability threshold. With increasing ˜Ra this state organizes into unsteady Taylor-
Proudman columns that extend across the whole depth. These columns are shielded
[20] as shown in Fig. 7; a similar nonmonotonic profile is also present in the vertical
vorticity implying reduced mutual advection, i.e. the Taylor columns resemble a
two-dimensional gas of weakly interacting particles. Upon further increase in ˜Ra

these columns begin to break up into plumes that no longer extend across the layer,
and these eventually give rise to a state of geostrophic turbulence [7], i.e. turbulence
characterized by geostrophic balance on all inertial scales. The associated regime
diagram is shown in Fig. 8 with sample snapshots of the corresponding solutions
shown in Fig. 9.
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Fig. 8 Regime diagram, showing the approximate boundaries between cellular convection (C),
Taylor columns (T), convective plumes (P) and geostrophic turbulence (G). From [32]

Fig. 9 Volume renders of the temperature fluctuation θ for ˜Ra = 20, 40, 80, 120, 160 and σ = 7
(left) and ˜Ra = 160 and σ = 1, 3, 7, 15,∞ (right). From [32]

3 Spontaneous Formation of Large Scale Vortices

One of the more remarkable predictions of the NHBGE is the spontaneous
appearance of large scale vortices from geostrophic turbulence. The first indication
of this highly significant phenomenon came in the form of a slow drift in the
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Fig. 10 Emergence of large scale vortex structures from geostrophic turbulence. Top left: Nusselt
number drift. Top right: Growth of the horizontal kinetic energy (u2 + v2)/2 (HKE). Lower
panels: Snapshots of the midplane HKE at the six different times indicated in the top right panel.
Parameters: ˜Ra = 100, σ = 1. From [32]

Nusselt number with time (Fig. 10a). Further examination revealed that this drift
is associated with the formation of a pair of large scale vortices (LSV) that slowly
emerge from the turbulent background as the computation proceeds (Fig. 10b). The
LSV are turbulent vortex structures that span the depth of the layer (Fig. 11), i.e.,
they represent two-dimensional coherent structures embedded in the background
geostrophic turbulence. The LSV do not form via mergers of smaller vortices,
but instead appear to suck energy directly from the small scales, bypassing the
turbulent energy cascade (Fig. 12). Indeed, it appears that the RRRBC system
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Fig. 11 Three-dimensional rendering in θ of a pair of large scale vortices in a geostrophic
turbulence background. Parameters: ˜Ra = 100, σ = 1. From [44]

Fig. 12 Large scale vortices in a geostrophic turbulence background at (a) t = 1, (b) t = 10, (c)
t = 37.5, (d) t = 100. From [44]



Geostrophic Turbulence and the Formation of Large Scale Structure 15

Fig. 13 Spectra of the
kinetic energy in the
two-dimensional barotropic
mode, Kbt(k⊥) (black), and
in the three-dimensional
baroclinic fluctuations,
Kbc(k⊥) (red), both at three
different times. The arrows
indicate the dominant
barotropic mode in each case.
From [44]
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exhibits a split cascade [1, 41]: three-dimensional baroclinic fluctuations exhibit a
forward energy cascade characterized by a Kolmogorov k

−5/3
⊥ spectrum. The two-

dimensional barotropic (kz = 0) component in contrast exhibits a k−3
⊥ forward

enstrophy cascade, but a k
−5/3
⊥ inverse cascade to large scales (Fig. 13) as expected

of two-dimensional turbulence [3]. The latter is masked by the gradual appearance
of the LSV which are also associated with a k−3

⊥ energy spectrum [48]. Because
of the spontaneous formation of the LSV the peak wavenumber of the barotropic
mode migrates to ever larger scales (Fig. 13), eventually reaching domain size. In
our calculations, which use PBC, the growing LSV ultimately interact with their
images, leading to strong shears that presumably arrest their growth, but our system
has not been integrated long enough to see and study this state. If the domain size
is increased the LSV size increases accordingly, i.e. the LSV have no characteristic
scale and energy piles up at the smallest available wavenumber, in a process that has
been called spectral condensation [38]. See also [1, 8, 44, 55, 57, 58].

To understand this process better we decompose the vertical vorticity equation (9)
into its barotropic and baroclinic components. Let ω = 〈ω〉 + ω′, ψ = 〈ψ〉 + ψ ′,
where 〈. . . 〉 denotes a depth average. Thus 〈ω〉 represents the 2D part of the vertical
vorticity while ω′ represents zero vertical mean 3D vorticity. We refer to the former
as the barotropic mode and the latter as the baroclinic mode. It follows that

〈ω〉t + J [〈ψ〉, 〈ω〉] + 〈J [ψ ′, ω′]〉 = ∇2⊥〈ω〉 (18)

and

ω′t + J [〈ψ〉, ω′] + J [ψ ′, 〈ω〉] + J [ψ ′, ω′]′ − ∂Zw = ∇2⊥ω′. (19)

In the absence of the baroclinic-baroclinic term 〈J [ψ ′, ω′]〉 Eq. (18) is identical to
the 2D vorticity equation and an inverse energy cascade to large scales is expected.
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However, in the present case this equation is forced by the baroclinic-baroclinic term
which acts as a source term for the barotropic mode. Of course, to find this source
term one must solve the fluctuating equation (19) for ω′ and hence for ψ ′. These
quantities in turn depend on the 2D vorticity 〈ω〉 and so have to be determined self-
consistently. We have seen that the transfer of energy to large scales persists even in
this case but that it takes a dramatically different form. The inverse energy cascade
familiar from 2D is now superseded by the k−3

⊥ pile up at large scales, eg., Smith
and Waleffe [48], powered by energy extraction directly from small scale baroclinic
modes. However, the fluctuation equation is fully 3D and hence exhibits the usual
k
−5/3
⊥ energy spectrum expected from Kolmogorov theory.

To quantify the above processes we partition the kinetic energy K into barotropic
and baroclinic parts, K = Kbt + Kbc, where Kbt = 1

2 (〈u2〉 + 〈v2〉) and Kbc =
1
2 (u′2 + v′2 + w′2) and examine the growth of both terms arising from mode-mode
interactions. For example, the growth of barotropic kinetic energy at horizontal
wavenumber k, Kbt(k), arises from triads of the form k + p+ q = 0 where (p,q)

are either both 2D or both 3D. Thus

∂tKbt(k) = Tk + Fk +Dk.

Here Tk ≡∑pq Tkpq and Fk ≡∑pq Fkpq represent, respectively, the symmetrized
transfer of energy between Fourier modes within the barotropic component and
the transfer of energy between baroclinic and barotropic modes; Dk ≡ −k2Kbt
represents viscous dissipation of the barotropic mode. Specifically,

Tkpq = bpqRe
[〈ψk〉〈ψp〉〈ψq〉

]

δk+p+q,0,

Fkpq = bpqRe
[

〈ψk〉〈ψ ′pψ ′q〉
]

δk+p+q,0,

bpq = bqp ≡ 1

2
(p2 − q2)(pxqy − pyqx).

These transfer rates can be computed from the simulations and the migration
to large scales of the dominant barotropic mode quantified. The results can be
used to identify three distinct regimes in the time evolution of the system [44].
The left panels of Fig. 14 show that barotropic-barotropic interactions rapidly
populate the box scale (regime II, the black histogram on the right of each panel
sums the contribution to k of all the modes p and q = −k − p), ultimately
leading to energy accumulation at the box scale (regime III). In parallel, the
baroclinic-baroclinic interactions (right panels) reveal a gradual increase in the
energy containing scale, culminating in the box scale in regime III. We see that while
both types of mode-mode interactions feed the box scale, the baroclinic-baroclinic
interaction ultimately dominates. Thus the energy transfer process largely bypasses
the barotropic manifold.

Time evolution of baroclinic (red) and barotropic (black) modes in regimes
I, II and III is shown in Fig. 15. We see that in regime I the box scale mode
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Fig. 14 Transfer rates Tk (left) and Fk (right) in regimes I, II and III. From [44]
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Fig. 15 The box scale mode (solid black line) extracts energy directly from small scales and
continues to grow while other barotropic modes saturate. The energy in the baroclinic state remains
almost constant. From [44]
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grows algebraically (recall that the turbulence is driven by energy injection into
the baroclinic modes) but takes off in regime II before a transition to slower but
continued growth in regime III. The growth continues even when other barotropic
modes saturate and is a consequence of continued energy extraction by the box scale
mode from the small scale baroclinic fluctuations (Fig. 14). We discuss this process
in greater detail later in this chapter.

4 Validation

Before proceeding we pause to validate the NHBGE against DNS of the primitive
equations, solved at finite Ekman number. These comparisons are most easily done
for σ = 1 for which the geostrophic turbulence regime can be reached for lower
values of ˜Ra. The first such comparison was performed by S Stellmach (2012,
unpublished) for a remarkably low value of the Ekman number, E = 10−7,
establishing qualitative agreement with the NHBGE (Fig. 16). Indeed, with some
imagination one may even see an LSV in the last panel. We point out that the
NHBGE results are shown on a domain scaled with E1/3; this is not the case for
the DNS of the primitive equations. Figures 17, 18, and 19 show more detailed
comparisons at less extreme values of E.

These DNS computations confirm that the NHBGE capture correctly the behav-
ior of the primitive equations at low Ekman numbers, and indeed suggest that no

Fig. 16 Cellular regime (C): σ = 1, ˜Ra = 11; Taylor column (T) regime: σ = 15, ˜Ra = 15;
Plume (P) regime: σ = 3, ˜Ra = 50; Geostrophic turbulence (G) regime: σ = 1, ˜Ra = 90.
In each case a top view (right) is shown next to a side view (left). Courtesy S Stellmach (2012,
unpublished)
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Fig. 17 Spontaneous generation of LSV at E = 5 × 10−6, ˜Ra = 68, σ = 1 in terms of the
vorticity ω at height z = 0.25. From [22]

Fig. 18 Evolution of the energy of the box scale mode kh = 1 at E = 5× 10−6, ˜Ra = 34, σ = 1,
showing behavior similar to Fig. 15. From [22]

fundamentally new phenomena arise between E ∼ 10−6 and the asymptotic regime
E→ 0. This observation argues in favor of NHBGE even outside of the asymptotic
limit used in their derivation, and in fact over a broad range of Ekman (and indeed
Rossby) numbers outside of this limit. Note, however, that when E is finite the
RRRBC system favors cyclonic vortices over anticyclonic vortices. This is not the
case in the limit E→ 0 (Fig. 12).

A further test of the NHBGE can be made by integrating the equations in
periodic rectangles in the horizontal instead of periodic square domains. Anisotropic
domains of this type favor the spontaneous formation of jets parallel to the short side
resulting in a Kolmogorov type of flow superposed on geostrophic turbulence. We
find that jets of this type are generated already for domain aspect ratios of order
1.1, i.e. 10% off a square cross-section (Fig. 20). These conclusions are confirmed
by DNS of the primitive equations as shown in Fig. 21. At present it is unclear
what sets the wavelength of the jets in Figs. 20 and 21 but it is likely the result of
a growing LSV reaching the short scale first and then imprinting this scale in the
orthogonal direction. If this is the case then it is the short side that determines the
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Fig. 19 Barotropic and baroclinic energy spectra at E = 10−5, ˜Ra = 107.7, σ = 1, showing
behavior similar to Fig. 13. From [16]

Fig. 20 Top view of large scale structures in periodic domains in the horizontal with aspect ratios
Ly/Lx = 1, 1.1, 2, 3, 4, 5 and 6, showing snapshots of vertical vorticity (left), barotropic vertical
vorticity (middle) and barotropic streamfunction (right) for ˜Ra = 90, σ = 1. From [34]. (a) ω. (b)
〈ω〉. (c) 〈Ψ 〉

wavelength of the turbulent Kolmogorov flow, in contrast to, say, the β-effect that
sets the latitude scale of planetary jets.

Figure 22 shows the asymmetry parameter α ≡ 〈u2〉−〈v2〉
〈u2〉+〈v2〉 as a function of the

domain length Ly in the y direction (Lx = 1). The figure confirms that LSV
(α = 0) are present when the domain has square cross-section (Ly = 1) and that
fully developed jets parallel to the short side (α ∼ 1) are present when Ly ≈ 1.1.
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Fig. 21 Jet formation in an Ly/Lx = 8 domain in DNS of the primitive equations shown at three
different times. Parameters: E = 10−5, ˜Ra = 62. From [21]. (a) 〈ω〉z at t = 326. (b) 〈ω〉z at
t = 788. (c) 〈ω〉z at t = 2167

Fig. 22 The asymmetry parameter α as a function of the domain length Ly in the y direction for
Lx = 1, E = 10−5, ˜Ra = 62. LSV (α = 0) evolve into turbulent jets parallel to the short side
(α ∼ 1) at Ly ≈ 1.1. From [21]

Remarkably, this observation coincides with a similar prediction from equilibrium
statistical mechanics [4] even though the present system is a driven dissipative
system.

We conclude this section by summarizing the advantages and disadvantages of
the NHBGE.



22 E. Knobloch

Advantages of the Asymptotic Approach

• The reduced equations are asymptotically exact as E→ 0, Ra E4/3 = O(1)

• The reduced equations permit study of regimes relevant to geophysical and
astrophysical flows

• The equations contain no small or large parameters
• The equations capture, apparently correctly, the physics of RRRBC, including

Taylor columns, plumes and geostrophic turbulence
• They capture the formation of large scale structure: domain-size vortices and jets
• Equations offer opportunity to study fundamental properties of 2+ε-dimensional

flows.

Disadvantages of the Asymptotic Approach

• The equations focus on one particular regime: L/H = O(Ro) and may not
describe other regimes

• Applications always require finite Ro or finite E: when are the dynamics at a
given Ro captured by the reduced equations?

• The equations only represent slow dynamics; inertial wave turbulence has been
eliminated

• Ekman pumping is absent; may be added as subdominant boundary forcing [33].

5 Finite Rossby Number

In this section we discuss some consequences of employing finite values of the
Rossby or Ekman numbers, and use these to shed light on the mechanism whereby
the LSV extract energy from small scales. We are interested in exploring two
questions: (1) is the development of LSV due to an instability of geostrophic
turbulence, and (2) what is the mechanism whereby the LSV extract energy from
the small scale 3D fluctuations?

To explore the first question we take a modest Ekman number E = 10−4

together with Ra = 3 × 107 (Ro = 0.55, ˜Ra = 139). For these parameters LSV
do not develop and we suppose that the geostrophic turbulence state is therefore
‘stable’. However, we encourage the formation of LSV by superposing a box scale
barotropic vortex dipole of amplitude A on the small amplitude random initial
conditions. Figure 23 shows that for small values of A the turbulent state decays
to homogeneous geostrophic turbulence (A = 0); in fact it does so faster than
the laminar viscous decay (dashed lines) since in this regime turbulence enhances
dissipation. However, for sufficiently large A this is no longer the case, and after an
initial decay interval we see that the kinetic energy in the 2D barotropic mode begins
to grow and continues to do so as time proceeds—classic signature of the growth of
LSV. As expected, the LSV that forms is a single cyclonic vortex; the anticyclonic
vortex eventually decays. The result shows that in this parameter regime the system
is bistable: the states with no LSV and with a single cyclonic LSV are both stable
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(a) (b)

Fig. 23 (a) Time evolution of the kinetic energy density K2D of the 2D flow for different values
of A showing subcritical behavior of the vortex state. (b) Ratio K2D/(K2D+K3D) for different A.
Sufficiently large perturbation amplitude A leads to a self-sustained vortex. Parameters: ˜Ra = 139
and σ = 1. Adapted from [17]

(a) (b)

Fig. 24 Kinetic energy spectra averaged over time and depth as a function of the horizontal
wavenumber kh when ˜Ra = 139, σ = 1. (a) A = 0. (b) A = 1600. From [17]

states of the system. This result suggests that if geostrophic turbulence is indeed
unstable with respect to the formation of LSV at larger ˜Ra then this bifurcation is
subcritical. Figure 24 shows that the kinetic energy spectra of these two states are
as expected, with no k−3

h spectrum at large scales when A = 0.
In Fig. 25 we compare the rate of energy injection into the 2D mode via the

convective instability, and the overall energy dissipation rate of this mode, as defined
by the expression

d

dt
K2D ∝

∫∫

〈u〉z · 〈u′ · ∇u′〉zdxdy + σ

∫∫

〈u〉z · ∇2
h〈u〉zdxdy ≡ F+D.

When A = 0 (homogeneous geostrophic turbulence) the instantaneous energy
injection rate and the dissipation rate are in close balance, and on average there
is no net energy input into the 2D mode (Fig. 25a). This is no longer so when
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(a) (b)

Fig. 25 Time evolution of the forcing F and dissipation D for the 2D barotropic mode when
˜Ra = 139, σ = 1. (a) A = 0. (b) A = 1600. From [17]

Fig. 26 Left: amplitude of the 2D flow, vertical average of the 3D fluctuation amplitude, amplitude
of the fluctuating forcing and its rate of working for A = 0 (top) and A = 1600 (bottom) showing
the footprint of the LSV in the 3D baroclinic fluctuations. Right: spectra of the fluctuation forcing
〈

u′ · ∇u′〉
z

in the two cases shown on the left. From [17]

a self-sustained LSV is present (A > Ac). In this case the energy injection rate
continues to slowly increase, but even more significantly, the dissipation rate drops
substantially as the LSV strengthens. The result is persistent net energy injection
into the system that continues to grow the cyclonic vortex that remains.

How does this unexpected behavior come about? We believe that the fully
developed LSV has a profound effect on the small scale baroclinic (3D) fluctuations
in that it introduces correlations among the phase of these scales. These correlations
are such that they enable efficient energy extraction from these scales by the 2D
barotropic mode, and that, at the same time, reduce viscous dissipation. Traditional
approaches to turbulence ignore the role of the phases of different modes and focus
on the properties of the energy spectrum. In this type of description all phase
information is lost; in effect one is making a random phase assumption, asserting
that phase correlations are unimportant. Figure 26 shows that this is not so. The
figure compares the properties of the A = 0 state with the LSV state (A = 1600)
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focusing on vertically averaged quantities (indicated by the subscript z). The figure
shows clearly that the presence of the LSV impacts the small scale fluctuations [46],
and leaves a substantial footprint in these scales, both in the small scale forcing
〈

u′ · ∇u′〉
z

and in its rate of working 〈u〉z ·
〈

u′ · ∇u′〉
z
, clearly violating the random

phase assumption.
In the present system energy is injected via unstable convective modes which

are both advected and sheared by an ambient vortex, thereby modifying the energy
injection mechanism as well as its efficiency. Such an active injection process differs
from systems driven by a stochastic force with fixed statistical properties. In the
latter, passive case, a statistically stationary state requires no net injection of energy,
in other words,

∫∫

u · f dxdy = 0, i.e. the flow u reflects the prescribed statistical
properties of f. In the active case these statistical properties develop self-consistently
and may as a result be inhomogeneous in space.

6 Cylindrical Domain: Robust Boundary Flow

In the presence of lateral boundaries, for example in Rayleigh-Bénard convection
in a uniformly rotating vertical cylinder, new behavior is found. In his original
experiments Rossby [43] discovered that convection sets in at Rayleigh numbers
Raw below the critical Rayleigh number Rac for the onset of bulk convection
predicted by Chandrasekhar [6]. Subsequent work by Goldstein et al. [18] showed
that this surprising behavior was due to the presence of a new mode of instability,
a precessing wall-attached mode. This prediction was confirmed in [23, 39] and in
associated experiments [62, 63], generating new interest in the properties of this
laterally confined mode [13].

In retrospect it is easy to understand the properties of this state [13]. We
employ polar coordinates (r, φ, z) and suppose that the wall mode has azimuthal
wavenumber m > 0, i.e. that the mode breaks the azimuthal invariance of the
system. Near onset we may write the temperature departure from the conduction
state in the form

θ(r, φ, z, t) = R{am(t) exp(−imφ) fm(r, z)} + . . . ,

where fm(r, z) is the eigenfunction of the mode m and am is its amplitude. When
the cylinder does not rotate and the boundary conditions are φ-independent, the
equation satisfied by am must commute with the symmetries

rotations : φ→ φ + φ0 : am→ am exp(−imφ0), (20)

reflection : φ→−φ : am→ ām.

It follows that ȧm = g(|am|2, ε)am, where g is necessarily real. The parameter
ε ≡ (Ra − Raw)/Raw measures the distance from onset; Raw also depends on the
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mode number m. Thus near onset ε � 1 and the function g may be expanded in a
Taylor series:

ȧm = εam + α|am|2am + . . . (21)

Writing am = Am exp(i�m) we see that the onset of a steady-state instability is
described by equations of the form

Ȧm = εAm + αA3
m + . . . , �̇m = 0.

The second equation is a consequence of neutral stability of the mode with respect
to rotations and shows that the bifurcation is a pitchfork of revolution.

Now suppose that the cylinder rotates with a small angular velocity �. The rota-
tion breaks the reflection symmetry but not the rotation symmetry. The coefficients
in Eq. (21) consequently acquire nonzero imaginary parts:

ȧm = (ε + i�δ)am + (α + i�β)|am|2am + . . . , (22)

where ε, δ, α and β are all functions of �2 and the mode number m. In terms of the
real variables we now have

Ȧm = εAm + αA3
m + . . . , �̇m = �(δ + βA2

m + . . . )

and conclude that the bifurcation is a Hopf bifurcation leading to a precessing state
of the form

θ = R{Am exp[i(ωdt −mφ)] fm(r, z)} + . . .

with drift frequency

ωd = �

(

δ − β

α
ε

)

+ O(ε2).

The predictions of this simple theory have been successfully tested in experiment
[13] and Fig. 27 summarizes the region in parameter space where precessing wall
modes are the first mode of instability for different Prandtl numbers Pr and aspect
ratios � ≡ D/H , where D is the cylinder diameter and H is its height.

Figure 28 shows the evolution of the wall modes in the nonlinear regime when
E = 10−6, σ = 1, � = 1.5. Close to onset (Ra = 5 × 107) the predictions of the
weakly nonlinear theory are borne out, and a steadily precessing retrograde mode
with m = 6 is found. At larger Ra a small amplitude random initial condition grows
more rapidly, and as it does so the pattern coarsens, selecting the mode number
m = 4. The figure shows that the system is bistable: both m = 6 and m = 4 states
are simultaneously stable at Ra = 5 × 107, cf. [35]. With increasing Ra the wall
modes become unsteady (Fig. 29a) but persist into the regime Ra > Rac where the
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Fig. 27 The (Ra, E) parameter space for convection in a rapidly rotating cylinder. Wall modes are
found between Raw and the onset of bulk convection at Rac. From [14]

Fig. 28 Midplane vertical velocity w (left) and fluctuating temperature θ at r = 0.74 (right) at (a)
Ra = 5× 107 and (b) Ra = 2× 108 together with associated temperature space-time plots. In (b)
Ra is reduced to Ra = 5× 107 at the dashed line to demonstrate multistability. Adapted from [15]

interior of the domain fills with bulk turbulence (Fig. 29b). Favier and Knobloch
[15], see also [47], suggest that these wall modes are responsible for the strong
boundary zonal flows observed in high Rayleigh number experiments [12, 60, 61],
a suggestion confirmed in recent work by Ecke et al. [14].

While it is surprising that the wall modes persist into the geostrophic turbulence
regime, it is even more remarkable that they are robust with respect to changes in
the geometry. To illustrate this fact we show in Fig. 30 a DNS of Rayleigh-Bénard
convection in a rotating cylinder with a thin, no-slip barrier along a half-diameter.
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Fig. 29 Midplane vertical velocity w (left) and fluctuating temperature θ (right) at (a) Ra = 5 ×
108 and (b) Ra = 2 × 109 together with associated temperature space-time plots. The wall states
persist in the presence of a turbulent bulk state in the interior. Adapted from [15]

Fig. 30 Vertical velocity in the midplane z = 0.5 for a cylinder with a barrier. The Rayleigh
number increases from left to right: (a) Ra = 5 × 107, (b) Ra = 5 × 108 and (c) Ra = 2 × 109.
Parameters are � = 1.5, E = 10−6 and σ = 1. From [15]

Figure 31 shows that the wall mode simply travels along the extra wall, but remains
essentially unchanged. Indeed, its radial profile (Fig. 31) and precession frequency
(Fig. 32) are essentially unchanged in the presence of the barrier.

The robustness of the boundary zonal flow is reminiscent of topologically
protected states in two-dimensional insulators [54]; see also [11, 53]. We describe
here a system of this type with a fluid dynamical flavor, and describe the generation
of sound waves in a chiral material described by a linear equation for density
changes (∂tρ = −ρ0∇ · v) and a linear equation for the associated velocity
v ≡ (u, v) (vt = −c2∇ρ/ρ0 + ωBv∗ + νo∇2v∗). Here ρ0 is the background
density, c the sound speed and ωB the chiral frequency. The latter couples linearly to
v∗ ≡ (v,−u) and thus corresponds to a Coriolis-like term. The important difference
from usual hydrodynamics is provided by the last term, which resembles viscous
dissipation but involves v∗ instead of v. The corresponding viscosity, called odd
viscosity, therefore acts like dispersion but does not result in energy dissipation.
The resulting system is therefore nondissipative and exhibits all the hallmarks of a
system with a topologically protected edge current [49]. Figure 33 shows a typical
consequence of this property. A localized perturbation initiated at the point indicated
by a red star leads to unidirectional propagation of sound along the boundary. Since
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Fig. 31 Spatio-temporal plots showing the temperature fluctuation θ at z = 0.5 and a fixed
distance δ = 10−2 from the boundary at (a) Ra = 5 × 107 and (b) Ra = 5 × 108. The dotted
lines indicate the positions of the four corners of the barrier. (c) Vertically and temporally averaged
velocity tangential to the boundary at Ra = 5 × 108 as a function of the radial coordinate r .
We distinguish between the cylindrical boundary and the different faces of the barrier. The results
are compared to the case without barrier. Positive values correspond to cyclonic motions while
negative values correspond to anticyclonic motions. The two vertical lines indicate the Stewartson
layer scales E1/3 and E1/4 [52]. Parameters are � = 1.5, E = 10−6 and σ = 1. Adapted from
[15]

Fig. 32 (a) Drift frequency −ωd as a function of Ra for � = 1.5, E = 10−6 and σ = 1.
The results for the full cylinder (blue color square) and the cylinder with a barrier (orange color
triangle) coincide. The theoretical onset value ωw ≈ −59E/σ predicted in [23] for the onset of
the instability in the presence of a planar wall is also reported (open circle). (b) Corresponding
volume- and time-averaged zonal velocity 〈uφ〉V,t . The dot-dashed line corresponds to the scaling
〈uφ〉V,t ∼ Ra − Raw . The volume integration is performed only over the left half of the cylinder
when the barrier is present. From [15]

the edge current is topologically protected the wave travels past obstacles along the
boundary with essentially no change, much like the zonal currents associated with
the wall modes in RRRBC. However, in our system the wall modes are fully three-
dimensional nonlinear waves maintained against dissipation by thermal forcing
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Fig. 33 Left: chiral fluid and basic equations. Right: simulation of two-dimensional topological
edge states in a cylinder for two different values of m ≡ ωBνo/c2, showing a plan view of a
wave emanating from a low-frequency source at the red star together with its radial profile. (a)
m = 0.0625. (b) m = 9.0. From [49]

from below, and with their own intrinsic dynamics. It is unclear whether waves of
this type are topologically protected, despite the similar behavior [15], and indeed
we observe a multiplicity of such unidirectional waves in RRRBC with transitions
between them. In contrast, in the odd viscosity problem the wavenumber is selected
by the frequency of the source, instead of dissipation.

7 Discussion

In this article we have provided a brief review of an asymptotic approach that has
proved useful in a number of fluid systems with strong restraints, including salt-
finger convection [59], magnetoconvection [28, 30], magnetorotational instability
[24, 37], dynamo instability [5], Langmuir circulation [9], shear flow instability [2]
and many others. In each case a similar procedure generates simplified equations
that are valid for extreme parameter values inaccessible to both laboratory and DNS
studies.

We have focused on RRRBC as a prototypical system, largely because it is
the system that is best studied both in the laboratory and in DNS. In this system
the restraint is provided by rapid rotation, as measured by the convective Rossby
number Roconv � 1. This regime favors small horizontal scales and our asymptotic
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procedure was designed to take full advantage of this fact. The reduced equations we
derived, the NHBGE, are a closed set of equations with O(1) parameters, providing
a non-stiff system characterized by a single key parameter, ˜Ra ≡ RaE4/3, that is
eminently suitable for numerical study. Comparison with the primitive equations
is possible if the reduced equations are scaled with respect to the viscous scale.
We presented results that show convincingly that the reduced system captures
the essential properties of RRRBC over a broad range of parameters. Indeed the
spontaneous evolution of large scale vortices and jets predicted by the reduced
equations was confirmed in subsequent DNS studies of the primitive equations, a
significant success of the proposed approach.

We emphasize that in strongly forced systems the primary balances are inevitably
inviscid. Thus for geophysical and astrophysical applications it is inappropriate to
use viscous lengths and times to nondimensionalize the equations. Instead of using
the primitive equations with conventional nondimensionalization we may scale all
fluid variables and the spatial and temporal derivatives based on the distinguished
powers of Ro identified here to obtain the rescaled equations [31]

(∂t+u⊥ · ∇⊥+Ro w∂Z)u⊥+ 1
Ro ẑ× u⊥=− 1

Ro∇⊥p̂+ 1
Re (∇2⊥+Ro2∂ZZ)u⊥, (23)

(∂t + u⊥ · ∇⊥ + Ro w∂Z)w = −∂Zp̂ + 1
Re (∇2⊥ + Ro2∂ZZ)w + Fw, (24)

∇⊥ · u⊥ + Ro∂Zw = 0. (25)

In fact, as shown in [31], the parameter Ro appearing in these equations can be

replaced by E1/3
˜Ra

2λ
, where the arbitrary scaling exponent λ (1/3 < λ ≤ 1)

emphasizes the large range of horizontal scales described by the theory.
The anisotropic rescaling ∇ �→ ∇⊥ + Ro∂Z and p �→ Ro−1p̂ ensures that

the rescaled equations converge smoothly to the asymptotic system (5)–(6) in the
limit Ro → 0. For RRRBC Fw represents buoyancy forcing whose strength ReH

is directly related to Ro through ReH = ReRo−1. We believe that the primitive
equations rescaled in the above manner may be more suitable for DNS at finite Ro
than the isotropically (and viscously) scaled equations conventionally used in DNS
studies.

We close with a list of open questions raised by our asymptotic approach:

• What is special about L/H = O(Ro) that allows closure?
• Are there other regimes where closure is possible?
• The approach points to the importance of phases of the small scales: can this

be confirmed and the interaction between the large scales and the phases of the
small scales be understood?

• Is homogeneous anisotropic turbulence in some sense (which?) unstable to the
formation of large scale structure?

• Is this a subcritical bifurcation? Or are the large scale structures noise-sustained?
• Can a similar description of the fast dynamics be developed and the two

descriptions coupled?
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• Can vortices be computed as localized structures [36] of the NHBGE and
interactions among them studied?

• What is the origin of the robustness of the boundary zonal flows?
• How useful is the anisotropic rescaling (23)–(25) for DNS at finite Ro?

We hope that some of these questions will be answered in ongoing work.
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Ocean Surface Waves
and Ocean-Atmosphere Interactions

Francisco J. Ocampo-Torres, Pedro Osuna, Héctor García-Nava,
and Nicolas G. Rascle

Abstract The relevance of ocean surface wave dynamics is briefly reviewed. Some
aspects are acknowledged from the traditional point of view, regarding mainly
coastal and oceanic engineering applications, ship design, as well as maritime
operations. More recently, interest is well focused at the exchange processes
between the ocean and the atmosphere, to deal with weather and sea state forecast,
as well as prediction and climate projections. We are mainly concerned with some of
the most important applications, very much related to the influence of ocean surface
waves on present challenging issues. One particular issue is the gas transfer across
the interface and its potential impact on climate and its changes. Another one is
the upper ocean dynamics and the behavior of surface currents and drift, greatly
associated with transport of pollutants and objects on the sea surface (a very key
issue when ocean and atmosphere are not in equilibrium in the interface sense). Fur-
thermore, fundamental processes associated with observing the ocean with remote
sensors are also a challenging aspect that requires a great knowledge of ocean
surface waves behaviour. For instance, from ocean surface images acquired with
synthetic aperture radars it is possible to indirectly determine the wave directional
spectrum, essentially since ocean waves modulate the microwave reflectors, which
represent a rather small scale roughness of the very sea surface. The main challenge
to estimate the directional wave spectrum is shown and some preliminary results are
presented. This challenge is also approached from aspects more related to the upper
ocean dynamics, with another example of laboratory experiments aiming to obtain
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the fluid velocity field in a layer just beneath the sea surface when acoustic Doppler
methods are used, and subsequently estimate the surface drift induced jointly by
wind and waves. Final remarks suggesting the way ahead regarding ocean surface
wave dynamics research are delineated.

1 Introduction

Even if waves on water surfaces represent probably one of the most studied fluid
phenomenon, wind generated ocean surface waves are of a rather complex nature
and they still remain as one of the most difficult geophysical problems to be fully
understood. Understanding its dynamics and having the proper skills to forecast
them is a critical issue in many oceanic applications, covering a wide range of
particular subjects within maritime and coastal engineering.

It has been recognized since long time ago that large amount of information
about the behaviour of ocean surface waves is needed to many practical applications
regarding mainly to planning and design of coastal and oceanic infrastructure, to
programe maintenance activities and even for the design of ships as naval architects
rely on historic data. This relevance of ocean surface wave information may be
considered as classical fact. As Mitsuyasu [1, 2] pointed out, it can be said that
surface wave dynamics modern studies started a few decades ago [3], while before,
ocean surface waves were considered to be too disordered to be treated properly.

Nevertheless, very important and complete mathematical treatment and physical
understanding of water waves have been achieved decades ago. Mainly regarding
waves over water surfaces, their form and propagation were described by very rele-
vant studies by Laplace, Poisson, Lagrange, Stokes, Airy, Rayleigh and Boussinesq
in the eighteenth and nineteenth centuries. Weber and Weber [4] have presented
a very comprehensive compilation and included experimental observations and
results, while recent reviews of the historical development have been advanced by
Darrigol [5] and Craik [6].

Furthermore, first attempts to deal with the generation of waves by wind were
described by Jeffreys [7, 8]. Therefore, we can say that modern wave forecasting
started in the 1920s with swell forecasts for Morocco coastal region [9, 10], although
a more general approach was developed by Sverdrup and Munk [3] considering the
full life cycle of waves, particularly including the description of processes such as
generation by the wind and dissipation in the middle of the ocean, coastal regions
and on beaches. Ocean surface wave studies were advanced towards the applications
of forecasting in the coastal regions very much linked to maritime operations and
disembark. Nevertheless, great deal of work and research has also been devoted to
other types of engineering applications and this is reviewed in the book of Dean and
Dalrymple [11].

Advance in research in the 1950s and 1960s was rather more associated with the
understanding of the physics and dynamical processes of ocean surface waves and
to properly incorporate that knowledge into development of numerical models for
the forecast of the wave spectrum.
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A spectral model of wind waves was presented by Pierson [12] somehow
influenced by the fundamentals of the theory of random noise [13]. Meanwhile
Neumann [14], determined a spectral form of developing ocean surface waves by
using his observed wave data. Joint efforts resulted in a seminal paper on practical
methods for observing and forecasting ocean waves by means of wave spectra and
statistics [15].

Through fundamental studies and theoretical work it was shown that wind wave
growth was initially linear [16] but ultimately exponential [17] in time, and later
Miles [18] combined those two previous theories. Based upon the idea of an
equilibrium range in the wave spectrum and through a dimensional analysis, Phillips
[19] showed that for large values of the frequency, the spectrum reached a definite
form which only depends on the frequency.

With the increase of ocean wave data great effort was devoted to determine the
similarity form of the ocean surfaces wave spectrum. Based upon the similarity
theory by Kitaigorodskii [20], probably the most successful result was given by
Pierson and Moskowitz [21].

Besides the needs for better understanding of ocean surface waves for the
classical applications i.e. design of coastal and oceanic infrastructure, and the design
of ships and regulations for safety at sea, further research since few decades ago
was fostered by the relevance of ocean waves on processes at both sides of the sea
surface and essentially on the exchange between ocean and atmosphere as well as
on mixing at the upper ocean layer, with some emphasis also on basic knowledge
required for ocean remote sensing applications. A great number of field experiments
and very important theoretical developments were carried out in the last decades that
provided much needed basic and fundamental knowledge.

From the point of view of theoretical work, a very important and complete
scheme to deal with nonlinear wave-wave interactions was proposed by Phillips
[22], and further extensions and generalized form was advanced by Hasselmann
[23–25]. Therefore, on one hand important theoretical framework has been estab-
lished, while on the other, great numerical difficulties and computer limitations of
the time, prevented from further development especially in operational forecasting
numerical models. Nevertheless, practical approximations have been developed
since the first scheme (Discrete Interactions Approximation) was presented by
Hasselmann et al. [26], and they are now being used in forecast numerical routines.
It is still important to mention a very relevant challenge. It seems it remains as
a very difficult task to provide field measurements evidence for the nonlinear
interactions being as relevant as the theory predicts. Maybe this aspect of ocean
surface wave dynamics requires a lot more of attention and efforts to make an
appropriate progress.

From the Stereo Wave Observation Project (SWOP), the first field campaign to
estimate the directional wave spectrum as a function of the wavenumber vector
k from stereo pairs of photographs of the sea surface [27], when they observed
a narrow directional wave spectrum for the longer waves (in comparison with
the shorter ones) and a remarkably close results to theoretical spectrum derived
by Neumann, to the Joint North Sea Wave Project (JONSWAP) when a classical
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spectral form was defined and basic elements were developed to advance on the
relative importance of non-linear energy transfer among wave components for the
evolution of the spectrum [28]. Wave measurements were also carried out with an
array of wave staffs in Lake Ontario [29], and it was determined that the frequency
spectrum in the rear face is inversely proportional to ω−4 while the directional
spreading of the wave energy has the form sech(θ), where ω is the wave frequency
and θ the wave propagation direction relative to the wind.

The relevance of surface waves on air-water interaction processes was more
recognized with time, and with results from very detailed laboratory experiments
a clear influence of waves besides the wind speed was identified [30] especially
in the transfer of carbon dioxide and water vapour under smooth and rough flow
conditions.

More recently during the Surface Wave Dynamics Experiment [31], wave
directional spectra were measured along with estimates of fluxes between ocean
and atmosphere. The presence of swell, both counter and cross direction relative to
the wind, showed that the drag coefficient was larger than under conditions of pure
wind sea. Later on new experiments were designed and carried out, for instance:
The “Flux, etat de la mer, et télédétection en conditions de fetch variable” ETCH
experiment [32]. Some of the objectives of this experiment were closely linked to
the estimation of turbulent fluxes in the open ocean and to determine the effect of
the sea state on those fluxes when fetch-limited wave growth was also considered.

As it is pointed out in a rather comprehensive analysis [33], the ocean-
atmosphere coupled system deserves further attention and it is a future challenge
to include simultaneous measurements of winds, currents and waves, since they are
crucial for the air-sea exchange of momentum, energy, heat, freshwater gases and
other tracer gases.

The focus of this contribution is on the relevance of ocean surface waves in air-
sea interaction processes, and in Sect. 2, recent developments are described very
much linked to momentum and gas exchange. Specific aspects associated with the
influence of ocean surface waves in the CO2 exchange in relation to our planet’s
climate and its future scenarios is presented in Sect. 3. In Sect. 4 emphasis is given
to remote sensing measurements of the ocean and its relation to direct observations
of dynamical processes of the upper ocean. Finally, some concluding remarks are
provided in Sect. 5.

2 Recent Developments on Air-Sea Exchange of Momentum
and Gases

In order to properly address ocean-atmosphere interactions and to study their
associated processes, it is important to be able to obtain direct measurements of the
relevant variables and the fluxes of interest from appropriate observing platforms.
They could be fixed structures, research vessels, floating platforms and buoys. Quite
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a number of experimental field campaigns have been organized and carried out in
the last decades with various different platforms and devices. From the Floating
Instrument Platform (FLIP) to other various research vessels, fixed platforms in the
coastal region and continental shelf, surface buoys, among others, important results
have been put forward to advance our knowledge regarding the influence of ocean
surface waves in air-sea interaction processes. Now, remote sensing of the ocean is
also considered as an essential and needed component for a complete and robust
global ocean observing system, and a very detailed description of the relevance of
different measuring techniques associated with studying the sea state is given by
Ardhuin et al. [34].

In this section, at least when dealing with the air-sea momentum fluxes, we will
rather focus our attention to observations obtained from buoys and in a specific
case from FLIP. An air-sea interaction spar (ASIS) buoy has been designed and
successfully tested since some time ago (Graber et al., 35) and this type of measuring
platform has been used later on in various field experiments [32, 36, 37]. A view of
the first ASIS type buoy deployed in Mexican waters is given in Fig. 1.

Even if the global coupling between the ocean and atmosphere is of outmost
relevance to climate and general circulation, this time we are more concerned with
the specific air-sea interaction problem trying to define the particular processes
and the influence of ocean surface waves, to merely work towards establishing the

Fig. 1 Air-sea interaction spar (ASIS) buoy deployed in 2005 in the Gulf of Tehuantepec, Mexico,
during the INTOA Experiment [36], with the support of the DR06 Bahía Tepoca vessel from the
Mexican Navy (Secretaría de Marina-Armada de México), as seen in the background (Photo: S.
Ramos)
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boundary conditions that are to be applied to the sea surface (the ocean-atmosphere
interface) in order to determine the specific mean conditions on either side of that
interface. The main constraint on the mean horizontal momentum equation is the
vertical flux of horizontal momentum i.e. the surface stress, which in this case comes
from the wind effect upon the sea surface (or vice versa in some cases in the real
ocean). In a similar fashion, the vertical flux of a property or gas, such as CO2, is the
main constraint in the mean concentration equation. Probably a common practice is
to determine the surface fluxes from mean values, which might be reasonable if
we have appropriate parametric description of the transfer process. We rely on the
so-called bulk aerodynamic formulae to estimate [38] the air-sea fluxes such as:

w′q ′ = E

ρ
= −CE(Qz −Qs)(Uz − Us) (1)

w′m′ = F

ρ
= −CF (Mz −Ms)(Uz − Us) (2)

where E stands for evaporation and F is the gas flux across the interface. The
fluctuations of the vertical wind velocity is denoted with w′, while q ′ and m′ are the
fluctuations of the concentration of water (specific humidity) and gas, respectively.
The bar over the fluctuating variables denotes the covariance. The subscripts z and
s indicate the height where the measurement is taken and the surface, respectively.
Water vapor saturated value at the surface is Qs . The bulk transfer coefficients are
then identified as CE , the Dalton number for water vapor, and CF for gas flux.

While we can establish a way of determining the fluxes directly, through the
measurements of fluctuating quantities, this is not an easy task to perform regularly
in the field, neither there is a simple way to include this type of information in
numerical models that are routinely operated to forecast the weather and sea state
or to predict future scenarios of our planet’s climate. Often, the bulk formulae are
used and they are considered as the only available alternative. One concern is the
knowledge or the meaning of the transfer coefficients, which are over charged with
many details and we tend to include unknown processes behaviour into them.

We certainly can advance our knowledge of specific air-sea interaction processes
when we measure directly the fluxes and every other relevant environmental
variable, in our case it should mean we need to properly measure the ocean surface
wave field simultaneously.

2.1 On the Transfer of Momentum Between the Ocean and
Atmosphere

Although fluxes described with Eqs. (1) and (2) relate to scalar properties, a similar
form of equation can be considered for the vertical flux of horizontal momentum.
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From wind velocity components measured by a sonic anemometer, for instance,
the wind stress (τ ) can be directly calculated through the eddy-correlation method
as

τ = −ρ
(

u′w′î + v′w′ĵ
)

, (3)

where u′, v′, and w′ are the turbulent velocity components, ρ is the air density,
the over-bar represents time averaging over a certain period of time (typically 30
minutes or so), and î and ĵ represent unit vectors. The sign is such that τ is in the
direction of the horizontal velocity vector for a downward flux.

Furthermore, the wind friction velocity (u∗) can be directly estimated as u∗ =
[|τ |/ρ]1/2. We see that we relay on the bulk formula and wind stress is typically
expressed in terms of the drag coefficient, CD , by

|τ | = ρCDU2
z , (4)

where we usually avoid a dependance of CD on measuring height and atmospheric
stability, and CD is computed for neutral conditions at the 10 m standard height.
Wind speed is typically converted to a neutral conditions value using the flux profile
relation [38], such that

UzN = Uz + u∗
κ

ψu , (5)

where κ is the von Kármán constant, ψu = ψu(z/L) represents the non-dimensional
gradient suggested by Donelan [38], and L is the Obukhov length. Wind speed at
standard 10 m height is then calculated assuming a logarithmic wind profile

U10N = UzN + u∗
κ

log
10

z
(6)

and the drag coefficient directly determined through Eq. (4).
We may then investigate the behaviour of the drag coefficient in order to

determine and study the influence or effect on the wind stress that comes from
the various different processes involved. A simple examination of CD results as a
function of wind speed will readily show that the wind stress does not only depend
on the wind itself, but some other processes are present and owe to be considered
in order to properly describe the momentum transfer and to be able to incorporate
all pieces of information for the ocean-atmosphere coupled numerical models best
performance.

Recent results from a field campaign carried out during winter 2017–2018
are shown in Fig. 2. The drag coefficient is estimated upon the direct calculation
of the wind stress according to Eq. 3. General sea state conditions include the
simultaneous presence of swell and wind sea [39], with swell dominance during
most of the measurements period of time. It is important to mention that swell
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Fig. 2 Drag coefficient (CD10N ) as a function of wind speed (U10N ) as obtained from measure-
ments with an ASIS buoy offshore Bahía Todos Santos, Baja California, Mexico, during the field
experiment carried out between November 2017 and February 2018. Each dot represents the results
from eddy covariance using an average over 10 min. Diamonds correspond to wind speed bin
average in 1 ms−1 classes. The relationships obtained from previous experiments are also shown,
Smith (1980) as red line, Ocampo-Torres et al. [36] as blue line, and Pan et al. [41] as grey dashed
line. The inset histogram recalls in the number of data considered as a function of wind speed
[ms−1]

propagation direction was practically the same as the wind sea. Under low to
moderate conditions, the drag coefficient decreases with wind speed, a behaviour
already observed in some previous studies [36]. When wind conditions are moderate
to strong, the drag coefficient increases with the wind speed, and the values reported
are rather similar to those associated with the relationship provided by Smith [40],
resembling more open ocean conditions. It is most likely that the differences shown
with respect to the results obtained in the Gulf of Tehuantepec [36] and those in the
Gulf of Mexico [41], are associated to the swell presence and their characteristics.
Conditions in those studies were rather particular, swell opposing locally wind
generated sea in the Gulf of Tehuantepec, and rather short and young swell in the
Gulf of Mexico.

So far, we here draw attention to the study of momentum transfer from the
analysis of its magnitude only. However, it should be bear in mind that the horizontal



Ocean Surface Waves and Ocean-Atmosphere Interactions 43

momentum is a vector quantity. Therefore, when dealing with the potential effect
of swell, it should be important to also consider the swell propagation direction,
probably not only in the local and micro scale of the processes we are trying to
understand, but also in a wider view and larger scales. The challenge should be taken
and then study the behaviour of swell even from their generations spot, considering
that it will might affect somehow air-sea interaction processes and the weather
patterns all along its travel to the coast. It should also be taken into account that
there most likely will be a two-way interaction between swell and the atmosphere
boundary sub-layer just above, and into larger scales, there might be implications to
and from climate patterns.

Nevertheless, coming back to the results from the INTOA experiment [36], the
relative importance of the swell present during the field measurement period on
the sea surface roughness is shown in Fig. 3. The wind-sea energy Eol is shown as
function of friction velocity u∗, while the relative swell importance as given by the
swell index is indicated with the colour scale. Also, black dashed line is the best fit
to the BHDDB data ensemble [28, 29, 42–44], under near-neutral and steady wind
conditions.

It is readily noticed that for a specific wind friction velocity, locally generated
waves are higher when swell is less important. This apparent inhibition to wind-
sea grow due to the presence of swell in the opposite direction is still a matter of
research, where definitely more efforts and new measurements are required.

Let’s now address some results and analysis regarding the wind stress direction.
If we stick to the bulk formulae, wind stress direction will always be the same as the

Fig. 3 Wind-sea energy Eol as a function of friction velocity u∗ from data obtained during the
INTOA experiment [36]. Swell index is indicated with the colour scale. Black dashed line is the
best fit to the BHDB data ensemble [28, 29, 42–44], under near-neutral and steady wind conditions
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mean wind direction, for it is only the magnitude |τ | what it is considered, and the
actual direction is disregarded.

From measurements acquired from FLIP, and through one of the first descriptions
of the deviation of wind stress with respect to the mean wind direction [45], it is now
recognized that in general mean wind and wind stress not necessarily are alligned.
This deviation comes from surface or near-surfaces effects, which might be due
to the sea surface geometrical structure, the presence and dynamics of swell, and
also from surface currents (mean and large scale, wind induced and wave generated
surface currents) and from the dynamics within the upper ocean.

Results from the INTOA experiment show that the deviation of the wind stress
relative to the mean wind might be considerable, and that the presence of swell plays
a significant role, as it can be seen in Fig. 4.

Further efforts are required to better understand the wind stress resultant
direction, since this is of paramount importance for ocean-atmosphere coupled
numerical models to properly describe the transfer of momentum which ultimately
will determine the amount of kinetic energy into (and out from) the oceans. It is

Fig. 4 Relative direction of wind stress with respect to the mean wind [degrees], as a function of
reference wind speed at z = 10 m height. The horizontal dashed line refers to wind stress aligned
with the mean wind direction. The relative importance of wind-sea and swell are indicated with
symbols. Each symbol correspond to eddy covariance results with average over 30 min, from data
obtained during the INTOA experiment [36]
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this knowledge probably much more critical when dealing with the important small
scale processes at, and on both sides of the interface, the generation of ocean surface
waves, upper ocean turbulence and surface drift, for instance. The wind stress vector
may deviate considerably from the mean wind flow [46]. This might include cases
when stress is directed across or even opposite to the wind. Proper determination of
the wind stress vector is very important in many other applications, end especially
those associated with oceanography from space or remote sensing of the ocean
surface, particularly when considering that with most remote sensing techniques
we can directly detect details and processes right at the sea surface only.

2.2 On the Transfer of Mass and Carbon Dioxide Between Air
and Water

Here we now deal with the idea regarding the influence of ocean surface waves
in the transfer of scalar quantities, in some detail on the evaporation process and
with further expansion on the transfer of carbon dioxide between the ocean and
atmosphere.

Besides the natural curiosity of understanding the actual processes driving and
affecting somehow the overall air-sea transfer mechanisms, it has been clear that
we aim to obtain the best of our knowledge in that respect, in order to be able to
predict in the most appropriate fashion the ocean-atmosphere exchange processes
of greenhouse gases for instance, and in due course to predict our climate and its
changes. Weather and climate predictions are now possible mainly through the use
of powerful numerical models, where the best of our knowledge is incorporated and
coded in a computer language.

For the specific case of climate description and prediction, as well as for the
generation of future scenarios and projections, these powerful models, among
many other tools and schemes, make use of parameterizations of the formulae that
represent physical, chemical, and other relevant, processes. And specially when
dealing with the fluxes of important greenhouse gasses like carbon dioxide FCO2 ,
then an expression [47] such as

FCO2 = kCO2([CO2]sat − [CO2]), (7)

is considered, where [CO2] is the gas concentration and [CO2]sat is its corre-
sponding saturation concentration in equilibrium with the water-vapor-saturated
atmosphere at a total atmospheric pressure Pa . As it is seen, the gas transfer velocity
kw plays a crucial role in the estimation of the fluxes between ocean and atmosphere,
and it is definitely important to rely in its most complete version, for it is through this
velocity where the most important processes driving and affecting the CO2 transfer
are incorporated into the models.
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From a series of laboratory experimental runs it was determined that the
exchange of slightly soluble gases, such as CO2, as well as the evaporation process,
do not depend solely on wind speed [30]. The experiments were carried out in
a specially designed and tightly closed gas transfer flume, including smooth and
rough flow conditions. With the very detailed results of this classical work, the
importance of establishing and studying the mass transfer velocity as well as the
exchange coefficients was recalled.

The wind-speed dependance of kCO2 showed to be stronger than linear. For the
case of evaporation, a wind-speed dependance of kH2O was also clearly observed,
and it was noticed that kH2O increased with wind speed for all range of speeds
considered, while for the case of CO2, its transfer velocity remained constant when
wind was lower than 3 ms−1. Furthermore, a clearly increase in kCO2 was observed
associated with the onset of initial waves, that occurred when wind speed reached
about 3 ms−1. As expected kH2O did not show any sudden increase associated with
the onset of initial waves, showing evidence on the difference on water phase and air
phase limited compounds. Micro breaking of small waves are much associated with
an effect of ventilating the water side diffusive sub-layer, and with a much smaller
effect on the turbulence in the air side.

As it was considered earlier, it is convenient to make use of the bulk parameter-
ization of the transfer rates or velocity in terms of wind speed, we then refer to the
bulk transfer coefficient or Dalton number. Both, Dalton number for evaporation
DH2O and for the CO2 exchange process showed a minimum when wind was
between 2 and 3 ms−1. That very detailed dependance of the bulk transfer coefficient
was presented for the first time, stressing the influence and the relevance of other
processes besides wind speed on the air-sea interaction processes.

When trying to compare the mass transfer velocity of gases that are limited in
different phases, a proper alternative is to convert them to a common reference.
We owe to consider the most important physical and flow characteristics. These are
viscosity for air and water, νa and νw , respectively, as well as the Schmidt numbers
for H2O and for CO2, and friction velocity in both air u∗a and in water u∗w, and the
mean square slope of the waves. The mass transfer velocities for H2O and for CO2
are then normalized by the corresponding friction velocity, such as:

KH2O = kH2O/u∗a (8)

KCO2 = kCO2/u∗w (9)

The results were given as a function of the appropriate Reynolds number [30],
such as:

Re∗a = z0 u∗a
νa

(10)

Re∗w = z0 u∗w
νw

(11)
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Fig. 5 Results for normalized mass transfer rate K as a function of Reynolds number Re∗.
Estimations were obtained in laboratory experiments [30], KCO2 as calculated from rate of change
in concentration in air are black diamonds, and those in water are black squares. Results of Jahne
et al. [48] linear fit is shown (green line). For comparison KH2O was adjusted to a Schmidt number
equal to 600 using exponent of −0.704 (filled circles) and −0.58 (open circles). Solid wall results
of Shaw and Hanratty [49] for smooth flow (blue line) and of Dawson and Trass [50] for rough
flow (purple line) are also shown. Modified from Ocampo-Torres et al. [30]

and they are reproduced in Fig. 5
The transfer of H2O is determined by the near-surface turbulence in the air and

the dense water surface is more appropriately viewed as a solid wall that as a free
surface. On the other hand, since CO2 is a slightly soluble gas, the resistance to
its transfer takes place most importantly in the aqueous phase, then the transfer
properties are determined by the turbulence in the water near the free surface.

The KCO2 results [30] show higher normalized mass transfer rates than those
corresponding to a solid wall (blue and purple lines). Jahne et al. [48] have
demonstrated this enhancement in comparison to the transfer over a solid wall
results, they showed that the normalized mass transfer rate are well represented by
a dependance on as 0.11Sc (green line). These experimental results confirm those
from Jahne et al. [48].

The experimental results of KH2O are not in agreement with the empirical results
from mass transfer at solid wall, a factor of 2 lower at low Reynolds numbers
(compare filled circles with blue line). At high Reynolds numbers, experimental
results of KH2O intersect the results of Dawson and Trass [50] but they are not in

agreement with their Re
−1/4∗ (compare open circles with purple line). This is an

important warning and show inadequacies of the solid wall results in predicting
transfer rates of air phase limited compounds at the air-water interface.

A better modeling of air-water exchange of gases requires new experiments and
insights, and definitely further and detailed measurements both in laboratory and in
the open ocean, to clearly establish Schmidt number, Reynolds number and wave
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slope dependancies of normalized mass transfer rate of both air phase and water
phase limited constituents.

It is rather well known that air-gas exchange has been of intensive scientific
research for several decades for its great importance to biogeochemical cycles
of climate and weather, at least. Also, it has been recognized that gas exchange
contributes to reduce green-house effect through absorption of CO2 by the ocean.
Accordingly, excellent reviews have already been provided [51, 52] where the
authors stress, among other issues, about the increasing evidence that the gas
transfer cannot be adequately quantified solely with wind speed. A summary of
selected key contributions in that respect follows.

Direct covariance method to obtain air-sea CO2 fluxes is proven to be effective
and provide best results, as it has already been reported [53]. The authors describe
the very relevant results of an interdisciplinary air-sea gas exchange experiment
(GasEx-98) carried out in May and June, 1998, in the North Atlantic.

The oceanographic cruise included a wide range of independent air-sea gas
exchange measurement techniques. Of particular importance for this section are
those associated with estimates of air-sea gas exchange as they were derived from
CO2 atmospheric gradients, and from direct covariance CO2 measurements. As
main results, the authors pointed out that the air-sea gas exchange measurements
when wind conditions were in excess of 11 ms−1 show a general enhancement of
gas transfer velocity with respect to other previous indirect measurements. This
enhancement might be well explained by the fact that the indirect methods cannot
discriminate important surface process variability such as atmospheric stability
upper ocean mixing, and specially ocean surface wave characteristics like wave
age, wave steepness and wave breaking. It is definitely clear that in order to better
understand the relationship between gas physical properties, surface processes, and
air-sea CO2 exchange, direct CO2 flux measurements are very relevant and certainly
needed.

Even if specific wave influence is already refer to, the authors advanced an
expression for the gas transfer velocity k, such as

k660 = 3.3+ 0.025U3
10 (12)

where it has been related to Schmidt number equal to 660. Furthermore, with
some more analysis incorporating de drag coefficient (exchange coefficient for
momentum) and considering the CO2 exchange associated Dalton number, a
modified and certainly more complete representation is given as,

kCO2 = C
−1/2
D UrCCO2 (13)

where CCO2 is the CO2 transfer coefficient when u∗ is considered and it is defined as
CCO2 = kCO2/u∗. Results from the open ocean as in the GasEx-98 Experiment also
showed a minimum in Dalton number DCO2 when wind speed U10 was near 3 ms−1

(see Fig. 10 in McGillis et al. [53]), confirming previous laboratory experiments
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results [30]. This also helps to emphasize that processes controlling air-water CO2
transfer, those processes in the aqueous boundary layer, are not the same as those
processes controlling the water vapor fluxes.

Further air-sea gas exchange measurements were needed and some were carried
out during the GasEx-2001 Experiment [54], which took place in the equatorial
Pacific in the South Equatorial Current, in February 2001. Other physical processes,
in addition to wind, were observed to control the rate of CO2 transfer from the ocean
to the atmosphere confirming that these processes owe to be taken into account in
local and global biogeochemical models. The results strongly establish the fact that
gas transfer parameterizations that rely solely on wind will be insufficient for regions
with low to moderate winds and specially with strong insolation. The persistence of
low to moderate wind over the ocean and relatively high values of air-sea pCO2
difference (CO2 partial pressure), proved to be effective for the region to prevail
with high mean transfer of CO2 to the atmosphere. From a regression analysis with
the air-sea gas transfer data on wind speed a parameterization for the gas transfer
velocity is

k660 = 8.2+ 0.014U3
10N, (14)

although it is clear that ocean surface wave characteristics have to be considered
properly especially for the low wind conditions prevailing, when it is clear that the
wave field is not necessarily coupled or directly linked with the local wind field.
Gas transfer velocity is readily noticed to be higher than other parameterizations
for low wind conditions (see Figure 12 from McGillis et al. [54]), however,
data and regression analysis provide values well between previous and classical
parameterizations. Special care should be taken when swell waves are predominant
and the surface wave spectrum is not associated with waves in equilibrium with the
wind.

In one of the first attempts to incorporate the wave breaking effect on the gas
transfer of gases [55], it was assumed that the transfer velocity k was the sum of two
contributions,

k = k0 + kb, (15)

where the non-breaking k0 contribution [48] was given as,

k0 = 1.57× 10−4u∗(600/Sc)1/2, (16)

and the breaking contribution is proportional to W the fractional whitecap coverage,
such as kb = 850 W. This model and description provided much promise, mainly
due to the incorporation of a relevant form of Reynolds number, which is defined
approximately to W , therefore

W ∼ RHw (17)
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and

RHw = u∗H/νw (18)

being νw the kinematic viscosity in water.
With another important modeling work [56], a mixing length model was pro-

posed specially for the aqueous boundary layer including the effect of wave breaking
on enhancing gas transfer. Wave breaking is a source of vertical turbulent energy to
the aqueous boundary layer. Breaking therefore acts to disrupt the very thin viscous
sub-layer near the surface. An important consideration is that dissipation rate,
overall variance integrated over all wavenumbers, corresponds to an unambiguous
connection with the effect of wave breaking on the mixing length. The resulting
model is rather general, it can be used for all sparingly soluble gases and any gas-
liquid interface. The model established for the air boundary layer, is then applied
to the water boundary layer with the important role of wave breaking in mixing the
sub-layer, once it is included through wave dissipation rate.

In both studies previously referred to, wave breaking was assumed very linked
to the local wind, which is very much the case when wind is acting to force upon
the sea surface, generating wind-waves, making them to grow, and maybe leading
to reach well developed sea, in all these conditions there is wind-wave coupling.
However, wave conditions out of equilibrium with the local wind is commonly
observed in coastal regions, therefore modeling air-sea fluxes in those regions are
even more limited if parameterizations used rely solely on wind speed. Typical
conditions nearshore can be seen in Fig. 6 and, where most of the time it is swell
waves what arrives to shore, beaches or cliffs.

Therefore, direct calculations of gas transfer fluxes (through eddy-covariance
method) are still much needed in order to properly take into account those processes
besides the wind. Recent measurements in a coastal region near Ensenada B.C.,
Mexico, show a sink of CO2 into the coastal ocean during the period of the field
campaign carried out from May 2014 to April 2015 [57]. Results of air-sea fluxes in
the coastal region are shown in Fig. 7.

Although, it was not possible to estimate the transfer velocities, direct measure-
ments during this experiment allowed us to calculate the fluxes for both, evaporation
and CO2. As expected from the coastal region conditions, air-sea fluxes results
showed no direct association with the local wind speed (see Fig. 8).

However, the significant wave height HS was found to be best correlated with
FCO2 based on quantile-regression analysis. Simultaneous measurements of CO2
concentration in both sides of the interface are necessary to fully assess the effect
of waves and their breaking process both on the fluxes and on the gas transfer
velocity. We are continuing to explore these ideas in the coastal region, we therefore
anticipate our plans to deploy an ASIS type buoy (see Fig. 9) in the vicinity of Todos
Santos Islands, offshore Ensenada B.C., Mexico, in the near future, with a suite of
instruments that will include fast response CO2 infra-red sensors.

While it is generally understood that air-sea flux of CO2 is a critical part of the
climate system, its contemporary behaviour is investigated with the use of an air-
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Fig. 6 Coastal region where experiments to calculate CO2 fluxes directly were carried out [57].
Swell is very common in this region, then wind conditions are not in equilibrium with the sea state.
Waves effect in the gas transfer between atmosphere and ocean in the coastal region should be
appropriately included, besides wind speed, in transfer velocity descriptions. Light wind is readily
apparent in the scene

sea flux equation [59], with special attention to some uncertainties. In particular,
uncertainties derived from the gas transfer velocity when using a set of eight
formulations. Even if there is growing evidence on the effect of ocean surface waves
on the gas transfer velocity, with this work the various gas transfer formulations
used are given as a function of wind speed through polynomial expressions. The
traditional wind-speed-dependent parameterization is used, as

k = (600/Sc)1/2(c0 + c1U + c2U
2 + c3U

3), (19)

where U is the wind speed corrected to an equivalent value in a neutrally stable
atmosphere (U10N , already defined before), and the coefficients c are provided (see
Table 1 in Woolf et al. [59]). These expressions are an example of those found
experimentally somewhere else, but they provide a reasonable test for uncertainties
in fluxes as they result from the uncertainties in the gas transfer velocity.

At least within the global context of this analysis, it seems that the primary cause
of uncertainty in the contemporary global annual value of net air-sea CO2 flux (-
3.0 ± 0.6 Pg C/year) is the uncertainty in the transfer velocity. It is still expected
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Fig. 7 Time series of fluxes calculated through eddy covariance method in the coastal region near
Ensenada, B. C., Mexico during 2014–2015, for both carbon dixode and evaporation. Positive flux
is towards the atmosphere

that better and more consistent models of air-sea gas transfer velocity (probably
more refined than those associated with Eq. 19) being generated by different authors
would contribute to greater confidence in those estimates. It might be crucial the
proper incorporation of better description of the effect of ocean surface waves in
the gas exchange, mainly because these type of expressions are the ones used in the
most advanced climate system models to predict the future climate in our planet.

Research aim at determining wave characteristics influencing gas transfer origi-
nated some decades ago [30, 48] where it was shown that the mean square slope
was an appropriate index for the gas transfer velocity. Wave breaking and the
fractional area coverage of microbreakers in laboratory experiments [60, 61], as well
as whitecap coverage at open ocean were also considered to scale the gas transfer
velocity. Meanwhile, wind-sea Reynolds number was proved to be somehow better
than wind speed in describing whitecap coverage [62]. Making use of the idea of
wind-sea Reynolds number, some more elaborated results have been reported very
recently [63] where a nondimensional version of gas transfer velocity K̃ has been
presented, from observations obtained in laboratory experiments. Two expressions
were developed such that

K̃ = 4.6× 10−9[bT RHB(1+ Ũ)]−0.70 and (20)

K̃ = 2.0× 10−9[RHM(1+ Ũ)]−0.69, (21)
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Fig. 8 Coastal region scene where swell is observed to be present, another clear example when
wind conditions are not in direct association with ocean waves. Rather strong wind is affecting the
waves in such a way that fluid separation is observed in some wave crests. Swell waves arriving
are present regardless of wind conditions

where

RHM =
HsUwm

νw

and RHB =
HbUwb

νw

, (22)

are a novel version of wind-sea Reynolds numbers. They both have the same struc-
ture but include different wave parameters: in RHM some statistical characteristics
of all waves are then considered, the significant wave height Hs and the mean orbital
velocity Uwm are taken into account, while in RHB, wave breaking features are
highlighted, therefore height Hb and orbital velocity Uwb associated with breaking
waves are considered. When estimating the nondimensional gas transfer velocity
K̃ through Eqs. 20 and 21, the wave breaking probability bT and a nondimensional
version of the wind speed Ũ = u∗/

√
gHs are to be considered.

It should be clear now that we need better physical models for kCO2 where wave
effects are explicitly included in order to reach improved flux estimates over specific
and limited spatial domains, as well as over certain temporal events that might
lay away from the mean behavior of the wind-based formulas. It is recognized
that kCO2 is critical to the prediction of CO2 fluxes in the global climate system,
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Fig. 9 Air-sea interaction
spar buoy to be deployed
offshore Isla Todos Santos,
Ensenada, Mexico. It will
include fast response CO2
sensors, besides a sonic
anemometer located on top of
the mast which is needed to
measuring wind turbulent
fluctuations. An array of wave
staff will provide sea surface
elevation to estimate the
ocean surface wave
directional spectrum with a
fine directional resolution.
Following the Wavelet
Directional Method, proposed
by Donelan et al. [58], it is
also possible to estimate de
spectrum as a function of the
wavenumber vector (Photo:
S. Ramos)

therefore its parameterization is still a major research topic that requires further
efforts. Ultimately, we need the correct transfer velocity to be incorporated in the
modern numerical models to predict the future climate and generate scenarios under
the possible alternatives of carbon use, and mainly to properly address the CO2 gas
flux between the atmosphere and ocean.

3 Air-Sea Exchange of Carbon Dioxide and the Relevance of
Ocean Surface Waves Within the Context of Climate
Prediction

The sea surface is well recognized as of paramount importance, since it actually
is the air-sea interface a key gateway in the Earth system [64]. The sea surface is
right where the atmosphere transfers energy to the ocean and set it in motion, and
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it is right there where climate and weather-relevant air-sea forcing and feedback
processes occur. Besides, anthropogenic carbon dioxide enters the ocean mainly
through its surface. Once we realize that it is ocean surface waves what form the
actual surface, their relevance in diverse processes taking place in the vicinity is
somehow very clear. It might be wise to emphasize in these ideas pointing out
to some explanation originally expressed by Benton [65] and Donelan [38]: On
average the ocean absorbs more than 2.5 times the incoming solar radiation (which
is in the form of short wave) than does the atmosphere. The energy from the warmed
ocean surface is transferred to the atmosphere by infrared (long-wave) radiation and
by sensible and latent heat transfer. Therefore, we can realize that the atmosphere,
to a large extent, is heated from below. Zonal differences in heating and the Earth’s
rotation drive the large scale atmospheric circulation, from which the oceans acquire
most of their energy and momentum. It is now clear that there is exchange through
the interface, and the energy originally provided by the sun, crosses the sea surface
in one form or another, at least three times before it becomes the kinetic energy of
oceanic waves and currents.

The impact of surface wave dynamics on the air-sea fluxes has been readily
shown [66], through the global distribution of the ratio of the wave induced
momentum transfer computed with the WAM model, to the total momentum transfer
into the ocean, computed using the standard Charnok drag law.

The effect of ocean surface waves has also been identified in the mixing process
of the uppermost layer of the ocean, just below the sea surface. It is in fact this thin
layer what greatly influences and control the exchange of heat and gases such as
CO2 between the ocean and atmosphere. Through a diagnostic study it is suggested
that the turbulent energy available for mixing in the upper ocean layer is under-
estimated when surface waves are not included as forcing [67]. This direct us to
the recommendation for global climate models to compute and take into account
the wave field, specially to represent wave forcing of Langmuir turbulence acting
within the uppermost layer of the ocean.

Let’s now address some specific details the global climate models deal with,
regarding the exchange of CO2 between ocean and atmosphere. It seems that
modelers [47] use the instantaneous gas transfer velocity k as parameterized by
Wanninkhof [68], which is a quadratic function of the wind speed U10 referred as to
be measured 10 m above the mean sea surface, such that

k = a(
Sc

660
)−1/2U2

10, (23)

where the constant a is normally adjusted so that wind speeds used to force the
model are consistent with the observed global inventory of bomb 14C (the bomb
effect refers to additional radioactive carbon in the atmosphere that comes from
nuclear weapons testing).

While classical parameterizations are still being used in global climate models,
great effort is devoted to promote more and better in-situ measurements of air-sea
fluxes, along with all the most relevant environmental variables in order to improve
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our understanding of the whole process. Authors have been put forward ideas and
strategies to produce gridded information of fluxes and wind stress fields over the
global ocean [69]. The strategy incorporates the expansion of already established
buoys network, ocean surface wave information has to be included in the recorded
data.

Cronin et al. [69] conclude indicating that there are some research challenges
that could lead to improve bulk flux parameterizations to be used in the global
climate numerical models, such as the development of wave-dependent surface
flux parameterization. In particular, it is needed to perform better than wind-speed-
only dependent parameterizations specially under a wider range of wind, wave and
current conditions, among others.

Above all, our main concern is still the gas transfer velocity description and
its incorporation into the global climate models. In the previous sections, we have
addressed the effect of ocean surface waves in the gas exchange process and mainly
in relation to evidences from several sources. The main issue here is if we still keep
and use parameterizations of the gas transfer velocity that relay solely in wind speed,
then we will look at pictures like what it is plotted in Fig. 10.
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Fig. 10 Gas exchange results in the ocean and from empirical relationships, specifically, gas
transfer velocity k is provided as a function of U10. All data is normalized to Sc = 600. Dual
tracer results are indicated as Tracer, 222Rn results as Rn, and global estimate based on bomb-
radiocarbon as C-14. Results from some empirical relationships are also shown, Liss and Merlivat
(1983) indicated as L-83, Wanninkhof [68] as W-92, Smethie et al. [70] as S-86, Wanninkhof and
McGillis [71] as W-99, and Nightingale et al. [72] as N-2000. From Donelan and Wanninkhof [73]
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It is readily apparent from Fig. 10, that depending on the relationship or param-
eterization we decide to use in the corresponding numerical model, the predicted
gas transfer velocity could easily be doubled when wind conditions are at low to
moderate speed (6 ms−1 approximately), or even nearly tripled if wind speed were
higher.

4 Remote Sensing Ocean Measurements and Their Relation
to Upper Ocean Processes Direct Observations

Remote sensing techniques provide novel tools and unprecedent information regard-
ing the upper ocean dynamics and characteristics. Great advantages are associated
with the capabilities of observing the sea surface without protruding and over wide
areas around the global oceans. Besides, measurements over the ocean surface can
be obtained continuously, in some cases even during day and night. Although there
are some limitations, we all agree that great amount of information can be retrieved
from sensors in satellites and airplanes. Caution is advised, however, especially
when calibration and validation are needed for it is imperative to be sure about
the exact geophysical variable which is being acquired as well about the quality
of its final value. Most information obtained by remote sensors are associated with
the very surface of the ocean, except for some wavebands of the electro-magnetic
signals that can penetrate (or come from) some centimeters to few meters into the
water [74].

In this section we deal with some remote sensing ocean information that is useful
to improve our knowledge regarding the link between air-sea interactions and ocean
surface waves, and with some direct measurements of upper ocean processes that
might be considered when retrieving dynamic variables from satellite derived data.
While it is true that sea surface roughness, currents and winds over the oceans can
also be retrieved from remote sensors [75], we are interested this time to focus on
ocean surface waves.

Within the context of Earth observation data, radar images can be considered one
of the most valuable information acquired from satellites. Sea surface information
from synthetic aperture radar (SAR) images are popular since 1978 Seasat mission,
the first satellite with a SAR on board dedicated to study the global seas [76].

Various different features can be detected from this type of images, and they
are associated with specific surface or near-surface processes. In fact, features can
be linked to ocean interior processes, as long as those processes interact in some
way or another with, and can induce certain modulation to, the very short waves
(ripples) present right at the surface, since these short waves are the actual reflectors
or scatterers to the incident microwaves coming from the radar (Raney, 1983).

Great effort has been devoted to build the conceptual and theoretical framework
to understand how ocean surface waves are detected by SAR, as well as to develop
the numerical schemes to retrieve wave information from sea surface images
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acquired with SAR [77, 78]. From the rather large images obtained with ERS-1
for instance, a study has been prepared to track the waves generated by intense
storms [79]. A brief overview about ocean wave measurements has been presented
by Lehner and Ocampo-Torres [80], while a recent assessment of the ocean wave
spectrum estimation using global Envisat-ASAR data has been provided by Li et al.
[81].

Here we only approach the analysis of ocean swell as a matter of example, as it
is well known that it can be detected and studied through images of the sea surface
acquired with SAR. It is demonstrated by Li et al. [82] and Díaz-Méndez et al. [83],
that high resolution SAR imagery in general and TerraSAR-X imagery in particular,
is a suitable tool to observe the spatial variability of ocean surface wave behaviour.

The spatial variability of the wave field during the INTOA experiment [36] was
studied through the analysis of SAR images of the ocean surface. Results from a
set of 4 consecutive SAR images acquired by Envisat ASAR on 02 March 2005 at
16:20–16:21h over the Gulf of Tehuantepec region [84] are shown in Fig. 11. SAR-
inverted spectra, derived following Collard et al. [85], revealed a strong variability
of the wave field along its propagation over approximately 400 km, with frequently
observed multi-peaked spectra. Results are shown for two wave systems found, both
with similar wavelength but with different mean propagation direction.

These results demonstrate the capabilities of SAR onboard satellites to provide
images over ocean areas where variability and spatial evolution of swell can
be determined with outstanding resolution. It is worth mentioning that a simple
analysis was also performed to look in detail at the wavelength variation along the
propagation of the ocean swell over approximately 400 km, showing longer waves
in the forefront due to its greater wave celerity.

Besides the possibility of obtaining wave field information from SAR images,
which ultimately could assist on dynamical processes details to better understand
air-sea fluxes, it is important to bear in mind that the technique to retrieve
the directional wave spectrum from the SAR image spectrum requires important
resources and a general and open scheme is still not available. Further efforts are
required to develop optimal numerical schemes to deal with the inversion of image
spectrum with stronger and more robust theoretical basis. Some advance has been
reported not requiring the inversion of the image spectrum, and it is based on a
new SAR image spectral parameter, the Mean rAnge Cross-Spectrum (MACS) that
focuses on the isolated wave scales along the radar line-of-sight direction [63]. It
is claimed that MACS is an efficient variable in that it characterizes the local wave
spectra properties without need of the non-linear wave inversion procedure.

Another example of ocean wave features that can be detected through ocean
surface SAR images is still associated with the spatial evolution of the wave field.
In Fig. 12 two wave systems are easily observed, generating a diamond grid pattern.
This type of spatial evolution is still to be studied, and it is important to recall on the
possibility of determining wave parameters that could be tightly associated with the
groupiness and with the characteristic nonlinearities along wave propagation.

Now we would like to focus on an important consequence of the momentum
transfer from air to water. This is being analyzed from laboratory experiments
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Fig. 11 Maps of SAR-derived wavelength Lp and propagation direction αp corresponding to the
different partitions identified from the March 2 set. Colors indicate wavelength scale in meters;
arrows, direction where waves propagate to. System 1 shows 243 m wavelength and propagation
direction −11.7circ, while system 2 is 246 m wavelength and propagation direction towards
3.1circ

in a wind-wave flume as described in Robles-Díaz et al. [86], carried out in
the IRPHE/Institut Pythéas in Marseille, France. Typical relations to describe
the surface wave growth process must be modified when non-stationary wind is
considered. It is important to mention that non-stationary and non-homogeneous
wind fields are encountered in nature most of the time.

In this particular case we simply describe the results of the horizontal velocity
vertical profile as obtained with a Doppler based current profiler (see Fig. 13), when
experimental runs were performed under constantly accelerated wind was acting
upon the water surface. As the wind speed increased from 1 ms−1 to 13 ms−1

approximately, the surface current evolved showing a vertical profile varying with
time. Outstanding vertical shear was observed, as it is shown in Fig. 14.

The fate of surface drift is critical in the ocean upper layer, since it is linked
to an enhancement of air-sea interaction processes mainly through its influence in
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Fig. 12 Example of a TerraSAR-X SAR image acquired over Todos Santos Bay area in Mexico.
Two ablique wave systems are readily apparent and both show refraction and diffraction patterns
nearshore and in the vicinity of the islands. Ensenada port can be seen in the upper right corner

Fig. 13 Velocity profiler during an experimental run in the wind wave flume. Acoustic profiling
technique requires some seeds in the water in order to reflect the acoustic signal. A capacitance
wire can be seen just besides the profiler, it was used to record water level in order to analyze the
wave field
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Fig. 14 Drift velocity profiles during an experimental run rampe15 in the wind wave flume. A
profile is estimated every 5 s. As the experimental run progresses, wind speed increases with
constant acceleration, drift current increases (towards negative values) accordingly. The evolution
of the profile and the variation in vertical shear is noticeable. The determination of the wind
acceleration influence represents work still under progress

turbulent kinetic energy dissipation rate, and for it also plays an important role in the
dispersion and movement of contaminants and all types of organic matter, sargassum
for instance. Furthermore, the evolution of surface drift under accelerated winds
might be easily observed through remote sensors, and this is a topic that requires
greater research efforts to achieve a better understanding within the context of air-
sea exchange processes.

5 Final Remarks

A brief review of ocean surface wave studies have been presented, with some
emphasis in the influence on air-sea interaction processes. Gas exchange between
ocean and atmosphere is a critical issue when dealing with understanding and
predicting sea state, the weather and climate. Global scale model to predict the
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climate and to generate future scenarios normally rely on exchange velocity of
gases such as CO2, which are parameterized taking into account the wind speed
only. Great effort are being devoted and new measurements and insight are required
in order to properly include wave information into the gas transfer velocity taken
into account within climate models. Remote sensing techniques to retrieve ocean
information has provided very valuable knowledge, however, it is important to
elaborate new schemes to retrieve wave field information from ocean surface images
(acquired by synthetic aperture radars, for instance) and to make it available to be
used by air-sea interaction novel models. Conditions under accelerated winds (non-
stationary fields) are considered very relevant, since those are encountered in nature
most of the time.

Acknowledgments We acknowledge the availability of SAR images from DLR and from ESA.
We are grateful to funding for laboratory experiments from Excellence Initiative of Aix-Marseille
University-A*MIDEX, a French “Investissements d’Avenir” program.

References

1. H. Mitsuyasu, A historical note on the study of ocean surface waves. J. Oceanograph. 58, 109–
120 (2002)

2. H. Mitsuyasu, Reminiscences on the study of wind waves. Proc. Jpn. Acad. Ser. B 91, 109–130
(2015)

3. H.U. Sverdrup, W.H. Munk, Wind, sea, and swell: theory of relations for forecasting. H. O.
Pub. No. 601, U. S. Hydrographic Office Tech. Rep. Number 1. vi+44pp. (1947)

4. E.H. Weber, W.E. Weber, Wellenlehre auf Experimente gegründet (Gerhardt Fleischer, Leipzig,
1825)

5. O. Darrigol, The spirited horse, the engineer, and the mathematician: water waves in
nineteenth-century hydrodynamics. Arch. Hist. Exact Sci. 58, 21–95 (2003). https://doi.org/
10.1007/s00407-003-0070-5

6. A.D.D. Craik, The origins of water wave theory. Annu. Rev. Fluid Mech. 36, 1–28 (2004)
7. H. Jeffreys, On the formation of waves by wind. Proc. R. Soc. A 107, 189–206 (1924)
8. H. Jeffreys, On the formation of waves by wind, II. Proc. R. Soc. A 110, 341–347 (1925)
9. L. Gain, La prédiction des houles au Maroc. Ann. Hydrograph. 4, 65–75 (1918)

10. R. Montagne, Le service de prédiction de la houle au Maroc. Ann. Hydrograph. 157–186
(1922)

11. R.G. Dean, R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, 2nd edn.
(World Scientific, Singapore, 1991), 353 pp.

12. W.J. Pierson, A unified mathematical theory for the analysis, propagation and refraction of
storm generated ocean surface waves, Parts I and II, N.Y.U., College of Engineering, Research
Division, Department of Meteorology and Oceanography, 461pp. (1953)

13. S.O. Rice, Mathematical Analysis of Random Noise. Reprint in Selected Papers on Noise and
Stochastic Proceses (Dover Publications, Mineola, 1944), pp. 133–294

14. G. Neumann, On ocean wave spectra and a new method of forecasting wind-generated sea.
Beach Erosion Board, Tech. Mem., No. 43 (1953), 42pp.

15. W.J. Pierson, G. Neumann, R.W. James, Practical methods for observing and forecasting ocean
waves by means of wave spectra and statistics. U.S. Navy Hydrographic Office, Pub. No. 603
(1955). 284pp.

16. O.M. Phillips, On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445 (1957)


 2196 2671 a 2196 2671 a
 
https://doi.org/10.1007/s00407-003-0070-5
https://doi.org/10.1007/s00407-003-0070-5


Ocean Surface Waves and Ocean-Atmosphere Interactions 63

17. J.W. Miles, On the generation of surface waves by shear flow. J. Fluid Mech. 3, 185–204 (1957)
18. J.W. Miles, On the generation of surface waves by turbulent shear flow. J. Fluid Mech. 7, 469–

478 (1960)
19. O.M. Phillips, The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid

Mech. 4, 426–434 (1958)
20. S.A. Kitaigorodskii, Applications of the theory of similarity to the analysis of wind-generated

wave motion as a stochastic process. Izv. Geophys. Ser. Acad. Sci. USSR 1, 105–117 (1962)
21. W.J. Pierson, L. Moskowitz, A proposed spectral form for fully developed wind seas based on

the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69, 5181–5190 (1964)
22. O.M. Phillips, On the dynamics of unsteady gravity waves of finite amplitude, part 1. J. Fluid

Mech. 9, 193–217 (1960)
23. K. Hasselmann, Grundgleichungen der Seegangsvoraussage. Schiffstechnik, 1, 191–195

(1960)
24. K. Hasselmann, On the non-linear energy transfer in a gravity wave spectrum. Part 1. J. Fluid

Mech. 12, 481–500 (1962)
25. K. Hasselmann, On the non-linear energy transfer in a gravity wave spectrum. Part 2. J. Fluid

Mech. 15, 273–281; Part 3. 15, 385–398 (1963)
26. S. Hasselmann, K. Hasselmann, J. Allender, T. Barnett, Computation and parameterizations

of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the
nonlinear energy transfer for application in wave models. J. Phys. Oceanogr. 15, 1378–1391
(1985)

27. J. Chase, L.J. Cote, W. Marks, E. Mehr, W.J. Pierson Jr., F.C. Rönne, G. Stephenson, R.C.
Vetter, R.G. Walden, The Directional Spectrum of a Wind Generated Sea as Determined
from Data Obtained by the Stereo Wave Observation Project, Rep. ONR 285(03), College
of Engineering, N.Y.U (1957), 267pp.

28. K. Hasselmann, T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H.
Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D.J. Olbers, K. Richter, W.
Sell, H. Walden, Measurements of wind-wave growth and swell decay during the Joint North
Sea Wave Project. Deut. Hydrogr. Z. 8, 1–95 (1973)

29. M.A. Donelan, J. Hamilton, W.H. Hui, Directional spectra of wind-generated waves. Phil.
Trans. Roy. Soc. Lond. A 315, 509–562 (1985)

30. F.J. Ocampo-Torres, M.A. Donelan, N. Merzi, F. Jia, Laboratory measurements of mass
transfer of carbon dioxide and water vapour for smooth and rough flow conditions. Tellus.
46B, 16–32 (1994). https://doi.org/10.3402/tellusb.v46i1.15746

31. M.A. Donelan, W.M. Drennan, K. Katsaros, The air-sea momentum flux in conditions of wind
sea and swell. J. Phys. Oceanogr. 27, 2087–2099 (1997)

32. D. Hauser, H. Branger, S. Bouffies-Cloché, S. Despiau, W.M. Drennan, H. Dupuis, P. Durand,
X. Durrieu de Madron, C. Estournel, L. Eymard, C. Flamant, H.C. Graber, C. Guérin, K.
Kahma, G. Lachaud, J.-M. Lefèvre, J. Pelon, H. Pettersson, B. Piguet, P. Queffeulou, D.
Tailliez, J. Tournadre, A. Weill, The FETCH experiment: an overview. J. Geophys. Res. Oceans
108, C3 (2003)

33. A.B. Villas Bôas, F. Ardhuin, A. Ayet, M.A. Bourassa, P. Brandt, B. Chapron, B.D. Cornuelle,
J.T. Farrar, M.R. Fewings, B. Fox-Kemper, S.T. Gille, C. Gommenginger, P. Heimbach, M.C.
Hell, Q. Li Q, M.R. Mazloff, S.T. Merrifield, A. Mouche, M.H. Rio, E. Rodriguez, J.D.
Shutler, A.C. Subramanian, E.J. Terrill, M. Tsamados, C. Ubelmann, E. van Sebille, Integrated
observations of global surface winds, currents, and waves: requirements and challenges for the
next decade. Front. Mar. Sci. 6, 425 (2019)

34. F. Ardhuin, J.E. Stopa, B. Chapron, F. Collard, R. Husson, R.E. Jensen, J. Johannessen, A.
Mouche, M. Passaro, G.D. Quartly, V. Swail, I. Young, Observing sea states. Front. Mar. Sci.
6, 124 (2019)

35. H. Graber, E. Terray, M. Donelan, W. Drennan, V. Leer, D. Peters, ASIS - A new Air-Sea
Interaction Spar buoy: Design and performance at sea. J. Atmos. Ocean. Technol. 17, 707–720
(2000). http://dx.doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2


 528 2717 a 528 2717 a
 
https://doi.org/10.3402/tellusb.v46i1.15746

 181
4294 a 181 4294 a
 
http://dx.doi.org/10.1175/1520-0426(2000)017<0708:AANASI>2.0.CO;2


64 F. J. Ocampo-Torres et al.

36. F.J. Ocampo-Torres, H. García-Nava, R. Durazo, P. Osuna, G. Díaz-Méndez, H.C. Graber,
The INTOA experiment: a study of ocean-atmosphere interactions under moderate to strong
offshore winds and opposing swell conditions in the Gulf of Tehuantepec, Mexico. Bound.-
Lay. Meteorol. 138, 433–451 (2011)

37. C.O. Collins, B. Lund, R.J. Ramos, W.M. Drennan, H.C. Graber, Wave measurement intercom-
parison and platform evaluation during the ITOP (2010) experiment. J. Atmos. Ocean. Technol.
31, 2309–2329 (2014)

38. M.A. Donelan, Air-sea interaction, in The Sea: Ocean Engineering Science (Wiley, Hoboken,
1990), pp. 239–292

39. D. Larios Rodríguez, Efecto del oleaje en la transferencia de momento a través de la interfase
océano atmósfera. M.Sc. Thesis, CICESE (2019), 62pp.

40. S.D. Smith, Water vapour flux at the sea surface. Boundary-Layer Meteorol. 47, 277–283
(1980)

41. J. Pan, D.W. Wang, P.A. Hwang, A study of wave effects on wind stress over the ocean in a
fetch-limited case. J. Geophys. Res. 110, C02020 (2005)

42. R.W. Burling, The spectrum of waves at short fetches. Ocean Dyn. 12(2), 45–64 (1959)
43. F. Dobson, W. Perrie, B. Toulany, On the deep-water fetch laws for wind–generated surface

gravity waves. Atmos. Ocean 27(1), 210–236 (1989)
44. M.L. Babanin, Y.P. Soloviev, Field investigation of transformation of the wind wave frequency

spectrum with fetch and stage of development. J. Phys. Oceanogr. 28, 563–576 (1998)
45. K.F. Rieder, J.A. Smith, R.A. Weller, Observed directional characteristics of the wind, wind

stress, and surface waves on the open ocean. J. Geophys. Res. 99, 22589–22596 (1994)
46. A.A. Grachev, C.W. Fairall, J.E. Hare, J.B. Edson, S.D. Miller, Wind stress vector over ocean

waves. J. Phys. Oceanogr. 33(11), 2408–2429 (2003)
47. J.C. Orr, R.G. Najja, O. Aumont, L. Bopp, J.L. Bullister, G. Danabasoglu, S.C. Doney, J.P.

Dunne, J.-C. Dutay, H. Graven, S.M. Griffies, J.G. John, F. Joos, I. Levin, K. Lindsay, R.J.
Matear, G.A. McKinley, A. Mouchet, A. Oschlies, A. Romanou, R. Schlitzer, A. Tagliabue,
T. Tanhua, A. Yool, Biogeochemical protocols and diagnostics for the CMIP6 ocean model
inter-comparison project (OMIP). Geosci. Model Develop. 10(6), 2169–2199 (2017)

48. B. Jähne, K. Münnich, R. Bösinger, A. Dutzi, W. Huber, P. Libner, On the parameters
influencing air-water gas exchange. J. Geophys. Res. 92(C2), 1937–1949 (1987)

49. D.A. Shaw, T.J. Hanratty, Turbulent mass transfer rate to a wall for large Schmidt numbers.
AIChE J. 23 28–37 (1977)

50. D.A. Dawson, O. Trass, Mass transfer at rough surfaces. Int. J. Heat Mass Transf. 15, 1317–
1336 (1972)

51. R. Wanninkhof, Relationship between gas exchange and wind speed over the ocean. J.
Geophys. Res. 97, 7373–7381 (1992)

52. M. Donelan, W. Drennan, E. Saltzman, R.H. Wanninkhof, Gas transfer at water surfaces.
Washington DC, AGU., Geophys. Monograph Series, 10.1029/GM127 (2002)

53. W. McGillis, J. Edson, J. Hare, C. Fairall, Direct covariance air-sea CO2 fluxes. J. Geophys.
Res. 106(C8), 16729–16745 (2001)

54. W.R. McGillis, J.B. Edson, C.J. Zappa, J.D. Ware, S.P. McKenna, E.A. Terray, J.E. Hare, C.W.
Fairall, W. Drennan, M. Donelan, M.D. DeGrandpre, R. Wanninkhof, R.A. Feely, Air-sea CO2
exchange in the equatorial Pacific. J. Geophys. Res. 109 C08S02, 1–17 (2004)

55. D.K. Woolf, Parametrization of gas transfer velocities and sea-state-dependent wave breaking.
Tellus 57B, 87–94 (2005)

56. M.A. Donelan, A.V. Soloviev, A mixing length model for the aqueous boundary layer including
the effect of wave breaking on enhancing gas transfer. IOP Conf. Ser. Earth Environ. Sci. 35
012001 (2016)

57. L. Gutiérrez-Loza, F.J. Ocampo-Torres, H. García-Nava, The effect of breaking waves on CO2
air–sea fluxes in the coastal zone. Boundary-Layer Meteorol. 168, 343–360 (2018)

58. M. Donelan, W. Drennan, A.-K. Magnusson, Nonstationary analysis of the directional
properties of propagating waves. J. Phys. Oceanogr. 26, 1901–1914 (1996)



Ocean Surface Waves and Ocean-Atmosphere Interactions 65

59. D.K. Woolf, J.D. Shutler, L. Goddijn–Murphy, A.J. Watson, B. Chapron, P.D. Nightingale, C.J.
Donlon, J. Piskozub, M.J. Yelland, I. Ashton, T. Holding, U. Schuster, F. Girard–Ardhuin, A.
Grouazel, J.-F. Piolle, M. Warren, I. Wrobel-Niedzwiecka, P.E. Land, R. Torres, J. Prytherch,
B. Moat, J. Hanafin, F. Ardhuin, F. Paul, Key uncertainties in the recent air-sea flux of CO2.
Global Biogeochem. Cycles 33, 1548–1563 (2019)

60. C.J. Zappa, W. Asher, A. Jessup, Microscale wave breaking and air-water gas transfer. J.
Geophys. Res. 106, 9385–9391 (2001)

61. C.J. Zappa, W. Asher, A. Jessup, J. Klinke, S. Long, Microbreaking and the enhancement of
air-water transfer velocity. J. Geophys. Res. 109, C08S16 (2004)

62. D. Zhao, Y. Toba, Dependence of whitecap coverage on wind and wind-wave properties. J.
Oceanogr. 57, 603–616 (2001)

63. S. Li, A.V. Babanin, F. Qiao, D. Dai, S. Jiang, C. Guan, Laboratory experiments on CO2 gas
exchange with wave breaking. J. Phys. Oceanogr. 51, 3105–3116 (2021)

64. L.R. Centurioni, J. Turton, R. Lumpkin, L. Braasch, G. Brassington, Y. Chao, E. Charpentier,
Z. Chen, G. Corlett, K. Dohan, C. Donlon, C. Gallage, V. Hormann, A. Ignatov, B. Ingleby,
R. Jensen, B.A. Kelly-Gerreyn, I.M. Koszalka, X. Lin, E. Lindstrom, N. Maximenko, C.J.
Merchant, P. Minnett, A. O’Carroll, T. Paluszkiewicz, P. Poli, P.-M. Poulain, G. Reverdin, X.
Sun, V. Swail, S. Thurston, L. Wu, L. Yu, B. Wang, D. Zhang, Global in situ observations of
essential climate and ocean variables at the air-sea interface. Front. Mar. Sci. 6, 419 (2019)

65. G.S. Benton, Interaction between the atmosphere and the ocean. Rep. Joint P. Air-Sea
Interaction. G. S. Chairman. Nat. Acad. Sci., Publ. 983 (1962)

66. K. Hasselmann, Ocean circulation and climate change. Tellus, 43AB, 82–103 (1991)
67. S.E. Belcher, A.L.M. Grant, K.E. Hanley, B. Fox-Kemper, L. Van Roekel, P.P. Sullivan, W.G.

Large, A. Brown, A. Hines, D. Calvert, A. Rutgersson, H. Pettersson, J.-R. Bidlot, P.A.E.M.
Janssen, J.A. Polton, A global perspective on Langmuir turbulence in the ocean surface
boundary layer. Geophys. Res. Lett. 39, L18605 (2012)

68. R. Wanninkhof, Relationship between wind speed and gas exchange over the ocean. J.
Geophys. Res. 97(C5), 7373–7382 (1992)

69. M. F. Cronin, C.L. Gentemann, J. Edson, I. Ueki, M. Bourassa, S. Brown, C.A. Clayson,
C.W. Fairall, J.T. Farrar, S.T. Gille, S. Gulev, S.A. Josey, S. Kato, M. Katsumata, E. Kent,
M. Krug, P.J. Minnett, R. Parfitt, R.T. Pinker, P.W. Stackhouse Jr., S. Swart, H. Tomita, D.
Vandemark, R.A. Weller, K. Yoneyama, L. Yu, D. Zhang, Air-sea fluxes with a focus on heat
and momentum. Front. Mar. Sci. 6, 430 (2019)

70. W.M. Smethie Jr., H.G. Ostlund, H.H. Loosli, Ventilation of the deep Greenland and Nor-
wegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39. Deep Sea Res A
Oceanograph. Res. Pap. 33(5), 675–703 (1986)

71. R. Wanninkhof, W. McGillis, A cubic relationship between air-sea CO2 exchange and wind
speed. Geophys. Res. Let. 26(13), 1889–1892 (1999)

72. P.N. Nightingale, P.S. Liss, P. Schlosser, Measurement of air- sea gas transfer during an open
ocean algal bloom. Geophys. Res. Lett. 27, 2117–2120 (2000)

73. M.A. Donelan, R. Wanninkhof, Gas transfer at water surfaces–concepts and issues, in
Gas Transfer at Water Surfaces, ed. by M.A. Donelan, W.M. Drennan, E.S. Saltzman, R.
Wanninkhof, vol. 127 (2002), pp: 1–10

74. I.S. Robinson, Measuring the Oceans from Space: The Principles and Methods of Satellite
Oceanography (Springer, Berlin, 2004), pp. xlvi, 670

75. N. Rascle, B. Chapron, J. Molemaker, F. Nouguier, F.J. Ocampo-Torres, J.P. Osuna Cañedo, L.
Marié, B. Lund, J. Horstmann, Monitoring intense oceanic fronts using sea surface roughness:
satellite, airplane, and in situ comparison. J. Geophys. Res. Oceans 125, 1–22 (2020) https://
doi.org/10.1029/2019JC015704

76. L.-L. Fu, B. Holt, Seasat views oceans and sea ice with synthetic-aperture radar. JPL Pub.
81–120, pp: ix, 200 (1982)

77. K. Hasselmann, S. Hasselmann, On the non-linear mapping of an ocean wave spectrum into a
Synthetic Aperture Radar image spectrum and its inversion. J. Geophy. Res. 96, 10713–10729
(1991)


 2416 3879 a 2416 3879 a
 
https://doi.org/10.1029/2019JC015704
https://doi.org/10.1029/2019JC015704


66 F. J. Ocampo-Torres et al.

78. R.A. Shuchman, J.S. Zelenka, Processing of ocean wave data from synthetic aperture radar.
Boundary-Layer Meteorol. 13, 181–191 (1978)

79. B. Holt, A.K. Liu, D.W. Wang, A. Gnanadesikan, H.S. Chen, Tracking storm-generated waves
in the northeast Pacific Ocean with ERS-1 synthetic aperture radar imagery and buoys. J.
Geophys. Res. 103(C4) 7917–7929 (1998)

80. S. Lehner, F.J. Ocampo-Torres, The SAR measurements of ocean waves: wave session white
paper, in Proceedings of the Second Workshop Coastal and Marine Applications of SAR, 8–12
September 2003, Svalbard, Norway. ESA SP-565 (2004)

81. H. Li, J.E. Stopa, A. Mouche, B. Zhang, Y. He, B. Chapron, Assessment of ocean wave
spectrum using global Envisat/ASAR data and hindcast simulation. Remote Sens. Environ.
264, 112614 (2021)

82. X. Li, S. Lehner, W. Rosenthal, Investigation of ocean surface wave refraction using TerraSAR-
X data. Trans. Geosci. Remote Sens. 48, 830–840 (2010)

83. G.M. Díaz Méndez, S. Lehner, F.J. Ocampo-Torres, X. Ming Li, S. Brusch, Wind and wave
observations off the south Pacific Coast of Mexico using TerraSAR-X imagery. Int. J. Remote
Sens. 31, 4933–4955 (2010)

84. G.M. Díaz Méndez, Análisis de la evolución del espectro direccional del oleaje libre en el
Golfo de Tehuantepec bajo condiciones de viento intensos utilizando imágenes de radar de
apertura sintética. Ph.D. Thesis, F. Ciencias Marinas, UABC (2011)

85. F. Collard, F. Ardhuin, B. Chapron, Extraction of coastal ocean wave fields from SAR images.
IEEE J. Ocean. Eng. 30(3), 526–533 (2005)

86. L. Robles-Díaz, F.J. Ocampo-Torres, H. Branger, H. García-Nava, P. Osuna, N. Rascle, On
the early stages of wind-wave generation under accelerated wind conditions. Eur. J. Mech. B
Fluids 78, 106–14 (2019)

87. M. Broy, Software engineering—from auxiliary to key technologies, in Software Pioneers, ed.
by M. Broy, E. Dener (Springer, Heidelberg, 2002), pp. 10–13

88. J. Dod, Effective substances, in The Dictionary of Substances and Their Effects.
Royal Society of Chemistry (1999). Available via DIALOG. http://www.rsc.org/dose/
titleofsubordinatedocument. Accessed 15 Jan 1999

89. K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra (Kluwer, Boston,
1992)

90. C. Hamburger, Quasimonotonicity, regularity and duality for nonlinear systems of partial
differential equations. Ann. Mat. Pura. Appl. 169, 321–354 (1995)


 1917
2219 a 1917 2219 a
 
http://www.rsc.org/dose/titleofsubordinatedocument
http://www.rsc.org/dose/titleofsubordinatedocument


A 3D Two-Phase Conservative Level-Set
Method Using an Unstructured
Finite-Volume Formulation

Miguel Uh Zapata and Reymundo Itzá Balam

Abstract Mathematical and computational modeling of two-phase flows simu-
lations is widely used in many physical and industrial applications. Moreover,
a numerical model with an unstructured level-set method allows for flexible
applications to geophysical flows of arbitrary domains with the presence of many
obstacles. In this work, we introduce a new second-order time- and space-accurate
method developed to solve in parallel a conservative level-set equation in three-
dimensional geometries. We employ a θ -method for the time integration and a
finite-volume method on prisms elements consisting of triangular cells on the hori-
zontal plane and several layers in the vertical direction for the space discretization.
We apply an upwind scheme with a Local Extremum Diminishing flux limiter to
approximate the convective terms that solves the level-set equation using either
the Heaviside function or the regularized characteristic function. Moreover, we
present a parallelization strategy using a block domain decomposition technique
and Message Passing Interface. The numerical method is initially validated against
classical advection test cases and unstructured grids. Finally, several interface-
capturing tests, including topology changes, are used to demonstrate the capabilities
and performance of the proposed scheme.
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1 Introduction

A wide variety of problems in geological fluid mechanics require capturing
interfaces with great precision or involving a jump in physical properties across
a sharp boundary [1–4]. However, solving these problems can be a challenging
task because they have sharped discontinuities in some regions. Thus numerical
instabilities appear, which prevent the local use of high order numerical schemes.
Although several approaches have been proposed, the level-set method has shown
to be a successful formulation to overcome this difficulty. For instance, level-
set methods have been implemented in computational volcanology problems to
trace flow fronts and interfaces in a lava dome evolution [5–7]. Another example
of level-set application is modeling geodynamical flows that require advecting
compositional fields with discontinuities, as presented in [8, 9].

In general, many numerical methods have been proposed to solve two-phase
flows in recent years [10]. These methods can be classified into Lagrangian methods
that modify the grid to match the interface location and Eulerian methods that extract
the interface location from a fixed grid.

In a Lagrangian method, the interface can be specifically delineated and precisely
followed; however, the computational mesh moves with the interface. Although
these methods are successful for small interface deformations, re-meshing is
required when the interface undergoes large deformations [11, 12]. In an Eulerian
method, an interface moves through a fixed grid. The two main approaches are
interface tracking and capturing. An interface tracking method uses a set of
Lagrangian points to mark and track an interface. Examples of interface tracking
methods include the front-tracking method [13, 14] and the ghost fluid method
[15, 16]. On the other hand, with interface-capturing methods, the interface is
implicitly captured by a contour of a scalar function. The volume-of-fluid (VOF)
method [17, 18] and the level set (LS) method [19, 20] are popular examples
of interface capturing. The VOF method determines the interface location by the
volume fraction occupied by each fluid in each cell. In the LS method, an interface
is represented as a zero set of an auxiliary scalar function. In general, interface-
capturing methods are based on the spatial discretization of a characteristic function
to distinguish between two phases. Here, the position of the interface is computed
at each time step by solving a convective equation.

We remark that structured grids have many limitations for their application to
arbitrary three-dimensional (3D) geometries. To overcome this issue, we can employ
unstructured grids, which are more flexible for geophysical flows applications. Most
of the LS methods used for unstructured grids were developed in the framework of
the finite-element method. However, the finite-volume (FV) method is attractive due
to its local conservation property, which is not the case for standard finite-difference
or finite-element methods.

The literature that involves numerical interface-capturing methods applying a
finite-volume approach is limited; most numerical methods have been developed for
rectangular grids and only a few strategies for unstructured grids [21–28]. Moreover,
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there exist only a limited number of these models that combine a 3D finite-volume
method and unstructured grids, and most of them are based on VOF algorithms, for
example, see [26, 28]. To the best of the authors’ knowledge, Balcázar et al. [27]
is the only one presenting a 3D conservative level-set (CLS) method based on an
unstructured FV method. Moreover, their analysis is limited to a few test cases.

As previously discussed, level-set/finite-volume methods for unstructured grids
have rarely been reported. Motivated by this, the present work aims to develop a
new unstructured finite-volume method (UFVM) with arbitrary-shaped triangular
cells. Furthermore, the transport equation is initially studied to directly analyze the
effect of the convective approximation on unstructured grids. Next, the problem
considers a re-initialization process [29] to improve the results. In general, accurate
approximations of the convective equation are not simple to obtain due to different
difficulties such as false diffusion, non-conservative, overshoot/undershoot and
phase error [30]. Numerical methods employ second-order schemes to mitigate this
diffusion effect. Central schemes perform well in smooth regions [31]; however,
they produce oscillations around sharp gradient regions. On the other hand, second-
order upwind schemes work well near discontinuities. However, oscillations still
exist, which can be reduced or eliminated by the introduction of a Flux-Limiter
technique [30].

This work proposes a second-order accurate and robust numerical method for
the conservative level-set approach, which is applied for capturing the interface
between two fluids. The time integration is based on a method that allows us
to select between complete explicit and implicit first-order time formulations
or a second-order Crank-Nicolson (implicit) method. The space discretization is
based on a finite-volume method on prisms elements consisting of unstructured
triangular grids on the horizontal and several layers in the vertical. Balcázar et
al. [27] calculate the convective equation as the sum of a diffusive first-order
upwind part and an anti-diffusive term. In contrast to their method, the proposed
convective approximation applies a second-order upwind interpolation scheme. We
calculate the corresponding gradients using a least-square technique [32]. In order
to eliminate non-desirable oscillations, the approximations also incorporate a flux
limiter which is determined by the Local Extremum Diminishing (LED) technique
[33].

Finally, numerical results require significant computational time to compute, in
particular, for three-dimensional simulations. Thus, the whole code is developed in
parallel. The parallelization of the algorithm is based on a domain decomposition
into several sub-domains in the horizontal direction, one for each parallel process,
and a parallel solution of the linear system using a Multi-Color SOR (MSOR)
method [34, 35].

This chapter is organized as follows. The second section introduces the con-
servative level-set method. The third section is devoted to time integration and
finite-volume discretization. The following section deals with the parallelization
technique. Next, the numerical techniques are tested over different benchmark
problems. We present the performance of the proposed model in Sect. 6. Finally,
the last section includes the conclusions and ideas to be pursued in future work.
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2 Conservative Level-Set Method

For interface motion, we assumed that the fluids are immiscible and that their
movement is defined by the unique divergence-free velocity field. In the classical
LS method [19, 20], we consider the conservative transport equation:

∂φ

∂t
+ u · ∇φ = 0, x ∈ �, (1)

where t is the time, u is the known velocity field, and φ(x) = d(x) is the signed
distance function given by

d(x) = σ min
x�

(|x − x�|) . (2)

Here, � denotes the interface; the sign value, σ , is set positive on one side and
negative in another; and with the zero level set of φ indicating the interface � =
{x|φ(x) = 0}.

However, standard numerical formulations for (1) may have unacceptable mass
conservation errors. Thus, instead of the signed distance function to represent the
interface, we can employ the conservative level-set formulation [29]:

∂H(φ)

∂t
+ ∇ · [uH(φ)

] = 0, x ∈ �, (3)

where H is the Heaviside function given by

H(φ) =
⎧

⎨

⎩

1, φ(x) > 0,

1/2, φ(x) = 0,

0, φ(x) < 0.

(4)

However, if not proper numerical techniques are applied, the strong discontinuity
at the interface may cause instabilities of the numerical solutions. To avoid this
problem, Olsson and Kreiss [29] employed a regularized characteristic function, as
follows

Hε(x) = 1

2

(

1+ tanh

(

d(x)

2ε

))

, (5)

where d(x) is the same signed distance function previously defined in (2), ε controls
the interface thickness and Hε varies from 0 to 1. In this work, the width ε of the
transition region is given by ε = 0.5�β [27], with � = √Vc where Vc is taken as
the minimum area of the triangular cells, and β = 1 is set as a default value.

As time simulations evolve, approximation of (3) presents numerical inaccura-
cies that eventually change the profile of the Heaviside function at the interface.
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To keep H with the profile and thickness of the interface constant, we introduce a
reinitialization equation as follows [29]:

∂H
∂τ
+∇ · [H(1−H)

]

nτ=0 = ∇ · (ε∇H) , x ∈ �, (6)

where τ is a pseudo time, n = ∇H/|∇H | is the normal of � before applying the
re-initialization, and ε is the same value employed in (5). The left-hand side term is
a compressive flux to keep the profile sharp, and the diffusive right-hand side term
aims to avoid discontinuities at the interface [29, 36].

3 Numerical Method for the Level-Set Equation

In this work, the θ -method and an unstructured finite-volume method are used to dis-
cretize the integral form of the conservative transport equation (3) in time and space,
respectively. Initial conditions are determined by the characteristic function (5).
Dirichlet or Neumann boundary conditions are applied at the boundaries.

3.1 Time Integration: θ -Method

Explicit or implicit numerical methods can be proposed depending on the convec-
tion approximation. If this term is evaluated at the previous time step, tn, a simple
forward approximation for the time derivative results in an explicit first-order time-
accurate approximation for Eq. (1). However, the stability of the explicit scheme is
restricted by a Courant-Friedrichs-Lewy (CFL) condition. To overcome this time-
step restriction, we can select an implicit formulation by evaluating the convective
term at the new time step, tn+1.

Although the implicit treatment of the convective term eliminates the numerical
stability restriction, the method is still a first-order time-accurate approximation.
This study also proposes a second-order implicit time-advancement scheme based
on the Crank-Nicolson (C-N) method. We can summarize all these options in the
following scheme for Eq. (3):

Hn+1 −Hn

�t
+∇ ·

(

θHn+1un+1 + (1− θ)Hnun
)

= 0,

where Hn denotes the approximation of H at time level tn, �t is the computational
time step, and θ is equal to 0, 1 or 1/2 if the method is explicit, implicit or the C-N
method, respectively. Thus, the time-advancement scheme for the level-set equation
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can be written as follows:

Hn+1 + θ�t∇ ·
(

Hn+1un+1
)

= Hn − (1− θ)�t∇ · (Hnun
)

. (7)

Note that the right-hand side corresponds to known values because it only includes
terms of the previous step and the velocity field u.

3.2 Space Discretization: Finite-Volume Method

The computational domain in the horizontal plane is discretized into Ncell triangular
cells. The 3D domain discretization is formed by prisms, Vi , using the exact
horizontal 2D triangular discretization and extending into Nz layers in the vertical
direction. Thus, the total number of prism elements is given by NV = NcellNz.

Each prism-shaped control volume has five faces, Sj : three with vertical ori-
entation (lateral faces j = 1, 2, 3) and two with horizontal direction (top face
j = 4 and bottom face j = 5). The cell-centered node of each prism is denoted by
xi = (xi, yi, zi ). We use a staggered grid where the face-normal velocity U = u · n
is located at the centers of the cell faces, named xij = (xij , yij , zij ), and H is
calculated at the cell-centered point xi of the cell. Here, n denotes the outward
normal unit vector at each face. A schematic plot of the triangular prism element
and its components is shown in Fig. 1a–c.

Following the standard finite-volume formulation, Eq. (7) is integrated over each
control volume, which formally gives (assuming sufficient regularity):

∫

Vi

Hn+1dV + θ�t

∫

Vi

∇ · (Hu)n+1 dV =
∫

Vi

HndV − (1− θ)�t

∫

Vi

∇ · (Hu)n dV .

(8)

Fig. 1 Sketch of the three and two-dimensional control volumes used for discretization
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After application of the Green’s theorem, we get

∫

Vi

Hn+1dV + θ�t

5
∑

j=1

∮

Sj

(Hu)n+1 · ndS =
∫

Vi

HndV − (1− θ)�t

5
∑

j=1

∮

Sj

(Hu)n · ndS

(9)

where index j accounts for any Vj sharing a face Sj with Vi . We remark that up to
this point we have not introduced any approximation in space.

A second-order scheme is obtained by applying the midpoint rule integral
approximation for the prism element and its corresponding faces. Thus, we get

mVi
Hn+1

i + θ�t

5
∑

j=1

mSj (Hu)n+1
ij · nj = mVi

Hn
i − (1− θ)�t

5
∑

j=1

mSj (Hu)nij · nj ,

(10)

where (·)ij denotes a variable at the midpoint of Sj , see Fig. 1. Here, mVi
and mSj

are the volume of Vi and the area of Sj , respectively. The outward normal directed
from Vi to Vj is defined as nj . Finally, we can write the level-set discretization as
follows

Hn+1
i + θci

5
∑

j=1

mSj
Hn+1

ij Un+1
ij = Hn

i − (1− θ)ci

5
∑

j=1

mSj
Hn

ijU
n
ij , (11)

where ci = �t/mVi
and the normal-face flux crossing the face is given by

Uij = (u · n)ij , j = 1, . . . , 5. (12)

The discretization is complete by approximating Hij in Eq. (11) as a function of the
discrete unknowns Hi and Hj associated to Vi and its neighbors Vj .

3.3 Interpolation: Upwind Scheme

The unknown variable H at the face midpoint can be approximated in several ways,
and the method accuracy depends on how precise is this approximation. These
midpoints values are approximated using a second-order upwind scheme based on
Taylor expansions around xij . Let us denote Hij (Vi) and Hij (Vj ) the approximations
of the variable H at Sj , respectively. Thus, a common flux is approximated as [37]:

HijUij = max(Uij , 0) Hij (Vi)+ min(Uij , 0) Hij (Vj ), j = 1, . . . , 5, (13)
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where a second-order interpolation at the cell-face is calculated as follows

Hij (Vi) ≈ Hi + ψi�i, where �i = ∇Hi · (xij − xi ). (14)

Note that Eq. (14) also incorporates a flux limiter as ψi . It is to eliminate non-
desirable oscillations. In this work, this flux limiter is determined by the Local
Extremum Diminishing technique [33] satisfying Hmin ≤ Hij ≤ Hmax, where Hmin

and Hmax are the minimum and the maximum taken over Vi and its surrounding
neighbors. We obtain a unique value of the flux limiter per control volume Vi as
follows

ψi = min
j

(ψij ), ψij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
(

1,
[

Hmax −Hj

]

/�i

)

, if �i > 0,

min
(

1,
[

Hmin −Hj

]

/�i

)

, if �i < 0,

1, if �i = 0.

(15)

This technique ensures that local maximum cannot increase and local minimum
cannot decrease [33]. In a similar way, we obtain the coefficients of Hij (Vj ).

Equation (14) can be further simplified such that Hij is calculated by different
techniques in the horizontal and vertical faces of each prism. For the horizontal
case, the problem is reduced at the two-dimensional case

Hij (Vi) ≈ Hi + ψi

(

∂Hi

∂x
(xij − xi)+ ∂Hi

∂y
(yij − yi)

)

, j = 1, 2, 3. (16)

For the vertical case, it will be simply necessary an approximation of the third
derivative component as follows

Hij (Vi) ≈ Hi + ψi

(

∂Hi

∂z

)

(zij − zi), j = 4, 5. (17)

Finally, Eqs. (16) and (17) require the gradient approximation at each cell-
centered point. In the vertical direction, a central scheme is applied to obtain the
corresponding derivatives in the z-direction. In the horizontal plane, we use a least-
square technique, as described in the work of Lien [32]. In this method, the solution
is assumed to be linear in each control volume such that

H(x, y) = ax + by + c, and ∇H = (a, b). (18)

The coefficients a, b and c are determined using the values Hi and the horizontal
neighbors Hj (j = 1, 2, 3). Although the resulting gradient approximation is only
first-order accurate, Eqs. (16) and (17) result in a second-order approximation.
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3.4 Boundary Conditions

Boundary conditions are included into the problem as updates of ghost values. Let
us denote Hg the corresponding ghost cell of Hi . Dirichlet boundary conditions
are updated as the average of both values and Neumann boundary conditions are
calculated as a central difference formula as follows

Hg = 2HE −Hi and Hg = �g

(

dH

dn

)

E

+Hi,

respectively, where (·)E indicates the known values at the boundary and �g

represents the distance from the cell-centered point to its ghost point.

3.5 Linear System and Solver

In summary, a finite-volume discretization of Eq. (7) at each control volume Vi (i =
1, 2, . . . , NV ) results in the following linear system of equations

Hn+1
i + θci

⎛

⎝a0H
n+1
i +

5
∑

j=1

ajH
n+1
j + an+1

G

⎞

⎠ = f n
i , (19)

where the coefficients corresponding to the upwind scheme are given by

a0 =
5
∑

j=1

max(Uij , 0), and aj = min(Uij , 0), j = 1, . . . , 5. (20)

and aG includes all the terms related with the gradient approximation and flux
limiter choice. Here, f n

i is the right-hand side given by

f n
i = Hn

i − (1− θ)ci

⎛

⎝a0H
n
i +

5
∑

j=1

ajH
n
j + an

G

⎞

⎠ . (21)

Besides the explicit formulation (θ = 0), Eq. (19) results in a linear system for
the unknown vector

−→
H of the form

A
−→
H +−→rH = −→f , (22)

where matrix A only contains the coefficients obtained from the geometric values
and velocity, −→rH contains all the values related to the gradient, and

−→
f is the known
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right-hand side. Vector −→rH significantly complicates the computer implementation
and parallelization. Thus, −→rH is iteratively solved with the linear solver.

The efficiency of the scheme depends on the selection of the solver for linear
system (22). Many solvers can be chosen such as the Generalized Minimal Residual
and the Bi-Conjugate Gradient Stabilized. However, in reason of their efficiency and
simplicity in implementation in parallel, we consider a classical stationary iterative
methods, such as the Successive Over-Relaxation (SOR) method [38]. It solves the
new iteration for

−→
H using the previous one as

(D + ωL)
−→
H (k+1) = ω

(−→
f −−→rH (k)

)

− (ωU + (ω − 1)D)
−→
H (k), (23)

where L, U and D are the lower, upper and diagonal matrices of A, respectively. The
value ω is the relaxation factor. Superscripts k and k + 1 indicates the values of the
previous and current iteration, respectively. Note that the proposed SOR method is
not the same as their original definition because of −→rH (k). This vector should include
some values at k + 1, but all are updated using k. Second, the gradient should be
updated at each iteration to obtain −→rH (k).

The convergence of the SOR method can be greatly improved by choosing an
appropriate choice of the relaxation factor 0 < ω < 2. However, the optimal value
depends on the particular problem to solve. This paper uses the SOR method with a
relaxation value of ω = 1.2 and a tolerance value of ε = 10−8.

4 Numerical Method for the Reinitialization Equation

The reinitialization equation (6) is also discretized using similar methodologies as
the level-set equation (3), as presented in this section. However, this equation is
non-linear that contributes to the higher complexity of the problem.

For the time integration, the θ -method can be also applied to Eq. (6) as follows:

Hm+1 + θ�τ∇ ·
(

Hm+1vm + ε∇Hm+1
)

= Hm − (1− θ)�τ∇ · (Hmvm + ε∇Hm
)

,

(24)

where vm = (1−Hm)nm=0 and n = ∇H/|∇H |. Here Hm denotes the approximation
of H at pseudo-time level τm, �τ is the computational pseudo-time step, and θ is
equal to 0, 1 or 1/2 if the method is explicit, implicit or the C-N method, respectively.
Opposite to the level-set equation where the velocity field is always known, the
field v depends on H . Thus this term is always calculated at the previous step in
the pseudo-time marching. Note that we also calculate the diffusive term using an
implicit formulation.

For the space discretization, we follow the standard finite-volume discretization
as described in Eq. (8) for the level-set equation. The main difference relies in the
approximation of vm and the diffusive term. For the vector v, we require the gradient
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approximation of H . This is calculated using the same least-square technique shown
in (18). On the other hand, the diffusive term is given by

∫

Vi

∇ · ∇HdV =
5
∑

j=1

∮

Sj

∇Hn+1 · ndS ≈
5
∑

j=1

mSj
∇Hijnij (25)

In this work, we propose to approximate the diffusive term as proposed by Kim and
Choi [39]. This formulation decomposed

(

∂H
∂n

)

ij
= ∇Hijnij in two terms: the first

one corresponds to the principal diffusion and the second one corresponds to the
cross diffusion, as follows

(

∂H

∂n

)

ij

= Hj −Hi

δi + δj

+ Hv2 −Hv1

δv1v2

tan(α), (26)

where δi and δj are the normal distances to the cell face from xi and xj , respectively;
δv1v2 is the distance from the vertex point xv1 to xv2 ; and α is the angle between
n and the line containing xi and xj . We remark that Eq. (26) is reduced to a
central approximation at the vertical faces. Moreover, for orthogonal grids, the cross
diffusion is equal to zero as α = 0.

A vertex value Hv is obtained by averaging over all surrounding cell centers as
follows

Hv =
∑

k

(

1

Lk

Hk

)

/
∑

k

1

Lk

, (27)

where Lk is a weighting value calculated as the distance between the vertex and the
cell-centered point.

Finally, a finite-volume discretization of Eq. (6) at each control volume Vi (i =
1, 2, . . . , NV ) results in the following linear system of equations

Hm+1
i + θci

⎛

⎝(a0 + b0)H
m+1
i +

5
∑

j=1

(aj + bj )H
m+1
j + am+1

G + bm+1
V

⎞

⎠ = f m
i ,

(28)

where the ai and bi coefficients correspond to the convective and diffusive terms,
respectively; and f m

i is the corresponding right-hand side of known values from
the previous pseudo-time step. Here, aG represents the values obtained from the
least-square gradient approximation and bV corresponds to the values resulting from
the vertex interpolation. Equation (28) is traditionally solved for a few pseudo-time
steps.
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5 Parallelization

As previously pointed out, three-dimensional numerical simulations require con-
siderable computational time due to the amount of data. Furthermore, for implicit
formulations, linear systems (19) and (28) have to be solved for each time step.
Thus, the complete code can be performed in parallel, as described in this section.

The computational domain is divided into several sub-domains of almost the
same number of elements. Every sub-domain is extended to create an overlap
region such that all the elements surrounding boundary nodes are included, see
Fig. 2. This block domain decomposition guarantees that an unknown value Hi and
its five surrounding values, Hj , are included in the same sub-domain. However,
the discretization links cell-centered unknowns assigned by different sub-domains.
Therefore, communication between processors is required. In order to ensure
efficient data communication, the data changed through overlapping points is
grouped in vectors. Then, a standard Message Passage Interface (MPI) is used to
implement the algorithm.

On the other hand, the SOR solver can not be parallelized in its original form.
Instead, we employ the Multi-color SOR method to solve linear system (22). The
idea is to divide the whole domain into different colors such that the evaluation of
each unknown involves the values of another color only [34, 35]. Thus, sets of points
of the same color can be computed using the SOR method (23) as follows

−→
H (k+1) = D−1

[

ω(
−→
f −−→rH (k))− (ω(L + U)+ (ω − 1)D)

−→
H (k)

]

. (29)

Note that Eq. (29) is equivalent to a Jacobi solvers. Although communication after
each color calculations required, this method is well-suited to parallel implemen-
tation because all new values only depends on the previous iteration. Moreover,
numerical results have shown that the convergence of this method is similar to the
original SOR method [35].

Fig. 2 An example of horizontal computational domain with a block domain decomposition
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6 Accuracy

In this section, we study the accuracy and performance of the proposed time inte-
gration and finite-volume formulation used to approximate the partial differential
equations of the level-set model.

Numerical simulations employ structured and unstructured grids in the horizontal
plane. For structured grids, the domain is firstly divided into (Nx − 1) × (Ny − 1)

uniform rectangles and then each rectangle is split into two right-angled triangles as
shown in Fig. 3a. For unstructured grids, triangles change size and different number
of cells share a node, as shown in Fig. 3b. Table 1 shows the number of vertex
points, cell-centered points and prisms used to discretize a square and cube domain
of resolution N = Nx = Ny = Nz. Here, �x = L/(Nx − 1) is the length of the
triangle in the x-direction, where L is the 2D domain width. For unstructured grids,
the mesh was generated by taking a mean triangle edge close to the corresponding
�x.

To study the order of the method in time and space, we propose a solid-body
rotation example. As shown in the numerical results, presented in the following
section, the proposed method produces significant errors close to the sharp gradient

Fig. 3 (a) Structured right-angled and (b) unstructured grid of resolution N = 16

Table 1 Size of the structured and unstructured grids used in numerical experiments for the
computational domain

Structured Unstructured

N Vertex points Cell-centered points Prisms Vertex points Cell-centered points Prisms

32 1024 1922 59,582 1188 2234 69,254

64 4096 7938 500,094 4752 9234 58,1742

128 16,384 32,258 4,129,024 18,355 36,121 4,587,367

256 65,536 130,050 33,162,750 72,351 143,473 36,585,615
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regions using Hε to solve the conservative level-set equation, even for fine mesh
resolutions. It is expected as the numerical methods are originally designed to
solve problems with enough regularity. Thus, a convergence analysis using this
characteristic function will not give us helpful information about the accuracy of
the approximated solution. Instead, in this section, we study the accuracy using
the well-known cosine-bell example to test convective equations. In the cosine-bell
example, the characteristic function is given by

ϕ(x) =
{

cos2(2πr), r ≤ r0,

0, r > r0,
(30)

where r = ||x − x0||. Although this is not the function that we employ to obtain
the interface location, it give us an idea how accurate the method behaves in ideal
situations. Thus, we impose H = ϕ as initial condition for Eq. (3). For all the
simulations, homogeneous Dirichlet conditions are imposed at all boundaries.

6.1 2D Pure Convective Test

The computational domain is set as the square [−1, 1] × [−1, 1] and the velocity
field is given by

u = 2π
(

− y, x
)

, (31)

where the angular velocity was chosen such that one full revolution takes place
within final time t = 1. Initial condition is given by the cosine-bell example (30)
with r0 = 0.25 and (x0, y0) = (−1/2, 0).

Figure 4a shows the numerical solution at five stages: t = 0.2, 0.4, 0.6, 0.8,
1.0 using the upwind scheme with the flux-limiter technique, �t = 10−4 and a

Fig. 4 Numerical solution and absolute errors with and without flux limiter for the 2D cosine-bell
rotation example at t = 0.2, 0.4, 0.6, 0.8, 1.0 using N = 256. (a) Numerical solution. (b) Error:
upwind. (c) Error: upwind with flux-limiter
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structured grid resolution of N = 256. The numerical solution nicely preserves the
round shape of the initial condition. Figure 4b and c show the absolute error and
the influence of the flux limiter technique in the numerical solution. In all cases,
the maximum errors are concentrated near the interface region (H = 0). Note that
the upwind scheme begins to show small oscillations. However, the flux-limiter
technique either reduces or eliminates them. From now on every simulation is run
with the flux limiter.

The temporal accuracy is investigated by varying the time step, but keeping the
grid size constant. A structured grid of N = 256 is used to minimize spatial error.
Figure 5 shows the norm errors for the explicit (θ = 0), implicit (θ = 1), and C-
N (θ = 0.5) methods. There is a clear difference when we change the temporal
formulation. The explicit scheme is only stable to values close to �t = �x2; the
implicit scheme is first-order accurate in time; and the C-N method is second-order
accurate, as expected. The order of accuracy is calculated by the slope of the least-
square (LSM) regression line of the norm errors.

Now, the space accuracy is investigated by varying the grid size but keeping
the C-N method with �t = 10−5 constant. Table 2 convergence analysis indicates
that the method is close to second-order accurate. Results also show that the
flux-limiter technique produces smaller L2-norm errors than the original upwind
solution. However, the L∞-norm differs from one resolution to another. Table 2 also
shows the absolute error of the cosine-bell peak values. Note that we obtain more
precise peak values for the upwind scheme. This behavior is expected because the
flux limiter can reduce the method to a first-order approximation in some regions.
In this way, spurious oscillations are reduced in the whole domain, but additional
numerical diffusion is introduced.

Fig. 5 Temporal convergence analysis of the 2D cosine-bell rotation example at t = 1 using (a)
L∞-norm and (b) L2-norm error
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Table 2 Convergence spatial analysis for the 2D cosine-bell example using different structured
grids resolutions at t = 1

Upwind scheme Upwind scheme with flux-limiter technique

L∞-norm L2-norm Peak value L∞-norm L2-norm Peak value

N Error Order Error Order Error Error Order Error Order Error

32 3.73e−01 – 3.24e−02 – 3.58e−01 4.67e−01 – 3.52e−02 – 4.67e−01

64 9.37e−02 1.99 9.21e−03 1.81 6.82e−02 1.45e−01 1.69 8.24e−03 2.09 1.45e−01

128 1.83e−02 2.36 2.25e−03 2.03 8.40e−03 4.05e−02 1.84 1.84e−03 2.16 4.01e−02

256 6.51e−03 1.49 5.89e−04 1.93 1.12e−03 1.21e−02 1.74 4.95e−04 1.89 1.19e−02

LSM 1.83 1.91 1.74 1.98

Fig. 6 Numerical solution of the 3D cosine-bell rotation example at different stages, and the error
at t = 1 using different number of layers in the z-direction

6.2 3D Pure Convective Test

For the 3D case, the domain is [−1, 1] × [−1, 1] × [−1, 1] and the velocity is given
by

u = 2π/
√

3
(

z− y, x − z, y − x
)

. (32)

As the 2D case, the numerical solution of Eq. (3) is quantified using the cosine-bell
example (30) with r0 = 0.25 and x0 = (−0.5,−0.5,−0.5). The domain is divided
into several horizontal structured grid resolutions and number of vertical layers. We
use �t = 5×10−4 in these simulations. The contour line H = 0.01 and velocity field
using N = 128 are shown at different time stages in Fig. 6. The scheme recovers the
shape of the sphere when it moves around the domain.

The error magnitude is different in the horizontal and vertical direction because
these approximations are not calculated in the same way. Figure 6 also shows the
errors for different horizontal grids as the vertical resolution is increased. The value
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Table 3 Convergence analysis for the 3D solid-body rotation example using a structured grid

N L∞-norm Order L2-norm Order Peak numerical Peak exact Peak error

32 5.70e−01 – 1.48e−02 – 0.359340 0.999800 6.40e−01

64 2.01e−01 1.50 4.84e−03 1.61 0.782000 0.984350 2.02e−01

128 4.27e−02 2.23 9.57e−04 2.34 0.952840 0.999930 4.71e−02

256 1.34e−02 1.67 2.47e−04 1.95 0.986430 0.998700 1.23e−02

LSM 1.83 1.98

Fig. 7 (a) Initial and (b) numerical solution of the reinitialization equation at 20 pseudo-time steps

of �z should be the half of �x to obtain the minimum error for the convective
problem. However, �z = �x already gives a precise solution, as shown in the
convergence analysis of Table 3. The method is close to a second order of accuracy.
Note that, by increasing the grid resolution, the peak value is closer to the exact one.

6.3 Reinitialization Test

Now, we analyze the solution of the reinitialization equation (6). For this test, the

initial condition is a smooth function given by 0.5
(

1+ tanh
(

d/
√

2A
))

, where d

is the distance function and A is the minimum area among all triangular cells, see
Fig. 7a. Figure 7b shows the effect of the reinitialization equation after 20 pseudo-
time steps. Here, we use a structured grid resolution of N = 64 for � = [0, 1]2, and
an explicit formulation with �τ = 2 × 10−3. Note that the solution now resembles
the Heaviside function.

Figure 8a shows that the numerical solution becomes sharper as the number of
pseudo-time step increases. However, the solution does not change significantly
after 50 pseudo-time steps. As a criteria for steady-state, we used Error =
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Fig. 8 (a) Reinitialization solution at x = 0.5, and (b) convergence error for different �τ values

∫

�

(

(Hm+1 −Hm)/�τ
)

< tol, for some tolerance tol [29]. Figure 8b displays the
error versus the number of pseudo-time steps. As expected, the convergence depends
on �τ . The steps required to reach a given tolerance reduces significantly for larger
�τ values. Although the results are not shown here, similar results are obtained for
the 3D case.

7 Two-Dimensional Numerical Results

In this section, three well-known problems are used to study the proposed conserva-
tive level-set approach: the solid-body rotation problem, the Zalesak’s disk, and the
single vortex.

In the following examples, the initial condition is the regularized Hε function.
However, we also perform simulations using the original Heaviside function H. For
both cases, the interface is defined as the level sets H = 0.5. To quantify the error,
we use the normalized mass conservation errors defined as

E0(t) =
(∫

�

H(x, t)dV −
∫

�

H(x, 0)dV

)

/

∫

�

H(x, 0)dV, (33)

E1(t) = E0(t), for 0.5 ≤ H ≤ 1. (34)

Note that E0 measures the mass conservation in the whole domain; meanwhile, E1

only the mass inside the interface.
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7.1 Solid-Body Rotation

For the first example, we consider the solid-body rotation problem resulting from the
conservative level-set equation (3). The domain is [−1, 1]×[−1, 1] and the interface
is circular with r0 = 0.25 and x0 = (−0.5,−0.5). The velocity field is given by
Eq. (31). Figure 9 shows the numerical results at different stages using �t = 10−4

and a structured grid of resolution N = 256. Accurate solutions are obtained for
both Hε and H. However, as the solid-body rotates, the numerical solution produce
some numerical diffusion close to the sharp gradient regions. On the other hand,
Fig. 10 shows the normalized mass conservation errors for each case. Both errors
are small indicating that the numerical method is conservative, as expected.

Previous results have shown high accuracy due to the fine mesh; however, as
expected, the solution becomes more diffusive as the spatial resolution decreases.
This behavior is in part a consequence of the proposed regularized function Hε .
For example, Fig. 11 shows the initial and final results at x = −0.5 for different
ε = 0.5�β values and a structured grid of resolution N = 64. As β is smaller,
ε is larger and the initial solution becomes smoother. Note that for β = 0.8, the
initial and final profiles are very similar. However, the solution is not sharp enough
to describe the profile of the Heaviside function. In this work, we use Hε with β = 1
as a default value. Note that its corresponding final stage is almost the same as H
for this example.

Finally, we improve the results by applying the reinitialization step, as shown in
Fig. 12. As expected, the numerical solution is significantly improved. We remark
that there is not much difference for cases with higher resolution as the conservative
level-set equation already gives accurate results.

The effect of the unstructured mesh will be discussed in the following two more
complex examples. In the Zalesak’s disk problem, we study how accurately sharp
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Fig. 9 Numerical solution for the 2D solid-body rotation at different stages for N = 256. (a) Hε .
(b) H
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Fig. 10 Numerical solution for the 2D solid-body rotation at different stages for N = 256, and
normalized mass conservation errors. (a) E0. (b) E1

Fig. 11 Numerical solution for the 2D solid-body rotation at the initial and final stage at x = −0.5
using different ε = 0.5�β values and N = 64

corners are transported. Next, in the single vortex problem, we investigate the ability
of the method to resolve thinner filaments.

7.2 Zalesak’s Disk

For the second example, the Zalesak’s disk benchmark simulates the rigid body
rotation of the slotted disk with respect to a fixed point [40]. The initial shape is a
disk of radius r0 = 0.15 and centered at x0 = (0.75, 0.5) with a slot of 0.05 deep
and 0.125 wide, see Fig. 13. The domain is [0, 1] × [0, 1] and the velocity is given
by (31). The slotted disk also completes one revolution after one unit of time.

The final interface of the slotted disk after one complete cycle using different grid
resolutions is shown in Fig. 13. Note that the coarse grid gives a curve that has lost
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Fig. 12 Numerical solution for the 2D solid-body rotation at the final stage with and without
reinitialization for a structured grid resolution of N = 64. (a) N = 64. (b) N = 64 Reini. (c)
Numerical solution at x = −0.5

Fig. 13 Zalesak’s disk final interface after a complete revolution with different grids. (a)
Structured (N = 64). (b) Structured (N = 128). (c) Structured (N = 256). (d) Unstructured
(N = 64). (e) Unstructured (N = 128). (f) Unstructured (N = 256)
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Table 4 Normalized mass errors of the Zalesak’s disk problem after one revolution

Structured Unstructured

N = 64 N = 128 N = 256 N = 64 N = 128 N = 256

H −21.8% −14.6% −8.1% −18.9% −7.1% −3.6%

Hε −3.5% −3.3% −1.2% 5.4% 4.8% 3.8%

Fig. 14 Zalesak’s disk final interface and evolution of the normalized mass errors E0 and E1 using
a N = 256 unstructured grid resolution. Errors for different values of ε = 0.5�β . (a) Solution Hε .
(b) Relative error E0. (c) Relative error E1

its original shape. However, for N = 256, structured and unstructured results show
an acceptable final profile for both H and Hε . As expected, the most challenging
part are the corners. The mass errors shown in Table 4 agree with the profiles of
the slotted disk shown in Fig. 13. The mass errors are displayed using structured
and unstructured grids of resolutions N = 64, 128, and 256. As expected, the mass
conservation is improved when the grid size is smaller. A maximum deviation of
1.2% and 3.6% are reached using a structured and unstructured grid resolution of
N = 256, respectively.

Figure 14 shows the final interface and normalized mass errors of different values
of ε = 0.5�β using an unstructured grid of resolution N = 256. As expected, the
evolution of errors E0 and E1 depends on the β values. If β decreases, then E1

becomes smaller. However, the final interfaces have imperceptible differences. The
reminding simulations of this paper with Hε will be performed using β = 1.

Finally, as the previous example, we present the results incorporating the
reinitialization algorithm, as shown in Fig. 15. Although the level set H = 0.5 is
similar for both cases, the numerical solution of H is significantly improved, as
expected.

7.3 Single Vortex Deformation of a Circle

For the final 2D test case, we study the single vortex deformation of a circle in the
domain [0, 1] × [0, 1]. A circle of radius r0 = 0.15 is initially centered at x0 =
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Fig. 15 Zalesak’s disk final solution with and without reinitialization using a N = 64 structured
grid resolution. The one-dimensional solution corresponds to x = 0.5. (a) N = 64. (b) N = 64
Reini. (c) Numerical solution at x = 0.5

(0.5, 0.75) and advected under a solenoidal velocity field given by

u =
(

− sin2(πx) sin(2πy), sin2(πy) sin(2πx)
)

, (35)

At t = T /2 the flow field is reversed, so that the exact solution at t = T should
coincide with the initial condition. Unlike previous examples, the accuracy of the
numerical method also depends on the topology changes of the initial interface. As
the period T increases, the velocity field stretches the circular interface into a very
long filament that spirals around the center of the domain. Thus, the final interface
shape becomes more difficult to coincide with the initial condition.

Contour lines corresponding to H = 0.1, 0.5, and 0.9 of the evolution of the circle
shape for a period T = 8 at eight different stages are shown in Fig. 16. We employ
a structured right-angled grid resolution of N = 256, Hε as initial condition, and
�t = 10−4. Note that the interface is very accurate at early stages; however, the
interface tail loses its accuracy as time continues increasing. At t = 4, the circle
reaches its maximum deformation, and the result is already deteriorated.

As expected, the final solution also depends on the grid resolution. Figure 17
shows the level-set at H = 0.5 for the period T = 2 using structured and
unstructured grids. The interface has returned to a circle format, and it is more
accurate as the grid resolution becomes finer. However, for unstructured grids, the
profile presents some noisy at several segments of the interface. It is expected as the
cell size and number of cells sharing a node change in an unstructured grid.
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Fig. 16 Single vortex deformation of a circle at different stages using a structured grid of
resolution N = 256. Interface location corresponds to H = 0.1 (red), H = 0.5 (black) and
H = 0.9 (blue)

Fig. 17 Final interface location (H = 0.5) for the period T = 2 using different grid resolutions.
(a) Structured. (b) Unstructured

On the other hand, the final shapes of the circles to periods T = 1, 2, 4 and 8
are shown in Fig. 18a using a structured of N = 256. For periods T = 1 and 2,
the circle returns to its original shape with high accuracy. Furthermore, the final
interface shape for period T = 4 still resembles a circle. However, the grid is not
fine enough to resolve the interface at T = 8. The precision of the numerical results
can be better analyzed from the interface errors shown in Fig. 18b. The interface
error is calculated as ei = |r0 − ri |, where ri is the distance from each point xi on
the interface to the initial center x0.

Table 5 shows the L∞- and L2-norm errors of the final interface shape using
H and Hε , as level-set functions. Note that the norm errors are slightly different
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Fig. 18 Single vortex deformation of a circle: (a) Final interface location H = 0.5 for the circle
for T = 1, 2, 4, 8 using a right-angled grid of resolution N = 256. Absolute interface errors using
the characteristic function Hε . (a) Final interface solution. (b) Absolute errors

Table 5 Interface errors of the single vortex problem with a right-angled grid of resolution N =
256 and different characteristic functions

Period (T )
Heaviside function H Regularized function Hε

L∞-norm L2-norm L∞-norm L2-norm

1 1.46e−03 1.66e−02 1.43e−03 1.49e−02

2 2.97e−03 3.55e−02 3.21e−03 3.45e−02

4 8.05e−03 8.43e−02 8.20e−03 8.42e−02

8 9.70e−02 8.48e−01 9.70e−02 8.50e−01

between the Heaviside function and the regularized function Hε . This confirm the
method’s capacity to deal with the discontinuous H problem.

We further study the conservative level-set results for H and Hε by analyzing
the loss mass for period T = 2. The normalized mass error E0 is plotted in Fig. 19
for N = 256. The global error E0 is close to the zero machine for structured grids
and very small for unstructured grids which indicates that the proposed numerical
method is conservative, as expected.

Figure 20 shows the results of the reinitialization step in the single vortex
problem for T = 2 using a structured grid of resolution N = 64. Note the significant
improvement in the numerical solution compared to the one without reinitialization.
Finally, we remark that, even if a reinitialization step is applied, inaccurate results
are presented by other state-of-the-art methods for either structured or unstructured
grids [27, 29, 36].

In general, the method’s accuracy of each example is sensitive to the reinitial-
ization parameters: the number of pseudo-time steps, �τ , and recurrence that is
applied. Future work will be done in this direction.
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Fig. 19 Normalized mass error E0 of the single vortex problem with period T = 2 using
structured and unstructured grids for N = 256. (a) Structured E0. (b) Unstructured E0

Fig. 20 Single vortex final solution (T = 2) with and without reinitialization using a structured
grid of resolution N = 64. (a) N = 64. (b) N = 65 Reini. (c) Numerical solution at y = 0.75

8 Three-Dimensional Numerical Results

The ideas presented for the 2D examples can be carried out directly to 3D space.
This section tests the proposed numerical method in three benchmarks problems
considered by Kawano et al. [18]. The simulations are computed over the domain
� = [0, 1] × [0, 1] × [0, 1]. The same grid resolution was selected in each direction
for structured and unstructured grids, as presented in Table 1. We apply �t = 10−2,
5× 10−3, and 2× 10−3 for N = 64, 128, and 256, respectively.
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8.1 Kawano 3D Solid-Body Translation

In this example, an interface profile as proposed by Kawano [18] is translated into
�. The shape is defined as the union of the sets [0.08, 0.48]×[0.2, 0.36]×[0.08, 0.48]
and the sphere of radius r0 = 0.16 and center x0 = (0.28, 0.28, 0.28), see Fig. 21.
The shape is translated using the uniform velocity field u = (1, 1, 1). At t = 0.4
the flow field is reversed using u = (−1,−1,−1), then the solid-body returns to the
initial position at t = 0.8.

Figure 21 shows the final shapes (t = 0.8) using different resolutions for
structured and unstructured grids and the Heaviside function. The initial body shape
is recovered in all cases. Although the method produces more deformations for
N = 64, we get accurate results for N = 128 and 256. For unstructured grids,
results show some noise at several segments of the interface. It is expected due to
the arbitrary distribution of the cell size and number of cells sharing a node. Profiles
in the xy plane at z = 0.28 for iso-surface values H = 0.1, 0.5, and 0.9 are shown
in Fig. 22. Results confirm that high-resolution grids produce small deformations;
however, the sharp corners are still smoothed. Figure 22 also shows the normalized
mass error E1. Note that it decreases when grid resolution is finer. Moreover,
temporal evolution has a similar behavior for both structured and unstructured grids.

To conclude this example, we study the reinitialization effect in this problem.
Figure 23 shows the results using a structured grid of N = 64 and both H and Hε

as characteristic level-set functions. Note that the numerical solution for both cases
is similar. As expected, the reinitialization step gives a less diffusive solution and is
closer to the Heaviside profile.

Fig. 21 Final body position (H = 0.5) using different structured and unstructured grid resolutions
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Fig. 22 Initial and final time profiles of the Kawano 3D solid-body example for structured grids,
and temporal evolution of the normalized mass error E1

Fig. 23 Kawano 3D solid-body final solution with and without reinitialization using a N = 64
structured grid resolution. The results at the bottom corresponds to the xy plane at z = 0.28. (a)
H. (b) Hε

8.2 Zalesak’s Sphere

The second 3D example is Zalesak’s sphere test [18, 41]. This example has been
used extensively to characterize how the methods can accurately transport sharp
corners. The shape is a sphere of r0 = 0.15 and x0 = (0.75, 0.25, 0.5) with a slot
of 0.2 deep and 0.04 wide. The velocity field moves the solid body over a circular
trajectory that is orthogonal to the vector (1, 1, 1) returning to its original position
at t = 1.

Numerical results using the Heaviside characteristic function are shown in
Fig. 24. This figure also shows the initial and final interfaces using a structured grid
of N = 64, 128, and 256. As expected, the numerical method can recover the initial
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Fig. 24 Zalesak’s sphere evolution at different stages using N = 256. At the right, iso-surfaces
H = 0.1 (top) and H = 0.5 (bottom) at the initial and final time for different grid resolutions

Fig. 25 Initial and final profile of the Zalesak’ sphere using for different resolutions

shape for higher resolutions. The iso-surface profiles on the plane xy at z = 0.5 are
displayed in Fig. 25a for H = 0.1, 0.5, and 0.9. Results confirm that high-resolution
grids produces small deformations; however, the sharp corners are still smoothed in
all cases.

We remark that the standard Zalesak’s sphere problem is simulated using a
circular rotation orthogonal to (0, 0, 1) [18, 42]. However, the proposed vector field
in this paper includes a transverse movement which makes it a more severe test.
Although the results are not shown here, similar results are obtained using the
standard rotation field.

Finally, we present the numerical simulations incorporating the reinitialization
algorithm in the Zalesak’s sphere test for N = 64. Figure 26 shows the results
applying both the Heaviside and the regularized characteristic level-set functions.
The numerical solution of H is significantly improved using the reinitialization, as
expected. Moreover, the level set H = 0.5 recovers more of the initial Zalesak’s
sphere shape.

Vortex Deformation of a Sphere

In the final example, we consider the vortex deformation of a sphere under a velocity
field which imposes large deformations to the original shape. It is considered one of
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Fig. 26 Zalesak’s sphere final solution with and without reinitialization using a N = 64 structured
grid resolution. The two-dimensional solution corresponds to the xy plane at z = 0.5. (a) H. (b)
Hε

the most challenging tests because it superposes simultaneously similar deformation
fields in the xy and xz planes [43].

A sphere of radius r0 = 0.15 and centered at x0 = (0.35, 0.35, 0.35) is moved
and deformed through � using the incompressible flow field proposed by LeVeque
[42]:

u = 2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T ),

v = − sin(2πx) sin2(πy) sin(2πz) cos(πt/T ),

z = − sin(2πx) sin(2πy) sin2(πz) cos(πt/T ),

(36)

where T is the period.
The temporal evolution of the interface shape (H = 0.5) is shown in Fig. 27

using Hε as the characteristic level-set function and a structured grid resolution
of N = 256. The velocity field forms two rotating vortices, which initially scoop
out opposite sides of the sphere and then squeeze it. Then, the top and bottom of
this shape are caught up again in their appropriate vortices, causing a very slim
and stretched surface. At t = T /2, the flow field is reverted to recover the original
shape. These deformations cause the collapse of some regions of the interface and
mass loss consequently.

Figure 28 compares the initial and final shapes using structured grid resolutions
of N = 64, 128, and 256. As expected, the interface shape strongly depend on the
grid resolution and it is recovered increasing the number of elements. Note that a
well-defined interface shape is reconstructed for the finest mesh at t = T /2.
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Fig. 27 Evolution of vortex deformation of a sphere calculated using T = 3 and N = 256

Fig. 28 Sphere deformation at the middle and final stage using different structured grid resolu-
tions. (a) N = 64. (b) N = 128. (c) N = 256

Finally, we present the numerical simulations incorporating the reinitialization
algorithm in the sphere deformation test for N = 64 and period T = 1. Figure 29
shows the final profile (H = 0.5) with and without the reinitialization step. As
in previous examples, the numerical solution of H is closer to the initial Heaviside
profile using the reinitialization. Similar to the 2D cases, the number of pseudo-time
steps, �τ and the application frequency plays an essential role in the final solution.
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Fig. 29 Sphere deformation final solution with and without reinitialization using a N = 64
structured grid resolution

9 Performance

In this section, the performance of the code is reported to show the effectiveness of
the proposed parallel technique. Computational performance is evaluated in terms of
speedup and efficiency. The speedup Sp is defined as Sp = t1/tp and the efficiency
E is defined as Ep = t1/(nptp) where tp are the execution time of the algorithm
with np processors. We report the results of this section on a standard twenty-core
3.0 GHz Intel Xeon. All of our codes are implemented in FORTRAN language.

We analyze the parallelization to the 3D solid-body rotation problem described
in Sect. 6.2. In this example, a structured grid is applied to control the size and
distribution of the sub-domains. To test the performance, we consider a grid
resolution of N = 128 and 256 corresponding to about 4 and 33 million prisms
elements, respectively. The sub-domains are taken by dividing np times the 3D
domain in the x-direction.

The CPU time, speedup, and efficiency for one step starting from 2 up to 20
processors are shown in Fig. 30. In general, seven and nine iterations are taken to
the solver to converge. As expected, the total CPU time decreases as the number
of processors increases. Each time step using N = 256 and the maximum number
of processors is simulated in approximately 1.7 s. However, the speedup deviates
from the ideal speedup line as the number of processors increases because of the
communication time between blocks.
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Fig. 30 3D solid-body rotation performance using different number of processors and resolutions

10 Conclusions

This work presents a second-order conservative level-set method based on an
unstructured finite-volume technique. The numerical results verify the second-order
accuracy in time and space. Zalesak problem has demonstrated the ability to capture
the interface and maintain the sharpness of corners. The single vortex problem
shows the capacity to recover the interface under large deformations. The proposed
approach demonstrates a mass conservation property; however, the unstructured
grid has an important influence on the method’s precision. As expected, the
proposed method performs well for smooth characteristic functions. Furthermore,
functions with discontinuities or sharp gradient regions such as the Heaviside
and regularized hyperbolic tangent function still perform well by only applying a
flux-limiter technique. Simulations on multiple CPUs are essential to provide the
required computational power needed to obtain fast and detailed 3D simulations.
The code parallelization is straightforward due to the simplicity of both the block
domain decomposition and the MSOR method. The number of communications is
minimum that explains the overall efficiency in the parallel computation. Future
work involves more analysis in implementing the reinitialization technique to
improve the interface recovery. We will also develop a complete code to obtain 3D
two-phase flow simulations on irregular domains using the proposed conservative
level-set technique.
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The Physics of Granular Natural Flows
in Volcanic Environments

G. M. Rodríguez-Liñán, R. Torres-Orozco, V. H. Márquez, L. Capra,
and V. Coviello

Abstract Active volcanoes are an incredible source of loose material, pyroclastic
fragments that emplace as rain or flow on their slopes, forming m-thick deposits
during explosive eruption. In particular, eruptive columns can elevate through the
atmosphere for several kilometers, from which ash and pyroclastic fragments can
fall, mantling the surrounding area, or can flow as turbulent, hot, pyroclastic flows.
A pyroclastic flow mainly consists of a dry, basal, granular avalanche that moves
along the volcanic slope, overrunned by a dilute, turbulent mixture of hot gas and
fine ash. During heavy rains or abrupt release of water (such a dam failure or glacier
outburst), these unconsolidated deposits can be easily eroded and remobilized as
lahars, a two-phase mixture of water and granular material. These gravity-driven
volcaniclastic flows are usually studied based on their deposits, where gas or water
are no longer present, limiting our understanding of particle-particle or fluid-particle
interaction. Numerical and analog modeling have been used to study their behavior,
as well as the laws governing energy transfer between particles, and between the
flow and the substratum. The mobility of a pyroclastic flow is greatly controlled
by the current’s mass and height of generation (potential energy), the efficiency
of conversion from potential to kinetic energy within the current (i.e. loss of
momentum due to frictional processes both within the current and at its edges), and
the rate of atmospheric air entrainment. Lahars, in addition to the above-mentioned
factors, are still more intricate since the rheology of the fluid phase (water plus fines)
can modify the particle interactions, preventing energy dissipation and improving
their mobility. In contrast to lahars, where real-time data is frequently collected,
pyroclastic flows are rarely studied syn-eruptive due to their high velocities (35 m/s
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in average) and high temperatures (400 ◦C on average) making direct data collection
extremely challenging, for which only few examples are available in the literature,
Real-time data, however, are of paramount importance since they can provide a
radiography of the flow behavior and of the mechanisms of emplacement, having
crucial implications on hazard assessment. Volcán de Colima is a natural laboratory
for studying volcaniclastic gravity flows. Most recent 2004–2005, 2013, and 2015
pyroclastic flows were produced by summit dome collapses; the latest of which
represented the last 100 years’ largest eruption. In contrast, lahars develop every
year during the rainy season at a minimum 20 event/year rate inside the main ravines
draining the volcano’s southern sector. Since 2011, a monitoring network has been
installed to get visual and seismic data from lahars, aiming at understanding their
behavior and the mechanisms of transport, which depend on sediment content and
on the interaction between flow, substratum and channel walls morphology. In 2015,
the transit of a pyroclastic flow, never before recorded at an active volcano, was
registered by one monitoring station. From these data, it was possible to better
describe energy transfer between particles, and between particle and substratum,
and to demonstrate that at least 1/3 of the total flow energy dissipates at channel
walls. The latest conclusion was revealing since most numerical models used at
reproducing gravity flow for hazard assessment, only considered energy dissipation
at the substratum, overestimating flow maximum runout. More in detail, the seismic
data, coupled with images of the event and field data, enabled discriminating flow
sediment content, and implementing a real-time warning system to alert villages
settled around main ravines. Our data demonstrate that more work is needed, and
that only a multidisciplinary approach can solve yet undiscovered volcaniclastic
flow internal behaviors.

1 Introduction

Volcanoes are one of the main natural threats responsible for several human
tragedies. Volcanic eruptions are spectacular natural events that can destroy in a
few minutes area in a radius of tens of kilometers from the volcano. Eruptive
columns can elevate through the atmosphere for several kilometers, from which
ash and pyroclastic fragments can fall, mantling the surrounding area, or can flow
as turbulent, hot, pyroclastic flows. A worldwide analysis showed that pyroclastic
density currents (PDC) and lahars represent the dominant fatal causes for incidents
and fatalities [1]. Several historic eruptions such as the 79 AD Vesuvius, 1902
Mount Pelée, 1985 Nevado del Ruiz (Colombia) and the recent 2019 Volcán de
Fuego (Guatemala) are examples of it. One of the main efforts in the volcanology
community is to understand the nature of volcaniclastic flows and their behavior, to
finally assess their hazards. PDC and lahars are among the most dangerous volcanic
granular flows that, because of their characteristic and behavior (density, viscosity,
temperature and velocity), represent one of the major threats during (PDC) or after
(lahar) an eruption. Predicting the propagation of these flows has been one of the
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biggest challenges in geosciences because we lack a fundamental understanding of
how complex granular media flow behaves, i.e. our understanding of their rheology
is very incomplete. This gap in our knowledge makes the impacts from PDC and
lahars very difficult to predict. The ability to forecast velocity and inundation
areas would help to limit the loss of human life and reduce economic impacts by
informing mitigation strategies such as evacuations. In the present paper we present
an overview of the state of the art about PDC and lahars knowledge, with focus on
experiments, numerical models and real-time monitoring, which represent the main
tools used so far to better constrain volcanic granular flow behavior and define their
impact. Application to active Mexican volcanoes will be here used to illustrate their
application.

2 Pyroclastic Density Currents

Pyroclastic density currents (PDCs) are gravity currents consisting of mixtures of
volcanic gas and particles of volcanic rocks (i.e. pyroclasts) that can range, in
variable proportions, from pulverized <2 mm-diameter ash to larger and different-
size particles of up to meters of diameter. These mixtures move away from their
volcanic source region mainly due to gravity acting on the highest density of the
current relative to the surrounding environment. The density differences result from
the PDC’s high temperatures (400 ◦C on average) and diverse concentrations of the
suspended particles that prevent efficient entrainment of atmospheric gas.

PDCs can range in between two end-members based on the concentration of
their particles and on the sedimentation of their deposits [2, 3]: (1) highly con-
centrated currents are granular flows (i.e. pyroclastic flows) that are distinguished
by flowing mostly confined inside topographic channels, reaching relatively short
run-out distances from source, and being dominated by grain-to-grain collisions
and interstitial pore fluid pressure; and (2) low concentrated or dilute currents (i.e.
pyroclastic surges) are characterized by flowing mostly unconfined, being capable
of overcoming high topographic barriers and reaching the largest run-out distances
during high flow dynamic pressures, transporting particles in a turbulent suspension,
and being dominated by particle-gas drag forces. From the geological investigation
of PDC deposits and their distribution, along with experimental and numerical
modelling, a single PDC of any type can comprise the complete range of particle
concentrations in space and time, i.e., transforming from flow to surge and vice-
versa, depending on the PDC eruptive mechanism.

A generalized PDC consists of a dense underflow overlied by a buoyant phoenix
plume, less dense than the atmosphere (Fig. 1a). The underflow consists of a basal
granular flow dominated by particle–particle interactions overlied by a dilute part
dominated by traction processes driven by fluid turbulence (Fig. 1a). The non-
turbulent/turbulent boundary between the basal granular–fluid and upper dilute part
of the PDC is characterised by a strong reduction in particle concentration by 2–3
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Fig. 1 Schematic profile of (a) pyroclastic density current and (b) lahar with images showing
examples of flow fronts captured at Volcan de Colima monitoring site

orders of magnitude, produced by the interaction of gravity and the different sizes
of particles in suspension.

All types of highly concentrated and low concentrated currents produce pyro-
clastic deposits once sedimentation undergoes via two different processes [4]: (1) en
mass deposition, where the complete current stops flowing and forms deposits, and
(2) progressive aggradation, in which particles progressively sediment from base to
top parts of the current, so that vertical sections of deposits reflect only temporal
variations at the base of the PDC while passing over a particular location.

Most mechanisms of PDC generation are associated with magma of different
chemical composition and gas content ascending to the Earth’s surface, and later on
erupting from volcanoes at different intensity, in which case, the PDC mechanisms
can be referred to as “hot” or eruptive.

The most widely accepted PDC eruptive mechanisms and corresponding PDC
styles are (Fig. 2): (1) dome collapse block-and-ash flows, (2) laterally directed
blasts, (3) column collapse PDCs, and (4) fountaining and boiling-over PDCs [4].
In particular, block-and-ash flow (BAF) PDCs, one of the most common event
observed at Volcán de Colima during the last century (e.g. [5]), are produced from
gravitational collapse of lava domes following dome growth to a critical size, which
is attained in long periods of highly viscous lava effusion and accumulation on top of
a volcano’s either summit crater or peripheral secondary vents. Consequently, BAFs
can occur in relatively “cold” non-eruptive conditions due to slope instability alone;
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yet, most commonly, gravitational dome collapses are aided by dome fracturing
and overpressurization owing to one or all of the following: volatile-rich magma
remaining hot inside the least permeable interior of lava domes, persistent magma
flux in volcanic conduit walls, or gas exsolution from fresh magma ascending
towards the surface. In the latter cases, dome collapses and BAF generation
commonly either trigger or preclude decompression of magma from different levels
of the conduit, leading into explosive volcanism of varying duration and intensity,
from short-lived Vulcanian burts to sustained larger events. Examples of the range of
dome collapse BAF processes and ensuing different explosions were produced in the
eruptions of 1902 Mount Pelée, Martinique; 1995–1999 Soufriere Hills, Montserrat;
2010 Merapi, Indonesia; 2012 Santiaguito, Guatemala; and 2015 Volcán de Colima,
Mexico.

Laterally directed blast PDCs are generated from the abrupt, violent decompres-
sion and burst of magma close to the surface, followed by the rapid lateral expansion
of the resulting eruptive mixture of pyroclasts. During the initial explosive phase,
the pyroclastic mixture is driven by magma’s internal pressure but cannot rise
vertically due to limitations, mainly failed entrainment of atmospheric gas, flank
oriented edifice collapse, and horizontally inclined pre- and syn-eruptive conduit
and vent exit morphology ([3]). Instead, the mixture expands laterally, and most
subsequent PDC transport occurs due to gravity (Fig. 2). A notorious evidence of
the high dynamic pressure of blast PDCs, as recorded during historical eruptions,
were volcanoes’ ringplain landscapes being fully or partially damaged, and trees
being knocked to the ground, parallel to the current’s flow direction. Few examples
of laterally directed blasts have been witnessed in recent history, where two main
mechanisms for blast PDC generation were recognised. First, the eruption of May
1980 of Mount Saint Helens, USA, initiated with flank collapse of the volcanic
edifice, which formed a giant landslide and decompressed magma that fed a laterally
expanding blast PDC. In this case, edifice collapse instantly exposed to the surface
a body of magma (i.e., a cryptodome) that had been residing for several weeks
in Mount Saint Helens’ uppermost conduit, early detected during this eruptive
episode from edifice ground deformation. Similarly, a second blast PDC generation
mechanism was exemplified by the explosive phase of 1997 of Soufriere Hills,
Montserrat, and more recently during the eruption of 2014 of Kelud, Indonesia
(e.g. [6, 7]). In these two explosive events, the hot interiors of large lava domes
sitting over the central vents were decompressed violently, driving rapid expansion
of laterally directed blasts. Magma decompression in the latter two cases was thus
triggered by the fast removal of summit lava domes, producing initial BAFs, which
is the mechanism for blast PDC generation more frequently identified in geological
and historical records.

Collapse of eruption columns emitted vertically towards the atmosphere from
a volcanic vent occurs when the mixture of pyroclasts fails to entrain enough
atmospheric gas to become buoyant (Fig. 2). This can happen due to several
potential and mutually related factors, including rapid loss of gas or gas exhaustion
from the erupting magma, increased eruptive flux, conduit and vent widening, and
mixture’s entrainment of dense conduit walls [3, 4]. Whereas complete collapse
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Fig. 2 Sketch of generalized
main eruptive mechanisms
and styles of pyroclastic
density currents

comprises the entire mixture of pyroclasts collapsing and flowing over the ground
by gravity, partial collapse only affects margins or small portions of the entire
column, in which case both eruption columns and PDCs form together. Ultimately,
the number (i.e., pulses) of column collapse PDCs that can be generated during a
single eruption, and their individual starting volumes, depend on magma flux rates
and eruption intensity; i.e., the larger the eruption intensity, the potentially larger the
eruption column, and the more voluminous and/or numerous column collapse PDCs
might form [4]. Examples of partial column collapse PDCs generated from the
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margins of large Plinian-type eruption columns (>20–30 km-high) were registered
during the eruptions of 1980 of Mount Saint Helens, USA, and of 1991 of Mount
Pinatubo, Philippines. On the other hand, deadly, and totally devastating complete
column collapse PDCs were produced in the final explosive phases of the eruptions
of A.D. 79 of Mount Vesuvius, Italy, and of 1883 of Krakatoa volcano, Indonesia.

Fountaining PDCs, likewise column collapse, form due to gravitational collapse
of mixtures of pyroclasts, but from transient and low (meters-high) Strombolian or
Vulcanian-type eruption columns [8]. In this case, intermittent magma flux inside
the conduit driven by magma’s highly heterogeneous gas-foam rheology produces
unsteady eruption columns that rapidly lose buoyancy and collapse, forming a
fountain of pyroclasts that feeds PDCs moving by gravity over the volcano flanks
(Fig. 2). In these conditions, the fountain might remain relatively constant in an
eruption until either the magma supply rate or the gas content decrease. Boiling-
over PDCs obey similar mechanisms of PDC generation than fountaining but at
lower energy, insufficient for developing any type of eruption column. Instead, the
vesiculated magma directly sprouts over the crater rim, and PDCs are generated
once the crater becomes inundated, so that the mixture of pyroclasts can flow out of
the rim over the volcano flanks by gravity [8]. Examples covering the range from
high to low energetic fountaining and the less energetic boiling-over PDCs were
produced during the eruptions of 1995–1999 Soufriere Hills, Montserrat; 2000 Etna,
Italy; 2006 Tungurahua, Ecuador; and 2015 Volcán de Colima, Mexico.

3 Lahar

Lahar is an Indonesian term used for describing a water-sediment mixture that
flows down the slopes of a volcano. Lahars may occur during an eruption (syn-
eruptive), few days or months after (post-eruptive) or during a period of eruptive
quiescence (intra-eruptive) [9]. They usually form through rapid water release,
from glacier melting, lake break-out or more commonly during heavy rains. At
Volcan de Colima, one of the most active volcanoes in Mexico, up to 40 lahars are
detected each year during the rainy season (from June to October). As water flows
along the flank of a volcano on an erodible surface, sediments are progressively
entrained (i.e. bulking process), forming sediment-laden flows. Depending on
sediment concentration, the latter flows can be classified in debris flows and
hyperconcentrated flows. In debris flows, sediment concentration is higher than
~60 vol% or more generally, with solid and liquid fractions approximately equal
volumetrically [10–12]. They are laminar flows where solid and water fractions
move downstream in unison, with the capacity for transporting large boulders over
long distances, making them very destructive [13, 14]. Hyperconcentrated flows
have sediment concentrations between 20 and 60 vol% [15]. They are turbulent,
two-phase flows, and are considered to be the transition from stream flows to debris
flows [10]. Such transitions are gradual and dependent on other factors such as
sediment-size distribution, clay mineralogy, particle agitation, and flow energy [14].
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In particular, changes in channel morphology (such as channel width, shape and
slope), intersection with secondary river tributaries, bulking or debulking processes
can modify the lahar behavior causing unsteady pulsating flows. This unsteadiness
produces horizontal and vertical gradients in flow characteristics. A longitudinal
profile of a lahar is characterized by three different sections [16] (Fig. 1b). The head
consists of a dilated, high-friction, coarse-grained flow front, reaching the highest
flow height and peak velocity pushed from behind by a nearly liquid, finer-grained
debris body, followed by the recessional tail with the lowest sediment concentration.
The vertical profile is produced due to the increment in sediment concentration
towards the base of the flow. Depending on the hydraulic properties of clasts, the
largest or densest particles go to the bottom of the flow because of the sedimentation
processes. However, sedimentation is counteracted by the density of the interstitial
fluid and clasts’ dispersive pressure, which inhibits sedimentation, especially in
turbulent flows.

Once fully developed, lahars flow under the influence of the following stresses:
cohesive yield strength, the Mohr-Coulomb shear stress, (τ = ρgHtanδ where τ is
the frictional shear stress, ρ is the flow density, g is the gravity, δ is the friction angle
of the material, H is the flow depth), the dispersive stress, the viscous stress, and the
turbulent shear stress [17]. Different models have been used to describe the stress-
deformation relationship in debris flow behaviors [18]. Simple rheological models
describe the bulk behavior of sediment-water flows as viscoplastic, either as Bing-
ham plastic or Herschel-Bulkeley fluids [19, 20]. Bingham model is the simplest
non-newtonian rheological model, where viscosity is independent of shear rate, in
contrast to the Herschell-Bulkley model where viscosity depends to the shear strain
rate. Both models fail to account particle-particle interaction. Other models, more
commonly used for describing lahars with low fine sediment content, are mostly
focused on dispersive stresses as the dominant mechanism of particle support and
momentum transfer (i.e. inertial granular models, [21, 22]). Takahashi [22] model
considers a dispersive shear stress due to collisions and momentum exchanges
between adjacent particles. On the basis of the ratio of inertial to viscous shear
stress, two regimens were identified: macroviscous (dominates at low shear rates)
and grain-inertia (dominated by grain collision). Another approach consists of the
employment of hydraulic models that solve Saint-Venant equations and incorporate
Manning or Chezy coefficients, both related to the channel slope and geometry,
to account for turbulence, viscosity, and friction as energy loss mechanisms [18].
Some hydraulic, depth-averaged models incorporate viscoplastic and grain inertial
resistance in their constitutive equations, allowing them to calculate flow depth and
velocity during transport [23, 24]. More complex multiphase models use Coulomb-
Mixture theory (CMT), a depth-averaged, three dimensional mathematical model
that accounts explicitly for solid- and fluid-phase forces and interactions [25]. The
CMT main assumptions are that the solids behave as a Coulomb frictional material,
the intergranular fluid behaves as a Newtonian viscous fluid, Terzaghi principle of
effective stress and Darcy’s Law (fluid drag) govern the coupling between solid and
fluid components, pore fluid pressure reduces intergranular effective stresses and
can evolve during flow. This model best describes the initial motion of a mass of
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granular material (i.e. landslide) from a static state to a debris flow, which is not
always the most usual initiation process for syn- and post-eruptive lahars.

Physical and rheological characteristics of lahars are of paramount impor-
tance in hazard assessment. They were derived from empirical relationships, field
measurements, and large-scale flume experiments [26]. Finally, despite the wide
variety and complexity of mathematical and physical relations for describing lahar
behavior, there is not a single model that represents lahar phenomena due to the
complexity of triggering mechanisms, transitions between different types of lahar,
and emplacement processes.

4 Numerical Simulations and Experiments

4.1 Numerical Simulations

The behavior of granular flows moving down a slope depends on a large number of
parameters [27], such as grain size, polydispersity, water content, packing fraction,
terrain and particle irregularities, friction coefficients, etc. This complexity leads
to non-intuitive, difficult-to-predict phenomena appearing in granular flows, among
which particle-size segregation is one of the most important and has great conse-
quences when dealing with these materials [28, 29]. However, theoretical models
have been developed in order to understand the underlying physical mechanisms
of granular flows. Even though these models need to take into account all that
large number of variables, the constitutive equations in these models can be solved
numerically. Two main approaches exist to best accurately describe such flows,
namely continuum models and discrete models.

Continuum models use the assumption that the granular flow can be regarded as
a continuum medium, similar to a fluid [30]. These models are based on the basic
principles of mass and momentum conservation to set up the needed differential
equations [31–33]. However, unlike the equations governing Newtonian fluids, like
the Navier-Stokes equations, granular models may require additional terms that take
into account frictional and collisional loss of energy both between particles and
between the medium and its substrate. In many circumstances, continuum models
are accurate enough to describe all the observed phenomena. Nevertheless, they
fail to describe phenomena inherent to the granularity of the medium, such as
particle-size segregation [34] and high-speed ejection of individual particles [35].
This failure can be of crucial importance when assessing hazard maps for locations
prone to rock avalanches and pyroclastic density currents.

Because of the lack of success at completely describing granularity-related
phenomena, instead of continuum models, discrete models, which take into account
the mechanics of individual particles, are also commonly used to explain the
behavior of granular flows. A very common approach is the utilization of Molecular
Dynamics (MD) algorithms [36], which first calculate the sum of forces experienced
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by each of the individual grains, and afterwards solve the equations of motion with
an appropriate integrator. In this section we will only focus on the description of
discrete models.

MD simulations require an initial set of positions and velocities for the i-th
particle, {ri(t),vi(t)}. From this set and the calculation of the total force on the
particle, the equations of motion are numerically solved and a new set of positions
and velocities, {ri(t + �t), vi(t + �t)}, is obtained. However, the calculation of
dissipative forces is usually expensive in terms of computational resources and, for
this reason, most MD algorithms aimed to simulate granular flows tend to leave
out popular integrators, like high-order Runge-Kutta methods [37], which require
the calculation of forces several times. Even in the case of Runge-Kutta methods,
such as Strong Stability-Preserving Runge-Kutta methods, that can be decomposed
as a convex combination of forward Euler methods, an intermediate calculation for
the forces is required between t and t + �t, again increasing the computation time
[38]. Instead, one must rely on simpler, one-time-step integrators, among which
the velocity-Verlet method is quite popularly used. Nonetheless, the velocity-Verlet
method has the disadvantage that it works with accelerations that do not depend on
the particles’ velocity, whereas most forces in granular matter, such as friction and
inelastic collisions, require the knowledge of a relative velocity between particles to
be computed. This inconvenience is circumvented by adding an intermediate step
for a prediction of velocity before the acceleration is computed. The resulting set of
equations for this velocity-Verlet corrected method is [37]

ri (t +�t) = ri(t)+ vi(t)�t + 1

2
ai(t)�t2 (1)

vp,i (t +�t) = vi(t)+ ai(t)�t

ai (t +�t) = 1

mi

fi

(

ri (t +�t) , vp,i (t +�t)
)

vi (t +�t) = vp,i (t)+ 1

2
[ai (t +�t)− ai(t)] �t

Here, vp,i is the predicted intermediate velocity, ai is the acceleration of the particle,
fi is the total force experienced by the particle and mi is the particle’s mass.

The previous method yields an O(�t3) truncation error. More sophisticated
algorithms with higher accuracy exist, for example, the sixth-order adaptation of
the Adams-Bashforth-Moulton methods described by Pöschel and Schwager [39],
which gives a local truncation error of O(�t6). However, the computation of high-
order derivatives, required by this adaptation, introduces a new source of error, since
dissipative forces usually have discontinuities in their derivatives at some point, for
instance, when a particle-particle contact is broken. For this reason, most numerical
algorithms stick to the simpler velocity-Verlet corrected method.
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As mentioned before, the calculation for the t + �t step requires the previous
computation of the total force exerted on each individual particle. In the case of dry
granular matter, the only interparticle forces are non-elastic collisions and static and
dynamic friction forces. Also, additional non-elastic collisions and friction forces
have to be calculated for those particles interacting with the boundaries of the
system—being, in the case of dry granular avalanches, the slope and the walls of
the containing channel. In addition to these forces, one needs to include any force
arising from external potentials. For rock avalanches and similar granular flows, the
only relevant external potential is gravity.

In order for interparticle collisions to be modeled, one must first require that two
conditions be fulfilled: the force between particles must be zero when they are not
in contact and particle interpenetration must be avoided as much as possible. For
the second condition to hold entirely, one would need something like a hard-sphere
potential. However, the differential equations for such potential could not be solved
with a MD method, given its divergence at zero relative particle-particle distance.
Moreover, in a real physical case, even the hardest particles do interpenetrate a tiny
amount when they collide, since their elasticity makes them deform a very small
fraction of their size. Therefore, a commonly used model for the collisional force
is the so-called spring-dashpot model [40]. This model considers the particle as a
body that suffers a very small compression, whose magnitude is a tiny fraction of its
diameter, and that the particle responds to this deformation with an opposing force
linearly proportional to the compression. Additionally, a viscous force proportional
to the rate of compression is included to account for the loss of energy of the non-
elastic collision. Let the compression be denoted by ξ and the respective radii of the
colliding particles be Ri and Rj. The compression is then defined as

ξ = max
(

0, Ri + Rj −
∣

∣ri − rj
∣

∣

)

. (2)

The interacting force must also be always repulsive so, when the particles are
moving apart from each other, they do not experience a restitution force that brings
them back together. Considering this, the collisional force is

fc = min

(

0,−κξ − γ
dξ

dt

)

. (3)

The spring constant κ and the viscous constant γ can be expressed in terms of more
physically relevant parameters: the coefficient of restitution ε and the collision time
tcoll, which in turn is related to the particle stiffness. This yields [41]

κ =
(

π

tcoll

)2

+
(

ln
ε

tcoll

)2

; (4)

γ = 2 ln
ε

tcoll

. (5)
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Frictional forces, on the other hand, require a more elaborated description, since a
large number of interactions occurring at the same time usually leads the particle
behavior to go from the static to the dynamic regime and back. The canonical
prescription for the friction forces is the Coulomb model:

fstat ic < μsfn; (6)

fdynamic = μdfn;

where μs and μd are the static and dynamic friction coefficients respectively, with
μs > μd, and fn is the normal component of the total force exerted on the particle.
The simplest approach is to consider only the dynamic friction. This choice usually
suffices when we deal with diluted rapidly moving granular flows, where we
have briefly lasting interparticle contacts. However, this approach drastically fails
in situations where the flowing material comes to a halt (for instance, when an
avalanching material ends up in a deposition zone). In these cases, since most
relative particle-particle velocities become zero, most interactions simultaneously
enter the static regime. The implementation of static friction is rather complicated,
since this force is, by definition, the needed force that cancels out the contribution of
all other forces in order for the system to be in mechanical equilibrium and provided
this needed force does not exceed the value of μsfn. This requires a force that is
not single-valued and whose exact value depends on several parameters at once. A
simple, elegant solution to this conundrum is to consider a virtual spring fixed at the
contact point between particles whose elongation is the response of the other forces
acting on the particles [42]. The elongation at a certain time t should be given by

χ(t) =
∫ t

t0

vt (τ ) dτ, (7)

where vt is the relative tangential velocity between the particles’ surfaces of contact
and t0 is the time at which the contact forms. The virtual spring, thus, generates a
force given by

fs = −κsχ − γs
dχ

dt
, (8)

where κs and γs are the spring constant and a viscous constant. The viscous term
is needed in order to avoid unwanted persistent oscillations. The elongation cannot
be allowed to grow indefinitely, so the force is set to be zero if μs|fn|/κs < |χ| [43].
With all these ingredients we can finally define the friction force as

ff =
⎛

⎝

|fs| χ/ |χ| |fs| < μsfn

|μdfn| χ/ |χ| |fs| ≥ μsfn

(9)
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Note that in the previous equation |fs| is modeling the static friction force, fstatic,
when |fs| < μsfn. In the opposite case, when |fs| overcomes μsfn, the force
|μdfn|·χ/|χ| is now used, and this represents the change to a dynamic regime. The
previous prescription for the friction force is known as the modified Cundall-Strack
model and gives very good agreements when it is compared with experiments. The
choice for the values of κs and γs depends on the type of particles being modeled.
The interested reader may refer to Shäfer et al. [40] and Pérez [37] for reasonable
values of these constants.

If we wish to accurately describe the behavior of granular particles, we have to
consider that they might not necessarily be spherical, ideal objects. Therefore, we
need to take into account all six degrees of freedom: three translational ones and
three rotational ones. The rotational degrees of freedom are extremely important
when we calculate the tangential forces between particles (i.e., friction forces), since
this calculation depends upon the relative velocity of the surface of the particles at
the contact point. This, in turn, depends on the angular velocity of the particles and
on how far is the surface contact point from the rotation axis.

While the translational part of the calculations is simply performed by applying
Eq. (1), the rotational part requires a more careful description, since we need a set of
three parameters to get the orientation of the particle in space. Nevertheless, Eq. (1)
can be adapted for rotational configurations by exchanging the original translational
variables by their rotational counterpart (velocity and angular velocity, force and
torque, etc.). By doing that, one can use the three-dimensional rotation formalism
of one’s fancy (rotation matrices, the quaternion rotation formalism, etc.) in order
to calculate the new orientational configuration.

As previously mentioned, Eq. (1) and their rotational counterparts need the
knowledge of the total forces and torques exerted on each particle. These forces
need to be calculated as though they are applied on the particle-particle contact
point. The easiest way to do so is to split the force into a normal component and
two tangential components with respect to the surface of the particle at the contact
point. The normal force, fn, is simply the collisional force, fc, calculated in Eq.
(3). However, this force requires that we already know the relative velocities of the
contact surface. The velocity of the contact point on particle i and particle j is given
respectively by

v(i)
c = vi + ωi × (rc − ri ) ; (10)

v
(j)
c = vj + ωj ×

(

rc − rj
) ;

where vi and vj are the translational velocities of particles i and j, respectively, ωi
and ωj are the corresponding angular velocities, rc is the vector position of the
contact point and ri and rj are the center of mass positions of the particles. Note that
rc is the same on both i and j. Next, we compute the relative contact point velocity:

�vc = v
(j)
c − v(i)

c . (11)
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For a given particle geometry, we can obtain the normal component of �vc, and this
component has to be equal to the negative of the derivative of ξ with respect to time.
The compression, of course, is the maximum separation between both particles’
center of mass when they are barely touching minus the difference of the particles’
positions at the time of calculation. With ξ and dξ/dt, we can directly compute the
normal force with Eq. (3).

The tangential part of the force is given by the frictional forces calculated in Eq.
(9). A prerequisite to obtain these forces is that we know the tangential part of the
relative contact point velocity. This is simply obtained by subtracting the normal
component to the total vector �vc. After getting this, we just equate the tangential
force to the resulting friction force calculated by the modified Cundall-Strack model,
Eq. (9).

Finally, the torque exerted on the particle is obtained by adding up all the forces
which are being applied at each contact point and calculating the cross product

τi = (rc − ri )× fi . (12)

As an example of the method previously described, we can simulate a rock
avalanche by considering non-spherical particles going down an inclined plane.
Equation (2) requires spheres for the compression to be computed. However, the use
of spherical particles would result in an unrealistic, naive model for rock avalanches.
We solve this issue by creating particles consisting of four spheres placed on the
vertices of a regular tetrahedron (see Fig. 3a). A tetrahedral geometry is a simple
symmetric and more realistic model that represent non-spherical particles better
resembling natural clasts and, at the same time, having an easy-to-calculate tensor
of inertia required for the rotational part of the algorithm in Eq. (1).

For this example, we set the values for the coefficient of restitution, the collision
time, the static coefficient of friction, and the dynamic coefficient of friction as

Fig. 3 (a) An example of the tetrahedral particles used in the simulations. (b) Initial cubic-lattice
configuration of particles. (c) Particles contained in the initial hopper before the avalanche starts.
(d) Material avalanching. (e) Particles reaching the final deposition zone
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ε= 0.6, tcoll = 2.5×10−4 s, μs = 0.4, and μd = 0.32. These values are the same for
both particle-particle interactions and for particle-slope and wall interactions. Those
values correspond to measured values for andesite rocks [44]. From those values we
can apply Eqs. (2–6) to obtain the values of fc, fstatic, and fdynamic. Additionally we
set a particle density equal to the average density of andesite: 2600 kg/m3, which
is needed to obtain the mass required by the third equation in (1). The simulated
material contains a total 10,000 particles whose gyration radii span from 0.5 to
2 cm, following a constant distribution for particle sizes.

The particles are first placed on a cubic lattice in a region of the simulation box
that will represent a hopper initially containing the grains (Fig. 3b). The particles
are given random initial velocities and angular velocities and are let to fall in order
for them to fill the hopper and achieve a relaxed state (Fig. 3c). Afterwards, one of
the hopper’s walls is removed, and the particles begin to go down a slope (Fig. 3d),
which has a preset inclination θ = 15◦ and a length L = 2 m. After the particles
have run the entire length of the flume, they reach the horizontal zone where they
are brought to stop by the basal friction; this horizontal zone represents a deposition
zone (Fig. 3e).

Since Eq. (1) require the computation of the particles’ positions, space orienta-
tions, translational and angular velocities, translational and angular accelerations,
and forces and torques at each time t, we can obtain from the algorithm whatever
set of kinematic and dynamic quantities, including, but not restricted to, linear and
average angular momentum, rotational and translational kinetic energy, center-of-
mass position, loss of energy by friction, and so on.

As a very simple demonstration, in Fig. 4, upper panel (red, solid line), we show
the behavior of the center-of-mass velocity of the avalanche as a function of time.
The behaviour of the center-of-mass velocity presents three main stages. It shows, in
a first stage (0–0.5 s), a linear growing trend, during which the dominating forces are
gravity and the basal friction, being both of them constant forces. The avalanching
mass uniformly accelerates, thus yielding a linear growth for the velocity. In a
second stage (1–4 s), the velocity acquires a constant value—a terminal velocity
acquired when dissipative forces due to aerodynamic drag are balanced with gravity.
In a final stage (5 s and afterwards), when the granular mass begins to enter the
deposition zone, the velocity drops until the material stops. In this stage, gravity is
overcome by basal friction and aerodynamic drag, and thus the material’s velocity
becomes zero.

The shape of the initial part of the plot in the upper panel of Fig. 4 can be easily
explained if we analyze the forces exerted on the avalanching material. From this
analysis, we can obtain the equation of motion. Thus, the differential equation for
velocity when the granular material is going down the slope is

dv

dt
= A (θ,μd)−Dv2, (13)

where A(θ,μd)= g(sin θ − μd cos θ) and D is a generalized drag coefficient, which
depends on the material’s mass, the shape and size of the particles and the density
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Fig. 4 (Upper panel) In solid red is shown the center-of-mass velocity for an avalanche of
polydisperse particles shown in Fig. 3b, in dashed dark red is shown the function in Eq. (14) using
the parameters mentioned in the body of the text, the black dashed line is a guide-to-eye straight
line to show the constant deceleration rate, and the solid cyan curve corresponds to the function in
Eq. (16). (Lower panel) Synthetic seismic signal obtained from the avalanche simulation

of the air. The solution for v(t) in Eq. (13) is

v(t) = vT tanh

(

A (θ,μd)

vT

t

)

, (14)

with vT = √A/D the terminal velocity. On the other hand, the differential equation
for velocity when the granular material arrives in the deposition zone is

dv

dt
= −μdg −Dv2 (15)

This equation has the solution

v(t) = v∗ tan

[

φ − μdg

v∗
(

t − tdep

)

]

, (16)
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where v∗ = √μdg/D, φ = tan−1(vdep/v*), tdep is the time at which the mass enters
the deposition zone, and vdep is the velocity the mass possesses at tdep. However this
is a naive approach, since the granular material does not enter the deposition zone
all at once. Instead, when the front of the avalanche is reaching the deposition zone,
the middle body and the tail are still sliding down, pushing the frontal grains and
thus adding additional forces to the front. These forces will in turn depend on the
fraction of mass of the material that remains on the slope, compared with the mass
that is slowing down on the deposition zone. The analysis of such a complicated
force scheme is beyond the scope of this work. All we can mention is that, from
the upper panel of Fig. 4, it can be seen that the material decelerates at a constant
rate. This indicates the existence of net constant force over the whole body of
grains.

The dashed line in the upper panel of Fig. 4 is the plot of the function shown in
Eq. (14) with the parameter values for θ and μd specified before. For vT we use the
saturation value observed in the plot: vT = 79.2 cm/s.

From the computed data, one can also obtain information of geological interest.
For instance, we can calculate the amount of momentum transferred to discrete
elements of mass making up the base and walls of the flume. From that, considering
the theoretical velocity of waves traveling in an andesite material, which is
calculated based on the andesite Young’s modulus [44], we can generate a synthetic
seismic signal, which can be “detected” on an arbitrary point by adding up all the
contributions of the oscillations from all the discrete mass elements. This synthetic
signal is shown in Fig. 4, lower panel. This kind of signal could be, in principle,
compared with real signal in rock-avalanche-prone sites to give insights of the
physical mechanisms of these processes.

4.2 Experiments

Micro and meso-scale PDC flow and internal gas-particle regimes and structure in
space and time have been interpreted from the pyroclastic deposits’ sedimentation
mechanisms and distribution, and benchtop numerically simulated using multiphase
flows. In addition, large-scale, in-situ and real-time experiments of PDC flow,
employing engineered channels, has allowed direct measurement of PDC’s internal
flow dynamics, most importantly on the evolution of particle concentration regimes
and PDC’s vertical stratification [32]. Large-scale experiments were also performed
to simulate water-saturated mixture of mud, sand and gravel [45]; variation in
basal normal stress and pore fluid pressure were estimated and correlated with flow
behaviour.
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5 Monitoring

Monitoring is widely employed on active volcanoes to estimate when they are
likely to erupt or to detect PDC and lahar events during their propagation. The
unpredictability of PDCs, their high velocity and temperature, make it difficult to
set up a monitoring system, and the only few examples described in the literature
represent fortuitous cases [5].

In contrast, instrumental monitoring is widely implemented on active volcanoes
where lahars regularly occur during the rainy season, such as Volcán de Colima in
Mexico. Collection of field measurements by in situ monitoring is a fundamental
task as these data are necessary to (1) improve the knowledge of initiation mecha-
nisms and flow dynamics, (2) develop, calibrate and validate numerical models and
(3) design and implement warning or alarm systems ([46] and references therein).
The best way to continue improving our knowledge on flow behaviour is combining
results coming from the analysis of monitoring data with numerical and analogical
modelling [47].

Since 2011, a monitoring station located at 2000 m a.s.l. along the Montegrande
ravine, Volcán de Colima, collects video and seismic recording of lahars. Nowadays,
the monitoring network consists of four stations equipped with seismic and infra-
sound instrumentation, cameras, and rain gauges. Data collected by the monitoring
stations are sent in real time to the seismic observatory of the Universidad de
Colima. The seismic data, coupled with images of the event and field data, allow
discriminating the main characteristics of the flow (duration, magnitude, sediment
content) and implementing a real-time warning system to alert villages settled
along main ravines [48–50]. Also, geophysical observations of lahars can provide
information on particle interaction mechanism and sediment concentration that
can be used for model calibration. In the following, we present the monitoring
data of a recent lahar that was recorded in the Montegrande ravine, Volcán de
Colima.

Figure 5 shows the seismic signal of a lahar that occurred during the 2021
rainy season, recorded by a low cost short-period seismometer (RaspberryShake
3D). Figure 5 shows the seismogram of the vertical component (upper) and the
power spectral density (PSD) (lower) of the front, of the body and of the tail of
the flow, calculated by means of a Fast Fourier Transform. From the seismogram,
we can infer the flow duration (about 1 h), its time of occurrence and the presence
of secondary surges following the main front. The PSDs show how most energy
release occurs during the passage of the front of the flow while during the body and
the tail of the flow the energy radiation from the flow is 1 and 3 orders of magnitude
lower, respectively. This is consistent with observations of debris flows made in
alpine basins that show how the peak amplitudes are representative of the energy of
each surge and most energy transfer occurs during the passage of the surge fronts
[51].
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6 Numerical Model for Hazard Assessment

Numerical models have become one of the main instruments used to reproduce
past events of volcanic granular flows or to predict their behaviour and potential
hazard. Two main approaches have been used: (1) empirical models (e.g., LAHARZ,
[52]; energy cone, [53]), but they fail in predicting crucial dynamic parameters as
velocity and dynamic pressure; (2) geophysical mass-flow models using simplified
rheological laws (e.g., TITAN2D, [54, 55]; FLO2D, [24]; VolcFlow, [56]). Beside
the model approach, the resolution of Digital Elevation Model (DEM) reproducing
the real topography, is of primary importance for reliable replications of simulated
flow paths and inundated areas [57, 58].

The two most popular simulation tools for granular volcanic flows are FLO2D
[24] for lahars and TITAN2D [54] for PDC. Both codes solve for the depth-
averaged shallow-water conservation equations where the fluid is approximated
as an incompressible continuum material of constant density ρ, moving across a
complex topography. One of the main assumptions is that the horizontal length
scales L are substantially larger than the vertical length scale H (shallow flows).

The FLO2D model [24] routes floods over natural channels solving the full
dynamic wave equation. The total shear stress τ is the sum of the cohesive yield
stress τc, the Mohr-Coulomb shear τmc, the viscous shear stress τv (ηdv/dy), the
turbulent shear stress τt, and the dispersive shear stress τd.

τ = τc + τmc + τv + τt + τd

The model neglects any frictional effect due to direct contacts among the coarse
clasts.

The most important input parameters are an accurate DEM, an input hydrograph,
the Manning coefficient (the channel’s resistance to flow), and the rheological
parameters for yield strength and viscosity. The viscosity and yield strength terms
are scaled on user-defined empirical coefficients taking into account the exponential
dependence of the rheological parameters on sediment concentration by volume
[59]:

τy = α2e
β2Cv

η = α1e
β1Cv

where αi and βi are rheological coefficients that depend on the fine content (silt and
clay) of the flow, which can be obtained by laboratory experiments or empirical
relationships [59]; Cv is the solid phase concentration.

The TITAN2D model [54] is designed to simulate dry granular flow, i.e. the
basal, dense granular flow of a PDC. The conservation equations for mass and
momentum are solved following the equations provided by Iverson and Denlinger
[25] in the dry limit, and taking into account a Coulomb-type friction term for the
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Fig. 6 Example of numerical simulations used to define inundation area for (a) PDC (TITAN2D)
and (b) LAHARS (FLO-2D)

interactions between the granular medium and the basal surface [55]. In order to
run a typical TITAN2D simulation, the main input parameters are: the DEM of the
area of interest; the volume of the mobilized granular material, the initial grid size
and the smallest computational cell allowed on the map during the course of the
simulation; the internal friction angle ϕint and the basal friction angle ϕbed.

For both models, the first approach is to calibrate the input parameters by
reproducing the extent of known events representing different scenarios. After
calibration, simulations are run to all possible directions from the volcano summit,
with a statistical distribution of all possible inputs to obtain a probabilistic map of
inundated areas.

This approach has been used to elaborate recent hazards maps for Mexican active
volcanoes, such as Popocatépetl [60], Ceboruco [61], Tacaná [62], Volcán de Colima
[63] among others. The main output of a simulation is the flow-thickness of the
total inundated area (Fig. 6); flow-velocity maps are also available, based on which
impact force on infrastructures can be calculated for damage estimation.

7 Discussion and Conclusions

After more than two decades, the integration of field observation, numerical models
and experiments have provided new insights into the internal structure of lahars and
PDCs which are contributing to design more robust simulation codes for hazard
assessment. But, as models improve our knowledge, more accuracy will be needed
to estimate physical properties for natural flows, a difficult task considering the
hazard that they pose during their formation and emplacement. Scaled experiments
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and geophysical measurements are still the best main tools to look “inside” volcanic
granular flows and to quantify flow rheology. On the other hand, two-phase models
able to reproduce stratified flows are still far away to be accessible for hazard
assessment, and high computational cost and high simulation times will be required.
Likewise, large-scale in-situ experiments using engineered channels, although being
able to reproduce and record from concentrated to dilute currents in real-time
and at different rates and internal flow dynamic conditions, therefore representing
present’s state-of-the-art direct approaches for studying flow dynamics, are widely
inaccessible due to the high costs of installation and maintenance, along with
intricate experimental requirements. At present, depth-averaged models, which
are computationally simple, are still widely used, even if they cannot provide a
comprehensive view on all lahars and PDC regimes.

Because of the lack of detail in those simple models, there has been, in recent
years, a growing trend of research aimed at looking at the grain-size-scale physics
of granular flows. Although, as we just mentioned, an approach this detailed is
quite time-consuming and computationally expensive, we can take the advantage of
modern resources like supercomputing or graphic-process-unit parallel computing
to accelerate this process. We have presented a detailed algorithm based on
Molecular Dynamics simulations that can be easily applied to dry granular flows,
but that can likewise be extended to water-saturated granular flows. As we have
demonstrated, algorithms of this kind are able to yield insight of many dynamic
and kinematic variables. This output can always be compared with real, in situ data
from geological, hazard-prone locations, in order to visualize the inherent physical
processes within geological flows. Of course, we just gave very simple examples,
but the algorithms can be methodologically refined to better suit one’s research
needs.
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Cooperative Gravity and Full Waveform
Inversion: Elastic Case

Raul U. Silva-Ávalos, Jonás D. De Basabe, and Mrinal K. Sen

Abstract A variety of geophysical methods can be used to acquire measurements
to estimate a subsurface model. However, each method typically yields a different
model and it can be challenging to merge with those obtained using other methods.
We need to be able to combine the data from different geophysical methods
to obtain a more detailed and consistent subsurface model. In this chapter, we
present a scheme for cooperative inversion of seismic and gravity measurements.
This scheme performs iteratively full-waveform inversion (FWI) and gravimetric
inversion to minimize the misfit between the observed and synthetic data. We
explain how to use the adjoint-state method to compute the gradient needed for
FWI, the constrained conjugate gradient least-squares method to compute the
gravimetric inversion, and how to incorporate petrophysical relationships to merge
these methods in a cooperative scheme. The final system to be solved is large and
sparse, hence the implementation relies on a large sparse matrix storage and high-
performance computing. Finally, we show examples using the proposed inversion
scheme and compare the results with those of FWI. The cooperative scheme yields
more accurate models than those obtained from FWI with negligible additional
computational cost.
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1 Introduction

Exploration geophysicists have developed a variety of methods to probe the subsur-
face using measurements that can be gathered on the ground. The interpretation of
the data from these geophysical methods yields an assortment of subsurface models,
and the conundrum is to merge these models into a unified model that better reflects
the geometry and properties of the area of interest and fits all the available data.

Among the exploration-geophysics methods, the seismic method has been
particularly successful. This method was at the heart of the energy transition that
took place over one century ago [13] and continues to be widely used with an
ever increasing number of applications [47]. Over its long history, this method has
evolved together with the technology, becoming the basis for other state-of-the-art
methods such as Full Waveform Inversion (FWI) [11].

FWI [38, 39] is a powerful seismic-imaging method used to estimate a seismic-
velocity model such that the discrepancies between observed and synthetic seismo-
grams are minimized. This method has become a popular [44] and in the recent
years has improved, reducing the computational cost and enhancing the resolution
of seismic images.

FWI consists of three main steps performed iteratively. The first step is to do
the forward modeling starting from an initial model to compute the synthetic data,
and obtain the residual by subtracting the observed data. Several authors have used
the Finite Difference Method (FDM) [2, 43] for waveform modeling, however, the
Finite Element Method [26], the Spectral Element Method (SEM) [22] or other
methods can also be used. The second step is to back-propagate the residual wave
field to obtain the adjoint field. This step includes computing a cross-correlation
between the forward and the adjoint wavefield and adding over all the data points
to obtain a velocity gradient. This is the well-known adjoint method [32], which
reduces significantly the computational cost because only two forward modelings
are required in each iteration of the inversion process. In the final step, the velocity
model is updated by adding to the starting model the scaled velocity gradient using
a line-search method to determine the increment. If the observed and synthetic
data do not match, these steps are repeated until a stopping criterion is reached.
This methodology has provided good results for stratigraphic and predominantly
horizontal layered models. Despite the good results both in acoustic and elastic
media, density variations have largely been ignored [44].

The gravimetric data is directly linked to the density variations in the subsoil. The
observed data can be the gravity or the gravity gradient tensor on the surface [49].
As in FWI, the interpretation of this data relies on solving the forward problem.
Several forward modeling methods exist to compute gravity anomalies by solving
Poisson’s equation for the gravitational potential. Among the best-known methods
is the analytical solution for prismatic bodies [4, 29], however, solutions for other
geometries are readily available [16, 20, 37, 46]. In this work, we will use the
solution for uniform rectangular prisms to be congruent with the grid used in finite
differences for waveform modeling.
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Gravimetric inversion (GI) for density estimation is a linear problem. This
method is well known for estimating structures with horizontal changes of mass
distribution. The solution is straightforward using Gauss-Newton minimization [35]
to obtain a density model inverting the square matrix on a single step. This method
is widely used by geophysicists because of its fast convergence, however, it is
computationally expensive and unfeasible for large-scale problems. One alternative
to this problem is to use the Conjugate Gradient Least Squares (CGLS) method.
This method solves the inverse problem without the need to form and store the
square matrix [35].

Nowadays, the exploration of a region of interest for underground resources
requires the measurements of several geophysical datasets which need to be
interpreted for characterization. Joint inversion allows integrating these different
datasets into a consistent Earth-property model. Usually the strategy consists in
combining all the methods into one single inverse problem. Vozoff and Jupp [45]
were the first to perform joint inversion for different geophysical data sets, namely
resistivity and magnetotelluric data. Following this, numerous methodologies and
different geophysical data-inversion schemes emerged for the reduction of non-
uniqueness and ambiguity in the interpretation of the Earth model. Depending on
the constraints in the optimization problem, the joint inversion schemes can be
classified into petrophysical, structural, or statistical. Petrophysical joint inversion
is based on empirical relationships of the model parameters [23, 27, 48], structural
joint inversion seeks to minimize the cross product of the gradient of each model
parameter [14, 15] and statistical joint inversion tries to solve the problem attaching
to each grid cell of the model a mean point (fuzzy c-mean) depending on the number
of c-means [31, 33].

The cooperative inversion of seismic and gravimetric data has attracted sig-
nificant attention since these methods complement each other and both theories
depend on the density. For example, Roy et al. [34] performed first-arrival travel
time inversion jointly with gravity data using very-fast simulated annealing. Other
groups have done further work using seismic and gravity data [9, 24, 25, 41]. In
particular, Blom et al. [6] stressed the importance of density in geological processes
and studied the role of density using seismic and gravimetric data, concluding that
density estimation requires a strong a priori model to be able to determine it as an
independent parameter.

In this work, we present a novel method to obtain a unified inverted model using
FWI and GI in a sequential and cooperative scheme. This chapter is divided into five
sections, Sect. 1 being the introduction. Section 2 presents the forward modeling on
a geophysical framework and is divided in two parts for gravimetric and seismic data
modeling. For gravity, we discuss Newton’s law of universal gravitation and present
the forward modeling based on the response of a rectangular body. For seismic
modeling, we give a brief introduction to elastodynamic theory and the forward
modeling for elastic and acoustic media. Section 3 discusses the inverse problem
and follows the same organization as Chap. 2 for each geophysical method. We first
present the general basis on inverse theory. Then we discuss the separate inversion
for each method and present the the sequential inversion. The results are presented in
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Sect. 4 for two synthetic models using using conventional and cooperative inversion.
The conclusions are included in Sect. 5.

2 Forward Modeling of Geophysical Data

This section presents the theoretical framework for the gravimetric and seismic
geophysical methods. For the gravity data, we present the solution of Newton’s Law
of gravitation for a parallelepiped of constant density. For seismic data, we discuss
the wave equations for elastic and acoustic media and show how to solve them using
finite-difference methods.

2.1 Gravimetric Forward Modeling

Newton’s law of gravitation [5] provides the gravitational potential φ at an
observation point r due to a body on Earth with density distribution ρ (Fig. 1) as

φ(r) =
∫

�

γ
ρ(r′)
‖r− r′‖dV, (1)

where γ = 6.672 × 10−11 m3kg−1s−2 is the universal gravitation constant, r′ is
the position for each differential element of density over the volume � and ‖.‖
denotes the vector norm. The gravity acceleration field is given by the gradient of

Fig. 1 Observation vector r and position vector r′ for each differential volume element dr′ for a
continuous of density ρ in Cartesian coordinates system
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the potential,

g(r) = ∇φ(r). (2)

Consider an arbitrary continuous body of density ρ in Cartesian coordinates (Fig. 1),
the components of the gravity acceleration are given by

gx(x, y, z) = ∂φ

∂x
= γ

∫

�

ρ
x − x ′

[

(x − x ′)2 + (y − y ′)2 + (z − z′)2
]3/2 dx ′dy ′dz′,

(3)

gy(x, y, z) = ∂φ

∂y
= γ

∫

�

ρ
y − y ′

[

(x − x ′)2 + (y − y ′)2 + (z − z′)2
]3/2

dx ′dy ′dz′,

(4)

gz(x, y, z) = ∂φ

∂z
= γ

∫

�

ρ
z− z′

[

(x − x ′)2 + (y − y ′)2 + (z − z′)2
]3/2 dx ′dy ′dz′.

(5)

In this work, we consider only the vertical component of the gravity acceleration
gz, as usually done in geophysics.

2.2 Gravimetric Forward Modeling

In order to compute the gravimetric response at any observation point on the
surface, we need a discretization of the Earth model. Given that Eq. 5 is valid for
a continuous body of arbitrary shape and density distribution and taking advantage
of the superposition theorem for Newton’s law of gravitation, the Earth model can
be discretized as a set of rectangular prism of constant density (Fig. 2). For each
prism, the analytic solution of Eq. 5 is given by Banerjee and Das Gupta [3]

gz=

⎧

⎪

⎨

⎪

⎩

γ

[

z tan−1
(

xy

z|�r|
)

−x ln (y + |�r|)−y ln (x + |�r|)
]∣

∣

∣

∣

�x ′2

�x ′1

∣

∣

∣

∣

∣

�y ′2

�y ′1

∣

∣

∣

∣

∣

∣

�z′2

�z′1

⎫

⎪

⎬

⎪

⎭

ρ,

(6)

where the prime coordinates are the corners of the prism, |�r| = √x2 + y2 + z2,
�x ′k = x−x ′k, �y ′k = y−y ′k and �z′ = z−z′k k = 1, 2. This expression corresponds
to the gravity measurement at the point (x, y, z) due to the prism and the part within
the braces is the gravity kernel.
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Fig. 2 Rectangular prism of constant density ρ. The coordinates xi , yi , zi are the corners of the
prism for i = 1, 2

A typical data acquisition is done on the surface for Ns observation points
(gravimetric stations), hence gz =

[

gz1 , gz2 , · · · , gzNs

]T ∈ R
Ns . Considering a

model parametrization of M = nx × ny × nz prisms where nx, ny and nz are
the number of prisms for x, y and z directions respectively, a model vector can
be arranged as mρ = [ρ1, ρ2, · · · , ρM ]T ∈ R

M . Given this vector notation, the
corresponding matrix for the kernel A in index notation is

Aij =γ

[

zi tan−1
(

xiyi

zi |�ri |
)

−xi ln (yi + |�ri |)−yi ln (xi + |�ri |)
]∣

∣

∣

∣

�x′2j

�x′1j

∣

∣

∣

∣

∣

∣

�y′2j

�y′1j

∣

∣

∣

∣

∣

∣

∣

∣

�z′2j

�z′1j

,

(7)

where A ∈ R
N×M , thus the gravity data vector can be represented in a matrix form

as

gz = Amρ, (8)

corresponding to the forward modeling of the gravimetric data. This is a linear
problem with respect to density.
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2.3 Waveform Forward Modeling

An elastic body is governed by the generalized Hooke’s law. For small deformations
and ignoring attenuation, the stress and strain are directly proportional as

τ = c : ε, (9)

where τ is the stress tensor, ε the strain tensor, c represents the fourth-order
stiffness tensor containing the constants that characterize the elastic properties of
the solid, and : is the double dot product for tensors. In index notation, Eq. 9 can be
represented as

τij = cijklεkl . (10)

for i, j, k, l = 1, 2, 3. Taking into consideration that the strain is proportional to the
gradient of the displacement [1], ε = 1

2

[∇u+ (∇u)T
]

, Eq. 10 can be written as

τij = cijkl
∂uk

∂xl

, (11)

where uk =
{

ux(x, t), uy(x, t), uz(x, t)
}

is the displacement vector. Following [1]
and assuming that the elastic body is subject to Newton’s second law (F = ma)
normalized over a volume, an equation relating displacement and stresses can be
obtained

ρ
∂2ui

∂t2 =
∂τij

∂xj

+ fi, in �, (12)

where � is the spatial domain, fi represent an external force per unit volume,
ρ is the density and the acceleration is written as the second derivative of the
displacement ui . The elastodynamic wave equation is obtained combining Eqs. 11
and 12, to obtain

ρ
∂2ui

∂t2 −
∂

∂xj

[

cijkl

∂uk(x, t)

∂xl

]

= fi, (13)

valid for heterogeneous, elastic and anisotropic media, ignoring attenuation or
viscoelastic effects. In this work, only isotropic media will be considered. In this
case, the stiffness tensor is reduced to

cijkl = λδij δkl + μ(δikδjl + δilδjk), (14)

where λ and μ are the Lamè parameters and δij is the Kronecker delta function.
Substituting Eq. 14 into 13 and reducing indexes, the elastic wave equation for
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isotropic media is obtained as follows

ρ
∂2ui

∂t2 =
∂

∂xi

(

λ
∂uj

∂xj

)

+ ∂

∂xj

[

μ

(

∂ui

∂xj

+ ∂uj

∂xi

)]

+ fi. (15)

The media parameters of the wave equation were reduced to 3: Lamè’s first
parameter λ, the shear modulus μ, and the density ρ. There are other ways to write
Eq. 15 depending on the choice of the elastic parameters, for example, the bulk
modulus κ = λ + 2

3μ is commonly used instead of λ. In general, these parameters

can be expressed in terms of the P-wave velocity, VP =
√

λ+2μ
ρ

, and the S-wave

velocity, VS =
√

μ
ρ

, which will be the parameters estimated on the inverse problem.

The elastodynamic wave equation can be simplified considering the wave
propagation through acoustic media (fluids, melted bodies, liquid bodies) where
there are no shear forces and therefore μ = 0. Substituting this in Eq. 13 and
defining P = λ∇ · u, we obtain

1

λ

∂2P(x, t)
∂t2

−∇ ·
[

1

ρ
∇P(x, t)

]

= f̃ (x, t), (16)

where the scalar field P is the pressure propagated in the media due to an external
force f̃ . For constant density, this expression is simplified to the well-know acoustic
wave equation

1

V 2
P

∂2P(x, t)
∂t2 −∇2P(x, t) = f̃ (x, t), (17)

where V 2
P = λ

ρ
is the P-wave velocity. Let ∂� be the boundary of � and n̂ be

the outward unit normal vector defined in the boundary. The boundary can be
decomposed as ∂� = �D∪�N , �D∩�N = ∅, where �D and �N are the boundaries
where Dirichlet and Neumann conditions are defined. The boundary conditions for
Eq. 17 are given by

P = PD on �D, (18)

∇P · n̂ = PN on �N. (19)

Despite the fact that this equation is valid for acoustic media, it is often used for
forward modeling in elastic media, FWI and RTM since it is computationally less
expensive than the elastodynamic wave equation and, more importantly, the results
are acceptable for many applications.

In order obtain the synthetic seismograms for displacement, velocity or pressure,
Eqs. 15 and 17 need to be solved under some initial conditions. Among the most
used techniques for wave propagation, we have FDM for acoustic [2] or elastic
media [21], SEM for acoustic [8] or elastic media [22] and Finite Difference using
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Staggered Grids (SGFD) for elastic media [43]. In this work, the acoustic wave
equation will be solved using FDM and the elastic wave equation using SGFD.

Consider the following standard-grid discretization for the space–time domain

tn = n�t, n = 0, 1, 2, ..., nt , (20)

xi = x0 + i�x, i = 1, 2, 3, ..., nx, (21)

yj = y0 + j�y, j = 1, 2, 3, ..., ny, (22)

zk = z0 + k�z, k = 1, 2, 3, ..., nz, (23)

Pn
i,j,k = P(xi, yj , zk, tn), (24)

where nx, ny and nz are the total number of grid points in each direction, nt is the
number of time steps, �x, �y, �z and �t are the spatial and time increments, and
x0, y0 and z0 are the coordinates of the reference point. First, let us consider the
acoustic problem. The discrete form for the spatial and time derivatives is given by
Alford et al. [2]

Pn+1
i,j,k = 2Pn

i,j,k − Pn−1
i,j,k + V 2

P �t2
(

D2
xP n

i,j,k +D2
yP n

i,j,k +D2
zP n

i,j,k

)

, (25)

where D2
x , D2

y and D2
z are the discrete operators for the second derivative. For

example, the second-order discrete operator for the second derivative centered at
x is given by

(

∂2P

∂x2

)

n

= Pn
i+1,j,k − 2Pn

i,j,k + Pn
i−1,j,k

�x2 + O(�x2) (26)

with O(�x2) the truncation error. For this order, only 3 grid points in time are
required to compute the second derivative of the pressure. Since the resolution
depends on the parametrization of the velocity model in space, it is preferable to use
more grid points for x, y and z, as seen in Table 1 for second derivatives for different
orders of precision. The visual representation of the reference and neighbouring
nodes for the discretization of the acoustic wave equation in 2D is shown in Fig. 3.

The numerical simulation of Eq. 26 involves the recursive computation of the
pressure P over the time steps nt . However, this recursive computation can
present incremental error over time because of the truncation of the approximated
solution or because of the machine rounding error. In order to set the discretization
parameters such that the errors are bounded, a Von Neumann analysis is required.
Based on the work of Alford et al. [2], a stability condition can be obtained
by substituting a plane-wave solution into Eq. 26 and performing some standard
algebraic simplifications, to obtain

�t ≤ �x

vMAX
√

nD

(

M
∑

i=1

am

)−1/2

, (27)
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Table 1 Central differences coefficients for second order derivative for accuracies of 2, 4, 6 and
8th order with uniform grid spacing

Approximation at x = 0

central differences

Order of

accuracy↓ −4 −3 −2 −1 0 1 2 3 4

2 1 −2 1

4 − 1
12

4
3 − 5

2
4
3 − 1

12

6 1
90 − 3

20
3
2 − 49

18
3
2 − 3

20
1

90

8 − 1
560

8
315 − 1

5
8
5 − 205

72
8
5 − 1

5
8

315 − 1
560

Fig. 3 Visual representation
of a standard grid
discretization for a 2D
acoustic media for the
pressure field P

where vMAX is the maximum value of the velocity model,
∑M

i=1 am is the sum over
the coefficients of Table 1 for each order of precision excluding the central point,
and nD = 1, 2, 3 is the dimension (1D, 2D, or 3D). This condition is very important
for the inverse problem; given that it depends on the maximum velocity, the velocity
model obtained has to be inspected in every iteration for stability.

In order to simulate the wave propagation in time a source has to be applied at
any point of the space. In this example and in all the following results for this work,
a Ricker wavelet is used, given by

w(t) = 2(πν)2
{

1− 2 [πν (t − t0)]2
}

e−[πν(t−t0)]2
(28)

where ν is the peak frequency of the pulse and t0 is the time shift. The Ricker wavelet
is also called the Mexican-hat wavelet because of its distinctive shape (see Fig. 4 for
t0 = 0.0 and ν = [2, 5, 10, 15, 25] Hz). For low frequencies the wavelet becomes
wider and vice versa for high frequencies.

Concerning wave propagation in elastic media, FDM with a standard grid has
grid-dispersion problems when there are significant contrast of properties [10],
therefore, the forward modeling will be performed using Staggered Grid Finite
Differences (SGFD) [43]. The isotropic wave equation can be expressed as the
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Fig. 4 Ricker wavelet function for peak frequencies 2,5,10,15 and 25 Hz. The function is centered
at t0 = 0

following set of equations

ρ∂ttux = ∂xτxx + ∂yτxy + ∂zτxz + fx, (29)

ρ∂ttuy = ∂xτxy + ∂yτyy + ∂zτyz + fy, (30)

ρ∂ttuz = ∂xτxz + ∂yτyz + ∂zτzz + fz, (31)

τxx = (λ+ 2μ)∂xux + λ(∂yuy + ∂zuz), (32)

τyy = (λ+ 2μ)∂yuy + λ(∂xux + ∂zuz), (33)

τzz = (λ+ 2μ)∂zuz + λ(∂xux + ∂yuy), (34)

τxy = μ(∂yux + ∂xuy), (35)

τxz = μ(∂zux + ∂xuz), (36)

τyz = μ(∂zuy + ∂yuz). (37)

The discretization of the elastodynamic wave equation in the displacement-stress
formulation is given by Virieux [43]

[ux ]n+1
i+1/2,j,k = 2[ux]ni+1/2,j,k − [ux]n−1

i+1/2,j,k (38)

+ �t2 [bx(Dxτxx +Dyτxy +Dzτxz + fx)
]n

i+1/2,j,k
,
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[

uy

]n+1
i,j+1/2,k

= 2[uy]ni,j+1/2,k − [uy]n−1
i,j+1/2,k (39)

+ �t2 [by(Dxτxy +Dyτyy +Dzτyz + fy)
]n

i,j+1/2,k
,

[uz]n+1
i,j,k+1/2 = 2[uz]ni,j,k+1/2 − [uz]n−1

i,j,k+1/2 (40)

+ �t2 [bz(Dxτxz +Dyτyz +Dzτzz + fz)
]n

i,j,k+1/2 ,

for the displacement calculated on midpoints of the grid. This time Dx , Dy and Dz

are the discrete operators for the first derivative in a staggered grid and b = 1/ρ.
For stresses

[τxx]ni,j,k =
[

(λ+ 2μ)Dxux + λ(Dyuy +Dzuz)
]n

i,j,k
, (41)

[τyy]ni,j,k =
[

(λ+ 2μ)Dyuy + λ(Dxux +Dzuz)
]n

i,j,k
, (42)

[τzz]ni,j,k =
[

(λ+ 2μ)Dzuz + λ(Dxux +Dyuy)
]n

i,j,k
, (43)

[τxy]ni+1/2,j+1/2,k =
[

μxy(Dyuz +Dxuy)
]n

i+1/2,j+1/2,k
. (44)

[τxz]ni+1/2,j,k+1/2 = [μxz(Dzux +Dxuz)]ni+1/2,j,k+1/2 . (45)

[τyz]ni,j+1/2,k+1/2 =
[

μyz(Dzuy +Dyuz)
]n

i,j+1/2,k+1/2 . (46)

The simplification from 3D to 2D media is straightforward ignoring the y-depen-
dent terms. The finite difference coefficients for staggered grid are shown in the
Table 2. Figure 5 shows a visual representation of a staggered grid.

Table 2 Central differences coefficients for first order derivatives for accuracies of 2, 4, 6 and 8th
order with uniform grid spacing corresponding to staggered grid

Approximation at x = 0

x−coordinates at nodes

Order of

accuracy↓ − 7
2 − 5

2 − 3
2 − 1

2
1
2

3
2

5
2

7
2

2 −1 1

4 1
24 − 9

8
9
8 − 1

24

6 − 3
640

25
384 − 75

64
75
64 − 25

384
3

640
8 5

7168 − 49
5120

245
3072 − 1225

1024
1225
1024 − 245

3072
49

5120 − 5
7168
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Fig. 5 Visual representation
of a staggered grid
discretization for a 2D elastic
media in terms of
displacements (ux and uz)
stresses (τxx, τzz and τxz)

Fig. 6 Illustration of the
concept of forward and the
inverse problems

3 Inverse Theory for Geophysical Data

This section presents the basic concepts of inverse theory, providing the theoretical
framework for GI and FWI for heterogeneous acoustic or elastic media, with an
emphasis on the adjoint-state method for FWI. Starting from an Earth model, the
forward problem computes theoretical data which will be compared to real data
observations. Conversely, the inverse problem starts from the data and aims to
compute an Earth model. A simple illustration of this statement is shown in Fig. 6.
In general, the inverse problem is computationally more intensive, requires more
sophisticated techniques and the interpretation of the results is more involved due
to insufficient, inaccurate, noisy or inconsistent data [19]. In order to solve inverse
problems, the following elements are essential in its formulation (see Table 3)

• Data,
• Model parameters,
• Forward problem,
• Cost/Objective/Error/Misfit function, and
• Optimization method.

Let us define a general formulation for inverse theory. The function (F) that
involves such elements needs to be stated. The objective function (also known as
cost, error or misfit function) compares the differences between the observed and
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Table 3 Elements of inverse theory, where N is the number of data points and M the number of
model parameters. In general N �=M

Data vector dobs = [d1 d2 d3 · · ·dN ]T
Model vector m = [m1 m2 m3 · · ·mM ]T
Forward modeling dcal = F(m)

Objective function Q = Q(dobs,dcal|m)

synthetic data vectors as follows

Q(m) = ‖d− F(m)‖p , (47)

where ‖·‖p is the Lp norm and Q the objective function. A general form of the Lp

norm [28] is defined as

‖v‖ :=
[

N
∑

i=1

|vi |p
]1/p

∀ v ∈ R
n, (48)

where N is the number of data points and p determines the norm order. Some typical
norms are

L1 : ‖d− F(m)‖1 :=
N
∑

i=1

|di − Fi(m)| (49)

L2 : ‖d− F(m)‖2 :=
[

N
∑

i=1

|di − Fi(m)|2
]1/2

(50)

L∞ : ‖d− F(m)‖∞ := max
i
|di − Fi(m)| . (51)

The L2 norm is used more often in geophysical applications, however, the L1
norm is also largely studied despite the fact that it has a discontinuity in the
derivative. When using the L2 norm, it is often more practical to work with the
square of the objective function, Q = Q2. For illustration purposes, we show in
Fig. 7 a comparison of a straight-line fit using the L1, L2 and L∞ norms. Notice
that the norms for higher values of p are more biased towards outliers.
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Fig. 7 Lp norm for some values of p corresponding to the fit of a straight line y = F(x) = ax+b

3.1 Gravimetric Inversion

The objective function for density estimation due to measurements of the vertical
component of the acceleration (gobs

z ) using the L2 norm is given by

Q(mρ) =
Ns
∑

i=1
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∣
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∣

∣
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− gcal
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σgzi
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∣

∣

∣

∣

∣

∣

∣

2

+ α2
reg||Dmρ ||2, (52)

where αreg is the regularization parameter,D is the discrete operator for the gradient
and σgzi

is the standard deviation of the ith data point. Solving the least-squares
problem from Eq. 52 using Gauss-Newton method [35] an estimated model mρ can
be obtained as

mρ =
[

AT C−1
dd A+ αregDT D

]−1
AT C−1

dd g
obs
z , (53)

where C−1
dd is the diagonal covariance matrix and A is given in equation7. This least-

squares implementation requires to store and invert a square matrix with dimensions
depending on the discretization of the model, namely, M × M . We need a fine
discretization of the model to achieve a good resolution for the seismic inversion
and therefore the joint inversion, nevertheless, we may encounter storage problems
in a straight-forward implementation of Eq. 53.

An alternative to solving Eq. 53 is the use of the Conjugate Gradient Least
Squares (CGLS) method. This method minimizes the objective function of Eq. 52
without the need to form and store the square matrix from Eq. 53 [35] using a
conjugate gradient technique. This method requires as an input G and d to find a
solution, in this case, the density model (mρ) for Gmρ = d, these matrices are
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given by

G =
[

C−1/2
dd A
αregD

]

(54)

d =
[

C−1/2
dd gobs

z

0

]

, (55)

in this case, the matrix G will be large and sparse due to the discrete operations for
the Tikhonov regularization, the model vector mρ is not modified.

3.2 Acoustic Full Waveform Inversion

We now proceed to describe the methodology of Acoustic Full Waveform Inver-
sion (AFWI). The least-squares functional for minimizing the misfit between the
observed and the synthetic pressure due to a single shot is given by the L2 norm of
the residual

Q = 1

2

∑

r

∫ T

0

[

P obs
r − P cal

r

]2
dt, (56)

where P obs
r is the observed pressure and P cal

r is the synthetic pressure computed
using Eq. 17. T is the total recording time and r denotes the index for the receiver.
Implicitly the P cal

r depends on the model parameter m as P cal
r = P cal

r (m). This
model needs to be found in such a way Eq. 56 is minimized. Taking the derivative
with respect to a model perturbation

∂Q = −
∑

r

∫ T

0

∫

[

P obs
r − P cal

r

]

δP (x, t)dt, (57)

where δP is a perturbation of P aiding to compute the Frèchet derivative, which
represents the sensibility for each data point and for each model parameter. This
derivative is computed by making a small perturbation in each model parameter
and performing a forward modeling for each data point, therefore M × N forward
modelings are needed to obtain the derivative, which is impractical to implement
even with the advances in computational resources, therefore, alternative methods
for minimizing the problem are required.

A more efficient way to minimize Eq. 56 relies on the use of the adjoint state
method for the acoustic waveform. Let us minimize the augmented misfit function
subject to the wave equation multiplied by an arbitrary, well behaved and derivable
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Lagrange multiplier � := �(x, t) remaining to be defined [32] then

Q = 1

2

∑

r

∫ T

0

∫

�

[

P obs
r − P cal

r

]2
δ(x− xr ) d3x dt (58)

−
∫ T

0

∫

�

�

[

1

V 2
P

∂2P

∂t2 − ∇2P − f

]2

d3x dt,

notice that the last term of Eq. 58 is zero, corresponding to the wave equation acting
as constriction, therefore the problem is consistent. Taking the total derivative

δQ =−
∑

r

∫ T

0

∫

�

[

P obs
r − P cal

r

]

δ(x− xr )δPd3xdt

−
∫ T

0

∫

�

�

[

− 2

V 3
P

∂2P

∂t2

]

d3x dt

−
∫ T

0

∫

�

�

[

1

V 2
P

∂2δP

∂t2 −∇2δP

]

d3x dt,

(59)

where the source is considered as independent of the model parameter perturbation.
Notice that the perturbation δP appears on the first and last term. In the last term,

the linear operator of the wave equation (L = 1
V 2

P

∂2

∂t2 −∇2) is acting over δP which

is a computation that we are looking to avoid. For this, let us first integrate by parts
two times for t as

∫ T

0
�

[

∂2δP

∂t2

]

dt =
(

�
∂δP

∂t

)∣

∣

∣

∣

T

0
−
(

∂�

∂t
δP

)∣

∣

∣

∣

T

0
+
∫ T

0

[

∂2�

∂t2

]

δP dt .

(60)

Setting �(x, t = T ) = ∂�
∂t

(x, t = T ) = 0, yields

∫ T

0
�

[

∂2δP

∂t2

]

dt =
∫ T

0

[

∂2�

∂t2

]

δPdt, (61)

this means that the second derivative is a self-adjoint operator (L = L∗). For the
Laplacian operator ∇ the same procedure can be done, setting the correct boundary
conditions in space. Consider the last term of Eq. 59,

∫

�

�
[

∇2δP
]

d3x. (62)
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Taking into consideration the identity ψ∇2φ − φ∇2ψ = ∇ · (ψ∇φ − φ∇ψ),
then
∫

�

�
[

∇2δP
]

d3x =
∫

�

δP
[

∇2�
]

d3x +
∫

�

∇ · [�∇δP − δP∇�] d3x. (63)

Applying Gauss theorem on the last term of the equation

∫

�

∇ · [�∇δP − δP∇�] d3x =
∫

∂�

[�∇δP − δP∇�] · n̂dS, (64)

where the integral was changed from volumetric to surface. In order to cancel the
boundary integral in the above equation, we set the following boundary conditions
for δP and � [12]

δP = 0, on �D, ∇δP · n̂ = 0, on �N, (65)

and

� = 0, on �D, ∇� · n̂ = 0, on �N. (66)

Therefore,

∫

∂�

[�∇δP − δP∇�] · n̂dS = 0. (67)

In this way, Eq. 59 can be rewritten as

δQ = −
∑

r

∫ T

0

∫

�

[

P obs
r − P cal

r

]

δ(x− xr )δP d3x dt (68)

−
∫ T

0

∫

�

�

[

− 2

V 3
P

∂2P

∂t2

]

d3x dt

−
∫ T

0

∫

�

[

1

V 2
P

∂2�

∂t2 −∇2�

]

δP d3x dt,

= −
∫ T

0

∫

�

{

1

V 2
P

∂2�

∂t2 −∇2�+
∑

r

[

P obs
s − P cal

s

]

δ(x − xr)

}

δP d3x dt

−
∫ T

0

∫

�

�

[

− 2

V 3
P

∂2P

∂t2

]

d3x dt . (69)
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Let us define the Lagrange multiplier � in such a way that the first term of Eq. 69 is
canceled. Then

1

V 2
P

∂2�

∂t2 −∇2� = −
∑

r

[

P obs
r − P cal

r

]

δ(x− xr ), (70)

which corresponds to another wave equation using the residuals at the seismogram
locations as a source. The importance of this result relies on the computation of the
gradient without the need to compute the perturbation of P and therefore Frèchet
derivatives, instead, a single additional forward modeling needs to be performed
using the same wave propagation method but with the residuals as a source. Finally,
to give more meaning to the Lagrange multiplier let us define �(x, t) ≡ P †(x, T −
t) , thus the gradient

∂V = 2

V 3
P

∫ T

0
P †(x, T − t)

∂2P(x, t)
∂t2 dt, (71)

which is a convolution of the pressure and adjoint wave fields. Using multiple
seismic sources requires a summation as follows

∂V = 2

V 3
P

ns
∑

s

∫ T

0
P †(x, T − t)

∂2P(x, t)
∂t2

dt . (72)

where ns is the total number of shots. Notice that the pressure and adjoint wavefields
are computed in opposite directions for the time stepping: P(x, t) is going forward
in time and P †(x, T − t) is going backward in time.

3.3 Gradient Based Optimization

With the velocity gradient, we can update the velocity model minimizing the
cost of 56, but first let us illustrate how such gradient is constructed. Consider
the modified Marmousi model and a starting 2D velocity model of Fig. 8. This
model involves slightly folded layers similar to a bookshelf sliding fault system
and a discordance event at the bottom. The velocity range was shortened to 1500–
3500 km/s covering a depth of 1000 m and a horizontal distance of 2000 m on a grid
of nx = 200 and nz = 100 grid nodes. The starting model is a smoothed version
(Gaussian smoothing) of the true velocity model and the water layer is considered to
be known in both models. Table 4 summarizes the parameters used for the forward
modeling and the construction of the gradient for this example. The parameters
satisfy the stability condition of Eq. 27 for a 10th order FDM in 2D media. The
receivers and sources locations are equally spaced along the surface, 10 m spacing
between seismograms and 20 m spacing for sources (shots). For this example, the
seismic traces are shown in Fig. 9 for some shots. This data acquisition correspond
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Fig. 8 Modified Marmousi velocity model (left) and starting velocity model (right). The velocity
was shortened to 3500 m/s

Table 4 Parameters used for
the construction of the
gradient for the Marmousi
model

Parameter Value Unit Description

xMIN 0 m Starting horizontal distance

xMAX 2000 m Final horizontal distance

zMIN 0 m Starting depth

zMAX 1000 m Final depth

nx 200 Grid nodes for x

nz 100 Grid nodes for z

T 2 s Recording time

nt 1500 Grid nodes for t

vMAX 3500 m/s Maximum velocity

f 15 Hz Ricket wavelet’s peak frequency

nr 200 Number of receivers

ns 100 Number of sources

Fig. 9 Synthetic seismic data acquisition for the Marmousi model example at shots number 20,
40, 60, 80 and 100 corresponding to 200 receivers equally spaced along the surface
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Fig. 10 Velocity gradient for several source locations xs = 0, 500, 1000, 1500 and 2000 using
the whole stream of receivers (200). The white star represents the different source positions. The
bottom right gradient consist on the addition of all gradients

to the observed data vector Pobs ∈ R
N , N = ntnrns , which in this case is a vector

of 1500× 200× 100 = 30 Million data elements.
Let us consider several source positions at the surface, xs = 0, 500, 1000, 1500

and 2000 m for a depth z = 0. The gradient for each source as well as the gradient
stacked for all sources (∂V = ∑ ∂Vi) is shown at Fig. 10. Each gradient exhibits
more sensibility beneath its position at the surface, even though the surface is fully
covered with receivers. While the image is not clear for each one, the addition of all
gradients into a single one produces a velocity gradient with fine resolution.

Computing the gradient is readily parallelizable. We implemented this part of
our problem using Message Passing Interface (MPI) in Fortran 90 and compute
the gradient for each source in parallel in a computer cluster.1 Taking advantage

1 We used the cluster Lamb of the supercomputing lab at the Specialized Labs System of the Earth
Sciences Division of CICESE. Each node is equipped with 20 cores and we used for all examples
5 nodes, for a total of 5×20=100 MPI cores, equal to the number of sources.
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Fig. 11 Illustration of a cost
function as a function of the
steps αi . An ideal step size
would be the one leading
closer to the global minimum

of the fact that each source-gradient computation is independent of the others, we
compute each gradient simultaneously following Eq. 71, then Eq. 72 is obtained
by combining the values from all processes into a main MPI core using an
MPI_ALLREDUCE operation.

The total gradient (Fig. 10 bottom right) resembles the footprint of the layers for
the Marmousi model and it is similar to a typical seismic migration. This velocity
model is added to the starting model using a scalar factor that needs to be carefully
chosen. The gradient-based optimization minimizes Eq. 56 by updating the velocity
model iteratively as follows

Vn+1 = Vn + αn∂V, (73)

where the scalar αn is the step length which represents how much the current
model Vn moves along the direction ∂V at the n-th iteration. The efficiency of the
minimization depends on the choice of the step αn which can lead to local or global
minima as illustrated in Fig. 11.

There are several algorithms for the search of the optimal step length αn [30].
For this work we used a step line search method using interval reduction. Consider
the range of values of steps α1 < α2 < α3 < · · · < αk with k the number of test
points with their respective costs cost1, cost2, cost3, · · · , costk . In this method, we
select the value of α which corresponds to the minimum cost. If the minimum cost
corresponds to the first test value then for the next iteration a zoom in is performed
for the test points [α1, α2, α3, · · · , αk] × zoom with zoom < 1, on the other hand
if the optimal step correspond to the final point test a zoom out is performed as

[α1, α2, α3, · · · , αk]/zoom. A typical value of zoom is
√

5−1
2 corresponding to the

reciprocal of the Golden ratio. The evaluation of the cost function for k different step
sizes is computationally expensive, however, it is compensated by the effectiveness
due to the optimal choice of αn. The AFWI iterative scheme combining all the
components is shown in algorithm 1.

Continuing with the example from Fig. 8 and Table 4, we show in Fig. 12 the
inversion results at some of the iterations. For this example we used 10 test points
in the step line search method (k = 10). In the first 10 iterations the stratigraphic
features are recovered. Thereafter, the velocity values at each point of the model are
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Fig. 12 Velocity Marmousi
model after some iterations of
FWI. The true velocity model
is at the bottom-right

steadily recovered, with more resolution on the central part of the survey. The final
velocity model after 228 iterations (Fig. 12 bottom left) closely resembles the true
model.

To further illustrate how AFWI works, we show in Fig. 13 the seismogram from
the station at (1000, 0) m with 5% of Gaussian noise and the seismograms computed
using the starting and final models. Notice that the seismogram from the final model
closely follows the observed seismogram.

A more accurate indicator for the quality of the FWI iterative process is the
analysis of the objective function for each iteration (Fig. 14). The objective function
for this example is reduced faster at early iterations and becomes slower for later
iterations, because the stratigraphic information has been recovered first and, at the
end of the process, only the velocity value is getting recovered slowly.

Algorithm 1: Typical AFWI process

Data: Observed pressure P obs[nt , nr , ns ], starting velocity model V

Input : FWI iterations niter .
for iiter = 1 : niter do

Computes forward modeling and adjoint field;
Performs step-line search for α;
Update velocity model Viter+1 = Viter + α∂V

Output: Velocity model V , data residual R[nt , nr , ns ]
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Fig. 13 Seismogram comparison for starting (red) and final (blue) synthetic data with respect to
the observed data corresponding to a single source and a single receiver for the Marmousi model
FWI example

Fig. 14 Objective function (cost, misfit) reduction for 228 iterations of FWI for the Marmousi
model example
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3.4 Elastic Full Waveform Inversion

The tools and algorithm applied to the acoustic case can be used for Elastic FWI
(EFWI) by replacing the forward modeling. The objective function for EFWI is
given by

Q(m) = 1

2

∑

s

∑

r

∫ T

0
||uobs

r,s − ucal
r,s ||2 dt, (74)

where uobs
r,s is the observed displacement and ucal

r,s is the synthetic displacement
computed using the elastodynamic wave equation. T is the total time of recording,
r is the receiver index and s is the source index. The displacements can be ux ,
uy and/or uz (or velocities vx , vy , vz) for a model m which depends on the Lamè
parameters and density (or velocities VP and VS).

As in the acoustic case, the direct minimization of Eq. 74 involves the com-
putation of the perturbations, which increase even more the computational cost
for elastic media because the displacement (or velocity) fields are vectors. The
same procedure as AFWI can be pursued using the adjoint-state method. The
mathematical deduction of the gradients will not be detailed, however, notice that
the second-order derivatives are self-adjoint operators. See [42] for further details
of the adjoint method for elastic media.

For an isotropic media we require the gradients for density (δρ), shear modulus
(δμ) and bulks modulus (δκ ), given by Tromp et al. [42]

δρ(x) =−
∑

r

∫ T

0
ρ(x)u†(x, T − t) · ∂2

t u(x, t) dt (75)

δμ(x) =−
∑

r

∫ T

0
2μ(x)D†(x, T − t) : D(x, t) dt (76)

δκ(x) =−
∑

r

∫ T

0
κ(x)[∇ · u†(x, T − t)][∇ · u(x, t)] dt (77)

where : is a double dot product operator between tensors, and D denotes the
deviatoric strain, defined as

D = 1

2

[

∇u+ (∇u)T
]

− 1

3
(∇ · u)I. (78)

Notice that these computations involve more complex operations than in the
acoustic case. The adjoint deviatoric strain D† is computed using the equation for
D but using u†. The elastic gradient can be expressed in terms of the shear-wave
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Fig. 15 Source—receiver
geometry for the computation
of the elastic kernels. Taken
from [42]

velocity

δVS (x) = 2

(

δμ − 4

3

μ

κ
δκ

)

, (79)

and the compressional-wave velocity

δVP (x) = 2

(

1+ 4

3

μ

κ
δκ

)

, (80)

then, a step line search can be used to obtain the model parameters iteratively.
Following the work of Tromp et al. [42], the source-receiver geometry for an
isotropic elastic media with homogeneous properties (Fig. 15) is used.

Following the same procedure as in the previous section for acoustic media, the
wave propagation for the horizontal displacement and the back-propagation for the
adjoint horizontal displacement is shown in Fig. 16 for 52 seconds of recording time.
For illustration purposes, the P-wave velocity kernel is shown in the third column.
The gradient shows the so-called banana-doughnut shape, which is related to the ray
path [42].

3.5 Cooperative Inversion

In a joint-inversion scheme, different geophysical forward problems are solved to
obtain a consistent Earth-property model that matches the respective data sets mea-
sured at the surface. Usually, the strategy consists of combining all the parameters
into one objective function, leading to a large system of often disparate parameters
[34]. There are mainly three types of joint inversion techniques, depending on the
construction of the cost function:

• Petrophysical joint inversion, where the models are constrained by an empirical
relationship [6, 25, 34, 36],
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Fig. 16 Regular displacement ux and adjoint displacement u
†
x wave propagation for 52 seconds

of recording time for the construction of the P-wave velocity kernel

• Structural joint inversion [14, 15], where the functional is used to match the
structure for both models trough the cross gradient, and

• Statistical joint inversion, e.g. using the fuzzy c-means technique [31, 33].

We will focus on the petrophysical joint inversion to combine FWI and GI.
We propose a cooperative and sequential approach in which we solve at different
stages for the densities and velocities. The resulting system is, therefore, more
manageable and there is more control over the parameters at each stage. We call
this a cooperative strategy to distinguish it from the joint strategies that solve
all the geophysical parameters together at every iteration. Unlike conventional
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joint inversions, where the problem is to minimize a two-part objective function
(e.g. seismic and gravity errors), this cooperative inversion is based on alternately
minimizing the errors in seismic and gravity data iteratively [36]. The main reasons
to perform these sequentially are to increase robustness, reduce the computational
cost, and keep always a strong control in the GI, avoiding the natural behavior of this
potential method to yield shallower models. Furthermore, in the proposed scheme
we do not need to impose depth-dependent weights or constraints to the GI to avoid
shallower models, this is achieved instead by using the velocity model from FWI as
the a priori gravimetric model. Another advantage of this approach is that, regardless
of the model obtained from fitting a gravity anomaly, the total mass is uniquely
recovered as implied by Gauss’ theorem [18]. This means that, although gravity
is a low-resolution geophysical tool, it does provide unique information linked to
the velocity model. We seek to minimize the gravimetric data constrained with the
velocity model obtained after an FWI process using the following objective function

Q(mρ) =
Ns
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gobs
zi
− Amρ

σgzi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+ α2
reg||∇mρ ||2 + β2||mρ −mρ(V )||2, (81)

where mρ is the density model obtained using a petrophysical relationship as a
function of the velocity model obtained from AFWI or EFWI. β is the parameter
that weights the role on the inversion of seismic versus GI. Higher values of β yield
results closer to the seismic model and vice versa. Our results will focus more on the
velocity model from FWI to avoid shallower models due to a weakly-restricted GI.
Then the density model will give feedback to the velocity model using an empirical
relationship for the next FWI iteration. We use the following relationship from
Gardner et al. [17] as petrophysical constraint,

mρ(V ) = ρ = ρ0V
k0
P , (82)

with ρ0 = 0.31 g/cm3 and k0 = 0.25. Other density-velocity petrophysical
relationships are readily available in the literature and can easily be incorporated into
our proposed scheme. For example, Brocher [7] computed the following polynomial
fits for density as a function of velocity

ρ(g/cm3)=1.6612VP(km/s)−0.4721V 2
P+0.0671V 3

P − 0.0043V 4
P+0.000106V 5

P,

(83)

and velocity as a function of density

VP (ρ) = 39.128ρ − 63.064ρ2 + 37.083ρ3 − 9.1819ρ4 + 0.8228ρ5. (84)
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These are valid for densities between 2.0 < ρ < 3.5 g/cm3 and velocities in
the range 1.5 < VP < 8.5 km/s respectively. However, since both of Brocher’s
equations are based on polynomial fits, they are not inversely related. An iterative
procedure using Eqs. 83 and 84 will not lead to the same velocity-density values. For
example, starting from a velocity of 3500 m/s, a density of 2.318 g/cm3 is computed
using Eq. 83, then, using Eq. 84 to get the corresponding velocity, we obtain a value
of 3692.34 m/s, a change of 192.34 m/s (5.49%). Therefore, since we require that
the two functions be inverse of each other, we would have to do some adjustments
to incorporate these petrophysical relations into our scheme.

The CGLS method is implemented in a straightforward way modifying G and d
from Eqs. 54 and 55 as follows

G =
⎡

⎢

⎣

C−1/2
dd A
αregD
βI

⎤

⎥

⎦
, (85)

dCG =
⎡

⎢

⎣

C−1/2
dd gobs

z

0
βmρ(VP )

⎤

⎥

⎦
, (86)

where I is the identity matrix. Once again, G is a large and sparse matrix. For
example, for a discretization with nx = 5, ny = 4 and nz = 3, we would have
a matrix of 15,600 element, of which only 1706 are non zero elements (a sparsity of
10.9%, see Fig. 17), whereas the square matrix of a Gauss-Newton implementation
would have to store 3600 elements. The procedure to solve the system Gm = dCG

is shown in algorithm 2 [35]. An efficient implementation of this algorithm requires
that all the matrices be stored in a sparse representation, we use Coordinate Format
(COO) sparse matrices for this.

In summary, this cooperative inversion scheme for gravity and seismic data
consists of the following iterative steps: From a starting velocity model, we
perform FWI to update the velocity model, then, using Gardner’s density-velocity
relationship, we perform constrained GI to update the density model, finally, using
Gardner’s velocity-density relationship, a velocity model is obtained that will be the
starting model to solve FWI.



158 R. U. Silva-Ávalos et al.

Fig. 17 Large sparse
structure of the matrix G for
the CGLS method. The blue
spots represent non-zero
elements and the white spaces
zero elements
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Algorithm 2: CGLS algorithm to iteratively solve the problem Gm = dCG

Data:
m0, d0 = dCG, r0 = GT dCG

p0 = r0, t0 = Ap0, n-iterations
Result: model mk

while k < n and ||rk || < 10−15 do
αk = ||rk−1||2/||tk−1||2
mk = mk−1 + αkpk−1
dk = dk−1 − αktk−1

rk = GT dk

βk = ||rk ||2/||rk−1||2
pk = rk + βkpk−1
tk = Gpk

k← k + 1

4 Results

In order to test the proposed cooperative inversion algorithm and demonstrate its
advantages, we apply this method on two synthetic examples for 2D elastic media.

4.1 EFWI: Marmousi Model

Let us consider again the Marmousi model. The geometry and parameters are the
same as those of the example in Sect. 3.3 (see Fig. 8 and Table 4). The S-wave
velocity is computed using VS = VP /

√
3 and the density is obtained using Gardner

petrophysical relationship; the models for VS and ρ are not shown. Only the vertical
component of the displacement is considered and we use 10 test points for the step
line search. We did not add Gaussian noise to the data in this example.

Fig. 18 The final velocity model after 100 iterations of EFWI for the Marmousi example
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The velocity model obtained after 100 iterations, shown in Fig. 18, resembles
the stratigraphic information of the Marmousi model (Fig. 8). This result shows
spurious artifacts in the final model. This problem is attributed to the problem of the
limited bandwidth of the observed data [40]. The artifacts are also related to the S-
waves since they are usually not present in AFWI. These artifacts yield small errors
between the observed and computed seismograms but contaminates the iterative
process and affect the convergence.

The convergence of the EFWI iterative process can be analysed from the
behaviour of the objective function. We observe from Fig. 19 that the objective
function for this example converges fast at early iterations and becomes stagnant for
later iterations. This is mostly due to the presence of the spurious artifacts mentioned
before.

We show in Fig. 20 the observed and computed seismograms for the station
located at (1000, 0) m corresponding to the 20th source located at (404.04, 0) m.
Overall, the seismogram for the final model closely approximates the observed data.
The phase of all the events is matched very well, however, there are discrepancies

Fig. 19 Normalized objective function for the Marmousi model using EFWI

Fig. 20 Seismogram comparison of starting (red) and final (blue) synthetic data for EFWI with
the observed data (black) corresponding to a single source and a receiver located at (1000, 0) m
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in the amplitudes. Unfortunately, these results can not be improved using more
iterations, we would have to rely on the implementation of additional techniques
to get a better approximation.

4.2 EFWI: Texas-Shaped Model

For this example, we created a laterally heterogeneous layered model covering
a horizontal distance of 2000 m and a depth of 1000 m for both seismic and
gravimetric data. Beneath the low-velocity layers, we place a structure with the
shape of Texas, as shown in Fig. 21a. The shallow layers have lower velocities
(between 1500 and 2000 m/s) with respect to the deepest layer (∼3500 m/s). The
S-wave velocity is computed using VS = VP /

√
3 and we used Gardner’s density-

velocity relationship to obtain the density model. Notice that the maximum velocity
used for this example is 3500 m/s, hence Gardner’s equation applies to this example.
We use the same discretization parameters from the previous example (Table 4).

The initial model and the result after 48 iterations are shown in Fig. 21b, c.
The top layers show many spurious artifacts similar to those in the previous
example. These artifacts persist if we continue iterating the method. The objective
function, shown in Fig. 22, exhibits a convergent behaviour until 40th iterations
where stagnation is reached.

4.3 Cooperative Inversion: Marmousi Model

Let us apply the cooperative scheme on the Marmousi model (Fig. 8). We used the
same model parameters of Table 4, with the addition of 200 equispaced gravimetric
stations in the surface. The true velocity model and the starting model are the same
as in the AFWI example of Sect. 3.3, and the S-wave velocity and density models
are the same as in Sect. 4.1.

In order to compare the result, we performed 100 iterations of the cooperative
inversion and show the results, together with those of EFWI, in Fig. 23. Incorporat-
ing GI helps to eliminate the spurious artifacts and smooths the model (Fig. 23b).
This is because GI acts as a filter in the cooperative inversion. Each iteration has
a computational cost of 75 minutes for EFWI and 76 minutes for the cooperative
scheme.
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Fig. 21 (a) Texas-shape true velocity model, and (b) and its smoothing set as a starting model. (c)
Final velocity model after EFWI
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Fig. 22 Normalized misfit for seismic data for the Texas-shape model after EFWI

Fig. 23 Marmousi final velocity model obtained using (a) conventional EFWI, and (b) the
cooperative inversion (EFWI and GI).
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4.4 Cooperative Inversion: Texas-Shaped Model

As a final example, let us apply cooperative inversion to the Texas-shaped model of
Fig. 21a. The true velocity model, the starting model and other parameters are the
same as in Sect. 4.2. The final velocity model after 48 iterations is shown in Fig. 24
together with the results of EFWI to facilitate the comparison. Comparing Fig. 24a,
b, we observe that cooperative inversion reduces the artifacts that pollute the
EFWI results. The density models obtained from conventional GI and cooperative
inversion are shown in Fig. 25. Figure 25a shows the typical behavior of conven-
tional GI of giving preference to shallower models, whereas the model obtained
from cooperative inversion (Fig. 25b) yields significantly better model. In order to
illustrate the data fit, we show in Fig. 26 the seismograms for a station at (1000, 0)
m from a source at (404.04, 0) m, and the gravimetric anomaly. The seismogram for
the final model show a good agreement with the observed seismogram, with small
discrepancies in phase and amplitude (Fig. 26a). The computed gravimetric anomaly
has small discrepancies with the observed anomaly (Fig. 26b). We emphasize that

Fig. 24 Texas-shape final velocity model after 48 iterations, comparison between (a) conventional
EFWI, and (b) the cooperative inversion
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Fig. 25 Texas-shape final density model after 48 iterations, comparison between (a) conventional
gravimetric inversion (GI), and (b) the cooperative inversion

the cooperative inversion does not aim to exactly fit all the data but to obtain a
realistic model.

A comparison of the seismic misfit for EFWI and the cooperative scheme is
presented in Fig. 27. The misfits exhibit a similar reduction at earlier iterations,
however, later the cooperative inversion adjusts better the seismic traces given the
elimination of the artifacts.
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Fig. 26 Data fit for the Texas-shape model after 48 iterations of the cooperative scheme. (a)
Vertical-displacement seismograms for a station at (1000, 0) m from a source at (404.04, 0) m,
and (b) Observed and computed gravity anomaly

Fig. 27 Normalized misfit reduction for seismic data for cooperative inversion (red) and separated
inversion (blue)
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5 Conclusions

We have developed a cooperative scheme that combines GI and FWI. The methods
are combined in an iterative scheme based on petrophysical relationships that can
be used to characterize typical geological environments found in real field data such
as irregular high velocity bodies embedded in complex horizontal layers, thrust and
dominoes fault systems, for both acoustic and elastic media.

The synthetic examples for elastic media show that both methods converge as
long as the starting model is acceptable and FWI has more weight in the cooperative
inversion algorithm. The models recover the stratigraphic part, the fault dip, the
discordances and the top and shape of the high velocity and density bodies. The
weights in the cost function play a critical role in the trade off between the
convergence rate and the accuracy of the resulting models. Further analysis is
required to determine optimal weights.

Comparing the results obtained by separate and cooperative inversion, we
observe that the cooperative scheme helps improve the density models of GI by
constraining them to the FWI models. FWI also benefits from the cooperative
inversion, avoiding the saturation in parts of the model and reducing the presence
of the spurious reflectors. Finally, the sequential implementation of the cooperative
scheme has a negligible additional computational cost compared to the classical
FWI.

Acknowledgments We want to thank CONACYT and CeMIEGeo for their financial support. The
numerical computations were performed using the cluster Lamb of the supercomputing lab at the
Specialized Labs System of the Earth Sciences Division of CICESE.
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Modelling the 3D Electromagnetic Wave
Equation: Negative Apparent
Conductivities and Phase Changes

Beatriz Valdés-Moreno, Marco A. Pérez-Flores, and Jonás D. De Basabe

Abstract We often use electromagnetic methods in exploration geophysics to
map the resistive structure of the subsurface using instruments that work at low
induction numbers. These instruments are usually very portable and versatile, they
can be used at the surface, mounted on an airplane or placed inside a wellbore.
To process the data acquired with these methods, we need to be able to compute
the electric and magnetic fields by numerically solving Maxwell’s equations in
the low induction-number domain. Previous studies have used the integral form of
Maxwell’s equations, however, these approaches only calculate an approximation
of the apparent conductivity. In this chapter, we solved Maxwell’s equations on
the frequency domain using the finite-difference method with a staggered grid for
the electric field and compute the apparent conductivities with post-processing. We
show the results of four different examples, and consider sources on the ground, on
the air, and in a wellbore. Negative apparent conductivities and phase changes are
observed whenever there is a high conductivity contrasts, the induction-number is
low and the source is a vertical magnetic dipole. With these conditions, there is a
polarity reversal on the imaginary component of the magnetic field. Furthermore, the
results indicate that it is crucial to consider the real component on the measurements,
which has previously been ignored.
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1 Introduction

Measurements of electric and magnetic fields at various frequencies or times ranges
are used in most electromagnetic soundings. These fields contain information of
the underground conductivity variation. In particular, electromagnetic instruments
at low induction numbers (LIN), sometimes called terrain conductivity meters, use
magnetic field measurements to compute the apparent electrical conductivity (σa) on
the ground. This measurement yields a complex average of the terrain conductivity
over a specific depth range. On one hand, equipment operating at LIN offer many
advantages, for example, it is easy and fast to take measurements, they do not
require injecting current into the subsoil, and they can be used in highly resistive
environments. On the other hand, targets must be superficial (less than 30 m deep).
These methods have been successfully applied to archaeological studies [16, 23],
groundwater characterization [19], contaminant migration [3], mineral alteration
mapping [22], and have also been recently applied to explore sinkholes and water
conduits on a calcareous platform in Yucatan, Mexico [15]. Nevertheless, these
instruments have not been used in the air or inside a wellbore.

Numerical simulations are important tools to interpret the electromagnetic mea-
surements. Maxwell’s equations are generally solved to study the electromagnetic
phenomenon and its interaction with the Earth. These equations can be solved using
numerical methods, e.g., the integral equation (IEM)[2, 11], finite difference (FDM)
[8, 13, 21], finite volume (FVM) [6, 26], or finite element (FEM) methods [5, 7, 12].
Often the integral expressions of Maxwell’s equations at LIN are used to compute
the apparent conductivity [11]. Wait [24] found that the solution of Maxwell’s
equations for a magnetic coil at low frequencies provided certain simplifications;
hence he was the first to develop the LIN approximation. Subsequently, McNeill
[9] used the LIN approximation to explain the operation principles of instruments
such as EM31, EM34, and EM38 of Geonics. Méndez-Delgado et al. [11] presented
an integral equation technique for modeling 3D bodies. Later Pérez-Flores et al.
[14] applied the imaging technique to LIN data to solve the inverse problem using
a weighting function. Recently Selepeng et al. [20] extended the research of Pérez-
Flores et al. [14] by modeling real field data.

We compute the magnetic field solving the differential form of Maxwell’s
equations using the parsimonious finite-difference method. This approach is more
accurate than the one based on the integral form with the LIN approximation [4].
The finite-difference method with a magnetic coil as a source has been previously
used for airborne and ground EM [13, 17, 18]; however, they did not compute
the apparent conductivity. We solve the 3D numerical problem and integrate the
LIN conditions using the range of frequencies at which the transmitter coil of
typical instruments operate. Furthermore, we compute the apparent conductivities
following the approach of McNeill [9] for a homogeneous half-space. We find
that the apparent conductivity can be negative when a high conductivity contrast
is present.
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2 Modeling Scheme

Maxwell’s equations related the magnetic field H and the electric field E. Assuming
a time-dependence of eiωt , these fields are given by

∇ ×E(r)+ iωμH(r) = 0 (1)

and

∇ ×H(r)− iωεE(r) = J(r), (2)

where r is the position vector, J(r) is the electric current density, i2 = −1, and ω is
the angular frequency. The magnetic permeability μ and the dielectric permittivity
ε are assumed as constant and equal to the corresponding value for a vacuum (μ0 =
4π×10−7 Hm−1 and ε0 = 8.854×10−12 Fm−1). The electric current density J(r)

can be divided into a source term Jp(r) and a conduction current Jc(r) as follows

J(r) = Jp(r)+ Jc(r). (3)

The conduction current is given by Ohm’s law

Jc(r) = σ(r)E(r), (4)

where σ(r) is the electrical conductivity as a function of position. Under this
consideration, Eq. (2) can be written as

∇ ×H(r)− iωεE(r)− σ(r)E(r) = Jp(r). (5)

In problems involving the electromagnetic fields in the air, this equation can be
problematic because these fields vary quickly near the source position. To avoid
this issue, we followed the approach of Newman and Alumbaugh [13], in which
the electric and magnetic fields are separated into primary and secondary fields.
By primary fields we mean those induced by the source on a homogeneous space
model and the secondary (or scattered) fields are those computed considering the
heterogeneities in the model and using the primary fields as source. The secondary
fields are more straightforward to simulate numerically than the total fields because
they have a smoother spatial dependence on the source positions. Besides, using
these fields, we can avoid convergence problems associated with the singularity at
the source location. Maxwell’s equations for the secondary fields are given by

∇ ×Es(r)+ iωμHs(r) = 0 (6)
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and

∇ ×Hs(r)− iωεEs(r)− σ(r)Es(r) = Js(r), (7)

where Hs(r) and Es(r) are the secondary magnetic and electric fields respectively.
We also define an equivalent source J s given by

J s(r) = (σ (r)− σp(r))Ep(r), (8)

where Ep(r) is the primary electric field of a whole space and σp is the reference
conductivity. Now, taking the curl of Eq. (6) and substituting into Eq. (7) we obtain

∇ × (∇ ×Es(r))+ (iωμσ(r)− ω2με)Es(r) = −iωμJ s(r). (9)

For Earth materials at frequencies less than 105 Hz the propagation term ω2με can
be neglected because it is many orders of magnitude smaller than the conduction
term ωμσ(r). Therefore, Eq. (9) can be rewritten as

∇ × (∇ ×Es (r))+ iωμσ(r)Es(r) = −iωμJ s (r), ∀ r ∈ � (10)

Es(r) = 0, ∀ r ∈ ∂�

where � is the domain and ∂� is the boundary of �. Finally, the total electric and
magnetic fields are obtained by

E(r) = Ep(r)+Es(r) (11)

and

H(r) = Hp(r)+Hs(r). (12)

We solve Eq. (10) using FDM on a regular staggered grid (see Fig. 1 and
Appendix 1; [27]). After discretizing the vector Helmholtz equation, we obtain a
system of linear equations given by

Au = b, (13)

where A is a square matrix of dimension (3N)2, N = Nx × Ny × Nz, and Nx ,
Ny and Nz are the numbers of nodes in the x, y, and z directions respectively; u is
the unknowns vector of the secondary electric field of dimension 3N , and b is the
source vector with dimension 3N . The matrix A is complex valued and sparse with
up to 13 nonzero elements per row.
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Fig. 1 Yee’s scheme defines
the positions of electric and
magnetic components. The
electric field is assigned to the
edges of the cell and the
magnetic field is assigned to
the cell faces. The cell
conductivity is σ(i, j, k)

After computing the secondary electric field, we use Faraday’s law (Eq. (1))
to obtain the secondary magnetic fields using an explicit scheme of central finite
differences (see Appendix 2). Finally, in order to obtain the total electric and
magnetic fields, the primary and the secondary fields are added.

3 Apparent Conductivities at LIN

We consider a data-acquisition setup involving two co-planar coils either as vertical
magnetic dipoles (VMD) or horizontal magnetic dipoles (HMD) separated by an
offset s (Fig. 2). The induction number is given by the ratio

B = s

δ
, (14)

where δ is the skin depth, defined as the distance a wave must travel before its
amplitude decays by a factor of 1/e, and is given by

δ =
√

2

ωμσ
. (15)

Therefore, the induction number can be rewritten as

B = s
√

πf μσ, (16)

where f is the frequency of the source, and it is related to the angular frequency
by ω = 2πf . McNeill [9] obtained an expression to compute the ratio between the
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Fig. 2 General coil configurations. The transmitter and receiver coils are separated by a certain
distance s. In VMD both coils lie flat on the ground and in HMD both coils are upright and coplanar

total magnetic and the primary magnetic fields at LIN, given by

H

Hp

= Hp +Hs

Hp

= 1+ i
ωμσs2

4
, (17)

where H is the total magnetic field obtained by adding the primary and secondary
magnetic fields, and Hp is the primary magnetic field generated by a VMD or HMD.

Figure 3 shows that, when the induction numbers are less than 1 (LIN restriction),
the imaginary part of the ratio between the total magnetic field and the primary
magnetic field is related to the ground conductivity and linear with respect to B, and
the real part remains stable and equal to 1. Nevertheless, when B > 1, the behavior
of the real and imaginary parts of the ratio H/Hp are not linear.

To get the apparent conductivity using the LIN approach, we need the ratio
between the secondary and primary magnetic fields, which corresponds to the
imaginary part of H/Hp, whereas the real part of this ratio is neglected. Then, the
apparent conductivity is proportional to the ratio between the secondary and primary
magnetic fields [9] as follows

σa = 4

ωμs2

(

Hs

Hp

)

. (18)

This approach is based on the assumptions that the induction number is small
(B < 1) and that the instrument operates at zero elevation over a homogeneous
half-space [9].



EM modelling: Negative Apparent Conductivity 177

Fig. 3 Induction numbers and real and imaginary part of H/Hp . (a) Real and imaginary part using
a VMD. (b) Real and imaginary part using a HMD

4 Code Validation

The finite-difference code was developed in Fortran and parallelized with OpenMP.
Despite restrictions at LIN, we keep a general implementation; therefore, we can
use low and high inductions numbers and modify the position of transmitters and
receivers.

It was compiled and executed in a computer with 20 cores (2.5 GHz) and 128 GB
of RAM (the source code is available upon request). The system of equations is
solved using the PARDISO 5.0 function from Intel’s MKL.1 In order to validate the
implementation, we use the analytic solution for a half-space [25] using Anderson’s
filter [1] to solve the Hankel transform. Following [13], we considered σ =
0.01 Sm−1 for the half-space model with two sources (VMD or HMD) operating at
30 kHz and located at 20 m, above the surface. The receivers have 5 m of separation
between each one and they are at the same height as the source. The dimensions
of our numerical model are 400 × 400 × 400 m and is discretized with a finite-
difference mesh of 512,000 cells using spatial increment of 5 m (Fig. 4), including
air and Earth.

Figure 5 shows the vertical magnetic field (Hz) over a half-space for VMD and
HMD. To evaluate the accuracy of the numerical modeling, the root mean square
errors (RMSE) were calculated by

RMSE =
√

√

√

√

1

N

N
∑

n=1

x2
n (19)

1 https://software.intel.com/content/www/us/en/develop/articles/pardiso-parameter-table.html.
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Fig. 4 Conductivity model for the validation example, it includes Earth and air. The transmitter
coil operates at 30 kHz and it is located at 20 m above the surface; receivers are at the same height,
5 m from each other. The Earth conductivity is σ = 0.01 Sm−1

Fig. 5 Comparison of the analytical (1D) and numerical (3D) vertical magnetic fields (real and
imaginary parts) for the conductivity model. (a) Comparison of Hz for VMD. (b) Comparison of
Hz for HMD

where N = 41 is the number of data points and xn is the difference between the
analytical and numerical solution at the n-th receiver.

The RMSE of the vertical magnetic field in the VMD case are 1.09×10−8 A m−1

(real part) and 5.85×10−9 A m−1 (imaginary part), and for the HMD case are 3.25×
10−9 A m−1 (real part) and 2.73× 10−9 A m−1 (imaginary part). The discrepancies
are very small and therefore we conclude that the implementation of the 3D forward
modeling method yields accurate results.
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Table 1 Frequency, offset and induction number for Geonics conductivity meters

Equipment Frequency (kHz) Offset (m) Induction number σ = 0.01 Sm−1

EM34
6.4 10

1.6 20 0.1590

0.4 40

EM31 9.8 3.66 0.0720

EM38 14.6 1 0.0240

5 Applications

In this research, we simulated four electromagnetic scenarios with three-
dimensional conductivity models where the EM instruments at LIN can be used:
on the ground, in the air, and within a wellbore. For the examples on the ground
we use the frequencies and offsets of the Geonics equipment (see Table 1). For the
air and wellbore examples we use realistic frequencies. The conductivity model
uses 80 nodes in each direction, thus requiring a solution of 1,536,000 equations.
The cell size is modified according to the depth of exploration in a homogeneous
half-space depending on frequency, transmitter-receiver distance, dipole orientation
and ground conductivity [9].

5.1 Sinkhole Model

This examples’ conductivity models consist of a 3D sinkhole within a resistive half-
space; each sinkhole contains only air, water, seawater and a layered model, as
shown in Fig. 6. The sinkhole was discretized in a parallelepiped measuring 50 m
in the x- and y-directions and 27 m in z-direction.

We computed the response at 6400 Hz and 10 m offset using HMD and VMD; we
show in Fig. 7 the profiles for all the models. The highest responses correspond to
model A3 since the highest conductivity contrast is between limestone and seawater.
Notice that this conductivity contrast does not represent a limitation of the finite
difference method for geophysical applications because the cell’s size are small
compared to the target’s size.

On the other hand, VMD detects better the lateral conductivity contrast, as shown
in Fig. 7. We observed in the A3 profile an increase in σa before the contact,
subsequently σa decreases up to the contact location and finally increases again
until it reaches the maximum value. On the other hand, we cannot distinguish in the
HMD profile the location of the lateral edges (Fig. 7).
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Fig. 6 Conductivity models for the sinkhole example. Sinkholes are located at 3 m depth within a
resistive half-space (σ = 1 × 10−4 Sm−1). (A1) Air sinkhole (σ = 0 Sm−1). (A2) Water sinkhole
(σ = 0.0125 Sm−1). (A3) Seawater sinkhole (σ = 0.5 Sm−1). (A4) A layered model with air,
water and seawater

5.2 Two Nearby Sinkholes

With this experiment, we show that it is challenging to distinguish buried con-
ductive bodies if they are very close to each other because the anomalies can
be misinterpreted. The experiment consists of two sinkholes that are separated
from each other by a specific variable distance (Fig. 8). Each sinkhole contains air
(σ = 0 Sm−1), water (σ = 0.0125 Sm−1), seawater (σ = 0.5 Sm−1), a water
invasion (σ = 0.005 Sm−1) and a seawater invasion (σ = 0.05 Sm−1) within a
limestone half-space (σ = 1× 10−4 Sm−1).

Figure 9 shows the apparent-conductivity responses over the ground for the
models in Fig. 8 using VMD and HMD. The VMD responses at 10 m (6400 Hz)
and 40 m (400 Hz) offsets show a relevant difference between models B1 and B2. In
models B3 and B4 we notice changes due to the resistive zone at the center of the
array for both frequencies or offsets. The HMD responses have similar behaviors at
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Fig. 7 Numerical response of four conductivity models at 6400 Hz. (Left) VMD apparent
conductivity. (Right) HMD apparent conductivity

Fig. 8 Conductivity model of two sinkholes at different separations. (B1) 5 m separation joined by
an invaded zone. (B2) 10 m separation joined by an invaded zone. (B3) 15 m separation of which
5 comprise the resistive zone. (B4) 25 m separation of which 15 comprise the resistive zone
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Fig. 9 Apparent conductivities for the models in Fig. 8 using 10 m offset (at 6400 Hz) and 40 m
offset (at 400 Hz). (Left) VMD responses and (right) HMD responses

40 m offset for models B1, B2 and B3; Moreover, at 10 m offset, all models showed
significant differences. On the other hand, using VMD with a 40 m offset, some
negative apparent conductivities are observed in all models in the sudden changes
in conductivity, such as in the limit between the half-space and the sinkholes.

Figure 10 shows the apparent-conductivity response in the air at 40 m above the
surface. We used VMD and HMD at 12.8, 20, 30 and 40 kHz with a 10 m offset for
all frequencies; the receptor coil is located at the same height as the transmitter coil.
Generally, as the frequency increases, the response in both configurations decreases
and the apparent-conductivity plot looks flatter; in particular, VMD provides a
higher response for all frequencies. Notice that the only case in which the anomaly
allows us to distinguish two distinct bodies is in the model B4 with VMD and
12.8 kHz. In models B1, B2, and B3 with both configurations, the higher response
corresponds to the center of the array, meaning that we cannot distinguish two
sinkholes with aero-electromagnetic methods. Pérez-Flores et al. [15] observe that
there is no significant difference between the sinkhole and the bedrock. According
to our results, this happens because there is an intrusion of water in the bedrock that
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Fig. 10 Apparent conductivities for the models in Fig. 8 computed at 40 m above the surface at
12.8, 20, 30 and 40 kHz with 10 m offset. (a) VMD responses and (b) HMD responses

does not allow to differentiate the sinkhole and the bedrock due to a low conductivity
contrast.

5.3 Layered Conductivity Model with a Wellbore

For this example we use a layered conductivity model with a wellbore (Fig. 11).
It contains a conductive layer (σ = 0.5 Sm−1) within a resistive half-space (σ =
1×10−4 Sm−1) We use a VMD configuration with the receiver and transmitter along
the wellbore, the transmitter operates at 20 kHz and it is located over the receptor
coil in a collinear array with 1 m and 2 m offsets.

We compute σa for the three models shown in Fig. 11 and observe larger
responses with 1 m offset for models C1 and C3 (see Fig. 12). In C2, the apparent
conductivity converges to the half-space conductivity for both offsets; however,
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Fig. 11 Layered conductivity model with a wellbore: (a) C1 is filled with water-based drilling
fluid (σ = 0.2 Sm−1); (b) C2 is dry (only air) (σ = 0 Sm−1) and (c) C3 is a metal cased hole with
σ = 30 Sm−1 and, for modeling purposes, a metal thickness of 0.07 m

in models C1 and C3, the half-space apparent conductivity for both offsets do
not converge because the drilling fluid and the metal case conductivities are very
different to the conductivity of the surrounding layered earth. Furthermore, we
obtain negative apparent conductivity values for all models.

We further compare the response in model C3 at different frequencies (see
Fig. 13). Notice that we can distinguish the conductive layer in spite of the metal
case. When we compare the responses at 12.8, 6.4, 1.6 and 0.4 kHz, we obtain the
same response for all the frequencies; however, we obtain a higher response at 1 m
offset than at 2 m. Frequencies 1.6 and 0.4 kHz are under LIN conditions for both
offsets.
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Fig. 12 Apparent conductivities in the wellbore models at 20 kHz with a 1 and 2 m offsets

5.4 Vertical-Contact Model

The final example is a model consisting of a vertical contact between a resistive
and a conductive zone. We keep fixed the conductivity in the resistive zone (σ =
0.0001 Sm−1) and let it vary in the conductive zone from 101 to 103 times more
conductive than in the resistive zone (Fig. 14). We show in Table 2 the induction
numbers for each conductivity in the conductive zone.
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Fig. 13 Apparent conductivities computed using the model C3 and different offsets. Numerical
response at 20, 12.8, 6.4, 1.6 and 0.4 kHz. (a) 1 m offset and (b) 2 m offset

Fig. 14 Conductivity model of a vertical contact. The blue zone represents the resistive zone and
the red one the conductive zone
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Table 2 Induction numbers
(B) for each conductivity in
the vertical contact model

σ (Sm−1) B

0.001 0.0503

0.01 0.1590

0.1 0.5027

Fig. 15 Apparent conductivities for the vertical-contact model using 400, 1600 and 6400 Hz (40,
20 and 10 m offsets respectively). (a) VMD response at the surface. (b) HMD response at the
surface

Figure 15 shows the apparent conductivity responses for the models using VMD
and HMV at the surface (z = 0) varying the offset and frequency. We obtain
negative apparent conductivities using VMD and a high conductivity contrast,
as shown in Fig. 15a. For 400 Hz (40 m offset), we obtained negative σa values
between x = 0 m and x = 20 m. We do not observe a negative σa using HMD;
however, we observe an obvious change in the apparent conductivity produced by
the conductivity contrast. Within the LIN domain, the highest conductivity contrast
generates a larger anomaly. According to Eq. (18), the secondary magnetic field
changes sign in the vertical contact, meaning that the secondary magnetic field
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Fig. 16 Phases for the vertical-contact model at 400, 1600 and 6400 Hz (40, 20 and 10 m offsets
respectively). (a) VMD response at the surface. (b) HMD response at the surface

vector is in the opposite direction of the primary magnetic field, just where the
high-conductivity contrast is present.

Recall that only the imaginary part of the secondary and primary magnetic fields
ratio is used to compute LIN’s apparent conductivity. We consider that the real part
of the secondary magnetic field is zero, and therefore the phase of the secondary
magnetic field is 90◦. We analyzed the secondary magnetic field for models in
Fig. 14 and computed phases for each model (Fig. 16). Phases are stable and equal
to 90◦ when using σ1 for both dipole configurations and for all frequencies. Phases
with σ2 shows a large phase change near the vertical contact although it indicates a
change to a negative phase at 400 Hz using VMD but towards the ends of the model
it remains stable. At 1600 and 6400 Hz the phases show a slight change close to the
vertical contact. When we used an HMD, the phases do not exhibit abrupt changes
in the contact. The phases using VMD with σ3 show notable phase changes close
to the vertical contact, and in the anomalies at 6400 and 400 Hz exist a change of
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the phase sign. In the resistive zone, phases increase up to the conductive zone in all
frequencies, when employing HMD.

This last experiment shows that, although we are in the LIN domain, the
secondary magnetic field’s real part is non-zero in the vertical contact when
the conductivity contrast is large. If we consider the real part of Eq. (18), the
apparent conductivities become fully complex and consequently, it is necessary to
reformulate McNeill’s equation.

6 Discussion

Electromagnetic equipment at LIN can be used for several applications. Our
experiments show that VMD allows us to obtain a better resolution of superficial
conductive structures. Furthermore, the effective exploration depth of VMD is
higher than that of HMD [9]. Unlike other electromagnetic methods in which
the penetration depth depends on the frequency and the medium conductivity, at
low induction numbers this depth of exploration depends on: (1) the separation
between the source and the receiver and (2) The dipole configuration. However,
LIN conditions require using the instruments in a low-conductivity terrain, and we
cannot always satisfy this. We need to exercise caution when making qualitative
interpretations outside the LIN domain because the secondary magnetic field’s
imaginary part is not linear with respect to electrical conductivity.

In the literature, several authors have reported negative apparent conductivities.
McNeill [10] was the first to report this negative response. He indicated that a
vertical dike (with σ = 1 Sm−1) produced a negative response of σa using VMD at
1600 Hz. Subsequently, Méndez-Delgado et al. [11] observed that using a VMD and
if the receiver-transmitter distances are larger than the thickness of the conductor
can yield a negative σa . Pérez-Flores et al. [14] used the integral form of Maxwell’s
equations approximation at LIN and found that the weighting functions they used in
shallow conductors with both coil configurations can produce negative σa .

We found that VMD can produce negative σa values under certain circumstances
as some transmitter-receiver distances and high-conductivity contrast. We observed
that, if the conductivity contrast between two mediums differs by at least two orders
of magnitude, it can produce a phase change even when both conductivities are
within the LIN domain.

Namely, we observed that the phase of the secondary magnetic field is signifi-
cantly different than 90◦ or 270◦. Therefore, the secondary magnetic field’s real part,
previously neglected, should be considered for the apparent-conductivity analysis.
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7 Conclusions

We have computed apparent conductivities for 3D bodies by solving Maxwell’s
equations numerically in the frequency domain, using the finite differences method
with a staggered grid. We compared our results with an analytical solution for a
homogeneous and isotropic half-space to validate the magnetic field’s numerical
solution. We used the parameters for low induction numbers standard equipment
and the VMD and HMD modes of operation.

Using VMD can disclose the conductor’s edge location and yields a significant
larger response than HMD. Nevertheless, we cannot distinguish between two or
more conductive bodies if they are very close. The qualitative interpretation in this
case can be misleading because we obtained only one anomaly. Furthermore, this
problem increases when using the equipment in the air.

We have also simulated an electromagnetic device running inside a wellbore. We
observed that the wellbore filled with drilling fluid and the cased hole produced
different σa values in the resistive zone for each offset. Surprisingly, the wellbore
with a metal case showed measurable changes of σa in the conductive layer.

The response of a vertical contact between the resistive and conductive zones
showed that; (1) Using both configurations, σa values increase before the contact for
all conductivity models; (2) Using VMD at 400 Hz, we obtained negative apparent
conductivities near the contact with the highest conductivity zone (σ = 0.1 Sm−1).
This anomaly reveals that the secondary magnetic field goes in the opposite
direction of the primary magnetic field. Additionally, both coil configurations yield
stable phases in minor conductivity contrasts, i.e., between the resistive zone σ =
0.0001 Sm−1 and the conductive zone with σ = 0.001 Sm−1.

We noted that the phase values change swiftly when the conductivity contrast
increases, even under LIN conditions. Furthermore, we found a meaningful phase
change at all frequencies near the vertical contact with the highest conductivity
contrast with σ = 0.1 Sm−1; We also observed the highest phase change at 10 m
from the vertical contact when we used VMD at 400 Hz. Accordingly, we need
a fully complex equation when computing the apparent conductivity in VMD on
mediums with high conductivity contrast.
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supercomputing lab at the Specialized Labs System of the Earth Sciences Division of CICESE.

Appendix 1

Equation (10) was discretized using an scheme of central finite differences into a
regular grid. The secondary electric field is computed using the following finite
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difference equations
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Fig. 17 Conductivity cells. (a) Conductivity associated to Esx

i+ 1
2 ,j,k

, (b) Conductivity associated

to E
sy

i,j+ 1
2 ,k

, and (c) Conductivity associated to Esz

i,j,k+ 1
2

To compute conductivities at the edge of each cell, we use a conductivity average
with four adjacent cells (see Fig. 17). In our approach, for a regular grid, the
conductivity in σi+ 1

2 ,j,k is defined by

σ
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4
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we have
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and σ
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2
is defined as
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4
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In this approach we have used homogeneous Dirichlet boundary conditions
[13, 21], where the electric field is equal to zero at the boundaries (Eq. (10)). Other
authors have used Neumann boundary conditions [21], where the first derivative of
the tangential electric field is equal to zero at the boundaries, then on the boundaries
we could use a backward scheme.

Appendix 2

Faraday’s law in differential form is given by
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These equations are discretized with a staggered grid central finite differences.
The magnetic field is located at face’s cells (see Fig. 1) so, we obtain:
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and

Hsz

i+ 1
2 ,j+ 1

2 ,k
= − 1

iωμ

⎛

⎝

E
sy

i+1,j+ 1
2 ,k
− E

sy

i,j+ 1
2 ,k

�x
−

Esx

i+ 1
2 ,j+1,k

− Esx

i+ 1
2 ,j,k

�y

⎞

⎠ .

(31)

With this formulation we obtain a second-order accuracy scheme as a conse-
quence of the centered finite-differences stencil used to compute the magnetic field.
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