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Abstract. In engineering applications, the permanent displacement (D) com-
monly serves as a useful indicator of the seismic performance of slopes. When
developing empirical displacement models as a function of ground-motion inten-
sitymeasures (IMs), the IMs that are best correlated toD are preferred.On the other
hand, the predictability of IMs, in terms of the standard deviations using ground
motion models, is also of concern in developingDmodels. This study aims to: (1)
investigate the efficiency of IMs in developing D models for a cohesive-frictional
slope based on numerical analysis; and (2) compare the means and standard devia-
tions of randomizedD by considering uncertainties in predicting both the IMs and
D via Monte Carlo simulation (MCS). A total of 10 scalar IMs and 38 vector-IMs,
are employed to developDmodels. The results indicate that the spectral accelera-
tion at a degraded period of the soil layer (SA(1.5Ts,layer)) andArias intensity (IA)
are the two most efficient scalar IMs. Additionally, the vector-IMs consisting of
[IA, spectrum intensity] and [IA, mean period] are the two most efficient vectors.
The MCS results illustrate that the rankings for standard deviations of D models
and total standard deviations (i.e., including ground motion variability) may be
considerably different. The results are also found to be dependent on earthquake
magnitudes and site conditions. This study could provide guidance on the devel-
opment of numerical-based D models especially within a probabilistic seismic
slope displacement analysis framework.

Keywords: Seismic slope performance · Numerical analysis · Intensity
measure · Displacement prediction · Model variability

1 Introduction

Evaluating the seismic stability of slopes is an important task of geotechnical engineers.
The performance-based permanent displacement analysis has attracted increasing atten-
tion in assessing the seismic safety of slopes, as usually conducted by the Newmark-
type sliding block procedures [1–3]. Such procedures that approximately estimate the
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earthquake-induced permanent slope displacement (D) are particularly useful for prelim-
inary screening-level analyses and regional landslide hazard mapping. For assessing the
seismic performance of important slopes such as those involved in critical projects, the
numerical stress-deformation analysis is necessary to provide a more accurate estimate
of the slope performance [4].

The probabilistic displacement hazard approach has been well developed to esti-
mate the hazard-consistent D [5–7]. Recently, this approach has been improved with
the numerical slope displacement analysis [8]. As a key component, the relationship
between one or multiple ground motion (GM) intensity measure (IMs) and D should be
explicitly described by a regression model, in which the IMs better correlated to D (i.e.,
higher efficiency) are recommended as predictor variables. Therefore, it is of interest to
investigate the efficiency of different IMs. However, most of the existing studies were
based on the Newmark-type procedures (e.g., [9]), so the findings and conclusions may
not hold for the numerical cases [8, 10]. Also, the efficiency rankings of various IMs
may be dependent on slope materials, slope geometry, etc. Hence, more research efforts
should be devoted to this topic.

This study aims to: (1) investigate the performance of IMs in developing D models
for a cohesive-frictional slope based on numerical analysis; and (2) compare the means
and standard deviations of D for these models considering uncertainties in predicting
both the IMs and D via Monte Carlo simulation (MCS). The remaining part of this
paper starts with a description of the procedure employed, followed by the slope model
development and comparative results.

2 Procedure for Seismic Slope Displacement Analysis

The seismic slope displacement analysis procedure includes the following steps.

(i) Select GM acceleration-time series, and compute their IMs of interest. The GMs
selected should cover a wide range of the earthquake magnitude (M), rupture
distance (R), and shaking intensity, etc.

(ii) Perform dynamic analysis for the slope model using each of the GMs to obtain D.
(iii) Develop D models based on the obtained data of D. The trend of lnD versus lnIM

(i.e., in natural logarithmic scale) is fitted via one of the following formulas:

lnD = μlnD + εlnD · σlnD = a1 ln IM1 + a0 + εlnD · σlnD (1)

lnD = μlnD + εlnD · σlnD = a1 ln IM1 + a2 ln IM2 + a0 + εlnD · σlnD (2)

where D is in units of cm; a0, a1, and a2 are regression coefficients; εlnIM denotes
a standard normal variable; σ lnD is the model-specific standard deviation, so lnD
follows the normal distribution with mean of μlnD and standard deviation of σ lnD.

(iv) Perform MCS to generate N IM samples of the correlated IMs. The probability
distribution of lnIM is described by the associated ground motion model (GMM)
with the following general expression [11]:

ln(IM ) = μln IM (M ,R, etc.) + εln IM · σln IM (3)
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where μln IM (M ,R, etc.) represents the mean of lnIM estimated by using M, R,
etc.; σ lnIM denotes the standard deviation of lnIM given by GMM; εlnIM is a
standard normal variable. Based on the joint normal distribution of lnIMs, the N IM
samples can be readily generated by specifying the correlation coefficients among
IMs (e.g., [12]).

(v) Substitute each sample of IM (or IMs) into Eq. (1) (or Eq. (2)) to derive μlnD, and
then perform MCS to generate ND samples of D based on the distribution of lnD.
This process is repeated for N IM times, resulting in N IM × ND data points of D.

3 Slope Model Establishment

Figure 1 shows the slope model established in the finite difference code FLAC [13],
where the slope height (H) and slope angle are 20 m and 30°, respectively. The cyclic
soil behavior is described by the hysteretic damping model Sig4, in which the model
parameters are calibrated according to the Darendeli [14] modulus reduction and damp-
ing ratio curves with plasticity index of 0 and the effective vertical stress at the depth
of H. Sig4 is combined with the Mohr-Coulomb plasticity criterion for modelling the
plastic behavior of soils. To remove high-frequency noises, a small amount of stiffness-
proportional Rayleigh damping (0.2%) is specified. The bedrock layer is considered
linear-elastic with 0.5% mass- and stiffness-proportional Rayleigh damping. Table 1
summarizes the parameters assigned to the slope model. To minimize wave reflection
effects, the quiet boundary is applied along the bedrock base, and the free-field boundary
that simulates a quiet boundary is implemented at both lateral sides [13]. The sum of L1
and L2 is equal to 12H, as illustrated in Fig. 1.

Fig. 1. Numerical model of slope and the associated maximum shear strain increment contours
obtained from pseudostatic strength reduction technique. The CSS from Bishop’s simplified
method is shown using a red line.

Table 1. Summary of the geotechnical parameters assigned to the slope model.

Soil layer Bedrock layer

ρ (kg/m3) c (kPa) φ (°) Gmax (MPa) ρ (kg/m3) Gmax (MPa)

2000 10 35 320 2300 1472

Note: ρ, c, φ, and Gmax denote the density, cohesion, friction angle, and initial shear modulus of
soil, respectively.
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Before conducting dynamic analysis, pseudostatic slope stability analysis is con-
ducted using both the strength reduction technique (SRT) and Bishop’s simplified limit
equilibrium method. As also shown in Fig. 1, the resulting shear band from SRT agrees
well with the critical slip surface (CSS) from theBishopmethod. The fundamental period
of the failure mass (above CSS) is estimated as Ts,mass = 4h/Vs = 0.077 s, where Vs is
the soil shear-wave velocity (i.e., Vs = √

Gmax/ρ), and h denotes the maximum thick-
ness of the failure mass. The fundamental period of the soil layer (Ts,layer) is similarly
calculated using h = 1.5H (average of the downhill and uphill soil layer thicknesses).
In the next section, two degraded periods determined as Td1 = 1.5Ts,mass = 0.116 s and
Td2 = 1.5Ts,layer = 0.45 s will be considered to construct the spectral acceleration (SA)
for predicting earthquake-induced slope displacements (e.g., [2]).

4 Development of Slope-Specific Displacement Models

4.1 Construction of Displacement Models

The NGA-West2 database (https://ngawest2.berkeley.edu/) is used to select 83 GM
records, which cover a wide range of peak ground acceleration (PGA) from 0.05 g
to 1.41 g, allowing for a proper consideration of the GM record-to-record variability.
Following Step (ii) in Sect. 2, theD for eachGM is calculated as themaximumhorizontal
displacement along the slope surface.
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Fig. 2. Distribution of D versus different IMs. Also shown are trends fitted by Eq. (1) or (2).

For a thorough comparison, this study incorporates 10 representative IMs, including
PGA, peak ground velocity (PGV), Arias intensity (IA), cumulative absolute velocity

https://ngawest2.berkeley.edu/
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(CAV), SA(Td1), SA(Td2), acceleration spectrum intensity (ASI), spectrum intensity
(SI), mean period (Tm), and significant duration Ds5–75. Among them, SA(Td1) and
SA(Td2) represent the 5%-damped spectral accelerations at the periods Td1 and Td2,
respectively. Note that most of the existing Newmark-type models correlate SA(Td1) to
D. Step (iii) is conducted for the 10 scalar IMs and 38 combinations of IMs, resulting in
48 D models.

Figure 2 shows the D versus IM distributions for 9 scalar IMs and the fitted linear
trends (and the associated σ lnD). It is found that the lnD versus lnIM relationship gen-
erally follows a linear pattern. The SA(Td2) model fits the data better than the others;
yet, the more usually used SA(Td1) leads to much larger scatter (i.e., σ lnD is almost
double). Also, the scatter for Tm and Ds5–75 is significantly larger, indicating the low
efficiency of the two scalar IMs in predicting D. Such wide ranges of D and IMs imply
the capabilities of the models for estimating D in various shaking levels.

4.2 Standard Deviations of the Displacement Models

Figure 3a and b further compare σ lnD for the scalar-IM and vector-IM models, respec-
tively. The order of SA(Td2) > IA > PGV > SI > CAV > ASI > PGA > SA(Td1) >

Tm > Ds5–75 is observed for the efficiency of scalar IMs. The smallest σ lnD of 0.76 for
SA(Td2) may be attributed to that Td2 = 0.45 s (for the soil layer’s fundamental period)
is comparable to the value of Tm (e.g., see Fig. 2) and is more related to the dynamic
response of the slope. This indicates that the degraded period for the failure mass (i.e.,
Td1) should be used cautiously with the consideration of GMs’ period range. Besides,
IA and PGV, which were identified as the two most efficient IMs by Cho and Rathje
[8], yield similar σ lnD (0.78 and 0.82) to that of SA(Td2). Hence, the three IMs may
be preferred for deriving D models. Although it is not a common IM, SI also results
in relatively small σ lnD (≈0.8). On the other hand, Tm and Ds5–75 lead to significantly
large σ lnD (≈2).
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Fig. 3. Model-specific standard deviations for different (a) scalar-IM and (b) vector-IM models.

It is observed fromFig. 3b that the vector-IMmodels yieldmuch smallerσ lnD than the
scalar-IMmodels as a result ofmore complementary information carried by two IMs. The
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order of [IA,SI] > [IA,Tm] > [SA(Td2),CAV] > [IA,PGV] > [CAV,SI] is observed for
the fivemost efficient vectors (i.e., σ lnD = 0.54–0.61). Specifically, the σ lnD values (0.54
and 0.55) for [IA,SI] and [IA,Tm] are noticeably smaller, indicating the attractiveness of
the two vectors. The [SA(Td2),CAV], [IA,PGV], [CAV,SI], [PGA,SI], [IA,SA(Td2)] and
[PGV,CAV] are the subsequently efficient vectors that achieve comparative σ lnD within
the range of 0.60–0.61. These vectors include either IA or CAV, which capture multiple
characteristics (amplitude, duration, etc.) of GMs.

5 Scenario-Based Comparison of the Models Using MCS

Following Step (iv), the mean and variability of the D prediction for different models
are compared under some representative scenarios. Multiple GMMs are adopted for
individual IMs [11, 15–18] following the logic tree method. The correlation coefficient
matrix for modeling the joint distribution of the 10 IMs is derived according to the refer-
ences [12, 19, 20]. Both N IM and ND are specified as 200, yielding 40000 displacement
values. The geometric mean of these values (termed asDmean hereafter) and the standard
deviation of lnD (St.d. of predicted lnD) are investigated as follows.
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Fig. 4. Mean prediction trends associated with different displacement models forVS30 = 760m/s

5.1 Mean of the Displacement Prediction

Figure 4 shows the Dmean versus R for VS30 = 760 m/s. Both M = 5.5 and 7.5, and
the scalar- and vector-IM models are included. Note that the legend is shown in the
way of illustrating the ranking of σ lnD for different displacement models. The results



Relationships Between Ground-Motion Intensity Measures 1015

for VS30 = 360 m/s are not shown due to the limited space, yet are also discussed as
follows. First, Dmean decreases with increasing R, while the decreasing trend becomes
slower for larger R. Second, the trends for the scalar- and vector-IMmodels are generally
comparable, and the difference of the results for most vector-IM models (especially for
the 10 most efficient ones) is smaller in comparison with the scalar-IM models. Third,
the model-to-model difference is slightly dependent on VS30 andM. Regarding the soil
site condition (VS30 = 360 m/s),M = 5.5 generally corresponds to smaller difference of
Dmean thanM = 7.5; yet, this observation appears to reverse for the rock site condition.
Fourth, the SA(Td1) model generally produces the upper and lower bounds among the
scalar-IM models forM = 5.5 and 7.5, respectively. The Tm and Ds5–75 models are two
exceptional cases with almost unchanged Dmean, indicating that the two IMs should not
be used solely to predict D.

5.2 Variability in the Displacement Prediction

Figure 5 displays the St.d. of predicted ln D versus R for VS30 = 760 m/s. The VS30
= 360 m/s case produces slightly smaller St.d., and is not shown here for brevity. No
evident trend of St.d. versus R is observed. The St.d. values for the scalar-IMmodels are
generally comparable to those for the vector-IM models, although the 10 most efficient
vector-IM models tend to result in smaller St.d. values. As a superposition of σ lnIM and
σ lnD, St.d. is generally within the range from 1.4 to 1.8.
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Fig. 5. Variability trends associated with different displacement models for VS30 = 760 m/s.

For comparison, Table 2 lists the different types of standard deviations for the scalar-
IM models, where μStd represents the average of St.d. for different scenarios (various
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VS30 andR). It is seen that the IM for the smallestμStd may not produce the smallestσ lnD,
due to the additionally included uncertainty in the IM prediction. In general, CAV tends
to yield smaller μStd, and μStd for IA is still relatively small. The μStd values for the 38
vector-IMmodels are derived and are shown in Fig. 6. A similar observation of different
rankings of μStd and σ lnD can be made. Specifically, the low uncertainty in estimation
of CAV is illustrated again; that is, some IM vectors including CAV yield relatively
small total variability (μStd). The larger μStd is, the more uncertain the displacement
prediction. Though σ lnD can generally be smaller than 0.75, the total uncertainty is still
large, and in most cases μStd has exceeded 1.4. Take the predicted D of 40 cm given
an earthquake scenario as an example; the expected range of D considering the total
uncertainty (μStd = 1.4) can be estimated as [exp(ln(40)-μStd), exp(ln(40) + μStd)] =
[10 cm, 162 cm] [2]. Such a large interval should be shrunk for a more robust estimation
ofD. Thus, more powerful GMMs with smaller aleatory variability should be developed
and applied to the seismic slope displacement analysis.

Table 2. Standard deviation parameters for the scalar-IM models.

IM1 σ lnIM (M = 5.5) σ lnIM (M = 7.5) σ lnD μStd (M = 5.5) μStd (M = 7.5)

PGA 0.58–0.65 0.52–0.58 1.04 1.73 1.63

PGV 0.63–0.64 0.59–0.60 0.82 1.67 1.58

IA 1.01–1.08 0.94–0.99 0.78 1.57 1.46

SA (Td1) 0.59–0.71 0.54–0.64 1.48 1.86 1.79

SA (Td2) 0.66–0.69 0.61–0.64 0.76 1.72 1.62

CAV 0.39–0.49 0.39–0.43 0.90 1.46 1.42

SI 0.60–0.62 0.60–0.61 0.83 1.59 1.60

ASI 0.56–0.63 0.52–0.57 0.93 1.71 1.60
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Fig. 6. Comparison of μStd for different vector-IM displacement models.
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6 Summary and Conclusions

This study investigated the relationship between groundmotion intensitymeasures (IMs)
and earthquake-induced permanent slope displacement (D) based on numerical stress-
deformation analyses. Ten scalar IMs and 38 vector-IM combinations, were used to
develop the D models, and the efficiencies of various scalar and vector-IMs were com-
pared in terms of the model standard deviation (σ lnD). Furthermore, a Monte Carlo
simulation-based procedure was utilized to compare these D models under representa-
tive earthquake scenarios, in which the uncertainties in predicting both IMs and D are
considered. The comparative results lead to the following conclusions:

1. The SA(Td2 = 1.5Ts,layer)- and IA-based displacement models were identified as
the most efficient scalar-IM models with the smallest σ lnD of 0.77, while the more
commonly used SA(Td1 = 1.5Ts,mass) resulted in much larger σ lnD. In constrast, the
scalar IMs of Tm and Ds5–75 exhibit the lowest efficiency in regressing D.

2. The [IA,SI] and [IA,Tm] resulted in the smallest σ lnD of about 0.55 for the vector-
IM models. The subsequent six most efficient models generally included ether IA
or CAV. Only 6 among the 38 models yielded σ lnD greater than 0.77, indicating the
advantage of vector-IM models for improving the efficiency of regressing D.

3. The total standard deviation contributed by both the uncertainties in IM and D pre-
dictions is considerably larger than σ lnD, and the models with the smallest σ lnD do
not necessarily yield the smallest total standard deviation. This is more evident for
models including CAV in which a smaller variability is involved in predicting this
IM. Recent studies on developing non-ergodic ground motion models shed light in
the direction of reducing variability in the IM prediction (e.g., [21]).

The results of the mean and standard deviation of D obtained in this study could be
useful to select IMs in developing predictive models for seismically-induced slope dis-
placements. Such models can be implemented within the fully-probabilistic framework
[7, 8], allowing practitioners to estimate the hazard-compatible D for seismic design of
slopes.
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