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9Vitamin D and Gut Health

James C. Fleet

Abstract

Vitamin D is a conditionally required nutrient 
that can either be obtained from skin synthesis 
following UVB exposure from the diet. Once 
in the body, it is metabolized to produce the 
endocrine hormone, 1,25 dihydroxyvitamin D 
(1,25(OH)2D), that regulates gene expression 
in target tissues by interacting with a ligand-
activated transcription factor, the vitamin D 
receptor (VDR). The first, and most respon-
sive, vitamin D target tissue is the intestine. 
The classical intestinal role for vitamin D is 
the control of calcium metabolism through the 
regulation of intestinal calcium absorption. 
However, studies clearly show that other func-
tions of the intestine are regulated by the 
molecular actions of 1,25(OH)2 D that are 
mediated through the VDR.  This includes 
enhancing gut barrier function, regulation of 
intestinal stem cells, suppression of colon car-
cinogenesis, and inhibiting intestinal inflam-
mation. While research demonstrates that 
there are both classical, calcium-regulating 
and non-calcium regulating roles for vitamin 
D in the intestine, the challenge facing bio-
medical researchers is how to translate these 

findings in ways that optimize human intesti-
nal health.
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9.1	� Introduction

In 1922, E.V.  McCollum first coined the term 
“vitamin D” to describe the fat-soluble vitamin 
with a critical role in bone health. However, by 
1937, work by Nicolaysen made it clear that 
intestinal calcium absorption is dependent on 
vitamin D [1] and others showed that intestinal 
calcium absorption efficiency is reduced by more 
than 75% during vitamin D deficiency [2, 3]. The 
molecular era of vitamin D research began when 
the active metabolite of vitamin D, 1,25 dihy-
droxyvitamin D (1,25(OH)2D3) [4, 5], and its 
nuclear receptor, the vitamin D receptor (VDR) 
[6], were isolated from the intestinal mucosa. 
Since then, research on the molecular actions of 
vitamin D has revealed how 1,25(OH)2D3 acts 
through the VDR to regulate gene transcription 
(see [7, 8] for a detailed discussion of this topic). 
While the highest expression of VDR is seen in 
the intestinal epithelium [9, 10], VDR protein 
and VDR-mediated gene expression has been 
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identified is many different tissues [11]. In the 
intestine, VDR gene expression is regulated by 
glucocorticoids [12] and estrogens [13], increases 
in the late post-natal period [12, 14], and declines 
with aging [15, 16]. In this chapter, I will build 
upon the critical role that vitamin D signaling has 
on specific intestinal target cells. This informa-
tion is critical to understand the biological role 
that vitamin D has on bone health, colon cancer, 
and inflammatory bowel disease.

9.2	� Classical Role of Vitamin D 
as a Regulator of Intestinal 
Ca Absorption

A number of studies show that vitamin 
D-mediated intestinal calcium absorption is the 
single most important role for vitamin D and 
VDR during growth. Global VDR gene knockout 
reduces calcium absorption efficiency by 70% in 
growing mice [17, 18] and this causes reduced 
serum calcium, high serum levels of both 
1,25(OH)2D3 and PTH, and osteomalacia. Mice 
with intestine-specific VDR deletion also have 
the same phenotype as global VDR knockout 
mice [19], thereby demonstrating the critical 
importance of intestine for whole body calcium 
metabolism. As proof of this concept, my 
research group found that intestine-specific trans-
genic expression of VDR could normalize cal-
cium absorption efficiency in VDR knockout 
mice and this was enough to prevent the changes 
in serum PTH, serum calcium, and bone mineral 
density that is normally seen in these animals 
[20].

Careful examination of basal and vitamin 
D-regulated calcium absorption in rodents and in 
Caco-2 cells shows that calcium movement 
across the intestinal barrier occurs through both 
saturable (transcelluar) and non-saturable (para-
celluar) pathways [21–24]. 1,25(OH)2D3 regu-
lates the saturable component of calcium 
absorption [2, 25–27] and this pathway is energy 
dependent [28], highest in the proximal small 
intestine (i.e. the duodenum and proximal jeju-
num) but also occurs in the large intestine [29–
33]. Several groups have shown that VDR 

expression in the colon is also necessary for nor-
mal calcium homeostasis [34, 35] . A compre-
hensive review of vitamin D mediated Ca 
absorption is available elsewhere [36].

	(a)	 Models of vitamin D regulated intestinal Ca 
absorption: The best studied model to 
describe vitamin D-induced Ca absorption is 
the facilitated diffusion model [37]. In this 
model, the transient receptor potential cation 
channel vanilloid family member 6 (TRPV6) 
mediates basal and vitamin D-induced apical 
membrane calcium uptake [38–41]. Although 
1,25(OH)2D3-induced intestinal calcium 
absorption was not reduced in TRPV6 knock-
out mice [42, 43], the increase in calcium 
absorption induced by a low Ca diet was 
reduced in mice with a non-functional 
D541A variant TRPV6 [44]. Also, my group 
has shown that intestine-specific transgenic 
expression of TRPV6 increased Ca absorp-
tion and recovered the abnormal bone pheno-
type VDR knockout mice [45], thus proving 
that TRPV6 is a bona fide mediator of intes-
tinal Ca uptake. The proposed mediator of 
intracellular diffusion of calcium during 
absorption is the cytoplasmic calcium bind-
ing protein calbindin D9k [37]. However cal-
bindin D9k is not essential for basal or vitamin 
D regulated Ca absorption [43, 46] and data 
from a number of studies suggest that calbin-
dins are more likely intracellular calcium 
buffers than intracellular calcium ferries [47] 
[41] [45]. The final step in the facilitated dif-
fusion model is the extrusion of calcium from 
the cell, a process that is mediated by the 
plasma membrane calcium ATPase 1b 
(PMCA1b) [28, 48, 49]. Deletion of PMCA1b 
(Atp2b1) or 4.1R, a protein that stabilizes 
PMCA1b in the basolateral membrane, 
reduces both basal and 1,25(OH)2D3-induced 
intestinal calcium absorption [50, 51].

Several other models for vitamin D regulated 
intestinal Ca absorption exist and have interest-
ing features, but are less well supported by data 
than the facilitated diffusions model. In the vesic-
ular transport model, Ca is sequestered into vesi-
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cles within the cell as an alternative to the ferry/
buffer role proposed for calbindin D. Consistent 
with a role for vesicles in Ca absorption, 
1,25(OH)2D3 treatment increases the number of 
lysosomes in chick intestine [52], the release of 
lysosomal enzymes from isolated rat enterocytes 
[53], the cycling of lysosomes [54], and the level 
of lysosomal calcium [55]. Although these data 
support a role for vesicular movement during 
intestinal Ca absorption, it isn’t clear what makes 
it specific for calcium. Transcaltachia has been 
described as the rapid absorption of calcium that 
occurs after exposing chick enterocytes to 
1,25(OH)2D3 [56]. Transcaltachia occurs only in 
response to serosal 1,25(OH)2D3 exposure which 
suggests either that VDR has a novel membrane 
signaling role [57] or that transcaltachia is medi-
ated by a multi-functional protein, the membrane 
associated rapid response steroid binding protein 
(MARRS) [58]. Intestine-specific deletion of 
MARRS in mice reduced cellular 1,25(OH)2D3 
binding, disrupted 1,25(OH)2D3 regulated cal-
cium and phosphate uptake into isolated entero-
cytes [59, 60], and reduced basal calcium 
absorption in by 30% [61]. However, there have 
been no reported adverse effects of MARRS 
deletion on bone, despite the critical importance 
of vitamin D mediated intestinal calcium absorp-
tion for normal bone growth [20]. In addition to 
the transcellular calcium absorption models, 
some studies show that vitamin D signaling 
increases paracellular Ca transport in the jejunum 
and ileum [24, 62, 63] due to 1,25(OH)2D3-
mediated induction of two tight junction proteins, 
claudin 2 and claudin 12 [64]. This may be why 
non-saturable ileal calcium absorption is reduced 
in chronic renal disease patients with low serum 
1,25(OH)2D3 levels [24].

Finally, we have conducted research that sug-
gests additional mechanisms may control vitamin 
D-regulated Ca absorption. By using a forward-
genetics approach in recombinant inbred lines 
from a cross of C57BL/6 J and DBA/2 J (BXD) 
mice, we mapped multiple loci where genetic 
variation controls intestinal Ca absorption [65]. 
None of these loci contained genes that encode 
the proteins that are central to the Ca absorption 
models described above. As such, our genetic 

mapping study suggests that novel mechanisms 
for Ca absorption exist that have not yet been 
described.

9.3	� Gut Absorption 
and Excretion of Vitamin D

While the intestine is a target organ for 
1,25(OH)2D3 action, it is also important for the 
management of vitamin D status by mediating 
absorption of dietary/supplemental vitamin D 
and by mediating the excretion of vitamin D 
metabolites.

Gastrointestinal and hepatobiliary diseases 
that cause fat malabsorption also cause vitamin D 
deficiency in humans [66]. This suggests that 
vitamin D “follows the fat” during its intestinal 
absorption, i.e. it is incorporated into micelles, 
repackaged into chylomicrons, and absorbed into 
the lymphatic system. Consistent with the “fol-
low the fat” model, when rats were given radiola-
beled vitamin D, the label appeared within 
chylomicrons in the lymph [67–69] and this 
required the presence of bile acids [70, 71]. In 
contrast, recent studies show that intestinal 
absorption of vitamin D may also be an active 
process that requires the cholesterol transporters 
SR-BI and NPC1L1 [72]. Regardless of the route 
of absorption, there doesn’t appear to be any reg-
ulation of vitamin D absorption. Rats with exper-
imental nephrotic syndrome lose large amounts 
of vitamin D metabolites in urine and have 
reduced serum 25OHD levels [73] but even under 
these conditions, intestinal vitamin D absorption 
is not elevated. This suggests there is no homeo-
static mechanism to upregulate vitamin D absorp-
tion in times of need.

There is no evidence to suggest vitamin D2 
and vitamin D3 are absorbed by different mecha-
nisms. However, 25 hydroxyvitamin D (25OHD) 
and 1,25(OH)2D3 are absorbed more efficiently 
than vitamin D [69, 70] and 25OHD is better 
absorbed than vitamin D in subjects with stearor-
rhea [74]. This suggests that hydroxylated vita-
min D metabolites don’t use the fat absorption 
pathway. Instead, the higher absorption efficiency 
for 25OHD is due to chylomicro-independent 
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absorption [70] into the lymph where it is associ-
ated with an alpha globulin like the Vitamin D 
Binding Protein (DBP) [69].

While 1,25(OH)2 D can be metabolized to the 
terminal compound calcitroic acid [75], 
1,25(OH)2 D can also be sulfonated and gluc-
uronidated in the liver [76, 77]. These metabo-
lites are then excreted through the bile [78], 
which is the primary route of excretion for vita-
min D metabolites. Although the modified 
1,25(OH)2D3 forms are not biologically active, 
the glucuronide residue can be removed by 
colonic micro-organisms and act locally [79]. 
This releases the active 1,25(OH)2D3 in the 
colonic lumen which can then either be reab-
sorbed (i.e. making an entero-hepatic cycle [80, 
81]) or act locally on colonocytes. In fact, while 
duodenal gene expression is strongly upregulated 
by increases in circulating 1,25(OH)2D3, colonic 
gene expression is more strongly upregulated by 
apical delivery of the hormone [82]. As such, the 
release of glucuronidated 1,25(OH)2D3 into the 
bile may be an important mechanism for activat-
ing vitamin D mediated gene expression in the 
colon.

9.4	� Cellular Targets of Vitamin D 
Action in the Intestine

Although the bulk of cells in the intestine are epi-
thelial, it is important to recognize that there is 
significant diversity in the cell populations that 
exist within the intestine. At the base of the crypt 
are multipotent stem cells that give rise to prolif-
erating daughter cells that then receive signals to 
differentiate into either absorptive epithelial cells 
or to secretory lineage cells (i.e. goblet cells and 
enteroendocrine cells) [83]. In addition, under-
neath the epithelial layer are stromal cells, vascu-
lar endothelial cells, and gut associated immune 
cells. Nonetheless, the bulk of research con-
ducted on vitamin D action in the intestine has 
focused on the epithelial cells. In this section I 
will discuss the molecular actions of vitamin D 
that affect the intestinal epithelium, the stem 
cells, and, briefly, the gut associated immune 
cells.

	(a)	 Molecular Targets in Intestinal Epithelial 
Cells. Before the genomics era, only a few 
genes involved in intestinal Ca absorption 
had been examined for transcriptional regu-
lation following 1,25(OH)2D3 -dependent 
activation of the VDR (e.g. [84, 85]). 
However, genomic profiling permits a more 
comprehensive view of vitamin D action on 
the intestine.

The earliest genomic report was a microarray 
experiment using 1,25(OH)2D3 -treated (24  h, 
100 nM) Caco-2 cells that had been differentiated 
in culture to resemble the cells of the small intes-
tinal villus [86]. Using an Affymetrix array 
(12,635 probesets), this report identified 234 
probesets that were expressed in all samples, sig-
nificant at p < 0.05, and differentially expressed 
by vitamin D treatment; only 13 of these probe-
sets (representing 12 distinct genes) changed by 
more than two-fold. This analysis identified sev-
eral known vitamin D regulated genes (i.e. 
CYP24A1) but also potential new vitamin D tar-
get genes like amphiregulin, ceruloplasmin, sor-
cin, and Jun b. As such, this was important “proof 
of principle” that vitamin D has broader effects 
on intestinal biology than simply to regulate 
intestinal Ca absorption.

The largest reported genomic analysis of vita-
min D action reported to date is one by Lee et al. 
[87] who examined the impact of 1,25(OH)2D3 
treatment (10 ng/g BW, 6 h) on small intestinal 
gene expression in CYP27B1 knockout mice 
using RNA-seq. In mice fed a normal diet, 
1,25(OH)2D3 regulated 599 genes while in mice 
fed a rescue diet to prevent hypocalcemia, it reg-
ulated 119 genes. 45 genes were in common 
across the two diet groups (86% up-regulated), 
including Cyp24a1, Trpv6, S100G, and Atp2b1. 
Ion binding was the most enriched GO term for 
the full vitamin D-regulated gene list, reflecting 
the large number of mineral transporters that 
were upregulated. They subsequently looked for 
enrichment of VDR binding to DNA following 
1,25(OH)2D3 treatment (10  ng/g BW, 1  h) of 
wild-type mice using ChIP-seq. This revealed 
more than 4000 basal and 17,000 vitamin 
D-induced VDR binding sites. The genes for the 
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bulk of the vitamin D regulated transcripts identi-
fied in Cyp27b1 KO mice had VDR binding sites 
associated with them (75% for normal diet, 84% 
for rescue diet; 87% for the overlapping genes). 
This included binding sites in all of the tradi-
tional intestinal vitamin D target genes (Trpv6, 
S100g, Apt2b1, Cyp24a1, Cldn2) and for a num-
ber of new target genes that includes transporters 
like Slc30a10 (Mn export), Slc30a1 (the Zn 
exporter ZnT1), Slc30a5 (the Zn transporter 
ZnT5) and Slc37a2 (a glucose-6-phosphate trans-
porter), ion channels/sensors like Lrrc26 and 
Mctp2, and transcription factors like Pdx1, 
Bach1, and Ppard. The breadth of the functions 
of these new gene targets suggests vitamin D sig-
naling may control some aspects of lipid metabo-
lism (e.g. Pdx1 and Ppard), mineral toxicity 
(Slc30a10, Slc30a1, Slc30a5), and the biological 
response to oxidative stress (Bach1).

Building from the observations of Lee et  al. 
[87], we generated RNA-seq data that reveals 
vitamin D has distinct gene targets depending 
upon the state of cell differentiation or the intes-
tinal segment examined. For this, we cultured 
human duodenal stem cells under conditions that 
either promote differentiation (to make villus-
like enteroids) or to maintain the proliferating 
stem-cell properties of the culture [88]. When 
treated with 1,25(OH)2D3 (10  nM, 24  h), the 
villus-like enteroids had 387 differentially regu-
lated transcripts while the undifferentiated cul-
tures had 130 differentially regulated transcripts; 
86 transcripts were in both groups and this over-
lap group included the classic intestinal vitamin 
D gene targets. Critically, this experiment dem-
onstrated that intestinal differentiation alters the 
vitamin D target gene profile and suggests that in 
vivo studies that use mucosal scrapings underes-
timate the complexity of intestinal vitamin D 
action. Consistent with this, we have unpublished 
data that show distinct differences in the vitamin 
D regulated transcriptome among the small intes-
tine crypts, small intestine villi, and colon epithe-
lium. While this work confirms some of the 
earlier target genes from Lee et al. [87], it pro-
vides more clarity that some gene regulatory 
events are specific to different functional com-
partments of the intestine.

	(b)	 Intestinal stem cells

In the base of the crypts of all intestinal segments, 
4–8 multipotent Lgr5+ stem cells exist that are 
the precursor for all of the epithelial cell types in 
intestine [89]. In the colon, these cells are also 
where cancer originates [90]. Lgr5+ stem cells 
express the VDR and are thus vitamin D target 
cells [91, 92]. Several groups have recently 
examined how vitamin D signaling impacts the 
biology of intestinal stem cells. When Peregrina 
et al. [91] examined the impact of low vitamin D 
diets (i.e. the New Western Diet 1 or NWD1) or 
stem cell specific deletion of VDR on Lgr5+ stem 
cells they found that the these interventions 
reduced the percentage of Lgr5+ cells (e.g. by 
30% after 3 months on the NWD1) and that there 
were fewer progeny from Lgr5 cells in the villus 
of these mice. Others have shown that Bmi1+ 
cells are a reserve stem cell population in the 
intestine that expands when the Lgr5+ stem cells 
are damaged (e.g. following radiation) [93]. 
Consistent with this, Li et al. [94] found that as 
the NWD1 reduced Lrg5+ cells, it expanded the 
population of Bmi1+ cells. Feeding the NWD1 
also significantly altered the transcript profile of 
both Lgr5+ and Bmi1+ stem cells. Collectively, 
these data suggest that vitamin D signaling is 
required for the maintenance and balance of 
healthy intestinal stem cell population.

Consistent with a role for vitamin D in the 
regulation of stem cell biology, Sittipo et al. [95] 
found that treatment of small intestinal stem cell 
cultures with 1,25(OH)2D3 for 3 days increased 
markers of lineage differentiation for goblet cells 
(Muc2), Paneth cells (Lyz), enteroendocrine cells 
(Chga), and epithelial cells (Villin). In addition, 
1,25(OH)2D3 reduced the number of budding 
organoids and that this was associated with fewer 
Ki-67 and Lgr5-labeled cells as well as reduced 
proliferation and increased apoptosis. Similarly, 
Fernandez-Barral et al. [92] reported results from 
an RNA-seq study that shows 1,25(OH)2D3 treat-
ment (10 d, 100 nM) suppressed cell proliferation 
in human colonic organoids and promoted a dif-
ferentiated phenotype in colon tumor organoids 
(3 d, 100 nM). 1,25(OH)2D3-treatment also regu-
lated a wide variety of genes involved in path-
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ways that control suppression of proliferation 
and tumorigenesis, promotion of differentiation, 
and maintenance of stemness. These data fit the 
traditional model of 1,25(OH)2D3 as an anti-
proliferative, pro-differentiating agent.

	(c)	 Vitamin D regulates tight junctions and bar-
rier function

In addition to its role in regulating nutrient, drug, 
and fluid movement into and out of the body, the 
intestine has a primary role in protecting the 
body by forming tight junctions between cells 
[96] and acting as a barrier to foreign invaders 
[97]. A number of studies have clearly shown 
that vitamin D signaling is crucial to the mainte-
nance of barrier function under normal and 
inflammatory conditions. The earliest study to 
make this connection was by Kong et  al. [98] 
who showed that 1,25(OH)2D3 treatment 
enhanced transepithelial electrical resistance 
(TEER) in Caco-2 cell monolayers through a 
VDR-dependent mechanism that induced 
expression of the tight junction proteins ZO-1 
and claudins, 1, 2, and 5. Consistent with a phys-
iological role for this VDR-dependent strength-
ening of tight junctions, Kong et al. also found 
that TEER was reduced sooner and more severely 
in VDR knockout mice following treatment with 
dextran sulfate sodium (DSS), an agent that 
damages the epithelium and induces colitis. 
Several other studies are consistent with a tight 
junction protective effect of 1,25(OH)2D in 
intestine. Zhao et al. [99] found that in Caco-2 
cells, 1,25(OH)2D3 increased TEER, protein and 
mRNA levels for tight junction proteins, and 
decreased monolayer permeability following 
DSS treatment. Chen et al. [100] later reported 
that 1,25(OH)2D3 treatment prevented lipopoly-
saccharide (LPS)-induced Caco-2 cell mono-
layer damage and prevented LPS-induced 
redistribution of tight junction proteins.

Several groups have reported that VDR knock-
out mice are more susceptible to DSS-induced 
mucosal injury [98, 101, 102]. However, studies 
in global VDR knockout mice are confounded by 

the disruption of calcium metabolism and hair 
loss-related thermoregulation that are central 
phenotypes to this model. To overcome this prob-
lem, we conducted research in two unique mouse 
models, a mouse with colon-epithelial cell spe-
cific deletion of VDR and a VDR knockout 
mouse with transgenic expression of VDR in the 
intestinal epithelium [103]. Using these models, 
we found that intestinal epithelial cell deletion of 
VDR made the intestinal epithelium more sus-
ceptible to DSS induced damage, but that recov-
ery from the damage was normal. In contrast, 
loss of VDR in the cells outside of the epithelium 
prevented recovery from DSS-induced barrier 
damage. Other data from our group [103] and 
others [101] suggest that intestinal epithelial 
healing is regulated by innate immune cells like 
M2 macrophages, and that healing is enhanced 
by activating 1,25(OH)2D3 signaling in these 
cells.

	(d)	 Regulation of gut associated immune cells

While the focus of vitamin D action in the intes-
tine has been on its role in modulating epithelial 
cell function, the intestine also contains a robust 
mucosal immune system [104]. However, the 
impact of vitamin D on this system has not been 
extensively studied. In contrast, there is a body of 
literature on the role of vitamin D in the regula-
tion of the systemic immune cells (see [105, 106] 
for overviews) that is driven by the observation 
that vitamin D deficiency is associated with 
increased autoimmunity and an increased suscep-
tibility to infection [107].

Although the findings related to the systemic 
immune system may not apply to the mucosal 
immune cells, a brief evaluation of vitamin D’s 
impact on systemic immunity is warranted. The 
vitamin D receptor is expressed in immune cells 
(e.g. T and B cells, and antigen presenting cells) 
and when T cells and monocytes/macrophages 
are activated they can synthesize 1,25(OH)2D3 
and use it as an autocrine signal [108–110]. 
Activation of vitamin D signaling can impact 
both the innate and adaptive immune responses. 
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In the innate immune system 1,25(OH)2D3 stim-
ulates differentiation of monocytes to macro-
phages [111] and regulates genes crucial for 
autophagy and anti-microbial actions [112–
115]. In addition, it reprograms dendritic cells 
(DC) to become tolerogenic in an inflammatory 
setting [116] by altering DC differentiation as 
well as the function of tolerogenic DC [117]. In 
adaptive immunity, vitamin D may create a 
more tolerogenic T helper cell profile. However, 
neither the number nor the type of T cells are 
grossly abnormal in mice lacking VDR [118]. 
Similarly, the function of mature T-cells is not 
strongly influenced by VDR deletion [119, 120]. 
This suggests that VDR does not have a primary 
role for normal T-cell development but that 
1,25(OH)2D3 may be a modulator of T-cell 
mediated immune responses. Consistent with 
this idea, in vitro 1,25(OH)2D suppresses NFkB 
signaling necessary for T1 helper cell activation 
[121] and blocks development of Th17 and Th9 
cells implicated in the pathogenesis of different 
types of autoimmunity and inflammatory dis-
eases [122].

The bulk of research on vitamin D and immu-
nity relevant to the intestine has been on vitamin 
D’s role in reducing the severity or duration of 
colitis and inflammatory bowel disease. This has 
been reviewed recently elsewhere (see [123]). 
However, several research groups have examined 
the role of vitamin D signaling in the biology of 
type 3 innate lymphoid cells (ILC3), a gut resi-
dent immune cell population that participates in 
innate defense of the intestinal mucosa by pro-
ducing IL-17 and IL-22 to regulate the produc-
tion of antimicrobial agents like beta defensin. 
An early study by Chen et al. [124] showed that 
global VDR deletion increased ILC3 cell number 
in small intestine, increased production of anti-
microbial peptides, and caused resistance to 
C.  Rodentium infection. However, several later 
studies have reported opposite findings. Konya 
et al. [125] found that the pro-inflammatory cyto-
kines IL-23 and IL-6 increased ILC3 VDR 
expression and that 1,25(OH)2D treatment sup-
pressed IL-22 and IL-17F production by ILC3 
cells. He et  al. [126] then found that global or 

ILC3-specific VDR deletion or vitamin D defi-
ciency reduced colonic ILC3 cell number and 
proliferation while increasing susceptibility to 
C.  Rodentium infection. These findings were 
confirmed by Lin et al [127] None of these stud-
ies characterized the subtype of ILC3. Thus, 
while it is clear that vitamin D signaling regulates 
these gut-resident innate immune cells, it is also 
clear that additional research is necessary to clar-
ify the molecular mechanisms of action in these 
cells and the physiologic relevance of this 
regulation.

9.5	� Conclusions

In this chapter I reviewed the cellular and molec-
ular actions of vitamin D in the intestine. It has 
been clear from the beginning of vitamin D 
research, that the intestine is an important target 
tissue. The earliest studies on vitamin D and 
intestine revealed its critical role as a regulator of 
intestinal calcium absorption, and thus indirectly 
in the development and maintenance of bone 
mass. However, genomics studies clearly show 
that vitamin D has broader intestinal actions that 
the regulation of calcium absorption. Vitamin D 
signaling has distinct actions on intestinal stem 
cells, one undifferentiated crypt cells, on differ-
entiated villus cells, and on gut associated intesti-
nal cells. Thus, in addition to its important role in 
calcium metabolism, vitamin D also regulates the 
cell biology of the intestine in ways that protect 
the stem cell from cancer, limit gut leakiness, and 
both suppresses epithelial injury, promotes epi-
thelial recovery from injury, and reduces intesti-
nal inflammation (Summarized in Fig. 9.1). Yet 
while research suggests a variety of important 
biological roles for vitamin D in the intestine, the 
challenge facing biomedical researchers is how 
to translate these findings in ways that optimize 
human intestinal health.
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Fig. 9.1  A summary of Vitamin D action across the intestinal tract
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