
123

7Physiological Convergence 
and Antagonism Between GR 
and PPARγ in Inflammation 
and Metabolism
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Abstract

Nuclear receptors (NRs) are transcription fac-
tors that modulate gene expression in a ligand-
dependent manner. The ubiquitously expressed 
glucocorticoid receptor (GR) and peroxisome 
proliferator-activated receptor gamma 
(PPARγ) represent steroid (type I) and non-
steroid (type II) classes of NRs, respectively. 
The diverse transcriptional and physiological 
outcomes of their activation are highly tissue-
specific. For example, in subsets of immune 
cells, such as macrophages, the signaling of 
GR and PPARγ converges to elicit an anti-
inflammatory phenotype; in contrast, in the 
adipose tissue, their signaling can lead to 
reciprocal metabolic outcomes. This review 
explores the cooperative and divergent out-

comes of GR and PPARγ functions in differ-
ent cell types and tissues, including immune 
cells, adipose tissue and the liver. 
Understanding the coordinated control of 
these NR pathways should advance studies in 
the field and potentially pave the way for 
developing new therapeutic approaches to 
exploit the GR:PPARγ crosstalk.
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7.1	� Introduction

Nuclear receptors (NRs), such as the glucocorti-
coid receptor (GR) and peroxisome proliferator 
activated receptor-γ (PPARγ) are a versatile 
superfamily of structurally conserved transcrip-
tion factors (TFs) that regulate numerous homeo-
static physiological processes, largely in a 
ligand-modulated manner, thereby adapting gene 
expression programs to environmental changes.

GR, or NR3C1, named for its role in regulat-
ing glucose metabolism, is an archetypal steroid 
hormone receptor (type I) involved in numerous 
signaling circuits that maintain metabolic homeo-
stasis. GR is activated by its endogenous gluco-
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corticoid (GC) ligands, whose levels are 
controlled by the hypothalamic-pituitary-adrenal 
(HPA) axis. Upon ligand binding, the cytoplas-
mic GR multiprotein complex, also containing 
immunophilins and chaperones, undergoes con-
formational changes and translocates into the 
nucleus (Reviewed in [1]), where GR binds to 
specific palindromic DNA sequences called 
GC-response elements (GRE) or tethers to other 
DNA-bound TFs, recruits cofactors (coactivators 
and corepressors) and regulates transcription of 
associated genes [2, 3].

Peroxisome proliferator activated receptor-γ 
(PPARγ, also known as NR1C3) is a non-steroid 
(type II) NR that senses oxidized fatty acids (FA). 
It is mainly implicated in homeostatic mainte-
nance of lipid metabolism and insulin sensitivity 
[4, 5]. Similar to the related PPARs and other 
type II NRs, PPARγ exerts its biological func-
tions by forming heterodimeric complexes with 
another member of the NR family, retinoic acid 
receptor α (RXRα). In the absence of a ligand, 
the PPARγ/RXRα complex binds to specific 
DNA sequences known as PPAR response ele-
ments (PPRE) or direct repeat (DR)1 sequences 
together with a corepressor complex (reviewed in 
[6]). Upon ligand binding, the corepressor com-
plex is released, and a coactivator complex is 
recruited [7].

NRs have been linked to the regulation and 
maintenance of metabolic homeostasis for 
decades. Both GR and PPARγ were initially 
described as regulators of metabolic functions in 
the liver and adipose tissue, respectively. Since 
then, a myriad of non-metabolic roles have been 
described for each receptor, with one of the most 
renowned functions being the regulation of 
immune responses and inflammation. 
Interestingly, despite representing two different 
families of NRs, GR and PPARγ exhibit a strik-
ing functional overlap in the immune system 
while having disparate roles in healthy liver and 
divergent ones in lipid metabolism. These over-
lapping yet distinct outcomes of GR and PPARγ 
activation stem from differences at multiple lev-
els of regulation, ranging from the ligand-binding 
events to the engagement of other TFs, co-
regulators and components of basal transcriptional 

machinery and chromatin. In this Chapter, we 
will discuss the tissue-specific convergence of 
GR and PPARγ signaling in the immune system 
and briefly contrast it with some of their antago-
nistic roles in metabolic tissues. It should be 
noted that many of these functions have been 
deduced using NR knock-out (KO) mouse strains 
and in vitro studies with endogenous or synthetic 
ligands, often at super-physiological concentra-
tions, which remains a limitation to our under-
standing of NR biology.

7.2	� GR and PPARγ in Monocytes 
and Macrophages

During inflammation, both GR and PPARγ play 
crucial roles in regulating macrophage responses. 
Indeed, GCs have long been known to exert 
potent immunosuppressive effects on monocytes 
and macrophages. Mice lacking GR in macro-
phages produce more inflammatory cytokines, 
including IL-1β, IL-6, TNF, and IL-12, and dis-
play higher mortality rates during bacterial lipo-
polysaccharide (LPS)-induced sepsis relative to 
their wild-type (WT) counterparts [8–11]. 
Although the role of PPARγ in this context is less 
understood, it negatively regulates macrophage 
activation by down-regulating synthesis of TNF, 
IL-6 and other pro-inflammatory cytokines [12] 
and decreasing macrophage migration in vitro 
[13]. Myeloid-specific deletion of PPARγ exacer-
bates inflammation in mouse models of inflam-
matory bowel disease (IBD) [14]. Consistently, 
treating mice with pioglitazone, a synthetic 
PPARγ agonist, reduced systemic inflammatory 
response during cecal ligation and puncture-
induced sepsis [15]. Thus, both receptors down-
regulate pro-inflammatory mediators at the nexus 
of pro-inflammatory responses and effectively 
curb inflammation in vivo.

GR acts on macrophages to dampen inflam-
mation in a variety of ways. One broadly estab-
lished mechanism of action is direct tethering of 
liganded GR to effector TFs downstream of Toll-
like receptor (TLR) signaling, including NF-κB, 
AP-1 and interferon regulatory factor 3 (IRF3), 
and repression of their activity (Fig.  7.1a; 
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Fig. 7.1  GR and PPARγ mediate both short-term and 
long-term anti-inflammatory responses in macrophages. 
(a) Upon short-term treatment with GCs or PPARγ ligands, 
and in the presence of inflammatory toll-like receptor (TLR) 
ligands, GR and PPARγ are recruited to their genomic bind-
ing sites and inhibit pro-inflammatory gene transcription 
(often by binding to the p50/p65 NF-kB heterodimers) and 

up-regulate suppressors of inflammation. (b) Chronic stimu-
lation with GCs or PPARγ ligands up-regulates GR and 
STAT6 signaling, respectively, and STAT6 in turn increases 
KLF4 and PPARγ expression. GR and PPARγ promote 
expression of M2 genes and help establish a stable macro-
phage sub-type that promotes angiogenesis, tissue repair 
and increases sensitivity to insulin

reviewed in [16]). Conversely, many genes 
encoding inhibitors of TLR signaling are acti-
vated by GR, such as IL-1 receptor-associated 
kinase 3 (IRAK3), which negatively regulate 
mitogen-activated protein kinase 1 (MAPK1) and 
IL-1 receptor signaling [17]. GILZ is another 
well-known GR-inducible target that can bind 
c-Jun and c-Fos components of the AP-1 com-
plex [18] as well as NF-κB [19] and antagonize 
their actions. GR-activated anti-inflammatory 
genes also encode proteins that can function at 
steps further removed from transcriptional modu-
lation. For instance, GR-upregulated ZFP36 
facilitates mRNA degradation of several pro-
inflammatory genes, most notably TNF [20]. 

Suppressor of cytokine signaling 1 (SOCS1)  – 
encoded by another GC-inducible gene  – is an 
inhibitor of Janus kinase (JAK)–STAT cascade 
downstream of cytokines binding to their cell 
surface receptors [21]. GR can also act to sup-
press inflammation by altering the epigenetic 
state of chromatin at target promoters 
through  mitogen- and stress-activated protein 
(MSK1)  kinase and GR-interacting protein 
(GRIP)1 (nuclear receptor coactivator 2, Ncoa2) 
recruitment, which affects components of basal 
transcriptional machinery and the rate-limiting 
steps in RNA polymerase II transcription cycle 
such as promoter-proximal pausing [22–24]. The 
opposite arm of regulation includes chromatin 
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modulators such as BRD9, which attenuates 
GR-mediated repression of inflammatory genes 
[25].

Similar to GR, PPARγ represses transcription 
of pro-inflammatory genes by directly binding 
NF-kB and AP-1 and interfering with their activi-
ties (Fig.  7.1a; [26]). PPARγ directly binds the 
p65 subunit of NF-kB under basal conditions in 
human colonic HT29 cells and mouse embryonic 
fibroblasts (MEFs), and the binding in MEFs 
increases after stimulation with LPS and TNF 
[27]. Additionally, PPARγ-deficient macro-
phages that are unstimulated in vitro [28] or 
sorted from tissues during perinatal development 
[29] are pro-inflammatory. Contrary to these 
findings, however, mice lacking PPARγ in the 
myeloid lineage express less IL-1 than WT after 
NLRP3 activation in vivo and in primary macro-
phages [30].

In addition to acute actions of each receptor 
that lead to rapid and dramatic, yet reversible 
changes in the inflammatory transcriptome, a 
sustained exposure to pro- or anti-inflammatory 
signals, including NR ligands, results in a stable 
change of epigenomic landscape and associated 
macrophage phenotype, which alters responses 
to subsequent acute stimuli. Historically, macro-
phages were thought to have the capacity to be 
‘polarized’ to two distinct phenotypic states. 
Bacterial products such as LPS and the T helper-1 
(Th1) cytokine interferon-γ (IFNγ) bias macro-
phages toward the inflammatory state termed 
‘M1’. Conversely, a tissue repair/wound healing 
phenotype of an ‘M2’ macrophage was originally 
described as a polarization state conferred by the 
Th2 cytokine IL-4 [31]. These macrophages are 
implicated in the Th2-driven response to parasitic 
infection or allergies, as well as in homeostatic 
functions such as wound healing, angiogenesis 
and insulin-sensitizing metabolic functions 
(Fig.  7.1b). Signaling downstream of IL-4 
involves activation of the TFs STAT6 and KLF4 
that cooperatively facilitate the gradual acquisi-
tion of the M2 transcriptional state [32]. 
Depending on the stimuli used in vitro, the popu-
lations of M2-like macrophages were further 
classified as M2a (after exposure to IL-4 or 
IL-13), M2b (immune complexes in combination 

with IL-1β or LPS) and M2c (IL-10, TGFβ or, 
importantly, GCs) [33]. This binary M1/M2 view 
of polarization was later challenged by extensive 
expression profiling studies that arrived at a spec-
tral model of macrophage activation states 
whereby every signal or a combination of signals 
yields a distinct transcriptional make-up [34]. 
Nonetheless, transcriptomes resulting from stim-
ulation with LPS or IFNγ vs. those produced by 
IL-4, IL-10 or GCs did cluster at the opposite 
ends of the spectrum, supporting the idea that 
M1-like and M2-like phenotypes represent the 
two extremes of macrophage transcriptional 
states.

Thus, the anti-inflammatory effects of GC sig-
naling in macrophages range from the acute 
upregulation of anti-inflammatory and repression 
of pro-inflammatory genes to more sustained 
phenotypic changes upon prolonged (beyond 
24 h) GC exposure. The latter involves upregu-
lated phagocytosis of apoptotic cells and debris 
while the production of inflammatory mediators 
subsides, which together drive the resolution 
phase of inflammation [35, 36]. GC-polarized 
macrophages are characterized by high expres-
sion of scavenger receptors such as CD163 and 
type 2 and anti-inflammatory cytokines IL-4 and 
IL-10 [37].

Similarly, PPARγ is reportedly essential for 
transitioning to an anti-inflammatory macro-
phage [38]. Indeed, pharmacological activation 
of PPARγ increases the expression of Fizz1, Ym1 
and Arg1, typical ‘M2 genes’ in macrophage-like 
RAW264.7 cells and human peripheral blood 
mononuclear cells [39]. Conversely, mice with 
PPARγ-deficient macrophages display impaired 
wound healing in vivo [40]. Thus, PPARγ and 
GR both drive the M2-like macrophage pheno-
type with resolving properties, even though the 
direct gene targets are not fully shared.

Genomic studies revealed that sustained IL-4 
signaling leads to the binding of transcription 
factors: STAT6, and subsequently RXR and 
PU.1, and to the recruitment of cofactors P300 
and RAD21 to a subset of new RXR sites; 60% of 
them need PPARγ binding to open, and the 
majority of new RXR sites are PPARγ-dependent 
irrespective of STAT6 binding (Fig.  7.1b) [41]. 
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IL-4 itself induces the expression of the PPARγ-
encoding gene Pparg, highlighting the impor-
tance of PPARγ for the M2-like phenotype [42]. 
Notably, these changes are driven by IL-4, not a 
specific PPARγ ligand, which contrasts with the 
strict dependence of GR on GCs to drive the 
M2-like phenotype.

Cofactors provide an additional level of con-
vergence between NR-driven and IL4-induced 
macrophage polarization. GRIP1/NCoA2 is a 
member of the p160 family of NR coregulators 
shared by GR and PPARγ [43]. GRIP1 has fur-
ther been shown to serve as a coactivator for 
KLF4, thereby directly contributing to the 
IL-4:STAT6:KLF4 pathway [44]. Indeed, 
macrophage-specific GRIP1 deletion in mice 
shifted their macrophage balance toward the 
more inflammatory M1-like phenotype in vitro 
and in an obesity-induced model of metabolic 
inflammation in vivo [44]. The role of GRIP1 in 
facilitating both GR-mediated activation and 
repression is well established [45, 46]. It is tempt-
ing to speculate that GRIP1 may serve as a plat-
form for integrating pathways involved in 
M2-like macrophage polarization in response to 
distinct physiological stimuli.

In the context of the human in vitro model of 
atherosclerosis, PPARγ reduces inflammatory 
cytokine secretion in human umbilical vein endo-
thelial cells exposed to oxidized-low-density 
lipoproteins (oxLDLs) [47]. In line with these 
findings, peritoneal macrophages from condi-
tional PPARγ KO mice had more foam cell for-
mation after treatment with oxLDLs in vitro [48] 
suggesting that PPARγ reduces inflammation and 
pathogenesis of atherosclerosis. The function of 
PPARγ in atherosclerosis is consistent with in 
vitro effect of PPARγ in macrophages, as well as 
with GR actions in macrophages in vivo in 
inflammatory settings.

The predominantly immunosuppressive 
effects of GCs on the immune system contrast 
observations that, at low doses, GCs can enhance 
pro-inflammatory signaling [49], in part by 
upregulating TLR2, TLR4, components of the 
inflammasome and certain cytokines [50]. On the 
basis of these studies, it was proposed that low-

level GR signaling may sensitize cells to harmful 
stimuli by promoting the expression of pattern-
recognition and cytokine receptors, thus enabling 
a prompt response to pathogens [9]. These pro-
inflammatory effects of GCs mirror the up-
regulation of IL-1 expression by PPARγ after 
inflammasome activation – the pro-inflammatory 
functions of these TFs are also convergent.

7.3	� GR and PPARγ in Non-
Macrophage Immune Cell 
Subsets

7.3.1	� T Cells

It is well established that GCs inhibit CD4+ T cell 
activity, however, it remains unclear if GCs pre-
dominantly affect CD4+ helper T cells, 
CD4+Foxp3+ regulatory (Treg) cells or both. GCs 
inhibit T cell activation directly by inhibiting the 
TFs downstream of TCR signaling: an extensive 
body of literature has documented a direct repres-
sion of NF-kB, AP-1 and nuclear factor of acti-
vated T cells (NF-AT) activity by GR via tethering 
in numerous cell types [51]. GCs were also pro-
posed to inhibit T cell activation through non-
genomic effects, by disrupting the TCR-associated 
GR protein complexes which include the 
lymphocyte-specific protein tyrosine kinase 
(LCK) and FYN kinase, ultimately leading to 
impaired TCR signaling [52]. GCs also affect T 
cell activation in an indirect manner, by interfer-
ing with the function of dendritic cells (DCs; dis-
cussed in detail later in the Chapter) in a 
GILZ-dependent manner and promoting their 
tolerogenic phenotype, marked by decreased lev-
els of co-stimulatory CD86, CD83 and CD80, 
decreased secretion of chemokines CCL3, CCL5 
and CXCL8  in activated DCs and a subsequent 
reduction of CD4+ T cell proliferation [53]. 
Indeed, IFNγ production by CD4+ T lymphocytes 
was no longer inhibited when DCs were trans-
fected with GILZ siRNA [53]. Thus, GCs reduce 
the responsiveness of T cells to antigens and reg-
ulate the balance between activating and tolero-
genic DCs, thereby suppressing effector T (Teff) 
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cell activity through both direct cell-intrinsic and 
indirect mechanisms.

Unexpectedly, a recent study suggested that 
the CD4+ Teff subset might not be the primary tar-
get of therapeutic actions of GCs in T cells. 
Absence of GR specifically in Foxp3+ Treg cells 
abrogated therapeutic effects of the GC dexa-
methasone (Dex) in murine experimental autoim-
mune encephalomyelitis (EAE) and allergic 
airway inflammation (AAI) models, suggesting 
that Tregs were necessary for GCs to exert their 
anti-inflammatory effects [54]. Mechanistically, 
GR was shown to induce microRNA miR-342-3p 
expression, leading to inhibition of Rictor, an 
adaptor protein of the glycolysis-favoring 
mTORC2 complex; this led to metabolic re-
programming of Tregs and induction of oxidative 
phosphorylation, which ultimately reinforces 
their suppressive functions [54]. In support of 
this study, GR-deficient Treg cells were impaired 
in their ability to suppress T cell-dependent coli-
tis in mice and acquired features typical of Th1 
cells [55]. In the house dust mite-induced AAI 
model, treatment with synthetic GCs reduced Treg 
recruitment to the lungs [56]. Mice with a T cell-
specific GILZ KO had decreased absolute num-
bers of peripheral Treg cells, an effect reversed by 
GILZ overexpression [57]. Effects of GR on Treg 
cells are thus multifaceted, stimulating their 
activity, metabolism, proliferation and recruit-
ment to inflammatory sites.

Among the CD4+ Teff cell subsets, GCs inhibit 
Th1 as well as Th17, but up-regulate Th2 cell dif-
ferentiation [58]. Similarly, in mice overexpress-
ing GILZ in the T cell lineage, CD4+ T cells 
stimulated with CD3/CD28 antibodies secreted 
more Th2 and less Th1 cytokines compared to 
WT, an effect mirrored by up-regulation of Th2-
specific TFs GATA-3 and STAT6 and down-
regulation of the Th1-specific T-bet [59]. Finally, 
GILZ in Th17 cells localized to genomic sites in 
the proximity of Irf4, Batf, Stat3, and RORγt 
binding sites – TFs that drive Th17 activation and 
differentiation  – suggesting that GC-induced 
GILZ may act as a transcriptional repressor of 
Th17-activating TFs [60] and that by upregulat-
ing GILZ, GCs shift the balance toward Th2-
mediated humoral immunity (Fig. 7.2).

Notably, although the predominant view is 
that GCs primarily affect the CD4+ T cell subset, 
in some disease contexts, GC-mediated suppres-
sion of CD8+ T cells is essential. In a mouse 
model of acute graft-versus-host disease 
(aGVHD), for example, lethally irradiated mice 
receiving a bone marrow transplant with 
GR-deficient T cells displayed much greater 
CD8+ T cell infiltration into the jejunum and their 
CD8+ T cells had augmented cytolytic activity 
compared to mice with WT T-cell transfer [61]. 
Thus, GR activity in CD8+ T cells in the context 
of aGVHD attenuates their inflammatory pheno-
type, mirroring the effects in CD4+ Teff cells.

During development, pharmacological GCs 
induce caspase-dependent apoptosis of thymo-
cytes [62–65] with GR deletion rendering 
GR-KO thymocytes GC-resistant. The mecha-
nism of GC-induced apoptosis was shown to 
involve the activation of caspase-9 [66–68]. The 
physiological role of GC-induced thymocyte 
apoptosis continues to be debated. Although 
CD4+CD8+ double-positive thymocytes are par-
ticularly sensitive to GC-induced apoptosis, GCs 
at physiological levels do not appear to regulate 

CD4+ T cell

Th1 Th2Th17

GCs PPARγ ligands

T-bet

GATA-3
STAT6

IL-2

Fig. 7.2  GCs and PPARγ ligands promote Th2 and 
inhibit Th1 and Th17 immunity. Stimulation of CD4+ T 
cells with GCs increases transcription of TFs GATA-3 and 
STAT6, and down-regulates T-bet expression, which 
biases CD4+ T cells toward Th2 immunity and away from 
Th1 and Th17 responses. Similarly, treatment with PPARγ 
ligands decreases transcription of IL-2, which favors Th2 
responses
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death-by-neglect of these cells [69]. Rather, GCs 
are needed for optimal TCR repertoire and T cell 
responses to foreign antigens, thus contributing 
to negative selection [69]. In other studies, how-
ever, absence of GR had no effect on adult thy-
mocyte development, as mice on a mixed 
background (129sv/C57BL/6) with a whole-
body GR deletion had normal numbers of mature 
CD4+CD8− and CD4−CD8+ cells, suggesting 
that positive selection was occurring normally 
[70]. It is yet to be determined if GC-induced 
thymocyte apoptosis indeed broadly affects 
T-cell development, or if it is limited to specific 
mouse models.

In contrast to GR, the overall contribution of 
PPARγ to the survival of T cells awaits further 
investigation. Both synthetic and endogenous 
PPARγ agonists stimulate apoptosis of murine T 
cells when administered in high doses [71]. 
Similarly, T cells stimulated with the prolifera-
tive agent, lectin phytohaemagglutinin P, undergo 
apoptosis after treatment with synthetic PPARγ 
agonists [72]. However, PPARγ-deficient, but not 
WT CD4+ T cells, showed increased apoptosis 
after transfer into RAG1 KO mice, suggesting 
that PPARγ promotes CD4+ T cell survival under 
conditions of low lymphocyte numbers [73]. 
Thus, the role of PPARγ in T cell survival remains 
controversial with net effect relatively poorly 
defined [74].

With respect to the balance of effector T-cell 
subsets, the PPARγ function appears similar to 
that of GR. At pharmacological concentrations, 
PPARγ ligands inhibit T cell, especially Th1, 
proliferation and decrease their viability [75], in 
part, by decreasing the transcription [76, 77] or 
protein expression [78] of IL-2. In addition, 
PPARγ ligands downregulate Th1 pro-
inflammatory cytokines and augment the produc-
tion of Th2 cytokines thereby shifting immune 
responses toward type-2 (Fig.  7.2). In vivo, 
PPARγ was shown to contribute to type-2 
responses in T cells and DCs in an AAI model 
[79]. Specifically, in lung-resident CD11b+ DCs, 
IL-4 and IL-33 signaling upregulated PPARγ lev-
els, correlating with enhanced DC migration to 
draining lymph nodes and Th2 priming capacity. 
In vitro, production of IL-12 by DCs after stimu-

lation with CD40 ligand, which normally induces 
Th1 responses, was inhibited by both endogenous 
and synthetic PPARγ ligands [80]. Thus, PPARγ 
mediates DC-T cell interactions in type-2 immu-
nity in the context of in vivo Th2 responses, as 
well as promoting DC phenotypes associated 
with Th2-immunity in vitro.

Interestingly, PPARγ has been recently 
reported to facilitate group 2 innate lymphoid cell 
(ILC2)-induced AAI [81]. Loss of PPARγ in 
hematopoietic cells in mice diminished the func-
tion of ILC2  in the lungs, reducing the airway 
inflammation upon challenge with IL-33 or 
Papain. The transcriptional target of PPARγ in 
ILC2s was shown to be the IL-33 receptor ST2, 
such that overexpressing ST2 rescued the func-
tional defects of PPARγ deficiency. Given that 
ILC2s and Th2 cells have been shown to collabo-
rate in multiple AAI models [82–84], it appears 
that PPARγ can enhance both innate and adaptive 
arms of Th2 immunity.

In non-allergic models of inflammation, 
PPARγ has been generally shown to exert protec-
tive effects. Indeed, in a dextran sodium sulfate 
(DSS) colitis model, mice lacking PPARγ spe-
cifically in T cells exhibited reduced recruitment 
of Treg cells to mesenteric lymph nodes, decrease 
in IL-10-producing CD4+ T cells and increase in 
CD8+ T cells, which together augmented colitis 
severity [85]. Similarly, in the EAE model of 
neuroinflammation, T-cell-specific PPARγ KO 
mice had higher clinical scores and enhanced 
infiltration of Th17 cells into the CNS [86]. The 
latter was consistent with in vitro data whereby 
naïve PPARγ KO CD4+ T cells showed enhanced 
Th17 differentiation, suggesting that PPARγ con-
strains the Th17 cell lineage commitment [86]. 
Thus, endogenous PPARγ serves as an important 
brake on the inflammatory response in vivo in 
different organ systems.

In addition to the transcriptional effects on 
immune cell-specific genes, as discussed below, 
PPARγ is a key regulator of lipid metabolism 
across cell types and, therefore, impacts T cell 
biology by altering their bioenergetics and meta-
bolic state. For example, the mechanistic target 
of rapamycin complex 1 (mTORC1)-PPARγ 
pathway is crucial for the FA uptake program in 
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activated CD4+ T cells in mice [87]. PPARγ 
directly binds to promoters of genes associated 
with FA uptake in CD4+ T cells, leading to their 
metabolic reprogramming and rapid antigen-
induced proliferation in vivo. Unlike its effect on 
genes specific to immune cell functions, the 
effect of PPARγ on metabolism of CD4+ T cells 
does not favor their differentiation toward a spe-
cific subset, but merely activates them.

7.3.2	� Dendritic Cells (DCs)

DCs are often viewed as a bridge between the 
innate and adaptive immune system. Their role is 
to present pathogen-derived antigens on the cell 
surface, which get recognized by and activate T 
cells. Thus, aside from the direct effects of GR or 
PPARγ on T cells, the two NRs can affect DC 
activity, thereby potentially producing a less spe-
cific effect on T cell immunity.

Mice with a DC-specific KO of GR 
(GRCD11c-cre) were shown to be highly suscep-
tible to septic shock induced by LPS, as evi-
denced by augmented production of inflammatory 

cytokines, a greater susceptibility to hypothermia 
and higher mortality [11]. Endogenous GCs 
inhibit LPS-induced inflammation and enhance 
tolerance by reducing IL-12 production by CD8+ 
DCs, and consequently, decreasing IFNγ secre-
tion by natural killer cells [11]. The molecular 
mechanisms underlying GC actions specifically 
in CD8+ DCs have not been elucidated. However, 
GCs up-regulate the transcription of GILZ [58] 
and inhibit NF-kB and AP-1 activities and the 
MAPK pathway, thereby reducing production of 
IL-6, IL-12, and TNF [88, 89] in DCs similar to 
that seen in other cell types (Fig.  7.3). As dis-
cussed previously [53], GCs down-regulate co-
stimulatory molecules on DCs and decrease their 
secretion of chemokines in a GILZ-dependent 
manner, in this way reducing the inflammatory 
phenotype of DCs (Fig. 7.3).

The prominent functions of PPARγ in DCs 
have been studied extensively. Over 1000 tran-
scripts, including those of key lipid regulators 
FABP4 and ABCG2, were modulated by the 
PPARγ agonist rosiglitazone during GM-CSF- 
and IL-4-induced DC differentiation from mono-
cytes in vitro [90], and PPARγ itself was 

Co-stimulatory molecules

Pro-in ammatory cytokines/chemokines

Cytoplasmic lipidsAP-1
NF-kB
MAPK

NF-kB
MAPK

GCs PPARγ ligands

GILZ

Fig. 7.3  Effect of GCs and PPARγ on DC activity. 
Activation of GR and PPARγ with their respective ligands 
leads to DC inactivation, manifested as decreased produc-
tion of co-stimulatory molecules and pro-inflammatory 
cytokines. Both GR and PPARγ inactivate DCs by down-

regulating MAPK and NF-kB pathways, with GR addi-
tionally decreasing AP-1 activity. The effects of GR are 
mediated by GILZ.  Unlike GR, PPARγ also affects the 
lipid metabolism of DCs, decreasing their cytoplasmic 
lipid content
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markedly up-regulated at both the mRNA and 
protein level [91]. Interestingly, FABP4 expres-
sion was elevated when human monocytes were 
differentiated to DCs in the presence of human 
serum, rather than specific ligand, suggesting 
that the endogenous PPARγ ligands were suffi-
cient to drive PPARy-dependent gene transcrip-
tion. In human monocyte-derived DCs, PPARγ 
activation inhibited NF-kB and MAPK path-
ways, down-regulating co-stimulatory molecules 
and dampening TLR-induced secretion of pro-
inflammatory cytokines ([92], Fig.  7.3). Genes 
linked to lipid metabolism were also up-regulated 
such that PPARγ-activated DCs had increased 
capacity to metabolize and re-distribute lipids, 
resulting in decreased cytoplasmic lipid content 
(Fig. 7.3). PPARγ hence connects lipid process-
ing in DCs with their immune function. In a 
mouse model of asthma, knocking out PPARγ in 
DCs attenuated recruitment of eosinophils to the 
airways, IL-4 secretion by CD4+ cells and histo-
pathological changes, demonstrating that PPARγ 
in DCs orchestrates Th2 immunity in the lungs 
[79]. Given the previously described role of 
PPARγ agonists in reducing inflammation in 
asthma, this study demonstrated that endogenous 
PPARγ in DCs may have the opposite role [93]. 
The PPARγ-dependent skewing of DCs toward 
Th2 immunity is concordant with the preference 
of PPARγ for type-2 responses in both innate 
and adaptive arms.

The examples above illustrate that both GR 
and PPARγ exert primarily anti-inflammatory 
actions in macrophages, T cells and DCs and 
bias the immune system toward type 2 responses. 
Likewise, both NRs can induce thymocyte 
apoptosis, although PPARγ can favor CD4+ cell 
survival. Some of the effects of these two recep-
tors on immune cells are conferred via meta-
bolic reprogramming. A well-known GR 
transcriptional target GILZ is an important 
effector of downstream responses in DCs, Tregs 
and Th2 subsets. The specific targets of PPARγ 
in immune cells appear more diverse and cell 
type-specific.

7.4	� GR and PPARγ in Adipocytes

The most well-studied cell type-specific role of 
PPARγ is in adipocytes, where it serves as the 
master regulator that is necessary and sufficient 
to induce adipogenic gene expression and lipid 
accumulation [94]. Adipocyte-specific KO of 
PPARγ using the aP2-Cre, a target of PPARγ, and 
resulting in unhindered adipocyte differentiation, 
allows for assessing the role of PPARγ in the 
mature cells [95]. PPARγ deletion led to enlarge-
ment of white and brown adipocytes and reduc-
tion in their numbers. At the systemic level, 
adipocyte-specific loss of PPARγ resulted in ele-
vated free FA and triglyceride (TG) plasma lev-
els, fatty liver with increased gluconeogenesis, as 
well as reduced levels of leptin and adipocyte 
complement-related protein of 30 kDa (ACRP30), 
known to be secreted exclusively by differenti-
ated adipocytes. Ablation of PPARγ in fat with a 
more specific Adipoq-Cre, which uses a regula-
tory region of adiponectin, resulted in severe adi-
pose tissue loss, insulin resistance and other 
metabolic abnormalities [96].

Multiple TFs and coregulators – coactivators 
and corepressors  – modulate the function of 
PPARγ in adipocytes [97]. PPARγ and the TF C/
EBPα bind to the majority of the genes upregu-
lated during adipogenesis, and both TFs, as well 
as C/EBPβ, were required for the expression of 
adipogenesis-inducing genes, suggesting that 
cooperativity between PPARγ and C/EBP 
(Fig.  7.4a) is needed for adipogenesis [98]. 
Coactivators affect PPARγ function in adipocytes 
by directly binding PPARγ and facilitating the 
recruitment of additional components of tran-
scriptional machinery or chromatin modifiers, 
such as thyroid hormone receptor interacting pro-
tein 3 (TRIP3) and members of the NCoA/p160 
family, e.g., NCoA2/TIF2/GRIP1, NCoA1/
SRC-1 and the PPARγ coactivator 1-alpha 
(PGC-1a). Knock-down of TRIP3 leads to dimin-
ished differentiation of adipocytes, so TRIP3 acts 
as a positive regulator of PPARγ-mediated adipo-
cyte differentiation [99]. NCoA2 promotes 
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Fig. 7.4  GCs and 
PPARγ ligands affect 
adipose tissue in 
distinct ways. (a) In 
adipocytes, GR 
increases the expression 
of PPARγ and C/EBPα; 
PPARγ is the major 
driver of adipogenesis in 
cooperation with C/
EBPα. (b) At the 
adipose tissue level, GR 
and PPARγ have 
disparate functions, with 
GR up-regulating 
lipolysis and the levels 
of free FA in addition to 
adipogenesis upon acute 
exposure. PPARγ affects 
the adipose tissue on 
multiple levels, by 
promoting adipogenesis, 
angiogenesis and lipid 
storage

PPARγ activity and fat accumulation in white 
adipose tissue (WAT), whereas NCoA1 enhances 
energy expenditure and protects from obesity 
[100]. Mediator complex subunit 14 (MED14) is 
another direct interactor of PPARγ, which tethers 
the Mediator complex to PPARγ to activate 
PPARγ-specific lipogenic genes [101]. In mature 
3 T3-L1 adipocytes, the histone acetyltransferase 
coactivator Tip60 is recruited to PPARγ target 
genes, and reduction of Tip60 protein levels 
impedes 3T3-L1 preadipocyte differentiation 
[102]. These studies indicate that coactivators 
affect multiple and diverse aspects of the PPARγ 
function in adipocytes.

Transcription activation by PPARγ is nega-
tively regulated by corepressors such as NCoR/
SMRT; these are recruited by PPARγ in the 

absence of ligand, and dissociate upon ligand 
binding when they are replaced by coactivators 
due to a change in PPARγ conformation [103, 
104]. In 3T3-L1 cells, knocking down NCoR and 
SMRT leads to increased expression of adipocyte-
specific genes [103]. NCoR deletion in adipo-
cytes was shown to enhance adipogenesis, reduce 
inflammation and improve insulin sensitivity at 
the organismal level [105]. Mechanistically, 
NCoR and SMRT recruit HDAC3 to induce his-
tone deacetylation of PPARγ-bound regulatory 
regions [106]. However, in adipocytes, NCoR 
facilitates the recruitment of cyclin dependent 
kinase (CDK)5, which binds to and phosphory-
lates PPARγ at S-273 (inhibitory site that reduces 
recruitment of PGC-1 and GRIP1/NCoA2 and 
increases interactions with SMRT and NCoR), 
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leading to impaired regulation of metabolic 
genes, such as insulin-sensitizing adiponectin 
[107]. Conversely, ring finger protein 20 
(RNF20), which was shown to target NCoR for 
proteasomal degradation, acts as a positive regu-
lator of PPARγ activity during adipogenesis 
[108]. A transcriptional cofactor with PDZ-
binding motif (TAZ) was shown to act as a 
PPARγ corepressor [109]. TAZ deletion in adipo-
cytes led to constitutive activity of PPARγ, and 
improved glucose tolerance and sensitivity to 
insulin in obese mice [110]. The functions of 
PPARγ in adipocytes are, thus, modulated by 
direct repression, which itself may be modulated 
by secondary cofactors.

In addition to direct gene regulation in adipo-
cytes, PPARγ affects adipose tissue physiology 
by acting in its resident immune cells. For exam-
ple, PPARγ modulates Treg accumulation, pheno-
type and function in the visceral adipose tissue 
(VAT) [111]. PPARγ cooperates with Foxp3 to 
upregulate a large number of Treg-specific genes 
in the VAT, as shown by analyzing gene expres-
sion of naïve CD4+ T cells retrovirally transduced 
with Pparg and Foxp3. Additionally, VAT Treg 
cells were found to uptake lipids upon stimula-
tion with PPARγ ligand pioglitazone [111]. 
PPARγ is therefore necessary for the mainte-
nance and accumulation of Treg cells in the VAT, 
and mediates the insulin-sensitizing activity of 
pioglitazone. PPARγ activation also promotes 
anti-inflammatory VAT phenotype by inhibiting 
resident conventional DC maturation and Teff cell 
recruitment in both lean and obese mice [112]. In 
addition, PPARγ directs the establishment and 
maintenance of the adipose vascular niche. In 
vivo, PPARγ overexpression in the adipose lin-
eage upregulates PDGFRβ and VEGF in adipose 
progenitor cells, and both of these genes contrib-
ute to endothelial cell proliferation and adipose 
niche expansion [113]. Another important func-
tion of PPARγ is promoting the conversion of 
subcutaneous WAT to brown adipose tissue 
(BAT) [114]. Nuclear factor I-A (NFIA) assists 
PPARγ in WAT browning by facilitating the bind-
ing of PPARγ to BAT-specific enhancers, as 
shown in mouse C2C12 myoblasts treated with 
adipocyte differentiation cocktail that included 

rosiglitazone [115]. Thus, PPARγ acts as a broad 
regulator of adipose tissue physiology and 
metabolism.

GR performs several key functions in adipose 
tissue, many of which are opposite to those of 
PPARγ, but there is an overlap with respect to 
adipogenesis. GCs were shown to promote adi-
pogenesis in vitro. Specifically, GR facilitated the 
up-regulation of C/EBPα and PPARγ mRNA and 
protein levels in 3T3-L1 cells upon stimulation 
with Dex and other compounds that promote adi-
pogenesis (Fig.  7.4a, [116]). Consistently, GR 
KO MEFs failed to up-regulate CEBPα and 
PPARγ after treatment with a Dex-containing dif-
ferentiation cocktail [117]. Mechanistically, in 
response to stimulation of pre-adipocytes with a 
Dex-containing cocktail, GR binds to transiently 
acetylated regions to establish a new gene expres-
sion program, including upregulation of PPARγ 
[118]. In vivo, however, GCs may facilitate adi-
pogenesis without being absolutely required for 
it. Indeed, mice with a GR deletion in the BAT 
(using Myf5-Cre) had normal BAT size and mor-
phology as well as normal expression of adipo-
genesis marker genes including Cebpa and, 
notably, Pparg [119]. Additionally, white and 
brown GR KO pre-adipocytes undergoing differ-
entiation in vitro had reduced levels of adipogen-
esis markers early on, but eventually reached the 
levels of the WT [119]. Furthermore, in adrenal-
ectomized (ADX) mice, largely lacking endoge-
nous GCs, injection of MEFs into subcutaneous 
tissue did result in fat pad formation, although 
reduced in size compared to those in intact mice 
[117]. In the same study, injection of both WT 
MEFs into ADX mice, and GR KO or WT MEFs 
into WT mice, led to fat pad formation with com-
parable expression of adipocyte-specific genes, 
not significantly different from that in inguinal 
WAT of WT mice. During adipogenesis, there-
fore, GR and PPARγ may cooperate, thereby 
accelerating the PPARγ-dependent processes 
(Fig. 7.4a).

A broadly lipolytic effect of GC exposure in 
the adipose tissue, opposite to that of PPARγ acti-
vation, was reported over 40 years ago (Fig. 7.4b) 
and confirmed in multiple studies thereafter 
[120]. Typically, GC-induced lipolysis in the 
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WAT is associated with an acute hormone expo-
sure due to stress response or fasting [121]. 
Prolonged or chronic exposure in rats, however, 
resulted in visceral fat accumulation, adipocyte 
hyperplasia and reduction in adipocyte size 
[122]. GR ligands can also enhance lipid storage, 
but only under specific, often, pathological con-
ditions. For instance, hypercortisolemia during 
Cushing’s syndrome is known to cause an expan-
sion of visceral fat depots due to the synergistic 
effects of GCs with insulin, whereby GCs upreg-
ulate genes involved in lipid deposition [123].

Finally, GR activity in the liver, discussed 
below, exerts secondary effects on the adipose 
tissue. Crossing adult STAT5a/b KO mice with 
Alfp-Cre GR KO generated mice with a com-
bined deletion of GR and STAT5 in hepatocytes 
[124]. These double KO mice had smaller adipo-
cytes and fat depots, displayed hypercortisolism 
and aggravated steatosis compared to WT or 
STAT5 single KO mice.

Thus, outcomes of GC action upon the adi-
pose tissue are complex, dependent on ligand 
concentration and duration of exposure, and fur-
ther modulated by the systemic effects of GCs in 
other tissues, ultimately leading to adipogenesis 
and lipid storage, or lipolysis (Fig. 7.4b).

7.5	� GR and PPARγ in the Liver

GCs were originally named for their ability to 
promote gluconeogenesis in the liver (Fig. 7.5a). 
Indeed, liver is a major target organ for GC action 
and plays a central role in glucose metabolism. In 
mice, a conditional liver-specific deletion of GR 
led to hypoglycemic lethality within days of birth 
[125]. In the clinical setting, excess GC levels 
during Cushing’s syndrome or as a result of GC 
therapy have been associated with hyperglycemia 
and central obesity [126].

Two critical rate-limiting enzymes involved in 
gluconeogenesis, glucose-6-phosphatase and 
phosphoenolpyruvate carboxykinase, are 
encoded by the G6pc and Pck1 genes, respec-
tively, both of which are known to be direct GR 
targets (Fig. 7.5a, [16, 127]). The Pck1 gene has 

been studied extensively and has a GRE site 
upstream of the TSS [128]. Interestingly, later 
studies pointed to roles of NRs other than GR in 
G6pc and Pck1 regulation. Specifically, the dom-
inant PPAR in the liver  – PPARα, rather than 
PPARγ – is recruited to both genes and contrib-
utes to their transcriptional regulation in addition 
to GR [129, 130].

Apart from gluconeogenesis, GCs have also 
been linked to the regulation of FA metabolism in 
the liver. Patients with Cushing’s syndrome often 
develop dyslipidemia that manifests as high TG 
and systemic cholesterol levels [131]. Intriguingly, 
liver-specific KO of GR in mice with hepatic ste-
atosis led to a notable reduction in hepatic TGs 
and elevated ketone levels in circulation, along 
with upregulation of genes involved in FA oxida-
tion and TG hydrolysis [132]. Genes mediating 
lipid storage and transport (e.g., FA transporter 
Cd36) were also significantly downregulated. 
Thus, liver-specific GR KO ameliorated hepatic 
steatosis by increasing hydrolysis of TG stores, 
indicating that under conditions of fatty liver, GR 
promotes TG storage (Fig. 7.5b).

Analyses of the tissue-specific distribution of 
PPARs position PPARα as the primary PPAR 
expressed in the liver; in contrast, PPARγ levels 
are relatively low. Thus, numerous studies sug-
gested that metabolic effects of PPARγ stem pri-
marily from its action in adipose tissue, with 
indirect secondary effects on the liver. However, 
a common phenotype of the adipocyte-specific 
PPARγ KO, in addition to lipodystrophy, is a sub-
stantial increase in hepatic PPARγ along with 
accumulation of TG in the liver [96]. Interestingly, 
hepatocyte-specific deletion of Pparg alleviated 
steatosis phenotypes in various animal models 
[133–135], further indicating that hepatocyte-
expressed rather than adipocyte PPARγ was 
responsible for the fat accrual. Alb-Cre-mediated 
deletion of PPARγ in the liver markedly dimin-
ished the expression of the Pparg2, but not 
Pparg1  isoform,  so PPARγ2 appears to be the 
major isoform in hepatocytes contributing to fat 
accumulation [133]. Thus, in the context of liver 
steatosis, PPARγ can promote TG accumulation 
similar to GR (Fig. 7.5b).
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BFig. 7.5  Effects of 
GCs and PPARγ 
ligands in hepatocytes. 
(a) In healthy 
hepatocytes GR is the 
main driver of 
gluconeogenesis. (b) 
Under conditions of 
hepatic steatosis, both 
GR and PPARγ increase 
TG storage by 
decreasing TG 
hydrolysis and FA 
oxidation

Thus, in healthy liver, GR is a dominant regu-
lator of glucose metabolism which up-regulates 
de novo glucose production, with little to no con-
tribution from PPARγ. Under conditions of liver 
steatosis, both GR and PPARγ inhibit lipid 
hydrolysis and FA oxidation, thereby augmenting 
an increase in liver mass.

7.6	� Concluding Remarks

GR and PPARγ are highly divergent NRs from 
steroid and non-steroid families, respectively, 
both viewed as critical therapeutic targets with a 
range of actions in the immune system and in 
metabolic homeostasis. Interestingly, the two 
NRs share many functions in immune cells at 
homeostasis and under pathogenic conditions. 
These TFs are anti-inflammatory during acute 
and chronic inflammation, and act as drivers of 
the Th2 response by promoting the M2-like mac-
rophage subtype, biasing T cells towards Th2 
and DCs towards tolerogenic state. Apart from a 
more pronounced role of GR in thymocyte selec-
tion, and that of PPARγ in DC development, the 
functional overlap of GR and PPARγ in immune 
cells eclipses isolated examples of their distinct 
roles. In the adipose tissue, however, the differ-
ences are striking: PPARγ is essential for adipo-
genesis and enhances lipid storage in adipocytes, 
whereas GR is mostly lipolytic upon acute hor-
mone exposure. Finally, in the liver, GR is the 
uniquely critical regulator of normal glucose 

metabolism, while the two NRs have overlap-
ping roles in TG metabolism during liver steato-
sis. Given that these TFs are invaluable 
therapeutic targets for, among others, autoim-
mune diseases and type 2 diabetes, novel insights 
on the consequences of activating both NRs, and 
understanding the effects their ligands may have 
at super-physiological doses in vivo, could 
potentially inform the use of combined treat-
ments in clinical settings.
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