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18Drugging the Undruggable: 
Targeting the N-Terminal Domain 
of Nuclear Hormone Receptors

Marianne D. Sadar

Abstract

This chapter focuses on the development of 
drugs targeting the N-terminal domain of 
nuclear hormone receptors, using progress 
with the androgen receptor as an example. 
Historically, development of therapies target-
ing nuclear hormone receptors has focused on 
the folded C-terminal ligand-binding domain. 
Therapies were traditionally not developed to 
target the intrinsically disordered N-terminal 
domain as it was considered “undruggable”. 
Recent developments have now shown it is 
possible to direct therapies to the N-terminal 
domain. This chapter will provide an introduc-
tion of the structure and function of the 
domains of nuclear hormone receptors, fol-
lowed by a discussion of the rationale support-
ing the development of N-terminal domain 
inhibitors. Chemistry and mechanisms of 
action of small molecule inhibitors will be 
described with emphasis on N-terminal 
domain inhibitors developed to the androgen 
receptor including those in clinical trials.
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18.1	� Introduction

Nuclear hormone receptors share a common mod-
ular structural organization that includes a vari-
able N-terminal domain (NTD or A/B domain), a 
DNA-binding domain (DBD or C domain), a non-
conserved hinge region (D domain), and a 
C-terminal ligand-binding domain (LBD or E 
domain) [33]. Here we focus on members of 
nuclear receptor subgroup 3, that include the 
androgen receptor (AR), two closely related 
estrogen receptors (ERα and ERβ), glucocorticoid 
receptor (GR), mineralocorticoid receptor (MR), 
and progesterone receptor (PR). These are soluble 
proteins that mediate the effects of lipophilic ste-
roids to regulate the expression of thousands of 
genes to control the growth and function of cells 
and tissues [36, 39, 70, 119]. Steroidal hormones 
diffuse across the cell membrane to bind to the 
LBDs of hormone receptors, which sets off a 
series of events that are necessary for transactiva-
tion or repression of target genes. First there is a 
conformational change of the receptor that 
involves the shedding of interacting chaperones 
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followed by translocation of the receptor to the 
nucleus. The DBD directs binding of the receptor 
to specific genomic regions on the DNA and 
dimerization, followed by recruitment of coregu-
latory proteins, chromatin remodelers, and the 
general transcriptional machinery necessary for 
regulating the transcription of target genes [12, 
33, 36, 63, 70, 119]. There are two regions within 
the NTD and LBD called activation functions 1 
and 2 (AF-1 and AF-2) respectively that provide 
the surfaces for interaction with coregulators and 
the transcriptional machinery [22, 34, 56, 62, 85]. 
To date, all clinically approved therapies directed 
against these hormone receptors target AF-2  in 
their LBDs. However, the recent breakthrough of 
the discovery of small molecule inhibitors that 
directly interact with AF-1 of AR has yielded the 
first ever small molecules that directly interact 
with the previously-considered “undruggable” 
NTD of a hormone receptor. The success of drug 
development against the intrinsically disordered 
NTD of AR is a precedent in the field of hormone 
receptors, but it is also worth noting that these 
molecules were the first drugs that directly bind to 
any intrinsically disordered target to reach human 
clinical trials (NCT02606123). Since success in 
drugging the “undruggable” NTDs of hormone 
receptors is currently restricted to AR, this review 
focuses on AR to provide insight into drug devel-
opment that may have application for other 
nuclear hormone receptors.

18.2	� Modular Structure of Nuclear 
Hormone Receptors

Nuclear hormone receptors are modular proteins. 
The steroid hormone receptors vary in size from 
less than 600 amino acid residues to over 900 
residues. Their modular structure includes an 
intrinsically disordered N-terminal domain 
(NTD), DNA-binding domain (DBD), hinge 
region, and C-terminus ligand-binding domain 
(LBD). There can be substantial amino acid 
sequence similarity depending on the domain and 
hormone receptors being compared. For exam-
ple, the AR-LBD shares 54% sequence similarity 
with PR-LBD and hence some antiandrogens can 

inhibit the transcriptional activity of PR [10, 84]; 
the AR DBD is 76% identical to that of the 
GR-DBD and not surprisingly they share some 
common regulatory DNA sequences within the 
same chromatin loci [20, 102]. This is an impor-
tant consideration in drug development since the 
specificity of these hormone receptors involves 
multiple mechanisms including receptor-specific 
residues within their ligand-binding pockets but 
also importantly tissue-specific expression of a 
hormone receptor which, if not appreciated, 
could lead to unexpected toxicity in other tissues 
(for a review see [19]). For example, benign pros-
tate tissue expresses AR but does not express GR, 
yet in advanced prostate cancer both GR and AR 
are expressed [52].

18.2.1	� Intrinsically Disordered 
N-terminal Domain (NTD)

The NTDs of these hormone receptors have little 
sequence conservation (<15%) and vary enor-
mously in size from only 182 amino acid residues 
for ERα to over 600 residues for MR. The NTD 
contains activation function 1 (AF-1), which 
interacts with an abundance of coregulatory pro-
teins [42, 57, 64, 68]. AF-1 of the majority of hor-
mone receptors contains most or all of the 
transcriptional activity, with the exception of 
ERα which has most of its transcriptional activity 
within AF-2 in its LBD [8, 22, 48, 56, 62]. AF-1 
and AF-2 can act independently, as demonstrated 
with deletion and mutational experiments, but 
generally maximum activity is obtained when 
AF-1 and AF-2 cooperate in concert ([64, 81]). 
AF-1 is generally considered ligand-independent. 
However, AR AF-1 has two transactivation  
units -1 and 5 (tau-1 and tau-5, respectively) 
(Fig. 18.1). Tau-1 is considered to be dependent 
on ligand binding to the receptor and encom-
passes amino acid residues 101-370, the majority 
of which are acidic. Amino acid residues 360-485 
comprise tau-5, which is considered to be ligand-
independent. Deletions of small regions of 
approximately 100 residues of tau-1 do not elimi-
nate AR transcriptional activity, suggesting that 
the activity of tau-1 is not attributable to a single 
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Fig. 18.1  Modular structure of the androgen receptor. 
AF-1 is within the N-terminal domain (NTD) and con-
tains the ligand-dependent tau1 and ligand-independent 
tau5. The DNA-binding domain (DBD) contains 65 amino 

acid residues. The hinge region connects the DBD to the 
LBD and contains a nuclear localization signal. AF-2 is 
within the ligand-binding domain (LBD) and contains 249 
amino acid residues
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Fig. 18.2  Illustration of the AR displaying the intrinsically disordered NTD and hinge region compared to the folded 
DBD and LBD

small structural element [55]. This point is of rel-
evance in drug development because it could 
mean that any small molecule inhibitor, or anti-
body, directed to tau-1 would need to impact the 
conformation broadly and not merely a small dis-
crete region. Theoretically this would imply that 
the recently developed bispecific antibody 
3E10-AR441, that binds within tau-1 at residues 
299-315 [37], would not be efficacious in block-
ing all AR transcriptional activity. Additionally, 
loss of AR-LBD shifts the transcriptional activity 
of AR from tau-1 to tau-5 [55], which has impli-
cations for finding a small molecule inhibitor that 
blocks both full-length AR in response to ligand 
(activity mediated through tau-1) and truncated 
splice variants of AR (AR-Vs) that lack LBD 
(activity mediated through tau-5).

NTDs of hormone receptors are not amenable 
to structural analysis by X-ray crystallography due 
to their intrinsic disorder, thereby impeding drug 
development (Fig. 18.2). Amino acid residues dic-
tate the disordered state and thereby are “intrinsic” 
to the coding sequence. Generally, intrinsically 
disordered proteins or regions are enriched in 
amino acid residues that have a high net charge, 
low hydrophobicity, and abundance of proline 
residues [30, 117, 118]. Cysteine residues can 
form disulfide bridges that stabilize the protein 
structure in an oxidizing environment, but under a 

reducing environment, the disulfide bridges are 
broken, resulting in the protein becoming less 
ordered. Figure 18.3 shows a Ronn plot that pre-
dicts regions of disorder within the AR-NTD 
based upon its amino acid sequence. Post-
translational modification such as phosphorylation 
also impacts intra- and intermolecular interactions 
[7], which in turn impact the conformation of the 
structure and binding partner preference, plus the 
protein half-life [23, 40, 124]. Aromatic residues 
may reveal a molecular recognition region (MoRF) 
within a region of intrinsic disorder. These MoRFs 
are of high interest in drug development due to the 
potential to undergo a disorder-to-order transition 
with specific interactions or binding. Looking at 
the amino acid sequence of AR-NTD, there are 
multiple repeat regions that vary in length that 
include the polyproline tract (average 9 repeats), 
polyglycine tract (average 16 repeats), and poly-
glutamine tract (average 21 CAG repeats). 
Importantly the AR NTD has several potential 
MoRFs such as aromatic residues W433, Y445 
and F437. An example that emphasizes the quali-
ties that impact structure and function of intrinsi-
cally disordered proteins is the interaction of 
RAP74 with the AR NTD. RAP74 interacts within 
amino acids residues 423-446 that contain these 
MoRFs and has weak affinity in the millimolar 
range (KD = 1749 μM) that substantially improves 
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Fig. 18.3  Ronn plot of AR-NTD showing some mapped 
protein-protein interactions, post-translational modifica-
tions, and binding sites for small molecules that directly 
interact with this domain. The probability of protein disor-
der across the amino acid residues of the NTD. A proba-
bility score below 0.5 is considered ordered (folded) 
whereas a score above 0.5 is considered disordered. 
Transactivation units (tau) 1 and 5 are shown within the 
NTD.  The binding sites for EPI-002, sintokamide, and 

3E10-AR441 are shown. Regions of posttranslational 
modification and interactions with some other proteins on 
the N-terminal domain are shown. Phosphorylation (P) 
and sumoylation (S). Protein interactions shown include 
chaperones hsp40 and hsp90; AF-2, activation function-
2 in the AR LBD for N/C interaction; RAP74 of the basal 
transcriptional machinery; p300/CBP, BRD4, TAB2, 
CHIP, MAGE-11, BAG1L, Gli, STAT3, and SRC

with phosphorylation of S424 of AR to a KD of 
702 μM [26, 109] (Fig. 18.4). Thus, an inhibitor of 
AR NTD even with an IC50 in the very high μM to 
millimolar range may still have therapeutic value 
in blocking this weak interaction with RAP74, if 
such blood levels are achievable without toxicity 
to other tissues. This difference in molecular 
mechanism of protein-protein interactions in the 
NTD compared to ligand-binding to LBD is criti-
cal to understand when considering differences 
between an AR NTD inhibitor and LBD inhibi-
tors, as in the latter case an antiandrogen such as 
enzalutamide has to compete with the physiologi-
cal ligand such as dihydrotestosterone (DHT) that 
has affinity in the low nM range.

The structural plasticity of the NTDs of hor-
mone receptors allows this domain to exist as 
multiple and changing conformations depending 
on the environment and interacting partner, but 
also makes this domain a difficult drug target [17, 
29, 35, 82]. The lack of a stable binding site 
together with shallow clefts for interactions with 
other proteins creates a challenge in drug devel-

opment that is unique from the classic “lock-and-
key” model for folded proteins. Intrinsically 
disordered proteins or regions tend to have high 
specificity and low affinity thereby allowing a 
rapid interchange of binding partners. Examples 
for the AR NTD are RAP74 (as described above) 
and Hsp70, which have binding affinities in the 
μM range [26, 31]. The degree of helical second-
ary structure of hormone receptor NTDs increases 
with binding to interacting proteins to conform to 
a molten-globule-like conformation referred to as 
‘collapsed disordered’ [61, 71, 97]. NTD-
interacting proteins that that are known to 
increase α-helical content include TATA-binding 
protein (TBP) [34, 65, 66, 116], CREB-binding 
protein (CBP) [61], RAP74 subunit of human 
transcription factor IIF [61, 97] and Jun dimer-
ization protein 2 (JDP2) [116]. These protein-
protein interactions induce α-helical structure 
and lead to additional protein-protein interactions 
to impact transcriptional activity [106, 121]. 
Exchange of binding partners may involve 
unfolding of structured regions in AF-1 with 
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Fig. 18.4  EPI binding sites within tau5 of AR-NTD in 
the context of RAP74’s binding site. Residues in the three 
EPI-002 binding sites (underlined) and the flanking resi-
dues are shown. Phosphorylation of S424 impacts the 
affinity of RAP74 binding to tau5. MoRFs within the 

RAP74 site of interaction. Other post-translational modi-
fications that affect AR transcriptional activity and could 
possibly impact the binding of EPI-002 to tau5 that 
include Y363 that is phosphorylated by Ack and 
sumoylation of K386

increased structure within an adjacent region 
[89]. It is this plasticity that permits hormone 
receptors to act as a hub of interactions with an 
extremely large repertoire of binding partners 
[43, 59, 122]. Recently, low-resolution cryoelec-
tron microscopy revealed that the structure of 
transcriptionally active full-length AR is unique 
from ERα in its direct interaction with steroid 
receptor coactivators (SRCs) and its orientation 
of dimerization [123]. AR homodimerizes in a 
head-to-head and tail-to-tail manner and consists 
of two different conformations of NTD [123]. 
One AR NTD conformation interacts with a sin-
gle SRC-3 molecule close to its 23FQNLF27 motif 
[123], consistent with earlier coimmunoprecipi-
tation studies that showed SRC interacts within 
amino acid residues 1-233 of the AR-NTD [111]. 
Conversely, a single p300 molecule interacts with 
both conformations of NTD [123]. Interaction of 
a hormone receptor with DNA can also induce 
tertiary structure and α-helical content of the 
NTD/AF-1 to encourage protein-protein interac-
tions with cofactors and bridging factors to ulti-
mately impact transcriptional activity [8, 79, 80].

18.2.2	� DNA-Binding Domain (DBD) 
and Hinge Region

The crystal structures of DBDs of hormone 
receptors have been resolved [105]. This domain 
is the most conserved in sequence compared to 
the other domains at greater than 75% for MR, 

GR, PR, and AR DBDs and 57% between ERα 
and AR DBDs. Hormone receptor DBDs have 
three α-helices that are comprised of two zinc fin-
ger motifs and a C-terminal extension (CTE). 
Each zinc finger has four cysteine residues that 
bind a zinc ion. The first zinc finger subdomain 
interacts with the major groove of base-specific 
regions of DNA and is called the P-box. The sec-
ond zinc finger subdomain stabilizes receptor-
DNA interaction through non-specific contacts 
with the DNA backbone and also contains the 
distal box (D box) that is involved in receptor 
dimerization [98]. The 22Rv1 human prostate 
cancer cell line is commonly used to analyze the 
effects of drugs on the transcriptional activity of 
AR including its constitutively active AR-Vs, but 
this cell line is unique in that its AR carries dupli-
cation of exon 3: this encodes an additional zinc 
finger within its DBD thereby impacting its prop-
erties such as protein half-life [108].

The CTE mediates the specificity of AR to 
recognize androgen response elements (AREs). 
The majority of AREs have been mapped to 
enhancers in the regulatory regions of genes reg-
ulated by androgens and consist of a repeat of 
two hexamers separated by a 3 base-pair spacer. 
It is important to note that there are general 
response elements that are recognized by all ste-
roid hormone receptors with the exception of ER 
[112], as well those that are specific to a receptor 
[18, 27, 38, 54, 119]. Due to this high degree of 
similarity in sequence and structure across the 
steroid hormone receptors’ DBDs, this domain 
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has been generally considered to be a poor drug 
target due to challenges to achieve specificity. 
Although the DBD functions to steer the receptor 
to specific regulatory regions of the genome, as 
mentioned above it also primes the NTD for 
interactions with specific coregulatory proteins. 
The genomic sequence of a particular response 
element can influence the transcriptional response 
of a gene [45].

DBDs are linked to LBDs by the hinge region, 
which is unstructured. The hinge region is impor-
tant in the nuclear translocation of the receptor 
and is sequestered in the absence of ligand [93]. 
It contains part of the CTE involved in interac-
tions between the DNA and receptor as well as 
having other functions that are regulated by post-
translational modifications within this region [21, 
44]. Upon binding DNA there can be a change in 
conformation of the CTE which stabilizes intra-
molecular interactions [44] and creates a binding 
site for coregulatory proteins [13, 95]. Hormone 
receptors can alter the conformation of DNA to 
facilitate the assembly of multi-protein com-
plexes within the enhancer or promoter regions 
of target genes [44].

18.2.3	� Ligand-Binding Domain (LBD)

LBDs of hormone receptors function to mediate 
the effects of steroids and have been the primary 
target for drug development. The AR-LBD is the 
direct or indirect target for all currently FDA-
approved drugs against the androgen axis. For 
example, indirect drug targets for AR-LBD are 
those therapeutics that reduce the levels of andro-
gen that bind to the AR-LBD and include LHRH 
analogues and CYP17 inhibitors (e.g. abiraterone) 
that block steroidogenesis. Drugs that directly tar-
get AR-LBD include both agonists that are called 
selective AR modifiers or “SARMs” as well as 
antagonists that are called, “antiandrogens”. 
Antiandrogens can be steroidal or non-steroidal; 
non-steroidal antiandrogens have the stem name 
“lutamide” and include flutamide, nilutamide, 
bicalutamide, enzalutamide, apalutamide, and 
darolutamide. Antiandrogens are competitive 
inhibitors with androgens for the AR-LBD and 

induce an AR conformation that is not transcrip-
tionally active. The “lutamides” have evolved 
since the first in class drug flutamide to be more 
bulky and thereby more effective in disrupting 
protein-protein interactions. Sequence similarity 
in the LBDs of hormone receptors manifests with 
some steroids able to bind to other receptor LBDs 
in addition to their cognate receptor, based upon 
the concentrations of steroid and also the exis-
tence of point mutations within this domain. For 
example, AR LBD shares 54% sequence similar-
ity with PR-LBD and not surprisingly steroidal 
progestins (e.g., cyproterone acetate/6-chloro-17-
hydroxy-la,2a-methylenepregna-4,6-diene-3,20-
dione acetate) were the first inhibitors discovered 
against AR [92]. Similarly, the non-steroidal anti-
androgens such bicalutamide and enzalutamide 
bind to PR-LBD to inhibit its transcriptional 
activity [10, 51].

The crystal structures of LBDs of all hormone 
receptors have been resolved, in complex with 
various ligands, with only an agonist-bound con-
formation available for the AR. The lack of suc-
cess in obtaining a crystal structure of the 
AR-LBD in an antagonist conformation has 
impeded drug development against this impor-
tant drug target. Crystal structure analyses have 
revealed that LBDs of hormone receptors are 
folded into 3 layers that form an anti-parallel 
α-helical sandwich with up to 12 α-helices (H1-
12) and up to 4 short β-strands that may form 
β-sheets [14, 44, 67, 107, 120]. Hormone recep-
tors lack helix 2 so have 11 helices, with the 
exception of ER that has all 12 helices [44]. 
Generally, the binding of an agonist induces con-
formational changes such that helix 12 stabilizes 
and covers the ligand-binding pocket to form a 
hydrophobic cleft and expose the AF2 region. 
This conformational change provides a binding 
interface for AF-2 to interact with LxxLL motifs 
of coactivators such as SRCs [14, 41, 44, 67].

In the absence of ligand, LBDs repress AF-1 
transcriptional activities as shown for PR, GR 
and AR. For these receptors, when their LBDs 
are deleted the results are constitutively active 
receptors [8, 22, 48, 55]. Here the ER stands out 
from the other receptors and emphasizes that its 
transcriptional activity is largely through AF-2. 
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Deletion of ER LBD results in a 95% decrease of 
its transcriptional activity [68], compared to the 
truncated AR lacking LBD becoming constitu-
tively activated [55]. As mentioned above, AR- 
LBD also dictates the contribution of 
transcriptional activity from tau-1 versus tau-5. 
For the truncated constitutively active AR-Vs that 
lack LBD, tau-5 would be the dominant tau driv-
ing transcriptional activity and thereby a critical 
drug target.

In diseases such as prostate cancer and some 
breast cancers, there are some structural altera-
tions in the AR-LBD that are considered to drive 
the disease and confer resistance to therapies that 
target the AR-LBD. These structural alterations 
include deletion or truncation of AR LBD, result-
ing in constitutively active AR-Vs that are inde-
pendent of androgens [55]; gain-of-function 
mutations in the AR-LBD underlying antiandro-
gen withdrawal syndromes [74]; as well as point 
mutations that result in promiscuous binding to 
other steroids [32].

18.3	� Androgen Receptor

Full-length AR molecular mass is calculated as 
98.9 kDa but when run on SDS-PAGE it migrates 
as a band of approximately 110 kDa. AR NTD 
has several polymorphic tracts (see above) that 
result in its variability in length (generally 547–
556 residues), a folded DBD (65 residues), a dis-
ordered hinge region (49 residues) and folded 
LBD (249 residues). Full-length AR is encoded 
from 8 canonical exons and 7 cryptic exons in the 
AR gene. This gene resides on the X chromosome 
(AR locus: Xq11-Xq12); both males and females 
have only one functional copy of AR due to 
X-inactivation. The AR gene has binding sites for 
SP1, NFkB, and c-MYC but lacks elements for 
TATA and CCAAT in its regulatory region (for 
reviews see [15, 50]). Tissue-specific activity of 
AR is modulated by regulation of expression in 
response to androgen [50] and tissue-specific 
expression of its coregulators [87]. This results in 
tissue-specific expression of AR target genes 
such as prostate-specific antigen (PSA), which is 
a biomarker for prostate cancer.

Full-length AR mediates the effects of andro-
gens such as testosterone and dihydrotestoster-
one (DHT) that are required in males for sexual 
differentiation, maintenance of spermatogenesis, 
and male gonadotropin regulation. Male repro-
ductive tissue such as the prostate is dependent 
upon functional AR signaling. The dependency 
of prostate tissue on androgens provides the 
rationale for targeting full-length AR for the 
treatment of prostate cancer using androgen 
deprivation therapy (ADT) and antiandrogens. In 
addition to prostate cancer, the androgen axis 
plays a role in other pathologies such as alopecia, 
polycystic ovarian syndrome, spinal bulbar mus-
cular dystrophy, androgen insensitivity syn-
drome, and some breast cancers, thereby 
emphasizing the need for therapeutic inhibitors 
of AR transcriptional activity (for a review see 
[75]).

18.4	� Rationale for Developing 
Inhibitors to the NTD

Interest in developing drugs to the intrinsically 
disordered AR-NTD predominantly comes from 
the discovery of constitutively active AR-Vs 
lacking LBD that are associated with resistance 
mechanisms in lethal castration-resistance pros-
tate cancer (CRPC) [4, 5, 103, 104] and have 
been discovered in breast cancer tissues [1, 24, 
43, 49]. The fact that all of the transcriptional 
activity of AR resides in its NTD, also means that 
inhibitors of the AR-NTD would be effective 
against full-length AR, gain-of-function muta-
tions in AR-LBD, and other mechanisms of 
maintained AR transcriptional activities. In other 
words, an inhibitor to the AR-NTD should block 
the transcriptional activities of all AR species. 
Also beneficial is that AR-NTD has little 
sequence similarity (<15%) to its most closely 
related hormone receptors and is thereby pre-
dicted to be a highly specific drug target.

Due to challenges in discovery of small mol-
ecules that directly bind to an intrinsically disor-
dered target, an approach has been to target 
folded proteins that interact with AR-NTD. The 
first in vivo proof-of-concept that this could yield 
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a therapeutic response for CRPC was provided 
using decoys that sequestered AR-NTD interact-
ing proteins [91, 96]. There have also been a 
number of studies that target an individual inter-
acting binding partner of AR-NTD such as: 
hsp40/70 to induce degradation of AR-Vs and 
reduce aggregation of full-length AR with 
extended polyQ tracts [28, 31, 78, 88]; BRD4 [6]; 
BAG1L [16, 69, 73]; and SRC-1 and 3 [114] 
(Fig. 18.3). The approach of targeting an interact-
ing protein rather than the AR-NTD directly has 
the inherent risk of lack of specificity to blocking 
AR function since most interacting partners are 
not unique for AR and interact with many other 
proteins. Thus, discovery of drugs that directly 
bind to AR-NTD is of high interest.

18.5	� Small Molecule Inhibitors 
of AR-NTD

Currently all small molecule inhibitors proven to 
directly bind to the AR-NTD were originally iso-
lated from natural compound libraries [100]. 
These were libraries of marine sponges that were 
screened to discover: sintokamides [11, 101]; 
naphatenones [10, 86]; and EPI-001/ralaniten [3, 
90] (Fig. 18.5). Of these three unique chemical 
scaffolds, the EPI-001/ralaniten analogues were 
the first drugs against AR-NTD to reach human 
clinical trials. Importantly, ralaniten was also the 
first drug that directly binds to any intrinsically 
disordered target to reach clinical testing, mark-
ing a breakthrough in drug discovery for intrinsi-
cally disordered proteins. Recently, a 
second-generation analogue of ralaniten began 
clinical trials in heavily pretreated men with 
CRPC (NCT04421222) and in combination with 
enzalutamide ([46]; NCT05075577). 
Combinations of EPI compounds have shown 
improved therapeutic responses for CRPC when 
combined with antiandrogens [46], radiation [9], 
PIN1 inhibitors [76], palbociclib [110], mTOR 
inhibitors [58], taxanes [83], and sintokamides 
[11]. The sintokamides are still under develop-
ment for the clinic as potential imaging agents 
and to use in combination with tau5 inhibitors. 
Drug development for naphatenones, that were 

first isolated from the marine sponge Niphates 
digitalis, was stopped due to their reactivity and 
alkylation of glutathione [10, 86].

Sintokamides A to E were isolated from the 
marine sponge Dysidea sp. These were the first 
small molecules that inhibited the AR-NTD to be 
published [101]. Sintokamide A (SINT1) directly 
binds AR AF-1 region to specifically inhibit 
transactivation of AR NTD and block transcrip-
tional activities of full-length AR and AR-Vs 
[11]. In vivo studies with sintokamide using 
human prostate cancer xenografts grown in cas-
trated mice revealed regression of tumours and 
reduced expression of the AR-regulated gene, 
PSA [11]. Interestingly, additive inhibition was 
evident when SINT1 was combined with ralani-
ten, which suggested SINT1 binds to a site on 
AF-1 that is unique from that bound by ralaniten 
[11]. Through studying well-characterized 
protein-protein interactions with the AR-NTD, 
differences in blocking interaction of STAT3 
with AR-NTD between these compounds 
revealed that SINT1 probably interacts more 
N-terminally within tau-1 whereas ralaniten 
interacts with tau-5 [11, 25]. The inability of the 
sintokamides to impact IL-6 transactivation of 
AR and STAT3 interaction with AR-NTD pre-
dicts that these compounds would be ineffective 
against prostatic bone lesions that have elevated 
levels of IL-6 and are prevalent in men with 
advanced prostate cancer.

The first EPI compound, EPI-067, was iso-
lated from the marine sponge Geodia lindgreni 
[2, 99, 100]. Structure activity relationship stud-
ies of several hundred analogues yielded EPI-
002, a single stereoisomer of the mixture called 
EPI-001, that was developed for first-in-human 
clinical trials. These compounds have a chlorohy-
drin and consistent with the literature were dem-
onstrated to not be reactive as shown at 
physiological pH in vitro [11] and in vivo using a 
radioactive imaging agent [51], as well as from 
patient clinical samples [94, 113]. EPI-002 was 
established as a first-in-class compound called 
ralaniten by the USAN Council with a stem name 
of “aniten” based upon its unique mechanism of 
action that distinguishes these compounds from 
the “lutamide” antiandrogens such as enzalu-
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Fig. 18.5  Chemical structures of small molecules vali-
dated to directly bind to AF-1 within the AR-NTD. 
Sintokamides do not block IL-6 transactivation of the 
AR-NTD or STAT-3 interaction with AR-NTD so are 
being developed as imaging agents rather than as thera-
peutics. Niphatenones were reactive and formed glutathi-
one adducts and have been dropped from clinical 
development. EPI-compounds showing the discovery 
compound, EPI-067, isolated from a marine sponge [2]. 

EPI-001 is a mixture of 4 stereoisomers including the 
active compound ralaniten (EPI-002) which was delivered 
as a prodrug (ralaniten-acetate or EPI-506) to prostate 
cancer patients [100]. Addition of a halogen (iodine) to a 
phenyl ring, I-EPI-002 (EPI-10000), improved the 
potency by 10-fold compared to EPI-002 [51]. Removal 
of the primary alcohol as with the second-generation com-
pound EPI-7170 improves the in vivo efficacy presumably 
due to reduced metabolism [9, 94]

tamide. Ralaniten predominantly binds residues 
341-446 of tau-5, including the core unit 

435WHTLF439, plus some overlap into tau-1 (101-
370) [25] (Figs.  18.3 and 18.4). As predicted, 
ralaniten inhibits the transcriptional activities of 
full-length AR, AR-Vs, gain-of-function 
AR-LBD mutations, AR with altered polyQ 
tracts, and AR-transcriptional activities with 
aberrant expression of coactivators and amplified 
levels of AR [3, 90, 121]. Inhibition of AR tran-
scriptional activity by EPI was specific, with no 
impact on related human hormone receptors. EPI 
analogues inhibited AR-NTD interaction with 
CREB-binding protein (CBP) and RAP74 [3]. 
They do not induce AR nuclear translocation in 
the absence of androgen [3]. Importantly EPI 
analogues block AR DNA binding in the promot-
ers and enhancers of target genes to decrease 

expression of these genes in response to andro-
gens [3, 90]. In vivo efficacy of EPI as a thera-
peutic for prostate cancer was demonstrated 
using xenografts of human prostate cancer cell 
lines, patient-derived xenografts, and the 
Herschberger assay [3].

The technical hurdle of aggregation of recom-
binant intrinsically disordered proteins makes it 
difficult to provide evidence of direct binding 
using cell-free assays. In spite of this, evidence of 
direct interaction of the EPI analogues with the 
AF-1 region of AR was shown by application of 
recombinant AF-1 protein in a cell-free assay by 
fluorescence emission spectroscopy [3] and 
Click-chemistry probes [90]. Importantly, cell-
free assays may be prone to producing artifacts 
because of the sensitivity of the conformation(s) 
of an intrinsically disordered protein on its envi-
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ronment and protein-protein interactions. The 
first evidence of direct binding for any intrinsi-
cally disordered protein in cells was provided 
when EPI bound the endogenous AR in LNCaP 
human prostate cancer cells. A number of 
approaches were employed that included both 
click-chemistry probes and radiolabelled ana-
logues [51, 90]. In vivo data from castrated mice 
injected with a radiolabelled EPI analogue also 
provided strong evidence of specificity of EPI 
compounds for the AR as well as proof-of-
concept of the potential of these compounds to 
image tumours that express AR-NTD [51]. Later, 
Dr. Salvatella and his team provided NMR data 
confirming that EPI compounds bind specifically 
to AF-1 within tau-5 and identified the amino 
acid residues required for this interaction [25]. 
There were three regions within AR AF-1 that 
were required for EPI to bind, implying that EPI 
binds within a pocket rather than to linear amino 
acid sequence (Fig.  18.4). Of note, the EPI-
binding site on AF-1 is also where RAP74 inter-
acts [26]  thereby supporting earlier studies 
showing EPI blocked this interaction [3]. Post-
translational modifications within this region that 
may alter the binding of EPI include phosphory-
lation of Y363 and S424 as well as sumoylation 
of K386 within the flanking region. Studies to 
address the impact of post-translational modifica-
tions on EPI binding to AR-NTD will be impor-
tant to predict potential resistance mechanisms.

18.6	� First-in-Human Clinical Trials

In November 2015, the prodrug of ralaniten, 
called ralaniten-acetate and also known as EPI-
506, was administered to the first CRPC patient 
enrolled in first-in-human clinical trials 
(NCT02606123). This marked an important 
event of ralaniten being the first drug that directly 
binds to any intrinsically disordered protein to 
reach a clinical trial - in oncology and even more 
notably in any disease. This Phase I clinical trial 
was a dose-escalation study in 28 heavily pre-
treated CRPC patients in whom abiraterone and/
or enzalutamide had previously failed. The drug 
did show signs of efficacy in some patients as 

evidenced by a reduction of serum PSA and sta-
ble disease, especially in those patients receiving 
higher doses. A few patients remained on ralani-
ten for more than 1  year with stable disease. 
These indications of efficacy were in spite of 
patients having steady-state Cmin blood concen-
trations that were 50× lower than what would be 
optimal based upon in vitro data of 25 μM [100]. 
Notably, the most highly dosed patients who 
received 3600 mg/daily had blood trough levels 
of only 200  ng/mL which is equivalent to 
0.5 μM. These blood levels are also 48- to 58-fold 
lower than steady-state Cmin for enzalutamide and 
its active metabolite respectively [53]. This 
extremely poor pharmacokinetic profile for rala-
niten resulted in excessive pill burden and ulti-
mately stopping its clinical development, in spite 
of it being well-tolerated. Subsequent analyses of 
samples from these patients revealed that ralani-
ten was oxidized and glucuronidated predomi-
nantly at the alcohol groups  [94]. A second 
generation set of analogues have been designed 
to improve the metabolic stability of this class of 
drugs and these include EPI-7170 [9] and the 
clinical compound EPI-7386, which entered clin-
ical trials in June 2020 for men with metastatic 
CRPC (NCT04421222). Early data released at 
ASCO-GU in February 2021 stated, “Despite the 
suboptimal 200 mg dose, one out of three patients 
who completed 12 weeks of therapy experienced 
a prostate specific antigen (“PSA”) decline of 
more than 50% after three cycles of EPI-7386 
therapy (12 weeks) with ongoing continued PSA 
declines continuing through six cycles of therapy, 
despite previously having failed enzalutamide 
and abiraterone acetate” [72, 77].

18.7	� Conclusions

It is estimated that 33–50% of the proteome is 
intrinsically disordered or has intrinsically disor-
dered regions [115]. The plasticity of intrinsi-
cally disordered proteins allows for multiple and 
changing conformations to enable the exchange 
of numerous binding partners. Proteins that pos-
sess intrinsic disorder tend to have functions 
within signaling networks and include transcrip-
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tion factors such as nuclear hormone receptors 
and regulators of the cell cycle. Thus, it is not 
surprising that intrinsically disordered proteins 
are associated with many diseases such as cancer, 
diabetes, cardiovascular disease, and amyloidosis 
(for a review article see [60]) and are a rich poten-
tial source of drug targets. Progress on develop-
ing inhibitors that directly bind to the intrinsically 
disordered AR NTD, that are the first to reach 
clinical trials in humans for this class of proteins, 
may help lead future successes against other 
intrinsically disordered drug targets.
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