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Abstract

The androgen receptor (AR) is a ligand- 
activated transcription factor belonging to the 
nuclear receptor (NR) superfamily. As with 
other members of the NR family, transcrip-
tional activity of the AR is regulated by inter-
actions with coregulatory proteins, which 
either enhance (coactivators) or repress (core-
pressors) its transcriptional activity. AR asso-
ciated coregulators are functionally diverse, 
but a large fraction are epigenetic histone and 
chromatin modifiers. Epigenetic coregulators 
are recruited to gene regulatory regions as part 
of multi-protein complexes, often acting in a 
dynamic and inter-dependent manner to 
remodel chromatin, thereby allowing or inhib-
iting the access of AR-associated transcrip-
tional machinery to target genes; functional 
consequences being regulation of transcrip-
tional output. Epigenetic modifiers, including 
those that function as AR coregulators, are fre-
quently mutated or aberrantly expressed in 
prostate cancer and are implicated in disease 
progression. Some of these modifiers are 
being investigated as therapeutic targets in 
several cancer types and could potentially be 

used to modulate aberrant AR activity in pros-
tate cancer. In this chapter we will summarise 
the functional role of epigenetic coregulators 
in AR signalling, their dysregulation during 
prostate cancer progression and the current 
status of drugs targeting these enzymes.
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16.1  Introduction

The androgen receptor (AR) is a ligand-acti-
vated, DNA-binding transcription factor (TF), 
belonging to the nuclear receptor (NR) super-
family, that mediates responses to the andro-
genic (“male”) steroid hormones, most 
prominent of which are dihydrotestosterone and 
testosterone [1]. The AR-driven transcription 
program is a key determinant of organ morpho-
genesis during development and regulates func-
tioning of the normal adult prostate, but is also 
the main driver of prostate carcinogenesis and 
disease progression [2, 3].

To activate its full transcriptional program, the 
AR must be bound and activated by ligands such 
as testosterone and dihydrotestosterone. AR 
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binds to sequence-specific regulatory regions in 
the genome, where it interacts with accessory 
proteins called coregulators and transcriptional 
machinery to drive target gene expression [4]. 
Coregulators can be broadly defined as members 
of multi-protein complexes that associate directly 
or indirectly with transcription factors (TFs) and 
affect their output. These proteins are indispens-
able for TF functioning since they are rate- 
limiting factors for transcriptional activity that 
can either promote (coactivators) or supress 
(corepressors) target gene expression, without 
affecting basal transcriptional levels [5–7]. 
Coregulators also dictate target gene specificity, 
with each coregulator associated with transcrip-
tion of specific subsets of TF target genes [8]. 
The AR is associated with coregulators that 
encompass a wide variety of functional diversity 
and modes of action which can be broadly 
 classified into the categories (not mutually exclu-
sive) of epigenetic regulators, chaperones, tran-
scriptional regulators, DNA repair proteins, 
cytoskeletal proteins and signal transducers, 
among others [9].

Epigenetic proteins are a key subset of 
coregulatory partners of AR and many other 
TFs as they are essential for transcriptional pro-
cesses, regulating chromatin structure as well 
as accessibility. Alterations in epigenetic 
machinery proteins are frequent in prostate 
cancer and have been suggested to drive carci-
nogenesis and evolution of treatment resis-
tance, as well as contribute to inter and/or intra 
tumoral heterogeneity [10, 11]. A number of 
these outcomes are the result of altered epigen-
etic coregulators disrupting AR signalling and 
such coregulators thus represent potential tar-
gets for therapeutics.

16.2  AR Structure 
and Coregulator Binding 
Interactions

The androgen receptor is a 919 amino acid pro-
tein (although size can vary due to the presence 
of a polymorphic polyglutamine tract) that can 
structurally be divided into four distinct domains: 
an N-terminal activation domain, (AF1), a DNA 
binding domain (DBD), a hinge region, and a 
ligand binding domain (LBD). The LBD con-
tains the ligand binding pocket, a ligand- 
dependent activation domain (AF2) and binding 
function 3 (BF3) site [12–14]. A nuclear local-
ization signal (NLS) is present in the DBD and 
hinge region [15]. In its unliganded form, the AR 
is largely localized in the cytoplasm in a hetero-
complex with chaperones and immunophilins, 
which maintains it in a conformation conducive 
to ligand binding [16]. Upon binding to ligands, 
the AR dissociates from the chaperone complex 
and translocates to the nucleus where it homodi-
merizes and binds to palindromic dihexameric 
recognition sequences, termed androgen 
response elements (AREs), within regulatory 
regions (enhancers or promoters) of target genes 
[17, 18]. At AREs, the AR recruits and cooper-
ates with other factors including coregulators; 
interactions between AR and partner protein 
domains leading to the assembly of large multi-
protein complexes that are necessary for tran-
scriptional regulation (Fig. 16.1A).

Coregulator recruitment by the AR is deter-
mined by type of ligand. Binding of an agonist 
within the LBD causes a conformational change, 
inducing formation of the AF2 hydrophobic 
binding cleft that recruits coactivators for recep-
tor transactivation [19]. Interaction with AF2 is 

Fig. 16.1 (continued) elements (AREs) and associates 
with coregulatory proteins and transcriptional machinery 
(B) Pioneer factors open compacted chromatin, allowing 
AR to access DNA (C) AR-associated ATP-dependent 
chromatin remodellers enhance chromatin accessibility 

(D) Histone modifiers are recruited by the AR and modify 
surrounding histones (E) Epigenetic readers “read” his-
tone marks and act as a link to recruit other protein com-
plexes (f) Chromatin looping is required to link enhancers 
elements to gene promoters
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Fig. 16.1 Epigenetic regulation of androgen receptor 
signalling (A) Schematic diagram of AR mediated tran-
scription in prostate cells. Testosterone is converted to 

dihydrotestosterone (DHT) in prostate cells. DHT binds 
to the AR, promotes its dimerization and translocation to 
the nucleus. In the nucleus AR binds to androgen response 
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mediated by short, alpha-helical LXXLL or 
FXXLF motifs (L = leucine, F = phenylalanine, 
X = any amino acid) in coactivators, although the 
AR AF2 appears to preferentially bind to the 
FXXLF motif [20, 21]. Corepressors use 
extended LXXLL-like motifs, called corepressor 
nuclear receptor boxes (CoRNR boxes); these 
can interact with the AR following antagonist 
binding, which promotes conformational changes 
that accommodate this bulkier motif [22]. The 
AF2 coactivator binding site is blocked by this 
conformation of antagonist-bound AR [23]. 
Although these are the best-characterised modes 
of interaction, coregulator recruitment can also 
occur via interactions between the AR BF3 site, 
N-terminal AF1 or DBD and with regions other 
than the LXXLL/FXXLF motif in coregulators 
[13, 14, 19, 24].

16.3  AR-Coregulator Mediated 
Alteration of the Chromatin 
Landscape

Genomic DNA in eukaryotic nuclei is complexed 
around histone octamers to form nucleosomes, 
arrays of which are further coiled into hetero-
chromatin. Chromatin is further compacted into 
higher order fibres, i.e. chromosomes [25, 26]. 
This compact organization of genomic DNA, by 
hindering indiscriminate access of transcription 
factors to binding sequences, facilitates tight reg-
ulation of gene expression. Key steps in gene 
transcription include dynamic reorganization of 
chromatin by transcription factor complexes, 
recruitment of basal transcription machinery, 
assembly of the preinitiation complex (PIC) at 
promoters and RNA polymerase activity [27].

The AR transcription complex assembled at 
target gene regulatory regions contains several 
coregulators that are modifiers of chromatin 
structure. This includes nucleosome remodellers, 
histone modifying/interacting proteins and medi-
ators of chromatin looping (Fig.  16.1). 
Coregulators are initially recruited by interac-
tions with the AR but subsequent coregulator 
recruitment is also dependent on targeting by and 
interplay with coregulators that are already part 

of the complex [28]. The coregulator composi-
tion within an AR complex is likely to be both 
cell and target gene specific.

16.3.1  Pioneer Factors

Due to the aforementioned supercoiling of chro-
matin, most regions of genomic DNA are inac-
cessible for binding by transcription factors so 
their initial binding to recognition sequences is 
often facilitated by pioneer factors. These pro-
teins have the unique ability to bind to and “relax” 
compacted chromatin, enabling access for other 
transcription factors and regulatory proteins 
(Fig.  16.1B) [29]. Pioneer factors have various 
mechanisms for de-compacting chromatin which 
include disrupting histone-DNA contacts to 
destabilize chromatin, evicting histones and 
recruiting chromatin modifiers [30, 31].

Pioneer factors collaborate with nuclear recep-
tors to regulate distinct tissue-specific transcrip-
tional programs [32]. The AR-associated pioneer 
factors FOXA1, HNF4α and AP-2α, for instance, 
regulate distinct AR cistromes (i.e., genome-wide 
AR binding sites) in the prostate, kidney and epi-
didymis, respectively [33]. Besides FOXA1, 
other pioneer factors such as GATA2 and 
HOXB13 regulate the AR cistrome in normal as 
well as prostate cancer cells [34]. Indeed, these 
factors are critical for prostate cancer transforma-
tion and progression. Overexpression of FOXA1, 
for example, has been shown to increase AR 
chromatin binding to facilitate prostate cancer 
growth [35], while ectopic expression of FOXA1 
and HOXB13 in a normal prostate epithelial cell 
line was shown to redistribute AR binding sites to 
resemble the pattern in prostate tumours [36]. 
Moreover, silencing of FOXA1 reprograms AR 
binding in prostate cancer [37]. Besides the full- 
length AR, both FOXA1 and GATA2 contribute 
to androgen deprivation therapy (ADT) resistant 
prostate cancer by acting as pioneer factors for 
the DNA binding of AR variants [38, 39]. In 
addition to enabling chromatin access directly, 
pioneer factors also facilitate recruitment of his-
tone modifiers and remodellers for further chro-
matin decompaction [40, 41].
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16.3.2  Nucleosome Remodellers

Besides binding to regions of the genome that 
are already open, AR also has the ability to fur-
ther influence chromatin accessibility by regu-
lating nucleosome occupancy at target enhancers 
[42–44]. To mediate these changes, the AR 
recruits a class of regulators that remodel chro-
matin using the energy from ATP hydrolysis to 
remove or reposition nucleosomes (Fig. 16.1C) 
[45]. AR activity is primarily coactivated by two 
subfamilies of ATP-dependent chromatin 
remodellers  – the SWItch/Sucrose Non-
Fermentable (SWI/SNF) and Chromodomain 
Helicase DNA-binding (CHD) proteins 
(Table 16.1).

The SWI/SNF remodelling complex is a large 
complex comprised of 11–15 subunits (variable 
by context) including ATPases (BRG1, BRM) 
and core or associated factors that confer speci-
ficity [87, 88, 91]. Of these, BAF60a, BAF57 and 
SRG3 (a mouse homolog of human BAF155) 
interact with/coregulate the AR [87, 88, 91]. The 
ATPase present may also confer specificity, as 
BRG1 appears to regulate chromatin accessibil-
ity for a subset of AR target genes [92]. Most 
tumour types have mutations in one or more sub-
units of the SWI/SNF complex [93]. Unlike in 
other malignancies however, mutations of SWI/
SNF subunits are uncommon in PCa but expres-
sion levels are often altered during disease pro-
gression [89, 94]. In benign and malignant 
prostate tissues BRG1 and BRM are reciprocally 
expressed, with increased BRG1/decreased BRM 
expression associated with cancer progression 
and metastasis [89]. Loss of BRM is also associ-
ated with prostatic hyperplasia and castration 
resistance in murine prostatic epithelia, but 
BRM-containing SWI/SNF complexes appears 
to be preferred for AR activity in cell line models, 
which is likely to be sustained by BRG1 or other 
remodelling complexes upon loss of BRM [95, 
96]. SWI/SNF subunits can coactivate AR inde-
pendently of the remodeller complex’s ATPase 
function  – SRG3, a core subunit of the mouse 
SWI/SNF complex, enhances AR transactivation 
even in the absence of both BRG1 and BRM 
[91].

The CHD family of remodellers consists of 
nine members (CHD 1-9) characterized by an 
N-terminal chromodomains and a central ATPase 
domain [97]. While some CHD proteins function 
as monomers, others are part of multiprotein 
complexes [98]. Members  of the CHD family, 
have divergent functions, for example CHD8 acts 
as an AR coactivator and is upregulated in PCa 
whereas CHD1, which is associated with AR 
transcription at specific enhancers, is frequently 
deleted in PCa [90, 99]. Interestingly, although 
AR and CHD1 associate on chromatin and have 
significant overlap in their chromatin-bound 
interactome, they do not appear not to interact 
directly but may be bridged by overlapping inter-
acting coregulators [99, 100].

16.3.3  Histone Post-translational 
Modifiers

Besides pioneer factors and nucleosome remod-
elling complexes, histone post-translational mod-
ifiers are also major regulators of chromatin 
accessibility (Fig.  16.1D). Histone octamers 
within nucleosomes consist of two copies of each 
of the canonical histones H3, H4, H2A and H2B 
[101]. Variant versions also exist, which can sub-
stitute for canonical histones and play essential 
roles during replication, gene regulation and 
repair [102]. Structurally, histone proteins con-
tain a histone fold region and a tail region, with 
the fold regions responsible for formation of the 
octamer. Histone tails protrude out of the nucleo-
some and are targets for modifications that regu-
late chromatin structure (Fig.  16.2). Histone 
modifications occur on multiple residues within 
these N-terminal tails and also in the histone 
body [103]. Currently, at least 80 histone post 
translational modifications (PTMs) have been 
identified and include acetylation, methylation, 
phosphorylation, ubiquitylation, cronoylation, 
succinylation, and sumoylation events. These 
modifications are frequently regulated in a coor-
dinated manner with combined modifications 
governing regulatory events. Mechanisms by 
which histone PTMs modulate DNA accessibil-
ity differ: acetylation and phosphorylation for 
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Fig. 16.2 Histone 
structure and formation of 
octamers. Histone proteins 
are characterized by a tail 
region and a histone fold 
motif made up of a loop 
(I), central helix (II) and a 
short helix (III). The fold 
domain facilitates histone 
heterodimerization: two 
H2A-H2B dimers and a 
H3-H4 tetramer combine 
to form the octamer around 
which DNA is wound to 
form nucleosomes. Histone 
tails protruding from 
nucleosomes are targeted 
for post translational 
modifications

instance, alter the charge on histones thereby dis-
rupting electrostatic interactions with DNA, 
whereas methylation enhances or disrupts inter-
actions with chromatin binding factors [104].

Histone modifying/interacting proteins can be 
broadly classed as: writers, which deposit marks; 
those that remove marks, termed erasers; and 
readers that sense the modification and effect 
changes. AR associated histone writers and eras-
ers modulate gene expression largely via changes 
in acetylation at lysine residues and methylation 
at lysine/arginine residues in histone tails 
(Table 16.1).

16.3.3.1  Histone Acetylases/
Deacetylases

Histone acetylation is generally permissive of 
gene activation, and deacetylation is generally 
restrictive, with marks such as H3K27ac, 
H4K16ac, H3K9Ac and H3K14Ac enriched at 
active enhancers and/or promoters [105, 106]. 
Histone acetyl transferases (HATs), such as 
members of the NCOA/p160/Steroid Receptor 
Coactivator (SRC) family, p300/CBP and PCAF, 
are some of the earliest coregulators recruited by 
agonist activated AR [107]. Although p160/SRC 
proteins have weak histone acetylase activity 
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Table 16.1 AR-associated epigenetic coregulators and their published roles in prostate cancer

Coregulator Function
Coregulator 
type Role in PCa References

Acetylases/Deacetylases
CBP Acetylates various residues on 

H1, H2, H3, H4
Coactivator Upregulated in CRPC [46, 47]

p300 Acetylates various residues on 
H1,H2,H3,H4; Acetylates AR

Coactivator Upregulated in CRPC [46, 47]

PCAF H3K14, H3K9 acetylase Coactivator Oncogenic [48]
KAT5/TIP60 Acetylates various residues on 

H2A, H3, H4; Acetylates AR
Coactivator Upregulated in aggressive PCa [49]

KAT7 H3K14/K23, H4K5/K8/K12 
acetylase

Corepressor Unknown [50]

KAT8 H4K16 acetylase Coactivator Oncogenic [51]
NCOA1/
SRC1

H3, H4 acetylase Coactivator Oncogenic; Upregulated in PCa 
metastases

[52]

NCOA2/
SRC2/TIF2

Weak histone acetylase activity Coactivator Overexpressed in recurrent PCa [53]

NCOA3/
SRC3/AIB1

H3, H4 acetylase Coactivator Oncogenic [54]

HDAC1 Deacetylates H2A, H2B, H3 and 
H4

Corepressor Upregulated in PCa [55, 56]

HDAC2 Deacetylates H2A, H2B, H3 and 
H4

Corepressor Upregulated in PCa [56, 57]

HDAC3 Deacetylates H2A, H2B, H3 and 
H4

Corepressor Upregulated in PCa [56, 57]

HDAC7 Deacetylates H2A, H2B, H3 and 
H4

Corepressor Unknown [58]

SIRT1 Deacetylates H1 H2A, H2B, H3 
and H4; Deacetylates AR

Corepressor Upregulated in PCa [59, 60]

NCOR1 Required for recruitment and/or 
activity of HDACs

Corepressor Downregulated in PCa [61, 62]

NCOR2/
SMRT

Required for recruitment and/or 
activity of HDACs

Corepressor Reduced expression associated 
with shorter disease-free survival

[62, 63]

Methylases/Demethylases
CARM1 Asymmetric H3R16, R26 

methylase
Coactivator Upregulated in PCa [64]

EZH2 H3 methylase Coactivator Oncogenic [65]
PRMT1 H4R3 methylation Coactivator Oncogenic [66]
NSD1 H3K36me2 methylase Coactivator Upregulated in metastatic PCa [67, 68]
NSD2 H3K36me1/2 methylase Coactivator Pro-metastatic [69, 70]
SET1 H3K4 methyltransferase Coactivator Oncogenic [71]
SET9 H3K4me1,2 methylase, 

methylates AR
Coactivator Oncogenic [72, 73]

G9A H3K9 methylation Coactivator Upregulated in PCa [74]
KDM1A/
LSD1

H3, H4 demethylase Coactivator Oncogenic [75]

KDM3A/
JMJD1A

H3K9me1/2 demethylase Coactivator Oncogenic [76]

KDM4A/
JMJD2A

H3K9me3 demethylase Coactivator Oncogenic, Upregulated in PCa [24]

KDM4B/
JMJD2B

H3K9 demethylase Coactivator Oncogenic, Upregulated in PCa [77]

(continued)
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Table 16.1 (continued)

Coregulator Function
Coregulator 
type Role in PCa References

KDM4C/
JMJD2C

H3K9 demethylase Coactivator Oncogenic [78]

KDM4D/
JMJD2D

H3K9me3 demethylase Coactivator Upregulated in PCa [24]

KDM5B/
JARID1B

H3K4 demethylase Coactivator Upregulated in PCa [79]

KDM7A H3, H4 demethylase Coactivator Oncogenic; Upregulated in PCa [80]
KMD8/
JMJD5

H3K36me2 demethylase Coactivator Upregulated in PCa [81]

Epigenetic readers
ING1b H3K4me3 reader Corepressor Tumour suppressive; 

Downregulated in CRPC
[82]

ING2 H3K4me3 reader Corepressor Tumour suppressive [83]
ING3 H3K4me3 reader Coactivator Oncogenic [84]
TRIM24 H3K4, H3K23Ac reader Coactivator Oncogenic; Upregulated in CRPC [85]
TDRD3 Asymmetric H3R17me2 and 

H4R3me2 reader
Coactivator Unknown [86]

Chromatin remodellers
BAF57 SWI/SNF subunit Coactivator Oncogenic [87]
BAF60a SWI/SNF subunit Coactivator Unknown [88]
BRG1 SWI/SNF subunit Coactivator Oncogenic [89]
BRM SWI/SNF subunit Coactivator Oncogenic [89]
CHD8 CHD remodeller Coactivator Oncogenic [90]

they have been proposed to act as a bridge, 
recruiting the more potent p300/CBP and PCAF 
HATs as well as the methyltransferase, 
coactivator- associated arginine methyltransfer-
ase 1 (CARM1) [107–109]. Members of the 
p160/SRC family are required for optimal expres-
sion of AR targets, with disruption of the interac-
tion between AR and SRC-1 shown to selectively 
inhibit AR activity [110].

p300 and CBP are paralogous proteins that 
serve as critical coactivators of NR activity and 
are associated with the H3K18Ac/H3K27Ac 
active marks [111]. Both proteins interact with 
the AR, are recruited to regulatory regions of AR 
targets such as PSA and promote AR transcrip-
tional activation [112]. p300, however appears to 
be dominant in the context of AR signalling, reg-
ulating many more AR targets than CBP [113, 
114]. p300/CBP and the acetylation marks it 
deposited also appear to be necessary for recruit-
ment of the SWI/SNF complex [28]. Several 
members of the evolutionarily conserved MYST 

family of HATs also serve as AR coregulators: 
while Tip60/Kat5 and KAT8 are coactivators, 
KAT7 has been shown to repress AR activity [50, 
115, 116].

Histone deacetylases (HDACs), which 
catalyse the removal of acetyl groups from his-
tone and other proteins, are often recruited in 
cooperation with corepressors by antagonist 
bound AR: HDAC1 and 2, for instance, are 
recruited to AR target promoters along with the 
NCOR and SMRT corepressors in the presence 
of the AR antagonist bicalutamide [107]. 
Bicalutamide also represses AR transcriptional 
activity by recruiting the HDAC sirtuin1 (SIRT1), 
which in turn likely contributes to gene repres-
sion by deacetylating histone H3 at target pro-
moters and enhancers [117]. Additionally, SIRT1 
is able to reduce AR coactivation by p300 [59]. 
Some HDACs, such as HDAC1 and HDAC3, 
however, are required for transcription of AR 
activated genes as they facilitate coactivator and 
RNA PolII recruitment, suggesting that hyper-
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acetylated chromatin may in some circumstances 
inhibit recruitment of these essential factors 
[118].

Both HATs and HDACs can also influence AR 
transcriptional activity independently of their 
histone modifying properties, by modifying the 
AR itself. The AR can be post-translationally 
modified by acetylation, phosphorylation, meth-
ylation and sumoylation; these affect protein sta-
bility, interactions with other proteins, 
localization and structure [119]. AR acetylation, 
carried out by p300, PCAF and TIP60/KAT5, 
occurs at lysine residues within a conserved 
KLKK motif in the AR hinge region and is criti-
cal for hormone induced activation, augmenta-
tion of AR activity, corepressor detachment and 
coactivator recruitment [55, 120, 121]. 
Conversely, HDACs serve to inhibit AR activity. 
This can happen either directly, such as when 
HDAC1 deacetylates AR to downregulate its 
activity, or indirectly by HDAC4 through a 
SUMOylation dependent mechanism [55, 122]. 
Interestingly, both TIP60/KAT5 and HDAC1 can 
co-exist in the same complex along with AR, 
potentially antagonizing each other’s actions to 
control AR activity [55].

16.3.3.2  Histone Methylases/
Demethylases

The effects of histone methylation on gene activ-
ity are nuanced, and depend on the residue being 
modified and the number of methyl groups added 
[123]. Histone methylation is regulated by 
 histone methyl transferases (HMTs) or demethyl-
ases (HDMs) which modify either arginine or 
lysine residues. Generally, methylation at H3K4, 
H3K36, H3K79 and H3R17 is associated with 
gene activation, while methylation at H3K9, 
H3K27 and H4K20 is associated with repression 
[124, 125].

As part of AR transcriptional complexes, 
HMTs/HDMs work in concert with other coregu-
lators to affect modification at multiple histone 
residues, with different outcomes on AR activity. 
Examples of AR associated histone lysine modi-
fiers include SET9, which activates transcription 
by methylating H3K4 at enhancers and TSS 

regions, but prevents deposition of repressive 
dimethylation marks on H3K9 and JARID1B, 
which inhibits transcription via the removal of 
two and three methyl groups from H3K4 [72, 
79]. Some methyltransferases are recruited to the 
AR transcriptional complex by HATs: e.g. 
CARM1, which methylates H3, requires the 
presence of the acetylases NCOA1/SRC1 or 
TIF2 to enhance AR activity [126]. On the other 
hand, methyltransferase activity can facilitate 
histone acetylation – the PRMT1 methyltransfer-
ase influences AR activity by methylating H4R3, 
which consequently results in H4 acetylation by 
p300, while SET9 is necessary for androgen 
induced recruitment of P/CAF [66, 72]. These 
interactions between different histone modifica-
tion events also underscore the complexity of 
these regulatory events to finely tune and condi-
tionally regulate transcription.

Other instances of interplay between histone 
modifiers include the demethylases KDM1A/
LSD1 and JMJD2C, which act cooperatively to 
demethylate H3K9 resulting in activation of AR 
transcriptional activity [78]. KDM1A/LSD1, 
however, can also form a complex with the 
RCOR1/CoREST corepressor to demethylate 
H3K4, thereby turning off AR responsive enhanc-
ers [127, 128]. Histone acetylation and methyla-
tion at AREs can also involve crosstalk with 
phosphorylation. Protein kinase C-related kinase 
1 (PRK1) acts in an androgen dependent manner 
to phosphorylate H3T11, which subsequently 
enhances demethylation of H3K9 by JMJD2C or 
LSD1and acetylation of H3K9/K14, resulting in 
upregulation of AR activity [129]. PRK1 also 
promotes phosphorylation of H3T6 via protein 
kinase C beta I (PKCβI), which prevents 
KDM1A/LSD1 from demethylating H3K4 dur-
ing AR-dependent gene activation [130].

Like acetylation, methylation of the AR pro-
tein at the KLKK (K  =  Lysine, L  =  Leucine) 
motif also affects its activity. Thus far, the HMT 
SET9 has been shown to directly methylate AR 
and enhance transcriptional activity. The demeth-
ylase KDM4B however can indirectly stabilize 
AR by interacting with it and potentially masking 
ubiquitin acceptor sites [73, 77].

16 Epigenetic Coregulation of Androgen Receptor Signaling
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16.3.4  Epigenetic Readers

Epigenetic marks established by modifiers are 
recognized and interpreted by effector proteins, 
called epigenetic readers, to modify chromatin 
structure. Reader proteins contain domains such 
as the plant homeodomain (PHD), Bromodomain 
and extra terminal (BET), Chromodomain 
(CHD), WD40 repeat (WDR) or Tudor domains 
which determine binding specificity, with the 
PHD, CHD and Tudor domains recognizing 
methylated lysine/arginine residues while BET 
proteins bind to acetylated lysines [131]. Reader 
proteins/domains link histone marks to other his-
tone modifiers, or to remodelling, transcription, 
repair or other complexes (Fig.  16.1E). Of the 
PHD domain proteins the ING family, which 
binds to the H3K4 methylation mark and subse-
quently recruit HATs and HDACs, are AR coreg-
ulators [104]. While ING1 and 2 are corepressors, 
ING3 promotes AR transcriptional activity [82–
84]. ING1 and ING2 are potentially recruited to 
AR transcriptional complexes through their 
reader activity. Their corepressor activity may 
relate to their role in recruiting the mSIN3A/
HDAC repressor complex [82, 83]. While ING3 
can target the AR coactivator HAT TIP60/Kat5 to 
H3K4me3 marks through its PHD reader activity, 
this mechanism does not appear to be contribute 
to ING3 mediated AR transactivation. In this 
instance, ING3 has a cytoplasmic role scaffold-
ing and increasing cytoplasmic TIP60 and AR 
interaction, subsequently enhancing receptor 
acetylation and nuclear translocation [84]. 
TDRD3, a Tudor domain reader of H3/H4 argi-
nine marks, is an AR transcriptional coactivator 
likely functioning as a scaffolding molecule for 
assembly of protein complexes [86].

16.3.5  Chromatin Looping

Most AR enhancers, like enhancers generally, are 
located distal to promoters of target genes, which 
necessitates long-range interactions if they are to 
regulate gene expression. Regulatory regions for 
AR target genes were initially defined as located 
within 20–50  kb of the gene but an AR-bound 

enhancer-target gene interaction spanning 650 kb 
has recently been reported [132, 133]. These 
interactions are mediated by AR and other pro-
teins (including coregulators) bound at both sites 
and lead to the formation of chromatin loops 
(Fig.  16.1F). Several well-known AR targets, 
including PSA and TMPRSS2, are regulated by 
chromatin looping [134, 135]. The Mediator 
multi-subunit complex is a key regulator of gene 
expression through the formation of enhancer- 
promoter chromatin loops. The mediator com-
plex bridges TFs at the enhancer with RNA pol II 
and preinitiation complex at promoters [136]. 
The MED1/TRAP220 subunit of this complex is 
a coactivator for the AR and other NRs, co- 
recruited along with the AR to AREs upon andro-
gen stimulation [137]. MED1 depletion, or 
inhibition of its interaction with AR, leads to a 
reversal of androgen induced transcriptional 
changes in prostate cancer cell lines [137].

16.4  Dysregulated Expression 
and Function of Coregulators 
Promotes PCa Progression 
by Multiple Mechanisms

The AR plays a central role in in prostate carcino-
genesis and targeting it by ADT, with drugs such 
as enzalutamide, remains the standard of care for 
recurrent, advanced, and metastatic disease. ADT 
aims to block the action of the AR by either 
reducing levels of AR agonists (androgens) or by 
inhibiting the AR with antagonists (antiandro-
gens). While this is initially successful, patients 
usually progress to ADT-resistant prostate cancer 
(ADT-R-PC) within a few years [138]. ADT- 
R- PC is characterized by disease progression 
despite ADT, but the AR signalling axis remain-
ing active in the majority of cases. Resistance to 
ADT via persistent AR signalling can occur via a 
number of AR signalling alterations, including 
AR amplifications, mutations, variants and 
coregulator associated mechanisms [138].

Dysregulated coregulator function and expres-
sion is a frequent feature of ADT-R-PC, suggest-
ing an important role in disease progression and 
therapy resistance (Table  16.1) [8]. Indeed, 

R. C. Fernandes et al.



287

mechanisms by which epigenetic coregulators 
can induce aberrant AR signalling include (i) 
activating AR under low hormone conditions, (ii) 
post-translational modification of the AR or asso-
ciated proteins (iii) facilitating interactions 
between AR and other factors and (iv) inducing 
expression of AR target genes in the absence of 
AR.

Taking the first such mechanism, coregulators 
can enable activation of the AR in the absence or 
low levels of agonists, thus escaping ADT- 
induced androgen blockade. TRIM24, for exam-
ple, is a bromodomain containing histone acetyl 
reader that displays increasing expression in 
recurrent disease and as PCa progresses from pri-
mary to CRPC. Under low hormone conditions, 
TRIM24 can promote proliferation of PCa cells. 
This is attributed to its ability to regulate more 
AR responsive and cell cycle associated genes 
under hormone-starved compared to hormone- 
stimulated conditions [85]. Additionally, AR and 
TRIM24 coactivated genes are upregulated in 
CRPC and are predictive of recurrence [85]. This 
has been proposed to be a result of TRIM24 con-
comitantly binding to acetylated histones and 
AR, thus anchoring AR to chromatin, under 
androgen-depleted conditions [85]. As another 
example, increased levels of NCOA2/SRC-2/
TIF2 in post-ADT recurrent PCa are proposed to 
activate AR signalling by increasing responsive-
ness of AR to lower affinity androgens [139]. 
Changes in SWI/SNF remodelling components 
are also able to contribute to disease progression 
and hormone independent disease. BAF57, which 
is upregulated with increasing tumour grade, 
enhances AR transactivation under androgen- 
depleted conditions [140].

Epigenetic coregulators that modify histones 
often also possess the ability to modify and stabi-
lize AR and other proteins, thus contributing to 
androgen independence through this mechanism. 
For instance, overexpression of TIP60 in CRPC 
increases levels of acetylated AR, stabilizing it 
and consequently leading to increased localiza-
tion in the nucleus despite the absence of andro-
gens [141]. Increased expression of p300 has 
been demonstrated to be directly correlated with 
PCa proliferation, and to be a potential marker 

predictive of aggressiveness and acquired ADT 
resistance. One mechanism for this might be its 
ability to acetylate and stabilize the histone 
demethylase JMJD1A, which results in enhanced 
AR activity and resistance to enzalutamide [142, 
143]. In the case of the MED1 mediator subunit, 
phosphorylation by ERK or CDK7 is required for 
its coactivator activity [137, 144]. In enzalu-
tamide resistant PCa cells, increased levels of 
phosphorylated MED1 are suggested to contrib-
ute to restored AR signalling [137].

Additionally, the ability of some coregulators 
to scaffold interactions between AR and other 
factors can indirectly promote aberrant AR activ-
ity. ING3 promotes activation of the AR by serv-
ing as a scaffold to increase interaction between 
AR and TIP60 [84]. This consequently leads to 
increased AR stability through acetylation, and 
activation of target gene transcription [84]. ING3 
is potentially important for androgen indepen-
dent growth since knockdown of this protein pre-
vented cell growth under conditions that mimic 
ADT [84].

Finally, coregulators have been shown to com-
pensate for loss of AR signalling by inducing 
expression of genes that drive PCa growth. 
Phosphorylated MED1 can induce expression of 
the AR target UBE2C through chromatin loop-
ing, in both AR positive and negative ADT-R-PC, 
to drive cell growth [145]. In another example, 
p300 promotes androgen-independent expression 
from the canonical AR target PSA promoter fol-
lowing long-term exposure of cells to IL-6, a 
cytokine elevated in patients with androgen- 
independent disease [146].

16.5  Therapeutic Targeting of AR 
Epigenetic Coregulators

Epigenetic enzymes have been of interest as ther-
apeutic targets for the last few decades for several 
reasons, including: the reversible nature of epi-
genetic modifications; the tendency of epigenetic 
proteins to be differentially expressed in disease 
conditions; and the ability to inhibit these pro-
teins using small molecule inhibitors [147]. 
Several small molecule inhibitors are available 
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for epigenetic coregulators that coactivate AR 
function, and have been tested preclinically or in 
early clinical trials for prostate cancer 
(Table 16.2). For the p300/CBP HAT, perhaps the 
most promising candidate so far is CCS1477 
(Inobrodib), a potent and selective bromodomain 
inhibitor currently in Phase1/2 trials for meta-
static PCa and other solid tumours [46]. In vitro, 
this molecule inhibits PCa cell growth as well as 
signalling by AR or AR splice variants, and dem-
onstrates anti-tumour activity in vivo [46]. Of the 
MYST family of HATs, inhibitors exist for 
KAT5,7 and 8 coactivators, although none have 
progressed beyond testing in cell line models. 
The NU9056 inhibitor for KAT5/TIP60 can 
affect AR levels and expression of PSA in PCa 
cell lines, potentially via inhibiting acetylase 
activity [49]. Furthermore, ADT-R-PC cell line 
models were more sensitive to NU9056 com-
pared to androgen responsive lines, suggesting 
therapeutic potential [49]. Likewise, histone 
deacetylase inhibitors (HDACIs) are antiprolif-
erative in preclinical models of prostate cancer. 
Inhibiting HDACs in PCa may seem counterin-
tuitive given that HAT activity activates AR sig-
nalling, however HDACs are frequently 
upregulated in PCa and their inhibition has been 
found to supress AR signalling. As mentioned 
earlier, HDAC 1 and 3 can activate AR transcrip-
tion by coactivator and PolII recruitment, an 
effect that is abrogated by HDACIs [118]. As 
another example, the LAQ824 HDACI represses 
AR activity by inducing acetylation of the HSP90 

chaperone protein, which leads to its dissociation 
from the AR and subsequently AR degradation 
[153]. HDACIs also reduce AR mRNA and pro-
tein at the transcriptional level [118]. HDACIs 
are more effective in AR-positive prostate cell 
lines supporting the concept of these drugs acting 
in part through AR signalling Indeed, synergistic 
effects have been observed in vitro on combining 
HDAC inhibitors with the anti-androgen bicalu-
tamide and such combinations have been assessed 
in clinical trials [154, 155]. Bicalutamide has 
been shown to repress AR gene expression by 
recruiting HDACs [117], so synergistic effects 
observed on cotreatment with HDACIs are poten-
tially mediated by other pathways. Histone meth-
yltransferase and demethylase inhibitors are 
similarly promising candidates for therapeutic 
use with some, like the EZH2 inhibitor GSK126, 
showing synergistic effects with enzalutamide 
[151] (Table 16.2). Unlike acetylation, transcrip-
tional effects of methylation tend to be  residue 
specific, hence either methyltransferase or 
demethylase inhibitors may be required for inhib-
iting growth.

16.6  Conclusion

Androgen receptor coregulation by epigenetic 
enzymes is integral to its transcriptional activity. 
Epigenetic coregulators modulate AR transcrip-
tional activity by diverse mechanisms, some of 
which have been adapted by prostate cancer cells 

Table 16.2 Inhibitors targeting androgen receptor epigenetic coregulators in prostate cancer

Coregulator Inhibitors Testing status in prostate cancer References
p300/CBP CCS1477 Phase 1/2 clinical trial [46]
HDACs Panobinostat, Vorinostat Phase 1/2 clinical trial (with Bicalutamide) NCT00878436

NCT00589472
TIP60/KAT5 NU9056 Cell lines [49]
CARM1 EZM2302 Cell lines [148]
NSD2 MCTP-39 Cell lines, mouse xenografts [69]
KDM7A TC-E 5002 Cell lines [80]
KDM1A/LSD1 INCB059872 Cell lines [149]
KDM4A/B NSC636819 Cell lines [150]
EZH2 GSK126

PF-06821497
Cell lines
Phase 1 clinical trial
(for CRPC)

[151]
NCT03460977

TRIM24 TRIM24-C34 Cell lines [152]
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to drive disease progression and/or therapy resis-
tance. Epigenetic targets represent promising tar-
gets for PCa therapy, but only a few have currently 
made it to clinical testing. Further investigations 
into the role of these proteins in AR signalling 
have the potential for developing new therapies, 
particularly those that can work in combination 
with androgen pathway targeting therapy.
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