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Abstract

Prostate cancer (PCa) proliferation is dictated 
by androgen receptor (AR) signaling, which 
regulates gene expression through cis-
regulatory regions including proximal and dis-
tal enhancers. The repertoire of AR interactions 
at enhancers is dependent on tissue and cellu-
lar contexts and thus shape a spectrum of phe-
notypes through such epigenetic heterogeneity. 
Moreover, PCa is a multifocal disease and dis-
plays a high degree of intra- and inter-tumor 
heterogeneity, adding to the phenotypic com-
plexity. It is increasingly becoming clear that 
PCa may be considered an epigenetic disease 
caused by various molecular causes with pro-
found consequences and clinical implications 
which are underpinned by enhancer interac-
tion heterogeneity.

In this review, we provide a detailed over-
view of molecular interactors that affect pros-
tate cancer epigenetic heterogeneity, such as 
coding and non-coding somatic variants, large 
scale structural variations, pioneer factor 
binding at enhancers and various contexts that 
influence enhancer engagement heterogeneity 
in PCa development and progression. Finally, 
we explore how the vast heterogeneity in epi-
genetic profiles identified in recent omics stud-
ies results in distinct genomic subtypes which 
predict disease progression and thus offer 
opportunities in biomarker discovery and fur-
ther personalizing cancer treatment. As such, 
heterogeneous enhancer interactions take cen-
ter stage in elucidating mechanisms of prostate 
cancer progression, patient prognostication, 
therapy discovery and overcoming acquired 
treatment resistance.
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Abbreviations

AR	 Androgen receptor
ARBS	 Androgen receptor binding site
ARE	 Androgen response element
ADT	 Androgen deprivation therapy
ChIP-seq	 Chromatin immunoprecipitation fol-

lowed by sequencing
CRPC	 Castration resistant prostate cancer
DHT	 Dihydrotestosterone
GWAS	 Genome wide association study
NR	 Nuclear receptor
PCa	 Prostate cancer
PDX	 Patient derived xenograft
PIN	 Prostatic intraepithelial neoplasia
PTM	 Post-transcriptional modification
SE	 Super enhancer
SNP	 Single nucleotide polymorphism
TAD	 Topologically associating domains
TF	 Transcription factor
TSS	 Transcriptional start site

15.1	� Introduction

Enhancers were first discovered in 1981 when 
researchers of two independent groups found 
simian virus (SV40) DNA sequences 3kb dis-
tal to the SV40 promoter capable of stimulat-
ing transcriptional output of a linked β-globin 
gene by 200-fold when transfected in mam-
malian cells [1, 2]. These experiments gener-
ated a more complete understanding of how 
gene regulation emerges from an interplay 
between often distally located enhancers and 
proximal promoter regions. An onset of sub-
sequent studies discovered not only that 
enhancers are general genomic features in a 
variety of organisms including mammals [3–
7], but also that defects in enhancers can lead 
to pathogenesis [8–11]. Although the human 

genome contains approximately 20,000 pro-
tein coding genes [12], currently roughly fifty 
times more non-coding regulatory regions 
have been described across tissue types [13, 
14], prompting a reassessment of non-coding 
genome functionality. Moreover, genome-
wide association studies (GWAS) have shown 
that variants involved in human disease are 
enriched at non-coding regulatory elements 
over coding sequences [15]. Early genome-
wide studies identified the total repertoire of 
promoter and enhancer sequences based on a 
combination of ChIP-seq and chromatin 
accessibility assays with specific histone 
modifications such as high H3K27ac signal 
[16–18], whereas later a high proportion of 
H3K4 mono- versus tri-methylation allowed 
researchers to separate enhancers from pro-
moters [19, 20].

Successive research endeavors character-
ized enhancer sequences to have the follow-
ing properties: (1) activated enhancers 
mediate strong transcriptional activation of 
the gene it controls [1, 2], (2) activation is 
independent from the orientation of the 
enhancer element [1, 2], (3) enhancers func-
tion in a tissue specific manner [3], (4) 
enhancer sequences are bidirectionally tran-
scribed as short enhancer RNA (eRNA) tran-
scripts [21], (5) enhancers possess regulatory 
multiplicity, in which a single enhancer can 
activate multiple promoters of linked genes, 
whereas multiple enhancers can also regulate 
a single promoter [22, 23], (6) activation can 
be exerted in cis over genomic distances up to 
megabases away [24], (7) enhancers are scat-
tered throughout 98% of the non-coding 
human genome [25]. The last property was an 
unexpected finding of modern genome 
sequencing and annotation by the 
Encyclopedia of DNA Elements (ENCODE) 
project, showing that a large proportion of 
the non-coding genome has regulatory con-
trol over the expression of the coding genome 
[25]. Interestingly, changes in non-coding 
regulatory elements are frequently observed 
in oncogenesis [10, 11, 26].
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15.2	� Prostate Cancer as Enhancer-
Driven Disease

Prostate cancer (PCa) is the second-most com-
monly diagnosed malignancy in men worldwide 
[27]. PCa is mainly driven by the nuclear recep-
tor androgen receptor (AR) [28], that acts as a 
master transcription regulator of cell prolifera-
tion when bound to its cognate ligand dihydrotes-
tosterone (DHT) [29, 30]. While blockade of the 
AR signaling axis using androgen deprivation 
therapy (ADT) as a first line of treatment is ini-
tially successful [31, 32], over time resistance to 

ADT inevitably occurs and remaining cancer 
cells rebound as lethal castration resistant pros-
tate cancer (CRPC) [33, 34]. AR signaling per-
sists during CRPC despite castration level 
circulating testosterone, which highlights the 
essentiality of AR signaling in PCa cells. 
Sustained successful PCa treatment is challenged 
by the heterogeneous nature of PCa, which is 
present on multiple levels (Fig. 15.1).

PCa is a multifocal disease with ~60–90% of 
patients presenting multiple independent primary 
tumor foci at time of diagnosis [35–38]. Such 
foci exhibit inter-lesion heterogeneity, which 
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Fig. 15.1  Overview of sources of prostate cancer 
epigenetic heterogeneity: Epigenetic heterogeneity in 
AR enhancer interactions varies in different tissues and 
cellular contexts and can be induced by (a) pioneer fac-
tor binding at chromatin and (b) pioneer factor muta-
tions altering chromatin binding properties, (c) tissue 

and cellular context, (d) germline PCa risk single nucle-
otide polymorphisms, (e) PCa multifocality, disease 
stage and acquirement of therapy resistance, (f) non-
coding and (g) coding somatic variants and (h) large 
scale structural variations that amplify or delete 
genomic regions
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manifests in differences in cell morphology, 
tumor microenvironment and degrees of aggres-
siveness [39, 40]. Contrastingly, metastatic PCa 
lesions were reported to predominantly share a 
homogeneous, monoclonal background [41]. 
While primary local interventions, such as radio-
therapy and prostatectomy, affect the entire 
prostate and treat all foci successfully, these 
treatments are associated with significant adverse 
effects [42, 43]. An alternative approach revolves 
around limited local treatments that ablate only 
the largest tumor focus while sparing the prostate 
and limiting adverse effects. However, these 
strategies are complicated by PCa heterogeneity, 
as remaining lesions may still metastasize at a 
later stage [44, 45]. Second, intratumoral hetero-
geneity is observed in genetically diverse cell 
populations within a single tumor focus and 
arises from tumor microenvironmental cues, lin-
eage plasticity, as well as genetic and epigenetic 
defects [46–50]. Genomic inter-tumor heteroge-
neity manifests itself in the shape of small-scale 
genetic mutations like single nucleotide variants 
(SNVs), while copy number alterations (CNAs) 
and translocations of large-scale genomic ele-
ments are even more likely to impact tumor 
development [46, 51, 52]. Third, such events also 
impact cis-regulatory elements such as enhancers 
that tightly control expression on the same DNA 
strand, which disrupts epigenetic regulatory net-
works leading to profound phenotypic differ-
ences and loss of cellular identity [53].

An increasing amount of evidence illuminates 
a role for heterogeneous epigenetic regulation in 
PCa through AR [37, 54, 55], but how can intra- 
and intertumoral heterogeneous enhancer inter-
actions shape a spectrum of phenotypes and 
outcomes in PCa? As heterogeneity seems to be 
pervasive in tumors, one can ask the question 
what the contributions of different sources of het-
erogeneity in the progression of PCa are. Clearly, 
research questions and efforts have converged on 
elucidating the role of AR as oncogenic driver 
and the emergence of resistance. Can we apply 
such knowledge of AR chromatin interaction 
profiles and their dysregulation to attempt over-
coming resistance by optimizing and personaliz-
ing PCa treatment based on heterogeneity? In 

this review, we aim to address these questions by 
providing a comprehensive overview of recent 
progress that has been made on this subject and 
indicate which therapeutic avenues future 
research might illuminate.

15.3	� AR Biology and Enhancer 
Regulation in Prostate 
Cancer

Historically, nuclear receptors were investigated 
in the context of their activity at promoter ele-
ments. For AR and PCa, prostate specific antigen 
(PSA; encoded by KLK3) represents a highly 
characterized example of AR promoter binding, 
with specificity to prostate tissue and high andro-
gen inducibility [56, 57]. However, later studies 
revealed that AR binding at promoters is an 
exception and represents a relatively rare event, 
as compared to AR binding at enhancers [58]. 
Activated steroidal (Type I), nuclear receptors 
like AR possess the capacity to regulate tran-
scription of target genes through binding at 
enhancer elements that are located distally from a 
target gene’s transcriptional start site (TSS) [59, 
60]. Such distal regulation offers tight, but also 
highly modular control of transcription in 
response to hormonal cues, with many co-
regulators involved in transcriptional output [61]. 
Specifically, AR becomes activated upon binding 
with its cognate ligand dihydrotestosterone 
(DHT) in the cytosol, dimerizes and subsequently 
translocates to the nucleus where it binds to AR 
binding sites (ARBS) [29, 62]. Although AR’s 
DNA binding domain recognizes and binds 
androgen response elements (AREs) consisting 
of dihexameric palindromes on the DNA [63], 
ARE presence is not a strict requirement for 
DNA binding, since AR cooperates with interact-
ing TFs bound at AP-1, MYC, KLF and SREBF 
motifs [64, 65].

Recruitment of co-factors to enhancers is 
required for DNA looping and subsequent 
enhancer-promoter interactions. Factors bound 
at enhancers provide scaffolding for the large 
mediator complex to bind transiently and further 
recruit the transcriptional machinery [66–69]. 
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Indeed, mediator’s MED1 subunit contains 
LXXLL binding motifs that strongly interacts 
with the AR-AF2 domain in a ligand-dependent 
manner [70] and recently a cryo-EM study 
reported steroid receptor coactivator 3 (NCOA3/
SRC-3) to interact with an FXXLF binding motif 
in AR’s N-terminal domain, enabling p300/
CREB-binding protein (CBP) recruitment [71]. 
Since mediator recruits RNA polymerase II 
(RNAPII) and activates expression at promoters, 
enhancers can affect expression over large dis-
tances without direct promoter contact, which 
was demonstrated for PCa and AR by collabora-
tion with ERG [72]. We provide a graphical 
overview of proteins involved in AR promoter-
enhancer interactions in Fig. 15.2.

Additionally, transcription also occurs at 
enhancer loci when active AR complexes recruit 
RNAPII polymerases [73]. In contrast to RNAPII 
activity at gene-coding promoters resulting in 
mRNAs, bidirectional transcription at RNAPII-
occupied enhancers gives rise to small, unstable 
eRNAs [21]. Ascribing specific functionality to a 
number of eRNAs has succeeded in the context 

of gene expression [74, 75] and fine-tuning co-
activator function at gene promoters [76]. 
Although defining general functionality of 
eRNAs remains challenging, TF activity at 
enhancers can be inferred through RNAPII sto-
chastic models quantifying co-localization of TF 
binding motifs and eRNAs [77, 78]. These find-
ings were further corroborated by transgenic 
embryonic assays, showing that  enhancer func-
tionality can be predicted by the level and direc-
tionality of eRNA transcription [79]. Finally, 
combining RNA-seq with chromatin accessibil-
ity data through ATAC-seq has been used to map 
eRNA transcript abundance on a genome-wide 
scale in neuronal cell populations in different 
activation states, providing first evidence that 
eRNA function is dependent on genomic context 
and partially dependent on sequence [80]. Next 
to eRNA transcription at enhancers, other studies 
also revealed the existence of large and dynamic 
transcriptional hubs at highly active loci of TF 
binding [81–83]. Such loci containing many 
active enhancer elements often regulate key dif-
ferentiation processes in development and tissue 
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Fig. 15.2  Graphical overview of AR action at enhanc-
ers: AR binds DHT and dimerizes in the cytoplasm prior 
to nuclear translocation. Pioneer factor FOXA1 opens 
chromatin wrapped tightly around histones, allowing AR 
dimers to bind the chromatin through AREs and other 

regulatory elements. Co-factors and transcriptional 
machinery components such as SRC-3, CBP, p300, AP1, 
mediator complex and RNAPII are recruited to facilitate 
gene transcription, while RNAPII activity at AR-bound 
enhancers results in bidirectional transcription of eRNAs
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identity and have been dubbed ‘super enhancers’ 
(SEs). Since clusters of enhancers in close prox-
imity recruit many TFs, SEs form phase-separated 
condensates [84] with a local high-density bio-
molecule assembly of RNAPII [83], co-activators 
MED1, BRD4 [82, 83] and KLF4 [85]. However, 
the true number, distribution, and the proposed 
synergistic transcriptional activation of SEs is a 
matter of ongoing research and scientific debate 
[86].

15.4	� PCa-Specific Pioneer Factors 
as Source of Regulatory 
Heterogeneity in AR Binding

Transcriptionally silent chromatin is required for 
maintaining correct cellular identity dictated by a 
specific subset of genes transcribed from active 
chromatin, tightly regulating cell fate decisions. 
Pioneer factors like forkhead box protein A 
(FOXA1) open up condensed chromatin [87], so 
that transcription factors (TFs) and ultimately 
transcriptional coactivator complexes such as 
CBP and p300 [88, 89] and other coregulators 
like SRC-3 can bind [90, 91]. Additionally, SWI/
SNF chromatin remodelers (or human BAF com-
plex: ATP-dependent BRG1/BRM associated 
factors) and other co-modulators can bind to acti-
vate and repress expression through inducing 
chromatin conformation changes [61].

Transcriptionally inactive chromatin or het-
erochromatin is nucleosome-dense and com-
pactly folded DNA characterized mainly by 
histone tail post-transcriptional modifications 
(PTMs) of up to three methyl groups at histone 
H3 lysine 9 (H3K9me1-3) and H3 lysine 27 
(H3K27me1-3) [92]. Consequently, gene tran-
scription is silenced as TFs are physically blocked 
by nucleosomes from binding heterochromatin at 
enhancer elements [92]. However, pioneer fac-
tors open chromatin and enhancer sequences for 
TF binding [87]. In PCa development, FOXA1 
and homeobox B13 (HOXB13) expression levels 
are increased while their mode of action is repro-
grammed, allowing for altered regulation of 
AR-mediated transcription [61, 93]. Additionally, 
GATA2 and OCT1 have also been found to coop-

erate with AR to mediate androgen response in 
PCa growth [58, 94].

As a result of these functions, pioneer factors 
facilitate AR binding through nucleosome dis-
placement, thereby inducing an open chromatin 
conformation which is characterized by ‘active’ 
enhancer histone modifications and which is 
permissive to TF binding [95–98]. AR binding at 
DNA is mostly pioneered by FOXA1 binding to 
chromatin, marked by hypomethylated DNA and 
presence of histone modifications H3K4me1 and 
H3K4me2 [99–101]. FOXA1 was first identified 
as an AR interactor when FOXA1 binding motifs 
were found located adjacent to ARBS in prostate 
gene regulatory regions for human PSA and rat 
probasin (PSA orthologue) [102]. Additionally, 
AR’s DNA binding domain interacts directly 
with FOXA1’s forkhead domain [102, 103]. 
Genome-wide FOXA1-bound sites were shown 
to be cell-line specific and differentially func-
tional between breast and PCa cell lines [99, 
104], with genome-wide FOXA1 binding at the 
majority of ARBS later confirmed specifically in 
PCa cell lines LNCaP and VCaP [105, 106]. 
Interestingly, silencing of FOXA1 triggers a 
switch in AR binding at ARBS, altering gene 
expression profiles in PCa cell lines [105–108]. 
As such, transcriptional activity of diverse gene 
networks resulting from FOXA1’s pioneer factor 
activity, are tissue-specific and control cellular 
identity [87, 109].

Interestingly, ARBS are rarely found at pro-
moters, as the vast majority of ARBS are found at 
putative enhancer sequences located distally of 
the target gene’s locus depending on tissue and 
cellular context [93, 110]. Taken together, such 
distal cis-regulatory ARBS constitute the AR cis-
trome; the term cistrome was first coined in a 
2008 study on FOXA1 and ERα binding sites in 
breast cancer [99]. As such, an AR cistrome is a 
collection of ARBS that describes the transcrip-
tional regulatory potential of activated AR in a 
specific context, which have been extensively 
reported in many different contexts such as 
healthy prostate tissue, PCa cell lines and tissues 
from varying stages of PCa [61, 93, 110–114]. 
Additionally, AR cistromes also vary in different 
cell type contexts like fibroblasts [115], macro-
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phages [116], male breast cancer [111] and 
female breast cancer [117]. In this review, we 
focus on AR function in prostate epithelial cells, 
mostly in the context of PCa. In the following 
section, we address the question of how context-
dependent AR cistromes influence PCa heteroge-
neity and how shifts in AR cistromes affect tumor 
progression.

15.5	� AR Cistromes are 
Heterogeneous Between 
Different Tissue, Cellular 
and Tumor Contexts

Prostate development is a complex process 
dependent on the presence of androgens and 
developmental pathways requiring activation 
of diverse genes at different stages and tissue 
identities [118]. As such, various types of pros-
tate tissue are thought to be driven by different 
AR cistromes during development and tissue 
maintenance, but also during tumor initiation 
[119, 120]. One of the first studies to dissect 
the differences between AR cistromes in pros-
tate tissue compared histologically normal 
prostate tissues with prostate cancers, which 
were both enriched in epithelial cell content 
[93]. A core set of tumor associated ARBS 
(T-ARBS) was found to co-localize with 
FOXA1 and HOXB13 binding, which was 
absent at normal associated ARBS (N-ARBS), 
providing the first clinical evidence of AR cis-
trome reprogramming [93].

Furthermore, overexpression of FOXA1 and 
HOXB13  in benign prostate cells induced a 
change in AR cistrome reminiscent of repro-
gramming in PCa cells, showing that in tumori-
genesis HOXB13 may act as a pioneer factor and 
induces different AR cistromic repertoires that 
influence disease progression [121, 122]. This 
finding was later confirmed by a study that found 
somatic structural variants to impact master TF 
cis-regulatory regions, altering binding for vari-
ous factors including AR, FOXA1, HOXB13 and 
SOX9, which in turn may influence prostate 
oncogenesis [123]. Additionally, such a 
malignancy-associated shift in AR signalling can 

also be pioneered by GATA2 and c-JUN [58, 124, 
125]. GATA2 is a zinc-finger TF that normally 
regulates developmental gene expression but also 
influences AR chromatin binding by enabling 
access to additional putative ARBS prior to 
androgen stimulation [94]. Newly accessible 
ARBS include those near the AR locus, resulting 
in a GATA2-pioneered elevation of AR expres-
sion, which can further be enhanced by co-
occupancy by FOXA1 at GATA2-pioneered sites 
[94]. c-JUN dimerizes with FOS to form the 
AP-1 complex which transactivates gene expres-
sion of PCa driver ETV1 [124]. Moreover, 
c-JUN’s expression levels were found to corre-
late with AR transcriptional activity and knock-
down of c-JUN abrogated AR-dependent PCa 
cell proliferation [64, 126]. Although c-JUN can 
control AR binding and has been implicated in 
AR malignancy shift, pioneering activity by 
c-JUN has not been formally proven. Taken 
together, an ensemble of TFs modulates AR 
through enabling chromatin accessibility at 
newly activated ARBS, thereby expanding the 
repertoire of possible AR cistromes that are asso-
ciated with a context-dependent PCa AR signal-
ling malignancy shift.

Acquired cancer therapy resistance is deeply 
rooted in inter- and intra-tumor heterogeneity, in 
which a certain cell population manages to over-
come and adapt to therapy-induced selection over 
other populations [49]. In androgen-depleted 
conditions, PCa cell subpopulations that lose 
prostate differentiation while gaining resistance 
to AR signaling inhibition have been shown to 
survive and acquire an aggressive pathological 
phenotype [127]. As such, tumor progression can 
be viewed as an evolutionary dynamic process, in 
which tumor cells not only reprogram epigenetic 
control of cell identity or acquire a new pheno-
type, but also communicate differentially with 
their tumor microenvironment (TME) [50, 128]. 
While PCa cell lines -mostly derived from 
patients with advanced disease- are typically typ-
ical studied in the absence of a TME context, 
recently a push has been made to boost the diver-
sity of clinical stages represented in PCa models 
in which a TME is present, using patient-derived 
xenografts (PDXs) [129].
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Diverse PCa cell lines and PDX models con-
tain ARBS that are shared, but there are also 
ARBS that are specifically found in a single cell 
line, that partly recapitulate the intrinsic inter-
patient heterogeneity [113]. Although AR cis-
tromes in prostatic epithelial cells and tissues 
take center stage, AR cistromes are also hetero-
geneous between cell types of the prostate TME, 
which can interact with tumors and influence 
growth [47]. AR cistromes of PCa stroma con-
stituent cells like fibroblasts and macrophages 
have been dissected and were found to deviate 
from AR cistromes reported in epithelial cells 
[115, 116, 130]. The context dependency of the 
AR cistrome in these TME-associated cell con-
stituents functionally contributes to PCa progres-
sion by affecting PCa migration potential or by 
supporting PCa invasiveness through AR 
signaling.

On a final note, diverse AR cistromes are 
also found in both ER+ and ER- (molecular apo-
crine) breast cancer. AR cistromes in both 
breast cancer subtypes are also facilitated by 
FOXA1, yet with opposing forces on tumor 
driving potential, with AR acting as driver in 
ER- but as tumor suppressor in ER+ breast can-
cers [111, 117, 131, 132]. Clearly, the topic of 
cancer cistrome heterogeneity is wide-ranging 
and has been reviewed previously [133–135]. 
Therefore, we will focus on which AR cistro-
mic heterogeneity occurs within the different 
stages of PCa progression from initiation to 
development of metastatic CRPC.

15.6	� AR Cistromic Heterogeneity 
Progressively Develops 
from PCa Initiation 
to Neuroendocrine 
Differentiation

Early stage primary PCa is confined to the pros-
tate, with lesions initiating in the glandular tis-
sue lesions in the form of prostatic intraepithelial 
neoplasia (PIN) lesions in which DNA damage 
caused by oxidative stress and inflammation in 
the prostate gland plays an important role [136–

138]. PCa tumorigenesis is genomically char-
acterized by the occurrence of SNVs, small 
deletions and gene fusions, while AR activity is 
highly heterogeneous among tumors [37, 54]. 
Interestingly, different primary tumor foci in 
the same prostate rarely share SNVs or struc-
tural variation at regulatory elements, further 
highlighting the multiclonal heterogeneous 
nature of primary tumors [123]. SNV accumu-
lation in tumor foci was also found to rarely 
drive pro-oncogenic processes, providing a 
potential explanation for PCa indolence [51, 
139, 140]. However, the myriad of SNVs pres-
ent at regulatory elements alter the transactiva-
tion potential of enhancers, especially of those 
regulating master TF activity [123]. Moreover, 
primary tumors do have an enrichment of SNVs 
in ARBS that are somatically acquired in 
tumors, thus providing a source of genetic het-
erogeneity in PCa that may affect epigenetic 
regulation [123]. To study epigenetic regulation 
in PCa, we previously undertook epigenetic 
analyses to dissect AR cistrome heterogeneity 
in primary tumors by integrating gene expres-
sion data with AR cistrome data with enhancer-
mapping histone modification marks (H3K27ac, 
H3K27me3 and H3K4me3) [55].

Three major epigenetic subtypes were 
revealed in primary PCa tissues, two of which 
were dominated by TMPRSS2-ERG fusion 
status, while a third was characterized by low 
activity and chromatin binding of AR, but with 
high WNT and FGF signalling [55]. 
TMPRSS2-ERG fusions lead to a particularly 
reprogrammed cistrome, as evidenced by a 
different H3K27ac profile that enables co-opt-
ing of ERG of AR, FOXA1 and HOXB13 
resulting in AR cistromic heterogeneity [141]. 
Although AR profiles in primary disease do 
not appear to have prognostic potential by 
themselves, AR cistrome reprogramming con-
tinuously occurs during disease progression 
[55]. Somatic structural variants, such as 
either TMPRSS2-ERG gene fusions or coding 
mutations in FOXA1 and SPOP are also found 
associated with AR cistrome plasticity and are 
discussed in-depth later.
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15.7	� Metastatic PCa 
Heterogeneity

PCa mortality is predominantly caused by meta-
static disease, in which tumor cells preferentially 
spread from a primary lesion to locoregional 
lymph nodes and bones [27, 142, 143]. 
Somatically acquired large-scale structural 
enhancer variants are common in cancer [144]; a 
process which accelerates in metastatic disease 
[145] and affects TF binding, chromatin organi-
zation and gene expression [146]. In metastatic 
PCa, large scale structural variations at either 
coding or cis-regulatory sequences represent a 
class of key oncogenic events often coupled with 
copy number alterations (CNAs) such as gains at 
critical oncogenes including AR, MYC, CDK12, 
or losses at tumor-suppressor genes including 
TP53 and BRCA2 [147]. Recently, a study was 
reported that integrated pan-cancer genomics 
data with clinical information and functional 
genome-scale CRISPRi screens in metastatic 
PCa models to discover additional drivers of met-
astatic PCa, revealing that KIF4A knockdown 
alters genome-wide chromatin accessibility and 
acts as a driver of metastatic PCa aggressiveness 
with concomitant poor prognosis [148].

Prognostication of PCa patients based on 
pathological and genomic biomarkers could dis-
tinguish those patients with high-risk of develop-
ing aggressive disease over those with indolent 
PCa, paving the way for prognostication based 
on epigenetic status [149–151]. Another study 
from our group compared genome-wide AR 
binding, chromatin accessibility and gene expres-
sion between primary PCa and ADT-resistant 
tumors and integrated these with publically avail-
able clinical and genomic cancer databases [151]. 
The resulting gene expression signature could 
predict outcome in primary PCa patients in inde-
pendent cohorts, suggesting that an underlying 
pro-metastatic AR cistrome may already be pres-
ent in patients with primary patients whose dis-
ease eventually progressed [151]. This notion 
was further supported by a study that epigeneti-
cally profiled tissues in the disease progression 
spectrum from normal prostate epithelium to pri-
mary PCa to metastatic disease [121]. Normal 

prostate epithelium already displays regulatory 
elements that are prepopulated by FOXA1 and 
HOXB13, which AR later binds in metastatic 
PCa to drive fetal prostate developmental pro-
grams [121]. These two studies together under-
line the relevance of studying PCa state transitions 
epigenetically as a crucial method to understand 
molecular underpinnings underlying PCa pro-
gression and it critically suggests that inter-tumor 
PCa heterogeneity is strongly associated with 
cistromic heterogeneity.

Difficult to treat metastatic castration resistant 
prostate cancer (mCRPC) arises once metastatic 
PCa growth has been restored through reactiva-
tion of AR signaling pathways in an ADT-
induced, low testosterone environment [152]. 
mCRPC is characterized by a distinct AR cis-
trome that is reprogrammed by CRPC specific 
TFs such as STAT, MYC and E2F, while such 
heterogeneity is not captured by cell lines but 
only found in tissues [113]. Later, a first report on 
AR, FOXA1 and CTCF binding in multiple met-
astatic tumors in an individual patient confirmed 
a robust, metastasis-specific transcriptional pro-
gram despite few inter-lesion differences in the 
AR cistrome, showing that the metastatic AR cis-
trome between different affected organs is sur-
prisingly similar [153]. Potent AR inhibitors such 
as enzalutamide and darolutamide are adminis-
tered to suppress the AR signaling axis after 
CRPC emerges [154, 155]. Under the pressure of 
such therapies, mCRPC can further differentiate 
towards lethal neuroendocrine prostate cancer 
(NEPC) in the last stages of PCa, which rarely 
arises de novo and is characterized by absent AR 
signaling, neuroendocrine marker expression and 
loss of TP53 and RB1 [156, 157]. Additionally, 
neuroendocrine differentiation is characterized 
by a concomitant aberrant global shift in DNA 
methylation and altered expression of epigenetic 
modifiers and TFs [156, 158, 159]. Support for 
such epigenetic deregulation in NEPC was 
recently reported in genetically engineered 
NEPC mouse model by using single cell tran-
scriptomics and chromatin accessibility methods, 
which revealed that Ascl1 and Pou2f3 are differ-
entially regulated in dedifferentiated cell popula-
tions marked by shifts in global DNA methylation 
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[160]. Moreover, the FOXA1 cistrome is exten-
sively reprogrammed during NEPC [161]. Taken 
together, an image emerges in which enhancer 
plasticity in each of the different PCa stages leads 
to adaptation and progression through rewiring 
of AR cistromes.

15.8	� Non-coding and Protein 
Coding Somatic Mutations 
Induce AR Cistromic 
Heterogeneity

Somatic mutations are a prominent feature of 
metastatic PCa [147, 162–164], in which AR 
plays a key role. A multitude of studies reported 
that in the metastatic disease setting CNAs can 
lead to the amplification of a SE cluster driving 
AR expression, providing evidence for de novo 
rewiring of the AR cistrome as a powerful onco-
genic driver [147, 162, 165]. Moreover, it was 
recently reported that AR binding sites are 
highly mutated in PCa, potentially due to faulty 
base excision repair at abasic sites [166]. 
Similarly, during NEPC differentiation, the 
FOXA1 promoter loses regulatory contact with 
its key enhancer while simultaneously acquiring 
de novo regulation from a further distally 
located super-enhancer [161]. Therefore, 
somatic mutations in pioneer factor binding 
sites represent another distinct class of non-
coding somatic mutations causing epigenetic 
heterogeneity in PCa.

Conversely, FOXA1 protein coding somatic 
mutations are frequently occurring across dis-
ease stages [54, 167], with a substantial subset 
of primary PCa, mCRPC and NEPC tumors har-
boring recurrent SNVs in the FOXA1 coding 
sequence [168–170]. SNVs in FOXA1 that alter 
its pioneering function are mostly truncations, 
indels and missense mutations that converge on 
three mutational hotspots: the Wing2 region, the 
forkhead DNA binding domain and C-terminal 
truncations [171, 172]. Firstly, Wing2 hotspot 
mutants make up roughly half of all FOXA1 
coding mutations which are enriched in the pri-
mary stage of PCa, suggesting emergence dur-

ing localized disease. Moreover, Wing2 mutants 
exhibit greater pioneering activity than the 
effect of overexpression of wild-type FOXA1 
[171, 172]. Secondly, forkhead DNA binding 
domain mutation R219 affects a highly con-
served part of the forkhead domain that contacts 
the DNA, altering pioneering activity and acti-
vating a mesenchymal/neuroendocrine tran-
scriptional program driven by WNT-signaling 
[171, 172]. Interestingly, FOXA1R219 is acquired 
in PCa transitioning from primary to metastatic 
disease and its binding motifs differ markedly 
from canonical FOXA1-binding motifs, shut-
ting down normal luminal differentiation pro-
grammes [171, 172]. Finally, 20% of FOXA1 
mutations are frameshift truncations that result 
in loss of FOXA1’s C-terminal transactivating 
domain. Such mutants show markedly higher 
DNA binding affinity resulting in altered chro-
matin binding, engaging an expanded total cis-
trome for FOXA1 [171–174]. Taken together, 
FOXA1 mutations are powerful drivers of AR 
cistromic reprogramming and plasticity by co-
opting novel ARBS and transcriptional 
programs.

Another powerful and frequently recurring 
oncogenic driver in AR cistromic rewiring is the 
TMPRSS2-ERG fusion event that occurs in 
~50% of patients and is a common initiator of 
prostate tumorigenesis [175–178], while tumor 
suppressor PTEN loss co-occurs with TMPRSS2-
ERG in aggressive metastatic PCa [179–182]. 
Specifically, the promoter of TMPRSS2 is fused 
to the proto-oncogenic transcription factor ERG 
(ETV1, 4 or 5), causing aberrant overexpression 
of ERG that in turn drives a PCa oncogenic tran-
scriptional program through ERG-mediated AR 
recruitment at novel and existing ARBS [110, 
141, 178, 183]. Moreover, overexpressed ERG 
was recently reported to co-opt AR and FOXA1 
bound sites to drive expression of DLX, a 
homeobox-containing TF whose elevated 
expression is linked to aggressive metastatic dis-
ease [184]. These findings further highlight the 
biological role of TMPRSS2-ERG fusions in 
advanced PCa beyond its better-understood role 
in primary disease.
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Moreover, mutations occurring in speckle-
type pox virus and zinc finger protein (SPOP) 
were proposed to further exacerbate ERG-
driven PCa [185], since the E3 ubiquitin ligase 
SPOP is a tumor suppressor gene and frequently 
mutated in PCa [168, 186, 187]. Wild-type 
SPOP promotes ubiquitination and subsequent 
proteolytic degradation of critical PCa drivers 
including ERG [185, 188], AR [189, 190], Myc 
[191], BRD4 [192, 193] and SRC-3 [194], 
while SPOP’s suppressing function is disrupted 
by binding cleft mutations [90, 189, 194], lead-
ing to a reprogrammed AR cistrome [195]. For 
instance, SRC-3’s oncogenic role as steroid 
receptor coactivator in PCa is supported by its 
association with poor prognosis and aggressive 
phenotype [90, 91, 196, 197]. SRC-3 was 
proven to associate with AR at enhancers under 
androgen stimulation, increasing PSA expres-
sion [198] and later to be involved in expression 
of many AR-driven genes [199]. Many prolif-
eration pathways are activated by SRC-3, 
amongst which MAPK/ERK signaling [200, 
201] and Akt-mTOR signaling in PCa cells 
[91], while homozygous SRC-3 knockout in 
mice leads to PCa tumor growth arrest and pro-
longed survival [202].

Interestingly, co-occurring SPOP and ERG 
mutations are mutually exclusive [203] and 
the initially proposed SPOP-mutant stabiliza-
tion was later explained as case of synthetic 
lethality that prevents appearance of this phe-
notype [204]. Bromodomain histone reader 
ZMYND11 is stabilized by mutated SPOP 
which in turn represses ERG function [204], 
further corroborating earlier observed para-
doxal antagonism of ERG on AR signaling 
through auto-inhibitory PRMT5 methylation 
of AR [110, 205]. Additionally, an LXXLL 
AR interacting motif in the ETS domain of 
ERG was identified with affinity similar to 
AR coactivating peptides [206] through muta-
tional studies and ERG-stimulated AR activa-
tion, suggesting that AR and ERG can directly 
interact resulting in a reprogrammed AR cis-
trome [207].

15.9	� Risk SNPs and Somatic 
Mutations are Enriched 
at AR-Bound Enhancers

Another source of heterogeneity in AR cistro-
mics comes in the form of germline and somatic 
sequence variation. With 80% of the cancer risk 
single nucleotide polymorphisms (rSNPs) [208] 
mapping to intronic and intergenic regions, a 
relatively large subset of these are enriched in 
bona fide enhancer elements over other non-
coding regions when correcting for size [15, 26]. 
PCa genome-wide association studies (GWASs) 
and subsequent studies functionally annotated 
rSNPs as risk enhancers [209], associated rSNPs 
with higher risk of developing disease [210] and 
catalogued rSNPs found from a large pool of PCa 
tumors [211]. All studies report overrepresenta-
tion of rSNPs in enhancer elements that are 
linked to PCa master TFs with potential tran-
scriptionally altering consequences. Further 
screening using high-throughput measurement of 
protein-bound oligo retention times, in which 
TFs in nuclear extracts bound to SNP-containing 
oligos are pulled down, found that 20 rSNPs were 
associated with decreased AR binding in LNCaP 
[212]. Interestingly, one rSNP was located at the 
center of a cluster of AR, HOXB13 and FOXA1 
binding sites, of which specifically FOXA1 bind-
ing was decreased which translated to lower reg-
ulatory and transcriptional potential of PCa 
oncogene RGS17 [212].

Similarly, some PCa rSNPs within well-
characterized enhancers influence PCa cell via-
bility [123], as exemplified by enhancers that are 
located in a single topological associating domain 
regulating MYC [213, 214]: PCAT1 and PCAT2 
[215–218]. Another high-throughput epigenomic 
study provides evidence that rSNPs create or per-
turb TF binding sites including AR, as exempli-
fied by a rSNP abrogating AR-mediated 
repression of the putative oncogene 
CDKN2B-AS1 which influences cell cycle regu-
lation [219]. Generally, heritable PCa risk is 
associated with a strong enrichment of PCa 
rSNPs in prostate-lineage specific enhancers 
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[121]. As such, rSNPs contribute to AR cistromic 
heterogeneity by perturbing and creating TF 
binding sites that affect PCa progression.

15.10	� Clinical Implications 
and Biomarker Development 
of Heterogeneity 
in Epigenetic Subtypes

It is increasingly becoming more apparent that 
PCa may be considered an epigenetic disease in 
which many key cell identity processes are dis-
rupted and different transcriptional programs 
are initiated through AR cistromic rewiring, 
orchestrated by reprogrammed FOXA1 and 
HOXB13 [121, 161, 220]. The future clinical 
potential of targeting enhancer-gene pairs in 
cancer is promising, as such interactions have 
been systematically charted for in the TCGA 
pan-cancer dataset, with aberrant enhancer acti-
vation observed in most cancers [221]. Since 
aberrant enhancer activation and cistromic het-
erogeneity appears to be a key feature of PCa, 
specific epigenetic states and biomarkers ensu-
ing from such states offer great opportunities 
for informed clinical decisions based on epi-
genetic subtypes.

Our previous integrative epigenetic profil-
ing study in primary prostate cancer has 
revealed a PCa subtype independent of 
TMPRSS2-ERG status, characterized by low 
mutational burden together with neutral copy 
number and AR expression but a contrast-
ingly low AR activity and chromatin binding 
[55]. Since this subtype with heterogeneous 
TMPRSS2-ERG status is potentially driven 
by NGF, FGF and WNT signaling and associ-
ated with poor outcome [119], therapeutic 
opportunities may exploit applying small 
molecule inhibitors (SMIs) targeting these 
pathways [222–224], particularly for this 
subpopulation of patients. Further comparing 
AR chromatin binding patterns between dis-
ease states and contexts allows for the dissec-
tion of heterogeneous epigenetic subtypes 
and may accelerate PCa progression bio-

marker discovery [151, 225], expanding cis-
tromic studies to other proteins such as CTCF 
[226, 227], ETS [178, 228], FOS [229, 230], 
HOXB13 [151, 225], KLF9 [151, 231, 232], 
SP1 [233, 234], SPOP [204, 228] and XBP1 
[113, 151, 235].

Another distinct class of SMIs are epigenetic 
drugs targeting histone deacetylases (HDACs) 
expressed highly in primary PCa [236] and the 
enzymatic subunit of the polycomb repressive 
complex EZH2, which is overexpressed in 
CRPC [237] and co-occupies reprogrammed 
AR cistromes in NEPC [238]. Both HDAC and 
EZH2 promote transcriptional silencing 
through remodeling chromatin conformation, 
either deacetylation or methylation of histone 
tail modifications. Inhibition of EZH2 with 
SMIs [239] could help overcome ADT resis-
tance and increase effectiveness of AR inhibi-
tion in CRPC patients and is suggested to 
potentiate PCa tumors to PD-1 checkpoint inhi-
bition [240]. Although the HDAC inhibitor 
vorinostat is an effective inhibitor of PCa pro-
liferation by synergizing with AR antagonists 
in cells and in vivo [241, 242], HDAC inhibi-
tion is associated with significant toxicity in 
patients which currently prevents phase III 
clinical investigation for PCa [243, 244]. 
Alternatively, FOXA1 chromatin binding can 
be indirectly repressed through inhibition of 
H3K4 demethylation by transcriptional repres-
sor KDM1A (LSD1), which synergizes with 
AR antagonists in vivo and associates with 
FOXA1 [245]. Contrastingly, direct inhibition 
of FOXA1 with the SMI JQ1 abrogates FOXA1 
binding with co-repressors, which alleviates 
repression of gene pathways associated with 
PCa invasion [246].

Finally, PCa’s inclination towards inter- 
and intra-tumor heterogeneity necessitates 
enhanced minimally-invasive biomarker 
detection relying on a combination of classic 
and novel urine- or blood-based prognostic 
biomarkers [247, 248], which can be highly 
impactful by preventing the reported system-
atic overtreatment of patients with indolent 
disease [139, 211, 249, 250].
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15.11	� Future Outlook

The dissection of heterogeneity among popula-
tions of tumor cells and their TME has recently 
made exceptional progress through the imple-
mentation of single-cell omics technologies [251, 
252]. First, a massive transcriptomic heterogene-
ity was found within tumors, with multiple dis-
tinct transcriptional programs and cellular subsets 
associated with PCa progression [253]. Second, 
persistent resistant cells without stem cell proper-
ties were found to repopulate tumors upon treat-
ment [254], with high cell cycle turnover in 
resistant cells showing a heterogeneous response 
towards ADT therapies, such as with enzalu-
tamide [255]. Finally, single cell epigenomics 
and cistromics studies are yet to be reported for 
PCa, but such technologies have been applied for 
identifying heterogeneous chromatin states in 
breast cancer [256] and were demonstrated to 
infer single cell heterogeneity in chromatin 
accessibility [257, 258]. These studies uncover 
the clinical impact of shifts in heterogeneous cell 
populations under therapeutic pressure, and 
underline how single-cell genomics and tran-
scriptomics have improved our understanding of 
intra-tumor heterogeneity. Clearly, the future 
application of single cell epigenomics and cistro-
mics technologies would provide a formidable 
tool to understand the consequences of epigene-
tic heterogeneity in the context of cancer and 
facilitate the identification of novel drug targets.

Tracing multiple foci in patients using their 
genomic profiles allows for dissection of hetero-
geneous patterns of metastatic spread [259]. It is 
becoming increasingly clear that PCa metastatic 
seeding occurs heterogeneously through asyn-
chronous and cross-metastatic seeding [260, 261] 
with tumor lineages evolving differently [143, 
262], which may have direct consequences on the 
level of epigenetic heterogeneity [153] as well as 
clinical decision-making [45]. As such, longitu-
dinal sampling might offer the most comprehen-
sive and dynamic view of heterogeneity in AR 
cistromes during the course of PCa, which to date 
has only been applied for blood-derived cfDNA 
methylomes [263]. Although currently unre-
ported, we anticipate longitudinal translational 

studies with coupled single cell epigenomics and 
cistromics, so that epigenetic developments 
become embedded as an intrinsic component of 
clinical trials, allowing for a precise identifica-
tion of the dynamics and heterogeneity of 
epigenetic subtypes to ultimately contribute to 
improved data-driven clinical decision-making.

Concluding, PCa presents many heteroge-
neous facets that diverge in AR cistromic repro-
gramming and contribute to PCa development, 
progression and therapy response. Taken together, 
there appear to be distinct and programmatic epi-
genetic alterations in which normal enhancer 
binding is altered during PCa initiation and pro-
gression, ultimately leading to heterogeneous AR 
cistromes between tumors, dictating markedly 
different transcriptional programs with different 
prognostication between patients. Future techno-
logical developments may facilitate a full epig-
enomic and cistromic characterization of PCa 
heterogeneity in patient samples, ultimately con-
tributing to personalized medicine. Knowledge 
gained from such cistromic studies may facilitate 
the discovery of novel biomarkers for tailored 
therapeutics and lead to better patient prognosti-
cation. As such, AR cistrome heterogeneity in 
PCa resembles a shifting fingerprint of the tumor: 
personal and reflective of a specific transcrip-
tional regulatory potential, yet dynamic and sub-
ject to change over time.
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