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1Nuclear Receptors in Pregnancy 
and Outcomes: Clinical 
Perspective
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Abstract

Pregnancy is characterised by profound 
hormonal and metabolic changes in the 
mother. Both oestrogen and progesterone, 
along with their respective nuclear recep-
tors, have an important role in maintaining 
a healthy pregnancy. Equally, other nuclear 
receptors such as LXR, FXR and the 
PPARs play important roles in the gradual 
alterations in metabolism that ensure sur-
vival of mother and fetus. Disruptions in 
nuclear receptor signalling can result in 
pregnancy disorders such as gestational 
diabetes mellitus, intrahepatic cholestasis 
of pregnancy, hypertensive disorders of 
pregnancy and preterm labour, all of which 
have both immediate and long-term impli-
cations for maternal and fetal health. By 
reviewing data from human studies and 
animal models, this chapter will describe 
the contribution of nuclear receptors to 
normal pregnancy, their role in gestational 
disorders and their potential as therapeutic 
targets.
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1.1  Introduction

Pregnancy is a unique state in which the maternal 
organism must undergo a multitude of physiolog-
ical adaptations to support the growth of a fetus, 
whilst also maintaining its own health. Numerous 
cardiovascular, renal, immune and metabolic 
changes occur in response to rising concentra-
tions of reproductive hormones and the growing 
conceptus [1]. Not surprisingly, disruptions in the 
complex regulation of these maternal modifica-
tions can result in pregnancy disorders.

In humans, maternal preparations for pregnancy 
occur in every menstrual cycle regardless of the 
presence of a conceptus. The uterus and endome-
trium undergo changes that render them receptive to 
embryo implantation and placental development [2, 
3]. The reproductive hormones oestrogen and pro-
gesterone play a key role in this process, along with 
their respective nuclear receptors (the ERs and 
PRs). Other nuclear receptors such as peroxisome 
proliferator- activated receptors (PPARs) and liver X 
receptors (LXRs) also influence trophoblast devel-
opment and placental formation. Comprehending 
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the mechanisms underlying these early events is not 
only important for the understanding of early preg-
nancy pathologies such as recurrent miscarriage 
and implantation failure, but also later gestational 
complications. It is known that disruptions in decid-
ualisation, implantation and trophoblast invasion 
can have a lasting effect on pregnancy, as they can 
constitute the pathophysiological basis for pre-
eclampsia, intrauterine growth restriction and pla-
cental abruption [4].

After implantation, maternal metabolism 
adapts to cater for the increasing energetic 
demands of the fetus (Fig. 1.1). There are marked 
alterations in maternal metabolic pathways of 
uptake, storage and distribution of nutritional 

fuels to match different stages of fetal develop-
ment [1]. Early pregnancy is characteristically an 
anabolic state that guarantees the storage of 
nutrients in preparation for later stages of gesta-
tion. This period is marked by increased insulin 
sensitivity, lipogenesis and lipid storage [5]. As 
pregnancy advances, insulin resistance progres-
sively rises towards the third trimester, causing a 
shift to a catabolic state [5, 6]. Lipolysis is thus 
stimulated, leading to a state of physiological 
hyperlipidaemia in the mother [7]. Serum glu-
cose concentrations rise, and glucose is priori-
tised to the fetus, whilst the mother relies on 
serum lipids for nutrition [5]. Although the mech-
anisms behind these changes are not fully under-

Non-pregnant First and Second Trimesters Third Trimester

Glucose 
metabolism

Lipid 
metabolism

↑Insulin secre�on

↑serum glucose

↓ Total cholesterol ↑ Total cholesterol

↓ LDL cholesterol ↑ LDL cholesterol

↑ HDL cholesterol

↑ Triglycerides

↑ VLDL

• ↑ lipogenesis
• ↑ LPL ac�vity

• ↑ lipolysis
• ↓ LPL ac�vity
• ↑ ketogenesis

Addi�onal 
considera�ons

Insulin sensi�vity*

Fig. 1.1 Summary of changes in maternal metabolism 
during pregnancy. Arrows show direction of change. *: 
insulin sensitivity increases in the first trimester then pro-

gressively declines as the mother enters a catabolic state. 
LDL low-density lipoprotein, HDL high-density lipoprotein, 
VLDL very low-density lipoprotein, LPL lipoprotein lipase
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stood, nuclear receptors have been identified as 
plausible candidates for their regulation [8].

Close to term, changes in the uterine environ-
ment occur to facilitate parturition. The myome-
trium, previously quiescent, becomes responsive 
to labour stimuli and undergoes changes that 
facilitate its contractions. This is a process 
highly regulated by progesterone and its nuclear 
receptors.

In this chapter we will explore the contribu-
tion of nuclear receptors to the development of a 
normal pregnancy, focusing on early pregnancy 
events, maternal metabolic changes and mecha-
nisms behind parturition. We will then describe 
how nuclear receptors are implicated in disorders 
such as gestational diabetes, hypertensive disor-
ders of pregnancy, intrahepatic cholestasis of 
pregnancy and preterm labour.

1.2  The Role of Nuclear 
Receptors in Maintaining 
a Healthy Pregnancy

1.2.1  Progesterone Receptors 
and PPARS in Early Pregnancy

The development of a healthy materno-fetal 
interface is essential for pregnancy success. A 
key organ at this interface is the placenta. While 
maternal uterine receptivity is achieved through 
the process of endometrial decidualisation, the 
conceptus is responsible for the development of 
different trophoblastic lineages that will execute 
the placental functions of hormonal synthesis, 
materno-fetal exchange of nutrients and adequate 
supply to fetal tissues.

The process of decidualisation occurs in the 
second phase of the endometrial cycle, when pro-
gesterone concentrations rise following  ovulation. 
It transforms the oestrogen-primed endometrial 
stromal cells into specialised secretory cells that 
facilitate implantation and trophoblast develop-
ment [3]. Progesterone is a master regulator of 
this process via stimulation of its nuclear proges-
terone receptor (PR). Three forms of PRs have 
been identified in mice and humans: PR-A, PR-B 
and PR-C, with the first two recognised as the 

main isoforms present in the uterus [9]. PR can be 
activated by direct binding of progesterone, as 
well as through ligand-independent activation 
[10], illustrating the complexity of its function. 
Whilst the presence of both PR-A and PR-B is 
critical for the development of adequate decidual 
responses in mice, PR-B seems to have a less cru-
cial role. Knockout studies in mice have shown 
that the absence of PR-B does not induce a mark-
edly abnormal uterine phenotype [11, 12]. A tem-
poral change in the expression of each isoform, as 
well as their relative expression, is also essential 
for adequate endometrial proliferation [13].

After fertilisation, the conceptus implants into 
the decidualised endometrium. Its extraembry-
onic tissues undergo differentiation into distinct 
lineages, followed by migration and invasion of 
maternal tissues to form the placenta. The lineage 
termed villous trophoblast (VT) forms the chori-
onic villi, the main materno-fetal exchange sur-
face of the placenta. The extravillous trophoblast 
(EVT) is the lineage responsible for anchoring 
the placenta into maternal tissues and remodel-
ling uterine spiral arteries to optimise placental 
perfusion (Fig. 1.2) [14, 15].

The nuclear peroxisome proliferator- 
activated receptor (PPAR) has been impli-
cated in this early process of trophoblast 
differentiation and invasion. All three known 
PPAR isoforms, PPARα, PPARβ and PPARγ, 
are expressed in human and rodent placentas 
[16]. PPARγ and its heterodimer partner 
RXRα have the most widely reported role in 
this process. They are expressed in both VT 
and EVT [17]. Their essential role is illus-
trated by the fact that PPARγ-null mutations 
in mice result in early embryo demise second-
ary to inappropriate placental vascular forma-
tion and trophoblast differentiation [18]. In 
vitro experiments with PPARγ agonists 
showed that PPARγ activation abrogates 
maternal tissue invasion by the EVT, whilst 
PPARγ antagonists have the opposite effect 
[19–22]. There also seems to be an effect of 
PPARγ agonists on trophoblast differentia-
tion. In vitro studies of PPARγ-null tropho-
blast stem cells showed defects in 
differentiation of all trophoblast layers [23], 
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Fig. 1.2 Simplified representation of placental 
structure (a) and lineages (b). After implantation, the 
extraembryonic tissues of the blastocyst differentiate 
into distinct lineages to form the placenta. It first dif-
ferentiates into the cytotrophoblast (CTB), a single 
layer of epithelial cells that gives origin to the chorionic 
villi, the functional units that facilitate feto-maternal 
exchange. The cytotrophoblast acts as a stem cell layer 
that generates all other lineages. The fusion of cells cre-
ates the multinucleated layer of the syncytiotrophoblast 
(STB), which is responsible for placental hormone syn-
thesis. Each chorionic villus is made of a mesenchymal 
chore, fetal capillaries, a layer of cytotrophoblast and a 

layer of syncytiotrophoblast. The CTB proliferates into 
columns above the chorionic villi, giving rise to the 
(EVT), which is responsible for anchoring the placenta 
into maternal tissues. These columns merge to form a 
CTB shell, which is a continuous structure only 
breached by maternal vessels that provide blood to the 
intervillous space. The EVT then differentiates into the 
interstitial EVT (iEVT), which invades the maternal 
decidua, and the endovascular EVT (enEVT), which 
invades the spiral arteries and replace their smooth mus-
cle to increase placental perfusion. Both LXRs and 
PPARs are involved in trophoblast differentiation and 
invasion
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although one study showed that this effect 
might be ligand- dependent [24].

Similarly, liver X receptors (LXR) have been 
shown to affect trophoblast function. Two sub-
types of LXR, LXRα and LXRβ, have been rec-
ognised to date. LXRα is highly expressed in 
tissues with high metabolic activity such as 
liver and adipose tissue, whereas LXRβ is ubiq-
uitously expressed [25, 26]. Both are expressed 
in the placenta [27]. LXR is a master regulator 
of cholesterol metabolism and is activated by 
endogenous oxysterols [28]. A study in an in 
vitro model of invasive human trophoblast 
showed that activation of LXRβ by synthetic or 
endogenous ligands can inhibit trophoblast 
invasion [29]. LXR activation, by both oxyster-
ols and a synthetic LXR agonist, can also 
impair trophoblast differentiation [30, 31].

1.2.2  Liver-X-Receptors, Clock 
Genes and Maternal 
Metabolic Adaptations in Mid- 
to- Late Pregnancy

Two groups of nuclear receptors, LXRs and the 
clock-regulating REV-ERBs, have been shown to 
influence maternal metabolic adaptations to preg-
nancy. LXR acts as a cholesterol sensor that pre-
vents cholesterol accumulation in tissues. It is a 
strong promoter of reverse cholesterol transport, 
stimulating the transport of cholesterol from the 
periphery to the liver, whereby it is excreted 
through the biliary system [25]. In the event of 
high serum concentrations of cholesterol, LXR 
induces the expression of transporters ABCA1 
and ABCG1, both of which facilitate the transfer 
of intracellular cholesterol onto apolipoproteins 
and HDL, and subsequent return of cholesterol to 
the liver [32, 33]. Despite preventing cholesterol 
accumulation, LXR has also a seemingly para-
doxical role in de novo lipogenesis. It upregulates 
SREBP-1c, ACC, SCD1 and FAS, all of which 
participate in fatty acid (FA) and triglyceride 
(TG) synthesis pathways [34]. Thus, LXR stimu-
lation can increase serum concentrations of TG 
and FAs. By promoting this effect, LXR facili-
tates cholesterol esterification by FAs, a process 

that decreases its toxic potential to cells [25]. A 
summary of the metabolic effects of LXR and its 
target genes can be found in Fig. 1.3a.

The role of LXR in promoting the marked 
lipogenic state of early pregnancy has been con-
firmed in a mouse model [35]. However, LXR did 
not seem to influence accompanying changes in 
cholesterol concentrations. The study showed 
that mouse pregnancy presents the expected find-
ings of increased hepatic concentrations of TG in 
early stages. A simultaneous upregulation of the 
LXR targets Fas, Scd-1 and Srebp-1c was also 
observed. These changes then resolved later in 
pregnancy, when increased serum concentrations 
of TG were observed. The same alterations in 
lipid metabolism were reproduced in non- 
pregnant females fed LXR agonists, and were 
disrupted in LXR knockout mice, confirming the 
role of LXRs in the process.

Data on the contribution of LXR to adapta-
tions in later pregnancy are scarce. LXR expres-
sion, along with the expression of other nuclear 
receptors, was shown to be reduced in the liver of 
mice in late pregnancy [36]. In a different study, 
changes in lipid metabolism in late pregnancy 
occurred in the presence of normal protein levels 
of both LXRα and LXRβ [35]. However, admin-
istration of LXR agonists had little effect on the 
downstream LXR gene expression profile. It is 
therefore possible that although LXR expression 
and protein availability remains constant through-
out pregnancy, gestational signals in later stages 
interfere with its function.

Changes in lipid metabolism in early pregnancy 
also seem to be associated with disruptions in the 
body’s clock function. Circadian signals are 
known to influence metabolic pathways [37]. The 
nuclear receptors REV-ERB-α and REV- ERB- β 
have been shown to regulate a feedback loop 
between the body’s master clock at the suprachias-
matic nucleus and peripheral organs [38, 39]. A 
study in mice showed that the expression of the 
lipogenic genes Fas, Scd2 and Hmgcr are increased 
in early pregnancy in comparison to late preg-
nancy. This increase seems to be uncoupled from 
the normal circadian oscillations in Rev-erb-α and 
Rev-erb-β expression. In late pregnancy, this syn-
chronicity is restored and becomes similar to that 
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LXRs

↑ SREBP-1C
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Fig. 1.3 Simplified representation of the metabolic 

effects of nuclear receptors LXR and FXR. Arrows show 

the direction of effect on gene targets and physiological 

processes of (a) LXR and (b) FXR. LXR Liver-X- receptor, 

SREBP-1C Sterol regulatory element-binding protein 1, 

FAS Fatty acid synthase, ACC Acetyl-CoA carboxylase, 

SCD-1 Stearoyl-CoA desaturase 1, ABCA1 ATP-binding 

cassette transporter A1, ABCG1 ATP- binding cassette 

transporter G1, LDLR Low-density lipoprotein receptor, FA 

fatty acid, TG triglyceride, HDL high-density lipoprotein, 

FXR farnesoid-Xreceptor, SHP small heterodimer partner, 

BSEP bile salt export pump, NTCP Sodium-taurocholate 

co-transporting polypeptide, APOCII Apolipoprotein C-II, 

APOCIII apolipoprotein C-III, PPARα Peroxisome prolif-

erator-activated receptor alpha, CYP7A1 7α-hydroxylase, 

BA bile acid, LPL lipoprotein lipase

of non-pregnant females. This shows that, for the 
anabolic state of early pregnancy to occur, hepatic 
gene expression becomes independent of the usual 
hepatic clock system [40].

1.2.3  Parturition

Human labour is a complex event resulting from 
cervical ripening and myometrial contractions 

that culminate in the expulsion of the fetus and 
the placenta. In order to prevent early delivery of 
the fetus, the uterus remains quiescent through-
out gestation until endocrine, pro-inflammatory 
and mechanical changes occur to trigger myome-
trial activation [41]. Inflammation is a central 
feature of human labour (Fig. 1.4), and develop-
ment of a pro-inflammatory state within the 
uterus is one of the initial triggers for 
parturition.
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CONTRACTIONS

Fig. 1.4 Simplified representation of the mechanisms underlying labour. Dashed arrows represent a positive effect. 
PR progesterone receptor, HPA axis hypothalamic-pituitary-adrenal axis, CRH corticotropin-releasing hormone

Progesterone is a major regulator of uterine 
quiescence. It provides anti-inflammatory and 
anti-contractile signals to the myometrium. PR 
blocks the activation of nuclear factor κβ (NF- 
κβ), an important initiator of the labour cascade 
of events, and its downstream inflammatory tar-
gets [42, 43]. At the same time, PR upregulates 
the expression of NF-κβ inhibitor [44]. In the 
myometrium, activation of PR inhibits the syn-
thesis of connexin 43 (cx43), thus blocking the 
formation of gap junctions that are responsible 
for uterine contractions [45]. In addition, by 
upregulating zinc finger E-box binding homeo-
box proteins ZEB1 and ZEB2, the PR inhibits the 
expression of contractile genes, including the 
oxytocin receptor [46].

In most mammals, the onset of labour is marked 
by increased inflammatory stimuli in uterine tis-
sues accompanied by a progressive decrease in 
circulating progesterone concentrations. In human 
pregnancy, however, serum concentrations of pro-
gesterone remain stable throughout gestation. It is 
thought that labour onset is secondary to a “func-
tional withdrawal” of progesterone, triggered by a 
change in the relative expression and function of 
progesterone receptor isoforms [47]. There is sub-
stantive evidence to suggest that PR-B is the prin-
cipal driver of uterine quiescence, whereas PR-A, 
when not bound to progesterone, has the ability to 
act as an endogenous repressor of PR-B [48]. A 
recent study in genetically modified mice has con-
firmed the distinct roles of PR-A and PR-B in 
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myometrial contractility. Mice that overexpressed 
the PR-B isoform had an increased length of gesta-
tion and poor uterine contractions. Mice overex-
pressing the PR-A isoform, on the other hand, 
showed increased uterine contractility. 
Downstream target genes of both isoforms were 
also analysed, confirming a stronger anti- 
contractile role of PR-B [49].

Studies in human myometrium have shown a 
marked increase in PR-A expression close to 
term, increasing the PR-A to PR-B ratio [50, 51]. 
In addition, in the period leading up to labour 
onset, a change in progesterone metabolism 
within the myometrium takes place. The expres-
sion of the enzyme 20α-hydroxysteroid dehydro-
genase (20α-HSD), that converts progesterone 
into an inactive metabolite, markedly increases, 
decreasing the ability of progesterone to bind to 
PR-A [52, 53]. The unliganded PR-A, in addition 
to repressing PR-B, acts as a transcriptional acti-
vator of cx43 [48, 54]. The anti-inflammatory 
properties of PR-B are then overcome, and unre-
strained tissue inflammation perpetuates labour 
signals [55]. In particular, an increase in IL-1β 
within the uterus increases NF-κβ activity, whilst 
at the same time repressing PR-B activity and 
further perpetuating the cycle of myometrial acti-
vation [56].

1.3  Nuclear Receptors 
and Gestational Disorders

1.3.1  Gestational Diabetes Mellitus

Gestational diabetes mellitus (GDM) is defined 
by the presence of glucose intolerance that devel-
ops, or is first recognised, in pregnancy [57]. The 
global prevalence of GDM is on the rise, with an 
estimated 16% of pregnancies affected by some 
form of hyperglycaemia [58]. This increase is 
thought to be linked to the equally rising preva-
lence of obesity amongst reproductive age 
women, and increase in maternal age [58, 59]. 
Pregnancies affected by GDM have an increased 
risk of poor outcomes, with the most prevalent 
complication being fetal macrosomia and its 
related birth injuries [57]. Fetal death, preterm 

birth and neonatal unit admission are also recog-
nised outcomes [60]. Mothers affected by GDM 
are also more likely to develop pre-eclampsia, 
adding to the existing maternal and fetal morbid-
ity [60]. The implications of GDM for future 
health are a much wider public health issue; 
affected women have an approximately 26% 
increased risk of developing type 2 diabetes mel-
litus 15 years after their GDM diagnosis, and are 
at higher risk of developing cardiovascular dis-
ease in later life [61, 62]. Meanwhile, children 
exposed to GDM in the intrauterine environment 
can have suboptimal neurodevelopmental out-
comes and also increased risk of developing met-
abolic disease later in life [59, 63, 64].

Oestrogen can influence glucose homeostasis 
[65], and oestrogen receptors have been investi-
gated in the pathophysiology of diabetes melli-
tus. An association between the rs1256031 
polymorphism in the oestrogen receptor β (Erβ) 
gene and the development of type 2 diabetes mel-
litus has been found in a Mexican study [66]. A 
similar study in a Chinese population did not 
confirm this association in GDM-affected women 
[67]. GDM development has, however, been 
associated with the PVuII single nucleotide poly-
morphisms in oestrogen receptor α (Erα) [68].

Outside of pregnancy, the development of 
insulin resistance and diabetes is closely related 
to disorders in lipid metabolism. Abnormal serum 
and tissue concentrations of lipids can be both 
cause and consequence of impaired glucose 
homeostasis [69–71]. Nuclear receptors involved 
in lipid regulation have thus been investigated in 
the context of type 2 diabetes mellitus. LXR ago-
nists have been shown to influence glucose 
metabolism both in vitro and in mice, and are 
thought to be potent serum glucose-lowering 
agents [72–74]. However, a concomitant rise in 
serum triglyceride concentrations with the use of 
these agents has so far hindered their develop-
ment as anti-diabetic drugs [74]. The contribu-
tion of LXR to GDM pathogenesis and its role in 
treatment of GDM have not been explored to the 
same extent. An analysis of gene expression in 
the adipose tissue of women affected by GDM 
showed an overall reduced expression of LXR 
and evidence of abnormal adipose tissue metabo-

L. Borges Manna and C. Williamson



11

lism [75]. Although it is plausible that these 
changes might contribute to the development of 
GDM, substantive data are lacking.

Farnesoid X receptors (FXR) are also seen as 
promising targets for the treatment of glucose 
disorders [74]. Whilst LXR acts primarily as a 
cholesterol sensor, FXR is a sensor of the end 
products of cholesterol metabolism – bile acids 
(BA). When serum BA concentrations are raised, 
FXR inhibits further BA synthesis, whilst at the 
same time promoting BA excretion from the 
hepatocyte to the biliary system (Fig. 1.5). This is 
an important step in cholesterol metabolism, as it 
is excreted in the bile in the form of BAs. 
Therefore, FXR is also implicated in the control 
of lipid metabolism (Fig.  1.3b). In addition to 
modulating cholesterol concentrations, it induces 
the expression of LPL and downregulates 

SREBP-1c, generating an overall effect of lower-
ing serum triglyceride concentrations. There also 
seems to be an impact of FXR on glucose metab-
olism both directly, via repression of gluconeo-
genic genes, and indirectly by controlling serum 
concentrations of TG and free fatty acids (FFAs). 
Indeed, FXR-null mice show a dyslipidaemic and 
hyperglycaemic profile with hypertriglyceride-
mia, high concentrations of circulating FFAs, 
impaired glucose tolerance and decreased insulin 
sensitivity [76]. A study in pregnant FXR-null 
mice also demonstrated new onset of impaired 
glucose tolerance and insulin resistance in com-
parison to controls [77]. A randomised controlled 
trial investigating the effects of the natural FXR 
agonist obeticholic acid (OCA) showed that it 
increases insulin sensitivity and improves liver 
inflammation in adults affected by type 2 diabe-

ENTEROHEPATIC
CIRCULATION

SINUSOID HEPATOCYTE HEPATOCYTEBILE CANALICULUS

NTCP

OATPs MRP 2

BSEP

FXR

SINUSOID

MRP 3

OSTα/β

MRP 4

MRP 2

BSEP

Cyp7a1 Cyp8b1

ENTEROCYTE

ASBT

I-BAP

OSTα/β

SHP

MRP 3
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FGF
19

FGF
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FGFR4

Fig. 1.5 Summary of the main BA transporters in 
the enterohepatic circulation and FXR effects in the 
hepatocyte and enterocyte. The hepatocyte on the left 
represents the effects of FXR activation by bile acids 
(circles). Dashed green arrows represent transcriptional 
activation and solid red arrows transcriptional repres-
sion. The hepatocyte on the right represents additional 

bile acid transporters upregulated in the event of cho-
lestasis. Once bile acids reach the intestinal lumen they 
activate FXR in the enterocyte. FXR then induces the 
synthesis of FGF19, which reaches the hepatocyte to fur-
ther repress Cyp7a1 and Cyp8b1 after binding to its 
receptor, FGFR4. FXR Farnesoid X Receptor, SHP small 
heterodimer partner
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tes mellitus and non-alcoholic liver disease [78]. 
Based on these findings, the effects of OCA were 
also studied in a mouse model of diet-induced 
GDM [79]. Although a reduction in serum cho-
lesterol concentrations was observed, no changes 
in glucose tolerance occurred.

1.3.2  Intrahepatic Cholestasis 
of Pregnancy

Intrahepatic cholestasis of pregnancy (ICP) is a 
gestational liver disorder that presents with 
maternal pruritus and increased serum BAs. Its 
prevalence varies in different ethnicities and 
around the globe, ranging between 0.2% and 
5.6% of pregnancies [80, 81]. Although maternal 
symptoms tend to resolve soon after delivery, 
ICP is associated with adverse pregnancy out-
comes, which are directly related to serum BA 
concentrations. Preterm birth and neonatal unit 
admissions are more likely to occur when serum 
BAs are above 40 μmolL, whilst the stillbirth rate 
increases with BAs above 100 μmol/L [82, 83].

ICP has a multifactorial aetiology, with envi-
ronmental and genetic components [84–87], but 
FXR and its target genes are a central aspect of the 
pathophysiology of the disease. FXR is a master 
controller of the enterohepatic circulation, a pro-
cess that regulates synthesis and excretion of BAs 
in the hepatocyte, and their subsequent recycling 
through the bowel [88] (Fig.  1.5). Its natural 
ligands consist of both conjugated and unconju-
gated BAs [89, 90]. When high serum concentra-
tions of BAs are detected, FXR suppresses the 
enzyme CYP7A1, the rate-limiting step in the 
synthesis of BAs from cholesterol, whilst at the 
same time inducing the expression of the trans-
porter BSEP thus downregulating NTCP [89, 
91–94]. The overall effect is a reduction in BA 
synthesis, increase in BA excretion into bile and 
reduction in BA uptake in the hepatocyte.

There is evidence to suggest that FXR func-
tion is blunted in normal murine pregnancy. In 
fact, both mouse and human pregnancy show 
increased serum BA concentrations when com-
pared with non-pregnant controls [95]. 
Microarray followed by Ingenuity Pathway 

Analysis (IPA) have been performed in FXR- 
knockout and pregnant mice, showing that the 
attenuated response to rising BAs is similar in 
both groups i.e. reduced induction of FXR 
downstream targets Shp, Bsep, Mrp3 and Mdr1a 
[95]. This effect is thought to be mediated by 
rising concentrations of maternal hormones, as 
a direct interaction between ERα, sulfated pro-
gesterone metabolites and FXR has been 
reported [86, 95–98]. The exact purpose of this 
physiological change in FXR function during 
pregnancy is unknown, but it might play a role 
in regulating some of the maternal metabolic 
changes.

In ICP, it is thought that the altered hormonal 
environment as a consequence of pregnancy 
unmasks the disease in genetically predisposed 
women. Sulfated progesterone metabolites are 
markedly increased in the serum of women 
affected by ICP when compared to controls [98], 
and this is thought to interfere with FXR func-
tion. Women with ICP also present with dyslipi-
daemia and are at increased risk of developing 
GDM [99–101]. Both changes are consistent 
with findings in FXR knockout mice, confirming 
the finding of an attenuated FXR response in the 
condition [76].

The goals of ICP treatment are maternal 
symptom control and reduction of fetal risks. 
Ursodeoxycholic acid (UDCA) is commonly pre-
scribed to treat the disease. UDCA is a naturally 
occurring, relatively hydrophilic BA that makes 
up approximately 3% of the human BA pool 
[102]. Its effects occur by transformation of the 
BA pool into a less hydrophobic, hence less cyto-
toxic one, and by regulation of hepatic BA trans-
porters both at a transcriptional and protein level 
[103]. A large 2019 randomised placebo- 
controlled trial showed that UDCA has some 
effect on maternal pruritus but in this study it was 
not effective in reducing adverse perinatal out-
comes [104]. However, a more recent individual 
participant data meta-analysis that included data 
from a considerably higher number of ICP cases 
with serum BA concentrations ≥40 μmol/L than 
in the randomised placebo-controlled trial, 
showed that UDCA treatment reduces rates of 
stillbirth and preterm birth when maternal serum 
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BA concentrations are elevated above this thresh-
old [105].

Similar to GDM, ICP is associated with long- 
term metabolic consequences for the fetus. A 
cohort study in affected babies showed that they 
were likely to develop features of the metabolic 
syndrome in adolescence. These findings were 
replicated in a mouse model of gestational cho-
lestasis, and the mechanisms behind these 
changes are thought to be a disruption of lipid 
homeostasis in the fetoplacental unit [106]. In 
mice, UDCA treatment during pregnancy was 
able to reverse some of these features in the off-
spring [107].

1.3.3  Pre-eclampsia

Pre-eclampsia is a multisystem disorder of preg-
nancy characterised by raised maternal blood 
pressure after 20 weeks of gestation and endothe-
lial dysfunction, and it can result in multiorgan 
dysfunction [108]. It is one of the leading causes 
of maternal and fetal morbidity and mortality in 
low- and middle-income countries [109], causing 
approximately 14% of maternal deaths world-
wide [110].

The placenta seems to be central in the patho-
physiology of the disease. Placental dysfunction 
results in recurrent ischemia-reperfusion injury 
in the placental bed, triggering an angiogenic 
imbalance in the mother [111]. The origin of this 
placental dysfunction is a subject of debate: 
although conventionally it is thought to be the 
result of insufficient invasion of spiral arteries by 
the EVT, new lines of evidence propose that 
abnormal placental perfusion is secondary to 
underlying abnormalities in maternal cardiac 
function that preclude an adequate maternal car-
diovascular adaptation to pregnancy [112]. 
Definitive treatment of pre-eclampsia consists of 
delivery of the fetus and the placenta; however, 
this causes a dilemma for clinicians and women 
when a fetus is preterm. The recommended prac-
tice is strict control of maternal blood pressure 
and planned delivery from 37 weeks of gestation, 
with the decision to deliver severe cases prior to 
this taken on a case by case basis [113–115].

Given the influence of PPARγ on trophoblast 
differentiation and development, there is an 
increasing interest in its role in the pathogenesis 
and treatment of pre-eclampsia. The expression 
of PPARγ in placentas of women affected by pre- 
eclampsia has been investigated, but no differ-
ences have been found in comparison to controls 
[116, 117]. No associations between polymor-
phisms of the PPARγ receptor gene and the 
development or severity of pre-eclampsia have 
been found either [118]. Administration of 
PPARγ antagonists in mice induces a phenotype 
of raised blood pressure, reduced pup weight and 
endothelial dysfunction, similar to a pre- 
eclamptic phenotype [119]. In addition, the bal-
ance between pro- and anti-angiogenic factors in 
maternal serum is disrupted in a way similar to 
the disease in humans, and the studied mice show 
evidence of impaired trophoblast differentiation. 
Administration of the PPARγ agonist rosigli-
tazone reverses the majority of these changes 
[120, 121]. One study has shown that women 
who develop pre-eclampsia have decreased 
serum concentrations of PPARγ activators, which 
are normally increased in unaffected pregnan-
cies. These findings are present before the onset 
of disease [122].

LXRs have also been investigated in the con-
text of pre-eclampsia. Their roles in trophoblast 
development and regulation of placental choles-
terol metabolism have been postulated as contrib-
uting factors to its pathogenesis [123]. LXRα 
mRNA expression and LXRβ protein levels have 
been investigated in placentas from women 
affected by pre-eclampsia, with variable results 
[124, 125]. One study showed that expression of 
both LXRα and its target endoglin, a regulator of 
trophoblast invasiveness and endothelial function 
previously implicated in the pathogenesis of pre- 
eclampsia, were both increased in placentas from 
affected women [125].

1.3.4  Spontaneous Preterm Labour

Preterm labour (PTL) is defined as the onset of 
regular uterine contractions and cervical dilata-
tion prior to 37 weeks of pregnancy. An estimated 
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15 million babies are born premature every year, 
and the complications of an early birth are the 
leading cause of mortality in children under 
5 years of age [126, 127]. Considering that inflam-
mation is central to the onset of labour, conditions 
that cause an increase in the inflammatory load of 
uterine tissues are potential triggers of early 
labour. Recognised causes are maternal or fetal 
infection, early activation of the fetal hypotha-
lamic-pituitary-adrenal axis, chorion- decidual 
haemorrhage, over-distention of the myometrium 
(e.g. multifetal gestation), changes in the vaginal 
microbiome and maternal stress [128–130]. 
However, a significant number of cases of preterm 
labour do not have an identifiable cause.

So far, no effective treatment for PTL has been 
found. Pharmacological strategies consist of a 
reactive approach that aims to delay the onset of 
parturition for a few days, with the aim of allow-
ing time for fetal lung maturation with exogenous 
corticosteroids. Progesterone supplementation 
has been extensively studied as a preventative 
strategy. The rationale for this approach remains 
questionable, as it is an established fact that the 
onset of human labour is not secondary to decreas-
ing progesterone concentrations. Nevertheless, 
positive results have been found in women at high 
risk of PTL, such as those with a previous history 
of PTL, evidence of a short cervix or multifetal 
pregnancies. The most recent individual partici-
pant meta-analysis evaluating randomised clinical 
trials in this subject has shown that the adminis-
tration of vaginal progesterone and intramuscular 
17- hydroxyprogesterone caproate (17-OHPC) are 
successful in preventing birth before 34 weeks in 
high risk singleton pregnancies [131]. This effect 
seems to be stronger in women with a reduced 
cervical length.

The challenges in developing strategies for the 
prevention of preterm birth stem from the fact that 
it has multiple causative factors, with likely dis-
tinct molecular mechanisms. In addition, the 
background risk of different populations varies, 
hindering the assessment of interventions. The 
mechanisms through which progesterone supple-
mentation can prevent PTL are still not fully 
understood. A study of progesterone supplemen-

tation in mice showed no changes in the expres-
sion of molecules related to uterine contractility, 
cervical remodelling or local inflammation [132]. 
A different study showed that vaginal progester-
one, in contrast to intramuscular 17-OHPC, has 
an influence on the myometrial immune profile 
and molecules related to cervical ripening [133]. 
It is also possible that different preparations of 
progestogens exert distinct effects on PRs and 
labour mechanisms, or can evade the myometrial 
changes in progesterone metabolism in different 
ways [134]. Understanding these mechanisms 
would allow us to optimise the use of progester-
one for prevention of PTL.

1.4  Conclusions

Nuclear receptors are remarkable integrators of 
hormonal, nutritional and transcriptional path-
ways that are increasingly recognised as impor-
tant orchestrators of pregnancy adaptations. They 
are an essential part of early events of pregnancy, 
maternal metabolic adaptations and parturition. 
So far, the prospect of treating gestational disor-
ders with modulators of nuclear receptors has 
been mainly considered with reference to treat-
ment strategies applied to non-gestational pathol-
ogies. A better understanding of the role of 
nuclear receptors in normal gestation and its spe-
cific disorders is necessary to enable consider-
ation of potential new therapeutic strategies.
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