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Abstract We propose an immerse boundary approach for the dynamics of active
contours in flows. When the active contours represent bacterial boundaries, we
couple this system with dynamic energy budget models of cell metabolism for
the evolution of the cell boundaries, informed by reaction-diffusion systems for
the relevant concentration fields. Numerical simulations illustrate the evolution of
incipient biofilms formed by clusters of spherical bacteria in two dimensions.

1 Introduction

Immersed boundary (IB) methods [13, 14] provide efficient tools to handle
fluid/structure interactions in many applications. Our goal here is to adapt them
to describe the behavior of cellular systems such as bacterial biofilms, in which
the structures are cell membranes. Biofilms are bacterial aggregates encased in
a self-produced polymeric matrix which grow on moist surfaces [6] and are
responsible for most hospital acquired infections [8]. Many models have been
developed to study their behavior, focusing on different aspects: continuous models
[17], agent based descriptions [7, 10, 11, 18, 20] and hybrid models combining
both [2, 16]. Immersed boundary methods have already been used to study finger
deformation [20], viscoelastic behavior [19] and attachment of bacteria [4] in flows.
Active cellular contours have been addressed by removing the incompressibility
constraint and including inner sources [12]. Applications to multicellular tissues
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[5, 15] consider closely packed deformable contours attached to each other [5, 15].
However, bacterial biofilms are formed by rigid shapes which remain at a certain
distance. When biofilms grow in flows, we usually have scattering bacteria in
large polymer fractions. Instead, we consider here incipient biofilms spreading on
surfaces, in which the volume fraction of polymeric matrix keeping cells together
is small [17]. We propose a computational model that combines an IB description
of cellular arrangements and mechanical interactions with a dynamic energy budget
(DEB) representation of bacterial activity and chemical processes. Simple tests on
clusters of spherical bacteria illustrate its potential to investigate cell arrangements
and interaction with flows.

2 Immerse Boundary Model for Active Boundaries

Immersed boundary models are usually formulated for ‘inert’ boundaries whose
shape changes as a result of the interaction with the fluid, keeping a fixed size. Cells
are ‘active’ boundaries, whose size and number changes. Let us explain how this
affects the standard IB equations. Given a region � and a boundary � immersed in
it, the fluid-structure interaction is described by the incompressible Navier-Stokes
equations set in � [13, 14]:

∂u
∂t

+ u · ∇u = ν�u − 1

ρ
∇p + 1

ρ
f − α

ρ
u, div(u) = 0, (1)

where u(x, t), p(x, t) and f(x, t) are the fluid velocity, fluid pressure and external
force density. The parameters ρ, ν = μρ and α denote the fluid density, kinematic
viscosity and friction coefficient, respectively. We enforce periodic boundary condi-
tions for the fluid, which allows to use fast solvers based on fast Fourier transforms
[13, 14], and place � far from the boundaries to allow for free growth while reducing
boundary effects. The force f(x, t) created by � on the fluid is

f(x, t) =
∫

�

F(q, t)δ(x − X(q, t)) dq. (2)

In practice, the delta function δ is replaced for computational purposes with
adequate regularizations [13, 14]. X(q, t) is the parametrization of �, and F(q, t) is
the force density on it. The integration parameters q represent angles. When several
cells are present, we work with several parametrizations X1, . . . ,XN .

The evolution equation for � follows correcting the no-slip condition

∂X
∂t

=
∫

�

u(x, t)δ(x − X(q, t)) dx + λ
(
(Fg · n)n + Fext

)
, λ > 0, (3)
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with the contribution of growth Fg and external forces Fext . In practice, F = Fe +
Fg+Fext . Elastic forces Fe within the IB are tangent to the outer normal Fe·n = 0. In
two dimensions, and assuming the boundaries are formed by springs parametrized

by the angle θ , Fe = ∂
∂θ

(
K ∂X

∂θ

)
, for an elastic constant K [13, 14]. Standard IB

approaches set Fg = Fext = 0 and α = 0. Here, the friction parameter α > 0
represents the effect of the polymeric matrix enveloping bacteria and hindering their
motion. The growth forces are included since they modify the size of �. We set them
proportional to dR

dt
n, being R the radius of each bacterium, see [3] for more details.

In our case, Fext = Fi are interaction forces between bacteria, moving them as
blocks. For spherical bacteria, we set Fi = ∑N

j=1 Fi,j δj with

Fi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N∑
n=1,n �=j

σ

dmin

ncm,n,j if dj,n ≤ dmin,

N∑
n=1,n �=j

σ
(
1 + tanh

(
sp−dj,n

vp

))

2dj,n

ncm,n,j if dj,n > dmin,

(4)

where σ is a repulsion parameter, ncm,n,j = Xc,j −Xc,n

‖Xc,j −Xc,n‖ the unit vector that joins
the centers of mass, and dj,n the distance between them. Here, δj equals 1 on the
boundary Xj and vanishes on the rest. sp controls at what distance the force begins
to act and vp its growth if the distance continues to decrease, see [3]. This force is
easy to adjust and extend to rod-like shapes by tuning parameters [3], as opposed to
the forces employed in [7]. Resorting to Morse potentials would be too expensive,
whereas Lennard-Jones potentials seem too strong.

3 Dynamic Energy Budget Model for Cell Metabolism

The growth dynamics of the boundaries representing bacterial membranes is
governed by bacterial metabolism. We use a Dynamic energy budget (DEB) [1, 9]
model for each cell, informed by a set of relevant concentration fields.

Given N bacteria, their energy ej and volume Vj , j = 1, . . . , N, are governed
by

dej

dt
= ν′

(
S

S + KS

− ej

)
,

dVj

dt
=

(
rj

aj

aM

− hj

)
Vj , rj =

(
ν′ej − mg

ej + g

)+
,

(5)
where ν′ = νe−γ ε, ν is the energy conductance, γ the environmental degradation
coefficient, KS a half-saturation coefficient, m the maintenance rate, g the invest-
ment ratio and aM the target acclimation energy. The symbol + stands for ‘positive
part’. The factor rj denotes the bacterial production rate. For 2D spherical bacteria
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Vj = πR2
j , and (5) implies

2
dRj

dt
=

(
rj

aj

aM

− hj

)
Rj . (6)

The aging qj and hazard hj variables represent damage on the cell, while aj

stands for acclimation, governed by

dqj

dt
= ej (sGρx

Vj

VT

qj + ha)(ν − rj ) − (rj + re,j )qj ,
dhj

dt
= qj − (rj + re,j )hj ,

(7)

dpj

dt
= −hjpj ,

daj

dt
= (rj + re,j )

(
1 − aj

aM

)+
, (8)

where ρx is the cell density, ha the Weibull aging acceleration, sG a multiplicative
stress coefficient. Here, pj is the probability of survival at time t . The factor re,j =
krj + k′, for k, k′ > 0 when the cell is and polymer (EPS) producer, otherwise it

vanishes. The produced EPS is then
dVe,j

dt
= re,jVj . A fraction η ∈ (0, 1) diffuses

creating a concentration of monomers Ce, while the rest sticks to the bacteria. The
limiting substrate concentration S and environmental degradation ε satisfy

dS

dt
= −ν′ S

S + KS

ρx

∑
j

Vj

VT

δj + ds�S − u · ∇S, (9)

dCe

dt
= ηρx

∑
j

re,j
Vj

VT

δj + de�Ce − u · ∇Ce, (10)

dε

dt
= νερx

∑
j

(rj + νmm)
Vj

VT

δj + dε�ε − u · ∇ε, (11)

where νm is the maintenance respiratory coefficient, νε is the environmental
degradation coefficient and ds , de, dε diffusion coefficients. Here VT is a reference
volume and δj = 1 at cell j , it vanishes otherwise. We enforce no flux boundary
conditions, except for S, which remains constant at the borders.

We couple the system of ordinary differential equations (5)–(7) and the reaction-
diffusion equations (9)–(11) using a similar philosophy as that in IB models. We
spread fields defined on bacteria using the cell volumes and rates as sources in
equations (9)–(11). We interpolate global fields on the bacteria averaging values
of S, ε in the region occupied by the cell. For each cell, the systems (5)–(7) are
discretized order two Runge-Kutta schemes. The reaction-diffusion equations (9)–
(11) are discretized by classical explicit finite difference schemes, first order in time
and second order in space.
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Fig. 1 (a) Initial configuration. Simulated configurations (b) after 18 hours with h0 = 0.4 and (c)
after 15 hours with h0 = 0 (no death). While (b) has 412 live cells (green) and 113 dead cells
(orange), (c) contains 920 live cells. Growth curve of cell types versus time (d) for simulation (b)
and (e) for simulation (c). The red fit in (e) is t ∼ CeγN , where C ∼ 54.53 and γ ∼ 0.1861 [1/h],
N being the number of cells. Panel (f) shows the times required to perform one computational step
depending on the number of cells in simulation (a)–(b) (blue circles) compared to its exponential
fit (red), Ceγ t , where C ∼ 1.4421 [s] and γ ∼ 0.0088

4 Simulations of Biofilm Spread

For typical parameter values [1, 3], the IB and concentration submodels are
quasistationary. Their solutions evolve as the immersed boundaries grow, shrink,
divide or move due to interactions. We solve the DEB equations (5)–(7) in a time
scale of hours, while updating the IB and concentration fields using time relaxation
schemes to update the quasistationary fields. Results are displayed in Fig. 1. Cells

Xj die when 1−pj >
Ninit

Na
+ r

(
1 − Ninit

Na

)
, Na and Ninit being the current and the

initial number of bacteria while r ∈ (0, 1) is a random number [3]. Cells divide in
two when their size surpasses a critical value.

5 Conclusions and Perspectives

Modeling the behavior of cell aggregates such as bacterial biofilms confronts the
difficulties of handling complicated interactions and geometries. We propose an
immerse boundary approach with enhanced spatial resolution when compared to
particle or cellular automata descriptions, since we can track individual deforma-
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tions and fluid-structure interactions. This approach is computationally expensive if
we aim to grow large clusters to see behaviors emanating at larger scales. However,
High Performance Computing tools may help to overcome that burden. The present
work focuses on spherical bacteria. Extensions to other shapes (rod-like, mixtures),
geometries (interaction with barriers) and environments (inclusion of toxicants)
can be envisaged [3]. In our current simulations the fluid flow has little relevance.
Exploring interactions with the flow and its influence on the observed shapes [16]
should be the subject of further work.
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