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Abstract In mathematics there are several problems which can be described by
differential equations of a certain very complicated structure. Most of the time,
we cannot produce the exact (analytical) solution of these problems, so we have
to approximate them numerically by using some approximating method. In this
paper we analyse one of such approximation methods, namely, operator splitting,
which is a widely and successfully used method in numerical analysis. We introduce
and demonstrate the method on a general Cauchy problem. In Sect. 1 of this
paper we discuss the two most popular splitting methods, which are the sequential
splitting (SS) and the Strang–Marchuk (SM) splitting, and describe the Average
Method (AM) obtained by using splitting methods. Here we also discuss the
possible reduction of the terms needed for the Average Method by using a matrix
decomposition of pairwise commuting matrices.

In Sect. 2 we describe an aerodynamical model of flutter, which serves as our
example problem. The advantage of the Average Method is shown in Sect. 3, where
tables about runtimes and errors are given.

1 Operator Splitting and Average Method

We consider the following Cauchy-problem in Rm:

{
ẏ(t) = Ay(t) = ∑d

i=1 Aiy(t), t ∈ (0, T ],
y(0) = y0,

(1)

where y : [0, T ] → R
m is the unknown function, y0 ∈ Rm is the given initial vector

and Ai ∈ Rm×m (i = 1, . . . , d) are given matrices.
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The exact solution of the Cauchy-problem (1) can be written directly as y(t) =
exp(tA)y(0). Since the exact representation of the exponential matrix exp(tA)

is typically impossible (or, at least, a very time-consuming task), our aim is to
approximate the exact solution numerically by some suitable approximation of this
exponential matrix on the grid

ωh = {
tn = n · h, h = T

N
, n = 0, 1, . . . , N

}
. (2)

We can do it by the so-called operator splitting, which means the following.
We decompose the original (complex) problem into a series of simpler Cauchy
problems, linked through their initial conditions. By applying this method it can
be easier to find a numerical solution to the original problem.

The two most popular splitting methods include the sequential splitting (SS) and
the Strang-Marchuk (SM) splitting. The algorithm of sequential splitting in case of
two subproblems is as follows. In this case the decomposition of A is A = A1 +
A2. If we use the sequential splitting to solve (1) on the grid ωh, it means that the
following two subproblems are solved in every step:

{
ẏ1(t) = A1y1(t), t ∈ (ti , ti+1],
y1(ti) = xsp(ti),

(3)

{
ẏ2(t) = A2y2(t), t ∈ (ti , ti+1],
y2(ti) = y1(ti+1).

(4)

where i = 0, . . . , N − 1, xsp(ti+1) = y2(ti+1) and xsp(t0) = y0.
The main difference between the sequential and Strang-Marchuk splitting is that

the latter computes values in the midpoints of the subintervals. The algorithm of SM
splitting means solving the following subproblems:

{
ẏ1(t) = A1y1(t), t ∈ (

ti , ti+ 1
2

]
,

y1
(
ti
) = xsp(ti),

(5)

{
ẏ2(t) = A2y2(t), t ∈ (

ti , ti+1
]
,

y2
(
ti
) = y1

(
t
i+ 1

2

)
,

(6)

{
ẏ1(t) = A1y1(t), t ∈ (

t
i+ 1

2
, ti+1

]
,

y1
(
t
i+ 1

2

) = y2
(
ti+1

)
.

(7)

where i = 0, . . . , N − 1, xsp(ti+1) = y1(ti+1) and xsp(t0) = y0.

Remark 1 The sequential splitting is a first-order of consistency method, the Strang-
Marchuk splitting is a second-order of consistency method.

As an alternative to the classical splitting methods, we introduce the Average
Method with sequential splitting (AMSS) which is based on the idea to divide the
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Cauchy problem (1) into d subproblems, using sequential splitting in all possible
ordering sequences. Then we define the numerical solution of each split subproblem,
taking their arithmetic mean, and we define the new numerical solution in ωh.

Let Pd denote the set of the permutations of the indices {1, 2, . . . , d} and for
p = {p1, p2, . . . , pd} ∈ Pd we introduce the notation

exp {p1, p2, . . . , pd} = exp (hAp1) exp (hAp2) · . . . · exp (hApd
). (8)

Theorem 1 Solving the Cauchy-problem (1) using sequential splitting for all
possible permutations and then averaging the resulting numerical solutions yields
a second-order method, i.e.

exp
(
h(A1 + . . . + Ad)

) = 1

d!
∑
p∈Pd

exp{p1, p2, . . . , pd} + O(h3). (9)

So instead of using a second-order method once, we just use a first-order method
more than once and we get a second-order numerical solution. Hence the main
advantage is that a first-order method requires less computational demand than
a second-order numerical method. However using the AMSS method to solve
Cauchy problem (1), we have to calculate d! numerical solutions. Even with a
relatively small value of d, we have to produce many numerical solutions and the
computational demand may increase greatly.

If we find a decomposition for Cauchy problem (1) that includes commuting
matrices, the number of subproblems can be significantly reduced. Let A = A1 +
A2 + . . . + Ad , and suppose that ∃i, j ∈ N, and i �= j such that [Ai,Aj ] = 0.
Then instead of all the d! permutations, we have d! − (d − 1)! = (d − 1)(d −
1)! elements. If the decomposition includes more commuting pairs of matrices, the
reduction might be more significant. The other advantage of the Average Method is
that the d! numerical solutions can be independently calculated, i.e. the computation
is parallelizable.

2 Application to the Aerodynamics

We investigated the efficiency of the Average Method on a physical problem which
describes the aerodynamics of an airplane wing. The model is based on a wind
tunnel experiment in which the lift force of an airplane wing was examined as a
function of the inclination of the wing. This piecewise-linear model of flutter was
investigated in [2]. Motivated by this model, we consider the 4-dimensional Cauchy
problem

{
ẋ(t) = Akx(t),
x(0) = x0.

(10)
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Table 1 Parameters of the model

Parameter c0 c1 c2 p1 p2 p3 p4

Value 5.932 -6.846 2.662 0.1485 0.0147 0.0540 0.2748

where the affine model equations contain the three system matrices (k = 0, 1, 2)

Ak =

⎛
⎜⎜⎝

0 1 0 0
−1 −(p1 + p2μck) −μ2ckp2 0
0 0 0 1
0 ckμ −(p4 − ckμ

2) −p3

⎞
⎟⎟⎠ ,

with the model parameters given in Table 1, and μ ∈ (0,∞) represents the
nondimensional wind speed.

We analyzed several decompositions of matrix Ak , the most important of them
being the following, which contains commuting matrices:

Ak = Ak(1)
+ Ak(2)

+ Ak(3)
, (11)

where

Ak(1)
=

⎛
⎜⎜⎝

0 1 0 0
−1 −(p1 + p2μck) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , Ak(2)

=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −(p4 − ckμ

2) −p3

⎞
⎟⎟⎠ ,

Ak(3)
=

⎛
⎜⎜⎝

0 0 0 0
0 0 −μ2ckp2 0
0 0 0 0
0 ckμ 0 0

⎞
⎟⎟⎠ .

Clearly, that matrices Ak(1)
and Ak(2)

are commuting matrices, therefore:

exp
(
hAk(1)

) · exp
(
hAk(2)

) = exp
(
h(Ak(1)

+ Ak(2)
)
)
. (12)

Then we introduce the notation

Ak(4)
= Ak(1)

+ Ak(2)
= Ak(2)

+ Ak(1)
. (13)

Solving the Cauchy problem (1) using the AMSS method with decomposition
(11), which includes commuting matrices, and using property (12) and notation (13),
the number of subproblems can be reduced from six to four, and we have to calculate
the following four numerical solutions:
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x1(h) = exp(hAk(1)
) exp(hAk(3)

) exp(hAk(2)
) · x0, (14)

x2(h) = exp(hAk(2)
) exp(hAk(3)

) exp(hAk(1)
) · x0, (15)

x3(h) = exp(hAk(4)
) exp(hAk(3)

) · x0, (16)

x4(h) = exp(hAk(3)
) exp(hAk(4)

) · x0, (17)

where (14), (15) have three subproblems, and in case of (16), (17) the number of
subproblems was reduced from three to two which further simplifies the solution
process and reduces computational demand, too. Then based on Theorem 1, we
have

exp
(
h(Ak(1)

+ Ak(2)
+ Ak(3)

)
) = x1(h) + x2(h) + 2x3(h) + 2x4(h)

6
+ O(h3).

(18)

3 Numerical Results

During the numerical implementation, the numerical solutions (14)–(17) were
computed using sequential splitting, which has first order, and the subproblems
were solved using the first-order explicit Euler method. Then averaging these first-
order solutions we get a second-order numerical solution. The essence of the AMSS

method is that we have to implement some first-order approximating methods,
which we can easily implement, then the average of first-order numerical solutions
should be taken, which is not a very expensive operation, either, then we get a
second-order method.

The numerical solutions (14)–(17) can be independently calculated, i.e. the
computation is parallelizable. When we have four processors, we can compute
the solutions (14)–(17) at the same time. We can simulate the parallel run as
follows. Consider that we have four processors to calculate the numerical solutions
in parallel. We can see the runtimes of every calculation of the solutions (14)–(17)
in Table 2. We can calculate the whole runtime as follows: choose the maximum
of the four runtimes (red coloured) and then add the runtime of the averaging. The
last column of Table 2 shows the full runtime of the Average Method in case of four
processors.

Now we consider the case where three processors are available to solve system
(10) using the AMSS method. In this case the main problem is to partition the
subproblems well. On the one hand we saw in Sect. 2 that in case of solutions (14)
and (15) there are three subproblems with matrices Ak(1)

, Ak(2)
and Ak(3)

while in
case of solutions (16) and (17) there are only two subproblems with matrices Ak(3)

and Ak(4)
. And on the other hand Table 2 shows that solutions (16) and (17) can be

computed faster than solutions (14) and (15). Therefore, it is reasonable to partition
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Table 2 Runtimes (in seconds) of the AMSS during a parallel run with four processors

Table 3 Runtimes (in seconds) of AMSS during a parallel run with three processors

Table 4 Runtimes (in seconds) of AMSS during a parallel run with two processors

as follows: solutions (14) and (15) are computed by two separate processors, and
solutions (16) and (17) are computed one after the other by the third processor.
Table 3 shows the runtimes of this case.

It is worth examining the case where we have two processors to compute the
numerical solution of (10). Similarly to the three-processor case, proper partitioning
will be the main task. The most reasonable partition is as follows: calculate solutions
(14) and (16) one after the other with one processor, meanwhile solutions (15) and
(17) can be calculated one after the other using the other processor. In this case
Table 4 shows the runtimes.

And in order to see the practical usefulness of the AMSS method, we solved
the whole Cauchy-problem (10) without any splitting process using the improved
Euler method, which is the same second-order method as the AMSS method, and
we compared the runtime of the AMSS with two, three and four processors with the
runtime of the improved Euler method. Table 5 shows this comparison and we can
see that on average, the AMSS method is one-two orders of magnitude faster than
the improved Euler method.

Table 6 shows the comparison of errors in case of AMSS and the improved Euler
method. It can be seen the second-order convergence in both cases, furthermore the
error is approximately the same in both cases.
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Table 5 Comparison of runtimes (in seconds) in case of AMSS with two, three and four
processors and the improved Euler method

h AMSS + 2 proc. AMSS +3 proc. AMSS + 4 proc. Improved Euler

1 9.40 · 10−5 7.30 · 10−5 7.30 · 10−5 8.18 · 10−3

0.1 1.82 · 10−4 1.69 · 10−4 1.11 · 10−4 1.96 · 10−2

0.01 1.04 · 10−2 8.74 · 10−3 8.74 · 10−3 8.44 · 10−2

0.001 5.48 · 10−2 4.11 · 10−2 4.11 · 10−2 1.13 · 100

Table 6 Comparison of
errors in case of AMSS and
the improved Euler method

h AMSS method Improved Euler

1 2.08 · 10−2 4.77 · 100

0.1 2.44 · 10−4 2.04 · 10−4

0.01 2.44 · 10−6 2.01 · 10−6

0.001 2.44 · 10−8 2.01 · 10−8
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