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Abstract A novel parallel approach is developed for solving EHL line and point
contact problems. The main motivation of algorithm comes from solving a discrete
variational inequality problems on parallel computer by introducing a novel solver
named as projected alternate quadrant interlocking factorization (PAQIF). The
PAQIF has the property that when complementarity system

L0x ≥ b,

x ≥ 0,

x(L0x − b) = 0

is banded with semibandwidth βv , the space generated by ei ., en−i ; 1 ≤ i ≤ βv is
invariant under the transformation W−1. Hence PAQIF is combined with partitioned
scheme that renders a divide and conquer algorithm for solution of the banded linear
complementarity system. The idea is extended to EHL problems by developing
suitable preconditioner in the form of banded matrix.

1 Introduction

In a wide range of lubricated industrial devices studied, due to varying partial
differential equations (PDEs) behaviour in Reynold’s equation in the model (known
as Elasto-hydrodynamic lubrication (EHL) see for examples [1, 2, 4]), depicting the
pressure distribution and film thickness gap having considerable amount of difficulty
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when the numerical simulation is done on serial computer. A very fine mesh is
essential to capture inherited physics behind the model which generates a large
memory requirement and computational complexity during the computation. Such
a challenge can be compromised if discretized Reynold’s equation is approximated
in the form of a banded linear system during fix point iteration. Such banded
linear systems often give rise to very large narrow banded linear systems which
can be dense or sparse within the band. As result it is essential to develop robust
parallel algorithms to meet the memory requirement and reduce the computational
complexity by sharing the load on parallel computers. We discuss a novel parallel
approach known as projected alternate quadrant interlocking factorization (PAQIF)
to tackle the above mentioned extremities.

2 The Mathematical Model Problem

The mathematical formulation of the EHL problem consists of the set of nonlinear
PDEs in the form of inequalities (see [1, 2] and [4] for more details) described as
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The elastic regime of the film thickness gap H between two contacting surfaces is
governed by

H(p) = H0 + x2 + y2

2
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The dimensionless force balance equation are defined as follows

∫ ∞

−∞

∫ ∞

−∞
p(x′, y′)dx′dy′ = 3π

2
, (3)

Here term ε is defined as

ε = ρH 3

ηλ
,



AQIF Parallel Algorithm 33

where dimensionless viscosity η is defined as dimensionless density ρ and speed
parameter λ

2.1 The PAQIF Algorithm

We consider the linear complementarity problem (LCP) define as below

LU(x) ≥ f (x), x ∈ �,

U(x) ≥ 0, x ∈ �,

U(x)T .[LU(x) − f (x)] = 0, x ∈ �,

U(x) = g(x), x ∈ ∂�.

(4)

Now we subdivide the LCP into r blocks linear sub-complementarity problem
(LSCP) each of size n along the main diagonal such that N = nr , where r is the
number of processors available. From Eq. (4), LSCP is expressed as

L
(m)
− U(m−1)(x) + L

(m)
0 U(m)(x) + L

(m)
+ U(m+1)(x) ≥ f (m)(x), m = 1, 2, . . . , r

U(m)(x) ≥ 0

U(m)(x)T .(L
(m)
− U(m−1)(x) + L

(m)
0 U(m)(x) + L

(m)
+ U(m+1)(x) − f (m)(x)) = 0,

(5)

For each partition r , Eq. (5) can be reformulated as

L
(m)
0 U(m)(x) ≥ f (m)(x) −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L
(m)
− U

(m−1)
L (x)

0
.

.

0
L

(m)
+ U

(m+1)
F (x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

n×1

:= f ∗(m)(x), m = 1, . . . , r

U(m)(x) ≥ 0

U(m)(x)T .(L
(m)
0 U(m)(x) − f ∗(m)(x)) = 0,

(6)

where U
(m−1)
L (x) and U

(m+1)
F (x) are βv × 1 vectors picked up from the last and

first βv components of the solution vector U(m−1)(x) and U(m+1)(x), respectively.
Now we decouple the LSCP in Eq. (6) for parallel processors. Note that in Eq. (6)
f ∗(m)(x) differs from f (m)(x) only in its first βv and last βv components. In order
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to factorize L
(m)
0 into W

(m)
0 Z

(m)
0 , we consider the space generated by

Span1≤i≤βv
{ei, en−i+1}

is invariant under the matrix W
(m)
0 (and so for W(m)−1

0 ), where

ej := (0, 0, . . . , 0, 1j thterm, 0, . . . , 0).

Let [L(m)
0 ]n×n (say n = 2s), [W0]n×n and [Z0]n×n matrices such that L0 = W0Z0,

The above factorization can be proved that the method is stable for nonsingular
diagonally dominant. Over all method is now outlined in brief as follows (see [3, 4]
in details):

Step 1: For m = 1, 2, . . . , r factorize in parallel

L
(m)
0 = W

(m)
0 Z

(m)
0

Step 2: For m = 1, 2, . . . , r compute Y (m) in parallel

W
(m)
0 Y (m) = F (m)

Step 3: For m = 1, 2, . . . , r get inverse of 2βv×2βv matrix obtained by collecting
first βv and last βv rows and columns of W

(m)
0 in parallel.

Step 4: Solve the reduced system from the subsystem by collecting first βv and
last βv equations from each block. Then form normal equations, Solve
system for U

(m)
F and U

(m)
L ,m = 1, 2, . . . , r .

Step 5: Project U
(m)
F and U

(m)
L ,m = 1, 2, . . . , r into convex set K , where

K = {p ∈ U : p ≥ 0}.

Step 6: For m = 1, 2, . . . , r solve U
(m)
M in parallel.

Step 7: Project U
(m)
M ,m = 1, 2, . . . , r into convex set K .

3 Numerical Results

We discretize the EHL model problem defined in Eqn (1) using finite difference
method (see for example [4]). The domain decomposition method is used here for
solving problem on parallel computers. We have used PAQIF algorithm during the
fix point inner iteration process of the the computation. The speedup performance
and efficiency plot of PAQIF algorithm is shown for varying grid points in Figs. 1
and 2 respectively. The converged pressure profile and gap plot are shown in Figs. 3
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Fig. 1 Speedup plot for the cases N = 128, 256, 512, 1024, where bandwidth of matrix βv = 2
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Fig. 2 Efficiency plot for the cases N = 128, 256, 512, 1024, where bandwidth of matrix βv = 2
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Fig. 3 EHL line contact, see [4]

Fig. 4 Pressure P plot and 2-D Gap H plot for M = 20, L = 10, see [4]

and 4, respectively. We have performed all numerical computation on Dell Tower
precision machine having processor specification Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz.
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