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Abstract Topological data analysis has arisen has a promising tool to extract
information on the structure of a wide variety of datasets. We analyze here its
potential in two types of cancer studies. First, we compare times series of images
from simulations of metastatic invasion in epithelial tissues. Calculating bottleneck
distances of persistent diagrams we can characterize and classify the advancing
interfaces of cellular aggregates. Second, we compare mRNA expression values for
genes involved in cell cycles extracted from pancreas cancer tissue. We discuss how
persistence information from different distances can provide insight on patient/gene
clusters.

1 Introduction

Clinical and experimental studies of illness generate large amounts of data of
a different nature. Consider cancer, for instance. Laboratory analyses of gene
expression lead to large files containing measurements for different genes [15], see
Fig. 1a. Instead, experimental observations of normal and malignant cells [9] yield
time series of images, see Fig. 1b. Being able to extract meaningful information from
large biomedical datasets, regardless of their nature, is a challenge that requires the
development of adequate mathematical and computational tools.

Topological data analysis (TDA) furnishes a framework that provides dimen-
sionality reduction and robustness to noise [2] when studying data clouds, with
a certain independence with respect to the metrics selected. Recent studies have
pointed out the potential of TDA in biological applications [8, 13, 16]. Biomedical
data can be often be seen as point clouds in a space of dimension D. Whereas for
images D is the spatial dimension, for gene expression datasets D is the number of
patients or genes in the study. We will see how to use TDA to extract information in
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Fig. 1 (a) Heatmap showing normalized mRNA expressions for a collection of genes within a set
of patients, data taken from [6]. (b) Snapshots from a numerical simulation showing the invasion
of healthy (green) epithelial tissue by malignant (magenta) cells, reprinted from [1], see [9] for
related experimental images

both settings. The paper is organized as follows. Section 2 applies TDA to classify
automatically interfaces between healthy and malignant cells in two dimensional
images. Section 3 proposes a topology based hierarchical clustering procedure for
gene expression data. Finally, Sect. 4 summarizes our conclusions.

2 Classification of Interfaces

Competition between two different media (fluids, for instance) or populations is
an ubiquitous phenomenon in many fields. Usually, an interface separating the
two components forms. Being able to automatically characterize such interface is
important to identify patterns or stages in biological applications. Given several
images representing the evolution of fragmented interfaces, our strategy proceeds
in the following steps [1]:

1. Extract from each image a point cloud X defining the interface.
2. Build a Vietoris-Rips filtration V (X, r) for each point cloud based on the

Euclidean distance, that is, a family of simplicial complexes formed joining by
edges and triangles the points at a distance smaller than a variable parameter r ,
see [17].

3. Calculate the Betti numbers associated to each filtration: betti0(r) (number of
components) and betti1(r) (number of holes) as the filtration parameter r varies.

4. For each identified component in each filtration, calculate the persistence
intervals [rb, rd ], that is, the filtration parameter values at which it appears rb
(birth) and disappears rd (death). They define the H0 homology.

5. For each identified hole in each filtration, calculate the persistence intervals
[rb, rd ]. They define the H1 homology.
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Fig. 2 Persistence diagrams representative of the initial, intermediate and late stages in the
invasion process

6. Plot the persistence diagrams formed by the points (rb, rd) defining the persis-
tence intervals for components and holes in each filtration, see Fig. 2.

7. Calculate the Bottleneck distance [11] between the H1 persistence diagrams.
8. Use k-means or a hierarchical clustering [10] approach to group the interfaces in

clusters according to the level of detail required.

For the simulation considered in Fig. 1b, a set of 12 images is classified by K-
means in 3 groups: the first three frames correspond to initial stages in which the
interface is close to an unfragmented smooth curve, the last two frames correspond
to late stages of the invasion period with many fragments and interpenetration, while
the remaining frames correspond to an intermediate stage in which fragments may
detach and reattach, see Fig. 2.

The study of images involves point clouds in two or three dimensional spaces.
Medical records containing the values of several variables monitorized over a
collection of patients belong to higher dimensional spaces. Their study presents new
difficulties.

3 Grouping Data

Gene studies in cancer patients have provided large amounts of information
which may help to identify genetic features of sickness [15]. We consider here
measurements of mRNA gene expression data for pancreas cancer available in [6],
taken from the TCGA (the Cancer Genome Atlas) study. In this case, data take the
form of numeric matrices M = (mj,i) containing values for a collection of genes
i = 1, . . . , N , from tissue samples corresponding to different patients j = 1, . . . , J .

The first step consists in normalizing the data. To do so [7], we calculate the
means μi and standard deviations σi for each gene over the patients and compute
the normalized values m̃j,i = mj,i−μi

3σi
. Then, we select a distance and a clustering
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strategy to group either patients using information from genes, or genes using
information from patients.

3.1 Distance Selection

To compare genes or patients, we can use a number of distances [5]:

• The Euclidean distance between two columns or rowsm1 andm2 is their distance
as vectors in a D dimensional space d(m1,m2) = ‖m1 − m2‖2.

• The Earth Mover’s distance (EMD) provides the minimum cost of turning one
column (resp. row) into the other [13]

emd(m1,m2) =
∑D

k=1
∑D

�=1 ck,�dk,�
∑D

k=1
∑D

�=1 dk,�

,

where dk,� = |m1
k − m2

�| is the ground distance, and ck,� minimizes the cost
∑D

k=1
∑D

�=1 ck,�dk,� subject to the constraints ck,� ≥ 0, 1 ≤ k, � ≤ D,
∑D

k=1
∑D

�=1 ck,� = D,
∑D

k=1 ck,� ≤ 1, 1 ≤ � ≤ D,
∑D

�=1 ck,� ≤ 1, 1 ≤
k ≤ D. The EMD identifies patterns regardless of their location. The distance
between two patient profiles that are equal except for a peak about different
genes would be small, which is inadequate as different genes may define different
illnesses.

• Considering a set S of columns (resp. rows) m1, m2, . . . , mL, the Fermat α-
distance between any two of them relative to that set is [14]

dS,α(m1,m2) = min
{k−1∑

�=1

‖y�+1 − y�‖α
2

∣
∣
∣
∣(y1, . . . , yk) path from m1 to m2 in S

}
,

for any α > 1. When α = 1, we recover the Euclidean distance. The Fermat
distance compares items in a set weighting information from all the other items
in the same set, which is interesting when we want to compare gene profiles
weighting information from cohorts of patients [3].

3.2 Distance and Topology Based Clustering

Figure 3 represents gene-gene and patient-patient distances for different gene (resp.
patient) orderings. Regardless of the ordering, we can use such distance matrices in
hierarchical clustering algorithms [10] and select a natural number of clusters based
on inconsistency criteria [12]. Grouping genes (resp. patients) by their clusters we
obtain the panels in Fig. 3, which uncover hidden relations in the data.
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Fig. 3 Heatmaps representing the distance matrices for the set of data considered in Fig. 1a
ordering patients (resp. genes) by cluster groups, as determined by hierarchical clustering with
different distances: (a–c) Euclidean distances, (d–f) Fermat distances with α = 3. (a) and (d)
compare patients, while the rest compare genes. Panels (a–b), (d–e) use the natural number of
clusters, as given by inconsistency studies. Instead, (c) and (f) use 36–37 clusters

Moreover, using any of these distances on the point cloud of patients
mj,· = (mj,1, . . . , mj,N ), j = 1, . . . , J , or the point cloud of patients
m·,i = (m1,i , . . . , mN,i), i = 1, . . . , N , we can implement a similar procedure
to that described in Sect. 2, only the distance changes. We construct a filtration,
calculate the Betti numbers, as well as the persistence diagrams and intervals.
With this information, we can compare datasets from different cancer types
or patient studies to identify distinctive features and profiles. Moreover, the
H0 homology provides an additional clustering strategy, different from usual
hierarchical clustering. For a fixed filtration parameter value, each component
of the simplex constructed for that filtration value defines a cluster. As the filtration
parameter varies, we have a topology based hierarchical clustering strategy. Figure 4
displays the same data as Fig. 1a when genes and patients are rearranged following
the components of filtrations for a fixed filtration value.

4 Conclusions

We have discussed the potential of persistence studies based on different distances
combined with clustering strategies to extract information from point clouds of data
of medical interest. Applied to time series of images of cellular arrangements, it
provides a tool to automatically classify specific image features. Applied to gene
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Fig. 4 Fermat distance reordered following H0 clusters (a) for genes and (b) for patients. Panel
(c) shows the data rearranged following the H0 clusters

expression data, it opens new perspectives to gain a better understanding of hidden
relations. Similar techniques could be exploited to study clinical data from other
illnesses, immune disorders for instance [4].
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