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Abstract We calibrate parameters of neural networks that model forces in interac-
tion dynamics with the help of the Consensus-based global optimization method
(CBO). We state the general framework of interaction particle systems driven
by neural networks and test the proposed method with a real dataset from the
ESIMAS traffic experiment. The resulting forces are compared to well-known
physical interaction forces. Moreover, we compare the performance of the proposed
calibration process to the one in Göttlich and C. Totzeck (Optimal control for
interaction particle systems driven by neural networks. arXiv:2101.12657, 2021)
which uses a stochastic gradient descent algorithm.

1 Introduction

Modelling interacting particle dynamics such as traffic, crowd dynamics, schools
of fish and flocks of birds has attracted the attention of many research groups in
the recent decades. Most models use physically-inspired interaction forces resulting
from potentials to capture the observed behaviour. In fact, the gradient of the
potential is used as driving force for interacting particle systems formulated with
the help of ordinary differential equation (ODE). These models are able to represent
the main features of the dynamics, but as for all models we cannot be sure that
they deliver the whole truth. The idea in [1] was therefore to replace the physical-
inspired models by neural networks, train the networks with real data and compare
the resulting forces.
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In the recent years it became obvious that neural networks are able to represent
a lot of details from the dataset. It may be possible that there are details captured
that are not even noticed by humans and therefore do not appear in physical models
which are built to reproduce observations of the modeller.

In the following we recall the general dynamic of interaction particle systems
driven by neural networks as proposed in [1]. Then we shortly describe the global
optimization method ‘Consensus-based optimization’ that we use for the real-data
based calibration the network. Finally, we present the numerical results obtained by
the calibration process and compare them to the ones resulting from the calibration
with the stochastic gradient descent method reported in [1].

2 Interacting Particle Systems Driven by Neural Networks

We consider interacting particle dynamics described by ODE systems of the form

d

dt
yi =

N∑

j=1

W
i,j
θ (yj − yi), yi(0) = zi

0, i = 1, . . . , N, (1)

where W
i,j
θ represents the interaction force resulting for yi in its interaction with

yj . The initial condition of the particles is given by real dataset z0 = z(0). In order
to compare the results to the ones in [1] we restrict the class of neural networks to
feed-forward networks. However, note that the approach discussed here allows for
general neural networks while the discussion in [1] considers feed-forward networks
and can only be generalized to neural networks allowing for back propagation.

2.1 Feed-Forward Neural Networks

In the following we consider feed-forward artificial neural networks of the form

Definition 1 A feed-forward artificial neural network (NN) is characterized by

– Input layer:

a
(1)
1 = 1, a

(1)
k = xk−1, for k ∈ {2, . . . , n(1) + 1},

where x ∈ R
n(1)

is the input (feature) in (1) and n(1) is the number of neurons
without the bias unit a1.

– Hidden layers: for � ∈ {2, . . . , L − 1}, k ∈ {2, . . . , n(�) + 1}

a
(�)
1 = 1, a

(�)
k = g(�)

⎛

⎝
n(�−1)+1∑

j=1

θ
(�−1)
j,k a

(�−1)
j

⎞

⎠ .



Calibration with CBO for Interaction Dynamics Driven by NN 19

– Output layer: a
(L)
k = g(L)

(∑n(L−1)+1
j=1 θ

(L−1)
j,k a

(L−1)
j

)
for k ∈ {1, . . . , n(L)}

Note that the output layer has no bias unit. The entry θ�
j,k of the weight matrix

θ(�) ∈ R
n(�−1)×n(�)

describes the weight from neuron a
(�−1)
j to the neuron a

(�)
k . For

notational convenience, we assemble all entries θ
(�)
j,k in a vector RK with

K := n(1) · n(2) + n(2) · n(3) + · · · + n(L−1) · n(L).

For the numerical experiment we use g(�) = log(1 + ex) for � = 2, . . . , N − 1 and
g(L)(x) = x. For an illustration of the NN structure we refer to [1]. In the numerical
section we consider an NN with L = 3, one input and 5 units in the hidden layer.

3 Parameter Calibration

We formulate the task of the parameter calibration as an optimization problem. Let
u ∈ R

d denote the vector of parameters to be calibrated. This could be the weights of
the neural network θ and some other parameters, as for example the average length
L and the maximal speed vmax of the cars which we will consider in the application.
As we want the network to recover the forces hidden in the real data dynamics, we
define the cost function for the parameter calibration as

J (y, u) = 1

2

∫ T

0
‖y(t) − z(t)‖2dt + δ

2
|u − uref|2, (2)

where z denotes the trajectories of the cars obtained by the traffic experiment, and
uref are reference values for the parameters. The parameter δ allows to balance the
two terms in the cost functional. In case no reference values of the parameters are
available, we set δ = 0 in the numerical section.

3.1 Consensus-Based Optimization (CBO)

We solve the parameter calibration problem with the help of a Consensus-based
optimization method [4] and choose the variant introduced in [5] which is tailored
for high-dimensional problems involving the calibration of neural networks. The
CBO dynamics is itself a stochastic interacting particle system with NCBO agents
given by stochastic differential equations (SDEs). The evolution of the agents is
influenced by two terms. On the one hand, there is a deterministic term that aims to
confine the positions of the agents at a weighted mean. On the other hand, there is a
stochastic term that allows for exploration of the state space. The details are
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dui
t = −λ(ui

t − vf )dt + σdiag(ui
t − vf )dBi

t , i = 1, . . . , NCBO (3)

with drift and diffusion parameters λ, σ > 0, independent d-dimensional Brownian
motions Bi

t and initial conditions ui
0 drawn uniformly from the parameter set of

interest. A main role plays the weighed mean

vf = 1
∑NCBO

i=1 e−J (ui )

NCBO∑

i=1

ui e−αJ (ui ).

By its construction, agents with lower cost have more weight in the mean as the
ones with higher cost. The parameter α allows to adjust this difference of the
weights. For more information on the CBO method and its proof of convergence
on the mean-field level we refer the interested reader to [2] and the references
therein. As indicated by the notation above, the agents used in the CBO method
are different realizations of parameter vectors that we consider for the calibration.
For the numerical results NN4 we consider a neural network with 13 weights, i.e.,
θ ∈ R

13. Moreover, we assume the maximal speed vmax as additional parameter.
Hence, for fixed t we have for the i-th CBO agent ui

t ∈ R
14.

4 Numerical Results and Conclusion

For the calibration of the parameters we consider real data from the project ESIMAS
[3]. As we want to compare the results to the well-known follow-the-leader model
for traffic flow (LWR) we recall its details

d

dt
yi(t) = f

(
yi+1(t) − yi(t)

L

)
, i = 1, . . . , N − 1, (4a)

d

dt
yN(t) = vmax. (4b)

Here f (·) is either vmax log(·) or vmax(1 − 1/·). To be prepared for a reasonable
comparison, we consider for the neural network dynamics

d

dt
yi(t) = W

i,i+1
θ (yi+1(t) − yj (t)), i = 1, . . . , N − 1, (5a)

d

dt
yN(t) = vmax (5b)

supplemented with initial data y(0) = z0. This leads to u = (vmax, θ). To evaluate
the models and compute the corresponding cost we solve all ODEs with an explicit
Euler scheme. For details we refer to [1]. The number in the notation NN2, NN4
and NN10 corresponds to the number of nonbias neurons in the hidden layer.
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4.1 Data Processing and Numerical Schemes

The data collection of the ESIMAS project contains vehicle data from 5 cameras
that were placed in a 1km tunnel section on the German motorway A3 nearby
Frankfurt/Main [3]. The data is processed in the exact same way as in [1]. Files
with the processed data can be found online.1

The SDE which represents the CBO scheme is solved with the scheme proposed
in [5]. In particular, we set dt = 0.05, σ0 = 1, λ = 1 and the maximal number of
time steps to 100. The mini-batch size of the CBO scheme is 50 and we have 100
CBO agents in total. In each time step we update one randomly chosen mini-batch.
The initial values are chosen as follows

vmax ∼ U([20, 40]), L ∼ U([0, 10]) and θ ∼ U([−0.5, 0.5]K)

4.2 Resulting Forces and Comparison

Figure 1 (left) shows the velocities resulting from the parameter calibration process.
We find that the estimated velocities for the NN approaches are higher than the
velocities of the LWR based models. The difference is most significant in data
set 10. The plot on the right shows the average of the resulting forces for the
different models. The forces of the NN approaches resemble linear approximations
of the forces corresponding to the LWR models. The car length (L) appears only
in the LWR models. Its optimized values for the different data sets are given in
Table 1. We see that the lengths for the linear model are smaller than the ones in the
logarithmic model. This is in agreement with the results obtained with stochastic
gradient descent and shown in [1]. Finally, we summarize the cost values after
parameter calibration in Table 2. The least values of every column are highlighted

Fig. 1 Average velocities and forces resulting from the parameter calibration and learning process

1 https://github.com/ctotzeck/NN-interaction.
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Table 1 Car lengths (in m) estimated with the algorithm for the 10 data sets with the LWR-model
with linear and logarithmic velocity

1 2 3 4 5 6 7 8 9 10 average

Lin 3.5969 3.76 4.17 2.19 3.02 2.81 5.92 5.86 2.14 3.65 3.71

Log 7.15 7.21 8.05 8.17 6.19 5.00 8.10 8.46 5.63 6.91 7.09

Table 2 Values of the cost functional estimated with the algorithm for the 10 data sets with the
LWR-model with linear and logarithmic velocity and the three different neural network approaches

1 2 3 4 5 6 7 8 9 10 average

NN2 47.95 46.49 98.07 44.97 23.69 29.72 40.69 55.75 11.50 68.91 46.77

NN4 47.82 46.09 97.01 51.84 23.33 26.71 41.60 55.29 11.16 67.60 46.84

NN10 47.90 45.78 99.20 42.50 22.16 24.40 41.18 56.68 10.01 66.01 45.58

Lin 44.41 41.29 93.73 30.86 19.00 37.98 38.00 56.40 8.18 46.24 41.61
Log 53.53 50.31 109.36 65.24 26.50 52.93 38.09 58.22 14.54 52.75 52.15

in bold. It is obvious that the LWR model with linear force outperforms the other
models. The results of the NN approaches are better than the ones of the LWRmodel
with logarithmic force.

4.2.1 Comparison to Calibration with Stochastic Gradient Descent

In comparison to the parameter calibration based on the stochastic gradient descent
method reported in [1], we find that the CBO approach finds better parameters for
both LWR models. In fact, the resulting cost values are significantly smaller after
the calibration with CBO. For the NN approaches the results are in good agreement.
A clear decision in favour of the LWR approach or the NN ansatz was not possible
based on the results of [1]. After the training with CBO the LWR with linear force
seems to outperform all other approaches. We used NN with very simple structure
here, it may be worth to test more sophisticated network structures in future work.
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