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Abstract Focus of this work is the graph-based analytical treatment of the equi-
librium model introduced in [4], which allows to determine the tensile behavior of
nonwovens over the interaction of the individual fiber connections in the material.
We use the representation of fiber structures as arbitrarily directed graphs to derive a
compact nonlinear system of equations with characteristic divergence structure and
to investigate its solvability and the uniqueness of solution. Further, we discuss the
identification of subgraphs for which trivial solutions can be found.

1 Equilibrium Model

The microstructure of nonwovens consists of thousands of fibers bonded, for
example, by thermal or chemical means. Their topology can be described by
arbitrarily oriented graphs G = (N,E), where the nodes N represent both adhesive
joints and fiber ends, and the edges E represent the individual fiber connections
between them (see Fig. 1). The spatial positions of the adhesive joints and fiber ends
(nodes) are denoted by x ∈ R

3|N|. To refer to the position of an individual node
ν ∈ N we write xν ∈ R

3. Similarly, �μ ∈ R+ refers to the (positive) length of
the fiber connection represented by edge μ ∈ E, yielding a global length vector
� ∈ R

|E|
+ .

To model the nonwoven tensile behavior, we consider the truss-based approach
introduced in [4]. Thus, we distinguish further between boundary nodes NB and
interior nodes NI , such that N = NI ∪̇NB . Thereby, the positions of the boundary
nodes are fixed, while the positions of the remaining interior nodes are determined
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Fig. 1 Graph representation.
Left: Topology of a virtually
generated nonwoven material
sample, cf. [4], with boundary
nodes highlighted in red.
Right: Simple fiber structure
constellation, where the black
lines mark fiber connections
between the nodes and the
dashed red lines indicate the
corresponding edges
representing the fiber
connections

by a force equilibrium condition that accounts for the static material behavior. For
the forces acting on the interior nodes, the model is restricted to the stresses caused
by strain on incident fiber connections, which results in the following system:

xν = gν, ∀ν ∈ NB, (1)

∑

μ∈E(ν)

fνμ(x) = 0, fνμ(x) = tνμ(x)

‖tνμ(x)‖2N( ε( ‖tνμ(x)‖2, �μ ) ), ∀ν ∈ NI , (2)

where gν ∈ R
3 is the position specified for node ν ∈ NB , the set E(ν) ⊂ E consists

of all edges incident to node ν and fνμ : R3|N| → R
3 expresses the force acting

on node ν ∈ NI which is caused by stress on edge μ ∈ E(ν). According to (2),
we have that fνμ acts in the normalized direction tνμ(x) = xν̃ − xν for μ = (ν, ν̃),
where the amplitude N : [−1,∞[→ R+ depends on the relative strain of the fiber
connection with respect to its length �μ, i.e., ε : R+×R

+ → [−1,∞), (l, �) 	→ (l−
�)/�. Thereby, N denotes the fibers’ material law for which we make the following
assumption.

Assumption 1 We have that N ∈ C2([−1,∞),R+) and for some constant c ≥ −1
the material law satisfies N(ε) = 0 for ε ≤ c and N is strictly increasing for ε > c.

This expresses a solely elastic stress-strain behavior, as an increase in stress is
associated with further elongation of the fibers. Thereby, c is the strain from which
the fibers are under tension. For a material law using c > 0, thus, incorporating
a zero phase in the stress-strain behavior we refer to [4]. For a strictly increasing
choice, implying c = −1, we refer to [3] where crimp on the fibers is considered.

2 Graph Structure and Solvability

We consider the model (1)–(2) introduced in [4] and use the representation of
the fiber structure as arbitrarily directed graph (e.g., obtained by imposing edge
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directions according to an underlying node enumeration) to embed it in a compact
formulation with characteristic divergence structure. This allows to investigate the
solvability and the uniqueness of a solution for the equilibrium model.

Subsequently, A ∈ R
|N|×|E| denotes the underlying graph’s incidence matrix

with

Ai,j =

⎧
⎪⎪⎨

⎪⎪⎩

−1 , if νi = init(μj )

1 , if νi = ter(μj )

0 , else.

(3)

Hereby, init(μj ) refers to the start node and ter(μj ) to the end node of edge μj .
Given an arbitrary node constellation x ∈ R

3|N|, the edge vectors can be collectively
determined through

t(x) =
⎛

⎜⎝
tμ1(x)

...

tμ|E|(x)

⎞

⎟⎠ = (A ⊗ I3)T x (4)

where⊗ denotes the Kronecker product, tμ(x) is the vector representing the directed
edge μ and I3 ∈ R

3×3 is the identity matrix.
In contrast to (2), let φ : R3|E| → R

3|N| denote the forces acting in normalized
edge direction expressed in terms of the edge vectors collected in t ∈ R

3|E|. That is

φ(t) =
⎛

⎜⎝
φμ1(t)

...

φμ|E|(t)

⎞

⎟⎠ , with φμ(t) = tμ
‖tμ‖2N( ε( ‖tμ‖2, �μ ) ), (5)

where φμ is continuously continuable in zero for each μ ∈ E. To accumulate the
forces acting on an interior node ν ∈ NI according to (2), we add φμ if μ is an
outgoing edge, i.e., ν = init(μ), and subtract it if μ is an incoming edge, i.e.,
ν = ter(μ). This is to account for the arbitrarily imposed edge directions which
yields

∑

μ∈E(ν)

fνμ(x) = −
∑

μ∈E
Aν,μφμ(t(x)) = −(Aν,· ⊗ I3)φ((A ⊗ I3)T x). (6)

Due to (1), the fixation of the boundary nodes, the variables are the positions
of the interior nodes only. Let z ∈ R

3|NI | denote the interior node positions and
g ∈ R

3|NB | that of the boundary nodes. Thus, to express the node positions in terms
of z we introduce

xg(z) = (PI ⊗ I3)T z + (PB ⊗ I3)T g (7)
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with orthogonal projections PI ∈ R
|NI |×|N| and PB ∈ R

|NB |×|N| onto the interior
nodes and boundary nodes, respectively. Then (4) can be expressed in terms of z
through

t(xg(z)) = (A⊗I3)T xg(z) = (PIA⊗I3)T z+(PBA⊗I3)T g = ÃT
I z+ÃT

Bg, (8)

where ÃI = PIA ⊗ I3 and ÃB = PBA ⊗ I3 are defined for notational
convenience. Apparently, ÃI ∈ R

3|NI |×3|E| and ÃB ∈ R
3|NB |×3|E| are the incidence

matrices containing only the rows belonging to interior nodes and boundary nodes,
respectively, that are blown up to three dimensions.

Equation (8), also, allows to express (6) in terms of z. Hence, collecting the
individual equations (6) for all interior nodes ν ∈ NI yields the nonlinear system

Fg(z) := −ÃI φ(ÃT
I z + ÃT

Bg) = 0, (9)

with Fg : R3|NI | → R
3|NI |, which is subsequently referred to as Network Equation

System (NES). Each interior node constellation z satisfying Fg(z) = 0, for a given
boundary node constellation g, meets the conditions (1)–(2).

Particularly noteworthy is the divergence structure in (9), which is similarly
found in the context of electrical circuit simulations [2], where the circuit topology
determines the solvability of the associated differential-algebraic equations. For the
NES, which can be embedded in a quasi-static framework to perform tensile strength
simulations, we have the following result.

Theorem 1 Let G = (N,E) be connected and let N satisfy Assumption 1. Then,
given a fixed boundary node constellation g ∈ R

3|NB |, we have that

1. There exists an interior node constellation ẑ ∈ R
3|NI | with Fg(ẑ) = 0.

2. If N is strictly increasing on [−1,∞) then ẑ ∈ R
3|NI | is an unique solution.

Proof We show the existence of a potential Eg : R3|NI | → R, which satisfies
∇Eg = −Fg. Then the existence of a minimum to Eg implies that of a solution
to the nonlinear system Fg(z) = 0 by first order optimality conditions.

For a given constellation of boundary nodes g ∈ R
3|NB | we define the fiber

structure’s potential, depending on the interior node positions z ∈ R
3|NI |, through

Eg(z) =
∑

μ∈E
�μG(ε(‖tμ(xg(z))‖, �μ)), where G(ε) =

ε∫

−1

N(s) ds.

That is the weighted sum of the potential energies of the individual fiber connections
caused by stretching them. Straightforward application of the chain rule yields
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∇zEg(z) =
∑

μ∈E
�μ

d

dε
G(ε(‖t(xg(z))‖, �μ))∇zε(‖t(xg(z))‖, �μ))

=
∑

μ∈E

tμ(xg(z))T

‖tμ(xg(z))‖N(ε(‖t(xg(z))‖, �μ))(A·,μ ⊗ I3)T (PI ⊗ I3)T

=
∑

μ∈E
(PIA·,μ ⊗ I3)φμ(t(xg(z)))

= ÃI φ(ÃT
I z + ÃT

Bg),

which shows that Fg is the negative gradient field of Eg. To verify the existence of
a global optimum we show that Eg is coercive, i.e., Eg(z) → ∞ for ‖z‖ → ∞.

Apparently, ‖z‖ → ∞ implies ‖xv‖ → ∞ for at least one interior node ν ∈ NI .
Due to the connectivity of G, we have that any boundary node ν̃ ∈ NB is connected
to ν over a finite path P = (NP ,EP ) ⊆ G, with nodes NP = {νp0 , . . . , νpq } ⊆ N,
edges EP = {(νp0 , νp1), . . . , (νpq−1 , νpq )} ⊆ E and q ∈ N such that νp0 = ν and
νpq = ν̃. As the boundary node ν̃ ∈ NB is fixed to a given position gν̃ , we can
conclude

‖xν − gν̃‖ ≤
q∑

j=1

‖xνpj
− xνpj−1

‖ → ∞, for ‖z‖ → ∞. (10)

Hence, for at least one k ∈ {1, . . . , q} it holds that ‖xνpk
− xνpk−1

‖ → ∞, for
‖z‖ → ∞, as otherwise we would have a contradiction to (10). Let μ̃ = (νpk

, νpk−1)

denote the respective edge in EP , then

Eg(z) ≥ �μ̃G(ε(‖tμ̃(xg(z))‖, �μ̃)) → ∞, for ‖z‖ → ∞, (11)

since Assumption 1 implies G ≥ 0 and G(ε) → ∞ for ε → ∞. Apparently, (11)
corresponds to Eg being coercive. Thus, by the continuous differentiability of Eg
we can conclude the existence of a global minimum, cf. [1].

Moreover, if N is strictly increasing on [−1,∞), then Eg is strictly convex, as

G(ε(‖tμ(x(λz + (1 − λ)z̃))‖, �μ)) = G(ε(‖λtμ(x(z)) + (1 − λ)tμ(x(z̃))‖, �μ))

< λG(ε(‖tμ(x(z))‖, �μ)) + (1 − λ)G(ε(‖tμ(x(z̃))‖, �μ))

for λ ∈ (0, 1) and any pair z, z̃ ∈ R
3|NI | with z �= z̃. Here, the equality holds

by linearity and the inequality is explained by the fact that ε is convex and that G

is strictly increasing and convex. This implies a unique solution for the nonlinear
system Fg(ẑ) = 0, cf. [6]. ��
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3 Structural Analysis

Except for G being connected, there are no topological restriction to Theorem 1,
which is even applicable for multigraphs. This differs from typical requirements
for electrical circuit simulation, where additional structural assumptions must be
made, e.g., to avoid short circuits. However, we can exploit the topology of the fiber
structure to identify subgraphs that have a trivial solution for which the associated
equations of the NES are satisfied. This includes loose subgraphs and simple linking
nodes, cf. [4], that are subject to following discussion.

Definition 1 A connected subgraph L ⊂ G is refered to as loose if it is connected
to the remainder R = G \ L over a cutvertex νc ∈ N and if it does not contain a
boundary node, i.e., N(L) ∩ NB = ∅.

Loose subgraphs can be neglected, as their constellation is determined by the
associated cutvertex. To convince ourselves of this statement, assume that L is a
loose subgraph with associated cutvertex νc and remainder R, and that the edges are
arranged so that the edges of R come first. Then we have A = [AR,AL], which
implies

ÃI = [ÃIR, ÃIL], t =
(
tR
tL

)
, and φ(t) =

(
φR(tR)

φL(tL)

)
, (12)

where the indices R and L indicate the edges, edge vectors, and acting forces
corresponding to the remainder R and the loose subgraph L, respectively. The
information regarding edges connecting the loose subgraphs to the cutvertex is
thereby included in the terms indicated by L. Accordingly, Ã = [ÃR, ÃL] for
Ã = A ⊗ I3. Then, for node constellation x ∈ R

3|N|, the NES can be split up,
since

ÃI φ(ÃT x) = ÃIRφR(ÃT
Rx) + ÃILφL(ÃT

Lx), (13)

where the first term corresponds to the NES associated to the remainder R and the
second term to that of the loose subgraph L. Definition 1 implies that the positions
of all nodes in L are variable and that they are either incident to νc or another node
inL. Hence, for any x satisfying xν = xνc for all ν ∈ L we have x ∈ ker(ÃT

L) which
implies φL(ÃT

Lx) = 0 with regard to (5). Hence, for this trivial constellation of
loose subgraph nodes the second term in (13) vanishes. Thus, it suffice to determine
a solution to the NES of the remainder R, which exists according to Theorem 1.

Definition 2 A node ν ∈ NI is referred to as simple linking node, if it has degree
2.

Apparently, simple linking nodes link a pair of fiber connections, that can be
treated equally as single fiber connection of cumulated length. This can be attributed
to the force equilibrium condition (2) and Assumption 1.
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For solving the NES, trivial parts of the solution can be neglected, e.g., by
removing loose subgraphs and merging fiber connections linked by a simple linking
node. Apart from such trivial parts of the solution, it may come to a lack of
uniqueness to a solution of the NES when considering a material law that is not
strictly increasing. In this case the Newton-Raphson Method may fail, for which
a diagonal perturbation of the Jacobian of Fg can be considered. This corresponds
to a Tikhonov Regularization for the minimization of Eg, cf. [5]. In the context
of nonwoven tensile strength simulations a friction-based regularization approach
was introduced in [4] to cope with the ill-posedness of the associated quasi-static
simulation approach.
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