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Abstract The current pandemic situation due to COVID-19 demonstrates the
need for epidemiologic models to represent infection events as accurately as
possible. An important factor is the mobility of the affected individuals which can
be investigated with discrete or continuous spatial models. In this contribution,
parameter estimation via adjoint functions is presented to fit a reaction-diffusion
PDE system with epidemiological SIS model to data sets. For this purpose static and
dynamic optimization methods are used to solve an L2-norm based least squares
problem. An artificial data set is generated to test the accuracy of the procedure.
Subsequently, the PDE system is adapted to this data set using methods of optimal
control theory. Unknown parameters like diffusivity and transmission rate can be
determined. The noise in the data set is also taken into account by fitting the initial
conditions. The results show that the method is well suited for this purpose and
should be further used with real data sets.

1 Introduction

The example of the current COVID-19 pandemic clearly shows the significant
influence of mobility on the spread of a disease. Mathematical-epidemiological
models can address this using various techniques. The movement of people between
separate patches such as airports, islands, cities etc. can be represented using
Lagrangian movement for short-term stays or Eulerian movement for long-term
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migrations [5]. The modelling here is done via ordinary differential equations
(ODE). However, since this point-by-point distribution of pathogens does not reflect
reality on its own, spatial spread need to be taken into account as well. This
can be achieved with reaction-diffusion systems which contain partial differential
equations (PDE) [2, 10]. Consequently, we consider a system of the form

∂tu = κ�u + f (u) ,

u = u0, t = 0 ,

∂νu = 0, x ∈ ∂� .

The goal is to fit this model to data sets. Unfortunately, several parameters are
unknown in the epidemiological context, such as the transmission rate or even the
parameters describing mobility. In addition, noisy data may be expected, for this the
initial value condition shall be adjusted.

In this contribution, a parameter estimation via adjoint functions is tested. This
corresponds to techniques from static and dynamic optimization. To investigate the
accuracy of the method, we consider an artificially generated data set. Numerical
simulations are performed to fit the model to this data set.

2 Model

In the following we consider the set � = (0, a) × (0, b) as spatial coordinates
and a time axis (0, T ) with resulting domain V = � × (0, T ). To model a spatial
spread of an infectious disease, we use an epidemiological SIS model. The resulting
reaction-diffusion system reads as

∂tS = κS�S − β

N
SI + γ I , (1a)

∂t I = κI�I + β

N
SI − γ I , (1b)

S = S0, I = I0, t = 0 , (1c)

∂νS = ∂νI = 0, x ∈ ∂� . (1d)

The functions S, I,N ∈ C2,1(V ) represent the densities of the compartments of
susceptible (S) and infected (I) individuals and the total population density N =
S + I in coordinate x at time t .

Here, e.g. ∂tS = ∂S
∂t

stands for the time derivative of S and �S = div(grad S) =
∂2S

∂x21
+ ∂2S

∂x22
stands for the Laplace operator. For the two compartments initial value

conditions are given by S0, I0 ∈ C2(�). At the boundary ∂� Neumann boundary
conditions are implied, whereby ∂νS denotes the derivative of S to the direction of
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the unit outward normal ν. In context, this means that none of the individuals leaves
the region �. We also assume that

∫
�

I (x, 0) dx > 0 holds with S0, I0 ≥ 0. We
define

N :=
∫

�

N(x, 0) dx ,

which stands for the total number of individuals at time t = 0. Due to the Neumann
boundary conditions the Gauss’s theorem delivers

∂

∂t

∫

�

N(x, t) dx =
∫

�

κS�S + κI�I dx =
∫

∂�

κS∂νS + κI ∂νI dω = 0 .

Thus, the total population is constant with value N .
The parameters β, γ > 0 represent the transmission and recovery rates of

the corresponding disease and κS, κI > 0 the diffusivity of the corresponding
compartments. For simplicity, we assume that κs = κI holds and β, γ are constants
independent of x. For the derivation of such a model in one dimensional case and
the operation of epidemiological models, we refer to [5].

SIS-based reaction-diffusion systems as in (1) have already been studied in [1,
3, 6–9]. The existence of a global and unique solution is shown, also for cases in
which κS �= κI holds and β, γ are Hölder continuous functions over �. In [1] a
Basic Reproduction Number is established on Sobolev space H 1(�) by

R0 = sup
ϕ∈H 1(�)

ϕ �=0

( ∫
�

βϕ2
∫
�

κI |∇ϕ|2 + γ ϕ2

)

. (2)

There is shown, that if R0 < 1 holds, the unique disease-free equilibrium DFE =(
N
|�| , 0

)
is globally asymptotically stable and unstable for R0 > 1. The expression

|�| here stands for the corresponding measure. On the other hand, for R0 > 1 the
existence of a unique endemic equilibrium EE is shown.

Furthermore, we set κ := κS = κI and substitute S = N − I . If we additionally
define u := I

N
, we receive a reduced system with f (u) := β(1 − u)u − γ u

∂tu = κ�u + f (u) , (3a)

u = u0, t = 0 , (3b)

∂νu = 0, x ∈ ∂� . (3c)

The simplifying assumptions and the normalization are used to test the presented
parameter fitting via adjoint functions. It is clear that in realistic situations much
more complex models should be used.
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3 Adjoint System

We now want to fit model (3) to data sets using adjoint functions known from
optimal control theory. In the epidemiological context, this means parameter
estimation of the transmission rate β > 0 and diffusivity κ > 0. The recovery
rate γ > 0 can be assumed to be the reciprocal of the average infection duration and
thus does not need to be fitted. Furthermore, we assume that the data is noisy and
therefore the initial condition u0 ∈ C2(�) has to be adjusted. In the following, the
function uDATA contains the available data points and uDATA0 the supposedly noisy
initial value of the data set at t = 0.

We introduce an objective function J : R2 × C2(�) → R

J (β, κ, u0) := w0‖u − uDATA‖2
L2

V

+ w1(β
2 + κ2) + w2‖u0 − uDATA0 ‖2

L2
�

. (4)

The function u stands for the solution of the reaction-diffusion PDE system (3).

The objective function includes the L2-norm ‖g‖L2
Y

:= (∫
Y

g(y)2 dy
)1/2

and

corresponding normalizing weights w0 := 1/‖uDATA‖2
L2

V

respectively w2 :=
1/‖uDATA0 ‖2

L2
�

. The convex and radially unbounded regularization term w1(β
2 +κ2)

depends on a very small choosen weight w1 whose influence is investigated in
the subsequent simulations. Assuming one already has initial guess β̂, κ̂ for the

parameters, a term of the form w1

(
(β − β̂)2 + (κ − κ̂)2

)
can be used alternatively.

This leads to a minimization problem with dynamic constraints

min
β,κ,u0

J (β, κ, u0) subject to PDE system (3) . (5)

A Lagrange function is introduced containing adjoint functions z ∈ C2,1(V )

L(β, κ, u0, u, z) :=
∫

V

g dxdt + ψ +
∫

V

z (f (u) + κ�u − ∂tu) dxdt , (6)

whereby g := w0
(
u − uDATA

)2
and ψ := w1(β

2 + κ2)+w2
∫
�

(
u0 − uDATA0

)2
dx.

The necessary condition for a minimum (β∗, κ∗, u∗
0, u

∗, z∗) is fulfilled, if

0 = ∇L := (
∂βL, ∂κL, ∂u0L, ∂uL, ∂zL

)

holds true. It should be noted that Gâteaux derivatives are needed for the deriva-
tives of L to the directions u0, u and z. This leads to the following system in
(β∗, κ∗, u∗

0, u
∗, z∗):
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(i) 0 = ∂βψ + ∫
V

z∂βf dxdt , (Optimality Condition)
0 = ∂κψ + ∫

V
z�u dxdt ,

(ii) u0 = uDATA0 − z(x,0)
2w2

, (Optimal Initial Condition)
(iii) ∂t z = −∂ug − z∂uf − κ�z, (Adjoint Equation)

z = 0, t = T , (Transversality Condition)
∂νz = 0, x ∈ ∂�, (Adjoint Neumann Boundary Condition).

When L is derived in the z direction, the original PDE system (3) is recovered.

4 Numerical Simulations

From the analysis in Sect. 3, the gradient of L with respect to β and κ reads

∂βL = 2w1β +
∫

V

z(1 − u)u dxdt (7a)

∂κL = 2w1κ +
∫

V

z�u dxdt (7b)

and we obtain the adjoint equation

∂t z = −2w0

(
u − uDATA

)
− z(β(1 − 2u) − γ ) − κ�z . (8)

The latter must be solved backward in time t due to the transversality condition.
This is done using the forward-backward sweep method, see [4]. The performed
algorithm can be found in Appendix 1. Solving the PDEs is done using finite
differences

�un
i,j ≈ 1

h2

(
un

i−1,j + un
i,j−1 − 4un

i,j + un
i+1,j + un

i,j+1

)
(9)

and an explicit Euler-scheme

un+1
i,j = un

i,j + τ(κ�un
i,j + f (un

i,j )) (10)

on the domain V = � × (0, T ) with � = (0, a) × (0, b). The Neumann boundary
conditions are implemented by un

k+1,j = un
k,j etc., if index (k, j) stands for a point

at the rectangular boundary ∂�. In the following simulations we use the setting
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• h := 0.1, τ := 0.001, a := 3, b := 2, T := 1
• xi

1 = ih: i = 0, . . . , 30 x
j

2 = jh: j = 0, . . . , 20 tn = nτ : n =
0, . . . , 1000 .

To test the procedure an artificial data set is generated with initial condition

uDATA0 (xi
1, x

j

2 ) := 0.02δ(0.4,0.6)(x
i
1, x

j

2 ) + 0.1δ(2,1)(x
i
1, x

j

2 ) (11)

whereby δ(x̃1,x̃2)(x
i
1, x

j

2 ) = 1, if (xi
1, x

j

2 ) = (x̃1, x̃2) and else δ(x̃1,x̃2) = 0.
Subsequently, the state variable PDE (3) is solved with β := 0.3, κ := 0.2 and
γ := 0.1. The received solution is called u in the following. To simulate noisy data,
a normally distributed qn

i,j ∼ N (0, σ 2) is generated, so that the desired data set is
calculated by

uDATA(xi
1, x

j

2 , tn) := max
(
0, (1 + qn

i,j ) · u(xi
1, x

j

2 , tn)
)

. (12)

5 Results and Conclusions

The application of the presented method is tested in three simulations with different
initial values β0, κ0. The initial value for the initial condition u0 is taken from
the desired data set uDATA. The resulting Table 1 and Fig. 1 in Appendix 2 show
adequate parameter estimates. A test run without artificial noise on the data set
resulted in the original values β = 0.3 and κ = 0.2. The simulations also show
the effect of the weight w1 of the regularization term on the minimization of
the objective function J . Despite this disturbance, better results are obtained than
without it. The prerequisite for this is a correspondingly small choice for w1 which
influences the convexity of the objective function in the respective parameters.

The present simulations show that the applied method works very well in this
toy problem with self-generated data set. In principle, the procedure is suitable to
perform such parameter estimations. In the next step, the method should be tested
with real data sets. Depending on the disease, much more sophisticated epidemio-
logical models may also be required. Mobility movements between patches, such
as daily commuting or travelling, should also be added to the model. With respect
to the PDE solution, other solution methods should also be tested, since the simple
Euler method may be numerically unstable. In addition, a simple rectangular area
was assumed in our example. In real cases, appropriate adjustments are necessary
here.
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Appendix 1

Algorithm 1 Pseudocode for the parameter estimation via adjoint functions

1: β, κ, uDAT A, uDAT A
0 ← load initial values and data

2: u, z ← solve PDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regardingβ and κ

4: s1 ← compute search direction forβ and κ(Quasi-Newton (BFGS))
5: s2 ← (ũ0 − u0) compute search direction for u0 with ũ0 = uDATA0 − z(x,0)

2w2
6: repeat
7: Jold ← J

8: θ ← 1
9: (β, κ) ← (β, κ) + θs1
10: u0 ← u0 + θs2
11: u, J ← update
12: repeat
13: θ ← 0.5θ
14: (β, κ) ← (β, κ) + θs1
15: u0 ← u0 + θs2
16: u, J ← update
17: until J ≤ Jold + 0.001θsT ∇Jold (Armijo Rule)
18: z,∇J, s1, s2 ← update
19: until ‖J−Jold‖2‖Jold‖2 < TOL

Appendix 2

Table 1 The recovery rate is fixed with γ := 0.1. The algorithm stops with tolerance TOL :=
10−6. The original parameters of the artificial data set are β := 0.3 and κ := 0.2. The artificial
noise is generated with standard deviation σ := 0.1

Simulation β κ J w1 Iterations

β0 := 0.5, κ0 := 0.4

Best fit 0.2796 0.1994 1.16 · 10−4 10−07 242

0.2787 0.1994 1.17 · 10−4 10−08 364

0.2496 0.1988 1.65 · 10−4 10−09 197

0.2609 0.1990 1.42 · 10−4 0 240

β0 := 0.1, κ0 := 0.5

Best fit 0.2659 0.1991 1.33 · 10−4 10−08 181

0.2251 0.1983 2.36 · 10−4 10−09 364

0.2857 0.1995 1.11 · 10−4 10−10 345

0.2753 0.1993 1.20 · 10−4 0 388

β0 := 1.0, κ0 := 1.0

Best fit 0.2499 0.1988 1.64 · 10−4 10−10 314

0.2824 0.1994 1.14 · 10−4 10−11 655

0.2836 0.1994 1.11 · 10−4 10−12 555

0.2540 0.1988 1.55 · 10−4 0 304
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Fig. 1 Graphical Results for the Simulation with β0 := 1, κ0 := 1, w1 := 10−12
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