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Abstract To overcome many-query optimization, control, or uncertainty quan-
tification work loads in reliable gas and energy network operations, model order
reduction is the mathematical technology of choice. To this end, we enhance the
model, solver and reductor components of the morgen platform, introduced in
Himpe et al. [J. Math. Ind. 11:13, 2021], and conclude with a mathematically,
numerically and computationally favorable model-solver-reductor ensemble.

1 Model Order Reduction for Gas and Energy Networks

Computer-based simulation of gas transport in pipeline networks has been an
industrial as well as academic field of interest since the earliest scientific computing
systems [5]. Especially, the transient simulation of gas flow and the dynamic
gas network behavior are the pinnacle discipline in this regard. The MATLAB-
based morgen—Model Order Reduction for Gas and Energy Networks—platform1

continues this research by providing a modular open-source software simulation
stack for the comparison and benchmarking of models (discretizations), solvers
(time steppers), and reductors (model reduction algorithms) [3]. Beyond selecting
apposite simulator components or ranking model reduction methods, an overall
goal is the acceleration of forward simulations, so that many-query tasks relying
thereon, such as optimization, control or uncertainty quantification, benefit in terms

1 See: https://git.io/morgen
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Table 1 Available models in morgen in version 1.1

Name Identifier port-Hamiltonian? Reference

Midpoint discretization ode_mid No [3, Sec. 2.4.1]

Endpoint discretization ode_end Yes [3, Sec. 2.4.2]

Table 2 Available solvers in morgen in version 1.1

Name Identifier Comment Reference

Adaptive second order Rosenbrock generic Uses ode23s [3, Sec. 5.3.1]

First order implicit-explicit imex1 Non-Runge-Kutta [3, Sec. 5.3.3]

Second order implicit-explicit imex2 Runge-Kutta [3, Sec. 5.3.4]

Explicit fourth order Runge-Kutta rk4 [3, Sec. 5.3.2]

Explicit second order Runge-Kutta rk2hyp Increased stability [9]

Explicit fourth order Runge-Kutta rh4hyp Increased stability [6]

of performance. In this work, we summarize and enhance the foundational work
of [3] with additional details, and accompany version 1.1 of morgen.

1.1 Modules Overview

The morgen platform is organized into modules: models, solvers, reductors,
networks and tests. The networks module holds topology and scenario data, and
the tests module defines the simulation and model reduction experiments, thus, we
summarize the currently available core modules: models, solvers, and reductors.
The models module assembles a semi-discrete input-output system from a network
topology. Currently, two spatially discrete models are included (Table 1). The
solvers module computes a time-discrete output trajectory from a model and a
scenario. Six solvers are provided in the current version (Table 2). The reductors
module compresses a model given a solver and (generic training) scenario. All in
all, 23 reductors organized in four classes are available (Table 3).

2 Enhanced Functionality

In this section, we discuss some of the new properties of the morgen 1.1 platform.
Specifically, one aspect of each core module (model, solver, reductor) is addressed.
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Table 3 Available reductors in morgen in version 1.1

Name Identifier Linear variant Reference

Structured proper orthogonal decomposition pod_r – [3, Sec. 4.2]

Structured empirical dominant subspaces eds_ro eds_ro_l [3, Sec. 4.3]

Structured empirical dominant subspaces eds_wx eds_wx_l [3, Sec. 4.3]

Structured empirical dominant subspaces eds_wz eds_wz_l [3, Sec. 4.3]

Structured balanced POD bpod_ro bpod_ro_l [3, Sec. 4.4.3]

Structured balanced truncation ebt_ro ebt_ro_l [3, Sec. 4.4]

Structured balanced truncation ebt_wx ebt_wx_l [3, Sec. 4.4]

Structured balanced truncation ebt_wz ebt_wz_l [3, Sec. 4.4]

Structured goal-oriented POD gopod_r – [3, Sec. 4.5.1]

Structured balanced gains ebg_ro ebg_ro_l [3, Sec. 4.5]

Structured balanced gains ebg_wx ebg_wx_l [3, Sec. 4.5]

Structured balanced gains ebg_wz ebg_wz_l [3, Sec. 4.5]

Structured DMD Galerkin dmd_r – [3, Sec. 4.6]

2.1 Gravity Term

One component of the gas pipeline model, particularly of the retarding forces in the
mass-flux equation, is the gravity term, which accounts for increase or decrease in
momentum due to an incline in a pipeline section. In [2], this gravity term is modeled
in great detail, as it does not only consider a height difference between the pipe’s
end points, as morgen does, but also the height profile for the full run of the pipe
(see [2, Fig. 11]). Both approaches are justified, depending on the aimed accuracy
of the model, as discussed in [1]. Such pipeline height profiles can be included
into morgen by supplying a pipe as sequence of virtual pipes, each connecting two
subsequent local height extrema. In morgen 1.1, the gravity term is configurable so
it is computable based on the dynamic pressure, static pressure or not at all, whereas
the static gravity term, based on the steady-state was newly added.

2.2 Explicit Solvers

In [3], the classic explicit 4th order Runge-Kutta method rk4 was tested, as it
was employed in earlier works. Yet we found it to be not suitable for gas network
simulations. In [4], an explicit Runge-Kutta method from [9, Sec. 4] was suggested
for this application. The Butcher tableau for this explicit 5-stage, 2nd order low-
storage scheme with increased stability, is given by:
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This additional solver rk2hyp, as well as a 4th order Runge-Kutta method
with increased hyperbolic stability limit from [6, Sec. 4.1] (rk4hyp), were added
to morgen 1.1 and tested against various test problems. Both increased-stability
solvers allow larger time steps then rk4, specifically in conjunction with the
ode_endmodel, but compared to the implicit-explicit solvers imex1 and imex2,
they are still not fully competitive. However, these explicit methods could be
interesting for new implicit-explicit or predictor-corrector methods.

2.3 Gain Matching

An important quality for certain applications of model reduction, such as electrical
circuits, is the preservation of the steady-state gain (also known as DC gain), which
is the output for zero frequency input. First, we clarify that we are not discussing
the actual steady-state gain of the reduced order model, due to the centering around
the steady-state and hence, the steady-state gain match [3, Sec. 3]. Yet, there can
still be an output error for a constant input on top of the steady-state input, which
is relevant due to the assumed low-frequency boundary values. Since there is an
interpretation of gas networks as circuits [8], we consider this reduced model
property, which induces two questions: How to compute the steady-state gain, and
how to correct a gain mismatch? The former is answered by [10], stating that for
a linear port-Hamiltonian model, with components as in [3, Sec. 2.9], the gain S is
computable by:

S = CQ−1B,

with input matrix B, output matrix C, and energy storage matrix Q. Since the
models are nonlinear and do not have to be port-Hamiltonian, but comprise the same
model components, the above formula can still be applied albeit yielding only an
approximation. The per-port gain mismatch D∗ is then computed by the difference
of full and reduced-order model (reduced-order quantities are denoted by ·r ) gain:

D∗ := (CQ−1B) − (CrQ
−1
r Br),

which can then be used to correct the reduced-order model gain by adding D∗
as a feedthrough matrix to the output function, as described in the gain matching
procedure in [7]. We included this approximate gain matching test to morgen 1.1.
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(a) Hypothetical network’s test scenario.
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(b) Actual network’s test scenario.
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(c) Relative 2 � 2 error between ROM
and FOM for the hypothetical network.
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(d) Relative 2 � 2 error between ROM
and FOM for the actual network.

Struct. Proper Orthogonal Decomposition (WR)
Struct. Goal-Oriented POD (WR)
Struct. Dynamic Mode Decomposition Galerkin (WR)
Struct. Empirical Dominant Subspaces (WR + WR*)
Struct. Empirical Dominant Subspaces (WX*)
Struct. Empirical Dominant Subspaces (WZ*)

(e) Common legend for the model reduction error plots.

Reductor Avg. Gain Error

pod_r 0.27 6 · 10−6

gopod_r 0.26 6 · 10−6

dmd_r 0.18 8 · 10−6

eds_ro_l 0.30 8 · 10−6

eds_wx_l 0.18 8 · 10−6

eds_wz_l 0.15 8 · 10−6

(f) (200 mach(16) ) ��(0, 1] in
the 2 Ä 2 error norm (higher means more
accurate ROM), and mean steady-state gain
error for the hypothetical network.

Reductor Avg. Gain Error

pod_r 0.19 2 · 10−5

gopod_r 0.15 1 · 10−5

dmd_r 0.15 2 · 10−5

eds_ro_l 0.24 2 · 10−5

eds_wx_l 0.04 2 · 10−5

eds_wz_l 0.03 2 · 10−5

(g) (200 mach(16) ) ��(0, 1] in
the 2 Ä 2 error norm (higher means more
accurate ROM), and mean steady-state gain
error for the actual network.

Fig. 1 Visualization of the test scenario, model reduction errors between FOM (full-order model)
and ROM (reduced-order model), MORSCORE, and gain errors of the tested ROMs for the
hypothetical network [5, Part 2] (left side) and actual network [5, Part 3] (right side). Computed
with MATLAB 2021a. See [3, Sec. 6] for a description of the plot presentation
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The gain correction was tested with all reductors (Table 3). For all reductors,
the correction was about the level of 10−5, see Tables f and g in Fig. 1, except
for the bpod_ro method, for which the gain correction fully deteriorates the
reduced model. Thus, the improvement of reduced-order models is small at best.
This is not unexpected, considering the gas network model is hyperbolic: A single
pipeline, or more generally an input-output system based on a first-order hyperbolic
partial differential equation, has the transport property which expresses as a delay
in observable outputs of controllable inputs. Hence, an immediate effect of inputs
to outputs (circumventing the system dynamics), i.e. by a feedthrough term, is
typically not needed.

3 Numerical Experiments

We extend the numerical experiments in [3], by reimplementing the results from [5],
specifically, we test the hypothetical network [5, Part 2], and the actual network [5,
Part 3], which are both tree networks, on their associated scenarios.

Six structured empirical-Gramian-based Galerkin reductors are tested on the
port-Hamiltonian endpoint model and the first order implicit-explicit solver. The
results are presented in Fig. 1. In line with other experiments, the eds_ro_l
reductor yields the most accurate results.

4 Next-Gen Gas Network Simulation

For the newly tested features we conclude that currently, explicit solvers do not
seem a viable option to simulate gas networks, while gain matching offers only
minor accuracy improvements; yet, the new static gravity term is more robust with
respect to model reduction and is henceforth the default setting in morgen.

Overall, based on the comparisons in [3] and this work’s numerical results,
we currently recommend a port-Hamiltonian model, an implicit-explicit solver,
and a Galerkin reductor. Thus, the endpoint discretization, first order IMEX
time stepper, and the structured empirical dominant subspaces reductor make a
promising model-solver-reductor ensemble for the next generation of transient gas
network simulators. Future extensions of the morgen platform will refine this
recommendation.
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