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Abstract We investigate the application of dynamic iterations to nonlinear systems
of differential equations. Such an application allows to use implicit time integration
methods without solving nonlinear algebraic equations at each time step. Another
advantage of the application of dynamic iterations is that the resulting numerical
schemes can be solved in parallel computing environments. We conclude that
the sequence of how the dynamic iterations are applied is significant and influ-
ences their rate of convergence to the solution of the given system of nonlinear
differential equations. This conclusion is illustrated by numerical experiments
involving Volterra equations for predator-prey interactions. We also conclude that
the proposed numerical scheme is faster than the variable order method.

1 Introduction

Dynamic iterations have been broadly investigated as numerical methods applied
to solve differential systems on parallel computers and are often called waveform
relaxation techniques. These techniques have been introduced by Lelarasmee et al.
[4] and investigated by many authors for different kinds of differential equations,
see, for example, [3] and [5] for systems of ordinary differential equations, [1]
and [2] for systems of delay differential equations and [6] and [7] for general
functional differential equations. However, these techniques have been mainly
investigated in the context of parallel computations and not much attention has
been given to answer the question of whether or not permutations of the equations
in a given system influence the convergence of the applied dynamic iterations.
Recent investigations [8] in this direction for linear systems of differential equations
show that appropriately chosen permutations, in light of the values of the model
parameters, present a way to speed up the convergence of dynamic iterations.

B. Zubik-Kowal (�)
Department of Mathematics, Boise State University, Boise, ID, USA
e-mail: bzubik@boisestate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_13

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_13&domain=pdf

 885 55738 a 885 55738 a
 
mailto:bzubik@boisestate.edu

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-11818-0_13


92 B. Zubik-Kowal

The goal of the current paper is to address this question for nonlinear differential
equations.

In this paper, we investigate dynamic iterations for systems written in the form

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x = ax + xf1(y) + g1(t)

d

dt
y = ãy + yf2(x) + g2(t)

(1)

where a, ã are real parameters and fi , gi , i = 1, 2, are given real functions. The
system (1) is supplemented by the initial conditions

x(0) = ξ0, y(0) = η0.

For an arbitrary continuous function y(0)(t), we consider the sequences
{x(k)(t)}∞k=1, {y(k)(t)}∞k=0 defined by

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x(k+1) = ax(k+1) + x(k+1)f1(y

(k)) + g1(t),

d

dt
y(k+1) = ãy(k+1) + y(k+1)f2(x

(k+1)) + g2(t),

(2)

where k = 0, 1, 2, . . . and

x(k+1)(0) = ξ0, y(k+1)(0) = η0.

The numerical scheme (2) is called Gauss-Seidel waveform relaxation. The advan-
tage of (2) over (1) is that the application of implicit methods, for example BDF
methods, for integration of (2) in time t does not require solving nonlinear algebraic
equations at each time step. Note that the application of implicit time integration
methods to the nonlinear differential system (1) leads to a system of nonlinear
algebraic equations that require an additional process to solve them at each time step
(more time steps mean that more nonlinear algebraic systems need to be solved).
Such an additional process would not be needed if system (2) would be applied.

The paper is organized as follows. In Sect. 2, we analyze the convergence of
the sequence {(x(k)(t), y(k)(t))}∞k=0 to the exact solution (x(t), y(t)) as k → ∞.
Then, in Sect. 3, we present results of numerical experiments involving nonlinear
systems applied in population dynamics. Finally, we finish with concluding remarks
in Sect. 4.

2 Error Analysis

In this section, we analyze the errors

e(k)
x (t) = x(k)(t) − x(t), e(k)

y (t) = y(k)(t) − y(t),
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as k → ∞. We assume that the unknown solutions x, y are bounded and the given
functions f1, f2 are Lipschitz continuous. In what follows, we use the following
notation. Let L1, L2 be Lipschitz constants for f1 and f2, respectively; that is,

|f1(y) − f1(ỹ)| ≤ L1|y − ỹ|, for all y, ỹ ∈ R,

|f2(x) − f2(x̃)| ≤ L2|x − x̃|, for all x, x̃ ∈ R

and X, Y , R, E0 be positive constants such that

|x(t)| ≤ X, |y(t)| ≤ Y, for all 0 ≤ t,

f1(y) + a ≤ R, f2(x) + ã ≤ R, on bounded sets,

|e(0)
y (t)| ≤ E0, for all 0 ≤ t.

The following theorem provides error bounds for scheme (2).

Theorem 1 Let k = 0, 1, 2, . . . and t ≥ 0. Then,

|e(k+1)
x (t)| ≤ E0XL1

(
XYL1L2

)k eRt

R2k+1

∞∑

j=2k+1

(−1)j+1(Rt)j

j ! , (3)

|e(k+1)
y (t)| ≤ E0

(
XYL1L2

)k+1 eRt

R2k+2

∞∑

j=2k+2

(−1)j (Rt)j

j ! . (4)

Proof Note that e
(k)
x (0) = 0 and e

(k)
y (0) = 0, for all k = 0, 1, 2, . . . . Then, from

(1) and (2), we get

|e(k+1)
x (t)| ≤ XL1

∫ t

0
|e(k)

y (τ )|eR(t−τ)dτ, (5)

|e(k+1)
y (t)| ≤ YL2

∫ t

0
|e(k+1)

x (τ )|eR(t−τ)dτ, (6)

for k = 0, 1, 2, . . . and t ≥ 0. From (5), we get

|e(1)
x (t)| ≤ XL1E0

∫ t

0
eR(t−τ)dτ = XL1E0

R

(
eRt − 1

)
= XL1E0

R
eRt

(
1 −

∞∑

j=0

(−Rt)j

j !
)

= XL1E0

R
eRt

∞∑

j=1

(−1)j+1(Rt)j

j ! ,

which shows (3) for k = 0. We now use (6) and get
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|e(1)
y (t)| ≤ XYL1L2E0

R
eRt

∫ t

0

∞∑

j=1

(−1)j+1(Rτ)j

j ! dτ

= XYL1L2E0

R
eRt

∞∑

j=1

(−1)j+1Rj tj+1

(j + 1)! = XYL1L2E0

R2 eRt
∞∑

j=2

(−Rt)j

j ! ,

which shows (4) for k = 0. We now assume (3) and (4) for a certain k. Then, from
(5) and (4), we get

|e(k+2)
x (t)| ≤ XL1

∫ t

0

(
XYL1L2

)k+1
E0

eRτ

R2k+2

∞∑

j=2k+2

(−Rτ)j

j ! eR(t−τ)dτ

= XL1
(
XYL1L2

)k+1
E0

eRt

R2k+2

∞∑

j=2k+2

(−R)j tj+1

(j + 1)!

= XL1
(
XYL1L2

)k+1
E0

eRt

R2k+3

∞∑

j=2k+3

(−1)j+1(Rt)j

j ! ,

which, by mathematical induction, shows (3). We now use (6) and (3) and obtain
the following result,

|e(k+2)
y (t)| ≤ YL2

∫ t

0
XL1

(
XYL1L2

)k+1
E0

eRτ

R2k+3

∞∑

j=2k+3

(−1)j+1(Rτ)j

j ! eR(t−τ)dτ

= (
XYL1L2

)k+2
E0

eRt

R2k+4

∞∑

j=2k+4

(−Rt)j

j ! ,

which shows (4) and finishes the proof. ��

3 Numerical Experiments and Methods Comparison

In this section, we present results of numerical experiments involving dynamic
iterations applied to Volterra equations for predator-prey interactions.

The system of interest is of the form

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x = ax − bxy + g1(t)

d

dt
y = −cy + dxy + g2(t)

(7)
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where a = 2/3, b = 20, c = 50, d = 0.01, 0 ≤ t ≤ 10. We apply (2) and obtain
the following scheme

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x(k+1) = ax(k+1) − bx(k+1)y(k) + g1(t)

d

dt
y(k+1) = −cy(k+1) + dx(k+1)y(k+1) + g2(t).

(8)

If we write the equations in system (7) in the opposite order and then apply (2),
we obtain a different scheme of the form

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
y(k+1) = −cy(k+1) + dx(k)y(k+1) + g2(t)

d

dt
x(k+1) = ax(k+1) − bx(k+1)y(k+1) + g1(t).

(9)

Numerical solutions x(k)(tn) and y(k)(tn) computed by (8) and (9) are presented in
Fig. 1 as functions of tn for k = 6 in the case of (8) and for k = 4 in the case of (9).

Although both schemes (8) and (9) originate from the same application of (2),
their errors are different and demonstrate different convergence rates. The errors
of both schemes are presented in Fig. 2. The upper subplot demonstrates the errors
resulting from the application of (8) and the lower subplot demonstrates the errors
resulting from the application of (9). Each scheme is integrated by BDF3 with h =
10−4.

We now compare the accuracy and CPU time using the solver ode15s and
scheme (9) integrated by BDF6 with h = 10−2. The maximum error

max
{
max

n

∣
∣x1(tn) − x

(k)
1,n

∣
∣,max

n

∣
∣x2(tn) − x

(k)
2,n

∣
∣
}

is 7.03 · 10−13 and 1.91 · 10−14 using the solver ode15s and (9), respectively.
The errors resulting from the application of both methods are comparable. The CPU
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Fig. 1 Numerical solutions of (7): x(t) solid and y(t) dashed
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Fig. 2 Methods comparison: errors by (8) (upper subplot) and errors by (9) (lower subplot)

time is 0.21 s when the solver ode15s is applied and it is 0.03 s when the numerical
scheme (9) is applied, demonstrating that (9) is faster than ode15s.

4 Conclusions

In this work, we investigate dynamic iterations for nonlinear systems of differential
equations applied in population dynamics. The advantage of dynamic iterations is
that they allow to apply implicit time integration methods without the cost of solving
nonlinear algebraic equations at each time step. We conclude that the convergence
of dynamic iterations is different if we swap the order of the nonlinear differential
equations in the given system even though the iterations are applied to the same
system. That is, only by swapping the order of the equations, we can increase the rate
of the convergence of the iterations.We also conclude that after choosing the optimal
permutation of the equations, the proposed numerical scheme based on dynamical
iterations is faster than the variable order method.
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