
The Effect of the Number of Neural
Networks on Deep Learning Schemes for
Solving High Dimensional Nonlinear
Backward Stochastic Differential
Equations

Lorenc Kapllani

Abstract We consider the deep learning based scheme proposed in [W. E and
J. Han and A. Jentzen, Commun. Math. Stat., 5 (2017), pp. 349–380] and study
the effect of the number of neural networks on the gradient of the solution. We
demonstrate that using one neural network improves its numerical stability for the
whole path and also reduces the computational time. This is illustrated with several
100-dimensional nonlinear backward stochastic differential equations including
nonlinear pricing problems in finance.

1 Introduction

In this work we consider the high dimensional forward backward stochastic
differential equation (FBSDE) of the form

⎧
⎨

⎩

dXt = μ(t,Xt) dt + σ(t,Xt) dWt , X0 = x0,

−dYt = f (t,Xt , Yt , Zt) dt − Zt dWt ,

YT = ξ = g(XT),

(1)

where Xt, μ ∈ R
n, σ is a n × d matrix, Wt = (

W 1
t , . . . , Wd

t

)�
is a d-dimensional

Brownian motion, f (t,Xt , Yt , Zt) : [0, T] × R
n × R

m × R
m×d → R

m is the
driver function and ξ is the terminal condition. The existence and uniqueness of the
solution of (1) are proven in [10]. In the sequel of this work, we investigate the effect
of the number of neural networks in [4] that solve (1).

In the recent years, many numerical methods have been proposed for solving
BSDEs, e.g., [1, 11, 15], which are not suitable for high-dimensional problems

L. Kapllani (�)
Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: kapllani@math.uni-wuppertal.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_10

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_10&domain=pdf

 885 55738 a 885 55738 a

mailto:kapllani@math.uni-wuppertal.de

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-11818-0_10

68 L. Kapllani

as in physics or finance [9] (also sparse-grids [14] or parallel computing [6, 8])
due to exponential increase of algorithm complexity. Recently machine learning
schemes show that they can deal with high dimensions for reasonable computational
time [4, 5, 12, 13]. We study the well known deep learning based algorithm in [4]
(we refer to it as SDNN-approach in the rest of the paper, where SDNN stands
for Stacked Deep Neural Networks) where the gradient of the solution (process Z)
is approximated by fully-connected neural networks. The authors in [3] analyzed it
using different architectures. However, no result was shown regarding the instability
of Z for SDNN-approach due to the use of different deep neural networks at each
time layer. To have a more numerically stable algorithm, we study the effect of
reducing the number of neural networks. In the sequel, we refer this scheme as
DNN-approach.

The outline of the paper is organized as follows. In the next section, we describe
the SDNN- and DNN-approaches. In Sect. 3, we illustrate our findings with several
numerical tests. Section 4 concludes this work.

2 The SDNN-Approach and DNN-Approach

The Feynman-Kac formula and forward discretization of FBSDE are needed to
formulate the FBSDE as a learning problem. Let us consider that the terminal value
YT is of the form g(X

t,x
T), where X

t,x
T denotes the solution of forward SDE in (1)

starting from x at time t . Then, the solution (Y
t,x
t , Z

t,x
t) of (1) can be presented as

[9]

Y
t,x
t = u(t, x), Z

t,x
t = (∇u(t, x)

)
σ(t, x) ∀t ∈ [0, T), (2)

where u(t, x) is the solution of the following semi-linear parabolic PDE:

∂u

∂t
+

n∑

i=1

μi(t, x)
∂u

∂xi

+ 1

2

n∑

i,j=1

(σσ�)i,j (t, x)
∂2u

∂xixj

+ f
(
t, x, u, (∇u)σ

) = 0,

with u(T , x) = g(x). This is the Feynman-Kac formula. Using

� = {ti |ti ∈ [0, T], i = 0, 1, · · · , N, ti < ti+1,�t = ti+1 − ti , t0 = 0, tN = T }

and the notation Xi = Xti , Wi = Wti , �Wi = Wi+1 − Wi and the approximated
process as X�

i = X�
ti

, the discretization of (1) using the well-known Euler scheme
is

X�
i+1 = X�

i + μ
(
ti , X

�
i

)
�t + σ

(
ti , X

�
i

)
�Wi,

Neural Network Number Effect for High Dimensional Nonlinear BSDEs 69

Fig. 1 Graph of the SDNN-approach

and

Y�
i+1 = Y�

i − f
(
ti , X

�
i , Y�

i , Z�
i

)
�t + Z�

i �Wi,

:= F(ti, X
�
i , Y�

i , Z�
i ,�t,�Wi).

(3)

where i = 0, 1, . . . , N − 1 and �Wi ∼ N(0, �t).
The numerical approximation of (Y�,Z�) in the SDNN-approach (Fig. 1) is

designed as follows: starting from an estimation (Y0(θ),Z0(θ)) of (Y�
0 , Z�

0), and
then using at each time step ti , i = 1, 2, . . . , N − 1 a different feedforward deep
neural network ψ

�

i,k,L(x; θ) : Rd → R
1×d to approximate Z�

i as Zi (θ) and Y�
i , i =

1, 2, . . . , N as Yi (θ) with (3), where the output YN(θ) aims to match the terminal
condition g(X�

T) of the BSDE (using Adam gradient descent-type optimizer with
mini-batches):

E
[|g(X�

T) − YN(θ)|2].

Note that i represents the i-th network, k is the number of neurons, L are the number
of hidden layers, � is the activation function, the input x of the network is the
Markovian process X�

i and θ are network parameters. Specifically, the networks
have 4 global layers, where hidden layers have d+10 neurons, the rectifier function
R � x → max{0, x} ∈ [0,∞) is used as the activation function, the weights
are initialized using a normal or a uniform distribution and batch normalization
is also used. For the DNN-approach, we consider p < N − 1 networks, i.e. 1
network for consecutive subintervals, with input x having the time discretization
ti (to handle non-stationarities) and the Markovian process X�

i (due to Feynman-
Kac formula), with 6 global layers (2 hidden layers more than SDNN-approach for

70 L. Kapllani

Table 1 The dimension of the parameters

SDNN-approach d + 1 + (N − 1)(2d(d + 10) + (d + 10)2 + 4(d + 10) + 2d)

DNN-approach p
(
2d + 1 + (2d + 5)(d + 10) + 3(d + 10)2

)

a better accuracy). For sufficiently regular solutions, the gradient between two time
points should be close. Therefore, the numerical stability of Z is affected from the
number of DNNs. The dimension of the parameters ρ ∈ N for both approaches are
given in Table 1. The complexity in the DNN-approach is lower for less number of
networks, namely p.

3 Numerical Results

In this section we study the DNN-approach by comparing it to the SDNN-
approach in several high dimensional examples. The results are presented using
10 independent runs with Tensorflow 1.15 from Google Colab. We start with an
example with analytical solution where the driver function depends on Y and Z.

Example 1 Consider the Burgers type FBSDE [4]

⎧
⎪⎪⎨

⎪⎪⎩

dXt = σ dWt , X0 = 0,

−dYt =
(
Yt − 2+d

2d

) (∑d
i=1 Zi

t

)
dt − Zt dWt ,

YT = 1 − 1

1+exp
(
T + 1

d

∑d
i=1 Xi

T

) ,

where Wt = (W 1
t ,W 2

t , · · · ,Wd
t)�, Xt = (X1

t , X
2
t , · · · , Xd

t)�, Zt =
(Z1

t , Z
2
t , · · · , Zd

t). The exact solution is (Y0, Z0)
.= (0.5, (0.1768, · · · , 0.1768))

with d = 50, T = 0.2 and σ = d√
2
. We consider the same hyperparameters for both

the SDNN- and DNN-approach, where the learning rate is 1e−2, 8000 optimization
iterations, 256 validation sample and a batch size of 64, which are used also for
next examples if not specified. The authors in [4] used different hyperparameters
and discretization values. The results are reported in Table 2 for N = 40. Note
that p = N − 1 represents the SDNN-approach, | · | is the absolute value and s(·)
represents the standard deviation. Moreover, εY0 = |Y0 − Y0|, Z0 = 1

d

∑d
i=1 Zi

0

and εZ0 =
∑d

i=1 |Zi
0−Zi

0|
d

.
From Table 2 we observe that the DNN-approach with one network gives higher

accuracy for both processes Y and Z, for less computation time. Increasing the
number of networks worsens the performance. To illustrate how good paths of each
process are approximated, we display the averages of paths for Y as Ȳ and Z as Z̄,
and the averages of approximated paths for Y as Ȳ and Z as Z̄ in Fig. 2, where the
average over the dimension is also considered for the Z process, in order to have
one value at each time point.

Neural Network Number Effect for High Dimensional Nonlinear BSDEs 71

Table 2 The results for Example 1

p Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

1 0.5196 0.0350 0.0198 0.1983 0.1250 0.0909 743.36

2 0.5409 0.1021 0.0983 0.3273 0.1814 0.1399 798.12

4 0.5312 0.1255 0.0651 0.5721 0.5092 0.2578 791.48

N − 1 1.2425 0.7425 0.0552 2.8510 2.6743 0.0290 1721.33

0.60

0.58

0.56

0.54

0.52Ȳ

Ȳ

ȳ1–DNN

ȳ2–DNN

ȳ4–DNN

ȳSDNN

Z̄

z̄1–DNN

z̄2–DNN

z̄4–DNN

z̄SDNN

0.50

0.48

0.46

0.0 0.2 0.4
t

0.6

Y process

(a) (b)

Z process

0.8 1.0

0.40

0.35

0.30

0.25

Z̄
0.20

0.15

0.410

0.0 0.2 0.4
t

0.6 0.8 1.0

Fig. 2 The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄ for
Example 1

For a better view of the approximation of the whole path, we limit the axis for
Y and Z, since some results are far from the exact solution. We see that the DNN-
approach with one network approximates paths of both processes much better in this
example when d = 50. Next, we consider an example with a driver function where
the Z process grows quadratically.

Example 2 Consider the nonlinear BSDE [7]

⎧
⎨

⎩

−dYt =
(
‖Zt‖2

R
1×d − ‖∇ψ(t,Wt)‖2

R
d −

(
∂t + 1

2�
)

ψ(t,Wt)
)

dt − Zt dWt ,

YT = sin
(
‖WT ‖2α

R
d

)
,

where ψ(t,Wt) = sin
((

T − t + ‖Wt‖2
R

d

)α)
. The exact solution is (Y0, Z0)

.=
(0.8415, (0, · · · , 0)) with d = 100, T = 1 and α = 0.4. Here we choose d = 100
to compare both the approaches in a higher dimension. We set the optimization
iterations to m = 4000, and report the results in Table 3 with N = 40. We
observe that the DNN-approach with one network gives again better results for both
processes, even for the whole path displayed in Fig. 3.

Finally we consider an example without analytical solution in the case of d =
100, the problem of option pricing with different interest rates, also studied in [4, 5,
12].

Example 3 Consider the different interest rates option pricing FBSDE [2]

72 L. Kapllani

Table 3 The results for Example 2

p Y0 εY0 s(εY0) Z0 εZ0 s(εZ0) Time

1 0.8583 0.0168 0.0077 0.0000 0.0087 0.0027 1197.47

2 0.8813 0.0398 0.0146 −0.0001 0.0120 0.0027 1161.98

4 0.9640 0.1226 0.0199 −0.0005 0.0188 0.0021 1304.86

N − 1 1.2541 0.4126 0.0247 −0.0004 0.0381 0.0037 1493.97

0.90

0.89

0.88

0.87

0.86Ȳ

Ȳ

ȳ1–DNN

ȳ2–DNN

ȳ4–DNN

ȳSDNN

Z̄

z̄1–DNN

z̄2–DNN

z̄4–DNN

z̄SDNN

0.84

0.85

0.83

0.82
0.0 0.2 0.4

t
0.6

Y process

(a) (b)

Z process

0.8 1.0

0.002

0.001

0.000Z̄

–0.001

–0.002

0.0 0.2 0.4
t

0.6 0.8 1.0

Fig. 3 The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄ for
Example 2

Table 4 The results for
Example 3

p Y0 |Y0 − Y0| s(|Y0 − Y0|) Time

1 21.0906 0.2082 0.0476 1137.93

2 21.0626 0.2362 0.0971 1144.90

4 21.0284 0.2704 0.1399 1206.71

N − 1 21.1140 0.1848 0.1017 1845.27

⎧
⎪⎪⎨

⎪⎪⎩

dSt = μSt dt + σSt dWt , S0 = S0,

−dYt = −RlYt − μ−Rl

σ

∑d
i=1 Zi

t + (
Rb − Rl

)
max

(
1
σ

∑d
i=1 Zi

t − Yt , 0
)

dt − Zt dWt ,

YT = max
(
maxd=1,··· ,D(ST,d − K1, 0

) − 2 max
(
maxd=1,··· ,D(ST,d − K2, 0

)
,

where St = (S1
t , S2

t , · · · , Sd
t)�. The benchmark value with T = 0.5, μ = 0.06, σ =

0.2, Rl = 0.04, Rb = 0.06, K1 = 120, K2 = 150 and S0 = 100 is Y0
.= 21.2988

[5]. Using a learning rate of 5e − 2 and 4000 optimization iterations, we present the
results in Table 4 for N = 40, which shows comparable results for DNN-approach
with one network and SDNN-approach.

4 Conclusions

In this work we have proposed the DNN-approach to improve the deep learning
scheme [4]. With our numerical analysis we demonstrate that the DNN-approach
with one neural network can give comparable approximation for Y and better
approximation for Z on the whole time domain for lower computational cost.

Neural Network Number Effect for High Dimensional Nonlinear BSDEs 73

References

1. Bender, C., Zhang, J.: Time discretization and Markovian iteration for coupled FBSDEs. Ann.
Appl. Probab. 18(1), 143–177 (2008).

2. Bergman, Y.Z.: Option pricing with differential interest rates, Rev. Finan. Stud. 8(2), 475–500
(1995).

3. Chan-Wai-Nam, Q., Mikael, J., Warin, X.: Machine learning for semi linear PDEs, J. Sci.
Comput. 79(3), 1667–1712 (2019).

4. E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations, Com-
mun. Math. Stat. 5(4), 349–380 (2017).

5. E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: On multilevel picard numerical approximations
for high-dimensional nonlinear parabolic partial differential equations and high-dimensional
nonlinear backward stochastic differential equations, J. Sci. Comput. 79(3), 1534–1571 (2019).

6. Gobet, E., López-Salas, J.G., Turkedjiev, P., Vázquez, C.: Stratified regression Monte-Carlo
scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs, SIAM J.
Sci. Comput. 38(6), C652–C677 (2016).

7. Gobet, E., Turkedjiev, P.: Linear regression MDP scheme for discrete backward stochastic
differential equations under general conditions, Math. Comp. 85(299), 1359–1391 (2015).

8. Kapllani, L., Teng, L.: Multistep schemes for solving backward stochastic differential equa-
tions on GPU. arXiv preprint arXiv:1909.13560 (2019).

9. Karoui, N.E., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance.
Math. Finan. 7(1), 1–71 (1997).

10. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation, Syst.
Control. Lett. 14(1), 55–61 (1990).

11. Ruijter, M.J., Oosterlee, C.W.: A Fourier cosine method for an efficient computation of
solutions to BSDEs, SIAM J. Sci. Comput. 37(2), A859–A889 (2015).

12. Teng, L.: A review of tree-based approaches to solve forward-backward stochastic differential
equations, arXiv preprint arXiv:1809.00325v4 (2019).

13. Teng, L.: Gradient boosting-based numerical methods for high-dimensional backward stochas-
tic differential equations, arXiv preprint arXiv:2107.06673 (2021).

14. Zhang, G.: A sparse-grid method for multi-dimensional backward stochastic differential
equations, J. Comput. Math. 31(3), 221–248 (2013).

15. Zhao, W., Zhang, G., Ju, L.: A stable multistep scheme for solving backward stochastic
differential equations, SIAM J. Numer. Anal. 48(4), 1369–1394 (2010).

	The Effect of the Number of Neural Networks on Deep Learning Schemes for Solving High Dimensional Nonlinear Backward Stochastic Differential Equations
	1 Introduction
	2 The SDNN-Approach and DNN-Approach
	3 Numerical Results
	4 Conclusions
	References

