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Foreword

The proceedings of the ECMI 2021 conference, Progress in industrial mathematics
2022, contains contributions from many areas of mathematics relevant to social and
economic development. The conference was hosted by the University of Wuppertal,
Germany, and we can be proud of the success of the conference in difficult pandemic
times. Although it was held online, all the important features of traditional ECMI
conferences were maintained, starting with plenary lectures, award-winning talks,
mini-symposia on interesting topics from ECMI Special Interest Groups, and many
contributed papers. We were pleased to welcome colleagues from the Asia Pacific
Consortium for Mathematics in Industry to our conference.

Considering the reality in 2020–2022 and the importance of mathematical
modeling in times of pandemics, a number of papers in this conference volume
deal with various epidemiological models for diseases caused by viruses, followed
by industry-related models such as fluid dynamics, modeling of various industrial
processes, problems from agriculture, modeling of various financial products, etc.
A number of papers in this book deal with data analysis and data-driven models.
Thus, the book provides a relevant overview of the topics and advances in industrial
mathematics at the present time.

Educating industrial mathematicians is one of ECMI’s main activities, and our
signature events are the Mathematical Modeling Weeks. Last year, the Mathematical
Modeling Week was held for the first time in Russia and for the first time online. A
report on this event is included in this conference proceedings.

The list of authors includes a number of PhD students representing a new
generation of industrial mathematicians trained in close collaboration with industrial
partners under the Marie Skłodowska-Curie European Industrial PhD programs.

On behalf of ECMI and all conference participants, I would like to express our
gratitude to Prof. Matthias Ehrhardt and his team for organizing the conference.

Novi Sad, Serbia Nataša Krejić, ECMI President
February 2022
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Preface

The 21st European Conference on Mathematics for Industry, ECMI 2021, was
held online (organized by the University of Wuppertal) from 13 to 15 April 2021,
bringing together more than 350 researchers for intellectual interaction for 3 days.

The European Consortium for Mathematics in Industry (ECMI) organized its
first international conference in Oberwolfach, in 1983, followed by a series of
conferences, a persistent objective of which has been to galvanize interaction
between academy and industry, leading to innovations in both fields. The 21st
conference, ECMI 2021, inspired multidisciplinary research along these lines
further, leading to the formulation of real-life challenges, where mathematical
technologies provided significant new insights. Following the traditions of ECMI,
the conference focused on various fields of industrial and applied mathematics,
such as Applied Physics, Biology and Medicine, Cybersecurity, Data Science,
Economy, Finance and Insurance, Energy, Production Systems, Social Challenges,
Vehicles, and Transportation. These themes nicely fit to current distinguished
national research programs in Hungary, in particular programs on Autonomous
Vehicles, Digital Factories, Brain Research, or Precision Agriculture, supported by
the EU and the National Research, Development and Innovation Office.

This virtual conference was organized by the University of Wuppertal and
implemented using the ZOOM online conference system. The statistics of the
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viii Preface

conference were more than satisfactory. In addition to the 14 plenary talks, given
by world class researchers and the three awardees, we had 28 minisymposia, and 24
contributed talks, running in up to 10 parallel sessions. Altogether there were more
than 350 participants, from around 40 countries. More than 160 participants were
students.

The Scientific Committee was set up as follows:

Adérito Araújo, University of Coimbra, Portugal
Linda Cummins, New Jersey Institute of Technology, USA
Michel Destrade, National University of Ireland Galway, Ireland
Matthias Ehrhardt, Bergische Universität Wuppertal, Germany (Chair)
Andrew Fowler, University of Oxford, UK
James Gleeson, University of Limerick, Ireland
Michael Günther, Bergische Universität Wuppertal, Germany (Co-Chair)
Helge Holden, NTNU Trondheim, Norway
Barbara Kaltenbacher, Alpen-Adria Universität, Klagenfurt, Austria
Nataša Krejić, University of Novi Sad, Serbia
Stig Larsson, Chalmers University of Technology, Sweden
Tim Myers, Universitat Autonoma de Barcelona, Spain
Stephen O’Brien, University of Limerick, Ireland
Jörg Osterrieder, ZHAW School of Engineering, Winterthur, Switzerland
René Pinnau, TU Kaiserslautern, Germany
Peregrina Quintela Estévez, University of Santiago de Compostela, Spain
Claudia Sagastizabal, UNICAMP and IMPA, Brasil
Sarah Waters, University of Oxford, UK

The local Organizing Committee in Wuppertal was

Markus Bannenberg, Bergische Universität Wuppertal
Andreas Bartel, Bergische Universität Wuppertal
Anna Clevenhaus, Bergische Universität Wuppertal
Matthias Ehrhardt, Bergische Universität Wuppertal (Chair)
Stephanie Friedhoff, Bergische Universität Wuppertal
Michael Günther, Bergische Universität Wuppertal
Jens Jäschke, Bergische Universität Wuppertal
Lorenc Kapllani, Bergische Universität Wuppertal
Jörg Kienitz, Bergische Universität Wuppertal
Friedemann Klaß, Bergische Universität Wuppertal
Tatiana Kossaczká, Bergische Universität Wuppertal
Michelle Muniz, Bergische Universität Wuppertal
Hanna Schilar, Bergische Universität Wuppertal (Conference Secretary)
Long Teng, Bergische Universität Wuppertal
Jan ter Maten, Eindhoven
Renate Winkler, Bergische Universität Wuppertal
Mario Zaghini, Bergische Universität Wuppertal
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The plenary talks covered several major areas of applied and industrial mathe-
matics, such as network theory, numerical methods of PDEs, mathematics of tomog-
raphy, mechanical models, traffic management, control theory, cancer research, and
environmental modeling. The plenary speakers were:

Nira Chamberlain, Loughborough University
Andrea Bertozzi, University of California Los Angeles
Elisabetta Rocca, University of Pavia
Carola-Bibiane Schönlieb, University of Cambridge
Eddie Wilson, University of Bristol
Mark McGuinness, Victoria University of Wellington
Luis Nunes Vicente, Lehigh University and CMUC-Portugal
Ginestra Bianconi, Queen Mary University of London
Anna-Karin Tornberg, KTH Stockholm
William Lee, University of Huddersfield
Paul Dellar, University of Oxford

The winner of the Anile prize, honoring Professor Angelo Marcello Anile (1948–
2007) of the University of Catania, is given to a young researcher for an excellent
PhD thesis in industrial mathematics. The Anile prize, in 2021, was awarded to
Bernadette Stolz (University of Oxford) (“Global and local persistent homology for
the shape and classification of biological data”).

The Hansjörg Wacker Memorial Prize, established in memory of ECMI founding
member Hansjörg Wacker, (1939–1991), who was Professor at the Johannes Kepler
University, Linz, is awarded for the best mathematical dissertation at the Master’s
level on an industrial project. The Hansjörg Wacker Memorial Prize, in 2021,
was awarded to Halvor Snersrud Gustad (NTNU Trondheim) (“Using Artificial
Neural Networks for Predicting Bending Moments of Riser Structures”) and Jan
Brekelmans (TU Eindhoven) (“The Volume-of-Fluid Method Applied to Vertical
Slug Flow Using an Axial-Symmetric and a Fully Three-Dimensional Approach”).

The Organizers express their deepest gratitude to everybody involved in the
success of this meeting, the plenary speakers, the members of the Scientific
Committee, the organizers of the minisymposia, the contributing authors, and all
the participants of the conference.

On behalf of the Organizers

Wuppertal, Germany Matthias Ehrhardt
Wuppertal, Germany Michael Günther
February 2022
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Model Reduction for a Port-Hamiltonian
Formulation of the Euler Equations

Sarah-Alexa Hauschild and Nicole Marheineke

Abstract The port-Hamiltonian (pH) formulation of partial-differential equations
and their numerical treatment have been elaborately studied lately. This energy-
based formulation encodes physical principles in the system structure and the
pH-character is inherited during coupling. Considering a non-isothermal com-
pressible fluid flow in a pipe, we propose a pH-model on PDE-level, which is
advantageous for structure-preserving approximations. Based on Galerkin projec-
tion with compatible finite dimensional spaces we preserve the pH-structure during
space discretization and model reduction. Numerical results support our theoretical
findings.

1 Model Problem

This work focuses on the non-isothermal compressible Euler equations with friction
and cooling on ω = [0, L] for t ≥ 0,

0 = ∂tρ + ∂x(ρv),

0 = ∂t (ρv)+ ∂x(ρv2)+ ∂xp + λ

2d
ρ|v|v,

0 = ∂t e + ∂x(ev)+ p∂xv − λ

2d
ρ|v|v2 + 4kω

d
(T − T∞).

(1)

System (1) describes a fluid flow through a pipe with length L, diameter d, friction
factor λ and heat transfer coefficient kω. The ambient temperature is denoted by
T∞. The unknowns are the mass density ρ, the velocity v and the internal energy
density e. The system is closed with state equations for pressure p and temperature
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2 S.-A. Hauschild and N. Marheineke

T as well as appropriate initial and boundary conditions. The Hamiltonian is given

byH(ρ, v, e) = ∫ L
0 ρ

v2

2 + e dx. In the following, m = ρv denotes the mass flow.

2 Port-Hamiltonian Formulation and Approximation

Following the ideas of [5] for finite dimensional pH-systems, we set up a non-unique
pH-formulation for the infinite dimensional System (1).

A port-Hamiltonian formulation of (1) is given by

E(z)∂t z = (J (z)− R(z))ẽ(z)+Gu(t) (2)

with z = (ρ,m, e)T and ẽ(z) = ( m2

2ρ2 ,m, 1)
T and system operators

E(z) =
⎛

⎜
⎝

1 0 0
− m
ρ2

1
ρ

0

0 0 1

⎞

⎟
⎠ , R(z) =

⎛

⎝
0 0 0
0 0 0
0 0 4kω

d
T

⎞

⎠ , G =
⎛

⎝
0
0

4kω
d

⎞

⎠ ,

J (z) =
⎛

⎜
⎝

0 −Dx 0
−Dx 0 −λm|m|

2dρ2 − e
ρ
Dx − 1

ρ
Dxp

0 λm|m|
2dρ2 −Dx eρ − pDx 1

ρ
0

⎞

⎟
⎠ . (3)

The input is given as u(t) = T∞. The Hamiltonian isH(z) = ∫ L
0
m2

2ρ + e dx.

The operatorDx in (3) is defined as (g1Dxg2)g3 := g1∂x(g2g3) for functions g1,
g2 und g3. System (2) fulfills the condition E(z)T ẽ(z) = δH

δz
(z) and the operator

J (z) is skew-symmetric in the L2-inner product with respect to the boundary terms,
when using partial integration, and R(z) is symmetric positive semi-definite. To
utilize Galerkin projection for space discretization and model reduction, we set up a
weak pH-formulation for (2), using the finite element method, see [3]. The following
theorem can then be proved analogously to [4].

Theorem 1 Let z = [ρ, m, e]T be a strong solution of system (2). Then the
following energy dissipation and mass conservation properties hold,

d

d t
H(z) ≤ ∫ L

0
4kω
d
T∞dx − [m( m2

2ρ2 + 1
ρ
(e + p))]

∣
∣
∣
L

0
and d

d t

∫ L
0 ρdx = −[m]|L0 .
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To keep these properties on all levels of approximation, we apply Galerkin
approximation schemes with compatible finite element bases, such that the pH-
structure is preserved. We particularly extend the ansatz from [4], see [3]. Thus,
the approximation spaces need to fulfill the following assumption.

Assumption 1 (Compatibility Conditions) Let V = Vρ × Vm × Ve and
Vρ ⊂ L2(ω), Vm,Ve ⊂ H 1(ω) be finite dimensional subspaces which fulfill
the following assumptions:

1. Vρ = ∂xVm with ∂xVm = {ξ : I t exists ζ with ∂xζ = ξ}
2. {b ∈ H 1(ω) : ∂xb = 0} ⊂ Vm
3. 1 ∈ Ve

Let Th(ω) = {ωj } be a uniform partition of ω = ∪nj=1ωj = ∪nj=1[xj , xj+1], where
xi , i = 1, . . . , n + 1, are the grid points. The space of piecewise polynomials of
degree ≤ l is defined as Pl(Th(ω)) = {ϕ ∈ L2(ω) : ϕ|ωj ∈ Pl(ωj ), ωj ∈ Th(ω)}.
Bases fulfilling Assumption 1 are then, e.g., span{ψ1, . . . , ψn} = P0 for ρ and
span{φ1, . . . , φn+1} = P1 for m and e.

The semi-discretization of system (2) is then given as,

⎛

⎜
⎝

Mρ
Mm,ρ Mm,m

Me

⎞

⎟
⎠

︸ ︷︷ ︸
E(ρh,mh)

⎛

⎜
⎝

ρ̇

ṁ
ė

⎞

⎟
⎠

︸ ︷︷ ︸
ż

=
⎛

⎜
⎝

Jρ,m
−JTρ,m Jm,e − J̃m,e

−JTm,e + J̃Tm,e −Re,e

⎞

⎟
⎠

︸ ︷︷ ︸
J(ρh,mh,eh)−R(ρh,eh)

⎛

⎜
⎝

ε
m
1

⎞

⎟
⎠

︸ ︷︷ ︸
ẽ(ρh,mh)

+
⎛

⎜
⎝ bm
ge + be

⎞

⎟
⎠ ,

with j, q = 1, . . . , n and i, ι = 1, . . . , n+ 1, and

[Mρ]j,q = (ψq, ψj ), [Jρ,m]j,ι = −(∂xφι, ψj ),
[Mm,ρ]i,j = −(mh

ρ2

h
ψj , φi), [Jm,e]i,ι = (− eh

ρh
∂xφι − 1

ρh
∂x(phφι), φi),

[Mm,m]i,ι = ( 1
ρh
φι, φi), [J̃m,e]i,ι = (− λ

2d

mh
ρ2

h

∣
∣mh

∣
∣φι, φi),

[Me]i,ι = (φι, φi), [Re,e]i,j = ( 4kω
d
Thφj , φi),

[bm]i = − [ m
2

h
2ρ2

h
φi ]

∣
∣
∣
∣

L

0

, [be]ι = − [mh(eh+ph)
ρh

φι]
∣
∣
∣
∣

L

0
,

[ge]ι = ( 4kω
d
T∞, φι), ε = M−1

ρ f, [f]j = (
m2

h
2ρ2

h
, ψj ).

(4)

The Hamiltonian is given byH(z) = 1
2m

TMm,mm+ 1TMee.

The subscript h denotes the approximated quantities, e.g., ρh = ∑n
j=1 ρiψi .

By construction, J(ρh,mh, eh) and R(ρh, eh) are skew-symmetric and positive

semi-definite, respectively. Additionally, we have that J̃m,e = J̃Tm,e and Re,e =
RTe,e ≥ 0. Furthermore, E(ρh,mh)

T ẽ(ρh,mh) = ∇zH(z) can be verified.
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3 Structure-Preserving Model Order Reduction

We show how the pH-structure of system (4) is preserved during projection-based
model reduction. The reduction relies on the snapshot matrix S, i.e.,

S = (STρ STm STe)
T , Sρ = (ρ0, . . . , ρnt ), Sm = (m0, . . . ,mnt ), Se = (e0, . . . , ent ). (5)

Here, nt denotes the number of time points used in the simulation. To keep
properties like energy dissipation, the reduced spaces Vρ,r ⊂ Vρ, Vm,r ⊂ Vm
and Ve,r ⊂ Ve need to fulfill Assumption 1. For this, we take advantage of the
algebraic equivalent of Assumption 1, as done in [2], i.e.,

Assumption 2 (Algebraic Compatibility Conditions) Let the reduction basis Vr
have block-diagonal structure, i.e., Vr = blkdiag(Vρ, Vm,Ve). Then Vr is
assumed to fulfill

1. image(MρVρ) = image(Jρ,mVm)
2. kernel(Jρ,m) ⊂ image(Vm)
3. (1, . . . , 1)T ∈ image(Ve)

The block-diagonal projection matrix Vr additionally preserves the block structure
of system (4). To obtain Vρ, Vm and Ve, we start by computing Vρ from the
snapshots (5) by Algorithm 1, which uses proper orthogonal decomposition.

Algorithm 1 (Computation of Vρ) Let S, Mρ, Jρ,m and rρ be given.

1. Set up the snapshot matrices Sρ, Sm and Se from S.
2. Construct a reduced basis Vρ from [Sρ, M−1

ρ (Jρ,m[Sm, Se])] by POD w.r.t. the
scalar product induced by Mρ of dimension rρ.

In the computation of Vρ we do not only make use of Sρ, but also of M−1
ρ Jρ,mSm.

This is motivated by Assumption 2-1. It also resembles using the time derivatives of
ρ in POD. Additionally, our numerical experiments show that adding M−1

ρ Jρ,mSe
to the computation of Vρ enhances the approximation quality of the reduced bases.
As we construct Vm and Ve with the same bases, it follows that Se ∈ Vm, such
that Assumption 2-1 is not violated by including these snapshots. The compatibility
conditions are enforced, as seen in Algorithm 2. Here, Vm and Ve are deduced
from Vρ, which contains information of all dynamic states, i.e., ρ, m and e.

Algorithm 2 (Compatible Basis) Let Vρ, Mρ, Mm, Jρ,m be given.

1. Compute N = kernel(Jρ,m).
2. Compute Vm by

a. Wm = M−1
m JTρ,m(Jρ,mM−1

m JTρ,m)
−1MρVρ,

b. Orthogonalize N to columns of Wm w.r.t. inner product induced by Mm.

3. Set Ve to be equal to Vm.
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Here, Mm denotes the mass matrix related to Vm. Lines (2a) and (2b) in
Algorithm 2 enforce the Assumptions 2-1 and 2-2 for the space Vm,r. Choosing
the same basis forVm,r andVe,r might seem odd, but experiments show that this
choice enhances the stability of the reduced models. It creates more symmetry in the
reduced models, as J̃m,e and J̃e,m are still symmetric after reduction. Furthermore,
the Assumption 2-3 is fulfilled. This follows from span{1} = span{kernel(Jρ,m)},
as the kernel of Jρ,m is the kernel of the discretized gradient operator. Finally,
we compute the reduced order model by multiplying (4) with VTr from the left
and by multiplying E(ρh,mh), J(ρh,mh, eh) and R(ρh, eh) by Vr from the

right. The reduced efforts are given by εr = V†
ρε and 1r = V†

e1, with V†
α =

(VTαMαVα)
−1VTαMα, α ∈ {ρ,m,e} being the corresponding pseudo-inverse.

4 Numerical Results and Discussion

Considering the flow of an ideal compressible gas through a single pipe in the
subsonic regime, we have p = R

cV
e and T = 1

cV

e
ρ

. The parameters are given by

R = 1, cV = 5
2 , L = 1, d = 1, λ = 40, kω = 5

4 , T∞ = 1, similar to the second
example in [1]. The initial values at t = 0 and the boundary conditions at x = 0 are
chosen to be

ρ(0, x) = 3, m(0, x) = 0.3, e(0, x) = 9 and m(t, 0) = m(t, 1) = 0.3, e(t, 0) = 9,

respectively. The full order model (FOM) is discretized with a spatial step size
x = 0.01, resulting in a dimension of 3n+ 2 + 3 = 305 with n = 100. The latter
+3 results from the Lagrange multipliers, which are used to couple the boundary
conditions to the system and consistently initialized. The Lagrange multipliers will
not be reduced. The FOM is simulated using the implicit Euler scheme with t =
0.1 and Newton’s method with an analytical Jacobian until the stationary solution
is reached at tf = 30s. The reduced models (ROMs) are solved using the same
boundary conditions and parameters as the FOM. With the snapshot matrix (5),
set up from the solutions of the FOM, we compute the projection matrices with
Algorithms 1 and 2. The reduced initial values are given as,

ρr(0) = V†
rρ(0), mr(0) = V†

mm(0), er(0) = V†
ee(0).

Numerical tests show that the ROMs computed from our pH-FOM are only stable,
if the parity of rρ is equal to that of n. This might be explained by the different
constitutions of the kernel of the skew-symmetric system matrix J(ρh,mh, eh) for
even or odd numbers of degrees of freedom. This question is still part of ongoing
research. As n = 100, we only consider ROMs with rρ even as well. Figure 1
shows the maximum relative L2-errors for reduction Et and projection Et,P for
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different even rρ, i.e., maxt∈[0,tf ]
||z(t,x)−zr(t,x)||L2

||z(t,x)||
L2

. With increasing dimension the

errors decline rapidly. This excellent error behavior is only due to the compatibility
conditions from Assumption 2, see Figs. 2 and 3. When they are not used to compute
the projection bases, the ROMs do not converge or loose energy dissipation and
mass conservation, for the rρ, where the systems fulfilling Assumption 2 already
converge or fulfill the properties. Summing up, the numerical example yields
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promising results for structure-preserving reduction of a pipe flow. The extension
to networks and complexity reduction are part of current research.
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ECMI Modelling Week: First Time
in Russia and First Time Online

Tatiana Pogarskaia, Sergey Lupuleac, and Matti Heiliö

Abstract The European Consortium for Mathematics in Industry (ECMI) has been
running annual Modelling Weeks (MW) for students since 1988. Students come
from all over Europe to spend a week working in small multinational groups on
real-life based problems. While the COVID-19 pandemic educational process was
changed to online format in the majority of universities all over the world in order to
continue teaching with no interruption. The Modeling Week 2020 hosted by SPbPU
was held online as well but kept it as close to traditional ECMI Modelling Week as
possible.

The aim of the paper is to compare the performance of the participants who
attended the first Online Modelling Week in distance learning format with previous
ones held in a face-to-face format. The example of 30 students from different
universities and countries divided into 4 groups is considered. The group work
analysis revealed that more students dropped out of the Modelling Week in
comparison to previous years. At the same time the smaller groups were able to
solve the problems and finish the course.

1 Introduction

Technological advances provided an opportunity to share knowledge in the online
format what made it very attractive. The problem of the effectiveness of distance
and online learning methodologies has been discussed in recent decades before
the COVID-19 pandemic [1–3]. Among other things, comparison of online and
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in-class education systems was regarded from different aspects [4–6], including
specificity of online teaching technical subjects [7, 8]. Undoubtedly, distance
learning during the pandemic differs from the previous experience primarily by the
social restrictions and the psychological state of both students and teachers [9–12].
It makes the education process to be a great challenge as it requires adapting existing
programs and methodologies.

One of the main distinctive features of the ECMI MW is its format implying
a week working in small multinational groups on projects which are based on real-
life problems. Due to the short time period and the need to solve a problem together,
students acquire skills of teamwork and communication. We tried to keep as close to
traditional ECMI MW as possible and save the average group size (5–7 participants),
their age (senior bachelor students and master students) and projects origins. The
purpose of this article is to compare the results of participants who attended the
first Online Modeling Week in the distance format with the results of previously
face-to-face events.

2 The First Online Modelling Week—New Solution

The Modelling Week was going to be held in Peter the Great St.Petersburg Polytech-
nic University (SPbPU), St.Petersburg, Russia, in July (05.07.2020–12.07.2020)
[13]. As it was mentioned above, the event can be described as following. Each
group of usually 5–6 students is led by an ECMI instructor who introduces the
problem formulated in non-mathematical terms and helps to guide the students to a
solution during the week. The students present their results to the other groups on
the last day and then write up their work as a report. The preparations were started
in March 2019 but the pandemic changed the situation and the format was changed
to online. The first problem we faced was connected with registration declines as 6
of 8 instructors and 9 of 13 students registered before the pandemic refused to take
part in the new format.

However, four different projects were proposed by instructors from Wroclaw
University of Science and Technology, Leeds Beckett University and SPbPU and
30 students applied to participate. The needed mathematical background was nearly
the same for all the problems and included calculus and optimization methods.

SPbPU has been providing online courses since 2015 and the experience was
widely developed during the pandemic and was used during the MW. MS Teams
platform was used for the group work as it allows a wide range of opportunities such
as video call, file sharing, chatting etc. The projects were announced in advance and
the students were assigned to the problem of their choice after an e-mail survey. The
instructors acted as coordinators and played minimal roles unless students needed
some more explanations.
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3 Results

The day before the MW started 4 students informed that they declined their
participation and finally there were 7, 6, 6 and 7 students in the groups of projects
1, 2, 3, and 4, respectively. Projects 1 and 4 included the main and the associated
instructors. The academic level of the students is presented in Table 1.

The first project called “Bolted assembly optimization” was aimed at the
loosening of bolts phenomenon in aircraft assembly. Students were proposed to
study it by using the special assembly demonstrator developed on the base of a
specialized software for simulation of the aircraft assembly process [14, 15]. The
second project, “Hybrid Storage System”, proposed to construct and emulate the
performance of the existing algorithm for two consecutive days on the real datasets
employing REDWoLF mathematical template [16]. The aim of the next project,
“Capillary moisture uptake”, was to deliver a mathematical model of the capillary
moisture absorption in wood and to perform the analysis of the distribution of water
content in the trunk. Since the absorption of water may differ for different types
of trees thus the investigation of various types of wood was needed. And the last
project was based on the short Science Fiction novel “Jack and the Beanstalk” by
Richard A. Lovett about a guy who climbs a tower that is 65000 kilometres high. It
was proposed to make technical audit of the project starting with a simple model:
Earth as massive ball, long infinitely narrow and rigid beam with distributed mass
(the Beanstalk) and space shuttle (massive dot) to be launched to Mars.

The participants represented universities from Germany, Serbia, Italy, Portugal
and China. Due to different time zones in the range from Portugal to China,
the groups were allowed to choose the most appropriate time for work, time
11:00–16:00 (GMT+3) was recommended. The duration of the work remained
approximately the same but it was decreased from 5 and a half to 5 days as the
first day traditionally spent for arrivals was not needed. The program implied a half
working Monday with problem presentations in the morning, full days from Tuesday
to Friday and closing day on Saturday with Zoom final presentations and discussion.
Figure 1 represents the distribution of the worked time by days during the MW for
each group. It can be noticed that groups 2 and 3 with the less number of students
worked more steadily and groups 1 and 4 spent much more time on their work on
the last day before they had to present the results.

The groups were free to choose the way to communicate and all of them used
video calls but time could vary. The percentage of worked time spent on video calls
is presented in Fig. 2. The data were collected via MS Teams. It must be mentioned
that group 4 several times used Zoom platform and the time was not evaluated.

Table 1 Students academic level over the teams

Academic degree Project 1 Project 2 Project 3 Project 4

Bachelor students 4 1 3 4

Master students 3 5 3 2

PhD 0 0 0 1
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Fig. 1 The distribution of the worked time by each day during the MW for each group, hours

Fig. 2 The time the groups spent among themselves on video calls for discussions
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Only group 2 spent nearly all their time in touch via video. Groups 1 and 3 spent on
average the majority of the total time communicating via video as well.

All the groups managed to finish their work on time and prepare presentations.
The next step was to prepare a report summarizing their work until the end of
October to get 3 ECTS credits and certificates. Students of the second project
published the results of their work [17]. Finally, only 20 students (of 30 registrated)
completed the task. In comparison to the previous ECMI Modelling Weeks which
were held in a face-to-face format, the part of students who did not complete the
course is very high. For example, 32nd Modelling Week in Novi Sad on 2018 was
successfully finished by all the participants; 29th Modelling Week held in Lisbon in
2015 and ECMI Summer School and Modelling Week in Milan in 2010 had 1 and
2 drop-out students of 55 and 85 respectively [18].

4 Conclusion

Online learning was regarded as the future educational format when students are
given more flexibility even several years ago. The COVID-19 pandemic showed the
irreplaceable help of distance learning format to continue education with minimal
interruptions that cannot be overemphasized.

At the same time, we can notice that it was challenging for instructors to engage
students in work. We asked the instructors to comment on their experience and all of
them mentioned that it was hard to explain the task online and only students with the
best background were fully involved. The high part of students (33%) who did not
complete the course or decided not to take part in the change to online format can
additionally illustrate the weaknesses of virtual format such as reduction of student
engagement and loss of assessments that were noticed in [19, 20]. As a possible
solution, we regard a reward of the best group in the form of an invitation to take
part in a conference or publication of the project results. However, a short survey
the majority of students finished provided us with only positive feedback (Fig. 3).

Fig. 3 The survey of the students after the end of the MW
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Parameter Calibration with
Consensus-Based Optimization for
Interaction Dynamics Driven by Neural
Networks

Claudia Totzeck and Simone Göttlich

Abstract We calibrate parameters of neural networks that model forces in interac-
tion dynamics with the help of the Consensus-based global optimization method
(CBO). We state the general framework of interaction particle systems driven
by neural networks and test the proposed method with a real dataset from the
ESIMAS traffic experiment. The resulting forces are compared to well-known
physical interaction forces. Moreover, we compare the performance of the proposed
calibration process to the one in Göttlich and C. Totzeck (Optimal control for
interaction particle systems driven by neural networks. arXiv:2101.12657, 2021)
which uses a stochastic gradient descent algorithm.

1 Introduction

Modelling interacting particle dynamics such as traffic, crowd dynamics, schools
of fish and flocks of birds has attracted the attention of many research groups in
the recent decades. Most models use physically-inspired interaction forces resulting
from potentials to capture the observed behaviour. In fact, the gradient of the
potential is used as driving force for interacting particle systems formulated with
the help of ordinary differential equation (ODE). These models are able to represent
the main features of the dynamics, but as for all models we cannot be sure that
they deliver the whole truth. The idea in [1] was therefore to replace the physical-
inspired models by neural networks, train the networks with real data and compare
the resulting forces.
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In the recent years it became obvious that neural networks are able to represent
a lot of details from the dataset. It may be possible that there are details captured
that are not even noticed by humans and therefore do not appear in physical models
which are built to reproduce observations of the modeller.

In the following we recall the general dynamic of interaction particle systems
driven by neural networks as proposed in [1]. Then we shortly describe the global
optimization method ‘Consensus-based optimization’ that we use for the real-data
based calibration the network. Finally, we present the numerical results obtained by
the calibration process and compare them to the ones resulting from the calibration
with the stochastic gradient descent method reported in [1].

2 Interacting Particle Systems Driven by Neural Networks

We consider interacting particle dynamics described by ODE systems of the form

d

dt
yi =

N∑

j=1

W
i,j
θ (yj − yi), yi(0) = zi0, i = 1, . . . , N, (1)

where Wi,j
θ represents the interaction force resulting for yi in its interaction with

yj . The initial condition of the particles is given by real dataset z0 = z(0). In order
to compare the results to the ones in [1] we restrict the class of neural networks to
feed-forward networks. However, note that the approach discussed here allows for
general neural networks while the discussion in [1] considers feed-forward networks
and can only be generalized to neural networks allowing for back propagation.

2.1 Feed-Forward Neural Networks

In the following we consider feed-forward artificial neural networks of the form

Definition 1 A feed-forward artificial neural network (NN) is characterized by

– Input layer:

a
(1)
1 = 1, a

(1)
k = xk−1, for k ∈ {2, . . . , n(1)+ 1},

where x ∈ Rn(1) is the input (feature) in (1) and n(1) is the number of neurons
without the bias unit a1.

– Hidden layers: for � ∈ {2, . . . , L− 1}, k ∈ {2, . . . , n(�) + 1}

a
(�)
1 = 1, a

(�)
k = g(�)

⎛

⎝
n(�−1)+1∑

j=1

θ
(�−1)
j,k a

(�−1)
j

⎞

⎠ .
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– Output layer: a
(L)
k = g(L)

(∑n(L−1)+1
j=1 θ

(L−1)
j,k a

(L−1)
j

)
for k ∈ {1, . . . , n(L)}

Note that the output layer has no bias unit. The entry θ�j,k of the weight matrix

θ(�) ∈ Rn(�−1)×n(�) describes the weight from neuron a(�−1)
j to the neuron a(�)k . For

notational convenience, we assemble all entries θ(�)j,k in a vector RK with

K := n(1) · n(2) + n(2) · n(3) + · · · + n(L−1) · n(L).

For the numerical experiment we use g(�) = log(1 + ex) for � = 2, . . . , N − 1 and
g(L)(x) = x. For an illustration of the NN structure we refer to [1]. In the numerical
section we consider an NN with L = 3, one input and 5 units in the hidden layer.

3 Parameter Calibration

We formulate the task of the parameter calibration as an optimization problem. Let
u ∈ Rd denote the vector of parameters to be calibrated. This could be the weights of
the neural network θ and some other parameters, as for example the average length
L and the maximal speed vmax of the cars which we will consider in the application.
As we want the network to recover the forces hidden in the real data dynamics, we
define the cost function for the parameter calibration as

J (y, u) = 1

2

∫ T

0
‖y(t)− z(t)‖2dt + δ

2
|u− uref|2, (2)

where z denotes the trajectories of the cars obtained by the traffic experiment, and
uref are reference values for the parameters. The parameter δ allows to balance the
two terms in the cost functional. In case no reference values of the parameters are
available, we set δ = 0 in the numerical section.

3.1 Consensus-Based Optimization (CBO)

We solve the parameter calibration problem with the help of a Consensus-based
optimization method [4] and choose the variant introduced in [5] which is tailored
for high-dimensional problems involving the calibration of neural networks. The
CBO dynamics is itself a stochastic interacting particle system with NCBO agents
given by stochastic differential equations (SDEs). The evolution of the agents is
influenced by two terms. On the one hand, there is a deterministic term that aims to
confine the positions of the agents at a weighted mean. On the other hand, there is a
stochastic term that allows for exploration of the state space. The details are
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duit = −λ(uit − vf )dt + σdiag(uit − vf )dBit , i = 1, . . . , NCBO (3)

with drift and diffusion parameters λ, σ > 0, independent d-dimensional Brownian
motions Bit and initial conditions ui0 drawn uniformly from the parameter set of
interest. A main role plays the weighed mean

vf = 1
∑NCBO
i=1 e−J (ui )

NCBO∑

i=1

ui e
−αJ (ui ).

By its construction, agents with lower cost have more weight in the mean as the
ones with higher cost. The parameter α allows to adjust this difference of the
weights. For more information on the CBO method and its proof of convergence
on the mean-field level we refer the interested reader to [2] and the references
therein. As indicated by the notation above, the agents used in the CBO method
are different realizations of parameter vectors that we consider for the calibration.
For the numerical results NN4 we consider a neural network with 13 weights, i.e.,
θ ∈ R13. Moreover, we assume the maximal speed vmax as additional parameter.
Hence, for fixed t we have for the i-th CBO agent uit ∈ R14.

4 Numerical Results and Conclusion

For the calibration of the parameters we consider real data from the project ESIMAS
[3]. As we want to compare the results to the well-known follow-the-leader model
for traffic flow (LWR) we recall its details

d

dt
yi(t) = f

(
yi+1(t)− yi(t)

L

)

, i = 1, . . . , N − 1, (4a)

d

dt
yN(t) = vmax. (4b)

Here f (·) is either vmax log(·) or vmax(1 − 1/·). To be prepared for a reasonable
comparison, we consider for the neural network dynamics

d

dt
yi(t) = Wi,i+1

θ (yi+1(t)− yj (t)), i = 1, . . . , N − 1, (5a)

d

dt
yN(t) = vmax (5b)

supplemented with initial data y(0) = z0. This leads to u = (vmax, θ). To evaluate
the models and compute the corresponding cost we solve all ODEs with an explicit
Euler scheme. For details we refer to [1]. The number in the notation NN2, NN4
and NN10 corresponds to the number of nonbias neurons in the hidden layer.
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4.1 Data Processing and Numerical Schemes

The data collection of the ESIMAS project contains vehicle data from 5 cameras
that were placed in a 1km tunnel section on the German motorway A3 nearby
Frankfurt/Main [3]. The data is processed in the exact same way as in [1]. Files
with the processed data can be found online.1

The SDE which represents the CBO scheme is solved with the scheme proposed
in [5]. In particular, we set dt = 0.05, σ0 = 1, λ = 1 and the maximal number of
time steps to 100. The mini-batch size of the CBO scheme is 50 and we have 100
CBO agents in total. In each time step we update one randomly chosen mini-batch.
The initial values are chosen as follows

vmax ∼ U([20, 40]), L ∼ U([0, 10]) and θ ∼ U([−0.5, 0.5]K)

4.2 Resulting Forces and Comparison

Figure 1 (left) shows the velocities resulting from the parameter calibration process.
We find that the estimated velocities for the NN approaches are higher than the
velocities of the LWR based models. The difference is most significant in data
set 10. The plot on the right shows the average of the resulting forces for the
different models. The forces of the NN approaches resemble linear approximations
of the forces corresponding to the LWR models. The car length (L) appears only
in the LWR models. Its optimized values for the different data sets are given in
Table 1. We see that the lengths for the linear model are smaller than the ones in the
logarithmic model. This is in agreement with the results obtained with stochastic
gradient descent and shown in [1]. Finally, we summarize the cost values after
parameter calibration in Table 2. The least values of every column are highlighted

Fig. 1 Average velocities and forces resulting from the parameter calibration and learning process

1 https://github.com/ctotzeck/NN-interaction.
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Table 1 Car lengths (in m) estimated with the algorithm for the 10 data sets with the LWR-model
with linear and logarithmic velocity

1 2 3 4 5 6 7 8 9 10 average

Lin 3.5969 3.76 4.17 2.19 3.02 2.81 5.92 5.86 2.14 3.65 3.71

Log 7.15 7.21 8.05 8.17 6.19 5.00 8.10 8.46 5.63 6.91 7.09

Table 2 Values of the cost functional estimated with the algorithm for the 10 data sets with the
LWR-model with linear and logarithmic velocity and the three different neural network approaches

1 2 3 4 5 6 7 8 9 10 average

NN2 47.95 46.49 98.07 44.97 23.69 29.72 40.69 55.75 11.50 68.91 46.77

NN4 47.82 46.09 97.01 51.84 23.33 26.71 41.60 55.29 11.16 67.60 46.84

NN10 47.90 45.78 99.20 42.50 22.16 24.40 41.18 56.68 10.01 66.01 45.58

Lin 44.41 41.29 93.73 30.86 19.00 37.98 38.00 56.40 8.18 46.24 41.61
Log 53.53 50.31 109.36 65.24 26.50 52.93 38.09 58.22 14.54 52.75 52.15

in bold. It is obvious that the LWR model with linear force outperforms the other
models. The results of the NN approaches are better than the ones of the LWR model
with logarithmic force.

4.2.1 Comparison to Calibration with Stochastic Gradient Descent

In comparison to the parameter calibration based on the stochastic gradient descent
method reported in [1], we find that the CBO approach finds better parameters for
both LWR models. In fact, the resulting cost values are significantly smaller after
the calibration with CBO. For the NN approaches the results are in good agreement.
A clear decision in favour of the LWR approach or the NN ansatz was not possible
based on the results of [1]. After the training with CBO the LWR with linear force
seems to outperform all other approaches. We used NN with very simple structure
here, it may be worth to test more sophisticated network structures in future work.
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Cancer Fingerprints by Topological Data
Analysis

Ana Carpio

Abstract Topological data analysis has arisen has a promising tool to extract
information on the structure of a wide variety of datasets. We analyze here its
potential in two types of cancer studies. First, we compare times series of images
from simulations of metastatic invasion in epithelial tissues. Calculating bottleneck
distances of persistent diagrams we can characterize and classify the advancing
interfaces of cellular aggregates. Second, we compare mRNA expression values for
genes involved in cell cycles extracted from pancreas cancer tissue. We discuss how
persistence information from different distances can provide insight on patient/gene
clusters.

1 Introduction

Clinical and experimental studies of illness generate large amounts of data of
a different nature. Consider cancer, for instance. Laboratory analyses of gene
expression lead to large files containing measurements for different genes [15], see
Fig. 1a. Instead, experimental observations of normal and malignant cells [9] yield
time series of images, see Fig. 1b. Being able to extract meaningful information from
large biomedical datasets, regardless of their nature, is a challenge that requires the
development of adequate mathematical and computational tools.

Topological data analysis (TDA) furnishes a framework that provides dimen-
sionality reduction and robustness to noise [2] when studying data clouds, with
a certain independence with respect to the metrics selected. Recent studies have
pointed out the potential of TDA in biological applications [8, 13, 16]. Biomedical
data can be often be seen as point clouds in a space of dimension D. Whereas for
images D is the spatial dimension, for gene expression datasets D is the number of
patients or genes in the study. We will see how to use TDA to extract information in
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Fig. 1 (a) Heatmap showing normalized mRNA expressions for a collection of genes within a set
of patients, data taken from [6]. (b) Snapshots from a numerical simulation showing the invasion
of healthy (green) epithelial tissue by malignant (magenta) cells, reprinted from [1], see [9] for
related experimental images

both settings. The paper is organized as follows. Section 2 applies TDA to classify
automatically interfaces between healthy and malignant cells in two dimensional
images. Section 3 proposes a topology based hierarchical clustering procedure for
gene expression data. Finally, Sect. 4 summarizes our conclusions.

2 Classification of Interfaces

Competition between two different media (fluids, for instance) or populations is
an ubiquitous phenomenon in many fields. Usually, an interface separating the
two components forms. Being able to automatically characterize such interface is
important to identify patterns or stages in biological applications. Given several
images representing the evolution of fragmented interfaces, our strategy proceeds
in the following steps [1]:

1. Extract from each image a point cloud X defining the interface.
2. Build a Vietoris-Rips filtration V (X, r) for each point cloud based on the

Euclidean distance, that is, a family of simplicial complexes formed joining by
edges and triangles the points at a distance smaller than a variable parameter r ,
see [17].

3. Calculate the Betti numbers associated to each filtration: betti0(r) (number of
components) and betti1(r) (number of holes) as the filtration parameter r varies.

4. For each identified component in each filtration, calculate the persistence
intervals [rb, rd ], that is, the filtration parameter values at which it appears rb
(birth) and disappears rd (death). They define the H0 homology.

5. For each identified hole in each filtration, calculate the persistence intervals
[rb, rd ]. They define the H1 homology.



Cancer Fingerprints by Topological Data Analysis 25

Fig. 2 Persistence diagrams representative of the initial, intermediate and late stages in the
invasion process

6. Plot the persistence diagrams formed by the points (rb, rd) defining the persis-
tence intervals for components and holes in each filtration, see Fig. 2.

7. Calculate the Bottleneck distance [11] between the H1 persistence diagrams.
8. Use k-means or a hierarchical clustering [10] approach to group the interfaces in

clusters according to the level of detail required.

For the simulation considered in Fig. 1b, a set of 12 images is classified by K-
means in 3 groups: the first three frames correspond to initial stages in which the
interface is close to an unfragmented smooth curve, the last two frames correspond
to late stages of the invasion period with many fragments and interpenetration, while
the remaining frames correspond to an intermediate stage in which fragments may
detach and reattach, see Fig. 2.

The study of images involves point clouds in two or three dimensional spaces.
Medical records containing the values of several variables monitorized over a
collection of patients belong to higher dimensional spaces. Their study presents new
difficulties.

3 Grouping Data

Gene studies in cancer patients have provided large amounts of information
which may help to identify genetic features of sickness [15]. We consider here
measurements of mRNA gene expression data for pancreas cancer available in [6],
taken from the TCGA (the Cancer Genome Atlas) study. In this case, data take the
form of numeric matrices M = (mj,i) containing values for a collection of genes
i = 1, . . . , N , from tissue samples corresponding to different patients j = 1, . . . , J .

The first step consists in normalizing the data. To do so [7], we calculate the
means μi and standard deviations σi for each gene over the patients and compute
the normalized values m̃j,i = mj,i−μi

3σi
. Then, we select a distance and a clustering
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strategy to group either patients using information from genes, or genes using
information from patients.

3.1 Distance Selection

To compare genes or patients, we can use a number of distances [5]:

• The Euclidean distance between two columns or rowsm1 andm2 is their distance
as vectors in a D dimensional space d(m1,m2) = ‖m1 −m2‖2.

• The Earth Mover’s distance (EMD) provides the minimum cost of turning one
column (resp. row) into the other [13]

emd(m1,m2) =
∑D
k=1

∑D
�=1 ck,�dk,�∑D

k=1
∑D
�=1 dk,�

,

where dk,� = |m1
k − m2

�| is the ground distance, and ck,� minimizes the cost
∑D
k=1

∑D
�=1 ck,�dk,� subject to the constraints ck,� ≥ 0, 1 ≤ k, � ≤ D,

∑D
k=1

∑D
�=1 ck,� = D,

∑D
k=1 ck,� ≤ 1, 1 ≤ � ≤ D,

∑D
�=1 ck,� ≤ 1, 1 ≤

k ≤ D. The EMD identifies patterns regardless of their location. The distance
between two patient profiles that are equal except for a peak about different
genes would be small, which is inadequate as different genes may define different
illnesses.

• Considering a set S of columns (resp. rows) m1, m2, . . . , mL, the Fermat α-
distance between any two of them relative to that set is [14]

dS,α(m
1,m2) = min

{k−1∑

�=1

‖y�+1 − y�‖α2
∣
∣
∣
∣(y1, . . . , yk) path from m1 to m2 in S

}
,

for any α > 1. When α = 1, we recover the Euclidean distance. The Fermat
distance compares items in a set weighting information from all the other items
in the same set, which is interesting when we want to compare gene profiles
weighting information from cohorts of patients [3].

3.2 Distance and Topology Based Clustering

Figure 3 represents gene-gene and patient-patient distances for different gene (resp.
patient) orderings. Regardless of the ordering, we can use such distance matrices in
hierarchical clustering algorithms [10] and select a natural number of clusters based
on inconsistency criteria [12]. Grouping genes (resp. patients) by their clusters we
obtain the panels in Fig. 3, which uncover hidden relations in the data.
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Fig. 3 Heatmaps representing the distance matrices for the set of data considered in Fig. 1a
ordering patients (resp. genes) by cluster groups, as determined by hierarchical clustering with
different distances: (a–c) Euclidean distances, (d–f) Fermat distances with α = 3. (a) and (d)
compare patients, while the rest compare genes. Panels (a–b), (d–e) use the natural number of
clusters, as given by inconsistency studies. Instead, (c) and (f) use 36–37 clusters

Moreover, using any of these distances on the point cloud of patients
mj,· = (mj,1, . . . , mj,N ), j = 1, . . . , J , or the point cloud of patients
m·,i = (m1,i , . . . , mN,i), i = 1, . . . , N , we can implement a similar procedure
to that described in Sect. 2, only the distance changes. We construct a filtration,
calculate the Betti numbers, as well as the persistence diagrams and intervals.
With this information, we can compare datasets from different cancer types
or patient studies to identify distinctive features and profiles. Moreover, the
H0 homology provides an additional clustering strategy, different from usual
hierarchical clustering. For a fixed filtration parameter value, each component
of the simplex constructed for that filtration value defines a cluster. As the filtration
parameter varies, we have a topology based hierarchical clustering strategy. Figure 4
displays the same data as Fig. 1a when genes and patients are rearranged following
the components of filtrations for a fixed filtration value.

4 Conclusions

We have discussed the potential of persistence studies based on different distances
combined with clustering strategies to extract information from point clouds of data
of medical interest. Applied to time series of images of cellular arrangements, it
provides a tool to automatically classify specific image features. Applied to gene
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Fig. 4 Fermat distance reordered following H0 clusters (a) for genes and (b) for patients. Panel
(c) shows the data rearranged following the H0 clusters

expression data, it opens new perspectives to gain a better understanding of hidden
relations. Similar techniques could be exploited to study clinical data from other
illnesses, immune disorders for instance [4].
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Projected AQIF Parallel Algorithm
for Solving EHL Line and Point Contact
Problems: Parallel Computing

Peeyush Singh and Pravir K. Dutt

Abstract A novel parallel approach is developed for solving EHL line and point
contact problems. The main motivation of algorithm comes from solving a discrete
variational inequality problems on parallel computer by introducing a novel solver
named as projected alternate quadrant interlocking factorization (PAQIF). The
PAQIF has the property that when complementarity system

L0x ≥ b,
x ≥ 0,

x(L0x − b) = 0

is banded with semibandwidth βv , the space generated by ei ., en−i ; 1 ≤ i ≤ βv is
invariant under the transformationW−1. Hence PAQIF is combined with partitioned
scheme that renders a divide and conquer algorithm for solution of the banded linear
complementarity system. The idea is extended to EHL problems by developing
suitable preconditioner in the form of banded matrix.

1 Introduction

In a wide range of lubricated industrial devices studied, due to varying partial
differential equations (PDEs) behaviour in Reynold’s equation in the model (known
as Elasto-hydrodynamic lubrication (EHL) see for examples [1, 2, 4]), depicting the
pressure distribution and film thickness gap having considerable amount of difficulty
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when the numerical simulation is done on serial computer. A very fine mesh is
essential to capture inherited physics behind the model which generates a large
memory requirement and computational complexity during the computation. Such
a challenge can be compromised if discretized Reynold’s equation is approximated
in the form of a banded linear system during fix point iteration. Such banded
linear systems often give rise to very large narrow banded linear systems which
can be dense or sparse within the band. As result it is essential to develop robust
parallel algorithms to meet the memory requirement and reduce the computational
complexity by sharing the load on parallel computers. We discuss a novel parallel
approach known as projected alternate quadrant interlocking factorization (PAQIF)
to tackle the above mentioned extremities.

2 The Mathematical Model Problem

The mathematical formulation of the EHL problem consists of the set of nonlinear
PDEs in the form of inequalities (see [1, 2] and [4] for more details) described as

∂(ρH)

∂x
− ∂

∂x

(
ε
∂p

∂x

)
− ∂

∂y

(
ε
∂p

∂y

)
≥ 0 ∀x, y ∈ �

p(x, y) ≥ 0 ∀x, y ∈ �,

p(x, y)
[∂(ρH)

∂x
− ∂

∂x

(
ε
∂p

∂x

)
− ∂

∂y

(
ε
∂p

∂y

)]
= 0 ∀x, y ∈ �,

p(x, y) = 0 ∀x, y ∈ ∂�.

(1)

The elastic regime of the film thickness gap H between two contacting surfaces is
governed by

H(p) = H0 + x2 + y2

2
+ 2

π2

∫ ∞

−∞

∫ ∞

−∞
p(x

′
, y

′
)dx

′
dy

′
√
(x − x ′)2 + (y − y ′)2 . (2)

The dimensionless force balance equation are defined as follows

∫ ∞

−∞

∫ ∞

−∞
p(x′, y′)dx′dy′ = 3π

2
, (3)

Here term ε is defined as

ε = ρH 3

ηλ
,
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where dimensionless viscosity η is defined as dimensionless density ρ and speed
parameter λ

2.1 The PAQIF Algorithm

We consider the linear complementarity problem (LCP) define as below

LU(x) ≥ f (x), x ∈ �,
U(x) ≥ 0, x ∈ �,

U(x)T .[LU(x)− f (x)] = 0, x ∈ �,
U(x) = g(x), x ∈ ∂�.

(4)

Now we subdivide the LCP into r blocks linear sub-complementarity problem
(LSCP) each of size n along the main diagonal such that N = nr , where r is the
number of processors available. From Eq. (4), LSCP is expressed as

L
(m)
− U(m−1)(x)+ L(m)0 U(m)(x)+ L(m)+ U(m+1)(x) ≥ f (m)(x), m = 1, 2, . . . , r

U(m)(x) ≥ 0

U(m)(x)T .(L
(m)
− U(m−1)(x)+ L(m)0 U(m)(x)+ L(m)+ U(m+1)(x)− f (m)(x)) = 0,

(5)

For each partition r , Eq. (5) can be reformulated as

L
(m)
0 U(m)(x) ≥ f (m)(x)−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L
(m)
− U

(m−1)
L (x)

0
.

.

0
L
(m)
+ U

(m+1)
F (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×1

:= f ∗(m)(x), m = 1, . . . , r

U(m)(x) ≥ 0

U(m)(x)T .(L
(m)
0 U(m)(x)− f ∗(m)(x)) = 0,

(6)

where U(m−1)
L (x) and U(m+1)

F (x) are βv × 1 vectors picked up from the last and
first βv components of the solution vector U(m−1)(x) and U(m+1)(x), respectively.
Now we decouple the LSCP in Eq. (6) for parallel processors. Note that in Eq. (6)
f ∗(m)(x) differs from f (m)(x) only in its first βv and last βv components. In order
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to factorize L(m)0 intoW(m)
0 Z

(m)
0 , we consider the space generated by

Span1≤i≤βv {ei, en−i+1}

is invariant under the matrixW(m)
0 (and so forW(m)−1

0 ), where

ej := (0, 0, . . . , 0, 1j thterm, 0, . . . , 0).

Let [L(m)0 ]n×n (say n = 2s), [W0]n×n and [Z0]n×n matrices such that L0 = W0Z0,

The above factorization can be proved that the method is stable for nonsingular
diagonally dominant. Over all method is now outlined in brief as follows (see [3, 4]
in details):

Step 1: For m = 1, 2, . . . , r factorize in parallel

L
(m)
0 = W(m)

0 Z
(m)
0

Step 2: For m = 1, 2, . . . , r compute Y (m) in parallel

W
(m)
0 Y (m) = F (m)

Step 3: Form = 1, 2, . . . , r get inverse of 2βv×2βv matrix obtained by collecting
first βv and last βv rows and columns ofW(m)

0 in parallel.
Step 4: Solve the reduced system from the subsystem by collecting first βv and

last βv equations from each block. Then form normal equations, Solve
system for U(m)F and U(m)L ,m = 1, 2, . . . , r .

Step 5: Project U(m)F and U(m)L ,m = 1, 2, . . . , r into convex set K , where

K = {p ∈ U : p ≥ 0}.

Step 6: For m = 1, 2, . . . , r solve U(m)M in parallel.

Step 7: Project U(m)M ,m = 1, 2, . . . , r into convex set K .

3 Numerical Results

We discretize the EHL model problem defined in Eqn (1) using finite difference
method (see for example [4]). The domain decomposition method is used here for
solving problem on parallel computers. We have used PAQIF algorithm during the
fix point inner iteration process of the the computation. The speedup performance
and efficiency plot of PAQIF algorithm is shown for varying grid points in Figs. 1
and 2 respectively. The converged pressure profile and gap plot are shown in Figs. 3
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Fig. 1 Speedup plot for the cases N = 128, 256, 512, 1024, where bandwidth of matrix βv = 2
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Fig. 2 Efficiency plot for the cases N = 128, 256, 512, 1024, where bandwidth of matrix βv = 2
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Fig. 3 EHL line contact, see [4]

Fig. 4 Pressure P plot and 2-D Gap H plot forM = 20, L = 10, see [4]

and 4, respectively. We have performed all numerical computation on Dell Tower
precision machine having processor specification Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz.
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Effectivity Analysis of Operator Splitting
and the Average Method

Lívia Boda and István Faragó

Abstract In mathematics there are several problems which can be described by
differential equations of a certain very complicated structure. Most of the time,
we cannot produce the exact (analytical) solution of these problems, so we have
to approximate them numerically by using some approximating method. In this
paper we analyse one of such approximation methods, namely, operator splitting,
which is a widely and successfully used method in numerical analysis. We introduce
and demonstrate the method on a general Cauchy problem. In Sect. 1 of this
paper we discuss the two most popular splitting methods, which are the sequential
splitting (SS) and the Strang–Marchuk (SM) splitting, and describe the Average
Method (AM) obtained by using splitting methods. Here we also discuss the
possible reduction of the terms needed for the Average Method by using a matrix
decomposition of pairwise commuting matrices.

In Sect. 2 we describe an aerodynamical model of flutter, which serves as our
example problem. The advantage of the Average Method is shown in Sect. 3, where
tables about runtimes and errors are given.

1 Operator Splitting and Average Method

We consider the following Cauchy-problem in Rm:

{
ẏ(t) = Ay(t) =∑d

i=1Aiy(t), t ∈ (0, T ],
y(0) = y0,

(1)

where y : [0, T ] → R
m is the unknown function, y0 ∈ Rm is the given initial vector

and Ai ∈ Rm×m (i = 1, . . . , d) are given matrices.
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The exact solution of the Cauchy-problem (1) can be written directly as y(t) =
exp(tA)y(0). Since the exact representation of the exponential matrix exp(tA)
is typically impossible (or, at least, a very time-consuming task), our aim is to
approximate the exact solution numerically by some suitable approximation of this
exponential matrix on the grid

ωh =
{
tn = n · h, h = T

N
, n = 0, 1, . . . , N

}
. (2)

We can do it by the so-called operator splitting, which means the following.
We decompose the original (complex) problem into a series of simpler Cauchy
problems, linked through their initial conditions. By applying this method it can
be easier to find a numerical solution to the original problem.

The two most popular splitting methods include the sequential splitting (SS) and
the Strang-Marchuk (SM) splitting. The algorithm of sequential splitting in case of
two subproblems is as follows. In this case the decomposition of A is A = A1 +
A2. If we use the sequential splitting to solve (1) on the grid ωh, it means that the
following two subproblems are solved in every step:

{
ẏ1(t) = A1y1(t), t ∈ (ti , ti+1],
y1(ti) = xsp(ti),

(3)

{
ẏ2(t) = A2y2(t), t ∈ (ti , ti+1],
y2(ti) = y1(ti+1).

(4)

where i = 0, . . . , N − 1, xsp(ti+1) = y2(ti+1) and xsp(t0) = y0.
The main difference between the sequential and Strang-Marchuk splitting is that

the latter computes values in the midpoints of the subintervals. The algorithm of SM
splitting means solving the following subproblems:

{
ẏ1(t) = A1y1(t), t ∈

(
ti , ti+ 1

2

]
,

y1
(
ti
) = xsp(ti),

(5)

{
ẏ2(t) = A2y2(t), t ∈ (

ti , ti+1
]
,

y2
(
ti
) = y1

(
t
i+ 1

2

)
,

(6)

{
ẏ1(t) = A1y1(t), t ∈ (

t
i+ 1

2
, ti+1

]
,

y1
(
t
i+ 1

2

) = y2
(
ti+1

)
.

(7)

where i = 0, . . . , N − 1, xsp(ti+1) = y1(ti+1) and xsp(t0) = y0.

Remark 1 The sequential splitting is a first-order of consistency method, the Strang-
Marchuk splitting is a second-order of consistency method.

As an alternative to the classical splitting methods, we introduce the Average
Method with sequential splitting (AMSS) which is based on the idea to divide the
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Cauchy problem (1) into d subproblems, using sequential splitting in all possible
ordering sequences. Then we define the numerical solution of each split subproblem,
taking their arithmetic mean, and we define the new numerical solution in ωh.

Let Pd denote the set of the permutations of the indices {1, 2, . . . , d} and for
p = {p1, p2, . . . , pd} ∈ Pd we introduce the notation

exp {p1, p2, . . . , pd} = exp (hAp1) exp (hAp2) · . . . · exp (hApd ). (8)

Theorem 1 Solving the Cauchy-problem (1) using sequential splitting for all
possible permutations and then averaging the resulting numerical solutions yields
a second-order method, i.e.

exp
(
h(A1 + . . .+ Ad)

) = 1

d!
∑

p∈Pd
exp{p1, p2, . . . , pd} + O(h3). (9)

So instead of using a second-order method once, we just use a first-order method
more than once and we get a second-order numerical solution. Hence the main
advantage is that a first-order method requires less computational demand than
a second-order numerical method. However using the AMSS method to solve
Cauchy problem (1), we have to calculate d! numerical solutions. Even with a
relatively small value of d, we have to produce many numerical solutions and the
computational demand may increase greatly.

If we find a decomposition for Cauchy problem (1) that includes commuting
matrices, the number of subproblems can be significantly reduced. Let A = A1 +
A2 + . . . + Ad , and suppose that ∃i, j ∈ N, and i �= j such that [Ai,Aj ] = 0.
Then instead of all the d! permutations, we have d! − (d − 1)! = (d − 1)(d −
1)! elements. If the decomposition includes more commuting pairs of matrices, the
reduction might be more significant. The other advantage of the Average Method is
that the d! numerical solutions can be independently calculated, i.e. the computation
is parallelizable.

2 Application to the Aerodynamics

We investigated the efficiency of the Average Method on a physical problem which
describes the aerodynamics of an airplane wing. The model is based on a wind
tunnel experiment in which the lift force of an airplane wing was examined as a
function of the inclination of the wing. This piecewise-linear model of flutter was
investigated in [2]. Motivated by this model, we consider the 4-dimensional Cauchy
problem

{
ẋ(t) = Akx(t),
x(0) = x0.

(10)
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Table 1 Parameters of the model

Parameter c0 c1 c2 p1 p2 p3 p4

Value 5.932 -6.846 2.662 0.1485 0.0147 0.0540 0.2748

where the affine model equations contain the three system matrices (k = 0, 1, 2)

Ak =

⎛

⎜
⎜
⎝

0 1 0 0
−1 −(p1 + p2μck) −μ2ckp2 0
0 0 0 1
0 ckμ −(p4 − ckμ2) −p3

⎞

⎟
⎟
⎠ ,

with the model parameters given in Table 1, and μ ∈ (0,∞) represents the
nondimensional wind speed.

We analyzed several decompositions of matrix Ak , the most important of them
being the following, which contains commuting matrices:

Ak = Ak(1) + Ak(2) + Ak(3) , (11)

where

Ak(1) =

⎛

⎜
⎜
⎝

0 1 0 0
−1 −(p1 + p2μck) 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , Ak(2) =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 −(p4 − ckμ2) −p3

⎞

⎟
⎟
⎠ ,

Ak(3) =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 −μ2ckp2 0
0 0 0 0
0 ckμ 0 0

⎞

⎟
⎟
⎠ .

Clearly, that matrices Ak(1) and Ak(2) are commuting matrices, therefore:

exp
(
hAk(1)

) · exp
(
hAk(2)

) = exp
(
h(Ak(1) + Ak(2) )

)
. (12)

Then we introduce the notation

Ak(4) = Ak(1) + Ak(2) = Ak(2) + Ak(1) . (13)

Solving the Cauchy problem (1) using the AMSS method with decomposition
(11), which includes commuting matrices, and using property (12) and notation (13),
the number of subproblems can be reduced from six to four, and we have to calculate
the following four numerical solutions:
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x1(h) = exp(hAk(1) ) exp(hAk(3) ) exp(hAk(2) ) · x0, (14)

x2(h) = exp(hAk(2) ) exp(hAk(3) ) exp(hAk(1) ) · x0, (15)

x3(h) = exp(hAk(4) ) exp(hAk(3) ) · x0, (16)

x4(h) = exp(hAk(3) ) exp(hAk(4) ) · x0, (17)

where (14), (15) have three subproblems, and in case of (16), (17) the number of
subproblems was reduced from three to two which further simplifies the solution
process and reduces computational demand, too. Then based on Theorem 1, we
have

exp
(
h(Ak(1) + Ak(2) + Ak(3) )

) = x1(h)+ x2(h)+ 2x3(h)+ 2x4(h)

6
+ O(h3).

(18)

3 Numerical Results

During the numerical implementation, the numerical solutions (14)–(17) were
computed using sequential splitting, which has first order, and the subproblems
were solved using the first-order explicit Euler method. Then averaging these first-
order solutions we get a second-order numerical solution. The essence of the AMSS

method is that we have to implement some first-order approximating methods,
which we can easily implement, then the average of first-order numerical solutions
should be taken, which is not a very expensive operation, either, then we get a
second-order method.

The numerical solutions (14)–(17) can be independently calculated, i.e. the
computation is parallelizable. When we have four processors, we can compute
the solutions (14)–(17) at the same time. We can simulate the parallel run as
follows. Consider that we have four processors to calculate the numerical solutions
in parallel. We can see the runtimes of every calculation of the solutions (14)–(17)
in Table 2. We can calculate the whole runtime as follows: choose the maximum
of the four runtimes (red coloured) and then add the runtime of the averaging. The
last column of Table 2 shows the full runtime of the Average Method in case of four
processors.

Now we consider the case where three processors are available to solve system
(10) using the AMSS method. In this case the main problem is to partition the
subproblems well. On the one hand we saw in Sect. 2 that in case of solutions (14)
and (15) there are three subproblems with matrices Ak(1) , Ak(2) and Ak(3) while in
case of solutions (16) and (17) there are only two subproblems with matrices Ak(3)
and Ak(4) . And on the other hand Table 2 shows that solutions (16) and (17) can be
computed faster than solutions (14) and (15). Therefore, it is reasonable to partition
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Table 2 Runtimes (in seconds) of the AMSS during a parallel run with four processors

Table 3 Runtimes (in seconds) of AMSS during a parallel run with three processors

Table 4 Runtimes (in seconds) of AMSS during a parallel run with two processors

as follows: solutions (14) and (15) are computed by two separate processors, and
solutions (16) and (17) are computed one after the other by the third processor.
Table 3 shows the runtimes of this case.

It is worth examining the case where we have two processors to compute the
numerical solution of (10). Similarly to the three-processor case, proper partitioning
will be the main task. The most reasonable partition is as follows: calculate solutions
(14) and (16) one after the other with one processor, meanwhile solutions (15) and
(17) can be calculated one after the other using the other processor. In this case
Table 4 shows the runtimes.

And in order to see the practical usefulness of the AMSS method, we solved
the whole Cauchy-problem (10) without any splitting process using the improved
Euler method, which is the same second-order method as the AMSS method, and
we compared the runtime of the AMSS with two, three and four processors with the
runtime of the improved Euler method. Table 5 shows this comparison and we can
see that on average, the AMSS method is one-two orders of magnitude faster than
the improved Euler method.

Table 6 shows the comparison of errors in case of AMSS and the improved Euler
method. It can be seen the second-order convergence in both cases, furthermore the
error is approximately the same in both cases.
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Table 5 Comparison of runtimes (in seconds) in case of AMSS with two, three and four
processors and the improved Euler method

h AMSS + 2 proc. AMSS +3 proc. AMSS + 4 proc. Improved Euler

1 9.40 · 10−5 7.30 · 10−5 7.30 · 10−5 8.18 · 10−3

0.1 1.82 · 10−4 1.69 · 10−4 1.11 · 10−4 1.96 · 10−2

0.01 1.04 · 10−2 8.74 · 10−3 8.74 · 10−3 8.44 · 10−2

0.001 5.48 · 10−2 4.11 · 10−2 4.11 · 10−2 1.13 · 100

Table 6 Comparison of
errors in case of AMSS and
the improved Euler method

h AMSS method Improved Euler

1 2.08 · 10−2 4.77 · 100

0.1 2.44 · 10−4 2.04 · 10−4

0.01 2.44 · 10−6 2.01 · 10−6

0.001 2.44 · 10−8 2.01 · 10−8
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Numerical Solutions of Boundary Value
Problems Using the Carleman
Linearisation Method

Gabriella Svantnerné Sebestyén

Abstract In this article we apply the Carleman linearisation method to solve
boundary value problems. This method transforms sets of polynomial ordinary
differential equations into an infinite dimensional linear system. We investigate the
Carleman linearisation method to two-point boundary value problems and we have
also analysed the error of this method through an example.

1 Introduction

In this article we investigate the numerical solution of two-point boundary value
problems with the Carleman linearisation method. Different phenomena in physics
or in engineering can be modelled by boundary value problems for example fluid
dynamics and linear elasticity [1], [3]. In this article we consider the following two-
point boundary value problem

x′′(t) = f (t, x(t), x′(t)), t ∈ (a, b);
x(0) = α, x(b) = β, (1)

where x = x(t) : R → R is the unknown function, f : R3 → R in general is an
nonlinear function and α and β are given numbers.

Usually we can not determine the exact solution of boundary value problems so
we use numerical methods. Such methods are the shooting method and the finite
difference method [2].

In the following we apply the Carleman linearisation method to solve boundary
value problems. First we outline the method in general and after that we show the
application to boundary value problems.

G. S. Sebestyén (�)
Budapest University of Technology and Economics, Budapest, Hungary

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_7

47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_7&domain=pdf

 -2016 61494 a -2016 61494 a
 
https://doi.org/10.1007/978-3-031-11818-0_7


48 G. S. Sebestyén

2 Carleman Linearisation Method to Two-Point Boundary
Value Problems

The Carleman linearisation is a method for solving nonlinear autonomous differen-
tial equations [4]. This approach is based on truncates an infinite-dimensional linear
system and omits the higher-order terms. Let us consider the following system of
differential equations with the power of the functions x(t) and y(t) in the following
way

x′(t) =∑∞
k+l≥1 ak,lx

k(t)yl(t),

y′(t) =∑∞
k+l≥1 bk,lx

k(t)yl(t), (2)

with initial conditions

x(0) = x0, y(0) = y0. (3)

We introduce the functions

u (t)[j ] = (xj (t), xj−1(t)y(t), . . . , x2(t)yj−2(t), x(t)yj−1(t), yj (t))T, (4)

j = 1, . . . , N , containing the elements xj−p(t)yp(t), p = 0, 1, ..., j . We
introduce the vector

v(t) =
(
u[1](t), u[2](t), . . . ,u[N ](t)

)T
, (5)

then the Carleman embedded system has the form

d

dt
v (t) = CNv(t)+ O

(
u(t)[N+1]) , (6)

where CN is the N th order Carleman matrix. By omitting the higher order terms
O
(
u[N+1](t)

)
, then the Carleman linearized system is the following system of

ordinary differential equations

d

dt
v(t) = CNv(t). (7)

known initial condition from (3), we have

v0 =
(
x0, y0, x

2
0 , x0y0, y

2
0 , . . .

)T
(8)

and hence the exact solution of equation (7)–(8) has the form
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v(t) = eCN tv0 (9)

which will be considered as an approximation to the exact solution of the original
problem (2)–(3). When we apply the previous method to two-point boundary value
problems, at the first step we replace the second order differential equation to a first
order system of differential equations in the following way

x′(t) = y(t)
y′(t) = f (t, x(t), y(t)). (10)

At the point zero we do not know the derivative value of the unknown function so
we assume that x′(0) = y(0) = c, where c ∈ R is a given number. Then problem
can be written as a first order problem with the following initial conditions

x′(t) = y(t), x(0) = α
y′(t) = f (t, x(t), y(t)), y(0) = c. (11)

That means when we apply the Carleman linearisation method to the system (11)
then the solution depends on the choice of the parameter c and it has the form

v(t, c) = eCN tv0(c). (12)

At point b we know the value of the unknown function so we have to determine
parameter c from the relationship

v(b, c) = eCNbv0(c) = β. (13)

Hence, introducing the function

g(c) = eCNbv0(c)− β (14)

our aim is to solve the nonlinear equation g(c) = 0. Typically we use an
approximation method e.g. the Newton-method to solve this nonlinear equation.

3 Numerical Simulations and Results

In this section we illustrate the Carleman linearisation method through an example
and we analyse the error of the method.
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3.1 Problem Settings

We consider the two-point boundary value problem:

x′′(t)− 6x2(t) = 0

x(0) = 1 (15)

x(0.5) = 4.

Problem (15) can be written to the following initial value problem

x′(t) = y, x(0) = 1

y′(t) = 6x2, y(0) = c (16)

where c ∈ R is some fixed (guessed) number. We apply the Carleman linearisation
method to solve problem (16).

When N = 1, we solve the following first order system

(
dx
dt
dy
dt

)

=
(

0 1
0 0

)

︸ ︷︷ ︸
C1

(
x

y

)

+
(

0
6x2

)

. (17)

The solution has the form v(t, c) = eC1tv0(c), where v0 = (1, c)T . Hence, the
solution is

v(t, c) =
(

1 t
0 1

)(
1
c

)

=
(

1 + ct
c

)

(18)

and therefore the solution of the problem is x(t) = 1 + ct . If we use the boundary
value x(0.5) = 4,

c = 6. (19)

When N = 2, we solve the following first order system

⎛

⎜
⎜
⎜
⎜
⎜
⎝

dx
dt
dy
dt
dx2

dt
d(xy)
dt
dy2

dt

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 6 0 0
0 0 0 2 0
0 0 0 0 1
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
C2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x

y

x2

xy

y2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

6x3

12x2y

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (20)
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The solution has the form v(t, c) = eC2tv0, where v0 = (
1, c, 1, c, c2

)T
. Let

A(t) := eC2t be the exponential of the matrix C2. We can determine the value
of function x from the following relationship

x(t) = A11(t)+ A12(t)c + A13(t)+ A14(t)c + A15(t)c
2. (21)

From the boundary condition at the point we get

x(0.5, c) = 4 (22)

which is a nonlinear equation for the parameter c. Solving the equation g(c) = 0 by
using the Newton method, we obtain

cn+1 = cn − A11(0.5)+ A12(0.5)cn + A13(0.5)+ A14(0.5)cn + A15(0.5)c2
n − 4

A12(0.5)+ A14(0.5)+ 2A15(0.5)cn
(23)

iteration n = 0, 1, . . . where, c0 ∈ R is a given number.
When N tends to infinity, we apply the Carleman linearisation method similarly.

The solvable problem is larger and more complicated.

3.2 Numerical Results

In the following we examine the Carleman linearisation on the previous example.
We use the following notations:

• c0 is the initial value of the iteration,
• kmax is the number of the iteration,
• etol is the error tolerance,
• N is the N th Carleman matrix.

We start the Newton method from value c0 and use the Carleman iteration with
different N values. In Table 1, we can see that value c tends to the exact solution
(c = 2), when N increases.

Table 1 The approximation of value c.

c0 kmax etol N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

0 10 0.001 6 3 2.4444 2.3154 2.2855 2.2788 2.2773

1 10 0.001 6 2.8077 2.2500 2.1096 2.0766 2.0686 2.0668

1.5 10 0.001 6 2.75 2.2024 2.0600 2.0270 2.0188 2.0168

2 10 0.001 6 2.7143 2.1818 2.0424 2.0105 2.0025 2.0006

3 10 0.001 6 2.6969 2.1803 2.0423 2.0104 2.0025 2.0006
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Table 2 Error in maximum
norm

c0 N = 1 N = 2 N = 3

0 0.7597 0.4023 0.2977

1 0.7597 0.3109 0.1270

1.5 0.7597 0.2850 0.0941

2 0.7597 0.2692 0.0810

3 0.7597 0.2616 0.0801

In Table 2, we can that the difference between the exact solution and the
numerical solution in maximum norm.

We have seen that the Carleman linearisation method can be applied to solve
two-point boundary value problems. We have seen through an example that when
N tends to infinity then the error of then method tends to zero and the approximation
of value c tends to the exact value of the derivative of the solution.

In the future we examine the application of the Carleman linearisation to partial
differential equations and examine the error of the method.
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Immersed Boundary Models of Biofilm
Spread

Ana Carpio and Rafael González-Albaladejo

Abstract We propose an immerse boundary approach for the dynamics of active
contours in flows. When the active contours represent bacterial boundaries, we
couple this system with dynamic energy budget models of cell metabolism for
the evolution of the cell boundaries, informed by reaction-diffusion systems for
the relevant concentration fields. Numerical simulations illustrate the evolution of
incipient biofilms formed by clusters of spherical bacteria in two dimensions.

1 Introduction

Immersed boundary (IB) methods [13, 14] provide efficient tools to handle
fluid/structure interactions in many applications. Our goal here is to adapt them
to describe the behavior of cellular systems such as bacterial biofilms, in which
the structures are cell membranes. Biofilms are bacterial aggregates encased in
a self-produced polymeric matrix which grow on moist surfaces [6] and are
responsible for most hospital acquired infections [8]. Many models have been
developed to study their behavior, focusing on different aspects: continuous models
[17], agent based descriptions [7, 10, 11, 18, 20] and hybrid models combining
both [2, 16]. Immersed boundary methods have already been used to study finger
deformation [20], viscoelastic behavior [19] and attachment of bacteria [4] in flows.
Active cellular contours have been addressed by removing the incompressibility
constraint and including inner sources [12]. Applications to multicellular tissues
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[5, 15] consider closely packed deformable contours attached to each other [5, 15].
However, bacterial biofilms are formed by rigid shapes which remain at a certain
distance. When biofilms grow in flows, we usually have scattering bacteria in
large polymer fractions. Instead, we consider here incipient biofilms spreading on
surfaces, in which the volume fraction of polymeric matrix keeping cells together
is small [17]. We propose a computational model that combines an IB description
of cellular arrangements and mechanical interactions with a dynamic energy budget
(DEB) representation of bacterial activity and chemical processes. Simple tests on
clusters of spherical bacteria illustrate its potential to investigate cell arrangements
and interaction with flows.

2 Immerse Boundary Model for Active Boundaries

Immersed boundary models are usually formulated for ‘inert’ boundaries whose
shape changes as a result of the interaction with the fluid, keeping a fixed size. Cells
are ‘active’ boundaries, whose size and number changes. Let us explain how this
affects the standard IB equations. Given a region � and a boundary � immersed in
it, the fluid-structure interaction is described by the incompressible Navier-Stokes
equations set in � [13, 14]:

∂u
∂t

+ u · ∇u = νu− 1

ρ
∇p + 1

ρ
f− α

ρ
u, div(u) = 0, (1)

where u(x, t), p(x, t) and f(x, t) are the fluid velocity, fluid pressure and external
force density. The parameters ρ, ν = μρ and α denote the fluid density, kinematic
viscosity and friction coefficient, respectively. We enforce periodic boundary condi-
tions for the fluid, which allows to use fast solvers based on fast Fourier transforms
[13, 14], and place � far from the boundaries to allow for free growth while reducing
boundary effects. The force f(x, t) created by � on the fluid is

f(x, t) =
∫

�

F(q, t)δ(x− X(q, t)) dq. (2)

In practice, the delta function δ is replaced for computational purposes with
adequate regularizations [13, 14]. X(q, t) is the parametrization of �, and F(q, t) is
the force density on it. The integration parameters q represent angles. When several
cells are present, we work with several parametrizations X1, . . . ,XN .

The evolution equation for � follows correcting the no-slip condition

∂X
∂t

=
∫

�

u(x, t)δ(x− X(q, t)) dx+ λ((Fg · n)n+ Fext
)
, λ > 0, (3)
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with the contribution of growth Fg and external forces Fext . In practice, F = Fe +
Fg+Fext . Elastic forces Fe within the IB are tangent to the outer normal Fe·n = 0. In
two dimensions, and assuming the boundaries are formed by springs parametrized

by the angle θ , Fe = ∂
∂θ

(
K ∂X
∂θ

)
, for an elastic constant K [13, 14]. Standard IB

approaches set Fg = Fext = 0 and α = 0. Here, the friction parameter α > 0
represents the effect of the polymeric matrix enveloping bacteria and hindering their
motion. The growth forces are included since they modify the size of �. We set them
proportional to dR

dt
n, being R the radius of each bacterium, see [3] for more details.

In our case, Fext = Fi are interaction forces between bacteria, moving them as
blocks. For spherical bacteria, we set Fi =∑N

j=1 Fi,j δj with

Fi,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N∑

n=1,n �=j

σ

dmin
ncm,n,j if dj,n ≤ dmin,

N∑

n=1,n �=j

σ
(

1 + tanh
(
sp−dj,n
vp

))

2dj,n
ncm,n,j if dj,n > dmin,

(4)

where σ is a repulsion parameter, ncm,n,j = Xc,j−Xc,n
‖Xc,j−Xc,n‖ the unit vector that joins

the centers of mass, and dj,n the distance between them. Here, δj equals 1 on the
boundary Xj and vanishes on the rest. sp controls at what distance the force begins
to act and vp its growth if the distance continues to decrease, see [3]. This force is
easy to adjust and extend to rod-like shapes by tuning parameters [3], as opposed to
the forces employed in [7]. Resorting to Morse potentials would be too expensive,
whereas Lennard-Jones potentials seem too strong.

3 Dynamic Energy Budget Model for Cell Metabolism

The growth dynamics of the boundaries representing bacterial membranes is
governed by bacterial metabolism. We use a Dynamic energy budget (DEB) [1, 9]
model for each cell, informed by a set of relevant concentration fields.

Given N bacteria, their energy ej and volume Vj , j = 1, . . . , N, are governed
by

dej

dt
= ν′

(
S

S +KS − ej
)

,
dVj

dt
=
(

rj
aj

aM
− hj

)

Vj , rj =
(
ν′ej −mg
ej + g

)+
,

(5)
where ν′ = νe−γ ε, ν is the energy conductance, γ the environmental degradation
coefficient, KS a half-saturation coefficient, m the maintenance rate, g the invest-
ment ratio and aM the target acclimation energy. The symbol + stands for ‘positive
part’. The factor rj denotes the bacterial production rate. For 2D spherical bacteria
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Vj = πR2
j , and (5) implies

2
dRj

dt
=
(
rj
aj

aM
− hj

)
Rj . (6)

The aging qj and hazard hj variables represent damage on the cell, while aj
stands for acclimation, governed by

dqj

dt
= ej (sGρx Vj

VT
qj + ha)(ν − rj )− (rj + re,j )qj , dhj

dt
= qj − (rj + re,j )hj ,

(7)

dpj

dt
= −hjpj , daj

dt
= (rj + re,j )

(

1 − aj

aM

)+
, (8)

where ρx is the cell density, ha the Weibull aging acceleration, sG a multiplicative
stress coefficient. Here, pj is the probability of survival at time t . The factor re,j =
krj + k′, for k, k′ > 0 when the cell is and polymer (EPS) producer, otherwise it

vanishes. The produced EPS is then
dVe,j
dt

= re,jVj . A fraction η ∈ (0, 1) diffuses
creating a concentration of monomers Ce, while the rest sticks to the bacteria. The
limiting substrate concentration S and environmental degradation ε satisfy

dS

dt
= −ν′ S

S +KS ρx
∑

j

Vj

VT
δj + dsS − u · ∇S, (9)

dCe

dt
= ηρx

∑

j

re,j
Vj

VT
δj + deCe − u · ∇Ce, (10)

dε

dt
= νερx

∑

j

(rj + νmm) Vj
VT
δj + dεε − u · ∇ε, (11)

where νm is the maintenance respiratory coefficient, νε is the environmental
degradation coefficient and ds , de, dε diffusion coefficients. Here VT is a reference
volume and δj = 1 at cell j , it vanishes otherwise. We enforce no flux boundary
conditions, except for S, which remains constant at the borders.

We couple the system of ordinary differential equations (5)–(7) and the reaction-
diffusion equations (9)–(11) using a similar philosophy as that in IB models. We
spread fields defined on bacteria using the cell volumes and rates as sources in
equations (9)–(11). We interpolate global fields on the bacteria averaging values
of S, ε in the region occupied by the cell. For each cell, the systems (5)–(7) are
discretized order two Runge-Kutta schemes. The reaction-diffusion equations (9)–
(11) are discretized by classical explicit finite difference schemes, first order in time
and second order in space.
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Fig. 1 (a) Initial configuration. Simulated configurations (b) after 18 hours with h0 = 0.4 and (c)
after 15 hours with h0 = 0 (no death). While (b) has 412 live cells (green) and 113 dead cells
(orange), (c) contains 920 live cells. Growth curve of cell types versus time (d) for simulation (b)
and (e) for simulation (c). The red fit in (e) is t ∼ CeγN , where C ∼ 54.53 and γ ∼ 0.1861 [1/h],
N being the number of cells. Panel (f) shows the times required to perform one computational step
depending on the number of cells in simulation (a)–(b) (blue circles) compared to its exponential
fit (red), Ceγ t , where C ∼ 1.4421 [s] and γ ∼ 0.0088

4 Simulations of Biofilm Spread

For typical parameter values [1, 3], the IB and concentration submodels are
quasistationary. Their solutions evolve as the immersed boundaries grow, shrink,
divide or move due to interactions. We solve the DEB equations (5)–(7) in a time
scale of hours, while updating the IB and concentration fields using time relaxation
schemes to update the quasistationary fields. Results are displayed in Fig. 1. Cells

Xj die when 1−pj > Ninit
Na

+ r
(

1 − Ninit
Na

)
, Na and Ninit being the current and the

initial number of bacteria while r ∈ (0, 1) is a random number [3]. Cells divide in
two when their size surpasses a critical value.

5 Conclusions and Perspectives

Modeling the behavior of cell aggregates such as bacterial biofilms confronts the
difficulties of handling complicated interactions and geometries. We propose an
immerse boundary approach with enhanced spatial resolution when compared to
particle or cellular automata descriptions, since we can track individual deforma-
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tions and fluid-structure interactions. This approach is computationally expensive if
we aim to grow large clusters to see behaviors emanating at larger scales. However,
High Performance Computing tools may help to overcome that burden. The present
work focuses on spherical bacteria. Extensions to other shapes (rod-like, mixtures),
geometries (interaction with barriers) and environments (inclusion of toxicants)
can be envisaged [3]. In our current simulations the fluid flow has little relevance.
Exploring interactions with the flow and its influence on the observed shapes [16]
should be the subject of further work.

Acknowledgments Research partially supported by Spanish FEDER/MICINN-AEI grants MTM
2017-84446-C2-1-R and PID2020-112796RB-C21 (AC, RG), by fellowship PRE2018-083807
(RG), and by the MICINN ‘Salvador de Madariaga" grant PRX18/00112 (AC). A.C. thanks C.S.
Peskin for fruitful discussions and suggestions during a sabbatical stay at NYU.

References

1. B. Birnir, A. Carpio, E. Cebrián, P. Vidal, Dynamic energy budget approach to evaluate antibiotic
effects on biofilms, Commun. Nonlinear Sci. Numer. Simulat. 54 (2002) 70–83.

2. A. Carpio, E. Cebrián, P. Vidal, Biofilms as poroelastic materials, Int. J. Non-Linear Mech. 109
(2019) 1–8.

3. A. Carpio, R. González-Albaladejo, Immersed boundary approach to biofilm spread on surfaces,
Commun. Comput. Phys. 31 (1), 257–292, 2022.

4. R. Dillon, L. Fauci, A. Fogelson, D. Gaver, Modeling biofilm processes using the immersed
boundary method, J. Comput. Phys. 129 (1996) 57–73.

5. R. Dillon, M. Owen, K. Painter, A single-cell-based model of multicellular growth using
the immersed boundary method, In: Moving Interface Problems and Applications in Fluid
Dynamics (pp. 1–16). (Contemporary Mathematics). American Mathematical Society, 2008.

6. H.C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol. 8 (2010) 623–633.
7. M.A.A. Grant, B. Waclaw, R.J. Allen, P. Cicuta, The role of mechanical forces in the planar-

to-bulk transition in growing Escherichia coli microcolonies, J. R. Soc. Interface 11 (2014)
20140400.

8. N. Høiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofu, Antibiotic resistance of bacterial
biofilms, Int J Antimicrob Agents 35 (2010) 322–32.

9. T. Klanjscek, R.M. Nisbet, J.H. Priester, P.A. Holden, Modeling physiological processes that
relate toxicant exposure and bacterial population dynamics, PLoS One 7(2) (2012) e26955.

10. L. A. Lardon, B. V. Merkey, S. Martins, et al, iDynoMiCS: next-generation individual-based
modelling of biofilms, Environ. Microbiol. 13 (2011) 2416–34.

11. C. S. Laspidou, L. A. Spyrou, N. Aravas, B. E. Rittmann, Material modeling of biofilm
mechanical properties, Math. Biosci. 251 (2014) 11–15.

12. Y. Li, A. Yun, J. Kim, An immersed boundary method for simulating a single axisymmetric
cell growth and division, J. Math. Bio. 65 (2012) 653–675.

13. C.S. Peskin, D.M. McQueen, A general method for the computer simulation of biological
systems interacting with fluids, Symposia of the Society for Experimental Biology 49 (1995)
265–76.

14. C.S. Peskin, The immersed boundary method, Acta Numerica 11 (2002) 479–517.
15. K.A. Rejniak, An immersed boundary framework for modelling the growth of individual cells:

an application to the early tumour development, J. Theoret. Bio. 247 (2007) 186–204.
16. D. Rodriguez, B. Einarsson, A. Carpio, Biofilm growth on rugose surfaces, Phys. Rev. E 86

(2012) 061914.



Immersed Boundary Models of Biofilm Spread 59

17. A. Seminara, T.E. Angelini, J.N. Wilking, et al, Osmotic spreading of Bacillus subtilis biofilms
driven by an extracellular matrix, Proc. Natl. Acad. Sci. USA 109 (2012) 1116–1121.

18. T. Storck, C. Picioreanu, B. Virdis, D.J. Batstone, Variable cell morphology approach for
individual-based modeling of microbial communities, Biophys. J. 106 (2014) 2037–2048.

19. J.A. Stotsky, J.F. Hammond, L. Pavlovsky, et al, Variable viscosity and density biofilm
simulations using an immersed boundary method, Part II: Experimental validation and the
heterogeneous rheology-IBM, J. Comput. Phys. 317 (2016) 204–222.

20. R. Sudarsan, S. Ghosh, J.M. Stockie, H.J. Eberl, Simulating biofilm deformation and detach-
ment with the immersed boundary method, Commun. Comput. Phys. 19 (2016) 682–732.



Numerical Simulation of a Four Serotype
Dengue Fever Model

Gaby Folger and Kurt Chudej

Abstract Dengue fever is a vector-borne virus infection of the tropics and subtrop-
ics. It is transmitted by Asian tiger mosquitos and comes with four serotypes. These
mosquitos are currently (re-)invading Europe, established Asian tiger mosquito
populations are already known e.g. in a few German cities. Dengue fever cases
were imported into Germany in pre-covid times usually by airtravel, but some
autochthonous cases in Europe are already known. We present numerical simu-
lations and optimal control results of a new four serotype dengue fever model
including an imperfect vaccination of seropositive humans.

1 New Four Serotype Model of Dengue

We present a new four serotype dengue fever model [4], a generalization of the
two-serotype dengue models [1–3, 5, 6]. Additionally the new model includes
a vaccination of seropositive humans. This is consistent with current advice for
available dengue vaccines.

The human population (subscript h) is subdivided into the following compart-
ments: Sh susceptible humans, I ih with serotype i infected humans, Sih previously
with serotype i infected humans which recovered and are now resistant to serotype
i and are susceptible for serotypes j �= i, V ih humans seropositive (and resistent)

to serotype i and vaccinated (i.e. immune against serotypes j �= i), I ijh humans
which were previously infected with serotype i, recovered, and are now infected
with serotype j , Rh humans which are resistant.

The vector population of (female) mosquitoes (subscript v), is subdivided into
the compartments: Sv susceptible adult mosquitoes, I iv adult mosquitoes infected
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with serotype i. For simplicity, we assume that a vector cannot carry more than one
serotype of the dengue virus.

The following general assumptions hold: Both vectors and humans are neither
born infected nor resistant. The size of the human population is constant at any
time. Neither emigration nor immigration are considered. The passing of a certain
percentage of the population is modeled through the proportionality factor μh,
with 1/μh denoting an average lifespan. The same holds for the adult mosquito
population with factor μv . Humans recover from the disease (of any serotype) at a
rate ηh. The infection rates are given by bi,h, bi,v . The infection rates of a second
infection are modified by a factor δi . Depending on the vector they come into contact
with, humans either change to the compartments I ih or I ijh .

This yields the following 31 ODEs (neglecting third and fourth infections in the
model)

dSh

dt
= μh −

(
μh +

4∑

k=1
bk,hI

k
v

)
Sh

dI ih

dt
= bi,hI ivSh − (ηh + μh)I ih

dSih

dt
= ηhI ih + θV ih −

(
ψ + μh +

4∑

l=1,l �=i
δibl,hI

l
v

)
Sih

dV ih

dt
= ψSih −

(
θ + μh + σ

4∑

l=1,l �=i
δibl,hI

l
v

)
V ih

dI
ij
h

dt
= δibj,hI jv (Sih + σV ih)− (μh + ηh)I ijh

dRh

dt
= ηh

( 4∑

k=1

4∑

l=1,l �=k
I klh

)
− μhRh

dSv

dt
= μv −

[
μv +

4∑

k=1
bk,v

(
I kh +

4∑

l=1,l �=k
I lkh

)]
Sv

dI iv

dt
= bi,v

(
I ih +

4∑

l=1,l �=i
I lih

)
Sv − μvI iv

(1)

together with the positive invariant set � =
{
(Sh, I

i
h, S

i
h, V

i
h, I

ij
h , Rh, Sv, I

i
v) ∈

R
31
≥0|
Sh + Rh +

4∑

i=1

(
I ih + Sih + V ih +

4∑

j=1,j �=i
I
ij
h

)
≤ 1, Sv +

4∑

i=1
I iv ≤ 1

}
. The basic

reproduction number is given by R0 = maxi R0i , R0i =
√

bi,hbi,v
μv(ηh+μh) and the

invasion numbers are calculated as
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Rij = R0j

R0i

√

1 + δiμvηh

bi,vμh + μv(ηh + μh)(R
2
0i − 1).

2 Numerical Simulation

Tables 1 and 2 list the used parameter values and asymmetric infection rates.
We present some numerical simulation results for the model without vaccination.
Therefore ψ ≡ 0 and V i(0) = 0. The used assumption for the infection rates yields
different scenarios which are not too far apart. Inserting the values, all the partial
basic reproduction numbers R0i and the invasion numbers Rij are above one, such
that an epidemic can be expected. The following initial values are used, all other
initial values are zero:

Sh(0) = 0.99952, Sv(0) = 0.05,

I 1
h (0) = 0.0002, I 2

h (0) = 0.0001, I 3
h (0) = 0.00017, I 4

h (0) = 0.00001

By this choice of initial values an additional asymmetry of the system is inves-
tigated. Figures 1 and 2 show the development in the compartments of the

Table 1 Parameters and infection rates for modelling

Parameter Value Meaning

μ−1
h 65 · 365 [day] Average life span of humans

η−1
h 6 [day] Average disease duration of humans

μ−1
v 21 [day] Average life span of mosquitos

δi 1 [–] Influence of a previous disease

b1,h 0.21 [ 1
day ] Infection rate (serotype 1) vector to human

b2,h b1,h · ε [ 1
day ] Infection rate (serotype 2) vector to human

b3,h b1,h · 0.95 [ 1
day ] Infection rate (serotype 3) vector to human

b4,h b1,h · 0.9 [ 1
day ] Infection rate (serotype 4) vector to human

bi,v bi,h · 1.6 [ 1
day ] Infection rate (serotype i) human to vector

ε 0.9 or 1.1 [–] Scaling parameter for different scenarios

ψ 0 or control [ 1
day ] Vaccination rate

θ 1/(0.7 · 365) [ 1
day ] Rate at which the vaccination loses effect

σ 0.02 [–] High efficiency of the vaccination

Table 2 Scenarios of
infection coefficents

Scenario Value Ordering of infection coefficients

A ε = 0.9 b1,h > b3,h > b4,h = b2,h

B ε = 1.1 b2,h > b1,h > b3,h > b4,h
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Fig. 1 Infected humans for ε = 0.9

Fig. 2 Second infections for ε = 0.9 (left) and ε = 1.1 (right)

first infections and the second infections. In the legend of the figures I i1 is an
abbreviation for

∑
i I
i1 and so forth. Figure 1 shows the expected strong outbreak

in the infected compartment with the highest infection rate as well as lower peaks in
the compartments of serotype 3 and 4. Due to the permanent resistance to the first
infection the highest peak appears for the second infection for the serotype of the
second largest infection rate (Fig.1 right). The second largest peak appears for the
second infection for the serotype with the largest infection rate. If one considers a
longer time horizon of 100 years, interesting things happen: For sufficiently different
infection rates, one or two serotypes are eradicated (Fig. 2). This phenomenon
indicates multiple equilibria whose stability depends on the ratios between the
infection rates bh,i . If the infection rates are close enough, all serotypes coexist. On
the other hand, the total number of second infections I 2t

h := ∑
i,j I

ij
h approaches

approximately identical values over this long time horizon.
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3 Optimal Control

For optimal control the previous model is enhanced with a mosquito control cv (e.g.,
spraying adulticide). Therefore μv is substituted by μv + cv in the ODE.

The following cost functional is minimized, see also Table 3:

J =
∫ tf

0

[
γ1 ·

(
4∑

i=1

I ih

)2

+ γ2 ·
⎛

⎝
4∑

i=1

4∑

j=1,j �=i
I
ij
h

⎞

⎠

2

+ γ3 · c2
v + γ4 · ψ2

]
dt

Figures 3 and 4 show the optimal controls (vaccination rate ψ and mosquito
control cv) and the trajectories of the humans, which are infected for a second time,
for case A–D.

Mosquito control starts directly at the initial time and reaches its peak with the
peak period of infected humans and levels off afterwards. Since only seropositive
humans can be vaccinated, vaccination starts later. Significantly lower infection
numbers are observed in the optimal control case. The peak levels vary depending
on the weighting.

Table 3 Overview of the different cases with their weights for ε = 0.9

Weights Costs

Case A γ1 = 0.17, γ2 = 0.17, γ3 = 0.33, γ4 = 0.33 0.1744

Case B γ1 = 0.15, γ2 = 0.15, γ3 = 0.55, γ4 = 0.15 0.1503

Case C γ1 = 0.15, γ2 = 0.15, γ3 = 0.15, γ4 = 0.55 0.1529

Case D γ1 = 0.15, γ2 = 0.55, γ3 = 0.15, γ4 = 0.15 0.1793

Fig. 3 Optimal controls for ε = 0.9
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Fig. 4 Second infections for ε = 0.9

4 Conclusion

A modeling with four serotypes is possible in principle, but calculations can only be
handled numerically due to the sharp increase in complexity. A very interesting
numerical result is that in the case of asymmetric infection rates, a competitive
behavior of the serotypes can be observed. This can lead to the extinction of up
to two serotypes.

References

1. Chudej, K., Albrecht, G., Jende, L.: Vereinfachung eines Denguefieber-Modells mit zwei
Serotypen und einer extrinsischen Inkubationszeit der Vektoren. In: Wittmann, J. (ed.) Simu-
lation in Umwelt- und Geowissenschaften, pp. 217–227. Shaker, Düren (2019)

2. Chudej, K., Fischer, A.: Optimal vaccination strategies for a new dengue model with two
serotypes. IFAC PapersOnLine 51-2, 13–18 (2018)

3. Esteva, L., Vargas, C.: Coexistence of different serotypes of dengue virus. Journal of mathemat-
ical biology 46-1 31–47 (2003).

4. Folger, G.: Modellierung, Analyse und Optimale Steuerung von gefährlichen Krankheiten. PhD,
Universität Bayreuth, 2021.

5. Herath, M., Albrecht, G., Chudej, K.: Ein asymmetrisches zwei Serotyp Dengue Fieber
Modell mit Kontrollmaßnahmen. In: Wittmann, J. (ed.) Simulation in den Umwelt- und
Geowissenschaften, pp. 191–202. Shaker, Düren (2020)

6. Zheng, T.-T., Nie, L.-F.: Modelling the transmission dynamics of two-strain Dengue in the
presence awareness and vector control. Journal of theoretical biology 443, 82–91 (2018)



The Effect of the Number of Neural
Networks on Deep Learning Schemes for
Solving High Dimensional Nonlinear
Backward Stochastic Differential
Equations

Lorenc Kapllani

Abstract We consider the deep learning based scheme proposed in [W. E and
J. Han and A. Jentzen, Commun. Math. Stat., 5 (2017), pp. 349–380] and study
the effect of the number of neural networks on the gradient of the solution. We
demonstrate that using one neural network improves its numerical stability for the
whole path and also reduces the computational time. This is illustrated with several
100-dimensional nonlinear backward stochastic differential equations including
nonlinear pricing problems in finance.

1 Introduction

In this work we consider the high dimensional forward backward stochastic
differential equation (FBSDE) of the form

⎧
⎨

⎩

dXt = μ(t,Xt ) dt + σ(t,Xt ) dWt , X0 = x0,

−dYt = f (t,Xt , Yt , Zt ) dt − Zt dWt ,
YT = ξ = g(XT ),

(1)

where Xt, μ ∈ Rn, σ is a n × d matrix, Wt =
(
W 1
t , . . . ,W

d
t

)�
is a d-dimensional

Brownian motion, f (t,Xt , Yt , Zt ) : [0, T ] × Rn × Rm × Rm×d → R
m is the

driver function and ξ is the terminal condition. The existence and uniqueness of the
solution of (1) are proven in [10]. In the sequel of this work, we investigate the effect
of the number of neural networks in [4] that solve (1).

In the recent years, many numerical methods have been proposed for solving
BSDEs, e.g., [1, 11, 15], which are not suitable for high-dimensional problems
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as in physics or finance [9] (also sparse-grids [14] or parallel computing [6, 8])
due to exponential increase of algorithm complexity. Recently machine learning
schemes show that they can deal with high dimensions for reasonable computational
time [4, 5, 12, 13]. We study the well known deep learning based algorithm in [4]
(we refer to it as SDNN-approach in the rest of the paper, where SDNN stands
for Stacked Deep Neural Networks) where the gradient of the solution (process Z)
is approximated by fully-connected neural networks. The authors in [3] analyzed it
using different architectures. However, no result was shown regarding the instability
of Z for SDNN-approach due to the use of different deep neural networks at each
time layer. To have a more numerically stable algorithm, we study the effect of
reducing the number of neural networks. In the sequel, we refer this scheme as
DNN-approach.

The outline of the paper is organized as follows. In the next section, we describe
the SDNN- and DNN-approaches. In Sect. 3, we illustrate our findings with several
numerical tests. Section 4 concludes this work.

2 The SDNN-Approach and DNN-Approach

The Feynman-Kac formula and forward discretization of FBSDE are needed to
formulate the FBSDE as a learning problem. Let us consider that the terminal value
YT is of the form g(X

t,x
T ), where Xt,xT denotes the solution of forward SDE in (1)

starting from x at time t . Then, the solution (Y t,xt , Z
t,x
t ) of (1) can be presented as

[9]

Y
t,x
t = u(t, x), Z

t,x
t = (∇u(t, x))σ(t, x) ∀t ∈ [0, T ), (2)

where u(t, x) is the solution of the following semi-linear parabolic PDE:

∂u

∂t
+

n∑

i=1

μi(t, x)
∂u

∂xi
+ 1

2

n∑

i,j=1

(σσ�)i,j (t, x)
∂2u

∂xixj
+ f (t, x, u, (∇u)σ ) = 0,

with u(T , x) = g(x). This is the Feynman-Kac formula. Using

 = {ti |ti ∈ [0, T ], i = 0, 1, · · · , N, ti < ti+1,t = ti+1 − ti , t0 = 0, tN = T }

and the notation Xi = Xti , Wi = Wti , Wi = Wi+1 − Wi and the approximated
process as Xi = Xti , the discretization of (1) using the well-known Euler scheme
is

Xi+1 = Xi + μ (ti , Xi
)
t + σ (ti , Xi

)
Wi,
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Fig. 1 Graph of the SDNN-approach

and

Yi+1 = Yi − f (ti , Xi , Yi , Zi
)
t + Zi Wi,

:= F(ti, Xi , Yi , Zi ,t,Wi).
(3)

where i = 0, 1, . . . , N − 1 and Wi ∼ N(0, t).
The numerical approximation of (Y,Z) in the SDNN-approach (Fig. 1) is

designed as follows: starting from an estimation (Y0(θ),Z0(θ)) of (Y0 , Z

0 ), and

then using at each time step ti , i = 1, 2, . . . , N − 1 a different feedforward deep
neural networkψ�i,k,L(x; θ) : Rd → R

1×d to approximate Zi asZi (θ) and Yi , i =
1, 2, . . . , N as Yi (θ) with (3), where the output YN(θ) aims to match the terminal
condition g(XT ) of the BSDE (using Adam gradient descent-type optimizer with
mini-batches):

E
[|g(XT )−YN(θ)|2

]
.

Note that i represents the i-th network, k is the number of neurons, L are the number
of hidden layers, � is the activation function, the input x of the network is the
Markovian process Xi and θ are network parameters. Specifically, the networks
have 4 global layers, where hidden layers have d+10 neurons, the rectifier function
R � x → max{0, x} ∈ [0,∞) is used as the activation function, the weights
are initialized using a normal or a uniform distribution and batch normalization
is also used. For the DNN-approach, we consider p < N − 1 networks, i.e. 1
network for consecutive subintervals, with input x having the time discretization
ti (to handle non-stationarities) and the Markovian process Xi (due to Feynman-
Kac formula), with 6 global layers (2 hidden layers more than SDNN-approach for
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Table 1 The dimension of the parameters

SDNN-approach d + 1 + (N − 1)(2d(d + 10)+ (d + 10)2 + 4(d + 10)+ 2d)

DNN-approach p
(
2d + 1 + (2d + 5)(d + 10)+ 3(d + 10)2

)

a better accuracy). For sufficiently regular solutions, the gradient between two time
points should be close. Therefore, the numerical stability of Z is affected from the
number of DNNs. The dimension of the parameters ρ ∈ N for both approaches are
given in Table 1. The complexity in the DNN-approach is lower for less number of
networks, namely p.

3 Numerical Results

In this section we study the DNN-approach by comparing it to the SDNN-
approach in several high dimensional examples. The results are presented using
10 independent runs with Tensorflow 1.15 from Google Colab. We start with an
example with analytical solution where the driver function depends on Y and Z.

Example 1 Consider the Burgers type FBSDE [4]

⎧
⎪⎪⎨

⎪⎪⎩

dXt = σ dWt , X0 = 0,

−dYt =
(
Yt − 2+d

2d

) (∑d
i=1 Z

i
t

)
dt − Zt dWt ,

YT = 1 − 1

1+exp
(
T+ 1

d

∑d
i=1 X

i
T

) ,

where Wt = (W 1
t ,W

2
t , · · · ,Wd

t )
�, Xt = (X1

t , X
2
t , · · · , Xdt )�, Zt =

(Z1
t , Z

2
t , · · · , Zdt ). The exact solution is (Y0, Z0)

.= (0.5, (0.1768, · · · , 0.1768))
with d = 50, T = 0.2 and σ = d√

2
. We consider the same hyperparameters for both

the SDNN- and DNN-approach, where the learning rate is 1e−2, 8000 optimization
iterations, 256 validation sample and a batch size of 64, which are used also for
next examples if not specified. The authors in [4] used different hyperparameters
and discretization values. The results are reported in Table 2 for N = 40. Note
that p = N − 1 represents the SDNN-approach, | · | is the absolute value and s(·)
represents the standard deviation. Moreover, εY0 = |Y0 − Y0|, Z0 = 1

d

∑d
i=1Z

i
0

and εZ0 =
∑d
i=1 |Zi0−Zi0|

d
.

From Table 2 we observe that the DNN-approach with one network gives higher
accuracy for both processes Y and Z, for less computation time. Increasing the
number of networks worsens the performance. To illustrate how good paths of each
process are approximated, we display the averages of paths for Y as Ȳ and Z as Z̄,
and the averages of approximated paths for Y as Ȳ andZ as Z̄ in Fig. 2, where the
average over the dimension is also considered for the Z process, in order to have
one value at each time point.
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Table 2 The results for Example 1

p Y0 εY0 s(εY0 ) Z0 εZ0 s(εZ0 ) Time

1 0.5196 0.0350 0.0198 0.1983 0.1250 0.0909 743.36

2 0.5409 0.1021 0.0983 0.3273 0.1814 0.1399 798.12

4 0.5312 0.1255 0.0651 0.5721 0.5092 0.2578 791.48

N− 1 1.2425 0.7425 0.0552 2.8510 2.6743 0.0290 1721.33

0.60
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0.56

0.54

0.52Ȳ

Ȳ

ȳ1–DNN
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ȳSDNN
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z̄SDNN
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Fig. 2 The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄ for
Example 1

For a better view of the approximation of the whole path, we limit the axis for
Y and Z, since some results are far from the exact solution. We see that the DNN-
approach with one network approximates paths of both processes much better in this
example when d = 50. Next, we consider an example with a driver function where
the Z process grows quadratically.

Example 2 Consider the nonlinear BSDE [7]

⎧
⎨

⎩

−dYt =
(
‖Zt‖2

R
1×d − ‖∇ψ(t,Wt )‖2

R
d −

(
∂t + 1

2
)
ψ(t,Wt )

)
dt − Zt dWt ,

YT = sin
(
‖WT ‖2α

R
d

)
,

where ψ(t,Wt ) = sin
((
T − t + ‖Wt‖2

R
d

)α)
. The exact solution is (Y0, Z0)

.=
(0.8415, (0, · · · , 0)) with d = 100, T = 1 and α = 0.4. Here we choose d = 100
to compare both the approaches in a higher dimension. We set the optimization
iterations to m = 4000, and report the results in Table 3 with N = 40. We
observe that the DNN-approach with one network gives again better results for both
processes, even for the whole path displayed in Fig. 3.

Finally we consider an example without analytical solution in the case of d =
100, the problem of option pricing with different interest rates, also studied in [4, 5,
12].

Example 3 Consider the different interest rates option pricing FBSDE [2]
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Table 3 The results for Example 2

p Y0 εY0 s(εY0 ) Z0 εZ0 s(εZ0 ) Time

1 0.8583 0.0168 0.0077 0.0000 0.0087 0.0027 1197.47

2 0.8813 0.0398 0.0146 −0.0001 0.0120 0.0027 1161.98

4 0.9640 0.1226 0.0199 −0.0005 0.0188 0.0021 1304.86

N− 1 1.2541 0.4126 0.0247 −0.0004 0.0381 0.0037 1493.97
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Fig. 3 The comparison of averages of the exact path Ȳ , Z̄ and the approximated paths Ȳ, Z̄ for
Example 2

Table 4 The results for
Example 3

p Y0 |Y0 −Y0| s(|Y0 −Y0|) Time

1 21.0906 0.2082 0.0476 1137.93

2 21.0626 0.2362 0.0971 1144.90

4 21.0284 0.2704 0.1399 1206.71

N− 1 21.1140 0.1848 0.1017 1845.27

⎧
⎪⎪⎨

⎪⎪⎩

dSt = μSt dt + σSt dWt , S0 = S0,

−dYt = −RlYt − μ−Rl
σ

∑d
i=1 Z

i
t +

(
Rb − Rl)max

(
1
σ

∑d
i=1 Z

i
t − Yt , 0

)
dt − Zt dWt ,

YT = max
(
maxd=1,··· ,D(ST,d −K1, 0

)− 2 max
(
maxd=1,··· ,D(ST,d −K2, 0

)
,

where St = (S1
t , S

2
t , · · · , Sdt )�. The benchmark value with T = 0.5,μ = 0.06, σ =

0.2, Rl = 0.04, Rb = 0.06, K1 = 120, K2 = 150 and S0 = 100 is Y0
.= 21.2988

[5]. Using a learning rate of 5e− 2 and 4000 optimization iterations, we present the
results in Table 4 for N = 40, which shows comparable results for DNN-approach
with one network and SDNN-approach.

4 Conclusions

In this work we have proposed the DNN-approach to improve the deep learning
scheme [4]. With our numerical analysis we demonstrate that the DNN-approach
with one neural network can give comparable approximation for Y and better
approximation for Z on the whole time domain for lower computational cost.
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Qualitatively Correct Numerical Methods
for the Basic Ross–Macdonald Malaria
Model

István Faragó, Miklós E. Mincsovics, and Rahele Mosleh

Abstract We investigate the qualitative performance of different numerical meth-
ods applied to the Ross-Macdonald malaria model. It is known that for this model a
certain set is positively invariant and the question is that the discrete system which
is obtained from the model by the application of a numerical method possesses
this property or not. This property called dynamical consistency is the objective
of this study. We consider a method qualitatively correct if the resulted discrete
system inherits this property. We investigate the explicit and implicit Euler methods,
the latter also with Newton iteration as a sub-procedure, moreover a non-local
discretization method and finally, the explicit Euler method combined with step-
size functions.
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1 The Ross-Macdonald Model of Malaria Propagation

A diversity of mathematical models have been propounded to study malaria
transmission. The basic Ross-Macdonald model is the most preliminary brought
up by Ross and later modified by Macdonald.

This model reads as

{
ẋ(t) = αy(t)(1 − x(t))− rx(t)
ẏ(t) = βx(t)(1 − y(t))− μy(t). (1)

where x(t) and y(t) represent densities of the infected humans and mosquitoes at
time t ≥ 0. Clearly, the minimal requirement for this model is that these quantities
have to behave like densities, e.g. x(t) ∈ [0, 1] and y(t) ∈ [0, 1] hold for t >
0, provided that x(0) ∈ [0, 1] and y(0) ∈ [0, 1]. We call this property Density
Preservation Property, shortly DPP. This is indeed true for this model, see e.g. [2].
The next question is that if we apply some numerical method to approximate the
solution of (1), then will the discrete version of the DPP—which we call shortly
DDPP be valid for the discrete model or not?

2 Numerical Solution of the Ross-Macdonald Model

To approximate the solution of this model we apply the prototypes of the explicit
and the implicit methods, the explicit and the implicit Euler method. We will analyze
their performance from qualitative point of view.

By applying the explicit Euler method—shortly EEM—to the Ross-Macdonald
model we attain

⎧
⎪⎨

⎪⎩

xn+1 − xn
t

= αyn(1 − xn)− rxn
yn+1 − yn
t

= βxn(1 − yn)− μyn.
(2)

It is known, see [2], that the DDPP is valid for the discrete model (2), if the step size
t ∈ (0, h∗], where

h∗ = min

{
1

r
,

1

μ
,

1

α
,

1

β

}

. (3)

Since the above bound is sharp, this means that the DDPP is not valid for any
step size t , there is a restriction, namely the step size have to be small enough.

By applying the implicit Euler method—shortly IEM—to the Ross-Macdonald
model we attain
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⎧
⎪⎨

⎪⎩

xn+1 − xn
t

= αyn+1(1 − xn+1)− rxn+1

yn+1 − yn
t

= βxn+1(1 − yn+1)− μyn+1.

(4)

It is proved that system (4) possesses the DDPP unconditionally, which means
that there is no restriction for the step size t , see [2]. Consequently, the implicit
Euler method is much better from this point of view than its explicit twin. However,
we have to pay a price for it. Equation (4) is an implicit system of equations for
xn+1, yn+1 which needs to be solved. Fortunately, the Ross–Macdonald model is
simple in the sense that we are able to directly express the unknowns and with that
we get an explicit formula.

Since usually this cannot be expected, it is worth to explore some method which
works generally. An implicit method results in a discrete model which solution
requires a sub-procedure at each step to approximate the solution at the new time-
level and the most popular method to do this is the Newton-iteration. In our case
this means

(
xn+1

yn+1

)k+1

=
(
xn+1

yn+1

)k
−
[

f ′
((
xn+1

yn+1

)k)]−1

f

((
xn+1

yn+1

)k)

, (5)

where k is the Newton-iteration step counter and

⎡

⎣f ′
⎛

⎝

(
xn+1

yn+1

)k⎞

⎠

⎤

⎦

−1

f

⎛

⎝

(
xn+1

yn+1

)k⎞

⎠ = 1

det

(
1 +t (βxkn+1 + μ

) −tα (xkn+1 − 1
)

−tβ (ykn+1 − 1
)

1 +t (αykn+1 + r
)

)

·

⎛

⎝

(
xn+1

yn+1

)k

−
(
xn

yn

)

−t
(
αykn+1

(
1 − xkn+1

)− rxkn+1

βxkn+1

(
1 − ykn+1

)− μykn+1

)⎞

⎠ ,

(6)
moreover

det = 1 +t
(
βxkn+1 + αykn+1 + r + μ

)
+t2

(
βxkn+1 (α + r)+ αykn+1 (β + μ)+ rμ− αβ

)
.

(7)
This means that for xk+1

n+1 we get

xk+1
n+1 = xkn+1−
1

det

(
1 +t

(
βxkn+1 + μ

)) (
xkn+1 − xn −t

(
αykn+1

(
1 − xkn+1

)
− rxkn+1

))
+

1

det
tα

(
xkn+1 − 1

) (
ykn+1 − yn −t

(
βxkn+1

(
1 − ykn+1

)
− μykn+1

))
.

(8)
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It is reasonable to start the iteration with x0
n+1 = xn, y0

n+1 = yn. We set xn = yn =
α = β = ε, μ = r = ε2 and t = 1

ε2 where ε is a small positive number. We

are interested in the positivity of x1
n+1 namely, what can we expect after one step of

Newton iteration? We can calculate det = 8+ 2
ε
− 1
ε2 = 8ε2+2ε−1

ε2 , which is negative
for small enough ε. Consequently,

x1
n+1 = ε + ε(1 − 4ε2)

8ε2 + 2ε − 1
, (9)

which is negative if det is negative and it is easy to see that, ε < 1
4 will guarantee it.

As a consequence we reached a negative x1
n+1 and we lost the DDPP. We know

that the implicit Euler method would produce a discrete model which possesses this
property unconditionally, which means that only the Newton iteration is responsible
for this failure. This phenomena is visualized by the following example, see Fig. 1
for which the parameters are given in Table 1.

Further we suggest two possible techniques which are able avoid the problem due
to implicitness and at the same time the restriction for the time-step is less severe
compared with the EEM (Tables 2 and 3).

The first is the application of non-local discretization methods leading to semi-
implicit schemes. To this aim, we start with (4) and we make a small modification:
in the first equation at the right hand side yn+1 is substituted by yn.
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Fig. 1 The impact of the Newton iteration on IEM. (a) visualizes that the DDPP is valid with the
step size t = 10, while (b) shows that the DDPP is not valid with the step size t = 15

Table 1 Parameters and initial values

x(0) = 0.01 y(0) = 0.01 r = 0.002 μ = 0.2 α = 0.096 β = 0.2
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Table 2 t = 10, IEM with Newton iteration

– n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

det 1.1702 1.2338 1.4213 1.8649 2.5827 3.3917 4.1254

x1
n+1 0.0327 0.0917 0.2081 0.3631 0.5142 0.6388 0.7336

y1
n+1 0.0248 0.0670 0.1469 0.2423 0.3214 0.3771 0.4144

Table 3 t = 15, IEM with
Newton iteration

– n = 0 n = 1 n = 2 n = 3

det −0.1543 35.3487 2.0417 −0.1380

x1
n+1 −2.2137 −1.0495 −0.1519 −2.5924

y1
n+1 −1.6289 −0.3453 0.1514 −1.8389

⎧
⎪⎨

⎪⎩

xn+1 − xn
t

= αyn(1 − xn+1)− rxn+1

yn+1 − yn
t

= βxn+1(1 − yn+1)− μyn+1.
(10)

From the qualitative point of view, it remains implicit, however we can express xn+1
from the first equation and then we can solve the second, too thus, it works as an
explicit method.

Theorem The discrete model (10) possesses the DDPP for any step size t .

Proof From the first equation we obtain

xn+1 = xn +tαyn
1 +tαyn +tr (11)

which denominator is positive, and the right hand side ∈ [0, 1] provided xn, yn ∈
[0, 1]. The calculation for yn+1 is similar, where we can exploit that we already
know that xn+1 ∈ [0, 1]. ��

The second possibility we show is the application of step-size functions instead
of the conventional step size t , see [1, 3] for more details, which has the form

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 − xn
�(t)

= αyn(1 − xn)− rxn
yn+1 − yn
�(t)

= βxn(1 − yn)− μyn
(12)

if we combine it with the EEM. The idea is to find a suitable function � for which
the method remains a first order method (as EEM), but its qualitative (and stability)
properties become better.

Formally, we can state exactly the same: the DDPP is valid for the discrete model
(12), iff the step size �(t) ∈ (0, h∗], where h∗ is defined at (3). The question is
that did we gain something or not?
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The answer is yes, a suitable choice is

�C(t) = 1 − e−Ct
C

, (13)

with C > 0. With this choice the method remains first order and at the same time
�C(t) can be sufficiently small for any arbitrary large step size t since this
function is monotonically decreasing in C and

lim
C→0+�C(t) = t and lim

C→+∞�C(t) = 0. (14)

Hence, if

1. t < h∗, then �C(t) ∈ (0, h∗] for all C > 0.
2. t ≥ h∗, there exists C0 such that �C(t) ∈ (0, h∗] for C ≥ C0.

Here C0 is the solution of

e−C0t + C0h
∗ − 1 = 0, (15)

implying the sufficient condition C0 ≥ 1
h∗ and the exact value for C0 lies on the

principal branch of the Lambert W function. This means that for an arbitrarily large
t we can find a suitable C for which (12) will satisfy the DDPP. See Fig. 2.
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(a) Standard EEM, ∆ = 15
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(b) EEM, Φ0.4 (15)

Fig. 2 The explicit Euler method applied to the Ross-Macdonald model with t = 15. In this
example, the step size tolerance t∗ = 5 and the parameters are given in Table 1. (a) shows that
the DDPP is not satisfied, as expected; (b) shows that with the application of the step size function
�0.4(15) the DDPP is valid
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Dynamics of a Delayed Kaldor-Kalecki
Model of Mutually Linked Economies

Juancho A. Collera and Rainier Ric B. de la Cruz

Abstract The Kaldor-Kalecki business cycle model unifies the concept of non-
linearity of the investment function of Kaldor and the concept of investment lag
of Kalecki. Recently, the influence of a global economy on a local economy was
investigated using delayed Kaldor-Kalecki models that are coupled unidirectionally.
In this work, we proposed and analyzed a business cycle model of two mutually
linked economies described using bidirectionally coupled Kaldor-Kalecki models.
For the case of comparable economies, we obtain an equivariant system. This
symmetry property is then used to classify the Hopf bifurcations and consequently
determine the different types of oscillatory patterns that can occur in the proposed
business cycle model. Our result is further expanded using numerical continuation
which detected the occurrence of various limit-cycle bifurcations including period-
doubling and torus bifurcations which give rise to different kinds of oscillations.
This diversity in oscillatory behavior is crucial to better depict economic cycles.

1 Introduction

Since the inception of Kaldor’s trade cycle model [7], a number of researchers have
modified this model to account for Kalecki’s idea of gestation period in investments.
See, for example, the seminal work of Szydłowski and Krawiec in [10] and the
delayed Kaldor-Kalecki model introduced by Kaddar and Talibi Alaoui in [6] which
incorporates a time delay in both the capital stock and the gross domestic product in
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the capital accumulation equation. Recently, Jackowska-Zduniak et al. investigated
the influence of a global economy on a local economy using two delayed Kaldor-
Kalecki models that are coupled unidirectionally [5]. They showed that, as a result
of the unidirectional coupling, the powerful global system can restore the weaker
market’s oscillatory character and oscillations in both systems can have the same
period. The case where economies are mutually linked and are comparable in size
was not considered by previous works, and hence it is a gap that needs to be
addressed.

In this paper, we propose and analyze a business cycle model of two mutually
linked economies described using bidirectionally coupled Kaldor-Kalecki models.
For the case of comparable economies, we obtain an equivariant system. This sym-
metry property is then used to classify the different types of oscillatory patterns that
can occur in the system. This result is further expanded using numerical continuation
which detects various limit-cycle bifurcations showing that the proposed model
exhibits richer oscillatory behavior which could better represent economic cycles.
The paper is organized as follows. In Sect. 2 we revisit previous works on a delayed
Kaldor-Kalecki model, and then in Sect. 3 we introduce and analyze our proposed
model of mutually linked economies. We end with conclusions and future directions
of the paper in Sect. 4.

2 Delayed Kaldor-Kalecki Model of Business Cycle

In this section, we revisit the delayed Kaldor-Kalecki model studied in [6]. This
model is a special case of our proposed model and will be a basis of comparison
for our results in Sect. 3. The model first introduced by Kaddar and Talibi Alaoui in
[6] incorporates the time delay in both the capital stock K and the gross domestic
product Y in the capital accumulation equation and is given as follows

{
Ẏ (t) = α[ I (Y (t),K(t))− S(Y (t),K(t))],
K̇(t) = I (Y (t − τ),K(t − τ))− δK(t).

(1)

The savings function S(Y,K) = σY with σ ∈ (0, 1), while the investment function
I (Y,K) = F(Y ) − βK , where β > 0 and F is a sigmoid function. This shape of
the graph of F follows the assumption in [7] that ∂I/∂Y will be small both for low
and for high levels of Y . The positive parameters α and δ correspond respectively
to the adjustment coefficient in the goods market and the depreciation rate of the
capital stock, while the time delay parameter τ > 0 reflects the delay in investment
processes. A unique positive equilibrium solution E+ := (Y ∗,K∗) of system (1)
was shown to exist provided F(0) > 0, and for all Y ∈ R, we have F ′(Y ) − σ <
σβ/δ and |F(Y )| ≤ L for some constant L > 0. Moreover, if |F ′(Y ∗)−σ | < σβ/δ
and F ′(Y ∗) − σ < (β + δ)/α, then there exists a critical time delay value τ0 > 0
such thatE+ is locally asymptotically stable (LAS) when τ ∈ [0, τ0) and is unstable
when τ > τ0. At τ = τ0, system (1) undergoes a Hopf bifurcation (HB) at E+, and
a family of limit cycles (LCs) bifurcates.
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Fig. 1 (a) Branch of limit cycles (LCs) emerging from the Hopf bifurcation at τ = τ0 ≈ 2.9929.
(b) Time series plots showing the coexistence of stable equilibrium and LC solutions at τ = 2.9750

In order to further reveal the dynamics of system (1), we now carry out numerical
continuation using F(Y ) = eY /(1 + eY ) and (α, β, σ, δ) = (3, 0.2, 0.2, 0.1) as
in [6]. For purposes of comparison, we will use the same function and parameter
values to our proposed model in Sect. 3. This choice of the sigmoid function and
parameter values was shown to satisfy the conditions for the existence of a unique
positive equilibrium E+ ≈ (1.3135, 2.6270) and the conditions for HB to occur
in system (1) at τ = τ0 ≈ 2.9929 [6]. Figure 1a shows the branches of solutions
obtained using numerical continuation in DDE-Biftool [4, 8] varying the time delay
parameter τ . The stable and unstable parts of these branches are shown in solid green
and dotted magenta lines, respectively. The switch in stability along the branch of
equilibria (horizontal line) occurred at a HB marked with (∗), while the switch in the
stability along the branch of LCs (curve) occurred at a saddle-node (SN) bifurcation
of LCs marked with (×). This numerical simulation complements the results in [6].
It also reveals the possibility of a coexistence of a stable equilibrium solution and a
stable limit-cycle solution as shown in the time series plots in Fig.1b obtained using
two different sets of history functions when τ = 2.9750. This multitype bistability
occurs for values of τ between 2.9620 and 2.9929 where the SN bifurcation of LCs
and the HB occurred approximately.

3 Business Cycle Model of Mutually Linked Economies

Our proposed business cycle model of mutually linked economies is the following

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẏ1(t) = α
[
F(Y1(t))− βK1(t)− σY1(t)

]
,

K̇1(t) = F(Y1(t − τ))− βK1(t − τ)− δK1(t)+ η1
[
Y2(t)− Y1(t)

]
,

Ẏ2(t) = α
[
F(Y2(t))− βK2(t)− σY2(t)

]
,

K̇2(t) = F(Y2(t − τ))− βK2(t − τ)− δK2(t)+ η2
[
Y1(t)− Y2(t)

]
.

(2)
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This system is composed of two coupled Kaldor-Kalecki models similar to system
(1). Hence, the description of the state variables, parameters, and functions are
similar to the ones given in system (1) with the addition of the coupling parameters
η1, η2 > 0. Here, we assume that the two economies are comparable and the
coupling is bidirectional with identical coupling coefficients, i.e. η1 = η2. We
denote this common coupling parameter simply by η. This symmetric case is
significant because it organizes the dynamics of systems with almost identical
Kaldor-Kalecki models, i.e. systems similar to system (2) that have different but
almost identical corresponding parameters in each Kaldor-Kalecki model. The
symmetry assumptions on system (2) make it an equivariant system under some
symmetry group �. That is, if we write system (2) in the form Ẋ = F(Xt )
where X(t) = [Y1(t),K1(t), Y2(t),K2(t)]� and Xt ∈ C([−τ, 0],R4), the space
of continuous functions mapping [−τ, 0] into R4, with Xt (θ) = X(t + θ) for
θ ∈ [−τ, 0], then γ · F(Xt ) = F(γ · Xt ) for all γ ∈ �. It is straightforward to
show that system (2) has symmetry group � ∼= Z2 = 〈γ 〉 where its action on the
state variables is given by γ · (Y1,K1, Y2,K2) = (Y2,K2, Y1,K1). The solutions
fixed by � must have Y1(t) = Y2(t) and K1(t) = K2(t). In particular, one can
obtain the so-called fully symmetric equilibrium E∗ := (Y ∗,K∗, Y ∗,K∗) where
the components Y ∗ and K∗ are exactly the same components as that of E+ from
Sect. 2. This is because if Y1(t) = Y2(t) and K1(t) = K2(t), then the coupling
terms in system (2) vanish and we end up having two copies of system (1).

We now examine the local stability of the equilibrium E∗ and its bifurcations.
Using symmetry techniques, see e.g. references [2, 3, 9], we classify the types of
periodic solutions that can arise in our business cycle model of linked economies.
The characteristic equation corresponding to the linearized system about E∗ is

det
(
(λ)

) = 0 with (λ) =
(
A B
B A

)

(3)

and where A and B are 2 × 2 matrices. The action of � on R4 yields the isotypic
decomposition R4 = T2 ⊕A2 which allows block diagonalizing(λ) into the form
diag(A+ B,A− B). Hence, we have that det((λ)) = det(A+ B) · det(A− B)
and Eq. (3) splits into the following equations

det(A+ B) = λ2 + α(σ − ρ)(λ+ δ)+ δλ+ (λ+ ασ)βe−λτ = 0, (4)

det(A− B) = λ2 + α(σ − ρ)(λ+ δ)+ δλ+ (λ+ ασ)βe−λτ − 2αβη = 0,
(5)

where ρ = F ′(Y ∗). Moreover, the critical roots of (4) give rise to regular bifur-
cations while the critical roots of (5) give rise to symmetry-breaking bifurcations.
Since the form of (4) and (5) is the same as the characteristic equation obtained in
[6], we get analogous results. That is, if the equilibrium E∗ is LAS when τ = 0,
then a switch in the stability of E∗ can occur at some critical time delay τc =
min{τ+0 , τ−0 } where τ+0 and τ−0 , respectively, are the least positive time delay values
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Fig. 2 (a) HBs along the branch of fully symmetric equilibria (horizontal line) and the branches
of LCs emerging from these HBs. Patterns of oscillation of LC solutions emerging from (b) the
symmetry-breaking HB and (c) the regular HB

where Eqs. (4) and (5) have simple purely imaginary roots with d
dτ

Reλ(τ)
∣
∣
τ=τ±0 >

0. In this case, system (2) undergo a regular HB at the equilibrium E∗ when τ = τ+0
and a symmetry-breaking HB at E∗ when τ = τ−0 .

The following example illustrates the classification of periodic solutions to
our business cycle model of mutually linked economies. For system (2) with
η = 0.10485 and the same function F and parameter set as in Sect. 2, we obtain
τ+0 ≈ 2.9929 and τ−0 ≈ 3.3125. Observe that the value τ+0 is the same as the value
τ0 in Sect. 2. This is because (4) is independent of η and is exactly the same as the
characteristic equation in [6]. In contrast, Eq. (5) depends on η. Figure 2a shows the
regular and symmetry-breaking HBs along the branch of fully symmetric equilibria
(horizontal line) which occurred at τ = τ+0 and τ = τ−0 , respectively. The patterns
of oscillation of LC solutions emerging from these HBs are of two types. LCs from
the symmetry-breaking HB as represented in Fig. 2b show economies oscillating in
an asynchronous manner, while LCs from the regular HB as represented in Fig.2c
show synchrony between oscillating economies. Numerical continuation from both
HBs yield branches of LCs having stable parts. That is, the proposed model supports
both synchronous and asynchronous oscillations. Figure 2a shows the branch of LCs
that emerged from the regular HB. Compared to the branch of LCs shown in Fig. 1a
for system (1), the LCs emanating from the regular HB in Fig. 2a switch stability
for the second time at a period-doubling (PD) bifurcation marked with (�).

Figure 3a shows the branch of LCs emerging from the PD bifurcation at τ =
τPD ≈ 3.0119. A stability switch along this period-2 LC branch occurs at a torus
bifurcation (TB) marked with (�) at τ = τT B ≈ 3.0394. Observe that for τ ∈
(τPD, τT B), a stable period-1 and a stable period-2 LCs coexist. Figure 3b and c
shows the profile plot of the coexisting LCs for τ = 3.0250. Figure 4a and b shows
the corresponding Floquet multipliers before and after the PD bifurcation at τ =
τPD . This establishes the existence of the PD bifurcation and the switch towards
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Fig. 3 (a) PD bifurcation along the branch of LC solutions that emerged from the regular HB.
Profile plot of coexisting (b) period-1 and (c) period-2 stable LC solutions at τ = 3.0250
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Fig. 4 Floquet multipliers (a) before and (b) after the PD bifurcation at τ = τPD along the LC
branch emanating from the regular HB, and Floquet multipliers (c) before and (d) after the TB at
τ = τT B where LCs on the period-2 branch switch stability

instability at τ = τPD along the LC branch from the regular HB. Similarly, the
existence of the TB at τ = τT B and the stability switch along the period-2 LC branch
are corroborated in Fig. 4c and d showing the corresponding Floquet multipliers
before and after the TB at τ = τT B .

When the common coupling parameter η in system (2) is zero, the two Kaldor-
Kalecki models decouple and the dynamics of the individual economy are identical
to the one discussed in Sect. 2. This dynamical behavior extends to the cases where
the value of η is sufficiently small. However, for larger values of η, a variety of
dynamics can be obtained. For brevity, we only presented the dynamics for the
case where η = 0.10485 because this particular case illustrates the occurrence of
various LC bifurcations including PD and torus bifurcations. These LC bifurcations
consequently render some form of irregularity compared to the usual approach of
using smooth limit cycles to describe economic fluctuations. Furthermore, this result
supports the idea in [1] that endogenous cycles buffeted by exogenous disturbances,
in our case the effects of mutual coupling, may result to irregular fluctuations. In
other words, the obtained diversity in oscillatory behavior better depicts fluctuations
in economies.
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4 Conclusions and Future Directions

We introduced a business cycle model of two mutually linked economies using
bidirectionally coupled Kaldor-Kalecki models. For comparable economies, the
resulting system is equivariant and this symmetry property played an important role
in our analysis. In particular, a classification of Hopf bifurcations into regular and
symmetry-breaking was provided. Numerical continuation from both the regular
and the symmetry-breaking HBs yield branches of LCs having stable parts. That
is, the proposed model supports both synchronous and asynchronous oscillations.
Moreover, we showed that various types of limit-cycle bifurcations can occur in the
proposed model including period-doubling and torus bifurcations which give rise
to different kinds of oscillations. This diversity in oscillatory behavior is crucial to
better depict economic cycles. For example, the occurrence of a torus bifurcation
yields quasiperiodic oscillations which could mimic fluctuations in the economies.
To better understand the effects of coupling between economies, a more general
form of the proposed model with different coupling parameters is currently being
considered and is the subject of an on-going research.
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Dynamic Iterations for Nonlinear
Systems Applied in Population Dynamics

Barbara Zubik-Kowal

Abstract We investigate the application of dynamic iterations to nonlinear systems
of differential equations. Such an application allows to use implicit time integration
methods without solving nonlinear algebraic equations at each time step. Another
advantage of the application of dynamic iterations is that the resulting numerical
schemes can be solved in parallel computing environments. We conclude that
the sequence of how the dynamic iterations are applied is significant and influ-
ences their rate of convergence to the solution of the given system of nonlinear
differential equations. This conclusion is illustrated by numerical experiments
involving Volterra equations for predator-prey interactions. We also conclude that
the proposed numerical scheme is faster than the variable order method.

1 Introduction

Dynamic iterations have been broadly investigated as numerical methods applied
to solve differential systems on parallel computers and are often called waveform
relaxation techniques. These techniques have been introduced by Lelarasmee et al.
[4] and investigated by many authors for different kinds of differential equations,
see, for example, [3] and [5] for systems of ordinary differential equations, [1]
and [2] for systems of delay differential equations and [6] and [7] for general
functional differential equations. However, these techniques have been mainly
investigated in the context of parallel computations and not much attention has
been given to answer the question of whether or not permutations of the equations
in a given system influence the convergence of the applied dynamic iterations.
Recent investigations [8] in this direction for linear systems of differential equations
show that appropriately chosen permutations, in light of the values of the model
parameters, present a way to speed up the convergence of dynamic iterations.
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The goal of the current paper is to address this question for nonlinear differential
equations.

In this paper, we investigate dynamic iterations for systems written in the form

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x = ax + xf1(y)+ g1(t)

d

dt
y = ãy + yf2(x)+ g2(t)

(1)

where a, ã are real parameters and fi , gi , i = 1, 2, are given real functions. The
system (1) is supplemented by the initial conditions

x(0) = ξ0, y(0) = η0.

For an arbitrary continuous function y(0)(t), we consider the sequences
{x(k)(t)}∞k=1, {y(k)(t)}∞k=0 defined by

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x(k+1) = ax(k+1) + x(k+1)f1(y

(k))+ g1(t),

d

dt
y(k+1) = ãy(k+1) + y(k+1)f2(x

(k+1))+ g2(t),

(2)

where k = 0, 1, 2, . . . and

x(k+1)(0) = ξ0, y(k+1)(0) = η0.

The numerical scheme (2) is called Gauss-Seidel waveform relaxation. The advan-
tage of (2) over (1) is that the application of implicit methods, for example BDF
methods, for integration of (2) in time t does not require solving nonlinear algebraic
equations at each time step. Note that the application of implicit time integration
methods to the nonlinear differential system (1) leads to a system of nonlinear
algebraic equations that require an additional process to solve them at each time step
(more time steps mean that more nonlinear algebraic systems need to be solved).
Such an additional process would not be needed if system (2) would be applied.

The paper is organized as follows. In Sect. 2, we analyze the convergence of
the sequence {(x(k)(t), y(k)(t))}∞k=0 to the exact solution (x(t), y(t)) as k → ∞.
Then, in Sect. 3, we present results of numerical experiments involving nonlinear
systems applied in population dynamics. Finally, we finish with concluding remarks
in Sect. 4.

2 Error Analysis

In this section, we analyze the errors

e(k)x (t) = x(k)(t)− x(t), e(k)y (t) = y(k)(t)− y(t),
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as k → ∞. We assume that the unknown solutions x, y are bounded and the given
functions f1, f2 are Lipschitz continuous. In what follows, we use the following
notation. Let L1, L2 be Lipschitz constants for f1 and f2, respectively; that is,

|f1(y)− f1(ỹ)| ≤ L1|y − ỹ|, for all y, ỹ ∈ R,

|f2(x)− f2(x̃)| ≤ L2|x − x̃|, for all x, x̃ ∈ R

and X, Y , R, E0 be positive constants such that

|x(t)| ≤ X, |y(t)| ≤ Y, for all 0 ≤ t,
f1(y)+ a ≤ R, f2(x)+ ã ≤ R, on bounded sets,

|e(0)y (t)| ≤ E0, for all 0 ≤ t.

The following theorem provides error bounds for scheme (2).

Theorem 1 Let k = 0, 1, 2, . . . and t ≥ 0. Then,

|e(k+1)
x (t)| ≤ E0XL1

(
XYL1L2

)k eRt

R2k+1

∞∑

j=2k+1

(−1)j+1(Rt)j

j ! , (3)

|e(k+1)
y (t)| ≤ E0

(
XYL1L2

)k+1 eRt

R2k+2

∞∑

j=2k+2

(−1)j (Rt)j

j ! . (4)

Proof Note that e(k)x (0) = 0 and e(k)y (0) = 0, for all k = 0, 1, 2, . . . . Then, from
(1) and (2), we get

|e(k+1)
x (t)| ≤ XL1

∫ t

0
|e(k)y (τ )|eR(t−τ)dτ, (5)

|e(k+1)
y (t)| ≤ YL2

∫ t

0
|e(k+1)
x (τ )|eR(t−τ)dτ, (6)

for k = 0, 1, 2, . . . and t ≥ 0. From (5), we get

|e(1)x (t)| ≤ XL1E0

∫ t

0
eR(t−τ)dτ = XL1E0

R

(
eRt − 1

)
= XL1E0

R
eRt

(
1 −

∞∑

j=0

(−Rt)j
j !

)

= XL1E0

R
eRt

∞∑

j=1

(−1)j+1(Rt)j

j ! ,

which shows (3) for k = 0. We now use (6) and get
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|e(1)y (t)| ≤
XYL1L2E0

R
eRt

∫ t

0

∞∑

j=1

(−1)j+1(Rτ)j

j ! dτ

= XYL1L2E0

R
eRt

∞∑

j=1

(−1)j+1Rj tj+1

(j + 1)! = XYL1L2E0

R2 eRt
∞∑

j=2

(−Rt)j
j ! ,

which shows (4) for k = 0. We now assume (3) and (4) for a certain k. Then, from
(5) and (4), we get

|e(k+2)
x (t)| ≤ XL1

∫ t

0

(
XYL1L2

)k+1
E0

eRτ

R2k+2

∞∑

j=2k+2

(−Rτ)j
j ! eR(t−τ)dτ

= XL1
(
XYL1L2

)k+1
E0

eRt

R2k+2

∞∑

j=2k+2

(−R)j tj+1

(j + 1)!

= XL1
(
XYL1L2

)k+1
E0

eRt

R2k+3

∞∑

j=2k+3

(−1)j+1(Rt)j

j ! ,

which, by mathematical induction, shows (3). We now use (6) and (3) and obtain
the following result,

|e(k+2)
y (t)| ≤ YL2

∫ t

0
XL1

(
XYL1L2

)k+1
E0

eRτ

R2k+3

∞∑

j=2k+3

(−1)j+1(Rτ)j

j ! eR(t−τ)dτ

= (
XYL1L2

)k+2
E0

eRt

R2k+4

∞∑

j=2k+4

(−Rt)j
j ! ,

which shows (4) and finishes the proof. ��

3 Numerical Experiments and Methods Comparison

In this section, we present results of numerical experiments involving dynamic
iterations applied to Volterra equations for predator-prey interactions.

The system of interest is of the form

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x = ax − bxy + g1(t)

d

dt
y = −cy + dxy + g2(t)

(7)
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where a = 2/3, b = 20, c = 50, d = 0.01, 0 ≤ t ≤ 10. We apply (2) and obtain
the following scheme

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
x(k+1) = ax(k+1) − bx(k+1)y(k) + g1(t)

d

dt
y(k+1) = −cy(k+1) + dx(k+1)y(k+1) + g2(t).

(8)

If we write the equations in system (7) in the opposite order and then apply (2),
we obtain a different scheme of the form

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
y(k+1) = −cy(k+1) + dx(k)y(k+1) + g2(t)

d

dt
x(k+1) = ax(k+1) − bx(k+1)y(k+1) + g1(t).

(9)

Numerical solutions x(k)(tn) and y(k)(tn) computed by (8) and (9) are presented in
Fig. 1 as functions of tn for k = 6 in the case of (8) and for k = 4 in the case of (9).

Although both schemes (8) and (9) originate from the same application of (2),
their errors are different and demonstrate different convergence rates. The errors
of both schemes are presented in Fig. 2. The upper subplot demonstrates the errors
resulting from the application of (8) and the lower subplot demonstrates the errors
resulting from the application of (9). Each scheme is integrated by BDF3 with h =
10−4.

We now compare the accuracy and CPU time using the solver ode15s and
scheme (9) integrated by BDF6 with h = 10−2. The maximum error

max
{

max
n

∣
∣x1(tn)− x(k)1,n

∣
∣,max

n

∣
∣x2(tn)− x(k)2,n

∣
∣
}

is 7.03 · 10−13 and 1.91 · 10−14 using the solver ode15s and (9), respectively.
The errors resulting from the application of both methods are comparable. The CPU
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Fig. 1 Numerical solutions of (7): x(t) solid and y(t) dashed
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Fig. 2 Methods comparison: errors by (8) (upper subplot) and errors by (9) (lower subplot)

time is 0.21 s when the solver ode15s is applied and it is 0.03 s when the numerical
scheme (9) is applied, demonstrating that (9) is faster than ode15s.

4 Conclusions

In this work, we investigate dynamic iterations for nonlinear systems of differential
equations applied in population dynamics. The advantage of dynamic iterations is
that they allow to apply implicit time integration methods without the cost of solving
nonlinear algebraic equations at each time step. We conclude that the convergence
of dynamic iterations is different if we swap the order of the nonlinear differential
equations in the given system even though the iterations are applied to the same
system. That is, only by swapping the order of the equations, we can increase the rate
of the convergence of the iterations. We also conclude that after choosing the optimal
permutation of the equations, the proposed numerical scheme based on dynamical
iterations is faster than the variable order method.
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Delay Differential Equations for
Epidemic Models with Temporary
Immunity

Roland Pulch

Abstract We consider an epidemic model with populations of susceptible, infec-
tious, and recovered (SIR). A temporary immunity is described by a system of
delay differential equation (DDEs) with a single delay. Alternatively, we introduce a
system of distributed DDEs, where a probability distribution characterises variations
in the time span for the loss of immunity. A numerical method is derived for
the distributed DDEs by a Gaussian quadrature. We present results of numerical
experiments using a beta distribution.

1 Introduction

Modelling of epidemics often applies systems of ordinary differential equations
(ODEs) for the dynamics of populations like susceptible, infectious, recovered, or
others, see [2]. A system of delay differential equations (DDEs) with a single delay
τ was proposed to incorporate a temporary immunity in [1]. Therein, a recovered
individual looses the immunity exactly after the time span τ . However, individuals
typically loose their immunity at different times in real life.

Variations or uncertainties are frequently described by probability distributions,
see [7, 9]. Thus we model the times for the loss of immunity by a probability density
function. This approach generates a system of distributed DDEs. We briefly discuss
stationary solutions of this model. The included integral can be discretised by a
quadrature rule. This discretisation yields an approximative system of DDEs with
a finite number of delays, which can be solved by existing numerical methods as
in [4]. We use Gaussian quadrature, see [6], due to an optimal property. Moreover,
each traditional probability distribution is associated to a Gaussian quadrature rule.
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This article is organised as follows. We specify the models with single delay
and distributed delay in Sects. 2 and 3, respectively. The numerical method based
on Gaussian quadrature is outlined in Sect. 4. We illustrate results of numerical
computations in Sect. 5, where a beta distribution is considered.

2 Model with Single Delay

We examine models with susceptible individuals S, infectious individuals I , and
recovered individuals R. In [1], a system of DDEs is used to include temporary
immunity. This system reads as

Ṡ(t) = −αI (t)S(t)+ βI (t − τ),
İ (t) = αI (t)S(t)− βI (t),
Ṙ(t) = βI (t)− βI (t − τ),

(1)

with infection rate α and recovery rate β. The recovered individuals loose their
immunity exactly after the time τ > 0. Let x = (S, I, R)�. Initial values x(t) =
x0(t) for t ∈ [−τ, 0] are required with a predetermined function x0 : [−τ, 0] →
[0,∞)3. An SIR model with single delay involving a birth rate as well as a death
rate was investigated in [8].

The total population isN(t) = S(t)+I (t)+R(t). It follows thatN is constant in
time. We normaliseN(t) = 1 for all t without loss of generality. Thus the population
R is neglected in an analysis. Initial values are restricted to the range [0, 1]3 now.

Stationary solutions x∗ = (S∗, I ∗, R∗)� are characterised by the condition

(β − αS∗)I ∗ = 0. (2)

There are two families of steady state solutions:

1. disease-free steady state

S∗ = σ, I ∗ = 0 for arbitrary σ ∈ [0, 1], (3)

2. endemic steady state

S∗ = β
α
, I ∗ = ι for arbitrary ι ∈ [0, 1]. (4)

If a solution of an initial value problem converges to a stationary solution, then the
values σ in (3) or ι in (4) depend on the choice of both the initial values x0 and the
parameters α, β, τ .
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3 Model with Distributed Delay

In the model (1), the assumption of a single delay represents an idealisation.
Generally, the time spans for loosing an immunity vary in real life. We propose
a system of distributed DDEs

Ṡ(t) = −αI (t)S(t)+ βJ (t),
İ (t) = αI (t)S(t)− βI (t),
Ṙ(t) = βI (t)− βJ (t),

(5)

including the integral term

J (t) =
∫ τmax

τmin

g(s) I (t − s) ds, (6)

with 0 ≤ τmin < τmax ≤ ∞ and a measurable weight function g : D → R. The
interval is either D = [τmin, τmax] for τmax < ∞ or D = [τmin,∞) for τmax =
∞. We assume that g is a probability density function associated to a probability
distribution. Hence it holds that g(s) ≥ 0 for all s ∈ D as well as

∫ τmax

τmin

g(s) ds = 1. (7)

Concerning distributed DDEs, typical choices are a uniform distribution or a gamma
distribution, see [5]. The exponential distribution can be seen as a special case of
the gamma distribution. Now initial values have to be predetermined by a function
x0 : [−τmax, 0] → [0,∞)3 if τmax <∞ or x0 : (−∞, 0] → [0,∞)3 if τmax = ∞.

We also normalise the total population to N(t) = 1 for all t . Concerning
stationary solutions x∗ = (S∗, I ∗, R∗)�, the property (7) implies J (t) = I ∗ for all
t in the integral (6). Again we obtain the condition (2). It follows that the stationary
solutions of the model (1) and the model (5) coincide.

4 Numerical Method

The numerical solution of DDEs with a single delay or a finite number of multiple
delays was discussed in [4]. We consider a distributed DDE of the type (5). The
integral (6) is approximated by a quadrature formula

J (t) ≈
k∑

j=1

wj I (t − τj ), (8)
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Table 1 Probability distributions and Gaussian quadrature rules

Probability distribution Support Quadrature rule

Uniform distribution [τmin, τmax] Gauss-Legendre

Beta distribution [τmin, τmax] Gauss-Jacobi

Exponential distribution [0,∞) Gauss-Laguerre

Gamma distribution [0,∞) Generalised Gauss-Laguerre

with pairwise different nodes {τ1, τ2, . . . , τk} ⊂ D and weights {w1, w2, . . . , wk} ⊂
R. Inserting the approximation (8) into the system (5) yields DDEs of same
dimension and k discrete delays. Now numerical methods for multiple delays can
be used.

The computation work significantly grows with the number of delays. Thus the
number k should be kept small. We apply Gaussian quadrature rules, see [6]. This
quadrature owns an optimal polynomial exactness for a fixed number k of nodes.
If the integrand (without weight function) is a polynomial of degree ≤ 2k − 1,
then the approximation is exact. Table 1 itemises the Gaussian quadrature schemes
associated to some traditional probability distributions.

5 Numerical Experiments

In the models (1) and (5), we choose the parameters α = 0.1 and β = 0.05. In the
integral (6), we apply a beta distribution, i.e., a probability density of the form

g(s) = C (τmax − s)η (s − τmin)
ν (9)

for s ∈ [τmin, τmax] with exponents η, ν ≥ 0 and a constant C > 0 for
standardisation. We always select η = 3 and ν = 1 in the following, which
implies an asymmetric probability distribution. Still τmin, τmax have to be chosen.
The expected value of the random delay reads as

μ = τmin + (τmax − τmin)
ν+1
η+ν+2 . (10)

Furthermore, we always apply the initial values

S(t) = 0.99, I (t) = 0.01, R(t) = 0 for t ≤ 0,
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Table 2 Test cases in numerical simulation

Cases Minimum τmin Maximum τmax Expected value μ

Case (i) 10 30 16.6

Case (ii) 50 90 63.3

Case (iii) 150 250 183.3

which are located close to a disease-free steady state of the form (3). The distributed
DDEs (5) are solved by the numerical method in Sect. 4, where the Gauss-Jacobi
quadrature is applied with k = 8 nodes. For comparison, we solve the DDEs (1)
with the single delay τ = μ from (10) using the above initial values.

The numerical computations were performed in the software package MATLAB,
see [3]. We used the routine dde23 to solve the DDEs with finite numbers of delays.
Three test cases were examined, which are determined by the choice of τmin, τmax
in (9). Table 2 shows these cases.

Figure 1 illustrates the numerical solutions of the DDEs. In all three cases, the
qualitative behaviour of the solutions coincides for the models (1) and (5). In case (i)
and case (ii), the transient solutions converge to an endemic steady state of the form
(4). This convergence is monotone in case (i), whereas damped oscillations occur
in case (ii). Furthermore, the models (1) and (5) yield nearly the same solutions
quantitatively. In case (iii), a Hopf bifurcation takes place and thus the solutions
converge to a periodic steady state. Now the solutions of the models (1) and
(5) exhibit small quantitative differences. We remark that quantitative differences
increase if the delay τ = μ in (1) is replaced by the centre τ = 1

2 (τmin + τmax), for
example.

6 Conclusions

We examined two SIR models including temporary immunity: a system of DDEs
with a single delay and a system of distributed DDEs. Stationary solutions of
the two models coincide. Numerical simulations show that the solutions of initial
value problems exhibit the same qualitative properties in the models. Moreover, the
solutions are often nearly identical provided that the single delay is chosen as the
expected value of the probability distribution for the random delay.
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Fig. 1 Population densities for the three test cases: model with single delay (left column) and
model with distributed delay (right column)
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Next-Gen Gas Network Simulation

Christian Himpe, Sara Grundel, and Peter Benner

Abstract To overcome many-query optimization, control, or uncertainty quan-
tification work loads in reliable gas and energy network operations, model order
reduction is the mathematical technology of choice. To this end, we enhance the
model, solver and reductor components of the morgen platform, introduced in
Himpe et al. [J. Math. Ind. 11:13, 2021], and conclude with a mathematically,
numerically and computationally favorable model-solver-reductor ensemble.

1 Model Order Reduction for Gas and Energy Networks

Computer-based simulation of gas transport in pipeline networks has been an
industrial as well as academic field of interest since the earliest scientific computing
systems [5]. Especially, the transient simulation of gas flow and the dynamic
gas network behavior are the pinnacle discipline in this regard. The MATLAB-
based morgen—Model Order Reduction for Gas and Energy Networks—platform1

continues this research by providing a modular open-source software simulation
stack for the comparison and benchmarking of models (discretizations), solvers
(time steppers), and reductors (model reduction algorithms) [3]. Beyond selecting
apposite simulator components or ranking model reduction methods, an overall
goal is the acceleration of forward simulations, so that many-query tasks relying
thereon, such as optimization, control or uncertainty quantification, benefit in terms

1 See: https://git.io/morgen
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Table 1 Available models in morgen in version 1.1

Name Identifier port-Hamiltonian? Reference

Midpoint discretization ode_mid No [3, Sec. 2.4.1]

Endpoint discretization ode_end Yes [3, Sec. 2.4.2]

Table 2 Available solvers in morgen in version 1.1

Name Identifier Comment Reference

Adaptive second order Rosenbrock generic Uses ode23s [3, Sec. 5.3.1]

First order implicit-explicit imex1 Non-Runge-Kutta [3, Sec. 5.3.3]

Second order implicit-explicit imex2 Runge-Kutta [3, Sec. 5.3.4]

Explicit fourth order Runge-Kutta rk4 [3, Sec. 5.3.2]

Explicit second order Runge-Kutta rk2hyp Increased stability [9]

Explicit fourth order Runge-Kutta rh4hyp Increased stability [6]

of performance. In this work, we summarize and enhance the foundational work
of [3] with additional details, and accompany version 1.1 of morgen.

1.1 Modules Overview

The morgen platform is organized into modules: models, solvers, reductors,
networks and tests. The networks module holds topology and scenario data, and
the tests module defines the simulation and model reduction experiments, thus, we
summarize the currently available core modules: models, solvers, and reductors.
The models module assembles a semi-discrete input-output system from a network
topology. Currently, two spatially discrete models are included (Table 1). The
solvers module computes a time-discrete output trajectory from a model and a
scenario. Six solvers are provided in the current version (Table 2). The reductors
module compresses a model given a solver and (generic training) scenario. All in
all, 23 reductors organized in four classes are available (Table 3).

2 Enhanced Functionality

In this section, we discuss some of the new properties of the morgen 1.1 platform.
Specifically, one aspect of each core module (model, solver, reductor) is addressed.
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Table 3 Available reductors in morgen in version 1.1

Name Identifier Linear variant Reference

Structured proper orthogonal decomposition pod_r – [3, Sec. 4.2]

Structured empirical dominant subspaces eds_ro eds_ro_l [3, Sec. 4.3]

Structured empirical dominant subspaces eds_wx eds_wx_l [3, Sec. 4.3]

Structured empirical dominant subspaces eds_wz eds_wz_l [3, Sec. 4.3]

Structured balanced POD bpod_ro bpod_ro_l [3, Sec. 4.4.3]

Structured balanced truncation ebt_ro ebt_ro_l [3, Sec. 4.4]

Structured balanced truncation ebt_wx ebt_wx_l [3, Sec. 4.4]

Structured balanced truncation ebt_wz ebt_wz_l [3, Sec. 4.4]

Structured goal-oriented POD gopod_r – [3, Sec. 4.5.1]

Structured balanced gains ebg_ro ebg_ro_l [3, Sec. 4.5]

Structured balanced gains ebg_wx ebg_wx_l [3, Sec. 4.5]

Structured balanced gains ebg_wz ebg_wz_l [3, Sec. 4.5]

Structured DMD Galerkin dmd_r – [3, Sec. 4.6]

2.1 Gravity Term

One component of the gas pipeline model, particularly of the retarding forces in the
mass-flux equation, is the gravity term, which accounts for increase or decrease in
momentum due to an incline in a pipeline section. In [2], this gravity term is modeled
in great detail, as it does not only consider a height difference between the pipe’s
end points, as morgen does, but also the height profile for the full run of the pipe
(see [2, Fig. 11]). Both approaches are justified, depending on the aimed accuracy
of the model, as discussed in [1]. Such pipeline height profiles can be included
into morgen by supplying a pipe as sequence of virtual pipes, each connecting two
subsequent local height extrema. In morgen 1.1, the gravity term is configurable so
it is computable based on the dynamic pressure, static pressure or not at all, whereas
the static gravity term, based on the steady-state was newly added.

2.2 Explicit Solvers

In [3], the classic explicit 4th order Runge-Kutta method rk4 was tested, as it
was employed in earlier works. Yet we found it to be not suitable for gas network
simulations. In [4], an explicit Runge-Kutta method from [9, Sec. 4] was suggested
for this application. The Butcher tableau for this explicit 5-stage, 2nd order low-
storage scheme with increased stability, is given by:
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0
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8 0 0 3
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0 0 0 0 1

This additional solver rk2hyp, as well as a 4th order Runge-Kutta method
with increased hyperbolic stability limit from [6, Sec. 4.1] (rk4hyp), were added
to morgen 1.1 and tested against various test problems. Both increased-stability
solvers allow larger time steps then rk4, specifically in conjunction with the
ode_end model, but compared to the implicit-explicit solvers imex1 and imex2,
they are still not fully competitive. However, these explicit methods could be
interesting for new implicit-explicit or predictor-corrector methods.

2.3 Gain Matching

An important quality for certain applications of model reduction, such as electrical
circuits, is the preservation of the steady-state gain (also known as DC gain), which
is the output for zero frequency input. First, we clarify that we are not discussing
the actual steady-state gain of the reduced order model, due to the centering around
the steady-state and hence, the steady-state gain match [3, Sec. 3]. Yet, there can
still be an output error for a constant input on top of the steady-state input, which
is relevant due to the assumed low-frequency boundary values. Since there is an
interpretation of gas networks as circuits [8], we consider this reduced model
property, which induces two questions: How to compute the steady-state gain, and
how to correct a gain mismatch? The former is answered by [10], stating that for
a linear port-Hamiltonian model, with components as in [3, Sec. 2.9], the gain S is
computable by:

S = CQ−1B,

with input matrix B, output matrix C, and energy storage matrix Q. Since the
models are nonlinear and do not have to be port-Hamiltonian, but comprise the same
model components, the above formula can still be applied albeit yielding only an
approximation. The per-port gain mismatch D∗ is then computed by the difference
of full and reduced-order model (reduced-order quantities are denoted by ·r ) gain:

D∗ := (CQ−1B)− (CrQ−1
r Br),

which can then be used to correct the reduced-order model gain by adding D∗
as a feedthrough matrix to the output function, as described in the gain matching
procedure in [7]. We included this approximate gain matching test to morgen 1.1.
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(a) Hypothetical network’s test scenario.
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(b) Actual network’s test scenario.
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(c) Relative 2 � 2 error between ROM
and FOM for the hypothetical network.
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(d) Relative 2 � 2 error between ROM
and FOM for the actual network.

Struct. Proper Orthogonal Decomposition (WR)
Struct. Goal-Oriented POD (WR)
Struct. Dynamic Mode Decomposition Galerkin (WR)
Struct. Empirical Dominant Subspaces (WR + WR*)
Struct. Empirical Dominant Subspaces (WX*)
Struct. Empirical Dominant Subspaces (WZ*)

(e) Common legend for the model reduction error plots.

Reductor Avg. Gain Error

pod_r 0.27 6 · 10−6

gopod_r 0.26 6 · 10−6

dmd_r 0.18 8 · 10−6

eds_ro_l 0.30 8 · 10−6

eds_wx_l 0.18 8 · 10−6

eds_wz_l 0.15 8 · 10−6

(f) (200 mach(16) ) ��(0, 1] in
the 2 Ä 2 error norm (higher means more
accurate ROM), and mean steady-state gain
error for the hypothetical network.

Reductor Avg. Gain Error

pod_r 0.19 2 · 10−5

gopod_r 0.15 1 · 10−5

dmd_r 0.15 2 · 10−5

eds_ro_l 0.24 2 · 10−5

eds_wx_l 0.04 2 · 10−5

eds_wz_l 0.03 2 · 10−5

(g) (200 mach(16) ) ��(0, 1] in
the 2 Ä 2 error norm (higher means more
accurate ROM), and mean steady-state gain
error for the actual network.

Fig. 1 Visualization of the test scenario, model reduction errors between FOM (full-order model)
and ROM (reduced-order model), MORSCORE, and gain errors of the tested ROMs for the
hypothetical network [5, Part 2] (left side) and actual network [5, Part 3] (right side). Computed
with MATLAB 2021a. See [3, Sec. 6] for a description of the plot presentation
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The gain correction was tested with all reductors (Table 3). For all reductors,
the correction was about the level of 10−5, see Tables f and g in Fig. 1, except
for the bpod_ro method, for which the gain correction fully deteriorates the
reduced model. Thus, the improvement of reduced-order models is small at best.
This is not unexpected, considering the gas network model is hyperbolic: A single
pipeline, or more generally an input-output system based on a first-order hyperbolic
partial differential equation, has the transport property which expresses as a delay
in observable outputs of controllable inputs. Hence, an immediate effect of inputs
to outputs (circumventing the system dynamics), i.e. by a feedthrough term, is
typically not needed.

3 Numerical Experiments

We extend the numerical experiments in [3], by reimplementing the results from [5],
specifically, we test the hypothetical network [5, Part 2], and the actual network [5,
Part 3], which are both tree networks, on their associated scenarios.

Six structured empirical-Gramian-based Galerkin reductors are tested on the
port-Hamiltonian endpoint model and the first order implicit-explicit solver. The
results are presented in Fig. 1. In line with other experiments, the eds_ro_l
reductor yields the most accurate results.

4 Next-Gen Gas Network Simulation

For the newly tested features we conclude that currently, explicit solvers do not
seem a viable option to simulate gas networks, while gain matching offers only
minor accuracy improvements; yet, the new static gravity term is more robust with
respect to model reduction and is henceforth the default setting in morgen.

Overall, based on the comparisons in [3] and this work’s numerical results,
we currently recommend a port-Hamiltonian model, an implicit-explicit solver,
and a Galerkin reductor. Thus, the endpoint discretization, first order IMEX
time stepper, and the structured empirical dominant subspaces reductor make a
promising model-solver-reductor ensemble for the next generation of transient gas
network simulators. Future extensions of the morgen platform will refine this
recommendation.
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Parameter Estimation via Adjoint
Functions in Epidemiological
Reaction-Diffusion Models

Peter Heidrich and Thomas Götz

Abstract The current pandemic situation due to COVID-19 demonstrates the
need for epidemiologic models to represent infection events as accurately as
possible. An important factor is the mobility of the affected individuals which can
be investigated with discrete or continuous spatial models. In this contribution,
parameter estimation via adjoint functions is presented to fit a reaction-diffusion
PDE system with epidemiological SIS model to data sets. For this purpose static and
dynamic optimization methods are used to solve an L2-norm based least squares
problem. An artificial data set is generated to test the accuracy of the procedure.
Subsequently, the PDE system is adapted to this data set using methods of optimal
control theory. Unknown parameters like diffusivity and transmission rate can be
determined. The noise in the data set is also taken into account by fitting the initial
conditions. The results show that the method is well suited for this purpose and
should be further used with real data sets.

1 Introduction

The example of the current COVID-19 pandemic clearly shows the significant
influence of mobility on the spread of a disease. Mathematical-epidemiological
models can address this using various techniques. The movement of people between
separate patches such as airports, islands, cities etc. can be represented using
Lagrangian movement for short-term stays or Eulerian movement for long-term
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migrations [5]. The modelling here is done via ordinary differential equations
(ODE). However, since this point-by-point distribution of pathogens does not reflect
reality on its own, spatial spread need to be taken into account as well. This
can be achieved with reaction-diffusion systems which contain partial differential
equations (PDE) [2, 10]. Consequently, we consider a system of the form

∂tu = κu+ f (u) ,
u = u0, t = 0 ,

∂νu = 0, x ∈ ∂� .

The goal is to fit this model to data sets. Unfortunately, several parameters are
unknown in the epidemiological context, such as the transmission rate or even the
parameters describing mobility. In addition, noisy data may be expected, for this the
initial value condition shall be adjusted.

In this contribution, a parameter estimation via adjoint functions is tested. This
corresponds to techniques from static and dynamic optimization. To investigate the
accuracy of the method, we consider an artificially generated data set. Numerical
simulations are performed to fit the model to this data set.

2 Model

In the following we consider the set � = (0, a) × (0, b) as spatial coordinates
and a time axis (0, T ) with resulting domain V = � × (0, T ). To model a spatial
spread of an infectious disease, we use an epidemiological SIS model. The resulting
reaction-diffusion system reads as

∂tS = κSS − β

N
SI + γ I , (1a)

∂t I = κII + β

N
SI − γ I , (1b)

S = S0, I = I0, t = 0 , (1c)

∂νS = ∂νI = 0, x ∈ ∂� . (1d)

The functions S, I,N ∈ C2,1(V ) represent the densities of the compartments of
susceptible (S) and infected (I) individuals and the total population density N =
S + I in coordinate x at time t .

Here, e.g. ∂tS = ∂S
∂t

stands for the time derivative of S and S = div(grad S) =
∂2S

∂x2
1
+ ∂2S

∂x2
2

stands for the Laplace operator. For the two compartments initial value

conditions are given by S0, I0 ∈ C2(�). At the boundary ∂� Neumann boundary
conditions are implied, whereby ∂νS denotes the derivative of S to the direction of
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the unit outward normal ν. In context, this means that none of the individuals leaves
the region �. We also assume that

∫
�
I (x, 0) dx > 0 holds with S0, I0 ≥ 0. We

define

N :=
∫

�

N(x, 0) dx ,

which stands for the total number of individuals at time t = 0. Due to the Neumann
boundary conditions the Gauss’s theorem delivers

∂

∂t

∫

�

N(x, t) dx =
∫

�

κSS + κII dx =
∫

∂�

κS∂νS + κI ∂νI dω = 0 .

Thus, the total population is constant with value N .
The parameters β, γ > 0 represent the transmission and recovery rates of

the corresponding disease and κS, κI > 0 the diffusivity of the corresponding
compartments. For simplicity, we assume that κs = κI holds and β, γ are constants
independent of x. For the derivation of such a model in one dimensional case and
the operation of epidemiological models, we refer to [5].

SIS-based reaction-diffusion systems as in (1) have already been studied in [1,
3, 6–9]. The existence of a global and unique solution is shown, also for cases in
which κS �= κI holds and β, γ are Hölder continuous functions over �. In [1] a
Basic Reproduction Number is established on Sobolev space H 1(�) by

R0 = sup
ϕ∈H 1(�)
ϕ �=0

( ∫
�
βϕ2

∫
�
κI |∇ϕ|2 + γ ϕ2

)

. (2)

There is shown, that if R0 < 1 holds, the unique disease-free equilibrium DFE =(
N
|�| , 0

)
is globally asymptotically stable and unstable for R0 > 1. The expression

|�| here stands for the corresponding measure. On the other hand, for R0 > 1 the
existence of a unique endemic equilibrium EE is shown.

Furthermore, we set κ := κS = κI and substitute S = N − I . If we additionally
define u := I

N
, we receive a reduced system with f (u) := β(1 − u)u− γ u

∂tu = κu+ f (u) , (3a)

u = u0, t = 0 , (3b)

∂νu = 0, x ∈ ∂� . (3c)

The simplifying assumptions and the normalization are used to test the presented
parameter fitting via adjoint functions. It is clear that in realistic situations much
more complex models should be used.
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3 Adjoint System

We now want to fit model (3) to data sets using adjoint functions known from
optimal control theory. In the epidemiological context, this means parameter
estimation of the transmission rate β > 0 and diffusivity κ > 0. The recovery
rate γ > 0 can be assumed to be the reciprocal of the average infection duration and
thus does not need to be fitted. Furthermore, we assume that the data is noisy and
therefore the initial condition u0 ∈ C2(�) has to be adjusted. In the following, the
function uDATA contains the available data points and uDATA0 the supposedly noisy
initial value of the data set at t = 0.

We introduce an objective function J : R2 × C2(�)→ R

J (β, κ, u0) := w0‖u− uDATA‖2
L2
V

+ w1(β
2 + κ2)+ w2‖u0 − uDATA0 ‖2

L2
�

. (4)

The function u stands for the solution of the reaction-diffusion PDE system (3).

The objective function includes the L2-norm ‖g‖L2
Y

:= (∫
Y
g(y)2 dy

)1/2
and

corresponding normalizing weights w0 := 1/‖uDATA‖2
L2
V

respectively w2 :=
1/‖uDATA0 ‖2

L2
�

. The convex and radially unbounded regularization term w1(β
2 +κ2)

depends on a very small choosen weight w1 whose influence is investigated in
the subsequent simulations. Assuming one already has initial guess β̂, κ̂ for the

parameters, a term of the form w1

(
(β − β̂)2 + (κ − κ̂)2

)
can be used alternatively.

This leads to a minimization problem with dynamic constraints

min
β,κ,u0

J (β, κ, u0) subject to PDE system (3) . (5)

A Lagrange function is introduced containing adjoint functions z ∈ C2,1(V )

L(β, κ, u0, u, z) :=
∫

V

g dxdt + ψ +
∫

V

z (f (u)+ κu− ∂tu) dxdt , (6)

whereby g := w0
(
u− uDATA)2

and ψ := w1(β
2 + κ2)+w2

∫
�

(
u0 − uDATA0

)2
dx.

The necessary condition for a minimum (β∗, κ∗, u∗0, u∗, z∗) is fulfilled, if

0 = ∇L := (
∂βL, ∂κL, ∂u0L, ∂uL, ∂zL

)

holds true. It should be noted that Gâteaux derivatives are needed for the deriva-
tives of L to the directions u0, u and z. This leads to the following system in
(β∗, κ∗, u∗0, u∗, z∗):
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(i) 0 = ∂βψ + ∫
V
z∂βf dxdt , (Optimality Condition)

0 = ∂κψ + ∫
V
zu dxdt ,

(ii) u0 = uDATA0 − z(x,0)
2w2

, (Optimal Initial Condition)
(iii) ∂t z = −∂ug − z∂uf − κz, (Adjoint Equation)

z = 0, t = T , (Transversality Condition)
∂νz = 0, x ∈ ∂�, (Adjoint Neumann Boundary Condition).

When L is derived in the z direction, the original PDE system (3) is recovered.

4 Numerical Simulations

From the analysis in Sect. 3, the gradient of L with respect to β and κ reads

∂βL = 2w1β +
∫

V

z(1 − u)u dxdt (7a)

∂κL = 2w1κ +
∫

V

zu dxdt (7b)

and we obtain the adjoint equation

∂t z = −2w0

(
u− uDATA

)
− z(β(1 − 2u)− γ )− κz . (8)

The latter must be solved backward in time t due to the transversality condition.
This is done using the forward-backward sweep method, see [4]. The performed
algorithm can be found in Appendix 1. Solving the PDEs is done using finite
differences

uni,j ≈
1

h2

(
uni−1,j + uni,j−1 − 4uni,j + uni+1,j + uni,j+1

)
(9)

and an explicit Euler-scheme

un+1
i,j = uni,j + τ(κuni,j + f (uni,j )) (10)

on the domain V = �× (0, T ) with � = (0, a) × (0, b). The Neumann boundary
conditions are implemented by unk+1,j = unk,j etc., if index (k, j) stands for a point
at the rectangular boundary ∂�. In the following simulations we use the setting
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• h := 0.1, τ := 0.001, a := 3, b := 2, T := 1
• xi1 = ih: i = 0, . . . , 30 x

j

2 = jh: j = 0, . . . , 20 tn = nτ : n =
0, . . . , 1000 .

To test the procedure an artificial data set is generated with initial condition

uDATA0 (xi1, x
j

2 ) := 0.02δ(0.4,0.6)(x
i
1, x

j

2 )+ 0.1δ(2,1)(x
i
1, x

j

2 ) (11)

whereby δ(x̃1,x̃2)(x
i
1, x

j

2 ) = 1, if (xi1, x
j

2 ) = (x̃1, x̃2) and else δ(x̃1,x̃2) = 0.
Subsequently, the state variable PDE (3) is solved with β := 0.3, κ := 0.2 and
γ := 0.1. The received solution is called u in the following. To simulate noisy data,
a normally distributed qni,j ∼ N (0, σ 2) is generated, so that the desired data set is
calculated by

uDATA(xi1, x
j

2 , t
n) := max

(
0, (1 + qni,j ) · u(xi1, xj2 , tn)

)
. (12)

5 Results and Conclusions

The application of the presented method is tested in three simulations with different
initial values β0, κ0. The initial value for the initial condition u0 is taken from
the desired data set uDATA. The resulting Table 1 and Fig. 1 in Appendix 2 show
adequate parameter estimates. A test run without artificial noise on the data set
resulted in the original values β = 0.3 and κ = 0.2. The simulations also show
the effect of the weight w1 of the regularization term on the minimization of
the objective function J . Despite this disturbance, better results are obtained than
without it. The prerequisite for this is a correspondingly small choice for w1 which
influences the convexity of the objective function in the respective parameters.

The present simulations show that the applied method works very well in this
toy problem with self-generated data set. In principle, the procedure is suitable to
perform such parameter estimations. In the next step, the method should be tested
with real data sets. Depending on the disease, much more sophisticated epidemio-
logical models may also be required. Mobility movements between patches, such
as daily commuting or travelling, should also be added to the model. With respect
to the PDE solution, other solution methods should also be tested, since the simple
Euler method may be numerically unstable. In addition, a simple rectangular area
was assumed in our example. In real cases, appropriate adjustments are necessary
here.
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Appendix 1

Algorithm 1 Pseudocode for the parameter estimation via adjoint functions

1: β, κ, uDATA, uDATA0 ← load initial values and data
2: u, z← solve PDE for state variable and adjoint function
3: J, ∇J ← compute objective function and gradient regardingβ and κ
4: s1 ← compute search direction forβ and κ(Quasi-Newton (BFGS))
5: s2 ← (ũ0 − u0) compute search direction for u0 with ũ0 = uDATA0 − z(x,0)

2w2
6: repeat
7: Jold ← J

8: θ ← 1
9: (β, κ)← (β, κ)+ θs1

10: u0 ← u0 + θs2
11: u, J ← update
12: repeat
13: θ ← 0.5θ
14: (β, κ)← (β, κ)+ θs1
15: u0 ← u0 + θs2
16: u, J ← update
17: until J ≤ Jold + 0.001θsT∇Jold (Armijo Rule)
18: z,∇J, s1, s2 ← update
19: until ‖J−Jold‖2‖Jold‖2

< TOL

Appendix 2

Table 1 The recovery rate is fixed with γ := 0.1. The algorithm stops with tolerance TOL :=
10−6. The original parameters of the artificial data set are β := 0.3 and κ := 0.2. The artificial
noise is generated with standard deviation σ := 0.1

Simulation β κ J w1 Iterations

β0 := 0.5, κ0 := 0.4

Best fit 0.2796 0.1994 1.16 · 10−4 10−07 242

0.2787 0.1994 1.17 · 10−4 10−08 364

0.2496 0.1988 1.65 · 10−4 10−09 197

0.2609 0.1990 1.42 · 10−4 0 240

β0 := 0.1, κ0 := 0.5

Best fit 0.2659 0.1991 1.33 · 10−4 10−08 181

0.2251 0.1983 2.36 · 10−4 10−09 364

0.2857 0.1995 1.11 · 10−4 10−10 345

0.2753 0.1993 1.20 · 10−4 0 388

β0 := 1.0, κ0 := 1.0

Best fit 0.2499 0.1988 1.64 · 10−4 10−10 314

0.2824 0.1994 1.14 · 10−4 10−11 655

0.2836 0.1994 1.11 · 10−4 10−12 555

0.2540 0.1988 1.55 · 10−4 0 304
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Fig. 1 Graphical Results for the Simulation with β0 := 1, κ0 := 1, w1 := 10−12
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Graph-Based View of an Equilibrium
Model for Nonwoven Tensile Strength
Simulations

Marc Harmening, Nicole Marheineke, and Raimund Wegener

Abstract Focus of this work is the graph-based analytical treatment of the equi-
librium model introduced in [4], which allows to determine the tensile behavior of
nonwovens over the interaction of the individual fiber connections in the material.
We use the representation of fiber structures as arbitrarily directed graphs to derive a
compact nonlinear system of equations with characteristic divergence structure and
to investigate its solvability and the uniqueness of solution. Further, we discuss the
identification of subgraphs for which trivial solutions can be found.

1 Equilibrium Model

The microstructure of nonwovens consists of thousands of fibers bonded, for
example, by thermal or chemical means. Their topology can be described by
arbitrarily oriented graphs G = (N,E), where the nodes N represent both adhesive
joints and fiber ends, and the edges E represent the individual fiber connections
between them (see Fig. 1). The spatial positions of the adhesive joints and fiber ends
(nodes) are denoted by x ∈ R

3|N|. To refer to the position of an individual node
ν ∈ N we write xν ∈ R

3. Similarly, �μ ∈ R+ refers to the (positive) length of
the fiber connection represented by edge μ ∈ E, yielding a global length vector
� ∈ R

|E|
+ .

To model the nonwoven tensile behavior, we consider the truss-based approach
introduced in [4]. Thus, we distinguish further between boundary nodes NB and
interior nodes NI , such that N = NI ∪̇NB . Thereby, the positions of the boundary
nodes are fixed, while the positions of the remaining interior nodes are determined
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Fig. 1 Graph representation.
Left: Topology of a virtually
generated nonwoven material
sample, cf. [4], with boundary
nodes highlighted in red.
Right: Simple fiber structure
constellation, where the black
lines mark fiber connections
between the nodes and the
dashed red lines indicate the
corresponding edges
representing the fiber
connections

by a force equilibrium condition that accounts for the static material behavior. For
the forces acting on the interior nodes, the model is restricted to the stresses caused
by strain on incident fiber connections, which results in the following system:

xν = gν, ∀ν ∈ NB, (1)

∑

μ∈E(ν)
fνμ(x) = 0, fνμ(x) =

tνμ(x)

‖tνμ(x)‖2
N( ε( ‖tνμ(x)‖2, �μ ) ), ∀ν ∈ NI , (2)

where gν ∈ R
3 is the position specified for node ν ∈ NB , the set E(ν) ⊂ E consists

of all edges incident to node ν and fνμ : R3|N| → R
3 expresses the force acting

on node ν ∈ NI which is caused by stress on edge μ ∈ E(ν). According to (2),
we have that fνμ acts in the normalized direction tνμ(x) = xν̃ − xν for μ = (ν, ν̃),
where the amplitude N : [−1,∞[→ R+ depends on the relative strain of the fiber
connection with respect to its length �μ, i.e., ε : R+×R

+ → [−1,∞), (l, �)  → (l−
�)/�. Thereby, N denotes the fibers’ material law for which we make the following
assumption.

Assumption 1 We have thatN ∈ C2([−1,∞),R+) and for some constant c ≥ −1
the material law satisfies N(ε) = 0 for ε ≤ c and N is strictly increasing for ε > c.

This expresses a solely elastic stress-strain behavior, as an increase in stress is
associated with further elongation of the fibers. Thereby, c is the strain from which
the fibers are under tension. For a material law using c > 0, thus, incorporating
a zero phase in the stress-strain behavior we refer to [4]. For a strictly increasing
choice, implying c = −1, we refer to [3] where crimp on the fibers is considered.

2 Graph Structure and Solvability

We consider the model (1)–(2) introduced in [4] and use the representation of
the fiber structure as arbitrarily directed graph (e.g., obtained by imposing edge
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directions according to an underlying node enumeration) to embed it in a compact
formulation with characteristic divergence structure. This allows to investigate the
solvability and the uniqueness of a solution for the equilibrium model.

Subsequently, A ∈ R
|N|×|E| denotes the underlying graph’s incidence matrix

with

Ai,j =

⎧
⎪⎪⎨

⎪⎪⎩

−1 , if νi = init(μj )

1 , if νi = ter(μj )

0 , else.

(3)

Hereby, init(μj ) refers to the start node and ter(μj ) to the end node of edge μj .
Given an arbitrary node constellation x ∈ R

3|N|, the edge vectors can be collectively
determined through

t(x) =
⎛

⎜
⎝

tμ1(x)
...

tμ|E|(x)

⎞

⎟
⎠ = (A⊗ I3)

T x (4)

where ⊗ denotes the Kronecker product, tμ(x) is the vector representing the directed
edge μ and I3 ∈ R

3×3 is the identity matrix.
In contrast to (2), let φ : R3|E| → R

3|N| denote the forces acting in normalized
edge direction expressed in terms of the edge vectors collected in t ∈ R

3|E|. That is

φ(t) =
⎛

⎜
⎝

φμ1(t)
...

φμ|E|(t)

⎞

⎟
⎠ , with φμ(t) = tμ

‖tμ‖2
N( ε( ‖tμ‖2, �μ ) ), (5)

where φμ is continuously continuable in zero for each μ ∈ E. To accumulate the
forces acting on an interior node ν ∈ NI according to (2), we add φμ if μ is an
outgoing edge, i.e., ν = init(μ), and subtract it if μ is an incoming edge, i.e.,
ν = ter(μ). This is to account for the arbitrarily imposed edge directions which
yields

∑

μ∈E(ν)
fνμ(x) = −

∑

μ∈E
Aν,μφμ(t(x)) = −(Aν,· ⊗ I3)φ((A⊗ I3)

T x). (6)

Due to (1), the fixation of the boundary nodes, the variables are the positions
of the interior nodes only. Let z ∈ R

3|NI | denote the interior node positions and
g ∈ R

3|NB | that of the boundary nodes. Thus, to express the node positions in terms
of z we introduce

xg(z) = (PI ⊗ I3)
T z+ (PB ⊗ I3)

T g (7)
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with orthogonal projections PI ∈ R
|NI |×|N| and PB ∈ R

|NB |×|N| onto the interior
nodes and boundary nodes, respectively. Then (4) can be expressed in terms of z
through

t(xg(z)) = (A⊗I3)
T xg(z) = (PIA⊗I3)

T z+(PBA⊗I3)
T g = ÃTI z+ÃTBg, (8)

where ÃI = PIA ⊗ I3 and ÃB = PBA ⊗ I3 are defined for notational
convenience. Apparently, ÃI ∈ R

3|NI |×3|E| and ÃB ∈ R
3|NB |×3|E| are the incidence

matrices containing only the rows belonging to interior nodes and boundary nodes,
respectively, that are blown up to three dimensions.

Equation (8), also, allows to express (6) in terms of z. Hence, collecting the
individual equations (6) for all interior nodes ν ∈ NI yields the nonlinear system

Fg(z) := −ÃI φ(ÃTI z+ ÃTBg) = 0, (9)

with Fg : R3|NI | → R
3|NI |, which is subsequently referred to as Network Equation

System (NES). Each interior node constellation z satisfying Fg(z) = 0, for a given
boundary node constellation g, meets the conditions (1)–(2).

Particularly noteworthy is the divergence structure in (9), which is similarly
found in the context of electrical circuit simulations [2], where the circuit topology
determines the solvability of the associated differential-algebraic equations. For the
NES, which can be embedded in a quasi-static framework to perform tensile strength
simulations, we have the following result.

Theorem 1 Let G = (N,E) be connected and let N satisfy Assumption 1. Then,
given a fixed boundary node constellation g ∈ R

3|NB |, we have that

1. There exists an interior node constellation ẑ ∈ R
3|NI | with Fg(ẑ) = 0.

2. If N is strictly increasing on [−1,∞) then ẑ ∈ R
3|NI | is an unique solution.

Proof We show the existence of a potential Eg : R3|NI | → R, which satisfies
∇Eg = −Fg. Then the existence of a minimum to Eg implies that of a solution
to the nonlinear system Fg(z) = 0 by first order optimality conditions.

For a given constellation of boundary nodes g ∈ R
3|NB | we define the fiber

structure’s potential, depending on the interior node positions z ∈ R
3|NI |, through

Eg(z) =
∑

μ∈E
�μG(ε(‖tμ(xg(z))‖, �μ)), where G(ε) =

ε∫

−1

N(s) ds.

That is the weighted sum of the potential energies of the individual fiber connections
caused by stretching them. Straightforward application of the chain rule yields
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∇zEg(z) =
∑

μ∈E
�μ
d

dε
G(ε(‖t(xg(z))‖, �μ))∇zε(‖t(xg(z))‖, �μ))

=
∑

μ∈E

tμ(xg(z))T

‖tμ(xg(z))‖N(ε(‖t(xg(z))‖, �μ))(A·,μ ⊗ I3)
T (PI ⊗ I3)

T

=
∑

μ∈E
(PIA·,μ ⊗ I3)φμ(t(xg(z)))

= ÃI φ(ÃTI z+ ÃTBg),

which shows that Fg is the negative gradient field of Eg. To verify the existence of
a global optimum we show that Eg is coercive, i.e., Eg(z)→ ∞ for ‖z‖ → ∞.

Apparently, ‖z‖ → ∞ implies ‖xv‖ → ∞ for at least one interior node ν ∈ NI .
Due to the connectivity of G, we have that any boundary node ν̃ ∈ NB is connected
to ν over a finite path P = (NP ,EP ) ⊆ G, with nodes NP = {νp0 , . . . , νpq } ⊆ N,
edges EP = {(νp0 , νp1), . . . , (νpq−1 , νpq )} ⊆ E and q ∈ N such that νp0 = ν and
νpq = ν̃. As the boundary node ν̃ ∈ NB is fixed to a given position gν̃ , we can
conclude

‖xν − gν̃‖ ≤
q∑

j=1

‖xνpj − xνpj−1
‖ → ∞, for ‖z‖ → ∞. (10)

Hence, for at least one k ∈ {1, . . . , q} it holds that ‖xνpk − xνpk−1
‖ → ∞, for

‖z‖ → ∞, as otherwise we would have a contradiction to (10). Let μ̃ = (νpk , νpk−1)

denote the respective edge in EP , then

Eg(z) ≥ �μ̃G(ε(‖tμ̃(xg(z))‖, �μ̃))→ ∞, for ‖z‖ → ∞, (11)

since Assumption 1 implies G ≥ 0 and G(ε) → ∞ for ε → ∞. Apparently, (11)
corresponds to Eg being coercive. Thus, by the continuous differentiability of Eg
we can conclude the existence of a global minimum, cf. [1].

Moreover, if N is strictly increasing on [−1,∞), then Eg is strictly convex, as

G(ε(‖tμ(x(λz+ (1 − λ)z̃))‖, �μ)) = G(ε(‖λtμ(x(z))+ (1 − λ)tμ(x(z̃))‖, �μ))
< λG(ε(‖tμ(x(z))‖, �μ))+ (1 − λ)G(ε(‖tμ(x(z̃))‖, �μ))

for λ ∈ (0, 1) and any pair z, z̃ ∈ R
3|NI | with z �= z̃. Here, the equality holds

by linearity and the inequality is explained by the fact that ε is convex and that G
is strictly increasing and convex. This implies a unique solution for the nonlinear
system Fg(ẑ) = 0, cf. [6]. ��
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3 Structural Analysis

Except for G being connected, there are no topological restriction to Theorem 1,
which is even applicable for multigraphs. This differs from typical requirements
for electrical circuit simulation, where additional structural assumptions must be
made, e.g., to avoid short circuits. However, we can exploit the topology of the fiber
structure to identify subgraphs that have a trivial solution for which the associated
equations of the NES are satisfied. This includes loose subgraphs and simple linking
nodes, cf. [4], that are subject to following discussion.

Definition 1 A connected subgraph L ⊂ G is refered to as loose if it is connected
to the remainder R = G \ L over a cutvertex νc ∈ N and if it does not contain a
boundary node, i.e., N(L) ∩NB = ∅.

Loose subgraphs can be neglected, as their constellation is determined by the
associated cutvertex. To convince ourselves of this statement, assume that L is a
loose subgraph with associated cutvertex νc and remainder R, and that the edges are
arranged so that the edges of R come first. Then we have A = [AR,AL], which
implies

ÃI = [ÃIR, ÃIL], t =
(
tR
tL

)

, and φ(t) =
(
φR(tR)
φL(tL)

)

, (12)

where the indices R and L indicate the edges, edge vectors, and acting forces
corresponding to the remainder R and the loose subgraph L, respectively. The
information regarding edges connecting the loose subgraphs to the cutvertex is
thereby included in the terms indicated by L. Accordingly, Ã = [ÃR, ÃL] for
Ã = A ⊗ I3. Then, for node constellation x ∈ R

3|N|, the NES can be split up,
since

ÃI φ(ÃT x) = ÃIRφR(ÃTRx)+ ÃILφL(ÃTLx), (13)

where the first term corresponds to the NES associated to the remainder R and the
second term to that of the loose subgraph L. Definition 1 implies that the positions
of all nodes in L are variable and that they are either incident to νc or another node
inL. Hence, for any x satisfying xν = xνc for all ν ∈ L we have x ∈ ker(ÃTL) which
implies φL(ÃTLx) = 0 with regard to (5). Hence, for this trivial constellation of
loose subgraph nodes the second term in (13) vanishes. Thus, it suffice to determine
a solution to the NES of the remainder R, which exists according to Theorem 1.

Definition 2 A node ν ∈ NI is referred to as simple linking node, if it has degree
2.

Apparently, simple linking nodes link a pair of fiber connections, that can be
treated equally as single fiber connection of cumulated length. This can be attributed
to the force equilibrium condition (2) and Assumption 1.



Graph-Based View of an Equilibrium Model for Nonwoven Tensile Strength. . . 129

For solving the NES, trivial parts of the solution can be neglected, e.g., by
removing loose subgraphs and merging fiber connections linked by a simple linking
node. Apart from such trivial parts of the solution, it may come to a lack of
uniqueness to a solution of the NES when considering a material law that is not
strictly increasing. In this case the Newton-Raphson Method may fail, for which
a diagonal perturbation of the Jacobian of Fg can be considered. This corresponds
to a Tikhonov Regularization for the minimization of Eg, cf. [5]. In the context
of nonwoven tensile strength simulations a friction-based regularization approach
was introduced in [4] to cope with the ill-posedness of the associated quasi-static
simulation approach.
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Global-Scale or Fine-Scale Modelling?
A Critical Look at Experimental Design

Jochen Wittmann

Abstract Due to the increasing spread of the object-oriented programming
paradigm, it is obvious to use a model description on the individual level as a
replacement for the traditional differential equation models also for simulation.
It promises a system-oriented specification of the model dynamics, especially for
users from the application domain. The paper shows that with such an approach,
the number of parameters describing the behaviour increases rapidly, which leads
to considerable problems in model validation and experimental design. The paper
analyses the structure of the problem, lists typical scenarios for model usage, and
discusses them concerning parametrisation and validation.

1 Micro and Macro and the Experimental Design

There are different trends concerning the development of modelling and simulation
(see some remarks in the overview in [2]), but this paper will focus just on
one of them: the availability of large amounts of data as a base for modelling,
parameterization, and validation of models. Two main points make the difference to
the situation in the past: First, a great amount (and a continuously growing amount)
of data is open accessible in the web for everybody. That is surely pushed in general
by the open data initiative and especially for the European countries by regulations
that demand free access to all the data collected and stored by government agencies.
The second point is, that there are really large datasets to exploit for modelling
and simulation purposes. The growing technical facilities to store and handle
even large datasets opens the access to data of various type, e.g. time series and
extensive geodata. So far the good news. From the methodological point of view,
these data collections might help to satisfy the demand for experimental data that
accompanies every model-based study, but in general all the disposable data sets
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had not been collected with regard to objectives of the model study but more or less
accidentally. So we observe growing amount of data, growing dimensionality of the
state space the data are collected for and thus the effect, that the data available
just points out some islands of information within the multi-dimensional ocean
of missing measurements. A more prosaic differentiation can be found in Thiel-
Clemen [1]. However, for modelling and simulation pre-planned measurements
of the complete state-space with the accuracy determined by the intention of the
model are necessary. Thus, the offer of free accessible data on different scales
has its disadvantages, too. But not only the data situation leads to multi-scale
architectures, but also the trend in modelling methodology itself: There is not
only the differential equation approach, but also object-oriented designed models,
that mirror the system’s structure in the model structure, and even individual-
oriented models with their fine-scale approach.(see e.g. [4]) Putting these different
approaches together in a common, modular-hierarchical model (like introduced by
Zeigler [5] or Eschenbacher [3]), the multi-scale/multi-dimension problems will
appear as on the data side: Here the communication and the exchange of data
between the model components has to be handled with respect to the changes in
scale. This is the problem the following article will focus on. For model develop-
ment, parameterisation, and validation a change in scale is made to close the gaps
arising by missing measurement data on the scale needed originally. The problems
on methodological level that are implied by such an experimental design shall be
discussed here. To reduce complexity the discussion is made for the situation of a
two-scale situation only. The reader might extend the analysis given to the general
n-scale problem by simply building all pairwise combinations and handling them
as the two-scale one. To understand the problems concerning working with multi-
scale models and their uncertainties (such as lack of measurements in some parts of
the expanded parameter space, difficulties in measuring the parameters on the fine,
additional modelling assumptions), we start with a view on the general design of
a modelling and simulation study based on (at least) two model components with
different scale that have to be put together into a unified multi-scale model. Both
alternatives work according to the same basic scheme: Case A is the situation for a
conventional model on global, which means here accumulated, level in specification.
The modeler and experimenter are interested in the effects of a change in a global
parameter. This parameter is set for the simulation and after the run another
parameter on global level, a global indicator variable is observed. On the other
hand, case B describes the system dynamics on the fine-scale level. Example: For
the population dynamics, a possible input parameter would be the mean number of
children a woman gets during her life, one would have to model the interactions of
the individuals and would be able to derive an individual curriculum vita for each
of the individuals. At the end, the actual number of children each individual has got
would be the observation parameter on this level. As long as these levels or scales
are only connected by trivial relations such as the summation of the number of
children, there are no problems to observe. But any interaction or relation installed
between these scales demands for sophisticated treatment as will be shown in the
following sections. At this point of the argumentation it should be emphasized that
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such an interscale-relation does not necessarily have to be an implemented inter-
scale interaction but also might be any connection on argumentative level, e.g. if the
data between the scales is compared for validation purposes.

2 Multi-Scale Experimental Design

Problems will arise if the multi-scale approach is not chosen by free decision of the
modeler or experimenter but caused by lack of information on the level of data or
on the level of model specification. Two cases can be determined: Practical reasons,
such as missing data on the scale desired, or even missing knowledge (i.e. missing
model) on the scale desired. And secondly, experimental reasons if the results of the
simulation are needed for quantities of the other scale or if the research is focused
on behavioural aspects of a scale-change in case of emergent behaviour. In all cases,
it is necessary to carefully adjust the design of the simulation experiments according
to the chosen modelling depth and the available data:

Models on Different Scales If the experimenter works and argues with two
separate models on different scale but working independently from each other, there
should be no special or additional problems of a multi-scale approach in comparison
to the usual approach. Validation and interpretation are just as normal.

Model Components on Different Scales However, if the experimenter works with
a modular-hierarchical model, the change of scale is not made after the simulation
runs in the phase of analysis and interpretation of the results, but it has continuously
be calculated during the simulation run to provide the interface between the
different-scale model components connected to each others. For every interaction
between the model components involved a scale transformation becomes necessary.
Thus, these transformations should be treated with respect to their specification on
the value-scale as well as on the time-scale.

Data Transformation Between the Scales There is one observation which appears
from the simple description of the experimental set-up described so far: During
the simulation run a fine-scale model produces the curriculum vitae of the set of
individuals under observation. If the experimenter is interested in more general
model quantities, a recalculation and evaluation of those raw data will be necessary.
This argumentation implies a change of modelling scale for data evaluation and
interpretation (i.e. from level A to level B) concerning the two alternative scenarios
introduced in Fig. 1. Similar and more complicated transformations from one level
to the other can be necessary in a number of simulation experiments that deal
with fine-scaled models. A typical example would be the individual-based approach
where fine-scale parameters have to be determined by measured data on global
scale; e.g. an individual weight of the model individuals is determined by a
measured weight distribution on global scale. In general, the change of scales or
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Alternative A:

Alternative B:

global
parameters

fine-scale
parameters

model on
aggregated level

model on
detailed level

T1

T2

global
indicators

fine-scale
indicators

T3

T4

Fig. 1 Possible transformations between the scales during experimentation

levels is successfully applied if missing information on the one scale is replaced
by or can be derived from well-known information on the other scale. Such a
scale change can be done on the input-side as well as on the side of the outputs.
So far there are no problems in the experimental set-up and the situation can be
recapitulated graphically by Fig. 1 with transformations T1 to T4. To anticipate the
crucial point: The difficulties will arise when the model has to be validated and
the situation escalates if there is a lack of comprehensive system data. Usually,
the transformations from the individual scale to the global scale are evident and
easily to execute. In this direction, there exist data on detail level, which have
to be aggregated to a more general, often statistical parameter value on global
level. Transformations in the other direction are not possible without at least two
further assumptions: First, the type of distribution of the parameter transformed (e.g.
uniform, normal, ...), and second the parameters of the distribution, such as mean
value, variance, ... But even the very simple transformation of type T4 (individual
scale to global scale) might be more than a simple summation and has to be
considered with carefulness. An example: The individually collected voices during
an election could be weighted. Therefore, an additional set of weight-parameters
has to be specified for the model and the corresponding aggregation function has to
be calculated for a correctly executed level change. The specification of the scale-
change demands more detailed specification. If the scale-change is used because
of a lack of information, we see the crux for the experimenter. He has exactly to
specify transformation details at a place in the model where there is uncertainty.
And naturally, the uncertainty on specification level will cause uncertainty on the
level of simulation results. The methodological problem of these parameters is that
their values cannot be acquired separately. If it would be possible to do so, the
transformation and the scale change would not have been necessary. In the example:
If one knows the individual parameters on fine-scale, there would be no need for a
change of scale to derive the fine-scale parameters from global scale ones. On the
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other hand, proper parameter identification needs measurements on both scales to
identify the transformation parameters first and to calculate their values afterwards.
This is an inherent contradiction of the experimental design. It is caused by the
situation of system data and will not be dissolved by additional data acquisition in
the real system. Again for the example: The distribution parameters of the global
scale can only be known if there are observations on individual scale, too. For
the modelling and simulation it follows: A separate validation of the assumptions
concerning transformation parameters and their values is not possible. They have
to be an additional task within the global model validation process. Thus, the
model experiments have to be designed in a manner that the model results are
independent of these transformation parameters to have a proper distinction between
the influence and effects of the transformations and their parameters and the effects
of a change in the model parameters which in fact are under observation. It is
obvious that the additional parameters make the study much more complex and
the intended direct causality between the experimental parameters and their effects
becomes more and more difficult to extract.

3 The Experimental Design Problem for Multi-Scale Models

So far, the need for sophisticated statistical methods for validation has been
elaborated. Furthermore, it is obvious that it will not be possible to validate the
additional parameters separately, because there are no (or at least: not enough)
system data on the desired scales. In this situation, four possible and typical
experimental designs shall be analysed with regard on a feasible model validation.

Only Fine-Scale Behaviour Under Observation To be accurate, only the data
on fine-scale-level are observed. There is no aggregation of the data at all. Any
aggregation would be interpreted as a change to the global scale and would imply
the necessity of a transformation of type T4 with the corresponding parameters and
difficulties. This leads to the next scenario:

Structural AdequateModels for Global Processes The motivation for this design
variant comes from model description methodology: There exists the presumption
that a model code as well as a program code is easier to understand and more
efficiently to maintain if its structure mirrors the real world structure of the modelled
system. If there is a lack of information concerning parameters on the individual
level, there are lots of additional hypotheses concerning type and parameter values
of the transformations to calculate and validate, a task that has to be solved by data
collected on the aggregated scale solely. Thus, a serious validation for this kind of
models succeeds only with huge effort in statistical determination of the missing
parameters.
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Measurements Are Not Possible on the Desired Scale of Model Description
This scenario is very similar to the preceding one; however, in this case the
experimenter has no choice between the alternatives in scale because a missing
access to the data on the one level forces him/her to substitute the missing
information by investigations on the other one.

Investigations on Emergent Behaviour It is evident that the use of aggregated
scales is useless and the use of fine-scaled models is inevitable in this case. Here,
the experiment focuses on one of our transformations: The purpose of the model
is to describe individual behaviour on fine-scale, let the individuals interact, and to
observe behaviour of the group of individuals that has not been specified explicitly
on the local level. The change of level is the trick: input on local, measurement
of output on global scale. There is no transformation specification in the form of
rules or functions! In contrast, the observations on global level are generated by
the behaviour specification on local level exclusively. In real world applications
the investigations on emergent behaviour naturally are superposed by the problems
in getting proper system data on the scale used for modelling. Therefore, very
often level transformations are necessary to avoid data lacks. These transformations
have to be parameterised and validated as described before. To prove real evident
behaviour properly it is inevitable to separate the effects of the transformation from
the observations made to prove the emergent behaviour.

4 Conclusion

The paper tries to give a structure to discuss the problems dealing with uncertainties
caused by a multi-scale approach in modelling by mentioning the separate data
transformation steps within the global and the local modelling level and between the
scales themselves. Of special interest is the discussion, how to use the information
available for model-validation purposes. It emphasises that each change of scale
causes a transformation with additional parameters for its own that normally have
to be determined by additional statistical experiments. If these experiment are
not executed, additional uncertainty concerning the values of those additional
parameters is brought into the argumentation. A comparison of results gained by
models on the different scales may be interesting, however, its statistical value
for validation and interpretation of possibly appearing effects is negligible. The
proposed scheme does not provide an algorithm to solve the problems in using
multi-scaled models but it tries to make the typical structures of argumentation using
such models transparent by giving a simple discussion for the two-scale-problem
and tries to give a guideline for the discussion of critical aspects and common
problems using such types of models. Obviously, the problem demonstrated here
with two scales only, has to be widened if a model is composed of more than two
different scales. Then the scale-change argumentation has to be applied pairwise to
all scale-changes used.
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An Isogeometric One-Dimensional Model
for Developable Flexible Elastic Strips

Benjamin Bauer, Michael Roller, Joachim Linn, and Bernd Simeon

Abstract This paper aims at introducing a kinematical reduction for Kirchhoff-
Love shells with developable base surfaces that undergo isometric deformations.
This framework is appropriate to model, for example, flexible flat cables. In order to
decrease the involved number of degrees of freedom, we utilise kinematical reduc-
tion to a geodesic line and a vector field along this curve. Application of a relatively
parallel frame allows us to generalise this framework to a more general class of
curves that may exhibit points or segments of vanishing curvature. We derive the
one-dimensional bending energy functional for a rectangular strip, combine it with
penalty terms addressing the nonlinear constraints, and compute the equilibrium
state as minimiser of this penalised energy. An isogeometric discretisation yields
finitely many degrees of freedom for the inner point optimiser. Several example
strips clamped at both ends illustrate the feasibility of this approach.

1 Introduction

Thin sheet-like components belong to the most frequently used structural parts
in engineering applications. For example, flexible flat cables are of considerable
interest in the development of consumer electronics. In order to model their high
flexibility and elastic behaviour, the digitalisation of industrial processes relies on
physically correct models and efficient numerical methods.

Classical shell theories [1] model thin-walled objects based on their centre
surface, thereby reducing both number of involved degrees of freedom and numer-
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ical costs. Fosdick and Fried [4] collected approaches to continue this idea of
dimensional reduction for base surfaces, which can be flattened to the plane
without change of metric: so-called developable surfaces. Sadowsky [10] and
Wunderlich [14] considered the analytic integration of the bending energy of such an
infinitesimally narrow strip along its width dimension. Starostin and van der Heijden
[11] recently proposed a one-dimensional model for bands. They represent the base
surface of a Kirchhoff-Love shell by a rectifying developable (RD) of its centre
curve.

In Sect. 2, we avoid the strict requirements of a Frenet frame for this approach
and generalise the concept of RDs to curves which may inhibit singularities in
the form of vanishing curvature. A relatively parallel frame [2] (in literature also
called rotation minimising frame, parallel transport frame or Bishop frame) allows
us to decompose the director of the developable and thereby ruled surface. As we
consider isometric deformations of the centre surface, the stored energy function
consists only of the bending energy. We analytically integrate this energy along the
width dimension and end up with a result similar to [14] in Sect. 3. An interior
point optimiser [13] then computes the static equilibrium state under geometric
boundary conditions where the highly non-linear constraints are addressed by a
penalty method. Section 4 describes these numerical details and we display and
discuss our results in Sect. 5.

2 Generalised Rectifying Developable Surfaces

Every developable surface is ruled, that means for length L it can be represented
by a regular base curve γ : [0, L] → R

3 parametrised by arc-length and a director
vector field d : [0, L] → R

3 in the form

φ : Q→ R
3, (s, v)  → γ (s)+ vd(s) (1)

with parameters in

Q = {(s, v) | 0 ≤ s ≤ L, v1(s) ≤ v ≤ v2(s)}.

Note that, in general, the interval bounds v1, v2 for v are allowed to vary with respect
to the first parameter s.

A ruled surface is developable if and only if the determinant formed by curve
tangent t, director and director derivative det[t,d,d′] vanishes everywhere along
the curve [12, chap. 5.5]. Following the notation of [12], we indicate derivatives
with respect to the arc-length parameter s of γ with a prime as in d′ and general
derivatives with a dot as in ḋ.

The rectifying developable surface (RD) of a curve is the envelope of rectifying
planes, i.e. those planes spanned by the curve tangent and the Frenet binormal. By
this construction, the curve is a geodesic on its RD and the surface is developable
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[12]. Paired with linear independence of director and curve tangent, these properties
are characteristic for the RD [6, Proposition 4.1]. However, this framework requires
a well-defined Frenet frame. For generalisation let Ck(X;Y ) denote the space of
k-times continuously differentiable functions from X to Y .

Definition 1 Let γ ∈ C2([0, L];R3) be a curve and d ∈ C1([0, L];R3) a vector
field. Then we refer to the ruled surface φ constructed by (1) as generalised
rectifying developable (GRD) if all subsequent conditions are fulfilled:

(a) φ is developable,
(b) γ is a geodesic on φ and
(c) curve tangent t and director d are pointwise linear independent.

Condition (b) is equivalent to a vanishing geodesic curvature κg of γ within φ [3].
From now on, we will always assume γ and d to be of the smoothness required by
Definition 1.

Note that the three conditions allow the director to scale arbitrarily. In order to
parametrise a rectangular strip with non-varying width 2w, the bounds v1, v2 then
need to adapt to the director length. However, they may be chosen constant as −v1 ≡
w ≡ v2 if and only if the projection of the director to the normal plane is of unit
length, i.e. ‖d− (t · d)t‖ ≡ 1. The sign ≡ denotes pointwise equality for all s ∈
[0, L]. We end up with a system of equations representing the requirements for the
GRD:

det[t,d,d′] ≡ 0, κg ≡ 0, ‖t× d‖ ≡ 1. (2)

Additionally, we pay attention to singularities induced by intersection points of
rulings. These form the so-called edge of regression (cf. [12, chap. 5.1]). Let the
director be decomposed along a relatively parallel frame (t,m1,m2) [2] as

d ≡ d0t+ d1m1 + d2m2. (3)

Such a frame exists even for curves with slightly lesser smoothness requirements
[7]. The strip width is bounded by the minimum value of |d ′0|−1 and, vice versa,
the absolute value of d ′0 needs to be bounded by 1

w
. With the decomposition (3) of

the director, the requirements for the GRD (2) may be formulated in terms of the
director coordinate functions di and the curvature components k1, k2 with respect to
the relatively parallel frame:

det[t,d,d′] ≡ d1
(
d ′2 + d0k2

)− d2
(
d ′1 + d0k1

) ≡ 0 (4a)

κg ≡ d1k1 + d2k2 ≡ 0 (4b)

‖d− (t · d)t‖2 ≡ d2
1 + d2

2 ≡ 1 (4c)
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3 The Elastic Bending Energy

Consider a rectangular GRD φ of its centreline γ parametrised by (1) where the
director fulfils (2). Since we consider isometric deformations of the centre surface,
there is no membrane energy involved and the stored energy functional consists
only of the shell bending energy. We mimic the steps of [11, Sect. 3] and derive the
one-dimensional energy functional for homogeneous isotropic material and plane
stress-free reference configuration

� = D

2

∫∫

φ

H 2dA = D

2

∫ L

0
(d1k2 − d2k1)

2
(
d2

0 + 1
)2
∫ w

−w
1

1 + vd ′0
dv ds

= Dw
∫ L

0
(d1k2 − d2k1)

2
(
d2

0 + 1
)2
V (wd ′0) ds.

(5)
Here, D denotes the flexural rigidity of the isotropic material, H the mean

curvature and

V (wd ′0) ≡
1

wd ′0
log

(
1 + wd ′0
1 − wd ′0

)

≡ 1 +O((wd ′0)2)

gives the small width approximation term which may be neglected under linearisa-
tion about an infinitely narrow band [14].

4 The Numerical Model

Based on the implicit formulation for GRDs from Sect. 2 we minimise the energy
functional (5) regarding the constraints (4) and the regularity condition

∣
∣d ′0

∣
∣ < 1

w

everywhere. The base curve γ and the director field d constitute the degrees of
freedom, where latter is represented by the coefficient functions di .

The condition (4c) yields the existence of an angle σ such that d1 ≡ − sin σ
and d2 ≡ cos σ . Geometrically, σ denotes the angle between relatively parallel and
Frenet frame wherever latter exists.

In order to solve the underlying optimisation problem, we discretise γ , d0 and σ
by isogeometric curves of identical basis functions. Based on the number of control
points n + 1 and the degree p chosen by the user, a clamped knot vector U =
[u0, . . . , un+p+1] with

0 = u0 = . . . up < up+1 ≤ · · · ≤ un < un+1 = · · · = un+p+1 = L

defines the family of B-Spline basis functions {Ni,p : [0, L] → [0, 1] | i =
0, . . . , n}. For details on the construction and properties confer [9]. A B-Spline
curve β in q dimensions then reads
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β : [0, L] → R
q, u  →

n∑

i=0

Ni,p(u)pi ,

where pi ∈ R
q are the control points, which become the degrees of freedom for our

approach. The construction of rational B-Spline curves, which we employ for the
discretisation of γ , may again be looked up in [9].

A penalty approach addresses the highly nonlinear constraints (4a),(4b) and
prevention of tensile stress:

min
γ ,d0,σ

�+ λ1 + λ2!+ λ3�,

 =
∫ L

0
det[t,d,d′]2ds, ! =

∫ L

0
κ2
gds, � =

∫ L

0

(‖ .
γ ‖ − 1

)2
du.

In this formulation, λ1 → ∞ ensures developability, λ2 → ∞ maintains the
geodesic property of γ and λ3 → ∞ enforces the inextensibility of the centre curve.

5 Results and Conclusion

We test the model described in the previous section on several benchmarks. Each
time, the input consists of a flat reference geometry positioned such that length
and width align with x- and y-axis, respectively. Furthermore, we specify geometric
boundary conditions in the end points.

The automatic differentiation library autodiff [8] provides gradients and Hessian
matrices. The interested reader may confer [5] for theoretical details on this method.
The interior point optimiser IPopt [13] takes on the minimisation with respect to
boundary conditions.

Figure 1 illustrates an example where position, tangent and director in the first
end point (u = 0) remain fixed. Then the second end point (in u = L) is dragged
both upwards in z-direction and towards the first end point in x-direction, leaving

Fig. 1 Equilibrium
configuration under
symmetric boundary
conditions
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the tangent fixed but the director free. Under these boundary conditions, the problem
reduces to two dimensions where the director is transported parallelly along the
plane curve. Note that the method does not struggle with the equivalent buckling
state resulting from point reflection and automatically converges to the equilibrium
closer to the initial state.

For the second example, we switch both tangents upwards and drag the second
end point close to the first. As before, the boundary conditions allow for a planar
generator curve. The resulting circular shape is depicted in Fig. 2. This use case
demonstrates that the model may cope with large deformations without having the
user to specify intermediate steps.

The boundary conditions of the third use case enforce a spatial generator curve.
Additionally to the movements of the first example, we translate the second end in
y-direction and let the corresponding tangent point in this direction, as well. Figure 3
illustrates the resulting equilibrium state.

Although all examples yield suiting equilibrium states, the model proves itself to
be ill-conditioned and susceptible to slow convergence. The condition numbers of
the Hessian matrix within the last iteration for the three examples read 1.8 · 1020,
1.2 · 1017, 2.1 · 1017 respectively. Thus, real time applications require future work
on the numerics in order to speed up the solution process. Furthermore, gradients
may theoretically be derived by solving an ordinary differential equation related to
the relatively parallel transport of normal vectors in order to abstain from automatic
differentiation.

Fig. 2 Circular equilibrium
configuration after large
deformation
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Fig. 3 Example with non-planar centre curve

References

1. Bischoff, M., Wall, W.A., Bletzinger, K.-U., Ramm, E.: Models and Finite Elements for Thin-
walled Structures. Encycl. Comput. Mech., 172, 59–137 (2004)

2. Bishop, R.L.: There is More than One Way to Frame a Curve. Am. Math. Mon. 82(3), 246–251
(1975)

3. do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs,
New Jersey (1976)

4. Fosdick, R., Fried, E.: The Mechanics of Ribbons and Möbius Bands. Springer, Netherlands
(2016)

5. Griewank, A., Walther, A.: Evaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation. SIAM (2008)

6. Izumiya, S., Takeuchi, N.: New Special Curves and Developable Surfaces. Turk. J. Math. 28,
153–163 (2004)
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A Hybrid DEIM and Leverage Scores
Based Method for CUR Index Selection

Perfect Y. Gidisu and Michiel E. Hochstenbach

Abstract The discrete empirical interpolation method (DEIM) may be used as an
index selection strategy for formulating a CUR factorization. A notable drawback of
the original DEIM algorithm is that the number of column or row indices that can be
selected is limited to the number of input singular vectors. We propose a new variant
of DEIM, which we call L-DEIM, a combination of the strength of deterministic
leverage scores and DEIM. This method allows for the selection of a number of
indices greater than the number of input singular vectors. Since DEIM requires
singular vectors as input matrices, L-DEIM is particularly attractive for example
in big data problems when computing a rank-k SVD approximation is expensive
even for moderately small k since it uses a lower-rank SVD approximation instead
of the full rank-k SVD. We empirically demonstrate the performance of L-DEIM,
which despite its efficiency, may achieve comparable results to the original DEIM
and even better approximations than some state-of-the-art methods.

1 Introduction

Data sets are often represented by large matrices. In recent times, with the growth
of the internet (industrial) data matrices are big and may be hard to manage.
Examples of such data sets include text documents, customer databases, stocks,
and financial transactions. In many data analyses, we need dimension reduction and
for many applications, we need interpretable dimension reduction of which a CUR
decomposition is one form. A CUR factorization is a low-rank matrix approximation
proposed as an alternative to the TSVD to ensure interpretability and preserve
relevant properties like sparsity or nonnegativity of the underlying matrix. A rank-k
CUR decomposition of an m× n matrix A has the form
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A ≈ CMR = AP ·M · ST A,
where C ∈ R

m×k and R ∈ R
k×n are subsets of the columns and rows of

A, respectively. The matrices P ∈ R
n×k and S ∈ R

m×k are index selection
matrices with some columns of the identity indicating the columns and rows that are
picked. The matrixM is constructed to minimize the approximation error. There are
several variants of this decomposition, which implies that the three factors are not
necessarily unique. In [7, 9] the authors present algorithms for a CUR factorization
based on a rank-k singular value decomposition. Sorensen and Embree [9] propose
a CUR approximation using a discrete interpolation method (DEIM) on the rank-k
singular vectors. The index selection method DEIM has first been introduced in the
context of model order reduction [1]. In [9], it is shown to be a viable index selection
method for identifying the most representative and influential subset of columns
and rows that define a low-dimensional space of the data. The DEIM-induced CUR
requires the computation of the SVD or its approximation. A notable limitation of
this index selection algorithm is that the number of indices that can be selected is
limited to the number of available singular vectors. In an attempt to address this,
we propose a new extension called L-DEIM. The L-DEIM scheme combines the
strengths of deterministic leverage scores sampling [8] and the DEIM procedure.
Our new approach is an alternative index selection method that is particularly
attractive in a setting (for example big data problems) where we want a rank-k CUR
decomposition and computing a rank-k SVD approximation is expensive even for
moderately small k. This new algorithm allows us to select k indices without having
to compute the full rank-k SVD by using a lower-rank SVD approximation instead.
It may be viewed as an approach to reuse the same information to further improve
the approximation.

We denote the 2-norm by ‖·‖. We use MATLAB notation to index vectors and
matrices; thus, A(:, p) denotes the k columns of A whose corresponding indices are
in vector p ∈ N

k+.

2 Related Works

In this section, we briefly review some state-of-the-art deterministic algorithms for a
CUR decomposition. These algorithms have been developed for the column subset
selection problem or interpolative decomposition, but can be generalized for a CUR
decomposition. We derive our proposed algorithm L-DEIM by combining two of
the algorithms.

2.1 Standard DEIM

The DEIM is a discrete variant of the empirical interpolation method for approx-
imating systems of nonlinear ordinary differential equations. In a recent paper by
Sorensen and Embree [9], the authors use this method in the formulation of a CUR
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decomposition. The DEIM algorithm requires a full rank-k SVD of A to select at
most k column and or row indices of A. To illustrate how the indices are selected
via the DEIM index selection method, we first define a projector which the authors
in [1] called an interpolatory projector. Suppose we want to preserve k rows of A
and we have the rank-k approximation of A as

A ≈ U F,

m× n m× k k × n

where U contains the top k left singular vectors. The matrix F is a coefficient
matrix to be defined such that the above approximation preserves exactly the
desired k rows of A. Let s ∈ N

k+ be an index vector with unique entries from
the row index set {1, . . . , m} of A. Now let S ∈ R

m×k be an index selection
matrix with some columns of the identity matrix that selects certain rows of A, i.e.,
S = I (:, s). Assuming we want to keep desired rows in s in the approximation,
viz., ST A ≈ ST (UF). If ST U is nonsingular, the coefficient matrix F can be
determined uniquely; F = (ST U)−1STA. This impliesA ≈ U(ST U)−1STA = SA.
The operator S is the DEIM interpolatory projector, an oblique projector. The name
interpolatory comes from the fact that the projected matrix SA matches A in the s
entries. Note that we can obtain a similar projector using the right singular vectors.
The DEIM algorithm processes the left singular vectors sequentially starting with
the first dominant singular vector. Each step considers the next singular vector to
obtain the next index. The selected indices are used to compute the interpolatory
projector S. The next index is selected by removing the direction of the interpolatory
projection in the previous vectors from the subsequent one and finding the index of
the entry with the largest magnitude in the residual vector (for more details see [9]).

In [2], Drmac and Gugercin proposed the Q-DEIM; a variant of DEIM which
runs a column pivoted QR factorization on the transposes of the right and left
singular vectors to select the column and row indices, respectively.

2.2 Deterministic Leverage Score Sampling

Part of the new extension borrows an idea from the leverage scores of a matrix A,
which is defined below. We denote the ith row of Vk by [Vk]i,:.
Definition 1 Given a matrix A ∈ R

m×n with rank(A) ≥ k, let Vk contain its k
leading right singular vectors. The rank-k leverage score of the ith column of A is

�i = ‖[Vk]i,:‖2, i = 1, . . . , n.

The deterministic leverage score sampling procedure selects columns of A corre-
sponding to the indices of the largest leverage scores for a given k. This deterministic
column selection method proposed by Jolliffe [6] is one of the first column subset
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selection algorithms. The leverage score sampling algorithm can extract at least k
column indices of A and the upper bound on the number of indices that can be
selected is not immediate. For more details on the algorithm and the bound on the
number of columns to be sampled see, [8, Sect. 3.1].

3 L-DEIM

We now introduce the new extension of DEIM. Our starting point is the method from
the earlier work [9], which derives a rank-̂k CUR factorization by applying DEIM
to the k̂ singular vectors. Given the promising results of this algorithm compared
to other state-of-the-art methods for a CUR approximation, our proposed algorithm
builds on the DEIM procedure. Constructing a rank-̂k CUR decomposition using
L-DEIM requires a rank-k singular vectors where k̂ > k. The integer k is the
number of available (approximate) singular vectors, while k̂ is the number of indices
to be selected. To select the k̂ indices, the proposed method performs the original
DEIM to find the first k indices while keeping the residual singular vector in each
index selection step of the DEIM procedure. The residual singular vector is the
error between the input singular vector and its approximation from interpolating the
previous singular vectors at the selected indices; as in line 2 of Algorithm 1.1 At
the end of the iteration, using the idea of leverage scores, we compute the 2-norm
of the rows of the residual singular vectors to select the additional k̂ − k indices.
The procedure is summarized in Algorithm 1. Note that the vectors in U in line 3 of
Algorithm 1 are the residual singular vectors and not the original singular vectors.

Algorithm 1: L-DEIM index selection

Input: U ∈ R
m×k and V ∈ R

n×k , target rank = k̂, with k ≤ k̂ ≤ min(m, n)
Output: column and row indices s,p ∈ N

k+, respectively, with non-repeating entries
forj = 1, . . . , k

1 : s(j) = argmax1≤i≤m |(U(:, j))i |
2 : if j < k;U(:, j + 1) = U(:, j + 1)− U(:, 1 : j) · (U(s, 1 : j) \ U(s, j + 1))
3 :Compute �i = ‖[U ]i:‖ for i = 1, . . . , m; sort � in non-increasing order
4 :Remove entries in � corresponding to the indices in s
5 : s′ = k̂ − k indices corresponding to k̂ − k largest entries of �
6 : s = [s; s′]
7 :Perform 1–6 on V to get index set p

1 Note that the backslash operator used in the algorithm is a Matlab type notation for solving linear
systems and least-squares problems.
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From Algorithm 1, if k̂ = k then the algorithm reduces to the standard DEIM. We
note that if the target rank is not specified, given k, we can select at least k indices
but the upper bound on the number of indices to be selected is not immediate; we
can select an arbitrary number of indices. Similar to leverage scores sampling, the
L-DEIM allows for oversampling of columns and or rows.

Error Bounds Let us consider a fixed matrix A ∈ R
m×n with rank ρ ≤ min(m, n).

For an arbitrary k with 1 ≤ k ≤ ρ, the best rank-k approximation ofA (Ak) provided
by the SVD gives ‖A− Ak‖ = σk+1(A) where σk+1 is the (k + 1)st singular value
of A. Suppose that we have a known target rank k < min(m, n), a good rank-
k̂ approximation Ak̂ gives ‖A− Ak̂‖ ≤ τ ‖A− Ak‖, where τ > 0 is a modest
tolerance and k ≤ k̂ ≤ r is the rank of the decomposition with oversampling. The
following result unifies the theoretical bound results for ‖A− CMR‖ in [9, Sect. 4]
and [5, Append. 1].

Proposition 1 (See [9, Sect. 4], [5, Append. 1]) Given A ∈ R
m×n and 1 ≤ k ≤

k̂ ≤ min(m, n), let S ∈ R
m×k̂ , P ∈ R

n×k̂ be index selection matrices and the top
k left and right singular vectors be U ∈ R

m×k and V ∈ R
n×k , respectively. Let

C = AP ∈ R
m×k̂ and R = ST A ∈ R

n×k̂ be of full rank, assuming we computeM
as (CT C)−1CT A RT(RRT )−1 and ST U and V T P are of full rank we have

‖A− CMR‖ = [σ−1
min(V

T P )+ σ−1
min(S

T U)] · σk+1.

The above error bounds suggest an index selection method which minimizes the
quantities σ−1

min (V
T P ) and σ−1

min (S
T U) is theoretically desirable.

4 Experiments

We perform some experiments to compare the approximation quality and runtimes
of the new method L-DEIM with the existing deterministic methods discussed in
Sect. 2. We use the relative error ‖A− CMR‖/‖A‖ and runtimes for selecting
the column and row indices as the evaluation criteria. Note that the runtimes
reported here do not include the time for computing the singular vectors. We run the
algorithms on three real data sets used in [7, 9]. The application domains of the data
sets are Internet term document analysis, genetics, and collaborative filtering. The
Internet term document data is from the Technion Repository of Text Categorization
Datasets (TechTC). We use test 26, which consists of a collection of 139 documents
on two topics with 15,210 terms describing each document [3]. As in [9], the
139 × 15,210 TechTC matrix rows are scaled to have a unit 2-norm. We take the
cancer genetics data set GSE10072 from National Institutes of Health. This data set
has 107 patients described by 22,283 probes. There are 58 patients with tumors and
49 without. We center the 22,283×107 genetics data matrix by subtracting the mean
of each row from the entries in that row. The final data set is the Jester joke data set
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Fig. 1 The approximation quality (first row) and runtimes (second row) of the L-DEIM scheme
compared with the standard DEIM, Q-DEIM, and leverage scores sampling techniques using the
three real data sets. Displayed are the relative errors ‖A− CMR‖/‖A‖ and runtimes as a function
of rank k. (a) Jester jokes data. (b) Cancer genetics data. (c) TechTC text data

[4], which is often used as a benchmark for recommender system research. The data
matrix consists of 73,421 users and their ratings for 100 jokes. We only consider
users who have ratings for all 100 jokes. We center the resulting 14,116 × 100
matrix by subtracting the mean of each column from all entries in that column.

From Fig. 1, we see that the approximation quality of the proposed method
L-DEIM is as good as the original DEIM while the L-DEIM enjoys favorable
runtimes. Both DEIM and L-DEIM have considerably lower approximation error
than the other methods. The leverage scores sampling using two singular vectors
seems to be the most efficient; however, we note that there is a trade-off between
the runtimes and approximation quality. We show results of the leverage scores
method using only the leading two singular vectors since higher choices yield worse
approximation results.

5 Conclusions

We have presented a new extension of the DEIM index selection algorithm (L-
DEIM) to identify additional indices for constructing a rank-̂k CUR decomposition
using a lower-rank SVD approximation. This is especially useful in a setting (for
example big data problems) where computing a full rank-̂k SVD is relatively
expensive. The algorithm may be viewed not only as an extension of DEIM but
also as an alternative index selection method for a CUR factorization. The L-DEIM
procedure may also be suitable for point selection in the context of model order for
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nonlinear dynamical systems. Although the proposed algorithm is computationally
more efficient than the original DEIM, experiments show that the approximation
accuracy of both methods may be comparable when the target rank k̂ is at most
twice the available k singular vectors. For all results presented in Sect. 4, we assume
that given a target rank k̂, 2k = k̂ in Algorithm 1. From experiments not presented
here, if k̂ > 2k in Algorithm 1, then the rank-̂k CUR approximation quality of the
L-DEIM procedure which uses k singular vectors may generally be worse than the
rank-̂k CUR factorization quality of the standard DEIM scheme which requires k̂
singular vectors. However, we stress that the L-DEIM is considerably cheaper. A
code for L-DEIM is available on https://github.com/perfectyayra/L-DEIM-index-
selection.
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Data-Driven Modeling and Control of
Complex Dynamical Systems Arising in
Renal Anemia Therapy

Sabrina Casper, Doris H. Fuertinger, Peter Kotanko, Luca Mechelli,
Jan Rohleff, and Stefan Volkwein

Abstract This project is based on a mathematical model of erythropoiesis for ane-
mia (Fuertinger, A model of erythropoiesis. PhD thesis, Karl-Franzens University
Graz, 2012; Fuertinger et al., J Math Biol 66(6):1209–1240, 2013), which consists
of five hyperbolic population equations describing the production of red blood cells
under treatment with epoetin-alfa (EPO). Extended dynamic mode decomposition
(EDMD) is utilized to approximate the non-linear dynamical systems by linear ones.
This allows for efficient and reliable strategies based on a combination of EDMD
and model predictive control (MPC), which produces results comparable with the
one obtained in Rogg et al. (J Math Biol 79:2281–2313, 2019) for the original
model.

1 Introduction

Almost all hemodialysis patients suffer from chronic anemia, due to the reduced
functionality of the kidneys and the resulting low production of erythropoietin, a
kidney-derived hormone that increases red blood cell output by the bone marrow.
Therefore, physicians use erythropoietin stimulating agents, such as epoetin-alfa
(EPO), to partially correct the anemia. The challenge in designing efficient therapies
is due to the patients’ differences in long-term response to EPO. In [1, 2], the authors
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introduce a mathematical model for predicting such a response. As in [7], our aim
is to design a feedback control strategy, based on Model Predictive Control (MPC)
[3], to optimize the injections of EPO doses in order to reach a target hemoglobin
level. In contrast to [7], we do not imply the EPO model from [2] during the
optimization, but we utilize it to generate a data-driven approximation of such a
model through Extended Dynamic Mode Decomposition (EDMD) [8]. We then use
such an EDMD-based surrogate model during the MPC. We refer to [5] where the
authors introduced the idea to combine MPC and EDMD. We organize the work as
follows: in Sect. 2 we introduce the model and how we combine EDMD and MPC.
In Sect. 3 we show the reliability of the technique comparing our algorithm with the
one in [7].

2 The EDMD-MPC Based Algorithm

Let us consider a finite horizon time interval [0, T ] with T & 0 and a finite number
of injections nu ∈ N. We consider discrete injections of doses ui at predefined
injection times ti for i = 1, . . . , nu. Given a set of EPO doses u = (ui)

nu
i=1 ∈

Uad = {u ∈ R
nu |0 ≤ ui ≤ umax, 1 ≤ i ≤ nu}, following [7], one can compute the

corresponding EPO concentration in the blood, which we indicate withE(t;u). This
nonlinear function is continuously differentiable in [0, T ] and twice continuously
differentiable in Uad. For further details see [2, 7]. The EPO model is composed of
five coupled advection-reaction partial differential equations (PDEs) of the form

yt (t, x) = κ(x,E(t;u))y(t, x)− v(E(t;u))yx(t, x) inQ,

y(t, x) = g(t;E(t;u)) in (0, T ),

y(0, x) = y0(x) in �

(1)

with the spatial domain � = (x, x) ⊂ R, the space-time cylinder Q = (0, T ) × �
and the initial condition y0. The solution y(t, x) to (1) denotes the cell density
of the respective cell population with maturity x at time t . The coupling among
the five equations is hidden in the boundary value g(t;E(t;u)). For the sake of
brevity, we omit further explanations and we refer to [2, 7]. Note that in (1),
the control u (EPO doses) enters in the equations through the nonlinear EPO
concentration, on which the advection and reaction coefficients depend. Such a
complicated relationship between the states (cell densities) y and the control u
leads to a non-convex optimization problem. Our aim is then to introduce a linear
surrogate model based on EDMD, such that the resulting control-to-state map is
linear. Doing so, we have the advantage of obtaining a convex optimization problem,
which admits a unique minimizer and can be solved faster. In contrast to the
standard Dynamic Mode Decomposition (DMD) [6], EDMD utilizes snapshots of
the dynamic, controls and observables of a dynamical system to extract a discrete
surrogate model [8]. Let us mention that the EDMD method is a solely data-
driven method, which is not related to the structure (or even the knowledge) of
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the model from where the data come from. For this project we used the original
model to create a data set for the EDMD and to compare how well we can recover
the data. In practice, a combination of clinical data (hemoglobin data) and model
data (red blood cell (RBC) population in combination with an output model that
computes the hemoglobin data from the total RBC population) would be used
to inform and update the EDMD. Further we discretize in space with Legendre
polynomials (as [7]) and in time with a constant time step t . In what follows n
is the number of Legendre polynomials and m is the number of time steps. Let
ψ : Rn → R

Nψ be a vector of lifting functions (or observables) ψi : Rn → R,
i.e. ψ(x) = (

ψ1(x), . . . , ψNψ (x)
) ∈ R

Nψ . Let Y0 = [y0|...|ym−1] ∈ R
n×m and

Y1 = [y1|...|ym] ∈ R
n×m and U = [u0| . . . |um−1] ∈ R

1×m be given snapshots data
matrices. Next, we need to define the matrices

Y0,lift =

⎛

⎜
⎜
⎝

ψ1(y0) . . . ψ1(ym−1)
...

...

ψNψ (y0) . . . ψNψ (ym−1)

⎞

⎟
⎟
⎠ , Y1,lift =

⎛

⎜
⎜
⎝

ψ1(y1) . . . ψ1(ym)
...

...

ψNψ (y1) . . . ψNψ (ym)

⎞

⎟
⎟
⎠ ∈ R

Nψ×m

and identify the matrices A ∈ R
Nψ×Nψ , B ∈ R

Nψ×nu and C ∈ R
n×Nψ such that

[A,B] = argmin
Ã,B̃

‖Y1,lift − ÃY0,lift − B̃U‖F , C = argmin
C̃

‖Y0 − C̃Y0,lift‖F .
(2)

To solve (2) numerically, we have to perform two singular value decomposition;
cf. [5]. We get then a discrete linear dynamical system in the observable space

zk+1 = Azk + Buk for k ≥ 0, z0 = (
ψ1(y0), . . . , ψNψ (y0)

)
,

ŷk+1 = Czk+1 for k ≥ 0,
(3)

where ŷ is the EDMD approximation of the y solution to (1). Note that recon-
structing and solving the EDMD system (3) is generally cheaper than solving the
system of coupled hyperbolic PDEs (1). Thus, (3) is the surrogate model we will
use during the MPC algorithm. More specifically, our goal is to apply EDMD to the
fifth (and last) equation of the EPO model in [7], which has the structure of (1), for
two different choices of control snapshots, i.e. the EDMD matrix U will contain:

(EDMD-C) The continuous EPO concentration E(t;u) at each time step;
(EDMD-D) The discrete EPO doses u at the injection times and 0 for the rest.

The cost functional for the model in [7] discretized by Legendre polynomials is

JN(ỹ,u) = 1

2

nu∑

j=1

γju
2
j +

σω

2

∫ T

0

(
ω

1/2
5 (ỹ5)0(t)− Pd

)2
dt

+ σf

2

(
ω

1/2
5 (ỹ5)0(T )− Pd

)2
,
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Algorithm 2 EDMD-MPC algorithm

1: Data: Initial control u(0) ∈ Uad, initial condition y(0)MPC, EDMD update tolerance τupd, MPC
prediction horizonM , EDMD update stepsMEDMD.

2: Initialize the EDMD model at u(0) with snapshots from (1);
3: for i = 0, 1, . . . do
4: Solve (4) in [ti , ti +Mt] with projected BFGS and initial guess y(i)MPC to get an optimal

ū(i);
5: Store uMPC(ti ) = ū(i)(ti ) and compute the new initial guess y(i+1)

MPC from (1) using uMPC(ti );

6: if ‖y(i+1)
MPC − y(i+1)

EDMD‖ > τupd then
7: Update the EDMD model using snapshots of (1) forMEDMD steps with the control ū(i);
8: end if
9: end for

where (·)0 means first-component in space and all the other parameters can be
found in [7]. Moreover, ỹ = SN(u) is the solution of (24b) in [7]. We point out
that JN depends only on the solution of the fifth (and last) equation of the EPO
model in [7]. Therefore, to build our EDMD model, we use the solution ỹ5 as
snapshots of the dynamic. We then get matrices A, B and C for (3) according
to the chosen snapshots. Applying a trapezoidal rule to JN and considering the
EDMD approximation ŷ, one obtains a cost functional Jm(z,u) = JN,disc(Cz,u) =
JN,disc(ŷ,u) and the optimal control problem is given as

min Jm(z,u) s.t. z = {zk}mk=0 ⊂ R
Nψ satisfy (3) for u ∈ Uad. (4)

Note that (4) is a convex linear-quadratic optimal control problem and thus admits
a unique minimizer [4]. If the EDMD approximation error is small enough,
the solution of (4) is in a neighborhood of a local minimizer of the optimal
control problem in [7]. Since the horizon T is generally large, the corresponding
time discretization t0 = 0, . . . , tm = T contains many points. To avoid costly
computations and compute a feedback control we introduce an MPC [3] framework.
This technique consists in fixing a prediction horizonM and computing the solution
of a first optimal control problem in [0,Mt], then storing the optimal control for
the first time step, applying it to (1) and repeating the procedure for the horizon
[t1, t1 + Mt] and so on. This approach has also the advantage of obtaining a
feedback control which reacts to the solution of the EPO model. Since the EDMD
is just a local approximation of the dynamics, we need to define a strategy in order
to update the EDMD model during the MPC. We simply measure the difference
between the EDMD solution and its EPO model counter part for the first time step.
Note that this does not require additional computations with respect to the described
procedure. We resume our algorithm in Algorithm 2.
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3 Numerical Experiments

In this section, we compare the nonlinear MPC from [7] with the linear MPC based
on the EDMD approach. For brevity, we report only the results on test conducted on
Patient 2 and 3 of [7]. Let us mention, that we performed the numerical experiments
also for the other patients in [7] and we got approximation errors similar to the
one presented below. For both EDMD-MPC models, we choose an update tolerance
τupd = 0.01,MEDMD = 30 steps, the MPC prediction horizonM = 14 days and

ψ1(y) = ω1/2
5 (y)0, ψi,j (y) = Lj

(
(y)i∑n
i=1(y)i

)

, i = 0, . . . , n, j = 0, . . . NL−1,

where (y)i is the i-th component of y and Lj is the j -th Legendre polynomial.
It follows that Nψ = 1 + nNL. Note that the Legendre polynomials are not only
used for the spatial discretization of (1), but also for defining the lifting functions
ψi,j . These two sets of polynomials are anyway not related between each other.
Furthermore, NL can be changed arbitrarily leading to different approximation
results for EDMD. In our case we fix NL = 2 for EDMD-C and NL = 6 for
EDMD-D in order to get comparable accuracy for the two techniques. All the other
parameters are chosen as in [7, Tables 4-8]. First of all, we consider a total time
period of three weeks, i.e. T = 21 days. We have an injection at day 1, 3 and 5 of
each week.

In Fig. 1-left panel, we plot the optimal hemoglobin level computed using the
method from [7] (RRI MPC) and with the two EDMD-MPC approaches proposed
in Sect. 2. As one can see, for the first part of the time horizon, the three methods
compute exactly the same optimal solution. These corresponds to a doses u = 0,
which is one of the constraint imposed on the doses. As soon as the control starts
impacting the system, we can notice some differences arising between the RRI MPC
and our proposed method, in particular for the EDMD-C approach. At each time
step, such a difference remains approximately smaller than the 1%, as it can be
seen from Fig. 1-right panel, where the relative error between RRI MPC and our
method is reported. We observe similar results for Patient 3 as for Patient 2, see

Fig. 1 Patient 2—21 days. Left: MPC solutions. Right: Relative error. (Black line: EDMD-D
update, dashed black line: EDMD-C update)
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Fig. 2 Patient 3—21 days. Left: MPC solutions. Right: Relative error. (Black line: EDMD-D
update, dashed black line: EDMD-C update)

Fig. 3 Patient 3—49 days. Left: MPC solutions. Right: Relative error. (Black line: EDMD-D
update, dashed black line: EDMD-C update, Red area: No injection possible)

Fig. 2 for further details. It appears that reconstructing the optimal hemoglobin level
works extremely well (up to machine precision) for the first half of the time horizon
and become worse in the second half (cf. Fig. 2). In this case, note that the EDMD
updates are not triggered, even though the approximation worsens as time passes.
This suggest that the chosen update strategy is too simple and its improvement will
be object of future work. In the next test we consider a longer total time period of
7 weeks, i.e. T = 49 days, for Patient 3.

This test simulates that Patient 3 skips 1 week of injections for some reason.
In Fig. 3 the week without injections is represented by the red area. For the
MPC framework we do not require this additional information. We just assume
that the patient will get three injections every week, until he skips the injection
appointments. The test demonstrates the ability of the MPC algorithm to react with
a quick feedback response. In Fig. 3 we see that our MPC methods based on EDMD
are reacting as well (additionally updating the EDMD approximation) and their
response is close to the non-linear MPC from [7]. For all the numerical tests, we
report the space-time relative error in reconstructing the RRI MPC hemoglobin
level and the required computational times for the proposed EDMD-MPC schemes
in Table 1. Note that our methods are almost one order of magnitude faster and
reconstruct the solution with a reliable approximation error. In conclusion, the
proposed EDMD-MPC method replicates the results obtained in [7] with reasonable
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Table 1 Computational time, speed-up w.r.t. [7] and relative error of the EDMD-MPC algorithm

Computational

time (including

Patient Method T updates) Speed-up Relative error

2 EDMD-D 21 d 11.5 s 9.5 9.1 × 10−6

2 EDMD-C 21 d 11.4 s 9.6 1.9 × 10−5

3 EDMD-D 21 d 5.3 s 10.3 9.0 × 10−10

3 EDMD-C 21 d 6.0 s 9.1 1.0 × 10−10

3 EDMD-D 49 d 17.5 s 7.1 7.4 × 10−5

3 EDMD-C 49 d 9.9 s 12.6 1.4 × 10−5

error and a small factor of speed-up. This factor remains constant when the treatment
horizon increases (cf. Table 1). The EDMD-MPC algorithm can be then a valid
approach for hemodialysis treatments, although the estimates of the EDMD error
and the resulting update strategy during the MPC iterations need to be improved.
This will be the focus of a future work.
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Regional Estimates of Reproduction
Numbers with Application to COVID-19

Stefan Heyder, Jan Pablo Burgard, Tyll Krueger, and Thomas Hotz

Abstract In the last year many public health decisions were based on real-time
monitoring the spread of the ongoing COVID-19 pandemic. For this one often
considers the reproduction number which measures the amount of secondary cases
produced by a single infectious individual. While estimates of this quantity are
readily available on the national level, subnational estimates, e.g. on the county
level, pose more difficulties since only few incidences occur there. However, as
countermeasures to the pandemic are usually enforced on the subnational level, such
estimates are of great interest to assess the efficacy of the measures taken, and to
guide future policy. We present a novel extension of the well established estimator
(Fraser, PloS One 2:8, 2007) of the country level reproduction number to the county
level by applying techniques from small-area estimation. This new estimator yields
sensible estimates of reproduction numbers both on the country and county level.
It can handle low and highly variable case counts on the county level, and may be
used to distinguish local outbreaks from more widespread ones. We demonstrate
the capabilities of our novel estimator by a simulation study and by applying the
estimator to German case data.
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1 Introduction

The ongoing COVID-19 pandemic is affecting countries worldwide with over 4.4
million deaths as of 30 August 2021 [8]. To restrict the spread of SARS-CoV-2, the
virus causing COVID-19, many countries have implemented non-pharmaceutical
countermeasures such as bans of mass gatherings, mandatory wearing of masks and
reduction of contacts in the private and work life. In addition vaccines which reduce
both the severity of COVID-19 and the infectiousness of vaccinated individuals have
become available, and most European countries have vaccinated large portions of
their population [1].

To quantify the spread of an epidemic, one considers the time-varying reproduc-
tion number R(t), the mean amount of secondary cases a primary case infected on
day t is expected to infect during his course of infection, provided conditions stay
the same. Knowing R(t) allows one to infer whether the number of cases will rise
or fall in the future; the threshold for growth being R(t) = 1. On the country-level
a standard model for the spread of an epidemic is the following stochastic renewal
equation for I (t), the amount of newly infected cases on day t , which are assumed
to be (conditionally) Poisson distributed:

I (t) | I (t − 1), · · · ∼ Pois

(

R(t)

∞∑

τ=1

I (t − τ)w(τ)
)

. (1)

Here, w(·) specifies the distribution of the generation time, i.e., given that a primary
case infects a secondary case, w(τ) is the probability that this infection occurs on
day τ after the primary case was infected himself. A well studied estimator of R(t)
in this model is

R̂(t) = I (t)/
∞∑

τ=1

I (t − τ)w(τ) , (2)

see e.g. [2, 4]. For this estimator to be reliable the denominator has to be large
enough, as its variance (conditional on past cases) is R(t)/

∑∞
τ=1 I (t − τ)w(τ), see

[5].
A deficit of estimating the reproduction number on the country level is that

these estimates are affected by local outbreaks which, in the absence of high case
numbers, dominate even country-level estimations. In the reproduction number
estimation this causes undesirable artifacts: the nationwide spread of the epidemic
is first overestimated due to the local outbreak while later the country-wide
reproduction number will be underestimated since the denominator of R̂(t) is too
large due to the previous outbreak, for example Fig. 1 shows the effect of a huge
influx of cases in June 2020 in Germany due to several smaller outbreaks, the biggest
with 1413 cases occuring in a meat processing plant in Gütersloh county [3].
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Fig. 1 (a) shows reproduction number estimates and reported cases (dotted line), both on a
logarithmic scale, in Germany. On 17 June 2020 the first cases of a local outbreak were reported,
causing a spike in the estimated reproduction numbers. Another consequence of this outbreak
are lower estimates of the reproduction numbers (dashed line) in the following weeks. Both
phenomena are less pronounced for the estimate based on county level data (solid line). (b)
additionally shows county-level reproduction number estimates of Gütersloh county, R̃GL(t) (dot-
dashed line), and Wuppertal county, R̃WU(t) (double-dashed line)

Small area estimation (SAE) is a branch of mathematical statistics providing
tools suited for precisely this situation: data per region are scarce and may even be
missing but there are many regions. To make a virtue out of necessity, SAE models
regional parameters as random variables, an approach we apply to county-level
reproduction numbers. Specifying the joint distribution of county-level reproduction
numbers enables us to estimate a single set of parameters from which we can
compute an estimated distribution of the reproduction number in each county. This
procedure can be viewed as empirical Bayes estimation. We show that reproduction
numbers obtained this way can be used to identify local outbreaks, handle low case
numbers while agreeing with the country level estimates of the reproduction number
[5] in the absence of local outbreaks.

2 Estimator

A standard way of modeling the infection process is the renewal equation (1), cf. [2]
for a detailed derivation. We present a straight forward generalization of this model
to the regional level by using techniques from small-area estimation. In small-area
estimation it is common to model parameters on the regional level to vary randomly;
in this spirit we model Rc(t), the regional reproduction number on day t in region
c, by a random variable.

To account for cases that are imported and exported between regions, we assume
that a fraction pt of secondary cases are attributed to a region different than the
corresponding primary case. Let �c(t) = ∑∞

τ=1 Ic(t − τ)w(τ) be the expected
number of active cases on day t in county c given the past where Ic(t) denotes the
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incidences in that region on that day. We then use the following renewal equation to
describes the spread of the epidemic, relating the conditional distribution of Ic(t) to
the expected number of active cases and the regional reproduction number Rc(t):

Ic(t)|Rc(t), Ic(t − 1), Ic′(t − 1) · · · ∼ Pois
(
Rc(t)

(
(1 − pt )�c(t)+ pt

K−1

∑

c′ �=c
�c′(t)

))

(3)
Here K denotes the total number of regions considered. Note that we condition not
only on past incidences Ic(t−τ) in all counties but also on the random reproduction
number Rc(t).

The interpretation of (3) is straight-forward: on day t there are Ic(t − τ)

individuals τ days into their infection, thus Rc(t)w(τ)Ic(t − τ) is the expected
amount of secondary infections caused by these individuals on day t . To account for
the transfer of cases between counties, a fraction of pt cases are counted towards
the active cases in other regions and the wrongfully attributed cases are distributed
equally among all other regions. Summing over τ yields the new infections Ic(t)
which we assume to be Poisson distributed.

To infer Rc(t) from (3) further assumptions about both the distribution of Rc(t)
and the joint distribution of the pairs (Ic(t), Rc(t)) for all regions c are necessary.
To this end we assume that the regional reproduction numbers on day t posses a
common, known distribution and that the set of tuples (Ic(t), Rc(t)) is conditionally
independent (given past incidences). More concretely, we assume the common
distribution of the regional reproduction numbers Rc(t) to be a gamma distribution

Gamma(at , st ) with shape at and scale st and density 1
s
at
t �(at )

xat−1 exp
(−x
st

)
.

It is easy to see that the marginal distribution of Ic(t) (given the past incidences)
in that region—without conditioning on the reproduction number Rc(t)—, is then a
mixture of a gamma and a Poisson distribution, i.e. a negative binomial distribution
whose parameters only depend on the parameters at , st , pt , past incidences Ic(t−τ)
and the generation time distribution w.

As the conditional distribution of Ic(t) only depends on the unknown parameters,
and, conditionally, the incidences of different regions are independent, we can apply
maximum-likelihood estimation to obtain estimates ât , ŝt and p̂t of the unknown
parameters.

Also, the gamma distribution is conjugate prior to the Poisson distribution
whence the conditional distribution of Rc(t) given past incidences Ic(t), Ic(t −
1), . . . is again a gamma distribution whose shape and scale only depend on the
unknown parameters and past incidences. Thus one can use plug-in to estimate
parameters of the posterior distribution such as E(Rc(t)|Ic(t), . . . ) and to derive
prediction intervals. Furthermore we naturally obtain a new estimator of the country-
wide reproduction number, the estimated mean R̃(t) = ât ŝt .

This approach could also be interpreted in the setting of empirical Bayes methods
if one thinks of Gamma(at , st ) as the prior distribution of Rc(t) and Ic(t) as the
observations, with the prior parameters being estimated with tools from frequentist
statistics.
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3 Parameters, Data Sources and Implementation Details

The estimators consider assume the probability mass function w of the generation
time to be known. As a precise model for the generation time is difficult to obtain
we opt for a simple model: we assume the shape of w to be trapezoidal with a mean
of 5.6 days in accordance with the mean serial interval of 5.4 days found in [9], see
[5] for details. In the same spirit we assume that the generation time distribution
does not change over time.

To estimate the county-level reproduction numbers in Germany we use data
provided by the Robert-Koch Institut [7], as of 30 August 2021. This dataset
contains daily information on reported cases and deaths in Germany in addition
to the county (Landkreis) where the case was reported to local health authorities.
There is a strong weekday effect present in both the case and death counts. This
effect is most likely due to testing, evaluating tests and reporting occuring more
frequently on workdays compared to weekends. We do not account for this effect to
direct the readers attention to the existence of such artifacts in the data and to avoid
overconfidence in the resulting estimates—these should be interpreted qualitatively
not quantitatively.

Note that there is a delay between infection and reporting of cases so that
estimates of reproduction numbers R̂(t), R̃(t) ought to be backdated by about 7
days, see [5] for details.

All computations, including simulations to validate the estimator, are conducted
in R version 4.1.1 [6]. The calculation of maximum-likelihood estimates ât , ŝt , p̂t
cannot be performed analytically, and is achieved using numerical optimization by
the built-in function optim.

4 Validation by Simulation

To check how a mismatch between our model and reality might affect our estimator,
we simulate a point process on the flat torus T = R2/(kZ)2, k ∈ N where each of
the k2 unit squares corresponds to a county. We chose k = 20 to obtain k2 = 400
counties, approximating the 401 counties in Germany. Time is chosen to be discrete
and measured in days. To simplify computation we simulate on R2 and quotient out
(kZ)2 after the simulation has finished.

We initialize the simulation with 400 infected individuals that are placed
uniformly on T, their infection age chosen again uniformly from the discrete
support of the trapezoidal generation time distribution w (see Sect. 3). At each
time t every infected individual with infection age τ in county c infects a random,
Pois(Rc(t)w(τ))-distributed, number of new cases.

The position of the new cases is also random, and sampled from a bivariate
normal distribution centered at the position of the primary case with covariance
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matrix σ 2I2. We chose σ 2 such that approximately 20% of secondary cases occur
in counties different from their primary case, resulting in σ 2 ≈ (0.14)2.

These simulations introduce a mismatch between model (3) and the generated
incidence data. Firstly, exported cases are no longer distributed evenly over all
counties, but rather depending on proximity. Secondly, we can choose the repro-
duction numbers to deviate from the assumed Gamma distribution. To incorporate
the introduction and partial lifting of non-pharmaceutical interventions we set R(t)
to be 2.5 for 20 days, 0.7 for 40 days and 1.2 for another 40 days, simulating an
outbreak over a total of 100 days.

The daily reproduction number estimates based on the case data of this simula-
tion as well as asymptotic 95% confidence sets, based on the Fisher information,
are shown in Fig. 2a. Despite the model mismatch the coverage of the confidence
intervals is close to 95% and also stays this way if we simulate this scenario multiple
times (figures not shown). Additionally the sharp changes in the reproduction
number on days 21 and 61 are captured by our estimator as well.

We also show an estimate of E(Rc(t)|Ic(t), . . . ), the county level reproduction
numbers, for every county in Fig. 2b. In this model the county level reproduction
numbers have zero variance. This results in some estimates of the variance at s2

t

to be very small, making all county level estimates similar at some time points.
Increasing the regional variation by sampling reproduction numbers from a Gamma
distribution did not produce such effects (figures not shown).
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Fig. 2 Results for one simulated outbreak. (a) shows the estimates of the posterior mean ât ŝt in
black with corresponding confidence intervals indicated by grey ribbons, the true R(t) is shown as
a transparent grey line. (b) shows the estimates of reproduction numbers on the county level
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5 Application to the COVID-19 Pandemic in Germany

In Fig. 1 we depict our new estimator R̃(t) with R̂(t) for Germany, with a special
focus on the aforementioned outbreak in June 2020. The weekly pattern in the
estimates is due to the similar pattern in the incidence data; we decided against
smoothing the estimates to highlight these complications with the data quality.
Note that in the week corresponding to the outbreak, R̃(t) is lower than the
previous estimate. Additionally, the downwards trend of R̂(t) in the following weeks
with estimates below 1 is no longer present, as the outbreak was a local one in
few counties. Except for the deviations mentioned above, R̃(t) resembles R̂(t)
remarkably well. Around October 2020 a second wave of infections started to occur
in Germany with rapidly rising case numbers across the country. Figure 1 shows
that under these circumstances, i.e., high incidences in all regions, the country level
estimates based on the small area estimation approach do not differ much from the
estimates based on the country level.

6 Discussion

Of course our estimator rests on assumptions which ought to be discussed. Modeling
Rc(t) as random is a standard approach in small area estimation when dealing with
few or even missing observations on a sub-national level; it is required to reduce the
dimensionality of the parameter space. For this, we critically assumed that on a fixed
day t the regional reproduction numbers Rc(t) in different counties are independent
and identically distributed according to a gamma distribution. This is questionable
as transmission dynamics vary with local social and economic factors. For example
one might expect that reproduction numbers are higher in urban counties than in
rural counties with less population density. Furthermore neighboring counties might
exhibit spatial correlation. Such socio-economic factors might be incorporated as for
generalized linear mixed effects models although it is not obvious which factors to
include and how to model their influence on the parameters at , st and pt .

Assuming a gamma distribution for the regional reproduction numbers Rc(t) is
mathematically convenient as it is the conjugate prior distribution to the Poisson
distribution, so using plug-in to obtain estimates for the posterior parameters is
easy. In addition the log-likelihood of the posterior predictive distribution can be
calculated analytically which makes estimation fast. The price we pay for this
distributional assumption is that the gamma distribution is a relatively light-tailed
distribution prohibiting it from fully incorporating superspreading events such as the
investigated outbreak. For this outbreak the country level estimates provided by R̃(t)
are still elevated when compared to the previous and next week (see Fig. 1), which
might be an artifact of our choice of distribution as well as the small-area approach
which biases estimates towards the country-wide mean. Changing the marginal
distribution of Rc(t) would lead to a computationally more involved estimation
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procedure requiring numerical integration. The results in Sect. 4, however, show
that our estimators are rather robust against slight misspecification in the prior
distribution.

In addition to the mathematical assumptions discussed above we also made
some more subtle epidemiological assumptions. To account for infections across
regions we introduced the parameter pt , the proportion of cases that were attributed
to a different region than the one where infection occurred. The addition of pt
is essential to the model when considering periods where incidence is low, e.g.
during the summer in Germany. Without modeling cross-county infections, counties
which have reached incidence 0 for a prolonged period of time would never record
new cases, and observing new cases in such a county would lead to a breakdown
of the estimator as the observed data would have likelihood 0. We assumed that
such transferred infections spread evenly among the other counties and that the this
spread is the same for all counties, though the results of Sect. 4 suggest robustness
against such a model mismatch. This could be improved by spatial models for the
transfer of cases, e.g. based on mobility data.

We also assume the generation time distributionw to be constant over time and to
be known. The sensitivity of our new estimator to misspecification in the generation
time could easily be studied by adapting the simulations from Sect. 4 to include such
a mismatch between simulation and estimation. As this sensitivity is not the main
concern of this paper, we omit such an analysis but refer the reader to [5].

We caution the reader to interpret the estimations and predictions proposed in this
paper quantitatively due to the restrictions mentioned above as well as the quality of
the available data. Nevertheless we believe that the presented estimation procedure
can be used to yield qualitative insight about the behavior of sub-national spread
of an epidemic when case counts are low. In such scenarios our estimator R̃(t) is a
better representation of the country-level spread of the epidemic because it is less
affected by local outbreaks.
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Complexity Reduction for Parametric
High Dimensional Models in the Analysis
of Financial Risk

Andreas Binder, Onkar Jadhav, and Volker Mehrmann

Abstract This paper presents a parametric model order reduction (pMOR)
approach for financial risk analysis based on the proper orthogonal decomposition
method. pMOR requires solving the high dimensional model for some training
parameters to obtain the reduced basis. We propose an adaptive greedy sampling
approach based on surrogate modeling for the selection of training parameters.
The developed algorithms are tested on an industrial example of a puttable
steepener. The results show that the reduced model works excellent and has potential
applications in historical or Monte-Carlo value at risk calculations.

1 Introduction

The risk analysis of financial instruments often requires the valuation of such
instruments under a wide range of future market scenarios. In this paper, we use
convection-diffusion-reaction partial differential equations (PDEs) of the interest
rate models as valuation functions [1]. These models are usually calibrated based
on market data like yield curves that generate a high dimensional parameter space
[3]. In short, to perform the risk analysis, the financial model is needed to be solved
for such a high dimensional parameter space, which requires efficient algorithms.

Thus, this paper establishes a parametric model order reduction (MOR) approach
based on the proper orthogonal decomposition. This MOR approach requires
simulating the high dimensional parametric model for a small number of pre-
selected training parameter values. To select the training parameters, we employ
an adaptive greedy sampling algorithm that constructs a surrogate model for the
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error estimator and locates training parameters efficiently [2, 8]. To summarize,
instead of performing thousands of costly simulations, we perform few expensive
computations and simulate the remaining scenarios with the help of the reduced
model.

We apply the MOR technique to packaged retail and insurance-based investment
products (PRIIPs). In order to make PRIIPs from different manufacturers more
comparable concerning their risks and returns, the European regulation (EU)
1286/2014 requires manufacturers of PRIIPs to supply key information documents
(KIDs) to possible retail investors that are easy to read and to understand [4]. As
per regulations, for long-term structured interest rate instruments under PRIIPs
(maturity greater than 5 years), 10,000 computations must be carried out. Assuming
a single valuation takes only one second, the whole computation will take almost
a day. Therefore, it is interesting to test the developed model order reduction
framework against such a challenging problem. We solve a numerical example of
the puttable steepener with caps and floors using the two-factor Hull-White model.

2 Model Order Reduction

Consider a financial instrument V (t, r(t), u(t)) contingent on the stochastic interest
rates movement r(t), u(t), the two-factor Hull-White PDE is then given as [6]

∂V

∂t
+ (θ(t)+ u− αr)∂V

∂r
− bu∂V

∂u
+ 1

2
σ 2

1
∂2V

∂r2

+ 1

2
σ 2

2
∂2V

∂u2 + γ σ1σ2
∂V

∂r∂u
− rV = 0, (1)

where the deterministic function θ(t) is chosen to fit the simulated yield
curves, parameters α, b, σ1, σ2 > 0 are positive constants, t is time, and
−1 ≤ γ ≤ 1. According to the PRIIPs regulations, we have to perform at least
s = 10,000 yield curve simulations. We construct a simulated yield curve matrix
Y = [ys1, . . . , ysm] ∈ R

s×m, which is used to calibrate the parameter θ(t), wherem
is the number of yield curve tenor/time points. The calibration generates s different
piecewise constant parameters θ�(t), which change their values θ�,i only at the m
tenor points [2].

We have applied a finite element method to solve the PDE numerically, cf. [1].
This discretization is a parametric high dimensional model of the form

A(ρ�(t))V
n−1 = B(ρ�(t))V n, (2)

with given terminal vector V T , and matrices A(ρ�) ∈ R
M×M , and B(ρ�) ∈ R

M×M .
ρ = {α, b, σ1, σ2, γ, θ(t)} is the group of model parameters. We call this the
full model (FM) for the model reduction procedure. We solve (2) by propagating
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backward in time. Altogether we have a parameter space P of size 10,000 × m to
which we now apply model reduction.

To perform the parametric model reduction for system (2), we employ Galerkin
projection onto a low dimensional subspace via

V̄ n = QV nd , (3)

where the columns of Q ∈ R
M×d represent the reduced basis with d ' M , V nd is

a vector of reduced coordinates, and V̄ n ∈ R
M is the solution in the nth time step

obtained using the reduced model. For the Galerkin projection we require that the
residual of the reduced state

pn(V nd , ρ�) = A(ρ�)QV n−1
d − B(ρ�)QV nd (4)

is orthogonal to the reduced basis matrixQ, which gives

QTA(ρ�)QV
n−1
d = QTB(ρ�)QV nd ,

Ad(ρ�)V
n−1
d = Bd(ρ�)V nd , (5)

where Ad(ρ�) ∈ R
d×d and Bd(ρ�) ∈ R

d×d are the parameter dependent reduced
matrices. We obtain the reduced basis Q in (3) using the method of snapshots that
solves the full model for some training parameter groups {ρ1, . . . , ρk} to generate
a snapshot matrix V̂ = [V (ρ1), V (ρ2), . . . , V (ρk)]. The POD method then solves,
see [5], for an orthogonal matrixQ ∈ R

M×d via a truncated SVD

V̂ = �" T =
k∑

i=1

"iφiψ
T
i , (6)

where φi and ψi are the left and right singular vectors of the matrix V̂ respectively,
and "i are the singular values arranged in descending order. We choose only those
d out of k left singular vectors to construct Q = [φ1 · · ·φd ] which minimize the
projection error, [7],

εPOD = 1

k

k∑

j=1

‖Vj (ρj )−
d∑

i=1

(Vj (ρj )φi)φi‖2 =
k∑

�=d+1

"2
� . (7)

It is evident that the quality of the reduced model strongly depends on the selection
of parameter groups ρ1, . . . , ρk that are used to compute the snapshots. Thus, we
implemented an adaptive greedy sampling approach.

The basic idea of the greedy approach is to select the parameter groups at which
the relative error between the reduced model and the full model is maximal. Thus,
adding the full model solution for the worst parameter group to the snapshot matrix
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will ultimately improve the quality of the reduced basis for the next iteration.
Since the relative error demands a costly full model solution, we replace it with
an error estimator like a residual error ε = ‖p(., ρ)‖. In short, at each greedy
iteration, the algorithm locates a parameter group that maximizes the residual error.
However, it is not computationally feasible to compute an error estimator for the
entire parameter space only to train the greedy algorithm. This problem forces us to
randomly select a pre-defined parameter set P̂ as a subset of the parameter space P
to train the greedy sampling algorithm. However, a random selection may neglect
the crucial parameters within the parameter space. Thus, to surmount this problem,
we implemented an adaptive greedy sampling approach, which selects these optimal
parameter groups adaptively at each iteration of the greedy procedure, using an
optimized search based on surrogate modeling [2].

The first stage of the adaptive greedy sampling Algorithm 1 computes the error
estimator over a randomly selected parameter set P̂0 of cardinality c0. The algorithm
uses these error estimator values {εi}c0

i=1 to build a surrogate model ε̄0. We solve this
surrogate model for the entire parameter space and locate the ck parameter groups
corresponding to the ck maximal values of the surrogate model. We construct a new

Algorithm 1 Adaptive greedy sampling algorithm
Input: Maximal number of iterations Imax , maximal number of parameter groups c, number of

adaptive candidates ck , parameter space P, tolerance εtol .
Output: Q
1: Choose a parameter group ρ1 from P, simulate the full model for ρ1 and store results in V1
2: Compute a truncated SVD of the matrix V1 and constructQ1
3: for i = 2, . . . , Imax do
4: Randomly select a set of parameter groups P̂0 = {ρ1, ρ2, . . . , ρc0 } ⊂ P
5: Compute error estimator values ε(ρj )

c0
j=1 for each ρj of P̂0

6: Let ε̂0 = {ε(ρ1), . . . , ε(ρc0 )} be error estimators for P̂0
7: Let k = 1 and esg = ε̂0

8: while n(P̂ ) < c do
9: Construct a surrogate model ε̄(ρ) using the values esg and solve it for P

10: Determine first ck maximal values of ε̄(ρ) and the parameter set P̂k = {ρ1, . . . , ρck }
11: Compute error estimator values ε̂k = ε(ρx)ckx=1 for each ρx of P̂k
12: Update esg = {ε̂0 ∪ · · · ∪ ε̂k}
13: Construct a new parameter set P̂ = P̂0 ∪ P̂k
14: k = k + 1
15: end while
16: Find ρI = argmax

ρ∈P̂
ε(ρ)

17: if ε(ρI ) ≤ εtol then
18: Q = Qi−1
19: break
20: end if
21: Solve the full model for ρI and store results in Vi
22: Construct a snapshot matrix V̂ by concatenating the solutions V� for � = 1, . . . , i
23: Compute a truncated SVD of the matrix V̂ and constructQi
24: end for
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parameter set P̂k = {ρ1, . . . , ρck } composed of these ck parameter groups. Once
again, for each parameter group within the parameter set P̂k , the algorithm simulates
the reduced models, computes the error estimator values {εi}cki=1, and generates a
new surrogate model ε̄k . This process repeats itself for k = 1, . . . , K iterations
until the total number of parameter groups reaches c. Finally, the optimal parameter
group ρI is the one that maximizes the error estimator within the parameter set

P̂ = P̂0 ∪ P̂1 ∪ P̂2 ∪ · · · ∪ P̂K.

The algorithm then truncates after Imax iterations or until the maximum value of the
error estimator drops below the tolerance. We have defined a surrogate model for a
parameter group ρ = [ρ�.1, . . . , ρ�,m] based on the principal component regression
as follows, see [2],

ε̄(ρ�) = η1ρ�,1 + · · · + ηmρ�,m,

where η1, . . . , ηm are the regression coefficients.

3 Numerical Example

We consider a puttable steepener instrument whose coupons depend on the dif-
ference between two constant maturity swap (CMS) rates as a test example [3].
The coupons between years 1 to 3 are fixed at 4%, while the coupons from year
4 till maturity depend on (CMS10–CMS2). The coupon frequency is annually
with a cap rate 3.0% and a floor rate 0.0% and the maturity is 10 years. It
is a puttable type of instrument, i.e., a put is an option that gives the right to
a buyer to sell the underlying asset at an agreed price at some time point in
the future. In this paper, we have considered Put Price = 1. Figure 1 shows
the monotonically decreasing projection error εPOD associated with the proper
orthogonal decomposition. The monotonically decreasing graph of the projection
error shows that we have succeeded in determining a very good reduced basis. The
relative error plot in Fig. 1 for a randomly selected parameter group ρ342 indicates
that the error decreases with increasing reduced dimension d. We can see that
the reduced model of the dimension d = 10 is satisfactory as the relative error
is of order 10−4. We solve this reduced model for 10,000 parameter groups and
procure 10,000 corresponding values for the instrument, which are then sorted into
three performance scenarios (favorable, moderate, unfavorable at 90th, 50th, 10th
percentile), as shown in Fig. 2. We also noticed that the reduced model obtained
using the adaptive greedy sampling approach is 8–10 times faster than the full
model.
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Fig. 1 Projection error associated with the proper orthogonal decomposition (left), and a plot of
the relative error between the full model and the reduced model (right)

Fig. 2 Distribution of 10,000 results after five years (left) and ten years (right)

4 Conclusion

The results indicate the computational advantage of the parametric model reduction
technique for short-rate models. Since the reduced model of order d = 10 is
an excellent approximation of the full model, we conclude that the full model
valuations for the adaptively selected � = 10 parameter groups are enough, and the
remaining of the parameter groups can be solved inexpensively using this reduced
model.
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A Low-Rank Extended Kalman Filter for
Gas Pipeline Networks

Nadine Stahl and Nicole Marheineke

Abstract In this paper we deal with efficient state estimation of nonlinear partial
differential-algebraic equations (PDAEs) with a low-rank Extended Kalman Filter
version. We formulate a time-implicit Extended Kalman Filter and make use of
model order reduction techniques to overcome the curse of dimensionality arising
when discretizing PDAEs. As motivating example we look at a gas pipeline network
described by the isothermal Euler equations. We compare our approach with other
known low-rank Kalman filter variants.

1 Introduction

For control and optimization of gas transport, good knowledge of pressure and mass
flux inside a pipe network is crucial. As usually only few measurements of these
states are available, one relies on state estimation by combining a mathematical
model with the actual measurements. When considering large networks, the models
tend to have a high number of states and therefore become infeasible to be simulated
or even optimized. Model order reduction gives a possibility to decrease the number
of states while retaining a certain approximation quality.

Our gas pipeline network, modelled as a directed graph G(E,V), is described by
the isothermal Euler equations on the space-time domain [0, le] × (0, T ]

ae∂tp
e = −∂xqe, be∂tq

e = −∂xpe − deqe |q
e|
pe

(1a)

on each pipe (edge) e ∈ E with length le and pipe parameters ae, be, de. At the
pipe junctions (nodes) v ∈ V we preserve mass flux and momentum through the
Kirchhoff conditions, i.e., for δ+v , δ−v being the sets of all topologically ingoing and
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outgoing pipes to a junction v ∈ V, pressure and mass flux fullfil

∑

e∈δ−v
qe(le, t) =

∑

e∈δ+v
qe(0, t), pe(le, t) = pv(t), e ∈ δ+v , pe(0, t) = pv(t), e ∈ δ−v .

(1b)
To close the system, we propose pressure values at every in- and outlet and assume
consistent initial values for pressure and mass flux. The resulting system is well-
posed, see [4].

In this paper we propose an efficient state estimator for (1) using the Extended
Kalman Filter based on an implicit time-discretization and nonlinear model order
reduction. We compare our results to, first, other Kalman Filter variants [1, 3]
suitable for nonlinear models and, second, to state estimates done with a linearized
reduced model [5].

2 Nonlinear Filtering

Based on [4], discretization in space of (1) with mixed finite elements yields a
nonlinear system of the following form for t ∈ (0, T ]:

Eẋ(t) = A(x(t))+ Bu(t), (2)

with state x(t) ∈ R
n, u(t) ∈ R

p, E ∈ R
n,n, B ∈ R

n,p and A : Rn → R
n. As this

system is a DAE with a singular matrix E on the left side, we cannot use an explicit
integration method for solving (2) in time. As in [5], we apply a general θ -scheme
for time discretization. Dividing the time interval [0, T ] intoK equidistant intervals
of length τ , the time-discrete state of (2) at time tk := kτ is denoted by xk .

For the state estimation, we further introduce a state noise ηk ∼ N(0, τ 2Q) in
each time step to account for model inaccuracies, where Q ∈ R

n,n is a constant
symmetric positive definite matrix. In the following, we set up an Extended Kalman
Filter suitable for the above time discretization. Note that, the same calculations
carry over to other Kalman Filter variants when using an implicit time-scheme.

2.1 The Extended Kalman Filter

The Kalman Filter [2] describes the distribution of the state x(t) by its expectation
value and its error covariance. For linear systems with Gaussian noise, these are
sufficient to describe the distribution correctly. For nonlinear systems, we get a
suboptimal filter, i.e. the distribution cannot be described by expectation value and
covariance alone. The most common way to set up the filter is by linearizing the
system in each time step in order to calculate the covariance matrices. This is then
known as the Extended Kalman Filter (EKF) [6].
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We follow [6], where an Extended Kalman Filter for explicit time-schemes
is derived, to present an Extended Kalman Filter for implicit time-schemes. We
introduce the predicted and corrected state estimates xk|k−1 and xk|k , where the
first index corresponds to the time step at which the model is considered, whereas
the second one corresponds to the time step up until measurements are included.
Similarly, the predicted and corrected covariance matrices are denoted by Pk|k−1
and Pk|k .

The filter assumes that noisy measurements yk ∈ R
q at time tk are taken, i.e.

yk = Hxk + νk, (3)

where H ∈ R
n,q is an output matrix and νk ∼ N(0, R) is the measurement noise

with constant covariance R ∈ R
q,q .

Theorem 1 The Extended Kalman Filter for a nonlinear system of form (2) and
measurements derived from (3) with an underlying θ -scheme for time discretization
has the following form:

Exk|k−1 − θτA(xk|k−1) = Exk−1|k−1 + (1 − θ)τA(xk−1|k−1)+ τBuθk, (4a)

Pk|k−1 = �kPk−1|k−1�
T
k + τ 2Q, (4b)

Kk = (Pk|k−1H
T )(HPk|k−1H

T + R)−1, (4c)

xk|k = xk|k−1 +Kk(yk −Hxk|k−1), (4d)

Pk|k = (1 −HKk)Pk|k−1, (4e)

with

�k = (E − θτDA(xk|k−1))
−1(E + (1 − θ)τDA(xk−1|k−1)), (4f)

where DA denotes the Jacobian of the nonlinearity A and with

uθk := θu(tk)+ (1 − θ)u(tk−1). (4g)

Proof We start by deriving an equation to determine the expectation value of the
state at time tk , which will be denoted by xk . Discretizing (2) in time and adding the
state noise results in

Exk − θτA(xk) = Exk−1 + (1 − θ)τA(xk−1)+ τBuθk + ηk. (5)

We linearize the nonlinearity on the left side of equation (5) around xk|k−1 and
the right side around xk−1|k−1, yielding

A(xk) ≈ A(xk|k−1)+DA(xk|k−1)(xk − xk|k−1) := DA(xk|k−1)xk + dk,
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A(xk−1) ≈ A(xk−1|k−1)+DA(xk−1|k−1)(xk−1 − xk−1|k−1) := DA(xk−1|k−1)xk−1 + ek

respectively. Note that, dk and ek are deterministic and therefore later on, have only
constant influence on the expectation value. The state xk can then be represented as

xk = (E − θτDA(xk|k−1))
−1

[(E + (1 − θ)τDA(xk−1|k−1))xk−1 + τBuθk + ηk + τ((1 − θ)ek − θdk)].

Using this identity, exploiting the linearity of the expectation value and knowing
that E[xk−1] = xk−1|k−1 for the previous time step tk−1, the predicted state estimate
at time tk is given as

xk|k−1 = E[xk|{yi}k−1
i=1 ]

= (E − θτDA(xk|k−1))
−1

[(E + (1 − θ)τDA(xk−1|k−1))xk−1|k−1 + τBuθk + τ((1 − θ)ek − θdk)].

Resubstituting ek and dk yields the proposed filter equation. Note that, in the
equations above, we used the linearity of the expectation value to derive the iterating
time-scheme for the state estimate.

Analogously we get the equation for the predicted covariance matrix

Pk|k−1 := E[(xk − xk|k−1)(xk − xk|k−1)
T |{yi}k−1

i=1 ].

The last three equations are the same as in the standard Kalman Filter and hence are
not further treated here. ��

2.2 The Reduced Extended Kalman Filter

System (2) is of high dimensionality and thus not suitable for an efficient state esti-
mation. Using Model Order Reduction based on [4], which uses Proper Orthogonal
Decomposition coupled with a complexity reduction for the nonlinear term, we end
up with a system of the same form as (2) but of much smaller dimension N ' n.
Note that, the reduction technique from [4] preserves not only block structure for the
reduced system, but also guarantees the reduced system to be stable. Additionally,
mass and energy are preserved throughout simulation due to the port-Hamiltonian
structure of the reduced system. Applying the Extended Kalman Filter (4) onto the
reduced system then yields the Reduced Extended Kalman Filter (REKF).
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2.3 Other Kalman Filter Variants

We now shortly review two other filtering methods based on the Kalman Filter,
which we will use in Sect. 3.

The first one is the Ensemble Kalman Filter (EnKF) [1], which is based on
an ensemble for which the filtering algorithm is executed. The predicted error
covariance matrix is calculated in each time step as the covariance of the samples,
whereas the Kalman gain and the corrected error covariance matrix are calculated
according to the standard formulas. Each sample is then updated with the new
measurement and the overall state estimate is given as the mean of the updated
samples. This filter is combined with the reduced order model (REnKF).

The other variant is the Compressed State Kalman Filter (CSKF) [3]. This filter
has similar ideas as we have, but instead of reducing the whole state dimension,
here only the covariance matrices are assumed to have a low-rank representation.
By help of this approximation, the highly costly calculations for the covariances
and the Kalman gain are projected onto a low dimensional subspace, while the
state simulation itself is kept in the full space. A prolongation of the Kalman
gain is needed in every time-step to correctly update the state estimate with new
measurements.

3 Numerical Example

As an academic example network we use the diamond network, see also Fig. 1, with
the same pipe parameters and as in [5]. As inputs and measurements we choose

pv1(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 + t, 0 ≤ t < 1,

3, 1 < t < 5,

3 − 0.1t, 5 ≤ t < 10,

2.5, t ≥ 10,

pv2(t) ≡ 2

and the fluxes at the two boundary nodes, i.e. at v1 and v2 for t ∈ [0, 20],
respectively, with τ = 0.02 and θ = 0.51.

We compare our nonlinear filtering approach with first linearizing the friction
term in (1) and then applying the Kalman filter variants from Sect. 2 for linear
models, see also [5] for more details on the linearized approach. Note that, in
the case of using the Extended Kalman Filter for the nonlinear model, we have
to linearize and evaluate Jacobians during the estimation step, which means, in
every time step. In contrast, for the linearized system, the Jacobians are constant
in time and have to be evaluated only once. We therefore expect latter method in to
be significantly faster, whereas we assume our method presented here to be more
accurate.
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Fig. 1 Left: Diamond network topology. Right: Flux simulation and estimates at node v3 with full
nonlinear (EKF), reduced nonlinear (REKF) and reduced linear (Linear RKF) models

Table 1 Errors and Offline/Online times for different Kalman Filter variants

Nonlinear filtering Linear filtering

meanj
‖E[xj−xj |j ]‖L2

‖E[xj ]‖L2
meanj

‖E[xj−xj |j ]‖L2

‖E[xj ]‖L2Method Online/s Offline/s Online/s

EKF 1.1 · 10−5 2.5 · 103 3.7 · 10−2 8.4 · 102 5.2 · 101

REKF 3.8 · 10−2 7.5 · 100 6.0 · 10−2 0.2 · 100 7.4 · 10−2

CSKF 3.8 · 10−7 1.0 · 102 3.8 · 10−2 2.1 · 100 1.5 · 100

REnKF 3.9 · 10−2 6.6 · 102 9.8 · 10−2 – 1.5 · 100

These expectations are verified in Table 1 and visualized in Fig. 1. Here, the
mean relative errors with respect to the nonlinear full model are depicted using
the nonlinear and linear state estimation methods. Clearly, the nonlinear methods
behave better in terms of accuracy. Note that, the reduced order models in both cases
were of approximation order 10−2 with respect to the respective full order model.
The CSKF for the nonlinear case performs surprisingly well, but we observed that
this algorithm tends to avoid measurement updates due to some cancelations which
lead to trivial Kalman gains. Also for some projection matrices resulted from model
order reduction, the CSKF was unstable. Concerning the computational times, using
the linear Kalman filter variants easily outperforms using the nonlinear ones, as we
expected. Another major disadvantage of the Extended Kalman Filter is, that we
cannot divide the algorithm into an offline and an online phase, whereas in the linear
case, we can pre-compute the covariance matrices and Kalman gains independent
of the actual measurements and estimates in the offline phase.

Summarizing, our Extended Kalman Filter using an implicit time-scheme was
very computational demanding even when using a reduced order model. In com-
parison to recent investigations on using a linearized reduced order model for the
estimation instead, we clearly were outperformed in terms of computational time.
Although our approximation errors are slightly better, using an implicit time scheme
for a nonlinear state estimation seems to add a lot more computational effort while
the gain in accuracy is only minor.
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An Analysis of Connectivity Between
Dengue Cases and Climate Factors in Sri
Lanka Based on Field Data

Hasitha Erandi, Karunia Putra Wijaya, Naleen Ganegoda, and Thomas Goetz

Abstract Dengue is the most critical mosquito-borne viral disease that has rapidly
spread within recent years. Understanding of the seasonal pattern of dengue cases
and relationship with climate data could be useful in deciding control mechanisms.
In this study, monthly dengue cases, average rainfall data, average temperature
data and relative humidity data of each province in Sri Lanka from 2010 to 2019
have been analyzed to identify the periodic pattern and the delayed effect of
climate factors on dengue cases. First, we have used the Fast Fourier Transform
(FFT) to identify the periodic patterns of dengue cases and climate data. Next,
we have used the Pearson’s correlation coefficient to find the time delay between
climate data and dengue cases. The results reflected that out of nine provinces,
dengue cases in Western, Central, Southern, North Western and North Central
provinces are influenced by both monsoon seasons. Moreover, in Western, Southern,
North Western, Sabaragamuwa, Northern and Eastern provinces, periodic pattern of
dengue cases follows the periodic pattern of the rainfall data with two months time
delay. The delayed effect of average temperature on dengue cases is three months
and that of relative humidity is one/two months. These results could be used in
health planning during the outbreaks.
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1 Introduction

Dengue is a viral infection which is transmitted by bites of infected female Aedes
Aegypti or Ades Albopictus mosquitoes. The number of reported dengue cases has
been rapidly increased during the past few decades and it has become one of the
major public health issues in tropical and subtropical regions in the world [1]. The
disease is endemic in more than 100 countries and 1.3 million cases are reported
annually with 2.5% death rate. The first dengue case in Sri Lanka was reported in
1962 and now it has gained the endemic stage. The country experienced its first
outbreak during 1965–1966 [2]. Since then, several dengue outbreaks occurred and
the worst was reported in 2017 with total 186,101 cases. This is a 3.4 fold higher
than the total reported cases from 2016.

Dengue is caused by four virus serotypes, namely DENV-1, DENV-2, DENV-
3 and DENV-4 which are serologically related and infection of one serotype does
not provide cross immunity against the other three serotypes [2]. Thus, a person
can be infected with multiple serotypes during their lifetime and a person with
repeated infection has a risk of developing a severe morbidity level known as
dengue hemorrhagic fever (DHF). Since specific drugs are not currently available
and developing a vaccine for the disease has been trialing out, the main prevention
strategy is vector control [3]. It is evident that vector control is also a challenge as
mosquitoes become resistant and adaptable to the commonly used insecticides and
control strategies [4]. Mosquito density is a highly sensitive factor which heavily
depends upon climatic changes such as rainfall, humidity and temperature.

Several previous works have examined the influence of climate factors on dengue
cases in different regions of Sri Lanka [5–8]. Further, the study in [5] identified the
positive correlation between dengue cases and rainfall data in Gampaha district.
However, the study in [6] concluded that weekly rainfall slightly influence dengue
cases in Colombo and Anuradhapura and no influence in Ratnapura. Some studies
concluded that reported dengue cases have strong correlation with rainfall in
Colombo with different time lags [7, 8]. However, almost all studies have been
focused on one or few regions in the country and there is no study for all provinces
in Sri Lanka. Hence, detection of distribution pattern and relationship of dengue data
with the climate data in each province is important in decision making to allocate
resources for the disease prevention in different climate seasons.

In this study, first we analyze evolution of the dengue cases in Sri Lanka from
year 2010 to 2019 and inter-provincial cross-correlation among reported dengue
cases. Then we examine the correlation of dengue cases with climate factors to
examine the delay effect on dengue. Finally, we determine the range for precipitation
data which gives the highest correlation with dengue case.
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2 Material and Methods

Sri Lanka is a tropical country located in the Indian Ocean, southwest of the Bay of
Bengal, between 5◦55′ to 9◦51′ North latitude and 79◦42′ to 81◦53′ East longitude.
The country is influenced by two monsoon seasons Northeast from December to
January and Southwest from May to September and the disease is more intense
every year within or soon after the monsoon seasons. Moreover, temperature of
Sri Lanka varies from 17◦ to 35◦ which is ideal for vector biology. Based on the
administrative system, the country is divided into 9 provinces. For each province, we
use recorded monthly dengue cases from 2010 January to 2019 December obtained
from Epidemiology unit, Ministry of Health, Sri Lanka and average rainfall, average
temperature and relative humidity data from 2010 January to 2019 December
obtained from Meteorological Department, Sri Lanka.

To identify the periodic patterns of the dengue cases and climate data, we need
to extract frequency domain features from the data. Therefore, we use fast Fourier
transformation to convert time domain data into frequency domain. To analyze the
correlation between dengue and climate data we use Person correlation formula. We
implement computational tools in MATLAB for this paper.

3 Interrelationship Between Provinces

To have an idea about dengue transmission pattern in each province we consider the
monthly dengue cases, average rainfall data, average temperature data and relative
humidity data from January 2010 to December 2019. From Fig. 1, it can be observed
that distribution pattern of dengue cases is different from province to province.
Western province has two peaks in each year and Northern province has a peak at the
beginning of each year while the Uva province has no regular pattern. These factors
motivate and thrive us to calculate the cross-correlation of dengue cases between
provinces to identify the distribution pattern of dengue in Sri Lanka.

Though there are many methods to compute the correlation coefficient, Pearson
correlation coefficient is the standard method to compute the strength of the linear
relationship between two variables [3]. Hence, the cross-correlation of dengue
cases between provinces have been calculated using Pearson correlation formula.
The results reflect that, Sabaragamuwa and Uva provinces are influenced only
by Southwest monsoon and Northern and Eastern provinces are influenced only
by Northeast monsoon. Western, Central, Southern, North Western and North
Central provinces are influenced by both Southwest and Northeast monsoons. Also,
we have observed that dengue cases in Northern province follows the periodic
pattern of dengue cases in Eastern province with one month time lag. Since the
epidemiological data usually consists of multiple periodic components, next task is
to identify the periodic patterns of dengue cases and climate data.
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Fig. 1 Reported monthly dengue cases in each province from January 2010 to December 2019

4 Periodic Structure

To identify the periodic pattern, Fourier spectrum of dengue cases and climate data
from 2010 January to 2019 December has been calculated for each province [3].
Table 1 represents the summary of the results for periodic pattern. From Table 1
it can be observed that the dengue cases in Western, Central, Southern, North
Western and North Central provinces exhibit 6 months periodic patterns. In addition,
Northern, Eastern, Sabaragamuwa and Uva provinces exhibit an annual periodic
pattern. Further, notice that there is a Fourier amplitude related to 6 months for each
Northern, Eastern, Sabaragamuwa and Uva provinces. Moreover, it can be observed
that the rainfall data in Western, Southern, Central, North Western, Sabaragamuwa
and Uva provinces show 6 months periodic pattern while the rainfall data in North
Central, Northern and Eastern provinces show an annual periodic pattern. Moreover,
we have noticed that dengue cases in all provinces have a three year cycle. Results
for the periodic patterns of reported dengue cases, indicate that dengue cases have a
relationship with rainfall. Therefore, it is worthwhile to analyze the cross-correlation
of reported dengue cases with climate data.

5 Correlation with Climate Data

Factors like incubation period motivate us to measure the correlation between
climate data and dengue cases with time delay. To calculate the time delay, the
Pearson correlation formula [3] has been used. Maximal correlation coefficients
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Table 1 Period of monthly dengue cases and climate data extracted using fast Fourier transform
in all the provinces, Sri Lanka. (Data: 2010–2019)

Province Dengue Rainfall Temperature Humidity

Western 6 6 12 12

Southern 6 6 12 6

Central 6 6 12 12

North Western 6 6 12 6

North Central 6 12 12 12

Northern 12 12 12 12

Eastern 12 12 12 12

Sabaragamuwa 12 6 12 6

Uva 12 6 12 12

Table 2 Maximal correlation coefficients between dengue cases and climate data subject to
different time lags in all the provinces, Sri Lanka. (Data: 2010–2019, Time lag: 0–6)

Province Rainfall Temperature Humidity

Western 0.2363 (2) 0.3181 (3) 0.2000 (1)

Southern 0.2460 (2) 0.3402 (3) −0.0650 (2)

Central −0.0605 (2) 0.0187 (0) 0.1652 (1)

North Western 0.0978 (2) 0.2197 (3) 0.1524 (1)

North Central 0.1776 (2) 0.1705 (3) 0.0708 (2)

Northern 0.3593 (2) 0.3419 (6) 0.3876 (1)

Eastern 0.1835 (2) 0.2744 (6) 0.2860 (2)

Sabaragamuwa 0.2625 (2) 0.2986 (3) 0.1082 (1)

Uva 0.0187 (2) 0.3850 (2) −0.0513 (2)

between dengue cases and climate data subject to different time lags in all the
provinces are depicted in Table 2.

From Table 2 it can be observed that the highest correlation between dengue
cases and rainfall data occurs with a 2-month delay for each province. For
temperature data, most of the province delay time is 3-months and the delayed effect
of relative humidity on dengue cases is one/two months.

However, heavy rainfall can potentially flush away larvae or pupae or the
immature stage of mosquitoes and increase the mortality rate of adult mosquitoes.
Therefore, finding minimum and maximum cutoff points for rainfall data which
give highest correlation value with dengue cases is important for decision makers
to predict the number of dengue cases in upcoming monsoon seasons. For each
province, we have checked interval of confidence, highest correlation value and
time lag by increasing minimum cutoff value and decreasing maximum cutoff value.
Then the best match cutoff values for rainfall data have been found with more
than 55% confidence interval for 5 provinces. Table 3 represents the minimum and
maximum cutoff values with new time lag.
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Table 3 Minimum and maximum cutoff values with new time lag

Province Minimum cutoff (mm) Maximum cutoff (mm) New time lag (months)

Western 82.2 724.8 3

Northern 17 425.8 2

Eastern 45.1 883.8 3

North West 0 568.25 3

North Central 45 600 3

6 Conclusion

The main purpose of this study was to analyze the pattern of monthly dengue cases
and its relationship with climate data of each province in Sri Lanka. We observed
that dengue cases in 5 provinces; Western, Central, Southern,North Western and
North Central are influenced by both Northeast and Southwest monsoon while
other 4 provinces influenced by only one monsoon season. In Western, Southern,
North Western, Sabaragamuwa, Northern and Eastern provinces out of 9 provinces,
periodic pattern of dengue cases follows the periodic pattern of the rainfall data
and the delayed effect of rainfall data on dengue cases is two months. Moreover,
the average temperature data of all provinces have annual periodic pattern and the
delayed effect on dengue cases is three months for most of the provinces. The
delayed effect of relative humidity on dengue cases is one/two months. Since we
have used 10 years data for the study, these results comprehensively extract long
term variation too.

Acknowledgments This work was partially supported by National Science Foundation, Sri
Lanka. Grant number RPHS/2016/D/05.

References

1. Messina, J.P., Brady, O.J., Scott, T.W., Zou, C., Pigott, D.M., Duda, K.A., Bhatt, S., Katzelnick,
L., Howes, R.E., Battle, K.E. and Simmons, C.P. Global spread of dengue virus types: mapping
the 70 year history. Trends in Microbiology, 22(3), 138–146, 2014.

2. Sirisena, P.D.N.N. and Noordeen, F., Evolution of dengue in Sri Lanka – changes in the virus,
vector, and climate. International Journal of Infectious Diseases, 19, 6–12, 2014.

3. Erandi, K.K.W.H., Perera, S.S.N. and Mahasinghe, A.C., Analysis and forecast of dengue
incidence in urban Colombo, Sri Lanka, Theoretical Biology and Medical Modelling, 18(1),
1–19, 2021.

4. Bhatia, R., Dash, A.P. and Sunyoto, T. Changing epidemiology of dengue in South-East Asia.
WHO South-East Asia Journal of Public Health, 2(1), 23, 2013.

5. Arunachalam, N., Tana, S., Espino, F., Kittayapong, P., Abeyewickrem, W., Wai, K.T., Tyagi,
B.K., Kroeger, A., Sommerfeld, J. and Petzold, M., Eco-bio-social determinants of dengue
vector breeding: a multicountry study in urban and periurban Asia. Bulletin of the World Health
Organization, 88, 173–184, 2010.



Connectivity Between Dengue Cases and Climate Factors 195

6. Goto, K., Kumarendran, B., Mettananda, S., Gunasekara, D., Fujii, Y. and Kaneko, S., Analysis
of effects of meteorological factors on dengue incidence in Sri Lanka using time series data.
PloS One, 8(5), e63717, 2013.

7. Pathirana, S., Kawabata, M. and Goonatilake, R., Study of potential risk of dengue disease
outbreak in Sri Lanka using GIS and statistical modelling. Journal of Rural and Tropical Public
Health, 8, 8–17, 2009.

8. Wickramaarachchi, W.P.T.M. and Perera, S.S.N., A mathematical model with control to analyse
the dynamics of dengue disease transmission in urban Colombo. Journal of National Science
Foundation Sri Lanka, 46(1), 41–49, 2018.



Cellular Nonlinear Computing on the
Edge of Chaos

Angela Slavova

Abstract In this paper we study Cellular Nonlinear Networks (CNN) working
on the edge of chaos. First we present a reaction-diffusion CNN model. Edge of
chaos regime is determined for this model based on local activity theory. Numerical
simulation is presented in order to illustrate the obtained theoretical results.

1 Introduction

Cellular Nonlinear Networks (CNN) present a new class of information processing
systems which shows important potential applications. The concept of CNN is based
on some aspects of neurobiology and adapted to integrated circuits. CNN are defined
as spatial arrangements of locally coupled dynamical systems, referred to as cells.
The CNN dynamics are determined by a dynamic law of an isolated cell, by the
coupling laws between the cells and by boundary and initial conditions. The cell
coupling is confined to the local neighborhood of a cell within a defined sphere
of influence. The dynamic law and the coupling laws of a cell are often combined
and described by nonlinear ordinary differential- or difference equations (ODE),
respectively, referred to as the state equations of cells. Thus a CNN is given by a
system of coupled ODE with a very compact representation in the case of trans-
lation invariant state equations. Despite of having a compact representation, CNN
can show complex dynamics like chaotic behavior, self-organization, and pattern
formation or nonlinear oscillation and wave propagation. Furthermore, Reaction-
Diffusion Cellular Nonlinear/Nanoscale Networks (RD-CNN) have been applied
for modeling complex systems [1, 4–6]. These networks are not representing a
paradigm for complexity only but also establishing novel approaches to information
processing by the dynamics of nonlinear complex systems.
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Fig. 1 CNN with 3 × 3
neighbourhood system

Let us consider a two-dimensional grid with 3 × 3 neighborhood system as it is
shown in Fig. 1.

2 Reaction-Diffusion CNN

In this chapter we shall present the derivation of the CNN implementations via
spatial discretization, which suggests a methodology for converting a PDE to CNN
templates and vice versa. The CNN solution of a PDE has four basic properties—it
is

1. continuous in time;
2. continuous and bounded in value;
3. continuous in interaction parameters;
4. discrete in space.

Reaction-diffusion CNN are described mathematically by a discretized version
of the well-known system of nonlinear PDEs—reaction-diffusion equations [7]:

∂u

∂t
= f (u)+D∇2u, (1)

where u ∈ R
m, f ∈ Rm, D is a m × m diagonal matrix whose diagonal elements

Di are called the diffusion coefficients, and

∇2ui = ∂2ui

∂x2 + ∂2ui

∂y2 , i = 1, 2, . . . , m, (2)
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is the Laplacian operator in R
2.

There are several ways to approximate the Laplacian operator (2) in discrete
space by a CNN synaptic law with an appropriate A-template [1, 5]. For example
we can have:

(a) one-dimensional discretized Laplacian template:

A1 : (1,−2, 1); (3)

(b) two-dimensional discretized Laplacian template:

A2 :
⎛

⎝
0 1 0
1 −4 1
0 1 0

⎞

⎠ , (4)

3 Edge of Chaos Regime

In this section we shall apply theory of local activity [2, 3] in order to study the
dynamics of reaction-diffusion CNN. The theory which will be presented below
offers both constructive analytical and numerical method for obtaining local activity
of reaction-diffusion CNN. It is known [3] that for reaction-diffusion CNN, one
can determine the domain of the cell parameters such that the cells are locally
active, and thus potentially capable of exhibiting complexity. This precisely defined
parameter domain is called edge of chaos. We shall present below constructive and
explicit mathematical inequalities for identifying the region in the parameter space
where complexity phenomena may emerge. By restricting the cell parameter space
to the local activity domain we can achieve a major reduction in the computing time
required by the parameter search algorithms. In this way there is a possibility of
exploiting and controlling chaos for future scientific and engineering applications
[2].

The model of hysteresis CNN which we shall study is the following:

dui

dt
= −ui − 2h(ui)+ d(σ 1

i u0 − ui), (5)

du0

dt
= −u0 − 2h(u0).

In this paper we develop the following constructive algorithm for determining
the edge of chaos domain:

1. Find the equilibrium points Ej , j = 1, 2 of hysteresis CNN model (5).
3. Calculate the cell coefficients of the Jacobian matrix about each system equilib-

rium point Ej , i = 1, 2.
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4. Calculate the trace T r(Ej ) and the determinant (Ej ) of the Jacobian matrix
for each equilibrium point.

5. Define stable and locally active region SLAR(Ej ) for the equilibrium points:

Definition 1 Stable and locally active region SLAR(Ej ) at the equilibrium point
Ej for the hysteresis CNN model is such that T r(Ej ) < 0 and (Ej ) > 0.

6. Determine Edge of chaos region.

In the literature, the so-called edge of chaos (EC) means a region in the
parameter space of a dynamical system where complex phenomena and information
processing can emerge. We shall try to define more precisely this phenomena till
now known only via empirical examples. Moreover, we shall present an algorithm
for determining the edge of chaos for hysteresis CNN.

Definition 2 A hysteresis CNN (5) is said to be operating on the edge of chaos EC
iff there is at least one equilibrium point Ej , i = 1, 2 which is both locally active
and stable.

The following Theorem hold:

Theorem 1 Hysteresis CNN model with dynamic memory synapses (5) is operating
in the edge of chaos region iff d(2σ 1

i − 1) < 1 and d(2σ 1
i + 1) > −2. For

this parameter value there is at least one equilibrium point which belongs to
SLAR(Ej ).

Proof We first define the equilibrium points of CNN model (5)—E1 =
(
−2−2dσ 1

i

1+d ,−2), E2 = ( 2+2dσ 1
i

1+d , 2). We define the 4 cell coefficients of the Jacobian
matrix for (5) and T r(Ej ), (Ej ). Then according to definition 2 we find the
inequalities of the parameter set for which we have at least one stable and locally
active equilibrium points: d(2σ 1

i − 1) < 1 and d(2σ 1
i + 1) > −2. ��

Numerical simulations in Fig. 2 show the following edge of chaos domain:

4 Conclusion

In this paper we study the model (5) of reaction diffusion CNN, which is actually a
system of discrete ordinary differential equations. We determine the edge of chaos
regime for this model. Based on the local activity theory we develop constructive
algorithm for obtaining the edge of chaos regime. We provide numerical simulations
for the following parameter set: d(2σ 1

i ) < 1, d(2σ 1
i + 1) > −1 and taking different

values of the constant d and the binary pattern σ 1 in the case of 4 cells.
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Efficient Yield Optimization with Limited
Gradient Information

Mona Fuhrländer and Sebastian Schöps

Abstract An efficient strategy for yield optimization with uncertain and deter-
ministic optimization variables is presented. The gradient based adaptive Newton-
Monte Carlo method is modified, such that it can handle variables with (uncertain
parameters) and without (deterministic parameters) analytical gradient information.
This mixed strategy is numerically compared to derivative free approaches.

1 Introduction

In mass production one often has to deal with uncertainties due to manufacturing
imperfections, which lead to deviations in the specified design parameters, i.e.,
geometry or material parameters, of the manufactured device. These deviations
in the design parameters, may lead to deviations in the performance quantities,
such that predefined performance requirements are not fulfilled. Thus, the device
is useless. This is of course a waste of time, money and resources – and should be
avoided.

In order to quantify the uncertainty, we consider the yield as the so-called
probability of success. It is defined as the percentage of realizations in a manu-
facturing process, which fulfills all performance requirements, taking into account
manufacturing uncertainties [6]. The yield can be estimated e.g. by a Monte
Carlo (MC) analysis [7, Chap. 5]. In this work we will focus on the optimization
procedure, i.e., the maximization of the yield in order to reduce the negative impact
of uncertainty. In [3, 6] gradient based optimization algorithms have been proposed,
assuming that gradients are available in analytical form. But this is only the case
under some suitable conditions. In the following we present a strategy for efficient
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yield optimization under the assumption that only some of the partial derivatives are
available.

2 Definition of the Yield

We define three kinds of parameters: uncertain design parameters, deterministic
design parameters and range parameters. The uncertain parameters p are modeled
as normal distributed random variables, i.e., p ∼ N (p,�), with

pdfN(p,�)(p) = det(2π�)−
1
2 exp

(

−1

2
(p− p)��−1(p− p)

)

, (1)

where p ∈ R
np indicates the mean value, � ∈ R

np×np the covariance matrix and
pdfN(p,�) the corresponding probability density function (pdf). The deterministic
parameters are given by d ∈ R

nd . The range parameter is denoted by r ∈ Tr ⊂ R

and describes the environment in which the requirements have to be fulfilled.
Let Q : Rnp+nd+1 → R be a quantity of interest (QoI) and c ∈ R. We define the

performance feature specifications (pfs) as

Qr(p,d) ≤ c ∀r ∈ Tr, (2)

which can be easily extended to a vector-valued formulation in case of several
requirements. Then the safe domain is the set of all parameter combinations
fulfilling the pfs, and it depends on the current value of d, i.e.,

�d = {p : Qr(p,d) ≤ c ∀r ∈ Tr} . (3)

The yield Y defines the percentage of realizations in a manufacturing process, which
fulfill the pfs. Following [6] it is given by

Y (p,d) := E[1�d(p)] :=
∫

R
np
1�d(p) pdfN(p,�)(p) dp, (4)

where E denotes the expected value and 1�d the indicator function with value 1 if
the parameter p lies inside the safe domain and 0 otherwise.

A straightforward approach for yield estimation is MC analysis [7, Chap. 5].
There, a large set of sample points p(1), . . . ,p(NMC) of the uncertain parameter is
randomly generated according to its pdf. Then the yield can be estimated by

Y (p,d) ≈ YMC(p,d) = 1

NMC

NMC∑

i=1

1�d(p
(i)). (5)
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In computational engineering, the QoI often involves solving partial differential
equations numerically, e.g., with a finite element method (FEM). Hence, it is compu-
tationally very expensive or even prohibitive to evaluate the QoI for the many sample
points required in a MC analysis. For that reason, there is research on efficient yield
estimation, using e.g. importance sampling [5], surrogate modeling [1, 10] or hybrid
approaches [3, 4, 8]. These hybrid approaches combine classic MC with surrogate
methods, e.g. Gaussian process regression (GPR), cf. [4]. Since this work focuses
on the optimization process, we will not go into the details here.

3 Yield Optimization

We aim to maximize the yield by modifying the design, i.e.,

max
p,d

Y (p,d). (6)

Let us assume that we have only uncertain design parameters as optimization
variables and all of them are Gaussian distributed, i.e., maxp Y (p,d). Then there
exist closed form solutions of gradient and Hessian, cf. [6],

∇pY (p,d) =
∫

R
np
1�d(p)∇ppdfN(p,�)(p) dp, (7)

∇2
pY (p,d) =

∫

R
np
1�d(p)∇2

ppdfN(p,�)(p) dp, (8)

since the optimization variable p only appears in the pdf and this is just an
exponential function in case of Gaussian distribution. The MC estimators of the
gradient and the Hessian are given by

∇pYMC(p,d) = YMC(p,d)"−1 (p�d
− p

)
, (9)

∇2
pYMC(p,d) = YMC(p,d)"−1

(
��d +

(
p�d

− p
) (
p�d

− p
)� − �

)
"−1,

(10)

where p�d
indicates the mean value of all MC sample points lying inside the safe

domain and ��d the corresponding covariance matrix. The detailed derivation can
be found in [6]. Using (9) and (10), once the yield is estimated with MC, the
derivatives are obtained without any additional computational effort. This allows to
use a gradient based optimization solver, e.g. a globalized Newton method, cf. [11].

In [3] an adaptive Newton-MC method is proposed, which is an efficient
modification of the globalized Newton method using the standard deviation of the
MC estimation
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σMC(p,d) =
√
YMC(p,d)(1 − YMC(p,d))

NMC
(11)

as an error indicator for an adaptive sample size increase. For details we refer to [3].
Back to problem (6), we have uncertain and deterministic optimization variables.

Since d appears in the indicator function, we cannot calculate the gradient of the
yield with respect to d, given by

∇dY (p,d) =
∫

R
np
∇d1�d(p) pdfN(p,�)(p) dp, (12)

analytically. Same holds for the Hessian. In order to still use the globalized Newton
method or the adaptive Newton-MC, we propose a mixed strategy. We calculate the
gradient with respect to d with finite differences. But we still use the analytical form
for the derivative with respect to p. So we have

∇p,dY (p,d) =
(∇pY (p,d),∇dY (p,d)

)�
, (13)

where the first part is calculated with (7) and the second part with finite differences.
A well-known formula to approximate Hessians is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update [11], given by

HBFGS
k+1 = Hk + gkg�k

g�k xk
− Hkxk(Hkxk)�

x�k Hkxk
, (14)

where Hk is the Hessian from the last iterate, gk the difference between the current
and the last gradient and xk the difference between the current and the last solution.
Since the part of the Hessian belonging to the uncertain parameter can be calculated
analytically by (8), we introduce the mixed BFGS Hessian

HBFGS
mix :=

(
∇2
pY (p,d) HBFGS

HBFGS HBFGS

)

∈ R
(np+nd)×(np+nd), (15)

where we insert the analytical Hessian ∇2
pY (p,d) ∈ R

np×np from (8) into the
BFGS formulation (14). The mixed strategy can also be necessary, if the gradient or
Hessian of the pdf cannot be computed in closed form.

4 Numerical Results

As benchmark problem we consider a simple dielectrical waveguide with two
uncertain geometrical parameters p1 (length of the inlay) and p2 (length of the
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Fig. 1 Comparison of different methods for yield optimization

offset) and two deterministic material parameters d1 and d2 with impact on the
relative permittivity and permeability. The uncertain parameters are assumed to
be independent truncated Gaussian distributed with truncation at ±3 mm in order
to avoid unphysical values. Thus, the parameters and their initial values for
optimization are given by

p0 = [9, 5] , � = diag
([

0.92, 0.92
])

and d0 = [1, 1] . (16)

The range parameter is the angular frequency. The QoI is the scattering parameter
(S-parameter), i.e., for its calculation the electric field formulation of Maxwell has
to be solved numerically with FEM. We consider the pfs

Qr(p) ≤ −24 dB ∀r ∈ Tr = [2π6.5, 2π7.5] in GHz. (17)

The frequency range Tr is discretized into 11 equidistant frequency points. For each
of these points, the inequality in (17) has to be fulfilled. For more details regarding
this example we refer to [9] and [3]. In the optimization we set σmax

MC = 0.01, which
implies NMC = 2500 in the non-adaptive method. In the adaptive Newton-MC we
set N0

MC = 100 and increase it if necessary. The initial yield value is Y 0
MC = 42.8%.

We compare four methods to maximize the yield of this waveguide:

• V1dfo-ref: reference solution – problem solved with classic MC for estimation
and the derivative free optimization (DFO) solver Py-BOBYQA [2]

• V2mix-na: mixed strategy proposed in Sect. 3 with classic MC for estimation and
non-adaptive Newton method for optimization

• V3mix-a: mixed strategy proposed in Sect. 3 with classic MC for estimation and
adaptive Newton-MC for optimization

• V4mix-ha: mixed strategy proposed in Sect. 3 with Hybrid-GPR approach [4] for
estimation and adaptive Newton-MC for optimization

We consider three aspects of these methods: the optimal yield they achieve, the
number of objective function (i.e. yield) calls they require and the number of FEM
evaluations (to solve the QoI). The results are shown in Fig. 1.

All methods achieve an improvement of the yield by more than 55% to values
between 98.4% (V2mix-na) and 99.8% (V3mix-a), with the optimal solutions
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V1dfo-ref: popt = [10.94, 5.22] and dopt = [0.44, 1.19]

V2mix-na: popt = [10.56, 4.52] and dopt = [0.39, 1.16]

V3mix-a: popt = [ 9.87, 4.92] and dopt = [0.2, 0.125]

V4mix-ha: popt = [10.86, 5.22] and dopt = [0.44, 1.09]

In the non-adaptive case (V1dfo-ref and V2mix-na) the number of yield evaluations
correlates strongly with the number of FEM evaluations. The mixed strategy
from Sect. 3 (V2mix-na) needs more than 20% less yield and FEM evaluations
than the reference DFO solver Py-BOBYQA (V1dfo-ref). When introducing the
adaptive Newton-MC (V3mix-a and V4mix-ha), the number of yield evaluations
increases, which can be explained by less accurate descent directions due to
noisier yield estimations because of smaller MC sample sets. Nevertheless, the total
computational effort, i.e., the number of FEM evaluations, decreases, since the yield
evaluations are run with smaller MC sample sets and are thus less expensive. By
not applying classic MC for yield estimation, but a hybrid approach based on GPR
surrogates (V4mix-ha), the computational effort again can be reduced by a factor
of 180 compared to classic MC (V3mix-a), by 1191 compared to the non-adaptive
strategy (V2mix-na) and by 1671 compared to the DFO reference (V1dfo-ref).

5 Conclusion

We proposed a new mixed approach to solve yield optimization problems with deter-
ministic and uncertain optimization variables. Only for the uncertain parameters,
analytical gradient and Hessian information is available. Thus, a mixed strategy
with analytical and numerical (finite differences and BFGS updates) derivatives
has been used. Numerical results show better efficiency than a common derivative
free optimization solver. Future research will deal with implementing the adaptive
strategy and available gradient information into an originally derivative free solver.
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Thermomechanical Modelling for
Industrial Applications

Nirav Vasant Shah, Michele Girfoglio, and Gianluigi Rozza

Abstract In this work we briefly present a thermomechanical model that could
serve as starting point for industrial applications. We address the non-linearity due to
temperature dependence of material properties and heterogeneity due to presence of
different materials. Finally a numerical example related to the simplified geometry
of blast furnace hearth walls is shown with the aim of assessing the feasibility of the
modelling framework.

1 Introduction

Thermomechanical models are widely used in many practical applications [1, 2].
We refer to the case of one-way coupling between thermal and mechanical fields,
where the temperature can be computed in advance, it being independent of the
displacement, and used afterwards to compute the displacement. Finite Element
Method (FEM) [3] is adopted to obtain these fields by solving the weak formulation
of the governing equations. FEM based thermomechanical models have been
successfully used for the investigation of thermomechanical phenomena arising in
blast furnace [4–6]. In this work, we are going to take a step forward with respect to
what done in [5] by considering the temperature dependence of material properties
(that introduces a nonlinearity in the thermal model) and presence of different
materials (at which one could refer to as heterogeneous material).
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2 Mathematical Model

The blast furnace hearth is made up of several zones: ceramic cup, carbon block,
steel shell. Each zone has different design requirement depending on the type of
environment to which it is exposed. Ceramic cup is required to withstand high
temperature due to direct contact with the molten metal. Carbon blocks are expected
to reduce accumulation of excess heat. Steel shell is required to have sufficient
mechanical strength to sustain the forces from other components. The reader is
referred to [5, 6] for an illustration of the general layout of a blast furnace.

At the aim to consider a structure constructed using assembly of different
materials, we refer to a domain ω divided into different nsu non-overlapping
subdomains {ωi}nsui=1:

ω̄ =
nsu⋃

i=1

ω̄i , ωi ∩ ωj = ∅ , i �= j . (1)

We refer to the interface between two subdomains γ = ∂ωi ∩ ∂ωj , i �= j as
shown in Fig. 1 (left). The subdomains ωi and ωj are related to different materials.
The temperature T and the heat flux −→

q · −→n , as well as the displacement −→u and
the stress vector σ−→n are continuous along the interface γ as reported in Fig. 1
(right). Let k(i), E(i), ν(i), α(i) respectively be the temperature dependent thermal
conductivity, Young’s modulus, Poisson’s ratio and thermal expansion coefficient
corresponding to the material of the subdomain ωi . In the current analysis, we
consider ν(i) and α(i) constant with respect to the temperature. So, for x ∈ ωi ,
we have:

Fig. 1 Close-up view of two subdomains (left) and continuity conditions through the interface
between the two subdomains (right)
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k(T , x) = k(i)(T ) , E(T , x) = E(i)(T ) , ν(T , x) = ν(i) , α(T , x) = α(i) .

We use the piecewise spline interpolation [7] to approximate thermal conductivity
and Young’s modulus based on their estimates (typically experimental data) related
to certain discrete temperature values:

if Ta ≤ T ≤ Tb , k(i)(T ) = a(i)0,kT
2 + b(i)0,kT + c(i)0,k , E

(i)(T ) = a(i)0,ET
2 + b(i)0,ET + c(i)0,E ,

if Tb ≤ T ≤ Tc , k(i)(T ) = a(i)1,kT
2 + b(i)1,kT + c(i)1,k , E

(i)(T ) = a(i)1,ET
2 + b(i)1,ET + c(i)1,E .

We consider a thermomechanical problem described in the cylindrical coordinate
system (r, y, θ). In many real-world applications the variation of domain geometry
as well as loads and heat fluxes with respect to the angular coordinate θ could be
neglected. Under such conditions, it is reasonable to apply axisymmetric hypothesis.
Then in the absence of source terms the energy and momentum conservation
equations in strong formulation endowed with proper boundary conditions referred
to a domain ω can be stated as follows:

Thermal model : −1

r

∂

∂r

(

rk
∂T

∂r

)

− ∂

∂y

(

k
∂T

∂y

)

= 0 , in ω , (2a)

Neumann boundary : (−k(T , x)∇T ) · −→n = 0 on �TN ⊂ ∂ω , (2b)

Convection boundary : (−k(T , x)∇T ) · −→n = h(T − TR) on �TR ⊂ ∂ω . (2c)

Mechanical model : ∂σrr
∂r

+ ∂σry

∂y
+ σrr − σθθ

r
= 0 , in ω , (3a)

∂σry

∂r
+ ∂σyy

∂y
+ σry

r
= 0 , in ω , (3b)

Applied force : σ−→n = −→
g , on �uN ⊂ ∂ω , (3c)

Bilateral frictionless contact : −→u · −→n = 0 , −→σ t = −→
0 , on �uc ⊂ ∂ω . (3d)

The temperature field T and displacement field −→
u = [ur uy] are the unknown

quantities of interest. Convection coefficient h, convection temperature TR and
boundary force −→

g are specified data. The relevant material properties include ther-
mal conductivity k, Young’s modulus E, Poisson’s ratio ν and thermal expansion
coefficient α. The normal vector −→

n is considered to be pointing outwards. The
shear stress −→σ t is related to the stress tensor σ as:

−→σ t = σ−→n − σn−→n , where σn = (σ−→n ) · −→n .
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If T0 is the known reference temperature, axisymmetric stress-strain relationship,
in vector notation, can be expressed as,

{σ (−→u )[T ]} = C{ε(−→u )} − E

(1 − 2ν)
α(T − T0){I } ,

where ε is the strain tensor, I is the identity matrix and

C = E

(1 − 2ν)(1 + ν)

⎛

⎜
⎜
⎝

1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0
0 0 0 1−2ν

2

⎞

⎟
⎟
⎠ .

We introduce weighted Sobolev spaces, L2
r (ω) and H 1

r (ω) [8]:

L2
r (ω) =

{

ψ : ω  → R ,

∫

ω

ψ2rdrdy <∞
}

,

H 1
r (ω) =

{

ψ : ω  → R ,

∫

ω

(

ψ2 +
(
∂ψ

∂r

)2

+
(
∂ψ

∂y

)2
)

rdrdy <∞
}

,

and the functional spaces for temperature and displacement:

T = {ψ ∈ L2
r (ω) ∩H 1

r (ωi)} ,
U = {−→φ ∈ [L2

r (ω)]2 , ε(
−→
φ ) ∈ [L2

r (ωi)]3×3 ,
−→
φ · −→n = 0 on �uc } .

Then the weak formulations corresponding to equations (2) and (3) are given by:

nsu∑

i=1

∫

ωi

k∇T : ∇ψr drdy +
∫

�TR

hT ψr drdy =
∫

�TR

hTRψr drdy , ∀ψ ∈ T ,

(4)

nsu∑

i=1

∫

ωi

C{ε(−→u )} : {ε(−→φ )}r drdy =
nsu∑

i=1

∫

ωi

C(T − T0)α{I } : {ε(−→φ )}r drdy

+
∫

�uN

−→
φ · −→g r drdy , ∀−→φ ∈ U .

(5)
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3 Numerical Example

We consider the domain ω as shown in Fig. 2. It is divided in nsu = 6 subdomains.
The coordinates of their vertices are reported in Table 1.

At top boundary γ+ and symmetry boundary γs = ∂ω ∩ (r = 0), Neumann
boundary (2b) and bilateral frictionless contact (3d) are applied. At bottom boundary
γ−, convection boundary (2c) and bilateral frictionless contact (3d) are applied.
Inner boundary γsf and outer boundary γout are convection and applied force
boundaries (Eqs. (2c), (3c)). Convection coefficient h, convection temperature TR
and applied force −→

g are reported in Table 2.
From a physical viewpoint, Neumann boundary (2b) on γ+ refers to the adiabatic

condition. On γsf , the convection boundary (2c) refers to heat transfer with liquid
iron at melting point. On γout and γ−, the convection boundary (2c) refers to heat
extraction from the structure using heat exchanger. The convection coefficients
h and the convection temperatures TR , referring to the heat exchanger operating
conditions, are kept constant. Bilateral frictionless contact (3d) on γ+ and γ−
is related to no shear force from other components and restriction on normal
expansion. The restriction on normal expansion on γ+ refers to direct contact
with other sections of hearth, while the restriction on normal expansion on γ−
refers to direct contact with the ground. On the inner boundary γsf , the applied
forces (Eq. (3c)) refer to hydrostatic force from molten iron. Considering that the
maximum hydrostatic force is exerted when the level of molten iron is ymax , we take
into account the worst case scenario. On boundary γout , no known force occurs.

Table 3 reports thermal conductivity and Young’s modulus values used for the
interpolation. It should be noted that the values reported in Table 3 are typical for
the blast furnace hearth materials. The exact values of material properties depend

Fig. 2 Computational domain (left) and view of the mesh (right)
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Table 2 Convection coefficients and temperatures, applied forces at domain boundaries

Boundary γ− γout γ+ γsf γs

Convection coefficient h
[

W
m2K

]
200 200 / 2000 /

Convection temperature TR [K] 300 300 / 1773 /

Boundary force −→
g
[

N
m2

]
/

−→
0 / −77,106(ymax − y)−→n /

Table 3 Temperature dependent thermal conductivity and Young’s modulus values used for
interpolation

Thermal conductivity
[

W
mK

]
Young’s modulus [GPa]

T [K] ω1 ω2 ω3 ω4 ω5 ω6 T [K] ω1 ω2 ω3 ω4 ω5 ω6

293 16.07 49.35 5.3 4.75 23.34 45.6 293 10.5 15.4 58.2 1.85 14.5 190

473 15.53 24.75 5.3 4.75 20.81 45.6 573 10.3 14.7 67.3 1.92 15.0 190

873 15.97 27.06 5.3 4.75 20.99 45.6 1073 10.4 13.8 52.9 1.83 15.3 190

1273 17.23 38.24 5.3 4.75 21.62 45.6 1273 10.3 14.4 51.6 1.85 13.3 190

on the commercial grade of the material used in the final design. Table 41 shows the
interpolation coefficients for thermal conductivity and Young’s modulus. Thermal
conductivity k(6) and Young’s modulus E(6) are related to thin section of steel shell
where the temperature variation is not significant, so we consider them constant.
On the other hand, thermal conductivities k(3) and k(4) refer to refractory blocks,
which are in direct contact with high temperature molten metal and are required to
sustain high temperature. They show little variation with respect to the temperature
and hence, it is reasonable to assume them constant. Table 5 reports the Poisson’s
ratio and thermal expansion coefficient values. The reference temperature T0 is
considered as 300 K.

We use Lagrange finite element with polynomial of degree 1 for displacement
and temperature. The number of degrees of freedom for temperature was 4428 and
for displacement was 8856. We use Newton’s method to solve the nonlinear thermal
model (4) with required residual tolerance of 1e− 4. For the mechanical model (5),
we use the lower-upper (LU) decomposition. All the simulations were performed by
using FEniCS [9].

Numerical results are shown in Fig. 3. As can be noticed, both temperature
and displacement profiles do not show strong discontinuity at the interfaces. This
demonstrates that the interface conditions related to heat flux and stresses (see
Fig. 1) are properly formulated and incorporated in the weak formulation.

From practical viewpoint, the temperature profile is typically used to identify
areas subjected to high thermal stress. In addition, the temperature profile is also
used to locate critical isotherms in the domain, such as isotherm corresponding to
1150◦C, which represents the penetration of liquid iron in the blast furnace hearth.
On the other hand, the displacement profile is typically used to identify areas with

1 The coefficients in Table 4 are rounded-off to maximum two decimal points.
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Table 5 Poisson’s ratio and thermal expansion coefficient values

ω1 ω2 ω3 ω4 ω5 ω6

ν(i) 0.3 0.2 0.1 0.1 0.2 0.3

α(i)
[
K−1] 2.3E-6 4.6E-6 4.7E-6 4.6E-6 6E-6 1.2E-5

Fig. 3 Computed temperature field (left) and displacement field (right)

maximum deformation. Furthermore, the displacement field along with temperature
field have direct impact on the stress field in the hearth.

4 Concluding Remarks

In this work we have addressed the development of a thermomechanical model
able to describe phenomena associated to the temperature dependence of material
properties (non linearity) and to the presence of different materials (heterogeneity).
We expect this preliminary work could serve as starting point for thermomechanical
analysis of practical problems.
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The Virtual PaintShop: Simulation of
Oven Curing

Tomas Johnson, Andreas Mark, Niklas Sandgren, Simon Sandgren,
Lars Erhardsson, and Fredrik Edelvik

Abstract The modeling and simulation of oven curing in automotive paintshops is
very challenging including multiple scales, turbulent air flows, thin boundary layers,
large temperature gradients and long curing times. A direct brute force conjugate
heat transfer simulation of an oven resolving all time and length scales would be
enormously time and resource consuming. It is therefore clear that mathematical
modeling must be performed, including separation of scales, and a simplification of
the heat transfer coupling. We present a novel approach developed in a research
project together with the Swedish automotive industry, which makes it possible
to accurately simulate a curing oven with close to real time performance. The
simulation results are demonstrated to be in close agreement with measurements
from automotive production.

1 Introduction

There is a great need to improve the product preparation process in automotive
paintshops to meet future demands on fast adaption and tailored solutions for
new material combinations and products. The possibility to perform systematic
simulations is then essential and would contribute to sustainable production by
reducing the number of prototypes that needs to be painted, and by making it
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possible to optimize the processes with respect to quality, cost and environmental
impact. In earlier work we have presented novel tools for simulation of the spray
and sealing processes [3, 4, 6]. The modeling and simulation of the convective
ovens typically used in the automotive paintshops to cure the different paint layers
is also challenging including multiple scales, turbulent air flows, thin boundary
layers, large temperature gradients, and long curing times. A brute force conjugate
heat transfer simulation of an oven resolving all time and length scales would be
enormously time and resource consuming. Therefore, mathematical modeling is
needed to obtain realistic simulations times.

We present a novel approach developed in a research project together with
the Swedish automotive industry, which makes it possible to accurately simulate
a curing oven in almost real time. The goal is to successfully predict the time
dependent object temperature to decrease the number of physical tests that need to
be carried out, especially during the production preparation phase. It also allows the
oven operator to investigate possible alternative settings of the oven, e.g. flow rates
and temperatures. In the approach, the individual nozzles in an oven are simulated
to estimate the local nozzle Nusselt number. The Nusselt number is a dimensionless
number describing the strength of heat transfer. For a complete oven, the Nusselt
numbers of each nozzle are combined to model the effect of the air flow on the solid
object, and thereby model the heating. Furthermore, we utilize the novel geometric
routines in IBOFlow that efficiently and robustly compute the intersection between
a triangular volume mesh and a hexahedral Cartesian mesh [10]. This allows us to
accurately describe the solid geometry on a coarse background grid and enables the
efficient solution of the heating of objects inside the oven. The novel algorithm and
separation of scales approach allow us to simulate on a standard workstation. This
is in contrast with previous work on simulation of oven-curing [2], where a Lattice
Boltzmann solver in the fluid is coupled with a finite difference solver in the solid,
which requires a large cluster to run. The simulation results are demonstrated to be
in close agreement with measurements from automotive production, and they can
also be utilized for multicriteria optimization [9].

2 Numerical Method

The proposed numerical method is motivated by the fact that a complete time and
scale resolved simulation using the Reynolds’ averaged Navier-Stokes equation
together with conjugated heat transfer is very computationally demanding [2]. This
is especially true since our goal is to present a method where an entire curing
process, up to 1 h, can be simulated over night on a standard workstation. In this
section we will describe how we solve this problem by separating the scales while
preserving a physics-based approach, localize the resolved simulations, and couple
the localized simulations to the full oven scale.

The numerical method has been implemented in the in-house multi-physics
solver IBOFlow® [5], extending earlier available software modules employed in
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Fig. 1 Nusselt number profiles (a) Comparison between one nozzle and two nozzles profiles (b)
7 cm nozzle profile (c) 10 cm nozzle profile

the Virtual Paintshop. The fluid dynamics engine in IBOFlow is a co-located,
segregated, incompressible Navier-Stokes solver on an octree based Cartesian mesh,
which uses the SIMPLE-C method for pressure-velocity coupling. All geometries
are handled with help of an immersed boundary method, for further details see
[1, 5, 7, 9].

In [13] a comparison between the applicability of different turbulence models
to estimate the Nusselt number for impingement heat transfer is performed. The
recommendation is to use either Menter’s k − ω SST or Durbin’s v2f method. We
use the SST turbulence model [8], which has lower computational cost and still
captures the location of the secondary peak well. The secondary peak can be seen
in Fig. 1b–c and is a typical characteristic of the Nusselt number below a round
jet [11–13]. The heat flux at the solid fluid interface is computed from the friction
temperature and velocity. The approach is similar to the one in [11, 12].

Our approach is based on separation and localization. We localize the simulations
to individual nozzles to allow us to separate the boundary layer scale from the oven
scale. The scale separation contains three steps: motivation, local description, and
local to global coupling.

To motivate the approach we study the interference of two nozzles. As can
be seen in Fig. 1a the Nusselt number profile under two nozzles is similar to the
duplication of single nozzle profiles. For the local description we generate Nusselt
number profiles for a range of diameters and distances, and store all the results
for varying diameters and distances in a database. Two such profiles for 7 and
10 cm nozzles are shown in Fig. 1b–c. The local to global coupling is performed
by projecting the local profiles onto the object.

The body of a car or truck cab consists, to a large extent, of 1–2 mm thick sheet
metal. In order to resolve such a geometry on a Cartesian grid we use the volume
fraction method developed in [10], which allows us to describe the volume and area
fractions locally. The method only needs a surface mesh of the object. In Fig. 2 an
example of an object with two sheet metal parts is shown together with the Cartesian
mesh and the volume fractions representing the object.
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Fig. 2 Discretization of a
double sheet metal part on the
Cartesian mesh. The mesh is
colored by the volume
fraction. The conductive heat
transfer is solved on the
Cartesian background mesh

Fig. 3 The discretized oven, where the elevators are modeled as horizontal zones and the cooling
zone is split into two zones due to different temperatures. The total number of discretized zones is
8 with a total of 306 circular and 24 rectangular nozzles

3 Results

To validate our approach we simulate the curing of a Scania R20H cab in a
convective curing oven at the paint shop in Oskarshamn, Sweden. The oven is
shown in Fig. 3. It has 306 circular and 24 rectangular nozzles. The measurements
are performed on a dry cab with 7 probes attached to it. The probes are positioned
to give an accurate description of the heating of the cab, including areas such as
beams with thicker material. To ensure proper curing the resulting oven curves
should match the specification of the paint manufacturer. In particular the minimum
time above paint specific critical temperatures must be ensured.

The results of the simulation compared with the measurements are shown in
Fig. 4. As seen in the figure the simulations closely capture the temperature profiles
from the measurements. The point-wise mean deviation between measured and
simulated temperatures for the 7 probes are shown in Table 1. The least accurate
probe (2) is positioned on a thin part in the front of the cab, where position is
important, and the projected fluxes give a larger error compared to a full simulation.
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Fig. 4 Validation of the heating of the cab in the oven for 7 probes. They are shown in order from
Probe 1 to Probe 7

Table 1 The point-wise mean deviation between measured and simulation temperatures for the 7
probes

Probe 1 2 3 4 5 6 7

Deviation [%] 4.2 7.2 5.0 3.5 2.5 3.6 2.8

4 Conclusions

In this paper a novel framework for simulation of convective curing ovens is
presented. A validation is performed for a truck cab cured in an oven at the Scania
plant in Oskarshamn. Overall the agreement between simulations and measurements
is very good, almost within the measurement uncertainty. The conclusion from this
and other performed case studies is therefore that the simulations can be used
to predict the outcome of the process, optimize process parameters and detect
areas with insufficient curing. The framework is integrated in the IPS software
(www.industrialpathsolutions.com) as an oven simulation module, complementing
the other virtual paintshop tools. The very efficient implementation gives a major
improvement of computational speed compared to earlier approaches and makes it
possible to perform detailed simulations in close to real time on a standard computer.
To simulate an IR oven, that are commonly used in repair shops, would be a simple
extension of the work presented here.

The standard tests carried out by the automotive manufacturers are on dry objects.
This is consistent with the recommendations from the paint manufacturers. Our
initial goal has therefore been to validate such tests as demonstrated in this paper.
The natural next step is to include transient tracking of the paint layer thickness
and solvent concentration, to allow simulations of the curing itself. Future work
also includes to analyze the effect of the oven curing on the adhesive joints from
hemming processes.
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Parameter Identification and Forecast
with a Biased Model

Miracle Amadi and Heikki Haario

Abstract A well known practical issue is to ascertain how well the parameters of a
model can be identified so as to allow a legitimate inference. In most cases, models
are biased and may not contain all the necessary features needed to fit the data well.
Employing the simplest Ross model as an example, we illustrated that parameter
identifiability can be a problem of three factors: model specification, noisy data
and partially observed model. Kalman filtering technique was employed in order to
produce an optimal estimate of the evolving state of the system based on the model
and other information such as rainfall, while simultaneously estimating the model
parameters using the Kalman filter likelihood. Markov Chain Monte Carlo (MCMC)
was employed as a general tool to diagnose parameter identifiability. To show the
performance of the methods, an illustrative example was given with malaria data
from Kalangala district, Uganda. In the end, the parameters were more or less well
identified although the posterior is larger than when a synthetic data was used.

1 Introduction

Determining how well the parameters of a model can be distinctly identified with the
help of available data, has been a common practical issue. When model parameters
are not identifiable, there is little reason to believe that estimated values are close
to the actual values. Even for noiseless data, the data can be fit arbitrarily well by
different combinations of parameter values for some model/data combinations, and
the uncertainties in the model parameter estimations are boundless. This follows
from the fact that although some parameter estimates can be obtained from a given
model, these estimates could easily be local estimates or an arbitrary set of estimates
that can over-fit the observation data if proper identification of the actual values of
the parameters is not done.
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Over the years, many mathematical models have been used to provide an
explicit framework for understanding malaria transmission dynamics in the human
populace. The basic malaria model, now known as the classical “Ross model” was
developed by Sir Ronald Ross in early 1900 [5]. The Ross model has since played
a key role in the development of mosquito-borne pathogen transmission studies and
has had major influence on the development of strategies for malaria control. Using
two differential equations for the human and mosquito, the model presents the time
evolution of the fraction of individuals in infected classes (ih, im):

dih = mabim(1 − ih)− ihr (1)

dim = acih(1 − im)− μim,

where ih and im represents the fractions of infected humans and mosquitoes, corre-
spondingly,m denotes the mosquito-to-human ratio, b and c denote the transmission
probabilities during mosquito contact with the human, μ is the mosquito mortality
rate, a is the contact rate and r represents the recovery rate for humans. Based on
benchmarks described in [6], the simpler models, such as the Ross model, appear to
do a better job of matching data and heuristics than the more complex models. Here,
we demonstrate how well the parameters of the simple Ross model can be identified
based on available data and parameter selections. The data on reported monthly
malaria cases for Kalangala district for six years (2006–2011) from Uganda, and
the corresponding mean monthly rainfall data were employed in this study from
World Weather Online.

2 MCMC Parameter Identification

Parameter identifiability is usually diagnosed using MCMC approach. This method
is based on Bayesian inference and can be used to determine the reliability of param-
eter estimates as well as to quantify parameter confidence. Thus, by generating
distributions of parameter values consistent with the available data, this method
gives reliable estimates of model parameters (and associated uncertainties) and may
be used to check whether those estimates are unique. Adaptive MCMC is used in this
study since we may not be able to determine a well-working proposal distribution at
the outset [2]. The Adaptive MCMC is an improved version of Metropolis-algorithm
that updates the proposal covariance during the MCMC run, by using information
of the previously sampled points. To evaluate the fit with the data, we utilized the
cost function which returns the sum of squared differences between observations
and model outputs while accounting for measurement error variance. The structure
of the posterior distribution shows if the observables uniquely bound the model
parameters. A helpful practice for seeing how well the chain is mixing, is to make a
plot of the autocorrelation functions of the parameter chain, from which one can see
the degree to which samples that are k steps away correlate with each other [2]. We
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would expect successive points to correlate more with each other than points further
apart because in MCMC, next points are dependent on the previous points. Again,
the model parameters are considered to be identifiable if the parameter values that
are in the best agreement with the data are bound to a small region of the parameter
space.

2.1 Factors Influencing Parameter Identifiability

2.1.1 Partially Observed Model

Even for very basic models, partial observation of state variables frequently results
in structural non-identifiability of model parameters [4]. The Ross model employed
for this study has a compartment for infected mosquitoes population which is
hardly measurable. Thus, such data is not available for this study. One approach
for tailoring the model complexity to the information content of the data is to
reduce the model complexity in accordance with the available data, resulting in a
reduction in the ODE system’s dimension [4]. A method for addressing this problem
was proposed in [7], based on the practical necessity that parameters be written as
functions of the known quantities of the ODE system. In this work, considering that
the presence of mosquito dynamics gives an additional degree of freedom, a reduced
model which has only the infectious human compartment is proposed. Therefore,
the equilibrium solution of infected mosquitoes given as

i∗m = ih

ih + κ , where κ = μ

ac
, (2)

is plugged in and parameterised as

dih

dt
= mab ih

ih + κ (1 − ih)− ihr. (3)

The parameter κ denotes the ration of mosquito mortality and infection rate. It can
be small or large depending on the size of the infected mosquito population. In our
preliminary analysis, the dynamics of the original and the reduced model are the
same.

2.1.2 Interdependence and Lack of Influence of Parameters

Non-identifiability can be caused by lack of influence of a parameter on the
observables, as well as interdependence among the parameters. It is obvious that if a
parameter has no effect on the observables, it is not possible to determine its value.
On the other hand if a change in one parameter can be matched by a corresponding
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Fig. 1 MCMC results for the chosen parameterization with synthetic data: (a) trace plot (b)
pairwise correlation plot (c) autocorrelation plot

change in another, parameter identification can be difficult, since they may not be
individually identifiable [1].

Despite the fact that there is no way to absolutely establish a model’s structure,
unsuccessful models can be ruled out if they fail to fit the available data for any
set of parameters. When the available data lack the power to constrain a model’s
parameters significantly, it is possible that several other models of equivalent
complexity are likely to match the data well. Thus, diagnosing identifiability is a
first stage in the model selection process, in which possible models are ruled out if
they are unable to be bound by available data. Given that models and parameters
are evaluated simultaneously, the MCMC method for detecting parameter non-
identifiability may also be employed for model selection.

We tested this using synthetic data generated by adding a Gaussian noise to the
output of the Ross model which was initially computed by employing values for
the first set of parameters and initial conditions given in [6]. We found that all
the six parameters are not well identified since the uncertainties in most of the
model parameters are unbounded. However, from the nature of the mixing of the
chains, it appears that some of the parameters are better expressed as products, with
those products, taken as new parameters (see [1]). Following this approach, other
parameterizations were evaluated, and we finally came up with one having four
parameters as shown in Fig. 1. With this parameterization, the parameter chains have
a very good mixing, with their associated levels of uncertainty, uniquely identified
as can be seen in Fig. 1. Thus, we use this model parameterization in fitting the real
data.

2.1.3 Biased Model

Bayesian identification procedure takes a long time to converge when the noise
level is high [2]. Besides model parameter estimation, where the goal is to estimate
static parameters, it is of interest to estimate the dynamically changing state of
the system since the initial values of the system are not known. However, in some
cases, the model state is not known precisely and it has to be estimated along with
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the parameters. State estimation in dynamical models can be done using filtering
methods, where the distribution of the model state evolves along with the dynamical
model and updated sequentially as new observations become available [3]. Another
rationale behind filtering is that the model can have bias and may not contain all
the necessary features required to fit the data well. For instance the Ross model
alone does not have a provision to include the changing weather information. Thus,
the filtering in this study incorporated the rainfall observations to the numerical
model. The ODE was solved with the mosquito density m periodically following
the rainfall with a linear model, using the time lag calculated by cross correlations
and regression. The estimation of the time-lag was done by a separate analysis. Also,
as the data is periodic and increasing, the Ross model has no way to fit it, but by
filtering becomes yet possible.

We considered the likelihood approach of implementing parameter estimation
within a data assimilation system. The likelihood of a parameter value is computed
by running a state estimation procedure over a specified data set while keeping the
parameter value unchanged. The likelihood is computed using the filter residuals [3].
This is similar to traditional parameter estimation, but a state estimation technique
is used to “integrate out” the uncertainty in the model state. Thus, two stages are
involved in order to obtain the parameter estimates:

• a filtering method for computing the posterior density for a parameter value
• a parameter estimation algorithm for obtaining the estimates.

For the first task, we use the extended Kalman filter technique, since the model
is non-linear. For the second task, we use the MCMC algorithm. For further reading
on this approach, see [3].

3 Results

The result of the Kalman filtering done with the new ODE parameterization is
given in this section. It can be seen from Fig. 2b that the parameters are properly
identified. Overall, parameter identifiability improved at each step of rectifying the
issues posed by the influencing factors. However, it can be seen from the plots of
the two dimensional marginal distributions in Figs. 2b and 1b that the case with real
data has a larger posterior density as compared to the case with synthetic data.

4 Conclusion

In general, we acknowledge that identifiability could also be a property of likelihood
and suggest that the nature of the proposed model in relation to the available data
be studied before embarking on full MCMC implementation. Apart from allowing
for the on-line estimation of model states with relevant sources of information, the
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Fig. 2 (a) The predictive posterior distribution of the state variable calculated from MCMC (light
gray), a single prediction by MAP estimate (black bold line) and the data (red circles) (b) The
pairwise distribution plots for the case with the real data

Kalman filtering conducted reduces uncertainties and bias, and thereby improve
forecasting. The present work could be regarded as a proof of concepts that can
be employed to improve parameter identifiability and forecasting.
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Estimation of Time-Dependent
Parameters in a Simple Compartment
Model Using Covid-19 Data

Mahdi Hedayat Mahmoudi and Sara Grundel

Abstract Owing to the ongoing pandemic of COVID-19 an increased interest in
epidemiological mathematical modelling arised. Several specific extensions of the
classical susceptible-infected-recovered (SIR) modeling approach for the COVID-
19 pandemic were developed to make forecasts. However, in all models, parameters
have to be fitted on historical data. In this work we restrict ourselves to a simple
model assuming however time dependent parameters. This makes sense as the
parameters represent contact rate as well as recovery and death rate which are
parameters that change with mutation of the virus and change in behaviour of the
population. We estimate them using a Markov Chain Monte Carlo method. On the
example of gender we split the model in society subgroups and estimate group
specific parameters as well.

1 Introduction

The Coronavirus (COVID-19) became a major challenge during the last year
[5, 11, 18], and is not yet over. The idea for this paper came from the interest in
understanding the effect of different policies on the spread of the virus. Under-
standing this will also help in future decision-making. In particular it would be
interesting to analyse the effectiveness of different methods for future pandemic
handling. Different mathematical modeling approaches have been employed to
simulate the disease course [14], artificial intelligence-based models [8], day-level
forecasting based on time-series data [4], agent-based modeling [10], and possible
others. In order to forecast rather involved models seem to be important and
necessary, even though the problem of fitting the model remains tricky. Ordinary
differential equation (ODE)-based models have been used for a long time to simulate
the classical dynamics of epidemics [16]. In the literature various versions and

M. H. Mahmoudi · S. Grundel (�)
Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
e-mail: mahmoudi@mpi-magdeburg.mpg.de; grundel@mpi-magdeburg.mpg.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_31

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_31&domain=pdf

 885 55738 a 885 55738
a
 
mailto:mahmoudi@mpi-magdeburg.mpg.de

 15336 55738 a 15336
55738 a
 
mailto:grundel@mpi-magdeburg.mpg.de

 -2016 61494 a -2016 61494 a
 
https://doi.org/10.1007/978-3-031-11818-0_31


234 M. H. Mahmoudi and S. Grundel

mathematical studies can be found [3, 6, 7, 13, 17]. This type of model was first
proposed by Kermack and McKendrick [9] in 1927 to simulate the transmission of
infectious diseases such as measles and rubella [1]. Such models assume susceptible
(S), infected (I), and removed (R) fractions in a closed population and calculate the
rate of changes in each fraction with ODEs [2, 19].

2 SIR Model

In this section, we use the classical SIR model, modified only to account for fatalities
directly and later on a partition of each compartment by gender, which could be
easily generalized to age or other society dividing features. This means the model
becomes an SIRD model splitting the removed compartment into recovered (R) and
dead (D) and the following ordinary differential equation and flow chart,

dS

dt
= − β

N
SI

dI

dt
= β

N
SI − (γ + α)I dR

dt
= γ I dD

dt
= αI (1)

S
β→ I

γ

↗
↘
α

R

D

(2)

where β is the effective contact rate, γ the recovery rate, α the mortality rate, N =
S + I + R +D is the total population and t is the elapsed time from the start date.
In this simple model the computation of the basic reproduction number, R0, is the
ratio of transmission and recovery plus fatal rates.

R0 = β

γ + α . (3)

Extending this model now to different partitions of the society means that each
compartment can now be split into n many separate compartments:

S =
n⋃

�=1

S�, I =
n⋃

�=1

I�, R =
n⋃

�=1

R�,D =
n⋃

�=1

D�

and the equations change to

dS�

dt
= −

n∑

k=1

β�k

N
S�Ik

dI�

dt
=

n∑

k=1

β�k

N
S�Ik − (γ� + α�)I� dR�

dt
= γ�I� dD�

dt
= α�I�

(4)
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Instead of three parameters for n = 1 we have in general n2 + 2n parameters,
namely a size n×nmatrix of parameters β�k and a vector γ and α. In the following
we explain how a Markov Chain Monte Carlo approach can be used to estimate
these parameters.

3 Markov Chain Monte Carlo Approach

The Metropolis-Hastings algorithm [12], sketched in Algorithm 1, computes a chain
of parameter values μ0, . . . , μN for given data d, a predictor f (d, μ) for the data
under a parameter value μ, the size of the Markov chain N and a standard deviation
σ , which represent a probability distribution of the parameter μ. This means for
example that the expected value of the distribution can be computed by the mean of
these values.

Algorithm 1 Metropolis-Hastings
Require: N, σ, d where d represents a data set
Ensure: A chain of parameter values μ0, . . . , μN

Pick μ0

Compute the probability of the data under this parameter by p(d|μ0) ∼ exp −‖d−f (d,μ0)‖2

2σ
Compute the probability of the parameter under the given data p(μ0|d) ∼ p(d|μ0)p(μ0) using
a prior probability distribution of the parameter μ.
for i < N do

Pick a new parameter μj from a distributionQ(μj |μj−1)

Compute p(μj |d) as above

Compute the acceptance rate ω(μj |μj−1) = min(1,
P (μj |d)Q(μj |μj−1)

P (μj−1|d)Q(μj−1|μj ) )
Draw a uniform random number U between 0 and 1
if U < ω(μj |μj−1) then
μj is accepted and kept in the chain

else
μj = μj−1 the value from before is kept in the chain a second time.

end if
end for

4 Parameter Estimation Using RKI Data

In the following we use the Metropolis-Hastings algorithm to estimate the parameter
vector μ = [α, β, γ ] at a given point in time. Once the particular time instance is
chosen, we use the algorithm on data consisting of S, I , R, D on 20 days from that
time instance on extracted from the publicly available RKI data [15]. The function
f predicting the forecast of the next day based on the data of a given day and the
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Fig. 1 Output of the Metropolis-Hastings algorithm for the sampling of β at one particular time
instance. (a) Iterations. (b) Iterations [after burn-in]

parameter values is computed using an explicit Euler of (4). The prior probability
distribution p is a uniform distribution and Q(α, β, γ |α′, β ′, γ ′) is a Gaussian

distribution andω is as in the algorithm but simplifies toω(β
′
i |βi) = min(1, P (β

′
i |d)

P (βi |d) )
since the Gaussian is symmetric. The chain is plotted for one point in time and for
the parameter β only in Fig. 1, where we can see that we have a convergence to
some probability distribution in Fig. 1a and after burn-in in Fig. 1b.

Taking the mean of this chain at each point in time we plot an estimation of
the time evolution of β in Fig. 2. The plot spans the time from the end of the first
lockdown, where we see an increase in the effective contact rate until July 2021. We
also clearly see the decrease of β as a result of the measures implemented in the fall
of 2020 and the following winter. This simple analysis shows very clearly that the
measures implemented had an effect on the effective contact rate.

As mentioned before we can easily extend the model to represent different groups
within the society. We decided to use gender for this numerical example. This means
we have for each of the four compartments S, I , R,D a split into two compartments
namely into male and female and therefore a total of eight compartments and from
Eq. (4) we see that we then have four values for β and two values for α and γ to
a total of 8 parameters. The results of the estimation over time of these parameters
with Algorithm 1 can be seen in Fig. 3 for the four values of β. The time evolution of
β for male-male interaction and for female-female interaction in Fig. 3a looks very
similar to the general one in Fig. 2 whereas the two βs for male-female interaction
are very noisy and do not allow to extract any useful information from. In order to
analyse this further a more robust approach needs to be used. This is particularly
important once we use this technique on the more interesting split of the society
into the different age groups.
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Fig. 2 Estimation of β over time as the mean of the chain computed from the Metropolis-Hastings
algorithm.
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Fig. 3 Estimation of the four entries of the β matrix for a gender-slit model over the time
period analysed. (a) Male-male and female-female interaction. (b) Male-female and female-male
interaction

5 Discussion

In the numerical example we only looked at β, and only at the mean, but with
this methodology we get the full probability distribution of all parameters. It is
therefore a powerful tool to estimate time dependent parameters. In future work
we would want to extend this methods somewhat more to get robust results for the
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time evolution of the parameters and from them an estimation of the time evolution
of the basic reproduction number. In a second even more interesting analysis,
machine learning algorithms can then help to understand what measures influence
the reproduction number to what extend.
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Comparison of Performances of Selected
Forecasting Models: An Application to
Dengue Data in Colombo, Sri Lanka

A. M. C. H. Attanayake, S. S. N. Perera, and U. P. Liyanage

Abstract Dengue is a one of the diseases in the world which has no exact treatment.
It is rapidly spreading throughout the world by causing large number of deaths.
In Sri Lanka, there is an increase of reported dengue cases over recent years. The
majority of dengue cases reported in the Colombo district within the Sri Lanka.
Effective dengue management strategies should be implemented to reduce the
deaths from the disease. Modelling and predicting the distribution of the dengue will
be useful in detecting outbreaks of the dengue and to execute controlling actions
beforehand. The objective of this study is to develop an appropriate modelling
technique to predict dengue cases.

To accomplish this objective, we have chosen our study area as Colombo,
Sri Lanka. Seven modelling techniques, namely, Naïve, Seasonal Naïve, Random
Walk with Drift, Mean Forecasting, Autoregressive Integrated Moving Average,
Exponential Smoothing and TBATS were chosen in this study to model dengue
data. For model development process, monthly reported dengue cases in Colombo
from January 2010 to December 2018 were used and validated using the data from
January to December in 2019. Mean error, root mean squared error and mean
absolute percentage error measurements were used to select the most parsimonious
model to predict dengue cases in Colombo. Both Exponential and TBATS models
were competed in predicting dengue cases by reporting minimum error measures.
Therefore, results disclosed that among the selected methods either Exponential
Smoothing model or TBATS model can be used to predict dengue cases in Colombo,
Sri Lanka.
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1 Introduction

Dengue is one of the diseases in the world which transmits through mosquitos.
When an infected dengue mosquito bites on a healthy person then the dengue virus
transmits to the person. On the other way around, an uninfected mosquito bites an
infected person which has dengue virus then virus may transmit to the mosquito
by opening a platform to spread the disease for many people. Four serotypes were
identified in the dengue virus and a person has a chance to be getting infected with
all of the serotypes at different time periods. The various virus transmission ways
and existence of many serotypes increase the spread of the disease through larger
community.

The World Health Organization disclosed that more than 390 million people in
the world infected with this complicated dengue virus annually [1]. The first dengue
case reported in Sri Lanka during 1960. The majority of dengue cases reported
normally in the Colombo district which is in the Western province of Sri Lanka.
10,625 of dengue cases reported in the Colombo district during the year 2019
whereas the second largest was reported in the Gampaha district which was 8432.
In 2017, Sri Lanka has experienced the maximum number of dengue cases which
was 186,101 throughout the country [2]. Number of deaths due to the disease and
cost associated with dengue management and control increase year by year forming
necessity of implementing effective and immediate actions in controlling the dengue
disease.

Modelling and predicting the dengue disease play a vital role in dengue
management and control by providing directions to implement right actions at
the right time. Lot of researches can be found in the literature [3, 4] which were
fitted to accomplished the aim of forecasting the dengue epidemic. Some of the
researches [5, 6] used statistical approaches such as regression procedures and time
series analysis whereas some applications used machine learning approaches [7]
such as neural networks and mathematical modelling approaches [8] such as SIR
(Susceptible, Infected and Recovered) and related extended models. Comparison
of multiple time series modelling techniques are limited in the literature specially
under the context of dengue disease in Sri Lanka. In this study, monthly dengue
cases were modelled and predicted using seven selected modelling techniques;
Naïve, Seasonal Naïve, Random Walk with Drift, Mean Forecasting, Autoregressive
Integrated Moving Average, Exponential Smoothing and TBATS (Trigonometric,
Box-Cox Transformation, ARMA errors, Trend and Seasonal components) for
the Colombo district. These techniques are some of the fundamental and most
widely used techniques available in the area of time series analysis. Mean absolute
error, mean absolute percentage error and root mean squared error were used to
find the most parsimonious model among the selected models for predicting the
dengue cases in Colombo. Availability of an accurate predicting model will lead in
proposing controlling actions towards managing the disease.
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2 Materials and Methods

2.1 Data Source

Monthly reported dengue cases in the district of Colombo were collected from the
official web page of the Epidemiology Unit of Ministry of Health, Sri Lanka from
the period of January 2010 to December 2019. Data from 2010 to 2018 were served
for the development of seven models and rest of the data to check the adequacy of
fit.

2.2 Forecasting Models

Following forecasting models were applied in the study:

2.3 Naïve Method

In the Naïve method, all forecasts are equal to the last observed value. This type of
forecasting method will be useful if data represents a white noise. The Naïve method
introduces baseline for advanced models. This method may not suitable in long term
predictions.

2.4 Seasonal Naïve Method

An extended model of Naïve is called Seasonal Naïve method. If the series exhibits
seasonal pattern, then this forecasting method would be appropriate. Prediction is
equal to the last observed value of the same season. For an example, predictions for
all future months of January are equal to the value of the last January [9].

2.5 Random Walk with Drift Method

This method is equal to the draw a line between the first and the last observations
of the series and extrapolating it into the future. The name Drift has the meaning of
amount of change over time. The value of drift will add the average value in order
to make forecasts.
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2.6 Mean Forecasting Method

This method produces forecasts which is equal to the average of all the past data.
The same forecasts will produce for all of the future predictions by averaging out all
of the unusual and unexpected details. Even though these same forecasts may not
accurate, investigators will be able to understand the underlying process by knowing
the expected value of the series.

2.7 Autoregressive Integrated Moving Average (ARIMA)
Method

ARIMA is a univariate time series modelling approach which has wider applications
in almost all of the fields. If the original time series exhibits non-stationarity, then the
series should be converted in to a stationary series by considering seasonal and/or
non-seasonal differencing. Autocorrelation and partial autocorrelation functions use
to identify possible autoregressive and moving average parameters [10]. In model
diagnostic checking, residuals should follow a white noise which is drawn from
a constant mean and variance. In the case of violation of assumptions another
model need to be investigated otherwise the selected model can be used to make
predictions. To capture seasonality, SARIMA (seasonal ARIMA) models can be
used.

2.8 Exponential Smoothing Method

As the name implies, this method assigns exponential weights to the observations.
More recent the observation will get higher weight. There are various forms of
exponential smoothings and the simplest form of the exponential smoothing is
named as ’simple exponential smoothing’ which applicable when the series does
not contain any trend or seasonality. The double exponential smoothing method
wold be appropriate if the data represent some trend. If the data represent both trend
and seasonality, then Holt-winters smoothing method may be suitable. This method
has two options to capture seasonality and trend as additive or multiplicative. Three
smoothing parameters are in the model to capture pattern, trend and seasonality
respectively. All three parameters are in between 0 and 1. By considering trend,
seasonality and resulting error structures as either additive or multiplicative, varies
models can be constructed and validated. ‘ets’ function in R software was used in
finding the weights of the model.



Comparison of Models: Dengue in Colombo 243

2.9 TBATS (Trigonometric, Box-Cox Transformation, ARMA
errors, Trend and Seasonal components) Method

TBATS method is an appropriate forecasting technique if the series has complex
and multiple seasonal patterns. TBATS stands for Trigonometric, Box-Cox Trans-
formation, ARMA errors, Trend and Seasonal components. The TBATS model fit
as TBATS(ω,p, q, r,m1, k1, . . . , mj , kj ) where ω is the Box-Cox parameter and r
is the damping parameter. The error is modelled as an ARMA (p, q) process and
m1 through mj denote the seasonal periods used in the model and k1 through kj are
the corresponding number of Fourier terms used for each seasonality [11].

3 Results and Discussion

The analysis was mainly performed using R software [12]. The time series plot
of monthly reported dengue cases in Colombo, Sri Lanka from 2010 to 2018 is
shown in Fig. 1. According to Fig. 1, the reported dengue cases varies in between
the minimum value of 97 and the maximum value of 3620 other than the highest
numbers of dengue cases reported in June and July of 2017 which were 5372 and
7471 cases.

The Naïve, Seasonal Naïve, Random Walk with Drift and Mean Forecasting
methods were applied on the data from the period of 2010 to 2018 in order to find
the forecasts for the year 2019. The forecasted values of each of the methods display
in Fig. 2.

Mean forecast of dengue cases by the Mean method was 1137. Therefore, the
average value of the dengue cases throughout the period of 2010–2018 is 1137
dengue cases. Naïve forecast of dengue cases was 1333. Forecasted values generated
for January to December in 2019 by the Drift method were 1340, 1347, 1354, 1361,
1368, 1375, 1382, 1389, 1396, 1403, 1410 and 1417. According to the drift method
forecasts increase very slowly during the year 2019. Seasonal Naïve method was
able to capture the seasonality of the dengue series up to a certain level.

2

0
20

00

D
en

gu
e_

C
as

es

60
00

4 6
Time in years

8 10

Fig. 1 Time series plot of monthly reported dengue cases in Colombo, Sri Lanka
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Fig. 2 Forecasts of Dengue by Naïve, Seasonal naïve, Mean and Drift Methods

Augmented Dickey Fuller (ADF) Test and Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test confirmed the non-stationarity of the original series at 5% significance
level. Both seasonal and non-seasonal differencing overcome the non-stationarity
of the series at 5% significance level. The ADF and KPSS tests confirmed the
stationarity of the differenced series. By changing parameters of autoregressive
and moving average components of ARIMA model, optimum model for Colombo
district was found which have minimum AIC, BIC and AICc [10] measures. Then
optimum model was check for the validity of assumptions. Residual analysis (error
analysis) of the model represents in Fig. 3. All the assumptions of residuals satisfied
by the optimum model whereas Ljung-Box test is not significant at 5%. The selected
best model for Colombo is SARIMA (0,1,2) (0,1,1)12 among candidate SARIMA
models. The selected best SARIMA model was used to forecast the dengue cases
from January to December in 2019. Forecasted values are shown in Fig. 4 with 80%
and 95% confidence intervals.

Forecasts in non-differenced scale were obtained and values match with the
actual figures only in first few months of 2019 (Fig. 7).

As non-stationarity of the original dengue series was confirmed by ADF and
KPSS tests both simple and double exponential smoothing techniques will not
appropriate in modelling the original dengue series. Hence, Holt Winters smoothing
technique was applied to model the original series of dengue cases. All possible
combinations that can be considered for modelling by changing multiplicative
and additive structures for all error, trend and seasonality of the series were
implemented. The optimal exponential smoothing model with minimum AIC,
BIC, MAE, MAPE and RMSE selected as the best smoothing model to forecast
future dengue cases in Colombo. It consists with multiplicative error, multiplicative



Comparison of Models: Dengue in Colombo 245

Fig. 3 Residual analysis of SARIMA (0,1,2) (0,1,1)12

Fig. 4 Forecasts from SARIMA (0,1,2) (0,1,1)12

seasonality and additive structure for trend. Forecasted values for the year 2019 are
given in Fig. 5.

The TBATS model was fit by using the ‘tbats’ function of the R package. The
forecasts are shown in Fig. 6.

The recorded MAE, MAPE and RMSE values of each technique were summa-
rized in Table 1. Results of the Table 1 revealed that both exponential smoothing
and TBATS methods appropriate in forecasting monthly dengue cases in Colombo,
Sri Lanka by reporting minimum values for MAE, MAE and RMSE error measures.
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Fig. 5 Forecasts from the Best Exponential Smoothing model

Fig. 6 Forecasts from TBATS model

Table 1 Error measures of forecasting models.

Method MAE MAPE RMSE

ARIMA 411.57 231.53 600.42

Exponential smoothing 297.00 33.80 415.47

Naive 470.94 44.70 737.64

SNaive 794.84 75.87 1283.80

Drift 470.73 44.92 737.60

Mean 631.54 90.79 1005.84

TBATS 298.31 29.90 447.13
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Fig. 7 Forecasts from seven methods for the year 2019

Forecasts generated by each method for the year 2019 with actual reported
dengue cases in 2019 displays in Fig. 7. It can be seen by Fig. 7 that both Exponential
smoothing and TBATS models were able to capture some of the patterns exists in the
original series in an acceptable magnitude. Therefore, both Exponential and TBATS
models were recommended for forecasting monthly dengue cases in Colombo, Sri
Lanka within the other models considered in this study.

4 Conclusion

This study successfully models the monthly reported dengue cases in Colombo,
Sri Lanka through seven forecasting techniques namely Naïve, Seasonal Naïve,
Random Walk with Drift, Mean Forecasting, Autoregressive Integrated Moving
Average, Exponential Smoothing and TBATS (Trigonometric, Box-Cox Transfor-
mation, ARMA errors, Trend and Seasonal components) with the aim of forecasting
future dengue cases. Three error measures as MAE, MAPE and RMSE were used to
compare the performances of the fitted seven models. The minimum error measures
were reported for the Exponential smoothing and TBATS models. Therefore,
results of the study disclosed that among the selected methods either Exponential
Smoothing model or TBATS model can be used to predict dengue cases in Colombo,
Sri Lanka. The forecasted values generated by these models may be useful in taking
actions towards controlling the dengue cases in Colombo, Sri Lanka.
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Approaches for Going Beyond Linear
Frequency Domain Powertrain
Simulation

Klaus-Dieter Bauer, Josef Haslinger, Günter Offner, and Tigran Parikyan

Abstract The study of powertrain multi-body systems in time-domain can be pro-
hibitively expensive for systems with high rotational speeds. Solving the equations
of motion in frequency-domain can provide orders of magnitude faster results
when omitting non-linear force components, allowing to separate the problem
into independent equations for each load frequency. However, this feature is
lost when accounting for non-linearities, e.g. from gear meshing. We present an
iterative algorithm, that avoids coupling of frequency components by switching
between frequency- and time-domain for describing the non-linear terms. Utility
of the algorithm is demonstrated by studying a two-shaft model system, comparing
solution by time-domain integration and by the iterative algorithm.

1 Introduction

Typical powertrain multi-body system simulations represent the mechanical system
by components (e.g. rotating shafts) and joints (e.g. gear contacts) which describe
the forces coupling their motion [1, 2, 9]. In automotive applications these systems
often have thousands of degrees of freedom [5], such that obtaining the steady-state
motion of fast-moving components by solving the equations of component motion
in time-domain can take hours, as non-periodic deviations from the steady state
motion (e.g. transient oscillations) may decay slowly relative to the system cycle
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rate. This problem is exacerbated for turbo chargers, which may rotate at as much
as 350,000 rpm [7].

Frequency domain solution of the motion on the other hand can yield the steady-
state motion in a matter of minutes or seconds for the same systems [10]. In this
approach non-periodic deviations are inherently suppressed and linearization of the
equations of motion decouples them into independent equation systems for each
frequency of the applied external load—but only under the assumption, that forces
can be represented by time-independent linearization coefficients.

Some joints (e.g. gear contacts) are modeled by force laws exhibiting stiffness
fluctuations, which cannot be represented within this assumption. Naive extension to
time-dependent stiffness coefficients would result in coupling across all frequencies
and potentially the need for a denser frequency grid, increasing the computational
cost by orders of magnitude again. Potentially this negates the performance gains
over a time-based solution.

In this paper we discuss approaches for extending frequency-domain simulations
of powertrain systems beyond the constant linear approximation while maintaining
its performance advantage. In Sect. 2 we discuss the mathematical description of the
problem. References [3, 4, 7] can be used for further reading. In Sect. 3 we develop
the iterative solver algorithm by means of a perturbation approach. In Sect. 4 we
demonstrate the application of the algorithm to a two-shaft model by means of a
prototype implementation.

2 Background

The dynamics of a powertrain system modeled as rigid bodies and finite-element
discretization of flexible bodies are represented by equations of motion of the form
M(z) · z̈ = f (t, z, ż) [3] with a mass matrix M(z) representing inertia effects, z(t)
the trajectory of the system, and f describing forces within and across bodies.

Given a decomposition z(t) = z0(t) + q(t) where z0(t) is an approximation
of the real trajectory and q(t) assumed to be small, and given a suitable choice of
coordinate systems [2, 8, 9] or limiting the allowed models sufficiently, M(z0(t))

becomes constant, and the force equation can be linearized into

M · q̈ +D(t) · q̇ +K(t) · q = f (t) (1)

where f (t) = f (t, z0, ż0) − M · z̈0 contains external forces, internal stiffness
and joint forces along the reference trajectory z0(t) and inertia forces for nodes
described in accelerated coordinate systems. For sufficiently simple models and
suitable z0(t), the matrices D,K become time independent along z0(t), resulting
in a frequency domain problem1

1 We assume that functions are decomposed into discrete Fourier coefficients according to f (t) =∑
ω fωe

iωt .
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(−ω2M + iωD +K) · qω = fω. (2)

This equation can be solved separately for each frequency in O(NωN2
q ), where

Nω,Nq are size of the frequency grid and of the vector q respectively. However,
in such a framework meshing effects cannot be represented. Taking into account the
time-dependence D(t), K(t) results in an equation system, where the frequencies
are coupled. The time complexity increases by a factor of Nω.

3 Iterative Linear Solver

We thus study whether it is possible to enhance the results by iteratively applying
the frequency solver and evaluating forces in time domain in between.

Applying the widely used perturbation theory approach [6], we split K(t) into
its time average K0 and the time-dependent partK1(t), and introduce a perturbative
expansion

K(t) = K0 + λK1(t) and likewise for D

q(t) = q0(t)+ λq1(t)+ λ2q2(t)+ · · ·
(3)

where K0 is a suitable constant component of K(t) such as the time-average and
K1(t) captures the time-dependence. Insertion into the equation of motion (1) yields
a power series in λ, decomposing it into a sequence

M · q̈0 +D0 · q̇0 +K0 · q0 = f (t) for order k = 0

M · q̈k +D0 · q̇k +K0 · qk = −D1(t) · q̇k−1 −K1(t) · qk−1 for k ≥ 1
(4)

with f (t) = f (t, z0, ż0)−M · z̈0 as before, by using, that the equation must remain
valid for any strength scaling λ of the time-dependent part. The factor λ can be
chosen to be 1.

For implementation it is convenient to reformulate in terms of the cumulative
solution up to order n, q(n)(t) = ∑n

k=0 qk(t). By summing over the iteration
equation (4) up to order k = n, we obtain

M · q̈(n) +D0 · q̇(n) +K0 · q(n) = f (t)−D1(t) · q̇(n−1) −K1(t) · q(n−1) (5)

with an initialization condition q(−1)(t) = 0. This form allows us to introduce a
damping factor γ ∈ (0, 1], by setting q(n) → (1 − γ )q(n) + γ q(n−1) after each
solution step. The solution is then evaluated by:
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1. Initialization

(a) Obtain some reference trajectory z0(t).
(b) Calculate f (t), K0,K1(t), D0,D1(t) from z0(t).
(c) Initialize qω, q(t), q̇(t) to 0.

2. Repeat for n ≥ 0 until converged:

(a) Evaluate frhs(t) = f (t)−M · z̈0 −D1(t) · q̇(t)−K1(t) · q(t).
(b) Obtain frhs,ω by Fourier analysis of frhs(t).
(c) Solve

(−ω2M + iωD0 +K0
)
q ′ω = frhs,ω.

(d) Update qω → γ qω + (1 − γ ) q ′ω.
(e) Fourier synthesis of q(t), q̇(t) from qω.

The result of step n = 0 corresponds to the linear frequency domain solution. The
method of switching between time-domain and frequency-domain is intentionally
left open. The easiest is to use Fast Fourier Transform (FFT), which requires
equidistant frequency and time grids.

4 Application Example

We consider a simple model system consisting of two shafts connected by gears,
where the pinion is driven by a turbine at a constant angular velocity, and an angle-
dependent load L(α) acting on the gear shaft (see Fig. 1).

Fig. 1 Example model for demonstrating the iterative approach. The system is constrained to
allow only rotations around the shaft axes and no translatory motion



Approaches for Going Beyond Linear Frequency Domain Powertrain Simulation 253

(a) (b)

Fig. 2 Displacement q(t) for the test model at (a)� = 60 rpm and (b)� = 6000 rpm respectively,
with the load amplitude scaled as L1 ∝ �2 to produce similar displacement amplitudes. Deviation
of the converged oscillations from a cosine-shape visible in (a) is caused by meshing of the gears.
Since the decay time of transient terms is constant, at higher rotation speeds it takes proportionally
more cycles and thus computation time to reach the steady-state behavior

The depicted example model has a single degree of freedom α, the angular
position of the gear shaft, while the trajectory of the pinion is assumed to be a
uniform rotation β(t) = �t . We assume a transmission ratio of 1 for simplicity,
exerting a linear force fgear(α) = −K(β)(α−β)−D(β)(α̇− β̇) withK(β),D(β)
varying periodically between single tooth and double tooth contact with 4 teeth per
shaft cycle.2 A time-dependent load of the form fload(t) = L0 + L1 cos(4�t) acts
on the gear shaft. For this system, the obvious reference trajectory is α0(t) = �t

and the displacement coordinate q(t) = α(t)−�t , resulting in an exact equation of
motion

Mq̈ = fload(t)−D(t)q̇ −K(t)q, (6)

which we solve in time domain (Fig. 2) and by applying the algorithm described in
Sect. 3 (Fig. 3), with no algorithmic damping (γ = 0).

We see that the frequency-domain algorithm reproduces the meshing effects, in
this example already after one iteration beyond the linear solver, and is mostly con-
verged with one more iteration. Repeating the simulation with 60, 600 and 6000 rpm
respectively demonstrates increasingly slow convergence of the time-domain solver,
with the prototype simulations taking 0.05, 0.44 and 3.94 s respectively, while the
same time resolution is achieved with three iterations of the iterative frequency
domain solver within a constant 0.006 s.

2 While 4 teeth are not particularly realistic, it produces more understandable results when showing
a plot over a full shaft cycle.
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(a) (b)

Fig. 3 (a) Time domain result and (b) frequency spectrum obtained by a time-domain solver and
the iterative frequency domain solver (FDS) algorithm from Sect. 3 for up to three iterations. The
large static components (ω = 0) are truncated. After one iteration (“linear solver”) meshing effects
are ignored entirely, visible in the spectrum (b) as presence of only the 2 Hz component present
in the load. After only two iterations the result nearly matches the time domain solver, with only
small corrections in further iterations

5 Conclusion and Outlook

We have demonstrated an iterative frequency domain solver, that provides fast solu-
tions compared to direct time-domain integration especially at high rotation speeds,
while mapping non-linear contributions to iterative solution of a linear frequency-
domain problem, thus maintaining the high efficiency of a linear frequency domain
solver. More studies are needed to formulate formal convergence criteria and to
verify convergence for more complex models. Moreover, the algorithm should be
applied to real-world application models and integrated with industrial simulation
software.
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Diffusion of Electron Density in
Dye-Sensitized Solar Cells

Ngamta Thamwattana and Benjamin Maldon

Abstract Dye-sensitized solar cells (DSSCs) are an alternative low-cost solution to
the renewable energy problem due to the use of TiO2 as a semiconductor. Electricity
generation is achieved through a series of chemical reactions designed to transport
excited electrons from photosensitive dyes as a means of creating a circuit. Current
modelling approach is based on the diffusion of the density of electrons in the
conduction band of a DSSC’s nanoporous semiconductor. In this paper, we review
current models for DSSCs based on diffusion equations combining the generation
and the loss of the electron density as a result of dye excitation due to sunlight and
electron recombination, respectively. Further, we consider another model based on
fractional diffusion equation, taking into consideration random porous network of
the semiconductor TiO2.

1 Introduction

Dye-sensitized solar cells (DSSCs) belong in the group of thin film solar cells,
operating based on the photoelectrochemical processes. In general, DSSCs comprise
four primary components: a photosensitive dye, a nanoporous semiconductor, an
electrolyte couple and a counter electrode. Typically, a DSSC employs Ruthenium
(II) photosensitive dyes, TiO2 as nanoporous semiconductor, Iodide-Triiodide
electrolyte couple and a platinum counter electrode [1, 2]. The operation starts by
exposing DSSCs to sunlight, which excites dye molecules to a high energy state.
This causes dye molecules to donate electrons to the nanoporous semiconductor
(a process known as electron injection), which then leave the DSSC to power a
load. Electrons are reintroduced through the counter electrode, which return to the
photosensitive dyes through the redox electrolyte couple.
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A dye-sensitized solar cell was proposed by O’Regan and Grätzel [1] in 1991
as an alternative cost-saving solar cells. Instead of using silicon, DSSCs adopt
nanoporous titanium dioxide (TiO2) as a semiconductor, which is much cheaper
to produce. After their introduction, DSSCs have attracted much research attention
including the development of new photosensitive dyes, nanoporous semiconductors,
electrolyte couples and counter electrodes in order to enhance the efficiency and
further lower their production costs [4].

In terms of mathematical modelling of DSSCs, many studies were based on
models developed for traditional solar cell research due to similar photovoltaic
principles. Another modelling approach was proposed by Södergren et al. [2] which
is based on assuming diffusion of electron density in the conduction band of the
nanoporous semiconductor. This assumption is also supported by Gregg [5] who
stated that mathematical models for DSSCs were better informed by the influence
of the photochemically induced potential over the traditional electric field approach.
Since the study by Södergren et al. [2], the diffusion model for DSSCs have received
further development from a simple ordinary differential equation in [2] to a fully
nonlinear time-dependent partial differential equation in [6]. There are also other
papers that include a system of equations to incorporate the electrolyte couple [7–
9].

In this paper, we give an overview of linear and nonlinear diffusion models for
electron density in the conduction band [3, 9]. This paper also considers anomalous
diffusion of electron density in TiO2 based on fractional diffusion equation and
continuous-time random walk (CTRW) [10].

2 Mathematical Models and Results

In this paper, we model DSSCs based on diffusion equation. Given a DSSC of
thickness d, the conduction band electron density n(x, t) at position x ∈ [0, d]
and time t ≥ 0 satisfies the diffusion equation [6] given by

∂n

∂t
= D0

∂

∂x

[(
n

neq

)β
∂n

∂x

]

︸ ︷︷ ︸
diff usion

+ ϕαe−αx
︸ ︷︷ ︸
generation

− kR
(
n

neq

)β (
n− neq

)

︸ ︷︷ ︸
recombination

, (1)

where D0 is the diffusion coefficient, neq is the dark equilibrium electron density,
ϕ is the incident photon flux, α is the absorption coefficient of the Ruthenium (II)
dye, kR is the recombination coefficient and β is the diffusion order. We note that the
electron generation term is the spatially dependent, which is based on Beer-Lambert
model [2, 6, 11]. The recombination term is density dependent and is referred to as a
loss mechanism within solar cells, a process that hinders electricity generation [12].

Equation (1) is subject to the initial and boundary conditions:
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Table 1 Numerical values of constants used in this paper [10]

Parameter D0 α d kR m neq ϕ

Value 10−11 105 5 × 10−5 4 × 10−8 1 1022 1021

Unit m2s−1 m−1 m s−1 – m−3 m−2s−1

n(0, t) = neqe
qV
mkBT ,

∂n

∂x

∣
∣
∣
∣
x=d

= 0, n(x, 0) = neqe
qV
mkBT , (2)

where q is the standard electron charge, V is the applied bias voltage of the DSSC,
m is the diode ideality factor, kB is Boltzmann’s constant and T is the temperature
of the DSSC. We note that for short-circuit conditions we have V = 0 and for
open-circuit conditions, we replace the Dirichlet boundary condition at x = 0 with

∂n

∂x

∣
∣
∣
∣
x=0

= 0.

We note that the numerical values of constants used in this paper are given in Table 1.
Next, by using scaling parameters:

n̄ = n

neq
, x̄ = x

d
, t̄ = D0t

d2 ,

the non-dimensionalised form of (1) is obtained given by

∂n̄

∂t̄
= ∂

∂x̄

(

n̄β
∂n̄

∂x̄

)

+ μe−νx̄ − ξ n̄β (n̄− 1) , (3)

where μ = d2ϕ0
D0neq

, ν = αd and ξ = kRd
2

D0
and ω = qV

mkBT
. Dropping the bar notation,

the boundary and initial conditions for V �= Voc become

n(x, 0) = eω, n(0, t) = eω, ∂n

∂x

∣
∣
∣
∣
x=1

= 0,

and the open-circuit boundary conditions are

n(x, 0) = eωoc , ∂n

∂x

∣
∣
∣
∣
x=0

= 0,
∂n

∂x

∣
∣
∣
∣
x=1

= 0,

where ωoc = qVoc
mkBT

.
In the following two subsections, we consider special cases of (1) for linear

and nonlinear diffusion equations, respectively. In Sect. 2.3, we introduce fractional
diffusion model.
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2.1 Linear Diffusion Model

In this subsection, we consider special case of (1) when β = 0, which corresponds
to linear diffusion equation given by

∂n

∂t
= D0

∂2n

∂x2 + ϕαe−αx − kR
(
n− neq

)
. (4)

Using a separation of variables approach, we obtain an analytical solution for (4)
under short-circuit conditions (V = 0 or ω = 0):

n(x, t) = 1 + Ae
√
ξx + Be−

√
ξx − μ

ν2 − ξ e
−νx +

∞∑

k=0

Ck sin

(
(2k + 1)π

2
x

)

e
−
[(

(2k+1)π
2

)2+ξ
]

t
,

(5)
where A, B, and Ck are constants given by

A = −μνe
√
ξ−ν + ξ 3

2 (eω − 1)−√
ξ
(
eων2 − ν2 + μ)

√
ξ
(
ν2 − ξ)

(
e2

√
ξ + 1

) ,

B =
e
√
ξ−ν

[
e
√
ξ+ν+ω

(√
ξν2 − ξ 3

2

)
+ μν + e√ξ+ν

(
ξ

3
2 +√

ξ(μ− ν2)
)]

√
ξ
(
ν2 − ξ)

(
e2

√
ξ + 1

) ,

Ck = −2
∫ 1

0
sin

(
(2k + 1)π

2
x

)[

Ae
√
ξ + Be−

√
ξ − μ

ν2 − ξ e
−νx

]

dx.

For detailed derivation of (5) and for a solution under open-circuit conditions, we
refer the readers to [9].

Further, we consider the special case when there is no diffusion term in (4). An
analytical solution for this case is given by

n(x, t) = 1 + e−νx

ξ

(
1 − e−ξ t)− e−ξ t (1 − eω). (6)

Plots of solutions (5) and (6) are shown in Fig. 1. With the diffusion component,
the electron density rises quickly from its dark equilibrium due to the influence of
the exponential source term of electron generation. The electron density continues
to increase until it reaches the steady-state, as expected for photovoltaic devices.
Comparison between Fig. 1a and b shows the importance of the diffusion term in
the model. We note that Fig. 1 has different scale compared to Fig. 5. This is due to
that Fig. 1 uses constants given in [3] while Fig. 5 adopts those presented in Table 1.
We comment that the purpose of Fig. 1 is to demonstrate the significance of the
diffusion term in the model.
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Fig. 1 (a) Plot of the solution (5) (with diffusion) [3] and (b) Plot of the solution (6) (without
diffusion)

2.2 Nonlinear Diffusion Model

Here, we consider the nonlinear diffusion equation (1) when β �= 0. In [3],
both classical and nonclassical Lie symmetry methods are explored to determine
analytical solutions for (1). We find solutions for special cases of no diffusion, no
generation, no recombination and no generation and recombination terms. For a
general case without making these assumptions, we find solutions for certain values
of β when assuming certain diffusivity functions [3]. As shown in [3], for physically
relevant cases, since analytical solutions are not found, we instead seek numerical
solution for (1).

By adopting a forward time continuous space finite difference method (FDM)
with [0, 1] as the spatial domain and 100 nodes, we plot the numerical solution
n(x, t) of (3) when β = 1, as shown in Fig. 2. We find that the numerical solution
greatly resembles the exact solution for the linear case, suggesting that nonlinear
diffusion has little effect on the profile of the solution. In Fig. 3, we compare results
from our numerical scheme with those of Cao et al. [11] for β = 1. This confirms
the model and the numerical scheme adopted to solve (3).

The effect of β on the solution profile is shown in Fig. 4. We can see that
higher values of β lead to an overall decreased electron density. Furthermore,
numerical solutions reach an equilibrium faster under increased values for β.
Given that β governs the density of trap states in a DSSC (with higher values
of β leading to deeper traps [6]), this result shows that the nonlinear diffusion
mechanism is functioning as expected. In particular, negative values of β lead to
a significantly higher electron density that has not yet reached a steady-state (unlike
the corresponding nonnegative values of β). While this paper considers integer
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Fig. 2 Numerical solution of (3) when β = 1 [3]

Fig. 3 Comparison of numerical results between (a) Cao et al./ [11] and (b) our numerical scheme
[3]

values for β between −2 and 2, the literature so far only considers β = 0 (linear
case) and β = 1 [11].

2.3 Fractional Diffusion Model

Fractional diffusion model for DSSCs is proposed by Maldon and Thamwattana
[10]. Their study is motivated by the connection between the fractal geometry of
TiO2 [13], which is used as a semiconductor in DSSCs, and the role of fractional
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Fig. 4 Numerical solution of (3) for different values of β

derivatives in modelling diffusion in media with fractional geometry [14, 15].
Based on the general fractional reaction-diffusion equation proposed by Henry and
Wearne [16], Maldon and Thamwattana [10] derive the fractional partial differential
equation for DSSCs given by

∂n

∂t
= D0

∂1−γ

∂t1−γ
∂2n

∂x2
+ ϕαe−αx − kR(n− neq), (7)

where γ is the order of fractional diffusion, noting that small γ implies slow
diffusion. Other constants are as defined previously and the boundary and initial
conditions are as given in (2). We note that γ = 1 leads to the standard reaction-
diffusion equation.

In Fig. 5, we plot the numerical solution to (7) with final time tf = 1000 for
four different values for γ . Note that we use B-Spline collocation method [17] to
estimate the solution over [0, d] and finite difference approximation [18] to estimate
the solution over time. From this figure, we see that as γ decreases the time required
for the electron density to reach steady-state increases. This result is consistent with
the observation that lower values for γ imply slower diffusion, based on the CTRW
simulations. Further, we observe that the overall electron density is remarkably
higher for the cases γ = 0.5 and 0.25 compared to γ = 1 and 0.75. This suggests
that the electron density is sensitive to the order of the fractional derivative. As
shown in [10], by adopting γ = 0.612 for TiO2, the results obtained is consistent
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Fig. 5 Numerical solutions of (7) for different values of γ [10] (a) γ = 0.25, (b) γ = 0.5, (c)
γ = 0.75 and (d) γ = 1.

with Benkstein et al [13]. Furthermore, Benkstein et al. [13] mentioned that higher
porosity of nanoporous semiconductor (which is equivalent to slow diffusion) is not
desirable as it leads to poor performance of DSSCs. Thus, the values of γ > 0.5
is more realistic when employing (7) to model diffusion of electron density in a
DSSC’s TiO2 nanoporous semiconductor.

3 Conclusion

This paper gives an overview of modelling electron density in the conduction band
of DSSCs based on diffusion equations. Analytical solution is presented for linear
diffusion equation, which can be used to benchmark numerical calculations for
nonlinear and fractional models. Using nonlinear diffusion and fractional diffusion
models extend diffusion-based modelling to better quantify the performance of the
nanoporous semiconductor in a DSSC. We find that the parameters β and γ have a
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profound effect on the electron density, signifying the important role of nanoporous
TiO2 semiconductor in the performance of DSSCs.
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Modeling and Simulation of Inelastic
Effects in Composite Cables

Davide Manfredo, Vanessa Dörlich, Joachim Linn, and Martin Arnold

Abstract The present work aims at describing hysteresis behaviour arising from
cyclic bending experiments on cables by means of the Preisach operator. Pure
bending experiments conducted in previous work show that slender structures
such as electric cables behave inelastically and open hysteresis loops arise, with
noticeable difference between the first load cycle and the following ones. The
Preisach operator plays an important role in describing the input-output relation in
hysteresis behaviours and it can be expressed as a superposition of relay operators.
Here, we utilise data collected from pure bending experiments for a first approach.
We introduce a mathematical formulation of the problem, and starting from the
curvature of the cable specimen, we recursively define the Preisach plane for this
specific case. Therefore, we derive a suitable kernel function in a way that the
integration of such function over the Preisach plane results in the bending moment
of the specimen.

1 Introduction

Electric cables, as those shown in Fig. 1 left, are complex objects due to their
multi-material composition and their geometric properties. Consequently, differ-
ent internal interaction effects occur and lead to an observed effective inelastic
deformation behaviour of such cables. Cyclic bending experiments, Fig. 1 centre,
show open hysteresis loops with noticeable difference between the first load
cycle and the following ones [1, 2], as shown in Fig. 1 left. In the framework
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Fig. 1 Left: cross sections of different electric cables. Centre: pure bending test rig. Right: bending
moment vs. bending curvature diagram measured in a pure bending experiment

of continuum mechanics, such deformation effects are modelled using suitable
constitutive equations for specific material behaviour. In the presented work, we aim
at modelling the observed behaviour on an abstract level using hysteresis operators.
The choice of this mathematical framework is motivated by the ability of such
operators to describe hysteresis phenomena with enough generality and without the
need of a priori assumptions on the material behaviour.

2 Hysteresis Operators

As shown in [3, 4], hysteresis operators are a well-studied topic with a variety
of applications, mainly hysteresis effects arising from electric and magnetic phe-
nomena. Such operators are normally used to describe the relation between two
scalar time-dependent quantities that cannot be expressed in terms of a single-valued
function.

2.1 Relay Operator

Given any couple (a1, a2) ∈ R
2 with a1 < a2, we introduce the relay operator

Ra1,a2 . For any input function v ∈ C([0, T ]) and initial value ξ ∈ {±1}, the output
w = Ra1,a2 [v] : [0, T ] → {±1} is equal to −1 if the input function value v(t)
crosses the threshold a1 from above, and is equal to +1 if v(t) crosses the threshold
a2 from below.

The relay operator can be interpreted as a switch operator between the values −1
and +1, with switching interval of width a2 − a1 and centered in (a2 − a1)/2. A
graphical representation of the relay operator is given in Fig. 2. A formal definition
of the relay operator can be found in [4].
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Fig. 2 Left: input function v(t) = sin(t), with t ∈ [0, 10]. Centre diagram of the relay operator
with a1 = −0.3 and a2 = 0.2. Right: output function w(t) = Ra1,a2 [v](t), with initial value
ξ = +1

2.2 Preisach Operator

The previously described relay operator is the “building block” of the Preisach
operator. To be more precise, a superposition of relay operators multiplied by a
suitable kernel function ω(r, s), assumed to vanish for large values of |s| and r ,
defines the Preisach operator.

w(t) = P[v](t) =
∫ +∞

0

∫ +∞

−∞
ω(r, s)Rs−r,s+r [v](t) dsdr. (1)

Here, v and w are respectively the input (Fig. 3 top left) and the output function, s
and r are the coordinates of the Preisach plane, and Rs−r,s+r is the relay operator.

If we consider an input function v(t), for every time t we determine the set

A±(t) = {(r, s) ∈ R+ × R : Rs−r,s+r [v](t) = ±1}.

The union of such sets corresponds to the so-called Preisach plane, as will be
explained in Sect. 3. One can verify that the dividing line B(t) = ∂A+(t)∩ ∂A−(t),
also called memory curve, at each time t is the graph of a function which can be
defined recursively and carries the total memory information present in the system
at time t [3]. In Fig. 3 top right, two examples of memory curves are shown. Using
Rs−r,s+r [v](t) ∈ {±1} and the definition of A±(t), (1) can be rewritten as

w(t) =
∫

A+(t)
ω(r, s) dsdr −

∫

A−(t)
ω(r, s) dsdr.

It should be noted that Preisach hysteresis operators provide a model for causal
response [4], such that the output value w(t) at time t depends only on inputs v(t̄)
at past times t̄ ≤ t . Thus, hysteresis loops can be computed by integrating a suitable
kernel function ω(r, s) over a domain included in the Preisach plane.



270 D. Manfredo et al.

0 500 1000
0

10

20

30

0 10 20
0

10

20

Fig. 3 Top left: input given as curvature vs. time. Top right domain (black rectangle) included in
the Preisach plane with two examples of memory curve. Bottom: domain included in the Preisach
plane with the triangulation and a memory curve for a given time tj

3 Problem Formulation

As previously said, we aim at describing the input–output relation of bending
curvature vs. bending moment by means of the Preisach operator, utilising data
coming from a pure bending cyclic experiment. The available data are time
{ti}1≤i≤T , bending curvature {Ki}1≤i≤T and bending moment {Mi}1≤i≤T . Note
that the values of time and bending curvature are prescribed by the experimental
procedure, while the values of bending moment are measured.

Starting from the input function, for each time step ti , we recursively define the
Preisach plane, i.e. the sets A±(ti) and the memory curve B(ti). Thus, our goal is to
find ω(r, s) such that the following expression is minimised

1

T

T∑

i=1

1

2

(

Mi −
∫ ∫

A+(t)
ω(r, s) dsdr +

∫ ∫

A−(t)
ω(r, s) dsdr

)2

. (2)

To this end, we will take into account only a subset of the Preisach plane, namely
the rectangle [0,max0≤i≤T {Ki}] × [0,max0≤i≤T {Ki}], since we assume ω(r, s) to
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vanish outside such domain. Moreover, as shown in [5], we choose a tolerance d
to round the input values. Hence, we divide the part of the Preisach plane crossed
by the memory curve B(t) in n − 1 triangles of equal area, such that at each time
step, B(ti) lies on the edges of the triangles, see Fig. 3 bottom. Now, we denote by
X ⊂ N+ the set of indices given to the elements of the triangulation, by em, with
m ∈ X, the triangles of the grid, and we define the sets

Xi ={m ∈ X|em below the memory curve at time ti},
X\Xi ={m ∈ X|em above the memory curve at time ti}.

As shown in Fig. 3 top left, we call D the part of the Preisach plane that is
never crossed by the memory curve. We assume that the kernel function ω(r, s)
is piecewise constant over each triangle of the mesh and over D, and we want to
approximate the output as

Mi ≈
∑

m∈Xi

∫ ∫

em
ω(r, s) dsdr −

∑

m∈X\Xi

∫ ∫

em
ω(r, s) dsdr − c, i = 1, . . . , T

c being the constant value of the kernel function over D. Now, we define the row
vector 	i = [δ1

i , . . . , δ
n−1
i ,−1] for each time step ti , where δmi = 1 if m ∈ Xi and

δmi = −1 if m ∈ X\Xi . Calling xm = ∫ ∫
em
ω(r, s) dsdr , we have

 =
⎡

⎢
⎣

	1
...

	T

⎤

⎥
⎦ ∈ R

T×n, X =

⎡

⎢
⎢
⎢
⎣

x1

...

xn−1

c

⎤

⎥
⎥
⎥
⎦

∈ R
n, Y ∈

⎡

⎢
⎣

M1
...

MT

⎤

⎥
⎦ ∈ R

T . (3)

Hence, using (2) and (3), the function to minimise is f (X) = 1
2‖ · X − Y‖2. In

practice, one often deals with insufficient experimental data, yielding rank() =
q < min{T , n} for the matrix . In order to compensate for the lack of data, we
perform a singular value decomposition of the matrix T = USV T , where S is a
diagonal matrix, with rank(S) = q.

We extract Ŝ, Û , V̂ from S, U , V , respectively, by eliminating the rows and the
columns of S that are zero, and the corresponding columns ofU and V . Setting X =
V̂Z, the expression to minimise becomes g(Z) = ZT ŜZ − Y T  · V̂ Y . It is easily
verified, that once a minimiser Z∗ of g is found, then X∗ = V̂Z∗ minimises f .

4 First Results and Conclusion

A minimiser Z∗ of g can be found using a Matlab routine such as “quadprog”. In
Fig. 4 left, an approximation of the kernel function ω(r, s) is shown, and the integral
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Fig. 4 Left: kernel function obtained by the minimisation of g. Right: estimated plot of bending
moment vs. curvature obtained by means of the hysteresis operator

of such kernel function over the domain included in the Preisach plane results in the
diagram shown in Fig. 4 right. Comparing the experimental data in Fig. 1 right with
the diagram in Fig. 4 right, one can see that this approach describes the input–output
relation as bending curvature vs. bending moment observed during the experiments
quite well. One should note that the step-like behaviour of the diagram in Fig. 4
right is due to the tolerance value d. However, the kernel function shows a highly
nonlinear behaviour, and further work is necessary to investigate if its shape and
properties are related to the physics of the studied phenomenon.

The Preisach operator is a very powerful and versatile tool to describe inelastic
deformation behaviours of electric cables and the consequent open hysteresis loops
arising from bending experiments. Moreover, such a mathematical tool captures the
difference between load cycles very well and is relatively easy to implement. A more
detailed study of the properties of the kernel function is necessary, with particular
focus on its relation with the experimental data and the physics of the phenomenon.
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High-Throughput Analysis of Potato
Vitality

Elisa Atza and Neil Budko

Abstract Vitality is a fundamental trait for the development of a plant. It is known
to depend on various factors, such as climate, soil, and the plant’s genetics, but the
progressive depletion of soil nutrients make it a priority for the industry to pinpoint
which of the controllable qualities of a seed have the biggest impact on vitality. This
work describes techniques applied in a high-throughput phenotyping project, the
first of this magnitude for a complex plant, the potato (solanum tuberosum). We also
present the results of an analysis of associations between the chemical composition
of the seed potatoes and field performance, solving the arising underdetermined
linear systems by means of PLS regression. We show that some but not all of the
chemical data is strongly associated to vitality.

1 Introduction

A potato plant is vital if it manifests in a large canopy and exhibits homogeneous
growth in the early stages of its development. Potato seed producers as well as
farmers have noticed that potato seeds of the same cultivar perform differently in the
same conditions depending on the field in which the seed tubers have been produced.

A cultivar, or variety, is described as a set of plants for which specific charac-
teristics are reliably passed on to the offspring. Uniform growth facilitates farming
thus high variability in the growth of a variety is undesirable.

In collaboration with potato seed producers HZPC and Averis seeds, we aim
to quantify the contribution of non genetic factors to the plant development.
Specifically, we investigate the link between the chemical and biological properties
of a tuber, and the vitality of the sprouting plant. Identifying relevant markers would
allow for a screening of tubers prior to planting; allowing for higher yields and
customised offers to the clients. There is no standard way to relate such a broad
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variety of interdependent data regarding a tuber to the measured development of the
plant.

In order to model this problem we study six different cultivars, and for each
cultivar we measure 30 different tubers, which are genetically identical, but have
either been produced in different locations or have received a specific treatment.
These 30 different tubers we call batches, so that in total we study 180 different
batches belonging to 6 varieties.

For the experiment, data was collected from the studied tubers before and after
planting over several consecutive years. Our industrial partner, HZPC, is responsible
for the collection of most of the tuber data, as well as for the planting process.
Aerial pictures are collected for the field experiment in different European locations
by a commercial drone operator, which provides us with orthophotos of the fields
according to industrial standard. We then process these aerial pictures ourselves in
order to quantify vitality from expressed traits of the plant, a process referred to as
phenotyping.

We will shortly present the procedure used to extract canopy coverage in the
field from drone images, and then discuss the first associations resulting from linear
regression performed considering the different data sets as independent variables.

2 Linear Regression with PLS

We predict vitality parameters Y ∈ R
180, from different tuber data X ∈ R

180×p, by
investigating the presence of a linear dependence:

Y = Xβ + ε. (1)

2.1 Response

The experiment fields are planted according to a randomized block design, so that
four replicates of the 180 batches are distributed on separate non-adjacent parts of
the field. The first step in the processing of aerial pictures is to delimit the regions,
called plots, where each batch is planted.

For each field we choose one image dated around 35–40 days after planting to
find these boundaries. At this point in their development, plants within one plot form
a continuous canopy and simultaneously have not grown enough to bridge the gap to
the next plot. Thus, looking for gaps in the vegetation at this stage almost coincides
with looking for plot boundaries.

We use both physical markers on the field and manual input to determine the
region of interest in the drone image, then algorithmically look for gaps inside this
region. Knowing the number of plots and the number of columns (ridges) in each
portion of the field, our algorithm determines the most likely plot boundaries.
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Fig. 1 Plot boundaries are detected in the middle image, these boundaries are then used on other
photos after time alignment. Each plot is subdivided in four columns, called ridges

After having determined and visually inspected the plot boundaries found on this
date, we use physical marks present on the field to align all photos of the same field,
such that the boundaries found can be used both before and after the reference date,
when canopies’ growth makes it harder to distinguish plots, or when dealing with
delayed sprouting and small canopies. An example is given in Fig. 1.

Given the resolution of the orthophotos, we look at four vitality measurements
per plot, namely we quantify the mean canopy coverage in each ridge. In this way
we obtain 16 canopy measurements (four ridges times four plots) for each of the
180 batches on any of the r measurement dates, i.e. our response Y ∈ R

2880×r .
The mean ridge canopy data must be corrected for possible smooth spatial

variations across the field due to large-scale inhomogeneities in soil properties and
other factors influencing the growth of plants.

For each measurement date j = 1, . . . , r we model the spatial variations in each
column Y(j) as

Y(j) = X1β1 + ε1, ε1 ∼ N(0, σ 2I ), (2)

where β1 = [c1, c2, c3, c4]T ∈ R
p1 , p1 = 4. The structure of the design matrix

X1 ∈ R
n×p1 , n = 2880, can be inferred from (3), which is the row-wise expression

of (2), and σ 2 is the field specific variance, which we estimate from the data.
For a single ridge i, i = 1, . . . , 2880, located at pixel coordinates 〈xi, yi〉 the

model in (2) translates to:

Yi = c1 + c2xi + c3yi + c4xiyi + εi, εi ∼ N(0, σ 2), (3)

For spatial correction we retain the field mean, but the global linear and bi-linear
spatial variations are removed:

Ycorr(j) = Y(j)−X1β̂1 + ĉ11 = ε̂1 + ĉ11. (4)

where β̂1 is the restricted maximum likelihood (REML) estimate of β1 and ε̂1 ∼
N(0, σ̂ 2I ), where σ̂ 2 is the REML estimate of σ 2.

After correction we consider the average growth performance of a batch over
multiple days and multiple repetitions reducing the size of our response to Y ∈
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R
180×1. This is then normalized to have zero mean and unit standard deviation and

is our response for the model in (1).

2.2 Predictors

Several aspects of the tubers are analyzed in the scope of the project with the goal
of obtaining an exhaustive description of the chemical and biological profile of
different batches of the same variety.

In this work we look at three tuber related datasets and we will compare their
performance as predictors of vitality:

• Fourier transform infrared (FTIR) spectroscopy: for each sample we obtain a
spectrum, i.e. a discretized curve, whose values are the absorbances of the sample
for given wavenumbers, in this case the matrix X is of size 180 × 2388.

• Hyperspectral imaging (HSI): each sample is photographed at l different wave-
lenghts resulting in l images of sizew×h. This results in an array of sizew×h×l.
The values of a pixel at different wavelengths form an array of length l. Averaging
these arrays over particular regions of the tuber we obtain spectra for known tuber
compartments, such as pith and cortex. In this case l = 288, thus we obtain for
each compartment a matrix of predictors X of size 180 × 288.

• X-Ray fluorescence (XRF): this technique gives us concentrations of 10 chemi-
cal elements in the samples, in this case the predictor matrixX has size 180×10.

Also for our predictors we apply a zero mean and unit standard deviation normal-
ization. Additionally, for the spectral data (FTIR, HSI) we explore normalization by
applying the Savitzky-Golay first polynomial derivative (SG1).

For two data sets (FTIR, and HSI) the linear model in (1) is highly underdeter-
mined. We use partial least squares (PLS) regression to solve the resulting system
of equations.

2.3 Method

PLS, also called projection to latent structures, is a dimensionality reduction
technique for which the explanatory and the dependent variables are both projected
on new components constructed to maximize the covariance between X and Y , see
[1] and [2]. The decomposition of both matrices X and Y is given by the following:

X = T P T + E, T = (t1, t2, . . . , tk), (5)

Y = UQT + F, U = (u1,u2, . . . ,uk). (6)
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Here, T ,U contain the k latent vectors as columns. Matrices P,Q, are the matrices
of loadings, E and F are the residuals.

The columns of the matrices T and U , the latent vectors, are constructed
iteratively by finding weights wi and ci for which ti = Xwi and ui = Yci with
the constraints that wTi wi = 1, tTi ti = 1 and such that tTi ui , which is proportional
to the covariance of ti and ui , is maximal. Each subsequent column is constructed
to be orthogonal to the previous ones, and lastly the matrix T of latent vectors for
X is used to predict Y with ordinary least squares (OLS). The maximum number
of components of the matrix T is equal to the rank of X, at which point the PLS
estimator for the coefficients β will be equal to the minimum length least square
estimator, [3], which will have large variance for highly collinear spectroscopic
data, [4], thus choosing the number of components to be used is a critical point
in the application of this method.

As is usual we split our data in train and test set, in order to find the appropriate
number of PLS components, we train models with an increasing number of
components up to a preset maximum and at each iteration we use k-fold stratified
cross validation, k = 10, to evaluate the mean squared error, MSE. We choose then
the number of components for which the mean of the k MSEs was minimal. Then
we train a model with the optimal number of components, which we evaluate on the
test set using the coefficient of determination, R2, and MSE.

This splitting and training is repeated multiple times, the scores R2 and MSE are
stored in the vectors R2, and MSE respectively, so that we can test the robustness
of our model by making sure that the empirical standard deviations of the vectors
σ(R2) and σ(MSE) have a sufficiently small value.

For the XRF dataset we estimate the regression coefficients with OLS.

3 Results

All data in Tables 1, 2, 3, and 4 is displayed in ascending order with respect to
the mean R2. The regression scores are presented for each field and for each year
separately. In the case of spectroscopic data we present the results obtained for
different normalizations of the tuber data on separate lines.

From our analysis we notice a strong association of the FTIR data set to vitality,
regardless of the applied normalization, our evaluation parameters stay consistent
for each field.

The regression on FTIR and HSI spectra shows that the prediction performance
is influenced by the field in which the vitality has been measured. Furthermore we
see that XRF as a stand-alone dataset is not a sufficiently good predictor of vitality,
and that the subdivision of hyperspectral data in separate tuber compartments does
not offer a substantial difference in performance.
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Table 1 Regression on HSP data for year 2

Field Part Normal. # comp μ(R2) σ (R2) μ(MSE) σ (MSE)

C pith STD 38 0.27 0.05 0.27 0.02

C pith SG1 39 0.27 0.05 0.27 0.02

C cortex SG1 39 0.30 0.04 0.26 0.01

C cortex STD 39 0.30 0.04 0.26 0.01

B pith STD 33 0.38 0.06 0.39 0.04

B pith SG1 37 0.38 0.06 0.39 0.04

B cortex SG1 39 0.38 0.06 0.38 0.04

B cortex STD 39 0.38 0.06 0.38 0.04

A pith SG1 37 0.44 0.08 0.40 0.06

A pith STD 38 0.44 0.08 0.40 0.05

A cortex STD 39 0.48 0.06 0.38 0.05

A cortex SG1 39 0.48 0.06 0.38 0.05

Table 2 Regression on XRF
data for both years

Field Year μ(R2) σ (R2) μ(MSE) σ (MSE)

C 2 0.21 0.03 0.32 0.04

B 2 0.24 0.05 0.37 0.03

C 1 0.33 0.04 0.36 0.01

A 2 0.33 0.04 0.32 0.02

B 1 0.42 0.02 0.39 0.03

A 1 0.44 0.01 0.31 0.02

Table 3 Regression on FTIR data for year 1

Field Normal. # comp. μ(R2) σ (R2) μ(MSE) σ (MSE)

C STD 28 0.67 0.02 0.17 0.01

C SG1 30 0.67 0.02 0.17 0.01

B STD 19 0.81 0.01 0.12 0.01

B SG1 21 0.81 0.01 0.12 0.01

A STD 30 0.84 0.02 0.09 0.01

A SG1 29 0.84 0.02 0.09 0.01

Table 4 Regression on FTIR data for year 2

Field Normal. # comp. μ(R2) σ (R2) μ(MSE) σ (MSE)

C SG1 14 0.62 0.02 0.14 0.01

C STD 14 0.62 0.03 0.14 0.01

B SG1 22 0.80 0.01 0.13 0.01

B STD 22 0.80 0.01 0.13 0.01

A STD 23 0.84 0.02 0.11 0.01

A SG1 24 0.84 0.02 0.11 0.01
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4 Conclusions and Further Research

FTIR data is the best performing, and most consistent in predictive power over
different years. Ongoing research suggests that a more tailored analysis of HSI
data could improve its predictive performance. Furthermore, the strong link between
prediction performance and field of measurement, as well as the fitness of non-linear
models for regression on chemical datasets should be investigated.
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Optimized Hydrodynamical Model for
Charge Transport in Graphene

Vito Dario Camiola, Giovanni Nastasi, Vittorio Romano, and Giorgia Vitanza

Abstract Starting from the Boltzmann equations and employing the moment
method, hydrodynamical models for charge transport in suspended monolayer
graphene have been devised. In particular in Camiola and Romano (J Stat Phys
157:1114–1137, 2014), Luca and Romano (Ann Phys 406:30–53, 2019), Luca and
Romano (Int J Non-Linear Mech 104:39–58, 2018), Luca and Romano (Ann Phys
406:30–53, 2019), Luca et al. (J Comput Theoret Trans 49(7), 2020), and Camiola
et al. (Charge transport in low dimensional semiconductor structures, the maximum
entropy approach. Springer, 2020) closure relations have been obtained by adopting
the Maximum Entropy Principle (MEP). Stemming from the kinetic equations,
some physical parameters appear in the production terms such as the acoustic
phonon, the optical phonon and theK-phonon coupling constants. Their values have
been estimated by experimental data and fundamental approach, e.g. the density
functional theory. However, they depend on the modelling of the energy band and
scattering terms. Here, we try to improve the hydrodynamical model proposed in
Camiola and Romano (J Stat Phys 157:1114–1137, 2014) by an optimisation of the
parameters above through a minimisation of the difference between velocity and
energy, found with the considered hydrodynamical models and the direct solution
of the Boltzmann equation obtained with a Discontinuous Galerkin (DG) method
(Coco et al., Ricerche mat 66:201–220, 2017; Majorana et al., Commun Comput
Phys 26, 114–134, 2019).
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1 Boltzmann Equation

In a semiclassical kinetic setting, the charge transport in graphene is described, in
general, by four Boltzmann equations, one for electrons in the valence (π ) band and
one for electrons in the conduction (π∗) band, that in turn can belong to the K or
K ′ valley. Here, we assume that the K and K ′ valleys are equivalent. Moreover, by
applying a gate voltage transversal with respect to the graphene sheet, it is possible
to modify the Fermi energy εF and therefore the charge density. As shown in [10],
if the Fermi energy is high enough (more than about 0.2 eV), the contribution to the
current due to holes in the valence band is negligible with respect to that of electrons
in the conduction band. Therefore, only the transport equation for electrons in the
conduction band is considered and interband transitions are neglected. It can be
written as

∂f

∂t
+ v · ∇xf − e

h̄
E · ∇kf = C(k), (1)

where f = f (t, x,k) represents the distribution function of electrons in the
conduction band at position x, time t and wave-vector k. We denote by ∇x and
∇k the gradients with respect to the position and the wave vector, respectively. The
group velocity v is related to the energy band ε by v = 1

h̄
∇kε. With a very good

approximation [3], a linear dispersion relation holds for the energy bands around
the Dirac points; so that, choosing the origin of the reference frame in the k-space
coinciding with a Dirac point, we have ε = h̄vF |k|, where vF is the (constant)
Fermi velocity and h̄ the Planck constant divided by 2π .

The Brillouin zone is extended to R
2. The elementary (positive) charge is denoted

by e. Here the electric field E is assumed as external, and therefore we do not include
the Poisson equation. The right-hand side of Eq. (1) is the collision term which takes
into account scatterings between electrons and phonons. In suspended monolayer
graphene three kinds of phonons have to be considered: acoustic, optical and K
phonons. We assume that phonons are in thermal equilibrium.

The collision term can be written as

C(k) =
∫

R2
S(k′,k)f (t, x,k′)(1 − f (t, x,k)) dk′

−
∫

R2
S(k,k′)f (t, x,k)(1 − f (t, x,k′)) dk′ (2)

where the total transition rate is given by the sum of the contributions of the above
mentioned types of scatterings
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S(k′,k) =
∑

ν

|G(ν)(k′,k)|2
[ (
n(ν)q + 1

)
δ
(
ε(k)− ε(k′)+ h̄ω(ν)q

)

+ n(ν)q δ
(
ε(k)− ε(k′)− h̄ω(ν)q

) ]

The index ν labels the ν-th phonon mode, |G(ν)(k′,k)| is the matrix element, which
describes the scattering mechanism, due to phonons of type ν. The symbol δ denotes
the Dirac distribution, ω(ν)q is the ν-th phonon frequency, n(ν)q is the Bose-Einstein
distribution for the phonons of type ν

n(ν)q = 1

eh̄ω
(ν)
q /kBT − 1

,

kB is the Boltzmann constant and T is the graphene lattice temperature which, in
this article, will be assumed constant.

For acoustic phonons, one usually considers the elastic approximation [5]

2n(ac)q |G(ac)(k′,k)|2 = 1

(2π)2
πD2

ackBT

2h̄σmv2
p

(1 + cosϑk,k′), (3)

where Dac is the acoustic phonon coupling constant, vp is the sound speed in
graphene, σm the graphene areal density, and ϑk,k′ is the convex angle between
k and k′.

There are three relevant optical phonon scatterings: the longitudinal optical (LO),
the transversal optical (TO) and the K-phonons. The matrix elements are [12]

|G(LO)(k′,k)|2 + |G(TO)(k′,k)|2 = 2

(2π)2
πD2

O

σmωO
, (4)

|G(K)(k′,k)|2 = 2

(2π)2
πD2

K

σmωK
(1 − cos θk,k′), (5)

where DO is the optical phonon coupling constant, ωO is the optical phonon
frequency, DK is the K-phonon coupling constant, and ωK is the K-phonon
frequency.

2 Hydrodynamical Model: L6MM

We will investigate the model proposed in [1, 2, 6–8] (for quantum corrections see
also [9]) which is based on the following moments

ρ = 2

(2π)2

∫

R2
f (t, x,k)d2k density,
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ρW = 2

(2π)2

∫

R2
f (t, x,k)ε(k)d2k energy density,

ρV = 2

(2π)2

∫

R2
f (t, x,k)v(k)d2k linear momentum density,

ρS = 2

(2π)2

∫

R2
f (t, x,k)ε(k)v(k)d2k energy-flux density.

The corresponding evolution equations are given by

∂

∂t
ρ +∇x(ρV) = 0,

∂

∂t
(ρW)+∇x(ρS)+ eρE · V = ρCW ,

∂

∂t
(ρV)+∇x(ρF(0))+ eρG(0) : E = ρCV,

∂

∂t
(ρS)+∇x(ρF(1))+ eρG(1) : E = ρCS.

Besides the average densities, velocities, energies and energy fluxes, additional
quantities appear

ρCV = 2

(2π)2

∫

R2
v(k)C(k)d2k, (6)

ρCW = 2

(2π)2

∫

R2
ε(k)C(k)d2k, (7)

ρCS = 2

(2π)2

∫

R2
ε(k)v(k)C(k)d2k, (8)

ρ

(
F(0)

F(1)

)

= 2

(2π)2

∫

R2

(
1
ε(k)

)

v(k)⊗ v(k)f (t, x,k) d2k, (9)

ρ

(
G(0)

G(1)

)

= 2

h̄(2π)2

∫

R2
f (t, x,k)∇k

(
v(k)

ε(k)v(k)

)

d2k, (10)

that must be expressed as functions of the basic variables ρ, W , V, S. Regarding
the production terms, they are given by the sum of contributions arising from the
different types of phonon scattering

CM = C(ac)M +
∑

ν=LO,TO,K
C
(ν)
M

withM = ρ,W,V,S. We recall that the generic term due to a single scattering from
a state k to a state k′ is given by (2). Explicit closure relations have been obtained in
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[2] by adopting MEP and by linearising the resulting distribution fMEP with respect
to the vectorial Lagrange multipliers. We will refer to this model as L6MM.

3 Formulation of the Problem

By inserting fMEP in the definition of the quantities appearing in L6MM one gets
a closed system of hyperbolic balance equations. In particular, the production terms
contain the electron-phonon coupling parameters Dac,D�,DK . We try to improve
the accuracy of L6MM with respect to the mean values of velocity and energy
obtained by a direct solution of the Boltzmann equation, considering Dac,D�,DK
as fitting parameters which are allowed to vary with respect to the values present in
the Boltzmann equation.

So, in Eqs. (7)–(9), instead of Dac,D2
�,D

2
K , we consider a1Dac, a2D

2
� , a3D

2
K

where the coefficients ai belong to a suitable admissible set we specify below. In
the case a1 = a2 = a3 = 1 one has the value used in the Boltzmann equation which
will be assumed as an initial guess a in the optimisation procedure.

Several 1D space homogeneous solutions with different values of the only
significant component of the electric field E and Fermi energy εF have been
considered. In this case, the density is constant and depends on εF (see [4, 10]).
The steady-state solutions are compared.

We take the following objective function

fobj(a) = α
[∑

i,j

∣
∣VL6MM(a, Ei, εFj , t)− VDG

∣
∣2
]1/2

+ β
[∑

i,j

∣
∣WL6MM(a, Ei, εFj , t)−WDG

∣
∣2
]1/2

, (11)

where VL6MM(a, Ei, εFj , t) and WL6MM(a, Ei, εFj , t) are velocity and energy at
time t , electric field Ei and Fermi level εFj computed with L6MM, respectively;
these functions depend on a = [a1, a2, a3]. VDG and WDG are the reference values
calculated with the DG method.

In order to consider the steady state, we have fixed the final time t = 3 ps.
Moreover, we have set α = 1 and β = 0.1 to give more weight to the velocity with
the aim to get an improvement of the current. The parameters ai are allowed to vary
in the range [0.4 − 2.5].

The complete formulation of the problem is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

min fobj(a)

a0 = [1, 1, 1]
0.4 ≤ ak ≤ 2.5 k = 1, 2, 3.

(12)
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Ten values of the electric field have been considered, from 0.1 V/μm to 1 V/μm
with increments of 0.1 V/μm, and three Fermi levels, 0.4, 0.5 and 0.6 eV.

To solve this constrained optimization problem we have adopted three
approaches: the MATLAB optimization function fmincon [11], a genetic
algorithm, and the simulated annealing method.

4 Numerical Results

In this section, we show the numerical results and highlight the difference between
three models: L6MM, DG and the Hydrodynamical model optimized with the new
constants a1Dac, a2D

2
� and a3D

2
K . The value of the objective function in the initial

guess a0 is fobj(a0) = 2.819.
By using the MATLAB function fmincon, the optimum is given by the vector

a = [0.400, 2.115, 0.400] with fobj(a) = 2.067. The genetic algorithm with
the number of maximum generation set equal to 100, gives as optimum point
a = [0.399, 2.088, 0.399] with fobj(a) = 2.082, while the simulated annealing
furnishes the optimal solution a = [0.401, 2.093, 0.434], with fobj(a) = 2.084. The
numerical results in the different cases are very similar, but the genetic algorithm
and simulated annealing are more expensive computationally than the function
fmincon.

In Fig. 1 the transient solutions obtained with the direct solution of the Boltzmann
equation by using the DG method, the original L6MM model and the optimized
L6MM model are compared. We get a noticeable improvement of the asymptotic
value of the velocity, at the expenses of a slight worsening of the asymptotic
values of the energy (note that the scales are different between velocity and
energy). However, from the point of view of the steady electric current, the overall
performance of the improved L6MM is better than the original L6MM.
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Fig. 1 Velocity (on the left) and Energy (on the right) of charges in graphene, calculated by DG,
L6MM and compared with the optimized L6MM (blue line) in the cases εF = 0.4 eV and E =
0.2 V/μm (top), E = 0.3 V/μm (middle), E = 0.4 V/μm (bottom)
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On the Discretization of Diffusion Fluxes
for a System of PDEs

Falco Schneider

Abstract We consider a system of two PDEs with diffusion type fluxes and
discontinuous coefficients. Extending on the ideas of the simple diffusion problem,
we derive a two-point flux approximation for a cell centered finite volume method
with minimal stencil on a regular Cartesian grid. The proposed approximation takes
the coupled characteristic of the original problem into account and is compared to a
commonly deployed decoupled approximation using separate harmonic averages of
the transport coefficients. Equivalence of both methods is shown if the coefficients
fulfill some linear relation and generalization to non-uniform rectilinear grids is
discussed. We conclude our analysis by performing a numerical study for our
specific application of liquid electrolytes in Li-ion batteries.

1 Introduction

The cell centered finite volume method for scalar diffusion problems with discon-
tinuous coefficients is commonly deployed using a two-point flux approximation
based on the harmonic average of the coefficient. Given two neighbouring cells i, j
of size h, see Fig. 1, the flux approximation Ni,j between the two cells is constructed
by imposing continuity at the cell interfaces for the concentration c and the discrete
diffusion fluxes Ni ,Nj of the respective cells, while assuming that the diffusion
coefficient D is constant within each cell. This leads to the expression

Ni,j · n = Ni · n = Nj · n = −Di,j cj − ci
h

= − 2

D−1
i +D−1

j

cj − ci
h

, (1)

where Di,j is the harmonic average of Di,Dj > 0 and n the normal from cell i to
j .
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In this paper we want to consider systems of PDEs of the form

∂t c = −∇ · N(c, φ), 0 = −∇ · J(c, φ), x ∈ � ⊂ R
3, t ∈ [0, Tfin], (2)

where the fluxes N, J of the two unknown quantities c, φ are given by

(
N
J

)

= $ ·
(∇c

∇φ
)

=
(
α β

γ ζ

)

·
(∇c

∇φ
)

=
(
Nc

Jc

)

+
(
Nφ

Jφ

)

, (3)

such that they are coupled by a potentially asymmetric matrix $ of discontinuous
coefficients. This is motivated by our application of Li-ion batteries [2], where the
transport of ions and charge in liquid electrolytes are directly coupled, such that
the Li-ion flux density N as well as the current density J depend on the gradient
of the Li-ion concentration c and the electrochemical potential φ. The coupled
flux approximation is not limited to the parabolic-elliptic system (2) and might be
applied to similar systems using fluxes of the form (3).

The paper is structured as follows: In Sect. 2 we derive the coupled two-
point flux approximation, while Sect. 3 introduces a commonly used decoupled
approximation. We discuss equivalence of both methods for a specific setting and
generalization to non-uniform rectilinear grids in Sect. 4. Finally, Sect. 5 presents
numerical results of an electrolyte simulation, followed by a conclusion in Sect. 6.

2 Coupled Flux Discretization

Motivated by our application, we want to consider general fluxes of the form (3),
where we make two assumptions on the coefficient matrix

1. The coefficient matrix $ is non-singular,
2. The matrix sum $i +$j for arbitrary cells i, j is non-singular,

which are sufficient for the coupled flux approximation to be well defined. Given
two adjacent cells i, j with their respective values for c, φ,$, we impose continuity
of the variables c, φ and fluxes N, J at the interface, while the coefficients are
assumed to be constant in each cell, see Fig. 1. The discrete fluxes for each cell
read

(
Ni · n
Ji · n

)

= 2$i
h

·
(
cw − ci
φw − φi

)

,

(
Nj · n
Jj · n

)

= 2$j
h

·
(
cj − cw
φj − φw

)

, (4)

and are determined by the unknown interface values cw, φw of the continuous
variables c, φ. From the continuity of the fluxes Ni · n = Nj · n and Ji · n = Jj · n
we get a linear system Av = b for the interface quantities v = (cw, φw), with A
given by $i +$j and Assumption 2 guarantees the existence of a unique solution.
By solving for cw, φw and plugging the obtained values back into the definition of
the fluxes (4), we obtain the flux approximations
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Fig. 1 Cell centered finite volume setup on regular Cartesian grid. The flux at centers of cell
interfaces is approximated via the cell centered values of the adjacent cells

(
Ni,j · n
Ji,j · n

)

=
(
Ni · n
Ji · n

)

=
(
Nj · n
Jj · n

)

= $i,j

h
·
(
cj − ci
φj − φi

)

, (5)

where the coefficient matrix is approximated by the matrix harmonic average

(
αi,j βi,j

γi,j ζi,j

)

= $i,j = 2
(
$−1
i +$−1

j

)−1
. (6)

Thus, the coupled approach yields a flux approximation with a structure very similar
to the scalar diffusion problem. This matches other results reported in the literature,
e.g. [4], where $ is assumed to be symmetric positive definite.

3 Decoupled Flux Discretization

Based on the result (1), one might try to approximate the flux of the coupled problem
(3) by using the harmonic average for each of the four coefficients separately

αi,j = 2

α−1
i + α−1

j

, βi,j = 2

β−1
i + β−1

j

, γi,j = 2

γ−1
i + γ−1

j

, ζi,j = 2

ζ−1
i + ζ−1

j

,

(7)
and plug them into (5). This is generally different to the coupled approach (6).
Each coefficient approximation in the decoupled approach only depends on the
respective transport coefficient, while in the coupled approach one generally obtains
a dependency on all four transport coefficients. This approach corresponds to
imposing continuity for the fluxes N and J, but also enforcing continuity for each
gradient term in the fluxes separately. Using the notation from (3), the constraints
read



292 F. Schneider

Nci · n = Ncj · n, Jci · n = Jcj · n, Nφi · n = Nφj · n, Jφi · n = Jφj · n. (8)

Since we have a total of four equations, we assume separate interface quantities
cw1 , φw1 and cw2 , φw2 for N and J, respectively. The equations (8) can be solved
independently and analogously to the scalar diffusion problem. Thus, we obtain the
averages of the coefficients as in (7) and the interface quantities

cw1 = αici + αj cj
αi + αj , cw2 = γici + γj cj

γi + γj , φw1 = βiφi + βjφj
βi + βj , φw2 = ζiφi + ζj φj

ζi + ζj ,

(9)
which will generally be inconsistent between N and J for the decoupled approach.

4 Equivalence of Both Approaches and Rectilinear Grids

In general, we have cw1 �= cw2 , φw1 �= φw2 , for arbitrary values of ci , cj , φi , φj and
the coupled approach will be different to the decoupled approach, using separate
harmonic averages. However, it is easy to see that these interface quantities will be
consistent if we have some linear relation between the coefficients.

If α = k1γ for some k1 ∈ R \ {0}, we obtain cw1 = cw2 . Analogously, β = k2ζ

for some k2 ∈ R \ {0} implies φw1 = φw2 . If both of these relations are fulfilled, we
know by Assumption 1 that k1 �= k2 and can even show equivalence to the interface
quantities of the coupled approach

cw1 = cw2 = cw, φw1 = φw2 = φw, (10)

by simplifying the explicit expressions obtained for cw, φw. In particular, we obtain
that (4), (5) and (6) hold for the decoupled approach and both methods coincide.

The obtained results can be generalized to non-uniform rectilinear grids in a
straightforward manner. In that case, both flux approximations are again structurally
similar and of the form

(
Ni,j · n
Ji,j · n

)

=
(
αi,j βi,j

γi,j ζi,j

)

·
( cj−ci

di,j
φj−φi
di,j

)

, (11)

with the distance between cell centers di,j = 0.5(hi + hj ). For the decoupled
approach, one obtains the weighted harmonic average of each individual coefficient
with the weights given by the respective cell sizes. The coefficient approximation of
the coupled approach is given by the weighted matrix harmonic average

$i,j = (hi + hj )
(
hi$

−1
i + hj$−1

j

)−1
, (12)
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where we also need to modify Assumption 2 to ensure the matrix sum
h−1
i $i + h−1

j $j to be non-singular for arbitrary cells i, j , such that the approach is
well defined. Note, equivalence of the two approximations for the aforementioned
linear relations still holds on these type of grids.

5 A Numerical Study for Liquid Electrolytes

We conduct a spatial convergence analysis to compare the two approximations (6)
and (7) using a one-dimensional electrolyte solver. The corresponding system reads

∂t c = −∂xN(c, φ), 0 = −∂xJ (c, φ), x ∈ [0, L], t ∈ [0, Tfin], (13)

with constant initial concentration profile c0 ≡ 1 mol/l. We apply constant
Neumann boundary conditions J |x=0 = J |x=L = 45 mA/cm2 to simulate a steady
current flowing through the domain and a consistent ion flux N |x=0 = N |x=L =
F−1J |x=0. For the potential to be uniquely defined and centered around 1 V, we
additionally prescribe a mean condition. The isothermal coefficients of the battery
model [2] are

α(c) = −D(c)− RT t+(c)(t+(c)−1)
F 2 c

κ(c), β(c) = − t+(c)
F
κ(c),

γ (c) = −RT t+(c)−1
F c

κ(c), ζ(c) = −κ(c), (14)

where T = 296 K is the temperature, R is the gas constant and F is the Faraday
constant. Introducing the reference scales cref = 1 mol/l, φref = 1 V and the non-
dimensionalized concentration ĉ = c/cref, we use the conductivity from [1]

κ(c) = κ(ĉ(c)) = 0.1
S

m
·
(

2.667 · ĉ3 − 12.983 · ĉ2 + 17.919 · ĉ + 1.726
)
.

(15)
For the dimensionless transference number we prescribe the function

t+(c) = t+(ĉ(c)) = −0.19333333 · ĉ3 + 0.67 · ĉ2 − 0.79666667 · ĉ+ 0.58, (16)

which is an approximation of the data plotted in Figure 5.3 from [3]. The diffusion
coefficient is given by the Einstein relation [1]

D(c) = RT

F 2 c
κ(c). (17)

For physical feasible parameters κ > 0, t+ ∈ (0, 1) and D given by the relation
(17), we have α, β, ζ < 0 and γ > 0. This guarantees that both assumptions of our
coupled approach are fulfilled, because det($) > 0 and det($i +$j) > 0.
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Fig. 2 Spatial convergence of coupled and decoupled flux approximation for 1D electrolyte
simulation with respect to the cell size h using a t+ with low variation (left) or high variation
(right)

All simulations use an implicit Euler time stepper with final time Tfin = 10 s,
time step size t = 0.1 s and a domain size of L = 100 μm. We consider
uniform discretizations with Nx ∈ {10, 30, 90, 270, 810} cells and compare them
to a reference solution with Nx = 2430 cells. The nonlinear algebraic systems are
solved with a Newton-Raphson method applying a direct linear solver. For the error
we consider the following L2-norm over all common nodes of the space-time grid

||u− ũ||L2 = 1

uref

⎛

⎝ 1

NtNx

Nx,Nt∑

i,j=1

|ui,j − ũi,j |2
⎞

⎠

0.5

, (18)

where the error is calculated separately for c and φ and normalized by the reference
scales cref, φref, respectively. The resulting convergence plot can be seen on the left
in Fig. 2. It turns out, if we assume t+ to be constant, then the coefficients of the
battery model fulfill the aforementioned linear relations, due to the Einstein relation
between D and κ . In this case, both approaches are equivalent. Considering (16),
t+ shows only small variations, such that the errors of the methods are still similar.
If we switch to an expression t+(ĉ(c)) = 0.5 − 0.4 tanh(6(ĉ − 1)) with stronger
variations, we obtain the plot on the right in Fig. 2, where the coupled method is
more accurate. Overall, we observe second order convergence for both methods.

6 Conclusion

We derived a coupled flux approximation for systems of two coupled gradient
fluxes, which takes the coupled structure of the fluxes into account and is generally
different to a decoupled approach using separate harmonic averages. Structurally,
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the two approaches are similar, even equivalent if there exists a specific linear
relation between the coefficients. For our example of an electrolyte, the two methods
coincide for t+ constant. With growing variations in t+(c), larger differences
between the methods are observed, where the coupled approach is generally more
accurate. Thus, the method might be advantageous for other problems where the
coefficients do not match the aforementioned linear relations.
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Dynamics of the N-fold Pendulum in the
Framework of Lie Group Integrators

Elena Celledoni, Ergys Çokaj, Andrea Leone, Davide Murari,
and Brynjulf Owren

Abstract Since their introduction, Lie group integrators have become a method of
choice in many application areas. Various formulations of these integrators exist,
and in this work we focus on Runge-Kutta-Munthe-Kaas methods. First, we briefly
introduce this class of integrators, considering some of the practical aspects of their
implementation, such as adaptive time stepping. We then present some mathematical
background that allows us to apply them to some families of Lagrangian mechanical
systems. We conclude with an application to a nontrivial mechanical system: the N-
fold 3D pendulum.

1 Introduction

Lie group integrators are used to simulate problems whose solution evolves on a
manifold. Many approaches to Lie group integrators can be found in the literature,
with several applications for mechanical systems (see, e.g. [2, 8, 9]).

The present work is motivated by applications in modelling and simulation
of slender structures like beams, and the example considered here is a chain of
pendulums. The dynamics of this mechanical system is described in terms of a Lie
group G acting transitively on the phase space M. This setting is used to build also
a numerical integrator.

In Sect. 2 we give a brief overview of the Runge-Kutta-Munthe-Kaas (RKMK)
methods with particular focus on the variable step size methods, which we use later
in Sect. 4.2 for the numerical experiments. In Sect. 3 we introduce some necessary
mathematical background that allows us to apply RKMK methods to the system of
interest. In particular, we focus on a condition that guarantees the homogeneity of
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the tangent bundle TQ of a manifold Q. We then consider Cartesian products of
homogeneous manifolds. In Sect. 4 we reframe the ODE system of the chain of N
connected 3D pendulums in the geometric framework presented in Sect. 3. We write
the equations of motion and represent them in terms of the infinitesimal generator
of the transitive action. The final part shows some numerical experiments where the
constant and variable step size methods are compared.

2 RKMKMethods with Variable Step Size

The underlying idea of RKMK methods is to express a vector field F ∈ X(M)

as F |m = ψ∗(f (m))|m, where ψ∗ is the infinitesimal generator of ψ , a transitive
action on M, and f : M → g. This allows us to transform the problem from the
manifold M to the Lie algebra g, on which we can perform a time step integration.
We then map the result back to M, and repeat this up to the final integration time.
More explicitly, let hn be the size of the n−th time step, we then update yn ∈ M to
yn+1 by

⎧
⎪⎪⎨

⎪⎪⎩

σ(0) = 0 ∈ g,

σ̇ (t) = dexp−1
σ(t) ◦ f ◦ ψ(exp(σ (t)), yn) ∈ Tσ(t)g,

yn+1 = ψ(exp(σ1), yn) ∈ M,

(1)

where σ1 ≈ σ(hn) ∈ g is computed with a Runge-Kutta method.
One approach for varying the step size is based on embedded Runge-Kutta pairs

for vector spaces. This approach consists of a principal method of order p, used
to propagate the numerical solution, together with some auxiliary method, of order
p̃ < p, that is only used to obtain an estimate of the local error. This local error
estimate is in turn used to derive a step size adjustment formula that attempts to
keep the local error estimate approximately equal to some user-defined tolerance tol
in every step. Both methods are applied to solve the ODE for σ(t) in (1), yielding
two approximations σ1 and σ̃1 respectively, using the same step size hn. Now, some
distance measure between σ1 and σ̃1 provides an estimate en+1 for the size of the
local truncation error. Thus, en+1 = Ch

p̃+1
n+1 + O(hp̃+2). Aiming at en+1 ≈ tol in

every step, one may use a formula of the type

hn+1 = θ
(

tol

en+1

) 1
p̃+1

hn, (2)

where θ is typically chosen between 0.8 and 0.9. If en > tol, the step is rejected.
Hence, we can redo the step with the step size obtained by the same formula.
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3 Mathematical Background

This section introduces the mathematical background that allows us to study many
mechanical systems in the framework of Lie group integrators and Lie group
actions. In particular, we provide some results that we use to study the model of
a chain of N 3D-pendulums presented in the last section.

3.1 The Tangent Bundle of Some Homogeneous Manifolds Is
Homogeneous

For Lagrangian mechanical systems, the phase space is usually the tangent bundle
TQ of some configuration manifoldQ. In [1] the authors present a setting in which
the homogeneity of Q implies that of TQ. We now briefly review and reframe it in
the notation used throughout the paper.

Consider a smooth homogeneous n−dimensional manifold Q. This means that
Q is endowed with a transitive G-group action $ : G ×Q → Q, i.e., for any pair
q1, q2 ∈ Q there is g ∈ G such that$(g, q1) = q2. Assume that for each q ∈ Q, the
map $q : G → Q defined as $q(g) := $(g, q), is a submersion at e ∈ G. When
these hypotheses hold, it can be shown that TQ is a homogeneous manifold as well,
and an explicit transitive action can be obtained from$. Let$∗ be the infinitesimal
generator of the group action $, and denote with ξ̄ (q) := $∗(ξ)(q) ∈ TqQ the
differential at the identity element e ∈ G of $q , evaluated at ξ ∈ g. We then
introduce $g : Q→ Q, q  → $(g, q) and call Tq̄$g its tangent lift at q̄ ∈ Q.

Consider the manifold Ḡ := G � g, equipped with the semi-direct product Lie
group structure (see, e.g., [4]). We can introduce a transitive group action on TQ as
follows:

ϕ : Ḡ× TQ→ TQ,
(
(g, ξ), (q, v)

)  → (
$(g, q), ξ̄ ($(g, q))+ Tq$g(v)

)
.

By direct computation and basic properties of Lie groups (see, e.g., [5]), it can be
seen that the action ϕ is well defined. Since the action $ is transitive on Q and $q
is assumed to be a submersion at e ∈ G, we have that

∀v′ ∈ Tq ′Q ∃ξ ∈ g s.t. $∗(ξ)(q ′) = ξ̄ ($(g, q)) = v′ − Tq$g(v).

Thus, we conclude that M = TQ is a homogeneous manifold.
In the application treated in the next section, we are interested in the case in

which Q = S2 ⊂ R
3, i.e., the unit sphere. In this setting, a transitive group action

$ is given by

$ : SO(3)× S2 → S2, (R, q)  → Rq,
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TqS
2 � $∗(ξ)(q) = ξ̄ (q) = ξ × q, Tq$R(v) = Rv ∈ TRqS2.

Therefore, in this case we recover the restriction to T S2 ⊂ R
6 - se(3) of the

Adjoint action of Ḡ = SE(3) = SO(3)�R
3 - SO(3)� so(3) (see, e.g., [6])

ϕ((R, r), (q, v)) = (Rq,Rv + r × Rq) = 1(Rq,Rv + r̂Rq), (3)

which hence becomes a particular case of a more general framework.

3.2 The Cartesian Product of Homogeneous Manifolds Is
Homogeneous

Consider a family of homogeneous manifolds M1, . . . ,Mn. Call (Gi,.i ) the Lie
group acting transitively on the associated smooth manifold Mi , and ϕi such a
transitive action. Let gi be the Lie algebra of Gi , i = 1, . . . , n, and

M = M1 ×M2 × · · · ×Mn, G = G1 ×G2 × · · · ×Gn.
The manifold G can be naturally equipped with a Lie group structure given by the
direct product. More precisely, for a pair of elements G � gi = (g1

i , . . . , g
n
i ),

i = 1, 2, we can define their product g1 · g2 := (g1
1 .1 g

1
2, . . . , g

n
1 .n gn2 ) ∈ G. We

can similarly define componentwise the exponential map.
This construction ensures that the manifold M is homogeneous too, and G acts

transitively on it. That is, let

g = (g1, . . . , gn) ∈ G, m = (m1, . . . , mn) ∈ M,

then

ϕ : G×M → M, ϕ(g,m) := (ϕ1(g
1,m1), . . . , ϕn(g

n,mn)).

We now restrict to the specific case Mi = T S2 for i = 1, . . . , n. Since T S2 is a
homogeneous manifold with transitive action ϕ defined as in Eq. (3), we can write
the transitive group action

ψ : (SE(3))n × (T S2)n → (T S2)n,

ψ
(
(g1, . . . , gn), (m1, . . . , mn)

) = (
ϕ(g1,m1), . . . , ϕ(gn,mn)

)
,

where gi := (Ri, ri) ∈ SE(3), mi = (qi, vi) ∈ T S2.

1 Here r̂ =
⎡

⎣
0 −r3 r2

r3 0 −r1
−r2 r1 0

⎤

⎦, where r =
⎡

⎣
r1

r2

r3

⎤

⎦.
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4 The N-fold 3D Pendulum

We now apply the geometric setting from Sect. 3 to the specific problem of a chain
of N connected 3D pendulums, whose dynamics evolves on (T S2)N .

4.1 Equations of Motion

Let us consider a chain of N pendulums subject to constant gravity g. The system is
modeled by N rigid, massless links serially connected by spherical joints, with the
first link connected to a fixed point placed at the origin of the ambient space R

3, as
in Fig. 1. We neglect friction and interactions among the pendulums.

The modeling part comes from [7] and we omit details. We denote by qi ∈ S2 the
configuration vector of the i−th mass, mi , of the chain. Following [7], we express
the Euler–Lagrange equations for our system in terms of the configuration variables
(q1, . . . , qN) ∈ (S2)N ⊂ R

3N , and their angular velocities (ω1, . . . , ωN) ∈ Tq1S
2×

· · · × TqN S2 ⊂ R
3N , defined be the following kinematic equations:

q̇i = ωi × qi, i = 1, . . . , N. (4)

The Euler–Lagrange equations of the system can be written as

R(q)ω̇ =

⎡

⎢
⎢
⎣

N∑

j=1
j �=i

Mij |ωj |2q̂iqj −
( N∑

j=i
mj

)
gLiq̂ie3

⎤

⎥
⎥
⎦

i=1,...,N

=
⎡

⎢
⎣

r1
...

rN

⎤

⎥
⎦ ∈ R

3N,

(5)
where R(q) ∈ R

3N×3N is a symmetric block matrix defined as

Fig. 1 Chain of 3 connected pendulums at a fixed time instant
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R(q)ii =
( N∑

j=i
mj

)
L2
i I3 ∈ R

3×3,

R(q)ij =
( N∑

k=j
mk

)
LiLj q̂

T
i q̂j ∈ R

3×3 = R(q)Tji , i < j,

and

Mij =
( N∑

k=max{i,j}
mk

)
LiLj I3 ∈ R

3×3.

Equations (4) and (5) define the dynamics of the N-fold pendulum, and hence a
vector field F ∈ X((T S2)N). We now find a function f : (T S2)N → se(3)N such
that

ψ∗(f (m))|m = F |m, ∀m ∈ (T S2)N ,

where ψ is defined as in Sect. 3.2.
Since R(q) defines a linear invertible map (see [2])

Aq : Tq1S
2 × · · · × TqN S2 → Tq1S

2 × · · · × TqN S2, Aq(ω) := R(q)ω,

we can rewrite the ODEs for the angular velocities as follows:

ω̇ = A−1
q

⎛

⎜
⎝

⎡

⎢
⎣

r1
...

rN

⎤

⎥
⎦

⎞

⎟
⎠ =

⎡

⎢
⎣

h1(q, ω)
...

hN(q, ω)

⎤

⎥
⎦ =

⎡

⎢
⎣

a1(q, ω)× q1
...

aN(q, ω)× qN

⎤

⎥
⎦ . (6)

In equation (6) the ris are defined as in (5), and a1, . . . , aN : (T S2)N → R
3 can be

defined as ai(q, ω) := qi × hi(q, ω). Thus, the map f is given by

f (q, ω) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ω1

q1 × h1(q, ω)
...

ωN

qN × hN(q, ω)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ se(3)N - R
6N.
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4.2 Numerical Experiments

In this section we show a numerical experiment with the N-fold 3D pendulum, in
which we compare the performance of constant and variable step size methods. We
do not show results on the preservation of the geometry (up to machine accuracy),
since this is given by construction. We consider the RKMK pair coming from
Dormand–Prince method (DOPRI 5(4) [3], which we denote by RKMK(5,4)). We
set a tolerance of 10−6 and solve the system with the RKMK(5,4) scheme. Fixing
the number of time steps required by RKMK(5,4), we repeat the experiment with
RKMK of order 5 (denoted by RKMK5). The comparison occurs at the final time
T = 3 using the Euclidean norm of the ambient space R

6N . The quality of the
approximation is measured against a reference solution obtained with ODE45 from
MATLAB with a strict tolerance.

The motivating application behind the choice of this mechanical system has been
some intuitive relation with flexible slender structures like beams. For this limiting
behaviour to make sense, we first fix the length of the entire chain of pendulums
to some L, then we set the size of each pendulum to Li = L/N and initialize
(qi, ωi) = (1, 0, 0, 0, 0, 0), ∀i = 1, . . . , N . As we can see in Fig. 2a, the results
of our experiments show that number of time steps that RKMK(5,4) requires to
reach the desired accuracy increases with N , and this can be read in terms of
an augmentation of the dynamics’ complexity. For this reason, as highlighted in
Fig. 2, distributing these time steps uniformly in the time interval [0, T ] becomes an
inefficient approach, and hence a variable step size method gives better performance.

We further design a slightly different experiment to compare the computational
time of the constant and variable step size RKMK methods. First, we fix the
tolerance tol = 10−6 for RKMK(5,4) and compute its distance from the reference
solution with ODE45. Then, we aim to replicate this error with RKMK5, increasing
the number of performed time steps. We report in Table 1 the results of the
experiment. Because of the more efficient distribution of the time steps, we notice
smaller values with RKMK(5,4) for the more involved systems.

Fig. 2 Comparisons of variable versus constant step size for the N-fold 3D pendulum. (a)
Accuracy against the number of pendulums. (b) Comparison of step sizes with 20 pendulums
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Table 1 Elapsed times (in seconds) obtained with RKMK5 (second row) and with RKMK(5,4)
(third row) for systems having different number of pendulums (first row). In the last row we
report the ratio between the RKMK5 and the RKMK(5,4) runtimes. These are obtained with the
tic–toc command of MATLAB

Pendulums 2 4 6 8 10 12 14 16 18 20

RKMK5 0.12 0.42 1.04 2.24 3.80 6.74 9.09 12.71 18.51 27.67

RKMK(5,4) 0.16 0.38 0.91 1.59 2.83 4.51 6.93 9.71 13.68 18.81

Ratio 0.75 1.11 1.14 1.41 1.34 1.49 1.31 1.31 1.35 1.47

Acknowledgments This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement No
860124.
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Hydrodynamic Interaction Between a
Row of Oblate Spheroids in a Steady
Stream of Viscous Fluid

Tsvetan Kotsev

Abstract This paper presents a numerical simulation of flow structure past three
oblate spheroids arranged in line placed in a stream of viscous fluid with uniform
velocity parallel to the line connecting the body centers. The hydrodynamic
interaction was studied for Reynolds numbers from 1 to 100. The axis ratio of the
bodies takes values 0.1, 0.2, 0.5 and 0.8 and the distances between them varies from
very small one up to 20 big particle diameters. At some values of Re and distance
between spheroids the drag of the middle and downstream ones takes negative
values that means a “attractive force” exists between the bodies.

1 Introduction

In many engineering applications, chemical processes, energy and spray systems,
etc., the hydrodynamic interaction between solid particles or droplets immersed
in moving viscous fluid is quite important. There are lot of studies done both by
analytical and numerical methods concerning the viscous flow past one or two
particles but most of them treat particles with exactly spherical shape [1–10].
The evolution of the flow field and drag experienced by three spherical particles
arranged in line when the distance between them varies was studied numerically
in [11] for Reynolds numbers up to 200. Relatively less in the literature are the
studies concerning flow past particles with shape different from spherical. Some of
them are [12–17]. The goal of the present study is to simulate the flow structure
and hydrodynamic interaction between three oblate spheroids in line at Reynolds
numbers up to 100.
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2 Formulation of the Problem and Method of Solution

Three rigid spheroidal particles arranged in line are immersed in a stream of
incompressible viscous fluid with velocity V0 at infinity parallel to their central
line. The aspect ratio is defined as the ratio between the revolution axis and the
major axis λ = c/a. Particles of equal size and aspect ratio are considered. The
numerical simulations were done in Cartesian coordinate system where the centers
of the spheroids are located on y-axis (Fig. 1). The fluid is water with density of
998 kg/m3 and dynamic viscosity 0.00101 Pa.s. The Reynolds number is based
on the big diameter of the upstream particle—Re = 2a1.V0/ν, where ν is the
kinematic viscosity of the fluid. It is assumed that the flow field behind the particles
stays axisymmetric and stable for Reynolds numbers Re < 100 and axis ratio
between 0.1 and 1. The distance between upstream and middle spheroid is denoted
with d1 and between the middle and downstream spheroid with d2. They are non-
dimensionalized with respect to the large semi-axis of the particles.

The equations describing the fluid motion are continuity and steady Navier-
Stokes equations as follows:

∇ · V = 0 (1)

ρ(V · ∇)V = −∇p + μ∇2V , (2)

where V is velocity vector, μ—dynamic viscosity, p—pressure, ρ—fluid density.
Boundary conditions are:

no slip on the spheroid surfaces − Vx = 0, Vy = 0, Vz = 0, (3)

uniform velocity at the inlet − Vx = 0, Vz = 0, Vy = V0, (4)

zero pressure at the outlet − p = 0, (5)

symmetry at the outer boundaries − V · n = 0 . (6)

Fig. 1 Geometrical configuration
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The drag force is calculated integrating the stress tensor on the body surfaces:

FD =
∫

S

−p n · j dS +
∫

S

nτ · j dS , (7)

where S denotes the surface of the spheroids, j is the unit vector in y direction, n is
the outward normal vector at the surface and τ is the viscous stress tensor.

The non-dimensional drag coefficient CD is defined as:

CD = FD

ρV 2
0 Apr/2

, (8)

where Apr is the area of the spheroid projected on a plane perpendicular to the flow
direction.

Equations (1) and (2) under boundary conditions (3)–(6) are solved numerically
using COMSOL Multiphysics package based on the finite element method. The
computational domain is 2D due to axial symmetry and is covered with a mesh of
triangle elements that approximate in the best way the complicated fluid domain.
The outer boundary is set to be at a distance 20 big body diameters far from the line
of flow symmetry. Experiments show that this distance is sufficient and moving it
further does not give any significance difference in the drag coefficients obtained.

3 Validation of the Computational Scheme

Comparison of the present results with these of Quchene [17] and Happel and
Brenner [12] for the flow past a single oblate spheroid at Re = 0.1 is shown in
Table 1a). The difference does not exceed 4% and for spheroids with λ = 0.5 the
results are much closer—within 1%. In the case of flow past spheroids being far
each from another the present results are also in a good accordance with the results
of Juncu [18] for a single spheroid with λ = 0.2 and 0.5 and Re = 50, 100. The
drag values are shown in Table 1b).

Table 1 Drag coefficients of a single spheroid

λ

Happel and
Brenner [12] Ouchene [17] Present

Re = 50 Re = 100

0.2 270.690 281.75 271.88 λ 0.2 0.5 0.2 0.5

0.5 239.700 245.56 245.12 Juncu 1.607 1.550 1.199 1.122

0.8 237.570 237.17 246.6 Present 1.627 1.418 1.390 1.110

(a) (b)
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4 Results

Numerical simulations were done for oblate spheroids with λ = 0.1, 0.2, 0.5, 0.8
and Reynolds numbers from 1 to 100 for different distances between them. For
Re = 1 the flow between spheroids with λ = 0.2 lost its Stokes character and clearly
visible zones of back flow arise behind the upstream and middle one. Separation of
the flow starts from a point close to the rear stagnation one and provokes formation
of a ring eddy attached to the rear of the body surfaces. With increasing Re the
separation point moves up and the wake in the gap grows and enlarges towards the
downstream body. For λ = 0.5 and Re = 1 the back flow area behind the second
body is just starting to grow while for spheroids with λ = 0.8 such area is missing.
No vortex behind the downstream spheroid is visible for Re = 1 and all values
of λ. For higher Re the flow picture changes and at Fig. 2 is shown the flow for
d1 = d2 = 1, λ = 0.2, 0.5 and Re = 60. Let for simplicity the zones of back
flow behind upstream, middle and downstream spheroid denote also first, second
and third zones respectively. Increasing the fluid velocity, the vortex zones grow
and increase their intensity. For distance d1 = d2 = 1 the third back flow area for
spheroids with λ = 0.1, 0.2, and 0.5 appears for Re = 7, 10 and 20 respectively
while for spheres at the same distances for Re = 40 [11]. The variation of the drag
coefficients with Reynolds number of three spheroids with λ = 0.1 and 0.5, placed
at a distance d1 = d2 = 1 each from another is shown at Fig. 3.

At small Re oblate spheroids with higher λ and placed far from each other show
higher total drag coefficients than spheroids with lower λ, i.e. the drag on a sphere is
higher than the drag on circular disk that is in accordance with results in [14]. This
fact is explained by higher contribution of the drag due to the friction in the total
drag, provoked by the increase of the skin area with increase of λ For higher Re this
trend is changing as a result of the fast enlargement of the vorticity zones behind the
spheroids and the increase in their intensity. The value of Re at which this tendency
changes is between 50 and 60. The drag of the middle and downstream spheroid
decreases fast and tends to zero quickly with increase of Re and finally accept
negative values that means an “attraction effect” exists between the bodies. For
small λ, e.g. 0.1 and 0.2 the drag coefficients of the middle and downstream body

Fig. 2 Flow past oblate spheroids at distance d1 = d2 = 1 and Re = 60
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Fig. 3 Drag coefficient of equal oblate spheroids vs Reynolds number for d = 1: (a) λ = 0.1,
(b) λ = 0.5

Fig. 4 Flow past oblate spheroids for Re = 60, λ = 0.5: (a) d1 = d2 = 0.00001, (b) d1 = d2 = 4

take negative values for Re about 40 and 80 respectively. The upstream spheroid
also changes its drag coefficient up to 11% compared to the single one and depends
strongly on the distance between the bodies.

When spheroids with λ = 0.5 are placed at an extremely small distance from
each other, i.e. when they are almost touching and for Re = 50, the total drag
of this assemblage is less than the drag of a single spheroid under the same flow
parameters. The reason for this effect is the negative values of the drag of the middle
and downstream bodies and added to the drag of the first one they reduce the total
drag of the assemblage. This effect depends on Re and λ but the most important is
the distance between the spheroids. For the mentioned above parameters this effect
is valid for distance approx. d1 = d2 = 2.

At Fig. 4 is shown the flow picture past spheroids being extremely close each
to another (d1 = d2 = 0.00001) and at a distance equal to four large semi-axis
(d1 = d2 = 4) for Re = 60. When the spheroids are very close each to another
the eddies in the gaps between them are not clearly expressed. Only a very small
recirculating zone exists in the gap between first and second body while behind the
middle one vorticity zone has not formed yet. The reason is the narrow gaps where
it is difficult for the fluid from the top layers to mix well with the layers beneath.
Figure 5 shows the variation of the drag coefficients with the distance between the
spheroids: (a) d1 = d2 = d and (b) d1/d2 i.e. when the middle spheroid changes
its location between the upstream and the downstream one. When the distance d is
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Fig. 5 Variation of the drag coefficients of spheroids with λ = 0.5 and Re = 60: (a) CD vs d,
(b) CD vs d1/d2

very small, the middle and downstream spheroid feel negative drag and this one of
the second body is higher in absolute value than the drag of the downstream body.
The negative drag means that the “attractive force” seeks to move the second and
third body towards the first one if they were not fixed. Increasing d, the behavior of
CD changes and from a distance of appr. d = 0.6 for the downstream spheroid and
d = 1.5 for the body in the middle, their drag coefficients change from negative to
positive. The second spheroid begins to show higher drag than the drag of the third
one for d > 4.5. Let now change the position of the middle spheroid according to the
other two. The goal is to see how this will reflect on the hydrodynamic interaction
between particles and their drag coefficients. At Fig. 5b is shown the variation of
CD with ratio d1/d2 when the distance between first and third body is fixed to 5,
Re = 60 and λ = 0.5. When d1/d2 = 1 the second spheroid is right in the middle
between the other two. Moving it to the first one its drag coefficient rapidly decrease
while the drag coefficient of the upstream spheroid increases with appr. 9%. At a
distance between upstream and middle spheroid about 1.48 (d1/d2 = 0.55) the
drag coefficient of the middle body takes negative values. If the middle spheroid is
moving towards the downstream one (d1/d2 > 1) the drag on the upstream body
keeps almost one and the same value while the drag coefficients of the downstream
spheroid decrease but is positive even when the second body is very close to it.
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Modelling and Computing the Total
Value Adjustment for European
Derivatives in a Multi-Currency Setting

Iñigo Arregui, Roberta Simonella, and Carlos Vázquez

Abstract Since the global financial crisis of 2007–2008, different adjustments are
considered in the pricing of financial products to incorporate the counterparty risk;
the set of these adjustments is referred to as total value adjustment or XVA. In this
work we first pose a partial differential equations (PDE) model for pricing the XVA
associated to European-like derivatives in multi-currency situations. Moreover, we
formulate and solve the XVA pricing problem in terms of expectations to overcome
the curse of dimensionality arising in PDEs formulation. Numerical results illustrate
the performance of the proposed Monte Carlo algorithms to price best-of-all call
options and the sum of put options denominated in different currencies. The
second example additionally illustrates the appropriate scaling when the number
of stochastic factors (currencies) becomes large.

1 Statement of Partial Differential Equations Model

As a consequence of the financial crisis of 2007–2008, it was clear that the
possibility of counterparties default should be taken into account in the pricing of
financial derivatives by means of appropriate valuation adjustments, either related
to credit (CVA), funding (FVA) or collateral (CollVA), for example. More recently,
adjustments related to capital (KVA) or margin (MVA) have been considered.
We address the reader to the books [5, 9, 10] and the references therein. In the
single currency framework three main approaches have been developed. A first
one based on PDEs with seminal references [6, 16], the second one based on
expectations started with [4], and the third one based on backward stochastic
differential equations [7, 8].
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In the present work we consider a multi-currency setting, following the ideas
in [12], where the joint consideration of CVA, FVA, CollVA and repo adjustments
are taken into account. We will refer to the set of this adjustments as total value
adjustment or XVA. For the additional inclusion of KVA or MVA in the XVA, the
ideas in [13, 14] in the single currency case could be considered.

In this section we pose a PDE formulation for the value of a derivative traded
in a multi-currency framework, taking into account the total value adjustment to
consider possible defaults of the counterparties involved in the deal.

Let St = (S1
t , . . . , S

N
t ) be the vector, at time t , of the underlying assets prices

Sit , i = 1, . . . , N , each one of them being denominated in its corresponding foreign

currency Ci . Moreover, let ht be the investor’s credit spread, and X
D,Cj
t (for j =

0, . . . , N ) the foreign exchange (FX) rate between the domestic currencyD and Cj ,
namely the domestic price of one unit of the foreign currency Cj .

The stochastic differential equations (SDEs) governing the evolution of the prices
of the underlying assets, the FX rates (see [5]), and the investor’s credit spread under
the risk neutral probability measure (QD) of the domestic market are:

dSit = (ri − qi)Sit dt + σS
i

Sit dW
Si

t , i = 1, . . . , N , (1)

dX
D,Cj
t = (rD − rj )XD,Cjt dt + σXjXD,Cjt dWXj , j = 0, . . . , N, (2)

dht = −κ ht

1 − R dt + σ
h dWh

t , (3)

where rD and ri are respectively the risk-free rate in currencies D and Ci , qi is
the dividend paid by Si , and R is the investor’s recovery rate. Moreover, σS

i
, σX

j

and σh are the volatility functions of Sit , X
D,Cj
t and ht , respectively, while WSi ,

WXj and Wh are correlated Brownian motions. Nevertheless, in the following we
consider σX

j = 0 in order to have deterministic FX rates.
Next, let JPt be the investor’s default state at time t , i.e., JPt = 1 in case of default

before or at time t , otherwise JPt = 0. We use the notation VDt = VD(t, St , ht , J Pt )
for the derivative value at time t from the investor’s point of view in domestic
currency and V RF,Dt = V RF,D(t, St ) for the corresponding risk-free derivative
price, i.e, traded between two non-defaultable counterparties.

In order to price the derivative, we follow [11, 12] and consider a self-financing
portfolio % that hedges all the risk factors: the market risk due to changes in
S1, S2, . . . , SN , the investor’s spread risk due to changes in h, and the investor’s
default risk. Moreover, we assume the existence of a collateral account, denomi-
nated in currency C0, composed of a portfolio of bonds RC0 and cash MC0 . We
address the reader to [2] for further details.

No arbitrage arguments and the self-financing condition, jointly with the use of
Itô’s formula for jump-diffusion processes, lead to the following pricing PDE for a
European-like derivative with counterparty risk (see [2], for details):
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∂V D

∂t
+LShV D − f H,DV D + h

1 − RV
D

=
[
(rR + bD,C0 − f H,D)RC0 + (cD + bD,C0 − f H,D)MC0

]
XD,C0 , (4)

where LSh is the second order differential operator given by

LSh = 1

2

N∑

i,k=1

ρS
iSkσ S

i

σ S
k

SiSk
∂2

∂Si∂Sk
+ 1

2
(σh)2

∂2

∂h2

+
N∑

i=1

ρS
ihσ S

i

σ hSi
∂2

∂Si∂h
+

N∑

i=1

(ri − qi)Si ∂
∂Si

− κh

1 − R
∂

∂h
,

(5)

andVD is the variation of VD upon default defined asVD = RM++M−−VD ,
withM(t, St , ht ) representing the mark-to-market derivative price.

Two possible values forM are usually chosen [6]: either equal to the risky value
or to the risk-free value of the derivative. We chooseM = VD , so that (4) turns into

∂V D

∂t
+LShV D − fV D = (r̄RC0 + m̄MC0)XD,C0 + h(V D)+, (6)

where r̄ = rR + bD,C0 − f H,D , m̄ = cD + bD,C0 − f H,D and f = f H,D .
Next, we denote by U the XVA price, that can be computed as the difference

between the risky derivative value VD and the risk-free derivative value V RF,D . As
VD and V RF,D are both equal to the payoff at maturity T , we have U(T , S, h) = 0.

Considering that the risk-free price follows the multidimensional Black-Scholes
equation, from (6) we obtain the following nonlinear PDE for the XVA price [2]:

∂U

∂t
+LShU − fU = h(V RF,D + U)+ + (

r̄RC0 + m̄MC0
)
XD,C0 , (7)

jointly with the final condition U(T , S, h) = 0, where (t, S, h) ∈ [0, T ) ×
(0,+∞)N × (0,+∞). As an alternative, the choice M = V RF,D leads to a linear
model [2].

2 Formulation in Terms of Expectations

Since the spatial dimension of (7) increases with the number of currencies, the PDE
easily becomes high dimensional in space. Therefore, we propose in this section an
alternative expectation-based formulation. In this way, we overcome the so-called
curse of dimensionality, that affects most of the numerical approaches to solve PDE
problems. Thus, we use a Monte Carlo method to approximate expectations in a
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multidimensional framework, allowing to manage problems that involve more than
two stochastic factors.

In order to compute the values of U by using the Monte Carlo method, we apply
the nonlinear Feynman-Kac theorem [15], that relates the solution of nonlinear
PDEs with the solution of BSDEs. More precisely, Theorem 1.1 in [3] can be applied
to formulate (7) in terms of the following nonlinear integral equation:

U(t, S, h) = EQDt
[

−
∫ T

t

e−f (u−t)
(

hu

(
V RF,D(u, Su)+ U(u, Su, hu)

)+

+
(
r̄RC0

u + m̄MC0
u

)
XD,C0
u

)

du | St = S, ht = h
]

. (8)

Analogously to [12], the integrand in the first line of (8) corresponds to
CVA+FVA, while the integrand in the second line is related to CollVA and repo
adjustment.

In order to compute the XVA given at time t = 0, i.e. when the derivative
is priced, we numerically solve (8) with a fixed point method and a trapezoidal
quadrature formula. Thus, we start from U0 = 0 and recursively compute until
convergence:

U�+1(0, S, h) = EQD0

[

−
∫ T

0
e−f u

(

hu

(
V RF,D(u, Su)+ U�(u, Su, hu)

)+

+
(
r̄RC0

u + m̄MC0
u

)
XD,C0
u

)

du

∣
∣
∣
∣ S0 = S, h0 = h

]

.

3 Numerical Results

We now report some results obtained by using the Monte Carlo method for the
evaluation of different multi-asset options in the presence of XVA. In all the
examples we have considered constant FX rates and maturity T has been set to
6 months. The values of the parameters are specified in Table 1. Moreover, we have
used NP = 10,000 paths and NT = 1000 time steps. Other test cases are presented
in [2].

Table 1 Financial data

r1 = 0.30 r2 = 0.24 h0 = 0.20 ρS
1S2 = 0.15 RD0 = 15 f = 0.06

q1 = 0.24 q2 = 0.18 RC = 0.30 ρS
1h = 0.40 MD

0 = 15 r̄ = 0.01

σS
1 = 0.30 σS

2 = 0.20 κ = 0.01 ρS
2h = −0.20 m̄ = 0.02
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Fig. 1 Best-of-all call option. Price of the risky option (left) and total value adjustment (right)

Table 2 Best-of-all call option. Monte Carlo confidence intervals

S1,D = 10 S1,D = 14

S2,D h V D XVA VD XVA

12 0.10 [0.1200,0.1681] [−0.2401,−0.2394] [2.2464,2.3812] [−0.3591,−0.3542]
12 0.15 [0.1128,0.1609] [−0.2473,−0.2466] [2.1785,2.3133] [−0.4270,−0.4220]
12 0.20 [0.1055,0.1535] [−0.2547,−0.2539] [2.1089,2.2437] [−0.4967,−0.4916]
18 0.10 [3.1003,3.2270] [−0.4057,−0.3991] [3.9446,4.0757] [−0.4521,−0.4439]

18 0.15 [3.0087,3.1354] [−0.4974,−0.4907] [3.8293,3.9603] [−0.5674,−0.5591]

18 0.20 [2.9146,3.0413] [−0.5915,−0.5847] [3.7109,3.8420] [−0.6859,−0.6774]

In the first example we assume the default-free hedgerH buys, from a defaultable
counterparty C, a European best-of-all call option, the payoff of which is given by:

G(t, S1, S2) = max
(
(XD,C1S1 −K1)+, (XD,C2S2 −K2)+

)
, (9)

where S1 and S2 are two assets respectively written in currencies C1 and C2, and
K1, K2 are the strike values given in the domestic currency D. In our numerical
tests, we have chosen K1 = 12 and K2 = 15.

Figure 1 shows the risky option price and XVA, the latter being negative
because H asks the counterparty C for a reduction in the price since C may
default. Table 2, where the notation Si,D = XD,Ci Si has been used, shows Monte
Carlo 99% confidence intervals for option prices and XVA values for different
initial asset prices and investor’s credit spread values. Since the credit spread
represents the probability of C’s default, the XVA value becomes more negative
when increasing h.

In the second example we consider that the non-defaultable hedgerH buys, from
a defaultable counterparty C, a portfolio of N European put options denominated in
different currencies, so that the portfolio payoff function is given by:
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Table 3 Sum of put options. Monte Carlo confidence intervals and elapsed time

Assets V RF,D V D XVA Time (s)

2 [4.9927, 5.1547] [4.2446, 4.4104] [−0.7510,−0.7414] 1.0167

8 [18.7710,19.1090] [16.5670,16.9110] [−2.2186,−2.1827] 3.3562

32 [65.9540,66.4760] [58.7910,59.3200] [−7.2220,−7.0965] 16.530
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Fig. 2 Sum of put options. Price of the risky option (left) and total value adjustment (right)

G(t, S1, . . . , SN) =
N∑

i=1

(Ki −XD,Ci Si)+ , (10)

where Si (i = 1, . . . , N) are the prices of the underlying assets, respectively written
in currencies Ci , while Ki are the respective strike values in the domestic currency
D for each put option. Table 3 shows the Monte Carlo 99% confidence intervals
for the risk-free, risky and XVA prices for different numbers of underlying assets.
Moreover, the elapsed computational time is reported, thus showing a linear increase
with the number of assets (stochastic factors). The initial assets prices and the strike
values lie in the interval [10, 18].

Finally, we restrict our analysis to the case of the sum of two put options and
we set K1 = 20 and K2 = 25. Note that the XVA is negative because the buyer
of the derivative H will ask the counterparty C for a reduction in the price due to
the potential default of C. As shown in Fig. 2, the XVA becomes more negative
when the option is in the money, namely when the asset prices are lower, because
H would be more affected by C’s default, while the XVA approaches to zero if the
asset prices increase, so that the option becomes out of the money. Moreover, the
XVA becomes more negative when increasing the number of assets which increases
the payoff so that H is more affected by C’s default.
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4 Conclusions

With the aim of modelling the total value adjustment in a multi-currency setting, we
have extended our methodology [1]. Thus, we have stated a nonlinear model and
proposed a Monte Carlo method to compute the XVA, that overcomes the curse of
dimensionality. We show the suitable performance of the proposed methodology in
several examples with European options involving up to 32 underlying assets.
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A Multi-Level Monte-Carlo with FEM
for XVA in European Options

Graziana Colonna, Ana M. Ferreiro-Ferreiro, and Carlos Vázquez

Abstract Counterparty credit risk has been recently incorporated in the pricing of
financial derivatives by adding different adjustments, the set of which is referred
as XVA. In the case of European options to consider stochastic default intensities,
instead of constant ones, a three factor model arises. In this work, we have combined
a numerical method for solving PDEs with Monte Carlo based techniques, to solve
a new hybrid model for XVA pricing. In this way, instead of solving a three
dimensional PDEs problem we solve a one dimensional PDE, with two stochastic
coefficients coming from the stochastic intensities. More specifically, we propose
the use of a Multi-Level Monte Carlo method.

1 Introduction

After Credit Crisis in 2008, unexpected defaults of big companies increased the
relevance of counterparty risk in industry and academia. In derivative contracts,
counterparty risk refers to the possibility that a counterparty defaults while owing
money associated to the contract or while the mark-to-market value of the derivative
is positive for the other part of the contract. Many papers and books developed
techniques for the valuation of derivatives including counterparty risk by means of
valuation adjustments, the set of all of them being referred as total valued adjustment
and denoted by XVA. Some particular adjustments included in XVA are:
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• CVA: the cost of hedging counterparty credit risk;
• DVA: the adjustment to a derivative price due to the institution’s own default risk;
• FVA: the correction made to the derivative price to account for a funding

cost/benefit related to counterparty risk;
• KVA: the cost of holding regulatory capital associated to counterparty risk.

In order to compute the derivative value including the XVA or the price of the
XVA, three main approaches are considered in the literature: partial differential
equations (PDEs), backward stochastic differential equations (BSDEs) and formula-
tions in terms of expectations. In the PDEs based approach, the spatial dimension of
the time dependent PDE is equal to the number of underlying stochastic factors. In
many settings, like pricing basket options or interest rate derivatives depending on
a large number of forward or swap rates (LIBOR models), the required number of
stochastic factors to develop a realistic pricing implies a PDE with high dimension,
thus leading to the so called curse of dimensionality when numerical methods are
addressed. In the present work, in order to overcome the curse of dimensionality, we
aim to exploit the combination of Monte Carlo methods and the numerical solution
of PDEs with one spatial dimension following the ideas in [5].

2 Modelling with Constant Intensities

Following [3], we consider a derivative contract between two defaultable parties,
the hedger (H) and the investor (I). In order to obtain the value of the derivative
including counterparty risk, the authors consider a portfolio with four traded assets:

• PR: default risk-free, zero-coupon bond, with yield r;
• PH : default risky, zero-recovery, zero-coupon bond of party H, with yield rH ;
• P I : default risky, zero-recovery, zero-coupon bond of party I, with yield rI ;
• S: underlying asset with no default risk.

Different linear and nonlinear PDEs formulations of the pricing problem can be
obtained. The type of PDE depends on the choice of the so called mark to market
(MtM) close outs, which is the value of the derivative in case of default. More
precisely, let V̂t be the value of the derivative with counterparty risk (hereafter
referred as risky derivative), and let Vt be the value of the derivative without
counterparty risk (risk free derivative). Possible choices to model the MtM value
can be Mt = V̂t (i.e., equal to the risky derivative value) or Mt = Vt (i.e., equal to
the risk free derivative value). In any case, the value of the risky derivative in case
of default is:

• V̂t = M+(t, S)+ RIM−(t, S), if the investor I defaults first;
• V̂t = M−(t, S)+ RHM+(t, S), if the hedger H defaults first,
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RI ∈ [0, 1] and RH ∈ [0, 1] being the recovery rates of parties I and H ,
respectively.

By using dynamic hedging methodology and different versions of Ito lemma,
according to the choice ofM , two different PDEs arise.

– Non Linear PDE whenMt = V̂t :
{
∂t V̂ +AV̂ − rV̂ = (1 − RH)λH (V̂ )− + (1 − RI )λI (V̂ )+ + sF (V̂ )+,
V̂ (T , S) = H(S).

(1)
– Linear PDE whenMt = Vt :

{
∂t V̂ +AV̂ − (r + λH + λI )V̂ = −(RHλH + λI )V − − (RI λI + λH )V + + sF (V )+,
V̂ (T , S) = H(S),

(2)

where we use the differential operator A = 1
2σ

2S2 ∂2

∂S2 + rRS ∂
∂S

and the notation
x+ and x− for the positive and negative parts of x. Moreover, rR is the rate paid in
a repurchase agreement, sF is the funding cost, rF is the hedger funding rate, λH

and λI denote the constant intensities of default of hedger and investor, respectively.
The functionH is the pay-off of the derivative in terms of the underlying asset price
S.

If U denotes the XVA, then V̂ = V + U , where V is the price of the risk-free
derivative. For a European vanilla option, the Black-Scholes formula provides the
value of V . From (1) and (2), we obtain the corresponding PDEs for the XVA price.

– IfMt = V̂t then U satisfies the nonlinear PDE problem:

{
∂tU +AU − rU = (1 − RH )λH (V + U)− + (1 − RI )λI (V + U)+ + sF (V + U)+,
U(T , S) = 0;

(3)
– IfMt = Vt then U satisfies the linear PDE problem:

{
∂tU +AU − (r + λH + λI )U = (1 − RH )λH (V )− + (1 − RI )λI (V )+ + sF (V )+,
U(T , S) = 0,

(4)

Note that in the case of constant intensities of default, there is only one
stochastic factor St and the spatial dimension of the governing PDE is equal to
one. PDEs problems (3) and (4) for constant intensities have been numerically
solved in [1], where the method of characteristics (Semi-Lagrangian method) for
time discretization is combined with a finite element method (FEM) for the spatial
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discretization. Additionally, a fixed point iteration is applied to solve the nonlinear
PDE.

3 Hybrid Models for Stochastic Intensities

The main objective of the present work is the extension of the previous setting
with constant intensities of default to the case with stochastic intensities of default.
For this purpose, we pose a hybrid model with three stochastic factors, which is
governed by a PDE with two coefficients that are stochastic factors. This approach
avoids the alternative consideration of a PDE with three spatial variables, the
numerical solution of which is more computationally demanding. Thus, we pose the
following linear PDE with one spatial dimension and the two stochastic coefficients:

{
∂tU +AU − (r + λHt + λIt )U = (1 − RH)λHt (V )− + (1 − RI )λIt (V )+ + sF (V )+,
U(T , S) = 0,

where the stochastic default intensities satisfy the following SDEs:

dλIt = − kI

1 − RI λ
I
t dt+

σ I

1 − RI dW
I
t , dλHt = − kH

1 − RH λ
H
t dt+

σH

1 − RH dW
H
t ,

with σ I and σH being the volatilities of the intensities of default while kI and kH

are drift parameters.WI
t andWH

t are Brownian motions.

4 Numerical Methods for the Hybrid Model

A first possible naive approach to solve the hybrid model consists in using a crude
Monte Carlo (MC) to simulate the paths of the stochastic intensities at the discrete
times of the time discretization mesh used for the PDE numerical solution. This
method can be sketched as follows:

• Simulate N paths of λH and λI (i.e., λH,i and λI,i , i = 1, . . . , N.)
• Solve numerically the (linear or nonlinear) PDE for each path to obtain Ũi .
• Compute, as solution of the model, the expectation by using Monte Carlo with:

E[Ũ ] = 1

N

N∑

i=1

Ũi
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In the present work, we also aim to speed up the Monte Carlo convergence and
reduce the variance by using the Multi Level Monte Carlo (MLMC) method
presented in [4]. The main ideas of MLMC can be summarized as follows:

If we want to compute the expected value of a process Q = F(St ), where the
process satisfies dSt = a(St , t)dt + b(St , t)dWt and t ∈ [0, T ], we can write:

E[Q̂L] = E[Q̂0] +
L∑

l=1

E[Q̂l − Q̂l−1],

where L > 0 is a positive integer and Q̂l is an approximation ofQ, estimated on the
discretisation of the time interval with the time step hl = T

Ml , M being a positive

integer. Let Yl denote an approximation of E[Q̂l], then:

YL = Y0 +
L∑

l=1

Yl − Yl−1.

Therefore, each Yl is computed with the MC method, using Nl simulations.

5 Numerical Results

We consider an example with a European put option and we compare the case
of constant intensities (1-factor model) with a couple of cases with stochastic
intensities (2-factor and 3-factor models). We use a linear PDE model, which is
numerically solved with the method developed in [1] using a uniform spatial mesh
with 1000 nodes and a time step depending on the level in the MLMC method. As
MLMC parameters we consider L = 4 and M = 4, with Nl = 500 simulations per
level.

First, assuming that λI = 0 we compare the 1-factor and 2-factor models
corresponding to the cases λH constant and λH stochastic, respectively. The values
of the parameters are σ = 0.3, r = 0.04, λH0 = 0.04 (constant case and initial
intensity in stochastic case), RH = 0.4, RI = 0.3, kH ∈ {0.1, 0.3, 0.5, 0.7},
σH = 0.2, the strike K = 2 and the maturity T = 0.5. The PDE variables are
t ∈ [0, T ] and S ∈ [0, 3]. Next, we compare the 1-factor and 3-factor models,
where we additionally consider a stochastic λI , with parameters λI0 = 0.04,
kI ∈ {0.1, 0.3, 0.5, 0.7} and σ I = 0.2.

In Fig. 1 we show the XVA prices of 1-factor versus 2-factor (left) models and
of 1-factor versus 3-factor models (right), illustrating that differences increase for
small values of the underlying asset and for larger values of drift coefficients in
the stochastic equations governing intensities of default. The XVA is negative as it
represents the decrease in the risk free put value due to the probability of default. For
small values of the asset, the put option is in the money and one counterparty will be
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Fig. 2 Comparison of errors in crude Monte Carlo (MC) and Multi Level Monte Carlo (MLMC)

interested in exercising so he/she will be (more) exposed to the other counterparty
default. As the exposure has a more negative impact on the put option value for
smaller asset values, the XVA becomes more negative and more sensitive to the
variation of the drifts of the stochastic intensities of default.

Finally, by using as reference solution the one obtained with MLMC with
parameters L = 5, Nl = 2000, we compare the crude MC and the MLMC for the
3-factors hybrid model. Figure 2 shows the maximum error with respect to time step
(left) and computational times (right), clearly illustrating the advantages of MLMC.

6 Conclusions

A hybrid model has been proposed for the case of stochastic intensities of default
involving three factors in the evaluation of XVA. The hybrid approach allows to
consider PDEs with one spatial dimension and two stochastic coefficients, thus



Multi-Level Monte-Carlo FEM for XVA 327

avoiding the solution for PDEs with three spatial dimensions. Multi Level Monte
Carlo speeds up the convergences with respect to the use of a crude Monte Carlo
numerical methodology. Numerical results illustrate the effect of considering more
realistic stochastic intensities of default with respect to constant ones. More details,
specially about the numerical examples and their discussion, will appear in [2].
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Estimation of Cable Bundle Stiffness
Based on Gaussian Process Regression

Lilli Burger, Vanessa Dörlich, Michael Burger, Joachim Linn,
and Fabio Schneider

Abstract In modern cars, a huge number of different cables can be found, they
are typically combined in hoses and bundles in various different ways. For virtual
product development and simulation-based design, it is necessary to know the
characteristic physical parameters, like the effective bending or torsion stiffness,
of these cable systems. In early stages of the development process as well as for
highly customized individual cable configurations, measuring effective stiffness
properties is, however, often very challenging. In this contribution, we show results
from our current research activities aiming at data-based modeling and estimating
effective stiffness parameters for cable bundles. On the basis of an available data
set consisting of measured stiffness values for varying cable bundles, the overall
goal is to identify a model out of this data, that predicts bundle stiffness values with
bundle characteristics as inputs that can be specified without complex measurement
efforts. We outline our approach to solve this nonlinear identification task with
Gaussian Process (GP) regression. Besides a short introduction to the industrial
application area, we demonstrate and illustrate the applicability and prediction
quality of Gaussian process regression for this task.

1 Introduction

In modern cars, a huge number of different cables can be found, often combined
in cable systems such as bundles or wiring harnesses in various different ways.
For virtual product development and simulation-based design, it is necessary to
know the characteristic physical parameters, mainly the effective bending or torsion
stiffness, of these cable systems. In principle, measuring the effective stiffness
values for all cables and assembled cable bundles is possible. However, especially in
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early stages of the development process, those measurements are challenging, they
might be impractical (due to time and costs) or merely impossible, for instance due
to the lack of physical prototypes.

In this contribution, we show results from our current research activities aiming at
data based modeling and estimating effective stiffness parameters for cable bundles.
On the basis of an available data set consisting of measured stiffness values for
varying cable bundles, the overall goal is to identify a model out of this data,
that predicts bundle stiffness values with bundle characteristics as inputs that can
be specified efficiently without complex measurement efforts. An overview of all
available data is given in Sect. 1.2.

We outline our approach to solve this nonlinear identification task with Gaussian
Process, which is introduced in Sect. 2 briefly. In Sect. 3, the applicability of
Gaussian process regression for this task is illustrated and the performance of this
approach in terms of prediction results for different cable bundle types is discussed.

1.1 Simulation of Cable Bundles and Hoses

The demand for software tools that allow a physically correct simulation of slender
flexible structures, e.g., cables, cable bundles or hoses, has increased over the last
years, especially in automotive industry. A proper framework for modelling of such
flexible slender structures is given by the Cosserat rod theory [1], whose geometri-
cally exact kinematics leads to a correct treatment of large rod deformations. The
software tool IPS Cable Simulation makes use of a discretised geometrically exact
rod model [2] enabling a physically correct handling of flexible slender structures
in real-time [3, 4]. In this contribution, we focus on the mechanical parameters
necessary for modelling the deformations of cable systems, such as single cables
and cable bundles. The essential model parameters are the stiffnesses, which give a
relation between the deformation measure (e.g. curvature) and the sectional quantity
(e.g. moment). A linear elastic constitutive law is assumed, which has proven to be
suitable for most practical applications, thus, constant effective stiffness values are
sufficient. The deformation modes of main interest are bending and torsion [5]. We
restrict our work to an estimation of the bending stiffness (EI)b of cable bundles,
which is assumed to be decoupled from torsional deformation.

1.2 Measurement Campaign

The data required for the estimation process described in the following sections is
generated using the MeSOMICS (Measurement System for the Optically Monitored
Identification of Cable Stiffnesses) system [6]. It is specifically designed for the
measurement of bending and torsional stiffnesses of flexible slender structures,
such as cable systems. MeSOMICS uses a bending setup allowing for large



Estimation of Cable Bundle Stiffness Based on Gaussian Process Regression 331

Fig. 1 Examples of different types of bundles with different taping patterns: partly, half and fully,
from left to right. The single cables are arranged in layers or randomly (right)

deformations of the specimen and an automated evaluation procedure which enables
the generation of a comparatively large database within this work.

The database consists in total of 537 datasets including measurement data of
cable bundles and single cables which have been used to assemble the bundles.
Aiming at closed packed cross sections to ensure reproducibility, the cables in the
bundles are arranged in a regular manner in concentric layers. The database includes
measurement data for bundles consisting of one, two or three different types of base
cables. In order to reach a high variety, the base cable diameters and types as well as
the layer setup are changed systematically, see Fig. 1. For each bundle composition,
a textile taping is applied in three different patterns, denoted with partly, half and
fully in this work.

2 Gaussian Process Regression

Let D = {(X, y)} be the considered database with input X = (x1, . . . , xN)
T ∈

R
N×d consisting of d different measurement values, xi = (x

(1)
i , . . . , x

(d)
i )T , at N

measurement points, and corresponding outputs y = (y1, . . . , yN)
T .

We assume that there is a mapping f between inputs and outputs. Moreover, we
assume independent and normally distributed uncertainty ε with standard deviation
σ 2
n in the observed data (e.g. due to measurement errors):

yi = f (xi)+ ε, ε ∼ N(0, σ 2
n ). (1)

The central task is to choose a model (family) for the mapping f , to train a
specific model f based on the observed data D and finally use that model for
predicting an output y∗ for a suitably chosen (new) input x∗ such that y∗ = f (x∗).
In our approach, we use a stochastic framework, in order to solve this model
identification task and, in particular, we choose Gaussian processes (GPs) with mean
function m and covariance function k as model structure for the mapping f to be
identified,
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f ∼ GP(m, k). (2)

A Gaussian process is a collection of random variables, for which any finite
subset is assumed to have a joint (multivariate) Gaussian distribution. A more
detailed discussion of Gaussian processes, especially in the context of machine
learning applications, can be found in [7].

In order to specify a GP, f ∼ GP(m, k), we have to choose the mean function
m and covariance/kernel function k. After that, the key step to understand, how the
GP is used for modelling f and for prediction, is to consider the joint distribution
of the observed target values y and a requested function value y∗, which is assumed
to be Gaussian as well:

(
y

y∗

)

∼ N
((

MX

m(x∗)

)

,

(
K+ σ 2

n I K∗
KT∗ K∗∗

))

, (3)

with mean vector Mx = [m(x1), . . . , m(xN)]T and a covariance matrix
consisting of K∗∗ = k(x∗, x∗), K∗ = [k(x∗, x1), . . . , k(x∗, xN)]T and

K =
⎛

⎜
⎝

k(x1, x1) . . . k(x1, xN)
...

. . .
...

k(xN , x1) . . . k(xN , xN)

⎞

⎟
⎠.

Recall that the quantity of interest is y∗ as response to x∗ (prediction) in the
described stochastic framework with a GP, f ∼ GP(m, k), as model structure.
We consider, consequently, the conditional distribution p(y∗|x∗,D) to derive
information about y∗, given x∗ and the observed database. According to Eq. (3),
this conditional distribution is Gaussian, too, and it is given by

p(y∗|x∗,D) = N(m(x∗)+K∗(K+ σ 2
n I )

−1(y −MX),K∗∗

−K∗(K+ σ 2
n I )

−1KT∗ ).
(4)

Thus, using GPs in this way allows to derive a predictive distribution rather than just
a point estimate. That is, besides a point estimate, which is, e.g., the mean value of
the predictive distribution (4), the prediction automatically provides an uncertainty
quantification in terms of the underlying assumed variance.

A Gaussian Process (2) is characterized by its mean functionm and its covariance
function k, also referred to as kernels [8]. Very often, it is assumed that the GP
has zero mean [9], in our application, however, it has shown to be preferable
to choose a non-zero mean function, see Sect. 3.1. A generic overview about the
mean and covariance functions as well as examples of commonly-used functions is
given in [7]. The covariance function describes similarity or nearness between data
points on input level. One of the most common covariance functions is the squared
exponential covariance function k(x, x′) = exp(−0.5|x − x′|2). This example
illustrates how similarity can be interpreted in this case, as k(x, x′) is almost equal
to one for inputs x and x′ very near to each other and decreases with their distance
growing.
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3 Prediction of Cable Bundle Stiffness Using GP Regression

3.1 Model Setup

We consider one GP per taping option and subdivide the measured data set into a
training dataset, consisting of 80% of all available data, and a test dataset, which are
the remaining 20% of all data. This results in 134 (partly taped), 131 (half taped),
133 (fully taped) training data points and 34, 33, 33 test data points.

We choose parameters for the single base cables and the bundle itself as well as a
nonlinear combination of some of these parameters as predictors and combine them
in an input vector x = [∑c(EI)c,

∑
c ρc,

∑
c rc, rb,

∑
c ρc ·

∑
c rc/ac], with (EI)c:

base cable effective bending stiffness, ρc: base cable length density, rc: base cable
radius, ac: number of cables in the bundle and rb: bundle radius.

The model output is the effective bundle stiffness, y = (EI)b. We use a rational
quadratic covariance function,

k(xi, xj ) = σ 2
f

(
1 + r2

2αl2

)
, r := ∥

∥xi − xj
∥
∥

2, (5)

which is besides the squared exponential covariance function one of the commonly
used kernels. The rational quadratic kernel function family includes the squared
exponential as limit for α → ∞ [7]. A systematic analysis of different kernel
functions has revealed the rational quadratic to be well suited for our database and
use case. Furthermore, our analysis has shown that the quadratic mean function

m(x) = h(x)T β,h(x) :=
[
1, x(1), . . . , x(d),

(
x(1)

)2
, . . . ,

(
x(d)

)2
]T
, (6)

with parameter vector β = [β1, . . . , β2d+1]T is a good choice in this scenario.
After specifying the form of the mean and covariance function, a set of hyper

parameters θ = [βT , α, l, σ 2
f , . . . ]—containing among others the parameter vector

β of the mean function and the parameters of the covariance function—have to be
derived. This can be done in a Bayesian framework by maximizing an appropriate
posterior distribution for the given dataset D. With the additional assumption that
the prior distribution of the hyper parameters is approximately constant, i.e., in fact,
no prior information, one can obtain a suitable θ by maximizing the log-likelihood
p(y|X, θ) (e.g., with a standard gradient ascent method). Again, due to the fact
that only Gaussian distributions are involved, that log-likelihood can be derived
analytically, see [7].
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3.2 Prediction Results

With all assumptions and definitions described in Sect. 3.1 we train a model for each
taping option and predict the effective cable bundle stiffness with the trained model.
In the following, we differentiate between results for all data points (training and
test data) and test data only, which gives us the proper prediction quality. We know
from simulation studies, that a bundle stiffness deviation of ±50% still leads to
sufficient results concerning many applications like, e.g., layout geometry. Thus, we
look at the relative prediction error, erel = ((EI)pred

b −(EI)meas
b )((EI)eas

b )
−1, of the

effective bending stiffness to assess the prediction quality. To quantify the prediction
error more precisely, we consider histograms, which show the ratio of predicted
bundle stiffness compared to all data points with a specific relative prediction error.
In Fig. 2, such a histogram is depicted for half taped bundles. On the x-axis, the
relative error erel is shown and the bars show the percentage of the predicted bundle
stiffness with the according prediction error.

In Table 1, results for all taping options are summarized, subdivided into datasets
all and test and error ranges ±50% and ±20%. It can be observed that, for all taping
options, most of the predicted test data (more than 90%) lie within an error range
of ±50%, which can be seen as a very good quality. Moreover, considering higher
accuracy requirements, we still reach good results. For half taped bundles, 75% of
the predicted (EI)b have a relative error less than ±20% and for fully taped bundles,
still more than half of all test predictions (57.6%).

Fig. 2 Histogram of relative prediction error for half taped bundles for all data points (blue) and
for test data (orange)
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Table 1 Results—ratio of predicted (EI)b with two different error bounds

All data Test data

Bundle type |erel | ≤ 0.5 |erel | ≤ 0.2 |erel | ≤ 0.5 |erel | ≤ 0.2

Partly 98.2% 90.4% 91.2% 64.7%

Half 99.4% 91.4% 96.9% 75%

Fully 97.5% 85.7% 90.9% 57.6%
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Modeling and Simulation of Pedestrian
Interaction with Moving Obstacles Using
Particle Method

Parveena Shamim Abdul Salam, Sudarshan Tiwari, and Axel Klar

Abstract Modeling and simulation of pedestrian motion has been an important
topic of research in recent years. In this work, we try to understand the dynamics in
a shared space of pedestrians and moving obstacles. We consider a social force
model coupled with an eikonal equation for pedestrian motion and appropriate
kinematic equations for the obstacle motion. Firstly, we attempt to understand
how the pedestrians avoid collisions with a passive obstacle. Later we analyze the
interaction of pedestrians with a dynamic obstacle having a feedback interaction
modeled via a repulsive potential. The hydrodynamic equations are solved using
a mesh-free particle method, and the eikonal equation using the fast-marching
method. The results reveal the collision avoidance strategies used which are in
confirmation with existing studies. The model provides a framework to study
pedestrian-vehicular traffic interactions and possibly interactions with automated
vehicles in future studies.

1 Introduction

Pedestrian or crowd dynamics has been studied via varied modeling approaches,
from microscopic to macroscopic scales. One of the most successful microscopic
scale approaches was by modeling pedestrian motion through social or behavioural
forces, see [8], which gave insights on self-organisation and collective behaviour
of pedestrians like lane formation and bottlenecks. Other agent-based models have
also been developed in this scale, for example, in [4]. Macroscopic modeling of the
crowd using fluid dynamic equations was introduced by Henderson in [10]. Hughes,
followed by others, developed this further via the idea of a potential function in the
domain to incorporate more geometric information, see [6, 12]. More macroscopic
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models are seen in [5, 14]. Elaborate reviews of the different models along with a
discussion of their advantages and limitations can be found in [1, 9].

In a social environment, humans encounter stationary or moving obstacles while
maneuvering various spaces to reach their destinations. Different voluntary and
involuntary strategies are used by humans to avoid collisions in such scenarios.
An understanding of when and whether a collision will occur is essential, see [3].
This information forms the basis of collision avoidance models, as seen in [2].
Extensive research on pedestrian interactions with moving obstacles is still limited.
In this work, we propose a model to study such interactions in shared spaces. The
macroscopic model for pedestrian motion is combined with the proposed kinematic
equations of obstacle motion wherein the feedback force terms are modeled via
Hughes approach of potential functions obtained through an eikonal equation. For
the numerical solutions, an immersed boundary approach is used along with the
mesh-free particle method, as seen in [5]. In Sect. 2, we describe the models for
pedestrian and obstacle motion. Sect. 3 explains the numerical method briefly. In
Sect. 4, we see some results of the numerical simulation for different cases.

2 Models

2.1 Hydrodynamic Model for Pedestrian Motion

The model for pedestrian motion considered is as developed in [5], combining a
social force model [8] to a Hughes-type model [12]. The hydrodynamic model
equations for the evolution of density ρ and velocity u are:

∂tρ + ∇x.(ρu) = 0 ,

∂tu+ (u.∇x)u = G(x, u, ρ)+
∫
F(x − y, u(x)− u(y)) ρ(y) dy . (1)

These are coupled to the eikonal equation: f (ρ(x)) ||∇φ|| = 1 , x ∈ �. The force
terms in (1), G and F , called the desired acceleration term and the interaction force
term, respectively, are defined as:

G(x, v, ρ) = 1

T

(

−f (ρ) ∇φ(x)
||∇φ(x)|| − v

)

, F (x, v) = −∇xU , (2)

where the potential U with repulsive strength Cr and length scale lr is given by,

U = Cr exp
(
−|x−y|

lr

)
. We note that a more general F with dependence on both

x and v can be used instead of ∇xU in (2). The velocity-density relation used is
f (ρ(x)) = umax(1 − ρ(x)/ρmax), where umax and ρmax are the maximum velocity
and density. We refer to [5] for more details.
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2.2 Model for Obstacle Motion

The obstacle motion is governed by kinematic equations for position and velocity.

The passive obstacles follow a fixed trajectory defined by the equation: dxO

dt
=

(vOx , v
O
y ) with vOx = −α and vOy = Acos(ωt) where α is a positive constant for left

moving obstacle and A is the amplitude and ω the frequency of oscillatory motion
of the obstacle.

The equations for the dynamic obstacle, which interacts with the pedestrians and
changes its trajectory or speed, following the convention in pedestrian model, are:

dxOi

dt
= vOi ,

dvOi

dt
=

∑

j∈Np
FO(x

O
i − xj , vOi − vj )+GO(xOi , vOi , ρi) , (3)

which are coupled to the obstacle’s eikonal equation, fO(ρ(x)) ||∇φO || = 1 , x ∈
�. Here, xOi and vOi are the position and velocity of the mid-point of the leading
edge of the ith obstacle and ρi is evaluated at xOi by interpolating the density of
pedestrians. xj and vj are position and velocity of j th neighbour in the list Np of
pedestrians in a circle of radius R centered at xOi . Also, we define FO , GO and fO
similar to F , G and f as above.

3 Numerical Method

The model equations for pedestrians and obstacle(s) are solved using a mesh-
free particle method using least square approximations, see [17]. For this, the
hydrodynamic equations in (1) are rewritten in a Lagrangian form as:

dxi

dt
= ui , dρi

dt
= −ρi ∇x.ui ,

dui

dt
= G(xi, ui, δ & ρ) +

∑

j

F (xi − xj , ui − uj ) ρj dVj , (4)

where dVj is the local area around a neighbouring particle. The kinematic equations
of the obstacle(s) in (3) and eikonal equations are coupled to (4) to solve the system
completely. An explicit Euler time discretization scheme is used for solving the
systems (3) and (4).

The Lagrangian equations are solved on a mesh-free cloud of particles. Fur-
thermore, to solve the eikonal equation, we use an independent structured or
unstructured grid on the domain of interest. Information is exchanged between
the mesh-free grid and the eikonal grid via interpolation techniques. The eikonal
equation is solved by a fast marching method [13, 15]. The boundary conditions of
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the eikonal equation contain information about the environment, like the position of
walls or obstacles. A moving obstacle is treated like an immersed boundary in the
eikonal grid, with activation-deactivation of grid points according to the position of
the obstacle.

4 Results

Using the numerical method described, we solved the above model equations to
analyze the collision-avoidance behaviour of pedestrians and moving passive or
dynamic obstacles. We consider a two-dimensional domain of length 100 units and
width 50 units for our numerical simulations. The pedestrians are located at the left
end of the domain. The right and left boundaries act as exits for the pedestrians and
obstacle(s), respectively. Initial pedestrian density is taken as ρ = 1 ped/m2. A fixed
time step of 0.002 is used for the explicit time integration scheme.

4.1 Case 1: Passive Obstacle

Passive moving obstacles do not have a feedback interaction with the pedestrians
and follow pre-defined trajectory. We considered two different scenarios, pure
translation and translation combined with oscillation, and compared with the case of
a stationary obstacle. The left and middle subfigures in Fig. 1 show the case where
a pedestrian group interacts with a passive obstacle in translation. We observed that
when pedestrians interact with a passive obstacle(s), they adjust their path to avoid
collision with the obstacle. The path adjustment is made well in advance than the
time instance of a head-on collision, using the information available via the eikonal
solution. The presence of a moving obstacle slows down the pedestrians, in terms
of the time taken to navigate the domain, when compared to their behaviour in the
presence of a static obstacle. This implies that the pedestrians exit the domain faster
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Fig. 1 Pedestrian interaction with a passive moving obstacle shown as red rectangle at time
t = 10 s (left) and t = 20 s (middle). (Right) Number of pedestrians-time graph for the three
different cases - stationary obstacle, passive obstacle in translation, passive obstacle in translation
and oscillation
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Fig. 2 Pedestrian interaction with a dynamic moving obstacle (red rectangle) at time t = 5 s
(left), t = 20 s (middle) and t = 30 s (right). Note that the green markers denote the Lagrangian
mesh-free grid points and not the physical pedestrians

in the presence of a stationary obstacle and hence the total density of pedestrians
in the domain decreases faster with time as seen in the density-time plot in Fig. 1.
This is expected as they have to adjust their path and speed continuously to move
forward.

4.2 Case 2: Dynamic Obstacle

In the case of a dynamic moving obstacle, both the obstacle and pedestrians actively
try to avoid collisions with each other since there is a feedback interaction via
the force terms (cf. (1) and (3)). Figure 2 shows a scenario wherein a group
of pedestrians interact with a dynamic obstacle. We observe that, though the
pedestrians and obstacle(s) undergo path and speed changes, the collision avoidance
mechanism is primarily via change of path by pedestrians and change of speed
by obstacle(s). Owing to the two-way interactions here, in comparison to one way
interaction in the case of passive obstacle, the changes in trajectory of pedestrians is
more smoother, continuous and less abrupt. This leads to lesser tendency of having
high density of pedestrian crowd near the corners of the leading edge of the obstacle.

5 Conclusion

We have successfully coupled a hydrodynamic model for pedestrian motion with
simple kinematic equations for moving obstacles via eikonal equations. Our model
satisfactorily replicates the collision-avoidance patterns observed in experimental
scenarios like in [11]. But being a macroscopic model, only moderate to high-
density scenarios can be studied and it is not possible to analyze microscopic
behavioural patterns. We can further study the path and speed changes observed
and make quantitative comparisons with other data, for example in [7, 16]. Also,
exhaustive studies by changing the size or shape of the obstacle and of the domain
can be conducted. We note here that the numerical method used is particularly
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efficient to employ in complex environments and changes in geometries. For
more accurate results, parameters need to be estimated from experimental or real
data. Moreover, an extension of the given model to pedestrian-vehicular traffic
interactions will be presented in a more elaborate future publication.
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An Anisotropic Interaction Model for
Pedestrian Dynamics with Body Size

Zhomart Turarov

Abstract We propose an extension of the anisotropic interaction model introduced
in Totzeck (Kinetic Relat Models, 13(6):1219–1242, 2020) that incorporates the
body size of the agents. The rotation of the interaction forces leads to pattern
formation. We study the influence of body size on these patterns with the help of
numerical simulations.

1 Introduction

The collective behavior of people involving complex mathematical models began
relatively recently. Here, the work of the pioneer in this field, Dirk Helbing, is
worth mentioning [5, 6, 8]. His work was based on the idea of applying molecular
dynamics techniques to crowds [5]. Based on Helbing’s model, and looking at
different aspects of possible complications of the interaction terms a number of
other models have been built, e.g. [7, 12].

Agent-based models can be used in a variety of fields, including transportation
stream modeling, epidemiology, sociology, biology, and more [1]. For instance, to
describe the swarming of birds, schools of fish, crowd behavior, herd movements,
etc. At the same time, it is interesting to study human behavior using agent-
based models under various environmental cases. In the work [11], an anisotropic
interaction model with collision avoidance is introduced. We extend the model in
[11] incorporating body size into pairwise interaction of agents.

This model has been chosen for implementation due to its continuous, multi-
agent nature and the ability to vary the accuracy depending on the chosen numerical
method. We also can easily select and change the type of interacting forces. To
express a behavior aimed at avoiding a collision, we improved the model so that the
force vector of pairwise interacting agents rotates.
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The model demonstrates several natural behavioral phenomena of pedestrians in
motion: move at an individual speed and keep a certain distance from each other [6].
The distance depends on pedestrian density and speed. In evacuation or emergency
scenarios, agents push each other and ignore collisions with other pedestrians [9].

In this paper, we represent an experiment involving the bi-directional movement
of pedestrians in a corridor. In the following section, we introduce the model. Then,
we illustrate the influence of body size on the self-organization of agents in the
presented domain.

2 Model

We consider a second order equation of motion with N ∈ N agents. Their positions
and velocities are denoted by xi : [0, T ] → R

2 and vi : [0, T ] → R
2, i =

1, . . . , N. Moreover, the agents are assumed to have a body diameter d > 0. This
leads to the following interaction dynamics

d

dt
xi = vi, (1a)

d

dt
vi = τ (wi − vi)− 1

N

∑

j �=i
M
(
vi, vj

)
K
(
d, xi, xj , vi, vj

)
(1b)

supplemented with the initial conditions xi(0) = x0, vi(0) = v0, i = 1, ..., N ,
where K

(
d, xi, xj , vi, vj

) : RD × R
D × R

D × R
D → R

D is a pairwise interac-
tion force between the agents i and j . The rotation matrix M

(
vi, vj

)
changes the

direction of the interaction force. Applying rotation we get an anisotropic interaction
model from the isotropic motion of multi-agent system. The details of the rotation
matrix read

M
(
vi , vj

) =
(

cosαij − sinαij
sinαij cosαij

)

, αij =
⎧
⎨

⎩

λ arccos
vi ·vj

‖vi‖
∥
∥vj

∥
∥ , if vi �= 0, vj �= 0,

0, else
.

(2)

In addition, the model includes a relaxation parameter τ > 0 which controls
the adaption of the current velocity vi towards the given desired velocity wi . The
rotation of the force vectors induced by the matrix M models a collision avoidance
behaviour of the agents. The direction of the collision avoidance is controlled by the
sign of the parameter λ. For λ > 0 agents move to the right to avoid a collision, for
λ < 0 the movement is directed to the left. See [11] for further details.

The motion of an agent in the model is described by the sum of the forces
acting on the agent. By solving the resulting system of differential equations, we
can calculate the position and velocity of the agents at any time.
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An obstacle can be easily incorporated. For example, the obstacle can be
implemented with the help of artificial agents with fixed, predefined positions and
artificial velocity vectors pointing outward in the normal vector direction.

2.1 Influence of the Body Size

We extend the collision avoidance model proposed in [11] by introducing an average
body size d > 0. In more details, we consider the interaction potential

U(d, |xi − xj |) = R · e
d−‖xi−xj‖

r − A · e
d−‖xi−xj‖

a ,

leading to the forces K given by

K(d, |xi − xj |) =
(
A

a
· e

d−‖xi−xj‖
a − R

r
· e

d−‖xi−xj‖
r

)

· xi − xj∥
∥xi − xj

∥
∥ , (3)

where A and R are attraction and repulsion strength, a and r are attraction and
repulsion potential ranges.

In the following section, we provide some numerical results that show the
influence of the body size on lane formation in the corridor.

3 Numerical Scheme

The initial positions are drawn randomly with uniform distribution in the domain
and initial velocities set fixed regarding their direction of motion. Then we solve (1)
with a variant of the leap frog scheme [11]. The relaxation terms are solved
implicitly and the interaction is solved explicitly as given by

xk
′
i = xki +

Δt

2
vki , vk

′
i = (vki +Δt · wi)/(1 +Δt),

vk+1
i

= vk
′
i +Δt · 1

N

∑

j �=i
M(vk

′
i , v

k
′
j ) ·K(xk

′
i , x

k
′
j ), xk+1

i
= xk

′
i + Δt

2
vk+1
i

,

(4)

where i = 1, . . . , N, and Δt denotes the step size of the time discretization.
The experiment simulates the movement of two oncoming streams of pedestrians

along a spacious corridor. The group of blue agents moves form left to right with
desired velocity wblue = (0.7, 0)T , whereas the red group of agents moves from
right to left with desired velocity wred = (−0.7, 0)T . We consider Nblue blue
and Nred red agents. Hence, the total number of pedestrians in the corridor is
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Fig. 1 Initial positions and initial velocity vectors of the agents N = 80, Nblue = 40, Nred = 40,
d = 0.2

N = Nblue +Nred. The initial positions of the pedestrians xi(0) = x0, i = 1 . . . N
and their initial velocity vectors vi(0) = v0, i = 1 . . . N are presented in Fig. 1.

To assure that the pedestrians do not leave the scenario, we add reflective and
periodic boundary conditions. In the corridor case the black lines (top and bottom)
in Fig. 1 show reflective boundaries. We model the avoidance of wall contact, by
reflecting the velocity vector of an agent that would step outside of the domain in
the next time step. The light blue lines illustrate periodic boundaries. Blue agents
leaving the domain at the boundary on the right, enter again from the left side of the
domain. Analogously for the red agents.

3.1 Numerical Study for Different Body Sizes

To analyze the simulation results for different body sizes, we fix values for the force
parameters and desired velocities of each pedestrian. The parameters are chosen to
satisfy the stability ranges of the interaction force discussed in [4]. In fact, in the
range R/A > 1 and r/a < 1 the interaction force K is repulsive in a short-range,
and attractive in a long-range. That allows the distance between pedestrians to be
maintained.

Figure 2 shows simulation results of the corridor scenario for different body
sizes. The simulation results show, that the formation of lanes in a channel can
be reproduced with the help of the rotation anisotropy [11]. The results indicate a
relation between the body size and the number of lanes formed. The smaller the
body size, the more lanes are obtained. The parameters used for the simulation are
reported in the caption of the figure.

In all simulations, we see the formation of so-called traffic lanes. This formation
is independent of the choice of the random initial positions and velocities. It is
interesting to note that even though every pedestrian is guided by simple rules for
movement and interaction, a phenomenon arises that goes beyond the behavior of
single pedestrians. Such phenomena of self-organization are manifested in many
multi-agent systems [2, 6, 8]. It was reported in many articles concerning the
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Fig. 2 Simulation results in the corridor by different body size of pedestrians at time T = 35. On
each simulation we fix parameters: A = 5, R = 20, a = 2, r = 0.5, λ = 0.25. Desired velocities
for red and blue agents are wred = (−0.7, 0)T and wblue = (0.7, 0)T respectively. Time step in the
Leap-Frog Scheme is Δt = 0.00625

Fig. 3 Simulation results in the corridor by different force parameters at time T = 35. On each
simulation body diameter of the agents are fixed: d = 0.5. Time step in the Leap-Frog Scheme is
Δt = 0.00625

movement of pedestrian flows [10, 13], which speaks in favor of the correctness
of the proposed model.

It should be mentioned that not only the body size can influence to the number
of lanes. In fact, as we can see in Fig. 3 the choice of the corridor width, the number
of agents, and attraction and repulsion force parameters can change the formation
of lanes as well.
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In the future work pattern formation in different scenarios, such as pedestrian
flow in crossroads, will be investigated. Besides, based on the data archive of
pedestrian dynamics [3], it is possible to calibrate model parameters using an
optimal control approach. We create cost functional that minimizes the distance
between real and simulated data. With this we get an optimization problem subject to
state system (1). It will be interesting to see how well real data can be approximated
with the anisotropic model.
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Quantitative Characterization of
Ductility for Fractographic Analysis

Laury-Hann Brassart, Samy Blusseau, François Willot, Francesco Delloro,
Gilles Rolland, Jacques Besson, Anne-Françoise Gourgues-Lorenzon,
and Michel Jeandin

Abstract We develop a machine-learning image segmentation pipeline that detects
ductile (as opposed to brittle) fracture in fractography images. To demonstrate the
validity of our approach, use is made of a set of fractography images representing
fracture surfaces from cold-spray deposits. The coatings have been subjected to
varying heat treatments in an effort to improve their mechanical properties. These
treatments yield markedly different microstructures and result in a wide range of
mechanical properties that combine brittle and ductile fracture once the materials
undergo rupture. To detect regions of ductile fracture, we propose a simple machine
learning network based on a 32-layers U-Net framework and trained on a set
of small image patches. These regions most often contain small dimples and
differ by the surface roughness. Overall, the machine-learning method shows good
predictive capabilities when compared to segmentation by a human expert. Finally,
we highlight other possible applications and improvements of the proposed method.
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1 Introduction

Our ability to quantify the mechanical properties and inner microstructures of
materials is based on mechanical testing and models, and commonly requires
imaging techniques and analysis [1, 2]. To account for the complex load redis-
tribution of stress within a material, up to crack or pore nucleation, statistical
and microstructural aspects are essential [3]. In turn, to perform damage-design,
versatile and robust image analysis methods must be developed to quantify and
characterize microstructures [4, 5]. The present work is motivated by our need
to assess and understand the mechanical response, up to rupture, of certain
coatings obtained by cold-spray techniques. Cold-spray deposits generally do not
present, in their initial state, satisfying mechanical properties in that respect.
Nevertheless, recently-developed techniques that involve heat-treatments allow
for microstructural softening [6]. Although these methods have shown promising
results, optimizing on the parameters of the thermal treatments requires some level
of automatization, as well as sophisticated image analysis to separate (“segment”)
brittle from ductile fracture regions. A related problem, that of image classification
based on failure modes, has been addressed in [7] and [8], using both classical
convolutional layers for texture analysis and a modified method based on the
adaptive wavelet transform. The present study addresses the problem of image
segmentation rather than classification. We make use of a set of fractography images
of cold-spray coatings studied in [6] that show both brittle and ductile modes of
failure, thus providing an ideal application to the segmentation problem. This short
article is divided in three main sections. The material and fractography images are
described in Sect. 2. Sections 3 and 4 address the deep-learning architecture and
training, and our results. We conclude in Sect. 5.

2 Cold-Spray Deposits and Fracture Surface Images

This work is based on cold-spray projections of 316L-stainless steel from the
company “Impact Innovation”. Three thermal treatments in a MF7 furnace under air
environment, at 600, 800 and 1000 ◦C are performed, resulting in different coatings.
Fracture surfaces for each sample subjected to a three-points bending test (Fig. 1)
are observed by scanning electron microscopy (SEM) using a Supra 55 with 15 kV
tension, at a 12 mm working distance, a diaphragm of 240 μm and a magnification
of ×1500. Secondary electron imaging, sensitive to the surface topography, has been
used.

The heat treatment strongly influences the ductile response. Adhesion mecha-
nisms, and particle-particle interfaces, are modified by the heat treatment, leading
to a mixed brittle-ductile response [9]. Rupture zones, in particular, are located in
particle-particle interfaces in the as-sprayed state and are not seen on the whole
fracture surface [6]. As shown in the fractographic analysis in (Fig. 2), fracture
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Fig. 1 Three-points bending tests with (a) and without (b) heat treatment. Heat treatment
significantly enhances ductility

Fig. 2 (a) Fractography image showing regions with predominantly brittle (b) and ductile (c)
rupture modes. The bottom zone in (c) undergoes maximum bending compared to (b)

surfaces display varying contrasts as a consequence of the topography, and ductile
regions are constrained along surfaces that rarely exceed 10 μm in size. A signature
of these regions is the presence of dimples that are less than 1 μm in diameter.
These regions are difficult to detect automatically, yet their texture is characteristic
of ductile behavior. In the following, a convolutional neural network is developed
to segment ductile regions as a way to provide a more robust method than that of
conventional image analysis methods. The proportion of ductile regions in fracture
surfaces provides a quantitative indicator of the mechanical response of these
coatings, and could be used to correlate microstructure, heat treatment as well as
mechanical properties.
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3 Machine Learning Method

In order to establish a reference dataset, we first selected 30 images per sample,
each containing 1024 × 704 pixels and showing different (disjoint) regions of
the fracture surface, with varying contrast and brightness, as specified above. The
regions undergoing ductile rupture have been manually annotated by an expert, in all
images, making use of a hand-made macro incorporated in the software “ImageJ”.
These regions are selected by assuming that ductile regions contain dimples and
higher roughness. Each of the obtained images are binarized and cropped into 88
patches containing 128 × 64 pixels. Initial images have been subsequently cropped
so as to be used during training. Cropping proved necessary to generate a sufficiently
large number of images, while reducing the memory required for training. See Fig. 3
for an illustration of the resulting segmentation.

We have selected “U-Net” [10] architecture network for the detection and
segmentation of regions with ductile fracture. This architecture, based on a series
of filters organized as a “U”, allow us to perform four most important tasks:
(1) convolution so as to apply one or more filters on the images; (2) nonlinear
transformation of images with the rectified linear unit (“ReLu”), so that negative
values can be thresholded to zero; (3) pooling so that the image size can be reduced
while keeping track of the most important information, including maximum, mean,
sum; (4) classification with a fully-connected layer, which links each neuron on the
previous layer with a neuron on the following layer, thus allowing one to classify
the input pixels according to characteristics highlighted in the previous tasks. In the
present study, the number of filters on the first layer is set to 32. During training both
training and validation scores are measured. The first one is obtained by measuring
the difference between the prediction of the network, made up of regions of ductile
failure, and that manually selected by the expert whereas the validation score only
takes into account those images that are not part of the training database.

The score is given by the Jaccard distance J = 1 − |A ∩ B|/|A ∪ B| between
two sets A and B, where | · | denotes the set surface. Figure 4 represents the
evolution of both scores during training. The scores are plotted with respect to

Fig. 3 Annotated fractography images. (a) SEM image. (b) Selected ductile zones
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Fig. 4 Validation and training Jaccard indices as a function of the number of epochs during
training

epoch numbers. In one epoch, the algorithm uses each patch in the database once.
To prevent overfitting, the algorithm is stopped when the score corresponding to the
validation dataset ceases to decrease. This is determined by an additional “patience”
parameter, set to 100, which prescribes the number of epochs without improvement
on the validation dataset that is tolerated during training. The algorithm stopped at
epoch 542, whereas the network retained is that corresponding to epoch 442.

4 Results

Two images representative of the network predictions are shown in Fig. 5, as
indicated in blue. These images have been obtained by applying the trained U-
net network to a set of novel fractography images. We have highlighted in both
images zones where the predictions of the network are incorrect: “over-detections”
(marked by the symbol ⊕), corresponding to brittle regions predicted to be ductile,
and “under-detection” (symbol /) for ductile zones indicated as brittle.

An error criterion is now defined in order to interpret these results. Output images
are thresholded to a value of 200 (out of a maximum of 255), and we compute
in each image: (1) the number f of non-detected pixels (“false negative”); (2)
the number f ′ of wrongly-detected pixels (“false positive”); (3) the number t of
correct pixels (“true positive”). These statistics allow us to define the precision
p = t/(t + f ′), the recall r = t/(t + f ), and score F = 2pr/(p + r), equal to the
harmonic mean of p and r . It approaches 1 for predictions close to that of the human
expert. The mean of F is about 0.46. This value corresponds to visually satisfactory
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Fig. 5 Two images representing the network predictions for regions undergoing ductile fracture
(in blue). Over and under-detections are marked by symbols ⊕, /, respectively (see text)

segmentation results. Indeed, the F-score is strongly influenced by the exact shape
of the ductile zones, which are, in effect, not precisely defined by the expert.
Furthermore, we emphasize that the tool is designed to perform comparison between
microstructures; accordingly, we aim to rank fractography images by ductile region
surfaces, not necessarily to exactly predict the location of each ductile zone.

5 Conclusions and Perspectives

In this work, use has been made of a simple U-Net architecture to segment different
fracture mechanisms present in fracture surface images. The images represent
complex mixed rupture modes. Ductile rupture is detected by the presence of small
dimples seen in the SEM images at various angles from the plane of the image.
The network devised in this study shows promising results. However, the machine-
learning pipeline tends to detect fewer ductile regions than the human expert, which
is conservative but penalizing. Further work is needed to enhance these results,
left as outlook: (1) one may improve the image database used for training, and
in particular increase the number of images, use larger image patches, or perform
data augmentation based on axial symmetries, Gaussian noise and rotations; (2)
modify the network architecture, such as the number of filters in the first layer;
(3) finally, one may want to adjust or pre-process input images, removing noise and
using contrast-enhancing filters. Finally, we emphasize that the simple segmentation
method developed in his work can be used in a variety of applications, in particular
that of mixed rupture modes, as occurs in the ductile-to-brittle transition of ferritic
and bainitic steels [11].
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Optimal Control to Facilitate the
Development Process of Exoskeletons

Monika Harant, Matthias B. Näf, and Katja Mombaur

Abstract Developing an exoskeleton for the lower back is challenging because
the ideal support is not known and may vary across the users. As a result,
a series of prototypes and extensive testing is needed to determine a suitable
design of such a device. We aim to facilitate the development process of a spinal
exoskeleton by optimizing the characteristics of its passive elements, taking into
account human-robot interaction. Biomechanical models were created and adapted
to the anthropometric and muscular properties of five recorded subjects performing
unassisted lifting motions. A dynamic model of the exoskeleton was developed
with torque generation consistent with the prototype. Possible configurations of
the passive elements are specified by a set of parameters which were determined
during optimization by minimizing the simulated human actuation required to
perform the recorded motions while wearing the exoskeleton. Comparing optimized
and initial setup, a significant improvement in exoskeletal support was achieved
for all subjects, while contact forces remained within specified limits to ensure a
comfortable usage of the device.
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1 Introduction

In product manufacturing and logistics, industrial workers often face heavy lifting
and awkward static postures for long periods of time [11]. These working conditions
lead to musculoskeletal disorders, with low-back pain being one of the most
common causes for sick leave [1]. Exoskeletons are promising tools to improve
the work environment by reducing the muscle activity required to perform certain
tasks with high risk of low-back pain, such as lifting, static stooped positions, and
overhead manipulation [8]. However, their design process is challenging. Among
others, appropriate support profiles and user-acceptable pressure levels are still
open research questions and may require studies with a series of prototypes having
varying configurations. In [6], the latter issue was tackled by determining pressure
thresholds that are still comfortable or free of pain for male and female users.
Furthermore, optimal control of biomechanical models has proven to be an effective
way to analyze different motions [4, 12], and previous work [3] showed that this
setup in combination with an exoskeleton model allows to simulate and optimize its
properties and interaction with the user. In this work, we make a step closer to reality
by employing a model of an existing prototype [10] instead of a generic one as in
[3], and by including interaction force limits based on the findings of [6], which used
interfaces similar to the prototype. By optimizing the design for recorded stoop-lifts
of five different subjects, we evaluate the current design in terms of its support and
applied contact forces during the motion and offer insights on how to improve it
further.

Sections 2 and 3 give a brief overview of the experimental data and the applied
human and exoskeleton models. The formulation of the optimal control problem to
optimize the exoskeleton design for a given lifting motion is described in Sect. 4.
The results of the optimization and a short discussion are given in Sects. 5 and 6.

2 Experimental Data

Kinematics, ground reaction forces and forces between box and the subjects’ hands
of five healthy male subjects (age 21–36 years, weight 60–82 kg, height 1.70–1.82
m) performing stoop-lifts were recorded. A 10 kg heavy box with handles was
picked up from a 0.3 m high pedestal placed directly in front of the subjects. Marker
positions were recorded at 44 Hz using an Optotrak system (Northern Digital Inc.,
Canada). Ground reaction forces of the subject and the box were recorded at
1000 Hz with force plates (Kistler Instrumente GmbH, Switzerland) and the forces
between hands and handles with uni-directional (vertical) force sensors.
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3 Human and Exoskeleton Model

A kinematic analysis shows that the recorded lifting motions that will be used in
the optimization are fairly symmetrical. This allows us to reduce the complexity of
the system by modeling the human, the exoskeleton, and the box as symmetric rigid
(multi)body systems in the sagittal plane. The model of the box matches the one
used during the experiment. The human model consists of 11 degrees of freedom
(DoF). Due to the symmetric assumption, both arms and legs can be lumped together
and the trunk is divided into three parts resulting in the following segments: foot,
shank, thigh, pelvis, middle trunk, upper trunk, head, upper arm, and lower arm. For
each recorded person, a subject-specific model is created, based on anthropometric
measurements taken during the experiment. The human model is actuated by muscle
torque generators (MTG) [9], which are adjusted using recorded data as well. Each
joint is actuated by two MTG, one for flexion and one for extension. For further
information on the human models and on the experimental data please refer to [3].

The exoskeleton model has 9 DoF. The pelvis and the upper trunk module have
each 3 DoF (2 prismatic and 1 rotational) and there is a revolute joint at the hip
and the thigh interface and a prismatic joint for the slider on the thigh segment.
The dynamic parameters are derived from CAD models of the existing prototype.
It generates counter torques at the lower back via 3 carbon fiber beams and a
passive element (PH) with a nonlinear torque-angle relationship [13] is installed
at the hip joint. Mathematical models replicating their behavior are included in the
optimization problem and 5 parameters (beam radius, spring pretension and profile
dimensions of PH) specify the amount of forces or torques they are generating. For
the passive element at the hip joint, the mathematical model of [13] was adopted.
For the carbon fiber beam, a polynomial approximation of its deflection is used to
obtain the forces generated at the upper trunk module connector.

4 Optimal Control Problem Formulation

The lifting motion of the human model wearing the exoskeleton is separated into
3 phases: The first phase starts when the user stands at rest in an upright position
and ends when the user is bent down and makes contact with the box. The second
phase covers the force generation to lift the box and ends when it leaves the ground.
The last phase ends when the user stands upright again while holding the box. This
results in the following 3-phase optimal control problem (OCP):

min
q,q̇,z,α,u,p

3∑

i=1

⎛

⎝
Ni∑

n=0

‖Wq(q(ti,n)− qREFi,n )‖2 +
∫ ti+1

ti

φ(q, q̇, z, α, u, p)dt

)

(1)

s.t. M(q)q̈ +Gi(q)T λ = τ(q, q̇, z, α, u, p)− C(q, q̇) (2)

α̇ = ((um − αm)/Tm)m=1,...,Nm (3)
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f (q, z, p) = 0 (4)

gi(q, q̇, z, α, u, p) ≥ 0, i = 1, . . . , 3 (5)

with q, q̇, and q̈ the joint positions, velocities, and accelerations, respectively. The
number of shooting nodes of phase i is denoted by Ni . The motion to be tracked
is given for time point ti,n by the joint positions qREFi,n and the fitting accuracy
is defined by a weighting matrix Wq . The algebraic states z and the system of
Eqs. (4) define the state of the beams. The parameters p describe the design of
the passive elements of the exoskeleton. The controls u are the neural excitation
of the MTG. Eq. (3) are the MTG activation dynamics with activation level α
and (de-)activation time constant T . The number of MTG is given by Nm. The
equation of motion of the constrained multibody system is given by (2) with M
containing the inertia tensors, Gi the constraint Jacobian, and λ unknown force
variables. The function C contains the centrifugal, gravitational and Coriolis forces.
The generalized forces are denoted by τ consisting of the joint torques and forces
generated by the MTG and the exoskeleton. The constraints (5) include, but are
not limited to, positional constraints, restrictions on the contact forces between
hand and box, box and ground, and foot and ground, regulations on the alignment
of human and exoskeleton, and bounds on the states and controls. The objective
function (1) consists of a least squares term for tracking the motion and a Lagrange
term enforcing the reduction of MTG torques and pelvis contact moment. The last
term achieves a balanced force distribution so that the pelvis module does not press
into the body. In this case, a tracking term was included as we want to investigate
the optimal exoskeleton performance for several recorded lifting motions. For the
simulation of the original configuration of the exoskeleton, the parameters p are
fixed to the corresponding values. The weighting of the cost function is the same as
in case of the design optimization, but the term on the pelvis contact moment was
removed. The OCP is discretized using direct multiple shooting and the resulting
NLP is solved with SQP and active-set method provided by the toolbox MUSCOD-
II [7]. For the rigid multibody dynamics calculations the open-source library RBDL
[2] is used.

5 Results

The cost function enforced a high fitting accuracy with avg. joint angle errors within
0.17–0.63◦ across subjects and stayed the same between design optimization and
original configuration so that the reduction in muscle activity comes solely from
the support of the exoskeleton and not because of an alteration of the motion. The
original design already provides an effective support, but the optimization could
increase it significantly for all subjects (Table 1) resulting in a reduction of lumbar
moment up to 25.1%, peak lumbar moment up to 18.9%, and hip moment up to
15.1%.
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Table 1 Reduction of hip and lumbar moment of the optimized design (initial configuration)
with respect to the corresponding human-only-simulation

Subject Lumbar mom. reductiona Hip mom. reductiona Peak lumbar mom. red.

S1 15.5% (10.4%) 13.6% (14.5%) 18.9% (13.9%)

S2 14.6% (10.2%) 14.3% (13.4%) 14.9% (10.3%)

S3 14.1% (10.7%) 9.2% (9.5%) 15.7% (11.8%)

S4 15.4% (10.1%) 11.3% (5.9%) 14.2% (9.1%)

S5 25.1% (18.0%) 15.1% (13.7%) 17.7% (12.5%)
a Reduction in terms of the integrated area under the moment curve

opt. configuration for S1
opt. configuration for S2
opt. configuration for S3
opt. configuration for S4
opt. configuration for S5
original configuration

Fig. 1 Left: Deflection angle—force relationship of the optimized beam characteristics (colored)
and of the original configuration (black). For better comparison, the curves are based on a constant
beam length of 40 cm and a force application in a constant direction (90◦). Right: Deflection
angle—torque relationship of optimized (colored) and original (black) configuration of PH

The improved support yields stiffer but quite similar beam characteristics for
all subjects (Fig. 1 left). The torque-angle relationships of PH varies more across
the subjects (Fig. 1 right). For subject S1, S2, and S3, it stayed close to the original
configuration. Significant more torque is produced for S4, who performed the stoop-
lift using less hip flexion than the other subjects. For S5, the optimized torque-
angle curve became rounder with a lower peak. The forces acting between user and
exoskeleton were calculated for 3 contact points: at the back of the pelvis (P), at the
front of the chest (C), and at the front of the thigh (T). The limit set on the normal
force acting at P (162.4 N) was the most restrictive one for the optimization and was
reached across all subjects. The remaining normal forces (C: max. value between
96.0 and 96.7 N; T: max. value between 116.7 and 122.4 N) stayed far away from
the prescribed limits (C: 230.3 N and T: 333.4 N). The shear forces (max. value
across all subjects: P: 57.8 N; C: 15.9 N; T: 6.9 N) are small throughout the motion.
The contact moment acting at P is relatively small during the bending phase (max.
value between 6.7 and 17.6 Nm), but is quite high for two subjects at the end of the
lift (max. 31.3 and 22.7 Nm) because they arched their back significantly then.
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6 Discussion

We simulated an existing prototype for stoop-lifts of five different subjects and
optimized the characteristics of its passive elements. This setup not only allows to
evaluate different exoskeleton configurations in terms of kinematic structure, torque
generation, and contact forces but can also further improve the design by tuning
its passive elements. The optimized design yields a significant higher support than
the initial setup of [10] across all subjects while contact forces remained within
set limits indicating that the torque generation of the prototype can be increased
significantly without making it uncomfortable to wear. The optimized support is
lower than the values reported in [5], where the prototype was tested with beams
of larger diameter than optimized. Reasons for this could be that higher interaction
forces occurred during the experiment than were allowed in the optimization, that
the subjects altered their behavior slightly, or that there is a discrepancy in the
simulated interaction forces because of unaccounted movement of the exoskeleton
with respect to the user. In summary, this work highlights that the presented
approach can identify untapped potential in the support, but also stresses the need
for an accurate simulation of the human-robot interaction as well as sound contact
force limits.

Acknowledgments This work was funded by the European Commissions within the H2020
project SPEXOR (GA 687662).
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Vanadium Redox Flow Batteries:
Asymptotics and Numerics

Michael Vynnycky and Milton Assunção

Abstract Modern demands for increasingly efficient renewable energy delivery
have generated substantial interest in vanadium redox flow batteries (VRFBs)
as an energy storage technology, with mathematical modelling and numerical
simulation playing an increasingly important role in their development. Although
the overwhelming majority of work in this area tends to involve time-demanding
computation, this contribution summarizes our own recent activities in deriving
asymptotically reduced versions of the multi-dimensional transient models that are
normally used to describe the operation of a VRFB. We find that our models are
able to predict the charge-discharge curve and the state of charge of the VRFB as
accurately as two-dimensional transient models, but typically at around 1/250th of
the computational cost.

1 Introduction

Current demand for increasingly efficient renewable energy delivery has generated
substantial interest in vanadium redox flow batteries (VRFBs) as an energy storage
technology. VRFBs have numerous potential applications: load levelling and peak
shaving, uninterruptible power supplies, emergency backup and facilitation of wind
and photovoltaic energy delivery [1, 2].

A VRFB consists of an assembly of cells, typically referred to as a stack; one
such cell is shown in Fig. 1. It is composed of positive and negative flow-through
electrodes, typically made of porous carbon felt, that are separated by a proton
exchange membrane that consists of charged molecules: the mobile protons that
pass through it and fixed sites of negative charge. During operation, vanadium-
based electrolytes are pumped through the electrodes; the electrolyte in the positive
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Fig. 1 A schematic of the overall operation of a vanadium redox flow battery

electrode, vanadyl sulphate (VOSO4), contains VO+
2 and VO2+ ions, whilst that in

the negative electrode, vanadium sulphate (V2(SO4)3), contains V2+ and V3+ ions.
In addition, both electrodes are connected to pumps and storage tanks, meaning that
very large electrolyte volumes can be circulated through the cell. During charging,
the VO2+ ions in the positive electrode are reduced to VO+

2 ions, and electrons exit
from the positive terminal of the cell via a current collector that bounds the electrode
on the side opposite to that of the membrane. Similarly, in the negative electrode,
electrons enter via another current collector, reducing the V3+ ions to V2+ ions;
during discharge, the reverse process, also known as oxidation, occurs. Charging
and discharging can be written as

V3+ + e−
charge
�

discharge
V2+at the negative electrode, (1)

VO2+ + H2O
charge
�

discharge
VO+

2 + e− + 2H+at the positive electrode. (2)
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Typically, each cell in a VRFB operates at a nominal voltage in the interval 1.15–
1.55 V and at a temperature of around 30 ◦C.

Mathematical modelling and numerical simulation have recently come to play an
increasingly important role in VRFB research and development; for recent reviews
in all aspects of VRFBs, and modelling in particular, see [1, 2], respectively. In
general, the models in question consist of a system of two- or three-dimensional
time-dependent partial differential equations (PDEs) that describe the transient
mass, momentum and charge transport that occur in the processes mentioned above,
and invariably require numerical solution. However, Vynnycky [3] suggested the
use of asymptotic methods to reduce these full models; subsequently [4, 5], it was
shown via numerical simulations that the governing equations were in fact quasi-
steady in nature and that even a zero-dimensional model was able to reproduce the
charge-discharge curves.

In this contribution, we give an overview of the subsequent work of Vynnycky
and Assunção [6, 7], who formally demonstrated that a standard and often-used
VRFB model could be reduced asymptotically to give a much simpler set of
equations which had a quasi-analytical solution. This was done for two different
scenarios. One includes the dissociation of sulphuric acid (H2SO4), a two-step
reaction in which the first dissociation step,

H2SO4 → H+ + HSO−
4 , (3)

is assumed to be complete, meaning that H2SO4 has completely dissociated into its
ions, whereas the second, given by

HSO−
4 → H+ + SO2−

4 , (4)

is incomplete, meaning that all ions shown in Eq. (4) are present. The second
scenario excludes the dissociation of H2SO4. The reason for focusing on this feature,
rather than the numerous others which are believed to be subsidiary to reactions (1)
and (2), is that the first scenario is included by default in the VRFB starting
model available in the commercially available finite element software Comsol
Multiphysics; thus, our motivation was to determine how necessary this feature
actually was. A complete list of model assumptions is given in [7, p. 175].

2 Mathematical Modelling

2.1 Full Model

The full model in dimensional form and its asymptotic reduction is rather lengthy,
and the complete details are given in [6, 7]; here, we give only a qualitative
description.
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For each of the electrodes, we obtain five time-dependent convection-diffusion-
migration-reaction equations, which account for the concentrations of the five
reacting ionic species in the electrolyte: H+, HSO−

4 , SO2−
4 , V2+, V3+ at the negative

electrode; H+, HSO−
4 , SO2−

4 , VO+
2 , VO2+ at the positive electrode. However,

because of migration, there is an additional dependent variable: the ionic potential.
Consequently, a further equation is required in order to fully specify the system; this
comes via an electroneutrality condition, which is written as

∑

i

zici = 0, (5)

where zi is the charge number for ionic species i, ci is concentration for this species,
and the summation is taken over all of the ions present in each of the electrodes.
Moreover, earlier work has shown that convection is adequately described by
simply assuming a plug flow [8]. However, the description so far relates only to
the electrolyte phase; through the solid matrix, there is electron transfer and this
is described, on using Ohm’s law, via a Poisson-type equation for the electronic
potential. In particular, the source term for this Poisson-type equation describes
reactions (1) and (2) via Butler-Volmer expressions which contain the difference
of the ionic and electronic potentials. As for the membrane which separates the two
electrodes, only H+ is assumed to be present, and this fact, on again using Ohm’s
law, simply leads to Laplace’s equation, albeit for the ionic potential.

The key boundary conditions are at the electrode inlets, which are located
at the bottom of Fig. 1. An unusual feature is that we cannot just prescribe the
concentrations there, since the electrolyte is being recycled. This leads to five first-
order ordinary differential equations (ODEs) at each inlet, one for each species
concentration, with time as the independent variable; furthermore, these ODEs each
contain a term related to the concentration at the outlet, located at the top of Fig. 1,
since the electrolyte, on exiting the outlet, is fed back to the storage tank and then
to the inlet.

In summary, the full model consists of 11 coupled time-dependent nonlinear
PDEs and two algebraic relations, in addition to 10 ODEs at the inlets.

2.2 Asymptotically Reduced Model

As explained in [6, 7], the asymptotic reduction makes use of the fact that the
geometry is slender. However, on assessing the numerical values of the model
parameters, it is then also noted that there are concentration boundary layers on
the porous electrode side of the electrode/membrane interfaces. If acid dissociation
is neglected, the boundary layer is of non-dimensional width Pe−1/2, where Pe is
the ratio of the effects of convection and diffusion, with Pe ≈ 230, i.e. Pe & 1. On
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Fig. 2 A schematic for the overall asymptotic structure for the model: (a) without H2SO4
dissociation; (b) with H2SO4 dissociation

the other hand, if acid dissociation is accounted for, there is a nested boundary-layer
structure, with a layer of width Pe−1/2 housing an inner layer of width (P e!)−1/2,
where ! is the ratio of the effects of electrochemical reaction and convection, with
! ≈ 166, i.e. ! & 1. These structures are depicted in Fig. 2, and the result is
considerably different to that postulated in [9]; this suggests that the structure was
not properly understood earlier.

Further analysis then indicates that, under the operating conditions of constant
current density, the inlet concentrations can be determined analytically. In fact, all
ten of them are just linear profiles of time, with the profiles for V2+, V3+, VO+

2 and
VO2+ when acid dissociation is neglected being identical to the corresponding ones
when acid dissociation is included; the profiles for H+, HSO−

4 , SO2−
4 do differ for

the two cases [7, Fig. 7], however, as a direct consequence of the acid dissociation.
Interestingly, earlier models [10, 11] had assumed that the inlet concentrations were
linear, but [6, 7] were the first to show why this is the case.

Subsequently, the remaining task involves the numerical solution of four coupled
second-order nonlinear ODEs, with the independent variable being the spatial
coordinate across the VRFB, i.e. in the horizontal direction in Fig. 1, and the
dependent variables being the ionic and electronic potentials in the negative
and positive electrodes. Also, we point out that, by this stage of reduction, the
governing equations are quasi-steady, since there are no time derivatives, although
time-dependency enters via coefficients that contain the time-linear concentration
profiles.
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Fig. 3 Charge-discharge curve at a typical current density (400 A m−2): (a) as predicted by the
2D transient and the asymptotic models for the case with acid dissociation; (b) as predicted by the
asymptotic model, including and excluding acid dissociation. Reproduced from [7]

3 Results and Conclusions

Figure 3a shows the cell potential as a function of time, often referred to as the
charge-discharge curve, at a current density of 400 A m−2, as predicted by the
2D transient and the asymptotic models for the case with acid dissociation; as is
evident, the agreement is very good, indicating that the asymptotically reduced
model successfully captures the features of the full model. The same result was
also obtained earlier in the model without acid dissociation [6, Fig. 4]. Similarly,
Fig. 3b compares the charge-discharge curves obtained via the asymptotic approach,
including and excluding acid dissociation; as can be seen, the two curves are literally
on top of each other, indicating that the acid dissociation has no effect.

Finally, we point out that the numerical solution of the fully reduced asymptotic
model was found to require around 250 times less computational time than that of
the original 2D transient model, both with and without acid dissociation; the exact
details as regards the latter can be found in [6, Table 6]. More significantly, this
suggests that other effects that are believed to be present during VRFB operation,
such as oxygen and hydrogen evolution, heat transfer and vanadium ion transport
across the membrane, can be incorporated into the model, without necessarily
increasing the computational time required to solve the model equations.
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Time-Adaptive High-Order Compact
Finite Difference Schemes for Option
Pricing in a Family of Stochastic
Volatility Models

Bertram Düring and Christof Heuer

Abstract We propose a time-adaptive high-order compact finite difference scheme
for option pricing in a family of stochastic volatility models. We employ a semi-
discrete high-order compact finite difference method for the spatial discretisation,
and combine this with an adaptive time discretisation, extending ideas from Lötstedt
et al. (Implicit solution of hyperbolic equations with space-time adaptivity, BIT,
42(1):134–158, 2002.) to fourth-order multistep methods in time.

1 Introduction

Stochastic volatility models have become one of the standard approaches for
financial option pricing. They are based on a two-dimensional stochastic diffusion
process containing two Brownian motions with correlation ρ ∈ [−1, 1], i.e.
E
[
dW1(t)dW2(t)

] = ρ dt, on a given filtered probability space for the underlying
asset S = S(t) and the stochastic variance v = v(t). In this work we consider the
following class of stochastic volatility models,

dS = μS dt +√
vS dW1, dv = κva (θ − v) dt + σvbdW2, (1)

with given drift μ ∈ R of the underlying S(t), long run mean θ > 0, mean reversion
speed κ > 0, and volatility of volatility σ > 0, see e.g. [1]. Additionally, it holds
a ≥ 0 and b ∈ (0, 3/2]. Many well-known models are included in the family (1).
The prominent Heston (or SQR) model [5] is obtained for a = 0, b = 1/2. Other
known models include the GARCH (or VAR) model [4], with a = 0, b = 1, and
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the 3/2-model [7] in which a = 0, b = 3/2. There are also models with non-linear
mean reversion, following [1], we denote these models as the SQR-N model (a = 1,
b = 1/2), VAR-N model (a = 1, b = 1), and 3/2-N model (a = 1, b = 3/2).

For the family of stochastic volatility models (1), application of Itô’s Lemma
and standard arbitrage arguments lead to partial differential equations for the option
price V = V (S, v, t), which are of the following form

∂V

∂t
+ vS2

2

∂2V

∂S2 + ρσvb+ 1
2 S
∂2V

∂S∂v
+ σ 2v2b

2

∂2V

∂v2

+ rS ∂V
∂S

+ κva (θ − v) ∂V
∂v

− rV = 0, (2)

where r ≥ 0 denotes the risk-free interest rate. Equation (2) has to be solved
(backward in time) for S, v > 0, 0 ≤ t < T , with an expiration date T > 0,
and subject to final and boundary conditions depending on the specific option
considered. In the case of a European Put options, for example, the final condition
is given by V (S, v, T ) = max(K − S, 0) with strike price K > 0.

In the mathematical literature, there are many works on numerical methods for
option pricing in one-dimension (single risk factor), but less papers considering
numerical methods for option pricing in stochastic volatility models, i.e. for two
spatial dimensions. Finite difference approaches used are often standard, low order
methods, i.e. second order in space. In the last decade, high-order (fourth order
in space) compact finite difference discretisations for option pricing in stochastic
volatility models have been presented, e.g. in [2, 3]. We refer to [3] for an overview
of the finite difference literature and other methods.

The originality of the present chapter consists in proposing a new, time-adaptive
high-order compact finite difference scheme for option pricing in a family of
stochastic volatility models. Our approach builds on ideas from [3] and [8]. We
employ a semi-discrete high-order compact finite difference method for the spatial
discretisation, using the methodology developed in [3]. For the adaptive time
discretisation, we follow basic ideas of [8], where two-step methods for the time-
discretisation were used, and generalise this approach to consider fourth-order
multistep methods in time. We obtain a time-adaptive high-order compact scheme
that is fourth order accurate in both space and time.

2 Transformation of the Partial Differential Equation

We first transform τ = T − t , and u = exp(rτ )V/K in (2). Depending on the
model parameter b, we apply subsequent transformations, in such a way that the
second derivatives in x- and y-direction share the same coefficient.

For b �= 3/2 we apply the transformations x = (3/2 − b) ln(S/K), y =
v3/2−b/σ , and arrive at
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uτ + c1(y)
(
uxx + uyy

)+ c2(y)uxy + c3(y)ux + c4(y)uy = 0, (3)

to be solved on the rectangular spatial domain� = (xmin, xmax)×(ymin, ymax), with

c1(y) =− σ −5+2 b
−3+2 b y−2 (−3+2 b)−1

(−3 + 2 b)2 (8σ)−1, c2(y) = 2ρc1(y),

c3(y) =(3 − 2b)
(
σ

−5+2 b
−3+2 b y−2 (−3+2 b)−1 − 2 rσ

)
(4σ)−1,

c4(y) =(3 − 2b)
(
2 σ

−5+2 b
−3+2 b y−

−1+2 b
−3+2 b b − 4 σ−

1+2 a−2 b
−3+2 b y−

1+2 a−2 b
−3+2 b κ θ

+ 4 σ−
3+2 a−2 b
−3+2 b y−

3+2 a−2 b
−3+2 b κ − σ −5+2 b

−3+2 b y−
−1+2 b
−3+2 b

)
(8σ)−1,

and subject to u(x, y, 0) = max (1 − exp (x/(3/2 − b)) , 0) .
For b = 3/2, we apply the transformations x = ln(S/K), y = ln(v)/σ , and

obtain (3) with coefficients c1(y) = − exp(σy)/2, c2(y) = −ρ exp(σy), c3(y) =
exp(σy)/2 − r, c4(y) = (σ 2 exp(σy)− 2κθ exp(σy(a − 1))+ 2κ exp(aσy))/(2σ)
and subject to u(x, y, 0) = max (1 − exp(x), 0) .

3 Time-Adaptive High-Order Compact Scheme

We use the high-order compact semi-discrete (discretising in space only) scheme
from [3] for (3). Since the coefficients of uxx and uyy in (3) are identical, results
from [3] show that the scheme provides a fourth-order accurate spatial discretisation
employing a uniform grid with h1 = h2 = h > 0. The semi-discrete scheme can be
written in matrix form as

Mh∂τUh (τ) = g(h) (τ )−KhU(h) (τ ) =: F (τ) . (4)

The known vector g(h) has only non-zero entries due to the influence of the boundary
conditions and the matricesMh and Kh do not depend on τ .

At the boundary x = xmin and x = xmax we impose Dirichlet type boundary
conditions. For y = ymin or y = ymax we do not impose any boundary condition,
but apply the discretisation of the spatial interior. The resulting ghost points are
extrapolated from the interior with sufficiently high order. Due to the low regularity
of the typical initial conditions, we employ a smoothing operator [6] to ensure
fourth-order spatial convergence. For further details of the implementation of
boundary and initial conditions, we refer to [3].

Our approach for time adaptivity is motivated by [8], where two-step methods
are used for time discretisation. Here, to match the fourth-order accuracy in
space, we consider fourth-order multistep methods in time. We approximate the
system of ordinary differential equations (4) using fourth-order multistep methods
and variable, adaptive time step sizes. In each time step, we use a (numerically
cheap) predictor scheme to estimate the local truncation error, adapt the time step
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accordingly, and then solve using a corrector scheme. Necessary start-up values are
computed using a Crank-Nicolson time-discretisation.

Predictor Scheme Consider τmin = τ0 < τ1 < . . . < τj with j ≥ 4 and τj < τmax
in time with the step sizes kn = τn − τn−1 > 0 for n = 1, . . . , j . We denote the
value of the vector U(h) at time τn by U(h)n .

We use a four-step predictor scheme with (non-equidistant) time steps,

α
(pre)
0 MhU

(h)
n =kng(h)n−1 −

[
α
(pre)
1 Mh + knKh

]
U
(h)
n−1 −Mh

4∑

j=2

α
(pre)
j U

(h)
n−j ,

(5)

where

α
(pre)
0 =2 ι1ι2ι3 + ι3ι21 + ι2ι21 + ι22ι3 + ι1ι22/ϕ(pre)

0 ,

α
(pre)
1 = ι

3
1ι2 − 2 ι1ι2ι3 − ι3ι21 − ι2ι21 − ι22ι3 − ι1ι22 + 3 ι22ι3ι1 + 4 ι21ι3ι2 + 2 ι21ι

2
2 + ι31ι3

2 ι1ι2ι3 + ι3ι21 + ι2ι21 + ι22ι3 + ι1ι22
,

α
(pre)
2 =− 2 ι1ι2ι3 + ι3ι21 + ι2ι21 + ι22ι3 + ι1ι22/((ι2 + ι3) (ι1 + 1)),

α
(pre)
3 =ι22 (ι1ι2 + ι1ι3 + ι2ι3)/((ι1ι2 + ι2 + ι1) (ι2 + ι1)),
α
(pre)
4 =− (ι2 + ι1) ι22ι43/((ι1ι2ι3 + ι2ι3 + ι1ι3 + ι1ι2) (ι1ι2 + ι1ι3 + ι2ι3) (ι2 + ι3)),

with ι1 = kn/kn−1, ι2 = kn/kn−2, ι3 = kn/kn−3, as well as

ϕ
(pre)
0 = ι31ι3ι22 + 3 ι22ι3ι1 + 4 ι21ι3ι2 + 2 ι31ι3ι2 + 3 ι21ι

2
2ι3 + ι22ι31 + 2 ι21ι

2
2

+ ι22ι3 + 2 ι1ι2ι3 + ι1ι22 + ι3ι21 + ι31ι3 + ι31ι2 + ι2ι21.

The predictor scheme (5) is implicit. However, since Mh does not depend on τ , it
has to be factorised only once at the beginning and the factorisation can then be re-
used in every time step. Hence, the predictor scheme is still computationally cheap.

The local truncation error of the predictor scheme is given by

U(h) (τn)− Ũ (h)n =Cloc
P k

5
n

∂5u

∂τ 5 + O
(
k6
n

)
, (6)

with Cloc
P = [(ι1 + 1) (ι1ι2 + ι2 + ι1) (ι1ι2ι3 + ι2ι3 + ι1ι3 + ι1ι2)]/[120ι13ι3ι2

2].
In the following, we use the notation Ũ (h)n to clarify whenever the predictor

scheme is used to obtain the approximation of the solution U(h)(τn).
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Corrector Scheme For the corrector step, we use the implicit BDF-4 method with
variable step-sizes to approximate the system of ordinary differential equations (4),

[
α
(cor)
0 Mh + knKh

]
U(h)n =−Mh

4∑

j=1

α
(cor)
j U

(h)
n−j + kng(h)n , (7)

where

α
(cor)
0 =3 ι22ι

3
1 + 4 ι31ι3ι

2
2 + 6 ι31ι3ι2 + 2 ι31ι2 + 2 ι31ι3 + 9 ι21ι

2
2ι3 + 4 ι21ι

2
2 + ι2ι21

(ι1ι2ι3 + ι2ι3 + ι1ι3 + ι1ι2) (ι1ι2 + ι2 + ι1) (ι1 + 1)

+ 8 ι21ι3ι2 + ι3ι21 + 6 ι22ι3ι1 + ι1ι22 + 2 ι1ι2ι3 + ι22ι3
(ι1ι2ι3 + ι2ι3 + ι1ι3 + ι1ι2) (ι1ι2 + ι2 + ι1) (ι1 + 1)

,

α
(cor)
1 =− 3 ι22ι3ι1 + 4 ι21ι3ι2 + 2 ι31ι3ι2 + 3 ι21ι

2
2ι3 + ι31ι3ι22 + ι22ι31 + 2 ι21ι

2
2 + ι22ι3

(ι1ι2 + ι1ι3 + ι2ι3) (ι2 + ι1)

− 2 ι1ι2ι3 + ι1ι22 + ι3ι21 + ι31ι3 + ι31ι2 + ι2ι21
(ι1ι2 + ι1ι3 + ι2ι3) (ι2 + ι1) ,

α
(cor)
2 = ι

2
1ι

2
2 + ι21ι22ι3 + 2 ι21ι3ι2 + ι2ι21 + ι3ι21 + 2 ι22ι3ι1 + ι1ι22 + 2 ι1ι2ι3 + ι22ι3

(ι1 + 1) (ι2 + ι3) ,

α
(cor)
3 =−

(
ι2ι3 + ι1ι3 + ι3ι21 + 2 ι1ι2ι3 + ι21ι3ι2 + ι2ι21 + ι1ι2

)
ι22

ι2ι
2
1 + ι1ι22 + 2 ι1ι2 + ι22 + ι21

,

α
(cor)
4 =

(
ι2 + ι1 + ι21 + 2 ι1ι2 + ι2ι21

)
ι22ι

4
3/ϕ

(cor)
4 ,

with ι1 = kn/kn−1, ι2 = kn/kn−2, ι3 = kn/kn−3, as well as

ϕ
(cor)
4 = ι33ι21 + 2 ι1ι

3
3ι2 + 4 ι1ι

2
2ι

2
3 + ι22ι33 + 2 ι21ι

2
2ι

2
3 + ι22ι33ι1 + ι32ι23

+ ι21ι32 + ι2ι33ι21 + ι32ι23ι1 + 3 ι21ι2ι
2
3 + 3 ι21ι

2
2ι3 + ι32ι3ι21 + 2 ι1ι

3
2ι3.

The local truncation error of the corrector scheme is given by

U(h) (τn)− U(h)n =Cloc
C k

5
n

∂5U(h)(τn)

∂τ 5 + O
(
k6
n

)
, (8)

with

Cloc
C =− (ι1ι2ι3 + ι2ι3 + ι1ι3 + ι1ι2)2 (ι1 + 1)2 (ι1ι2 + ι2 + ι1)2/N loc

C ,

N loc
C =120ι31ι

2
2ι3

[
4 ι31ι3ι

2
2 + 6 ι3ι

3
1ι2 + 2 ι3ι

3
1 + 3 ι22ι

3
1 + 2 ι2ι

3
1 + 8 ι21ι3ι2

+9 ι21ι
2
2ι3 + ι21ι3 + 4 ι21ι

2
2 + ι2ι21 + 6 ι22ι3ι1 + 2 ι1ι2ι3 + ι1ι22 + ι3ι22

]
.
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Time-Step Adaption The aim of the time-step adaption is to choose the time-step
in such a way that the resulting local time-discretisation error stays below a given
threshold ε̂ > 0. Similar as in [9], we use the local time-discretisation errors (6)
and (8) to obtain the first order approximation

∂5U(h) (τn)

∂τ 5 = Uhn − Ũhn
k5
n

(
Cloc
C − Cloc

P

) + O (kn) . (9)

The leading error term of the discretisation (7) can thus be approximated by

εn =− α(cor)
0 MhC

(loc)
C k4

n

∂5U(h)

∂τ 5 = −α(cor)
0 MhC

(loc)
C

Uhn − Ũhn
kn
(
Cloc
C − Cloc

P

) . (10)

The goal is now to choose the next step-size in time in a way that the norm of this
error is bounded by the error threshold ε̂ > 0 in a given norm. The general error

structure is given by εn = k4
nζ(τn) ⇐⇒ kn = (εn/ζ(τn))

1
4 (with ζ(τn) implicitly

defined by (10)) and thus we can, with ‖εn‖ ≤ ε̂, use kn+1 ≤ kn(ε̂/‖εn‖) 1
4 to choose

the new step size in time.

The approximation of the local discretisation error in time (10) can be non-
smooth, giving rise to abrupt changes of the chosen step size. To ensure that we
avoid choosing a very large step size in case that the estimated error is very small, we
introduce a small parameter β > 0 (see [9]) and adapt the time step size according
to

kn+1 =
(

ε̂

ε̂β + ‖εn‖
) 1

4

kn =: ξnkn. (11)

4 Numerical Results

We consider the pricing of European Put options with model (1) and use (S, v) ∈
(1.5, 600) × (0.1, 0.5). The computational domain is determined through the
transformations given in Sect. 2. We choose step-size h = (xmax − xmin)/(N − 1)
with N = 201 steps in x-direction, in y-direction we begin at ymin and use step-size
h. In (11), we set β = 0.01. We use K = 100, T = 2, r = 0.05, σ = 0.3, κ = 1.1,
θ = 0.3, ρ = −0.4. For the start-up values, we apply the Crank-Nicolson time-steps
with a fixed parabolic mesh ratio, choosing kn = 0.05h2, n = 1, 2, 3.

Figure 1 shows the adaptation factor ξn, the positioning of the grid points in time,
and the local error ||εn||2 for the GARCH model (left column) and the a = b = 3/4
model (right column). For GARCH the algorithm leads to overall 104 grid-points in
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Fig. 1 Adaptation factor ξn, time grid points distribution, and error threshold ε̂ (dotted red), local
error ||εn||2 for adaptive (solid green) and equidistant time stepping (dashed blue): GARCH (left),
a = b = 3/4 model (right)

time. The local error remains just below the chosen threshold ε̂ = 0.001, while time
steps are increased. For GARCH, 50 of 104 grid-points in time, including the three
initial points where Crank-Nicolson type time discretisation is used, are located in
the interval [0, 0.01], i.e. 48% of the grid-points are positioned in only 0.5% of the
time-domain. On the other hand only six points are placed in the time interval [1, 2].
The results for the a = b = 3/4 model show a similar behaviour. For comparison
we repeat both simulations, now with the same numbers of equidistant time steps.
Initially, the local error is above the threshold and later far below, indicating the
sub-optimality of the equidistant distribution of points in time.
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Multirate DAE-Simulation and Its
Application in System Simulation
Software for the Development of HVAC
Systems

Michael Kolmbauer, Günter Offner, and Bernhard Pöchtrager

Abstract This work is devoted to the efficient simulation of large multi-physical
networks stemming from automated modeling processes in system simulation
software. The simulation of heating, ventilation and air conditioning (HVAC)
applications for passenger cars requires the coupling of gas, fluid and thermal
networks. Each network is established by combining the connection structure of
a graph with physical equations of elementary components and resulting in a
differential algebraic equation (DAE). In order to speed up the simulation, a non-
iterative multirate time integration co-simulation method for the system of coupled
DAEs is introduced. The power of the multirate method is shown via a representative
example of a HVAC vehicle cabin model, which simulates the cooling and heating
of the air flow and its circulation in and out of the passenger compartment.

1 Problem Formulation

We consider a network that is composed of multi-physical components. The
network elements describing the gas contribution are given by resistive elements,
compressors, nodes, system boundaries, mass flow terminations, heat transfers and
temperature boundaries. The fluid network consists of pipes, pumps, demands,
junctions and reservoirs. The thermal coupling is established by lumped mass
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elements representing the pipe wall and the masses from the heat exchangers and
heat transfer connections. The individual components are assembled to a network
N, which is represented by a linear directed graph. The graph structure is described
by an incidence matrix A, which can be used for the model descriptions. In the
following we state the DAEs for the three main involved physical networks.

Fluid Network
We consider a fluid network NF = {PI, PU,DE,V J,LJ,RE,HTF , T BF } that
is composed of pipes PI , pumps PU , demandsDE, volume junctions V J , lumped
junctions LJ , reservoirs RE, heat transfersHTF and temperature boundaries T BF .
The DAE for the networkNF in input-output form is given by: For given continuous
inputs (uTHsF , u

T
T bF
)T , find the pressures (pTLj , p

T
Vj )

T the mass flows (qTP i, q
T
Pu)

T ,

the temperatures (T TVj , T
T
Lj )

T , the heat fluxes (HTHtF ,H
T
Pu,H

T
P i)

T and the outputs

(yTVj , y
T
Lj , y

T
HtF
)T , such that

dqP i

dt
= c1,P i

(
ATJc,P ipJc + ATRe,P ipRe

)
+ c2,P idiag (|qP i |) qP i + c3,P i

fPu(qPu) = ATJc,PupJc + ATRe,PupRe
0 = AJc,P iqP i + AJc,PuqPu + AJc,DeqDe

mVj cp,Vj
dTVj

dt
= AVj,P iHP i + AVj,PuHPu
+ AVj,DeHDe + AVj,HtF HHtF + AVj,HsuuHsF

0 = ALj,P iHP i + ALj,PuHPu
+ ALj,DeHDe + ALj,HtF HHtF + ALj,HsuuHsF

HPi = BJc(qP i)TVj + BJc(qP i)TLj + BJc(qP i)TRe
HPu = BJc(qPu)TVj + BJc(qPu)TLj + BJc(qPu)TRe
HHtF = cHtF

(
ATVj,HtF TVj + ATLj,HtF TLj + ATT bu,HtF uT bF

)

yVj = |(ATVj,HsF + AT bu,HtF ATVj,HtF )|TVj
yLj = |(ATLj,HsF + AT bu,HtF ATLj,HtF )|TLj
yHtF = (AT bF ,HtF + ATLj,HsF ATLj,HtF + ATVj,HsF ATVj,HtF )HHtF

(1)
for given boundary conditions qDe = q̄De, HDe = H̄De, pRe = p̄Re and TRe =
T̄Re and given coefficients c1,P i , c2,P i , c3,P i , mVj , cp,Vj and cHtF as well as given
functions fPu. The function BJc checks for the sign of the mass flow qP i . The
coupling variables are given by the temperatures uHsF and uT bF and the energy
fluxes yVj , yLj and yHtF .
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Gas Network
We consider a gas network NG = {R,C,N, SB,MT,HTG, T BG} that is com-
posed of resistive elements R, compressors C, nodes N , system boundaries SB,
mass flow terminationsMT , heat transfers HTG and temperature boundaries T BG.
The DAE for the networkNG in input-output form is given by: For given continuous
inputs (uTHsG, u

T
T bG
)T , find the pressures (pTN)

T the mass flows (qTR , q
T
C )
T , the tem-

peratures (T TN )
T , the heat fluxes (HTHtG,H

T
C ,H

T
R )
T and the outputs (yTN , y

T
HtG
)T ,

such that

dqR

dt
= c1,R

(
ATN,RpN + ATSb,RpSb

)
+ c2,Rdiag

(|qR|) qR
pup(pN, pSb)

+ c3,R

fC(qC) = ATN,CpN + ATSb,CpSb
0 = AN,RqR + AN,CqC + AN,MtqMt
0 = AN,RHR + AN,CHC + AN,MtHMt + AN,HtGHHtG + AN,HsuuHsG

HR = BN(qR)TN + BN(qR)TSb
HC = BN(qC)TN + BN(qC)TSb

HHTG = cHtG
(
ATN,HtGTN + ATSbu,HtGuSbG

)

yN = |(ATN,HsG + AT bG,HtGATN,HtG)|TN
yHtG = (AT bG,HtG + ATN,HsGATN,HtG)HHtG

(2)
for given boundary conditions qMt = q̄Mt ,HMt = H̄Mt , pSb = p̄Sb and TSb = T̄Sb,
and given coefficients c1,R , c2,R , c3,R and cHtG as well as given functions fC , BN
and pup. The coupling variables are expressed as the temperatures uHsG and uT bG
and the energy fluxes yN and yHtG .

Solid Network
We consider a solid network NS = {SW,LW,HTS,HS, T BS} that is composed
of solid walls SW , lumped walls LW , heat transfers HTS , heat sources HS and
temperature boundaries T BS . The DAE for the network NS in input-output form
is given by: For given continuous inputs (uTHsS , u

T
T bS
)T , find the temperatures

(T TSw, T
T
Lw)

T , the heat fluxes (HTHtS )
T and the outputs (yTSw, y

T
Lw, y

T
HtS
)T , such that
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mSwcp,Sw
dTSw

dt
= ASw,HtSHHtS + ASw,HsHHs + ASw,HsuuHsS

0 = ALw,HtSHHtS + ALw,HsHHs + ALw,HsuuHsS
HHtS = cHtS

(
ATSw,HtS TSw + ATLw,HtS TLw + ATT b,HtS TT b + ATT bu,HtS uT bS

)

ySw = |(ATSw,HsS + AT bS,HtS ATSw,HtS )|TSw
yLw = |(ATLw,HsS + AT bS ,HtS ATLw,HtS )|TLw
yHtS = AT bS ,HtSHHtS

(3)

for given boundary conditions HHs = H̄Hs and TT b = T̄T b and given positive
definite coefficient matrices mSw, cp,Sw and cHtS . The coupling variables are
expressed as the energy fluxes uHsS and uT bS and the temperatures ySw, yLw and
yHtS .

Multi-Physical Model
The multi-physical model is derived by combining (1), (2) and (3) with appropriate
coupling conditions. The coupling conditions describe the relation between the
inputs and outputs of the individual models. For the model used in Sect. 3, the
following coupling conditions are used, see e.g. [4].

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uHsG
uT bG
uHsS
uT bS
uHsF
uT bF

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 CHsG,N 0 0 0 0 0 0
0 0 CT bG,Sw 0 0 0 0 0

CHsS,N 0 0 0 0 0 0 CHsS,HtF
0 0 0 0 0 CT bS,Vj 0 0
0 0 0 0 CHsF ,Vj 0 0 0
0 0 CT bF ,Sw 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yN

yHtG
ySw

yLw

yHtS
yVj

yLj

yHtF

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4)
The connectivity equation (4) represents the thermal coupling of the fluid and gas
network. Combining all subsystems and their connectivity equations (4) yields the
resulting DAE.

DAEs resulting from automated modeling software typically obtain a structure
with (differential) index greater 1, cf. [2, 3] and hence are not suitable for a direct
simulation with standard solvers. In the setup of multiple physical networks it is
not sufficient, that the full DAE can be reduced to a d-index (differential index) 1.
Additionally, each subsystem, to which a solver is applied, has to fulfill d-index
1 conditions as well, cf. [1]. In our applications an automatic index reduction is
performed if the gas or the fluid system happens to be of d-index 2.
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2 Multirate Integration for Coupled Network DAEs

Based on the physical background the full DAE is partitioned to n ∈ N subsystems
(typically n & 2) in our multirate approach. Each subsystem is index reduced
according to the available literature, cf. [2, 3]. Since in the global network the
individual subsystems are interacting with each other, i.e. inputs and outputs are
connected according the connectivity equation (4), it is necessary to put it into
an input-output form. For this purpose, each subsystem i = 1, . . . , n classifies its
inputs ui , state variables xi , algebraic variables ai and outputs yi . To conclude, this
approach yields a coupled system of n semi-explicit DAEs in input-output form of
(differential) index 1. For inputs ui given by Eq. (4), find xi , ẋi , ai and yi , such that

ẋi = fi(xi, ai, ui, t)
0 = ri(xi, ai, ui, t)
yi = gi(xi, ai, ui, t)

(5)

for i = 1, . . . , n. A careful choice of the connectivity matrix given in (4) guarantees
that the coupled system obtains (differential) index 1 as well, cf. [1, 4]. E.g. one
possible choice is the usage of differential states, which are not involved in any
index reduction, as coupling variables.

For each subsystem (5) an arbitrary Runge-Kutta method with micro-step sizes
hi is used. The choice of the actual integration technique depends on the properties
of the underlying system and can be explicit, implicit, fixed or adaptive. The whole
system is integrated via a non-iterative co-simulation technique with macro-step
size H = max(hi). Further examples and explanations concerning this multirate
technique can be found in [5].

3 Simulation of a Vehicle Cabin Heating via Air
Conditioning

We consider a vehicle cabin heating example, cf. Fig. 1 in the system simulation
software AVL CRUISE.™ M1 Cooling and heating of the airflow and its circulation
into and out of the passenger compartment is modelled using Eqs. (1)–(4). Three
circuits (cooling, air flow and cabin air) are exchanging heat via heat exchangers.
A fluid circuit filled with a propylene glycol water mixture is used as cooling
and heating device. The fluid circuit is thermally coupled to a gas circuit (heating
ventilation and air conditioning (HVAC)) via solids masses. Again, the HVAC is

1 https://www.avl.com/de/cruise-m.
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Fig. 1 Schematic representation of a vehicle cabin heating air conditioning system

Table 1 Comparison of singlerate and multirate approach corresponding CPU-time and average
real time factor (RTF)

Case CPU-time Avg RTF Global step Fluid step Gas step Solid step Sync step

Singlerate 177.32 s 0.5910 1ms – – – –

Multirate I 163.86 s 0.5461 – 1 ms 1 ms 1 ms 1 ms

Multirate II 143.64 s 0.4787 – 5 ms 5 ms 1 ms 1 ms

Multirate III 95.64 s 0.3188 – 5 ms 5 ms 1 ms 5 ms

Multirate IV 78.73 s 0.2624 – 10 ms 10 ms 1 ms 10 ms

Multirate V 59.03 s 0.1967 – 50 ms 10 ms 1 ms 50 ms

thermally coupled to another gas circuit (cabin air) via solid masses. Each circuit
has a specific dynamic and behaviour.

This example is used to put the multirate approach presented in Sect. 2 in
context with a singlerate (single solver) approach (both sequential/single CPU),
cf. Table 1. The singlerate approach Singlerate is using one global step size of
1ms for all domains. On the other hand in the multirate cases the step sizes
are adapted according the corresponding physical domains fluid, gas and solid.
Additionally a synchronization step size is defined where the individual systems
are exchanging their data. In Multirate I-Multirate V the step sizes of the fluid
and the gas circuits are successively increased. All listed multirate cases provide
a stable system simulation with sufficiently accurate physical results. Thereby, case
Multirate V provides the most significant reduction of the calculation time from
over 170s to under 60s compared to the singlerate case.

4 Conclusion

As shown, the multirate approach offers a possibility to reduce computation time
considerably. In order to ensure a stable simulation, automatic index reduction of the
physical networks, appropriate solver settings for each subsystem and an adequate
coupling procedure, play a decisive role. For a suitable solver parametrization a
significant speed up can be achieved, while conserving the accuracy criteria.
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Mathematical Models for
Electromagnetic Conditions in
Submerged Arc Furnaces

Svenn Anton Halvorsen, Mads Fromreide, Manuel Sparta, and Vetle
Kjær Risinggård

Abstract The competence project, “Electrical Conditions and their Process Inter-
actions in High Temperature Metallurgical Reactors (ElMet)”, has involved close
cooperation between NORCE Norwegian Research Centre, Norwegian University
of Science and Technology (NTNU), the universities of Oxford and Santiago de
Compostela, and the industrial companies Elkem and Eramet Norway. Various
mathematical modelling has been applied to get improved insight into the inner
conditions in submerged arc furnaces. Equation analysis, non-dimensionalized
equations, toy models and other simplified models have been utilized to acquire
sound fundamental insight. The paper describes some important results based on
analysis and simple models.

1 Introduction

The design and operation of smelting furnaces have been gradually improved
through industrial experience, research, modern process control, new and/or
improved measurements, etc. Nevertheless, due to the complexities of the processes,
several process variations are not properly understood. The furnace center is
hot, above 2000 ◦C for some processes, and reliable measurements of the inner
conditions are extremely difficult.

Smelting processes are energy intensive. The power is normally supplied by high,
3-phase, electric currents, often more than 100 000 amps. The current paths depend
on electrical resistivity of the raw materials, intermediate reaction products, and the
metal that is produced. As a result, there is a strong interaction between electrical
current paths, temperature distribution, and chemical reactions. In a knowledge-
building project, “Electrical Conditions and Their Process Interactions in High-
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Fig. 1 Typical geometry for 3D simulations. The furnace is encapsulated by a steel shell and
consists of regions with very different electrical conductivities: Raw and partly reacted materials,
vertical electrodes in contact with carbon enriched regions, metal layer, and lining (carbon and
ceramic brics)

Temperature Metallurgical Reactors (ElMet)”, mathematical modelling has been
applied to investigate this challenging problem [8]. The project has involved close
collaboration among NORCE Norwegian Research Centre, the companies Elkem
and Eramet Norway, and the Norwegian University of Science and Technology
(NTNU), the University of Oxford, and the University of Santiago de Compostela.

Figure 1 shows the geometry for a typical full, 3D simulation, cf. for instance [6,
10]. This paper will, however, discuss how equation analysis and simplified models
can give good insight, and be a valuable supplement to realistic, large, 3D models.

Electromagnetics is described by Maxwell’s equations. In the ElMet project, we
have assumed harmonic time variation and neglected higher harmonics. Depending
on the conditions, Maxwell’s equations cover [7]:

• Electromagnetic waves
• High frequency alternating current (AC)
• Low/moderate frequency AC
• Direct current (DC), or AC that at any time instant looks like DC

Previous equation analysis revealed that two physical parameters are important,
the electromagnetic wavelength, λ, and the skin depth, δ, see for instance [9]:
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λ = c

f
, δ = 1/

√
πf σeμ (1)

where c is the speed of light, f is the frequency (normally 50 Hz), σe is the electrical
conductivity, and μ is the magnetic permeability.

The electromagnetic wavelength will be around 6,000 km, far bigger than the size
of the furnace. Hence, electromagnetic waves and the corresponding terms in the
equations can safely be ignored, cf. for instance [9]. The resulting set of equations
are well known as the low-frequency time harmonic Maxwell’s equations [1, 4, 5].
With this approximation, the governing equation for the electric field will be:

∇2E− 2i

δ2E = 0 (2)

Hence, there will only be one relevant material parameter, δ, for each material. The
skin depth is a characteristic length scale specifying how far the electromagnetic
fields will penetrate into a sufficiently thick conductor. For a single, thick conductor,
AC can be approximated by DC assuming only current in a layer of thickness δ.

2 Equation Analysis and Simple Models

First, consider a simple 2D rectangular conductor bounded by x = 0, x = L, y = 0,
and y = H . As boundary conditions, let the voltage be V0 at x = 0, and zero at
x = L, and let the E-field be parallel to the upper and lower boundaries (y = 0, and
y = H ). In non-dimensional form, Eq. (2) can be rewritten as:

H 2

L2

∂2

∂x̃2 Ẽ+ ∂2

∂ỹ2 Ẽ− 2i
H 2

δ2 Ẽ = 0, (3)

where we have introduced the non-dimensional parameters x̃ = Lx, ỹ = Hy and
Ẽ = E0E. E0 = V0/L is a typical value for the E-field.

Then assume that the geometry is long and thin,H ' L. The first term in Eq. (3)
will then be very small compared to the second one, and can be neglected. For
industrial purposes such approximation may be meaningful if the aspect ratio H/L
is only slightly less than 1/3, due to the quadratic dependence in Eq. (3). This long
and thin approximation supplies an equation for the 1D y-variation of the E-field
across the thin conductor, with boundary conditions Ex(0) = Ex(H) = V0/L and
Ey(0) = Ey(H) = 0. It is a proper approximation for the middle part but is not
necessarily appropriate close to each end, i.e. close to x = 0 or x = L.

For the y-component, the trivial solution Ey(y) = 0 satisfies Eq. (3) and the
boundary conditions at top and bottom. But the equation for Ex must be considered.
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∂2

∂ỹ2
Ẽx − 2i

H 2

δ2
Ẽx = 0 (4)

The qualitative behavior depends on the non-dimensional ratio (H/δ)2. If it is
very small, the second term vanishes, and Ex can vary linearly as function of y. In
our case, with the same boundary condition at the top and bottom, Ex(y) = V0/L,
i.e. constant. This is the direct current (DC) approximation/solution.

If (H/δ)2 is very large, the second term will dominate. Dropping the first term,
we get the trivial solution Ex(y) = 0, but this can only be a solution inside the
conductor. Close to the boundary, both terms in the equation are needed to satisfy
the boundary conditions. The conditions at the top and bottom do not influence
each other. The current is concentrated in thin layers at the top and bottom, and the
solution is well known [7]. With y increasing into the conductor:

Ex(y) = E0e
− 1+i

δ
y = (V0/L)e

− 1+i
δ
y (5)

The total current and the power will be equal to a direct current (DC) case, where
the current is confined to boundary layers of thickness δ.

If (H/δ)2 is moderate, the E-field will be somewhat reduced in the middle part,
with a phase shift [7].

To provide insight for AC in a furnace, we studied a comparatively simple
2D model, cf. Fig. 2. Around each electrode tip, there is a carbon enriched layer
called a carbon bed. The model includes electrodes, a carbon bed, very conductive
metal below, and low conductive (partly reacted) raw materials above. Outside these
materials, the model only assumes insulation (“air”) [6].

The electric field is described by Eq. (2), but with a different value of δ for
each material. The equation can be made non-dimensional similarly to Eq. (3).
When each material is considered one by one, it follows that the electrodes and
the metal behave as long and thin conductors with current confined to boundary
layers characterized by δ. The raw material region is characterized by (H/δ)2 ' 1,
i.e. “DC case”, while (H/δ)2 will be moderate for the coke bed.

Generalizing the insight from the rectangular conductor, the qualitative behavior
of the 2D model will depend on non-dimensional parameters like

(
Hi/Lj

)2 and
(Hi/δk)

2; i.e. squared aspect ratios and squared ratios of a geometric length/height
and a skin depth. The indices indicate that there are many choices, cf. Fig. 2.

Several simulations have been performed varying the relevant non-dimensional
parameters. A typical result is shown in Fig. 3, where the effect of the electrode
tip position is studied. The total current is the same in the two cases. The power
distribution close to the electrode is largely influenced by the electrode position,
while there is a large region between the electrodes where the power (and hence
also the current) distributions are equal. The figure clearly shows a unidimensional,
vertical variation here. The simulations revealed a strong proximity effect between
the current in the metal and the parallel currents in more resistive layers above [5, 6].



Mathematical Models for Electromagnetic Conditions in Submerged Arc Furnaces 393

Fig. 2 Geometry of simple 2D furnace model with dimensions and material parameters indicated

Fig. 3 2D case study: Power distributions for high and low positions of the electrodes. The figure
shows the left side of the symmetric solutions

DC simulations, with current confined to boundary layers in good conductors,
have been compared to AC. Significant differences were found for power in the
coke bed due to horizontal currents, but only minor differences for vertical [6].

The behavior has been studied by a 1D model for AC in parallel layers [5]. For
DC, the current is proportional to the conductivity in each layer (assuming a given
voltage drop to drive the currents). For AC, the electric currents will be “pushed
away” from a very conductive layer, into more resistive adjacent layers [4].

DC simulations are much simpler than AC and have traditionally been applied for
large electric furnaces, cf. for instance [2, 3, 12, 13]. Two DC computations can also
be combined into a 3D AC solution, neglecting induction effects [9]. In regions of
high conductivity, the current should be confined to skin layers. Our 2D simulations
show that this is not sufficient. The level and distribution of parallel currents in
adjacent layers, will be wrong. But if the associated power is sufficiently small, DC
computations might still provide a reasonable power distribution. Our 1D and 2D
models can be applied to check if this is the case.

High electric currents will be induced in the (magnetic) steel shell surrounding
the furnace [10, 11]. The 1D model shows that parallel currents then will be
enhanced in a possible conductive (carbon) lining [4]. 3D AC simulations are
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recommended to check whether significant power is generated in regions where
it is not wanted.

The 2D model and the 1D model for parallel layers, are proper toy models. They
are too simplified for realistic (quantitative) predictions but contain essential prop-
erties of the electrical conditions. They are therefore suited to study fundamental
problems. Basic understanding is far more easily detected/revealed than if more
complex models are applied. The simple models can also show where realistic 3D
(or 2D) simulations will be required and indicate the parameter range of interest.

3 Conclusions

During the ElMet project, we have experienced how mathematical equation anal-
ysis, non-dimensional equations, toy models and other simplified models can be
applied to acquire valuable insight. Such models are very valuable, but can be far too
simplified for direct, realistic, predictions. When quantitative information is needed,
the simple models need to be supplemented by realistic 2D and/or 3D simulations.
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Contaminant Removal by Adsorption

Marc Calvo-Schwarzwalder, Abel Valverde, Francesc Font, Maria Aguareles,
and Timothy G. Myers

Abstract We develop a mathematical model for filtration in a cylindrical column
packed with a porous material. The base model involves coupling an advection-
diffusion equation to a sink term which represents the sorption and is appropriate
when trace quantities are removed from the fluid. This is then extended to include
the variation of velocity and pressure, which is appropriate for the removal of
significant quantities, and leads to a system of five coupled equations. For the
case of CO2 removal we are able to reduce the complexity of the equations and to
derive an analytical expression for the breakthrough curve. This expression is then
verified against experimental data for the adsorption of CO2 from gas and antibiotics
from water. Finally, we show how the work may be modified to deal with certain
extraction processes, where a clean fluid is used to remove material from the porous
matrix, such as lanolin from wool.

1 Introduction

Sorption is one of the standard methods for contaminant removal. It may be applied
to both liquids and gases, is regarded as efficient and relatively easy to incorporate

M. Calvo-Schwarzwalder
Zayed University, Abu Dhabi, UAE
e-mail: marc.schwarzwalder@zu.ac.ae

A. Valverde · T. G. Myers (�)
Centre de Recerca Matemàtica, Barcelona, Spain
e-mail: avalverde@crm.cat; tmyers@crm.cat

F. Font
Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: francesc.font@upc.edu

M. Aguareles
Universitat de Girona, Girona, Spain
e-mail: maria.aguareles@udg.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_52

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_52&domain=pdf

 885 44115 a 885 44115
a
 
mailto:marc.schwarzwalder@zu.ac.ae

 885 47989 a 885 47989 a
 
mailto:avalverde@crm.cat

 8645
47989 a 8645 47989 a
 
mailto:tmyers@crm.cat

 885 51863 a 885 51863
a
 
mailto:francesc.font@upc.edu

 885
55738 a 885 55738 a
 
mailto:maria.aguareles@udg.edu

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-11818-0_52


398 M. Calvo-Schwarzwalder et al.

into an industrial production chain. In practical situations, column sorption is one
of the most popular methods and has proved effective in a wide range of processes,
such as the removal of emerging contaminants, volatile organic compounds, CO2,
dyes and salts [1].

As discussed in [2], currently accepted mathematical models present a number of
errors and inconsistencies. These problems have propagated through the literature,
for example the wrong choice of adsorbate density, an incorrect averaging of the
equations, or inconsistent retention or neglect of terms.

In this work we derive a mathematical model consisting mainly of an advection-
diffusion equation and a kinetic equation describing the mass transfer. The model
is then applied to two different removal processes in Sects. 3.1 and 3.2 and the
necessary modifications to apply it also on extraction processes is discussed in
Sect. 3.3.

2 Mathematical Model

A schematic of the experimental set-up can be observed in Fig. 1. Due to the
complex cross-sectional configuration of the column (randomly packed with sorbent
material)the model is radially averaged. The flow occupies a cross-sectional area
επR∗2, where ε is the porosity of the sorbent and ∗ notation refers to dimensional
quantities.

The gas, which enters the column at a constant rate u∗0, consists of two
components that are related to the density via ρ∗ = M∗

1 c
∗
1 +M∗

2 c
∗
2, withM∗

i and c∗i
being the molar mass and molar concentration of the species i. We assume that the
only species being adsorbed during the process is c∗1. At the inlet, the concentration
of each species is c∗i0. In practise, the main gas component is not the one being
removed, therefore we assume c∗10 < c∗20. Experimentally the inlet flow rate is
maintained at a constant value using a flow meter. Hence the inlet pressure varies,

Gas in Gas out

L∗

R∗

Fig. 1 A two-component gas mixture is passed through a column of length L∗ and radius R∗ filled
with a porous adsorbing material. We assume that only one component is adsorbed in the column.
The void area per unit length is described by the porosity ε
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p∗0(t∗), whereas at the outlet the pressure is ambient p∗a . Finally, the amount of
transferred material is described by q̄∗. Hence, the main variables of the problem
are c∗1, c∗2, q̄∗, u∗ and p∗. Since it is often imperative to remove all contaminant for
a certain period, there must exist a point within the column where c1 = 0. We denote
this position by s∗(t∗), such that c∗1 = q̄∗ = 0 for x∗ ≥ s∗(t∗) and consequently
deal with a moving boundary problem. A standard experimental measurement is the
‘breakthrough curve’ this is the contaminant concentration at the outlet (which is
zero until the time s∗(t) = L∗ where L∗ is the column length).

The mass conservation equation for c∗1 includes a sink term due to the material
being adsorbed. There are a number of models describing the mass transfer that
defines the sink term, a very common one being the linear kinetic equation

∂q̄∗

∂t∗
= k∗q

(
q̄∗s − q̄∗

)
, (1)

where k∗q is the rate constant and q̄∗s is a saturation value. As pointed out in [2, 3],
it is common to directly integrate this equation subject to q∗(x, 0) = 0. This is not
correct, Eq. (1) only holds in the interval x∗ ∈ [0, s∗(t∗)] and the initial condition
should be q∗(s∗(t∗), t∗) = 0, resulting in a space-dependent expression. Finally, we
close the system of equations by invoking the ideal gas law and considering a form
of pressure–velocity relation derived from Navier-Stokes equations by accounting
for mass loss and for viscous and inertial resistance. In the current study, we consider
that the system is held at a constant temperature T ∗, although we could include a
heat equation if temperature variations are important.

Upon non-dimensionalisation the governing equations become

δ1
∂c1

∂t
+ ∂

∂x
(uc1) = δ2

∂2c1

∂x2 − ∂q̄

∂t
, δ1

∂c2

∂t
+ ∂

∂x
(uc2) = δ2

∂2c2

∂x2 , (2a)

∂q̄

∂t
= q̄s − q̄ , 1 + δ3p = δ4 (c2 + δ5c1) , (2b)

−∂p
∂x

= δ6(c2 + δ7c1)u
2 +

(
1 + δ8

∂q̄

∂t

)
u , (2c)

with boundary and initial conditions

1 =
(
uci − δ2

∂ci

∂x

)∣∣
∣
x=0+

,
∂ci

∂x

∣
∣
∣
x=L− = 0 , i = 1, 2 , (3a)

p(0, t) = p0(t) , p(L, t) = 0 , (3b)

c1(x, 0) = 0 , δ4c2(x, 0) = 1 + δ3pin , q̄(x, 0) = 0 , (3c)

where pin = p0(0) (1 − x/L). The values of the eight non-dimensional parameters
depend on each specific situation, in Sect. 3.1 we use the values from [3].
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3 Applications of the mMdel

In Sect. 3.1 we apply the model on the process of carbon capture from a gas and in
Sect. 3.2 we look at drug removal from water. In Sect. 3.3 we summarize how this
formulation is modified to be applied to extraction and erosion processes, using the
example of extracting lanolin from wool.

3.1 Removal of CO2 from a Gas Mixture

Consider a mixture of CO2 and N2 flowing through a bed of activated carbon. Using
the data of [4] we obtain δ4 = 0.85 , δ5 = 0.18 , δ7 = 0.28 whereas the remaining
parameters are of the order of 10−2 or smaller. Neglecting small terms suggests
errors of the order of 1%. Noting that q̄s = 1+O (δ3) [3], the problem for c1 and q̄
can be reduced to the coupled equations

∂

∂x

( c1

1 + δ45c1

)
= −∂q̄

∂t
,

∂q̄

∂t
= 1 − q , (4)

where δ45 = δ4δ5 = 0.13. The denominator on the left results from expressing u in
terms of c1. The required boundary conditions are

1 = (uc1)|x=0+ ,
∂c1

∂x

∣
∣
∣
x=L− = 0 , q̄(s(t), 0) = 0 . (5)

This reduced problem can be solved analytically as there exists a travelling wave
solution, provided the front propagates at a constant speed. We define the variable
η = x − s(t) where ds/dt = v is constant. The system can be easily be integrated
and we find v = 1 by imposing uc1 → 1 behind the moving front (formally as
η→ −∞). Consequently s(t) = s0 + t , where s0 is determined from experimental
data for breakthrough (the traveling wave solution does not hold at t = 0). Typically
we may impose s(tb) = L where tb is the time measured for first breakthrough or,
following the discussion in [3], the time when the value of c1 is half the inlet value,
s0 = L− t1/2 + ln(2 − δ45) = L− tb.

After writing the solution in dimensional form and setting x∗ = L∗ the
breakthrough curve, i.e., the concentration of CO2 leaving the outlet, is

c∗1(L∗, t∗)
c∗10

=
1 − exp

[
−k∗q(t∗ − t∗b )

]

1 − (R∗
gT

∗c∗10/p
∗
a) exp

[
−k∗q(t∗ − t∗b )

] . (6)

In Fig. 2 we can see the concentration of CO2 measured at the outlet as predicted
by (6). It can be observed how our model is able to capture the trend of the
experimental data with a good level of accuracy. Some qualitative differences are
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Fig. 2 Comparison between the breakthrough curve 6 and experimental data from [4], where a
mixture of CO2 and N2 passes through a bed of activated carbon. The experimental data refers to
the concentration of CO2 measured at the outlet

observed near t∗ = t∗b , where the experimental data suggests a smooth increase that
our model does not seem to capture.

3.2 Removal of Amoxicillin from Water

In this section we will compare the expression (6) to the available data for removal
of amoxicillin in water by activated carbon [9].

First of all, we note that unlike in the case of CO2 removal with amoxicillin we
expect only trace amounts in the fluid and hence the velocity is constant everywhere.
In this case the breakthrough curve reduces to a simpler form

c∗1(L∗, t∗)
c∗10

= 1 − exp
[− k∗q(t∗ − t∗b )

]
. (7)

A number of alternative models can be found in the literature, such as the
Thomas, Yoon-Nelson or the Bohart-Adams models [5–7]. All of these have similar
expressions for the breakthrough curve,

c∗1(L∗, t∗)
c∗10

= 1

1 + a∗ · exp (−b∗t∗) , (8)

where a∗ and b∗ are parameters specific to each model [8]. Since their values
are determined by fitting to experimental data, these models are mathematically
equivalent.
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Fig. 3 Prediction of the breakthrough curve according to (6) (dashed red), (7) (dotted magenta)
and (8) (solid blue). For more information about the least-square fittings we refer to [3].
Experimental data are taken from [9, Fig. 9]

The performance of the three considered formulations can be observed in Fig. 3.
We can observe that both models presented here provide an excellent agreement
with the experimental data, whereas (8) (which has two fitting parameters) fails to
capture the trend during most of the time period considered.

3.3 Model Reformulation for Extraction Processes

Although the physics of adsorption and extraction processes are different, they can
be described mathematically in a similar way. Both processes are governed by
advection-diffusion equations, with the difference that the sign of the source term
must be switched as material of interest is now released into the solvent rather than
extracted from it. Specifically, we are interested in a situation like the one depicted
in Fig. 4, where the column now contains a number of fibers formed by a solid core
and an outer layer of material to be eroded. The source term is now related to the
mass being released to the solvent, therefore it depends on the rate of change of the
fibers’ radii, which has an average value R(x, t). The main advection-diffusion and
mass transfer equations can be written, in non-dimensional formulation, as

δ1
∂

∂t
(εc)+ ∂

∂x
(εuc) = δ2

∂

∂x

(
D
∂

∂x
(εc)

)
− R∂R

∂t
,

∂R

∂t
= −(1 − c) . (9)

A key difference with respect to the model for adsorption is the fact the void fraction
and the diffusivity of the medium are included into the derivatives as both vary with
the fiber radius R. Secondly, the source term is now nonlinear as the mass released
into the solvent is proportional to R2, hence the rate is proportional to R(∂R/∂t).
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Solvent in Solvent out

L∗

R∗
b

Fig. 4 Diagram showing a column of length L∗ and cross-sectional radius R∗
b with variable void

fraction ε(x∗, t∗), containing a number n of ideal cylindrical fibers with average radius R∗(x∗, t∗),
each consisting of a core of radius R∗

c and a outer layer of material which is eroded

To describe the decrease we have used a linear relation which states erosion occurs
until the concentration in the solvent reaches a certain saturation value (here scaled
to unity).

Previous investigations involve numerical solutions, see [11, 12], and none of
the previous models in the literature deal consistently with the variation of the
void fraction ε. In [13] the above equations are solved analytically by combining
a perturbation method based the assumption that the total decrease of the fiber
radius is small and a travelling wave. The final outcome, key to experimentalists,
is the extracted fraction X, which is similar to the breakthrough curve and measures
the total concentration of eroded material leaving the column outlet. In the case
of lanolin, experiments show that the saturation concentration switches during the
process (the newly formed outer lanolin is easily soluble, whereas the inner material
tends to be much harder to remove). This requires that the constant in the Rt
equation changes at a specified radius. Results from the model are compared against
the experimental data for lanolin extraction of [10] in Fig. 5.

4 Conclusions

In this study we have presented a mathematical model to describe the flow of a fluid
through a packed column where one of its components is being adsorbed into the
medium. Approximate solutions to the model may be obtained by neglecting small
terms and a travelling wave assumption. The model was verified by comparison with
experimental data for the removal of CO2 and amoxicillin. Previous formulations,
such as the classical Bohart-Addams model, do not always capture the experimental
data, whilst the model presented here shows an overall good agreement with it.
Although there are examples where Bohart-Adams can show the better agreement.
A simple adaptation of the model permitted us to also examine extraction processes.
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Fig. 5 Analytical prediction of extracted fraction X, taken from [13], and experimental data of
Eychenne et al. [10]

Our model is not perfect, for one thing it does not capture the physics near the
breakthrough time. This is the subject of our current research and, at the moment,
appears to be a result of the approximation form for the contaminant sink.
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Vector Lattice Boltzmann Equations:
From Magnetohydrodynamics to Active
Matter

Paul J. Dellar

Abstract We present a lattice Boltzmann algorithm for simulating magnetohy-
drodynamics, and extend it to simulate the Jeffery equation that describes the
rotating orientations of axisymmetric particles in a dilute suspension. Both systems
involve material vector fields that evolve through the curl of another vector field.
Both systems thus require an underlying kinetic formulation using vector fields, in
contrast to the scalar fields used in the Boltzmann equation, and in lattice Boltzmann
algorithms for hydrodynamics. Simulating Jeffery’s equation requires extra gradient
terms that cannot be written in conservation form. These gradients are obtained
locally at grid points using the non-equilibrium parts of the kinetic vector fields
representing the particle orientations, and the kinetic scalar fields representing the
suspending fluid. The kinetic formulation is discretised using a Strang splitting
between advection to neighbouring grid points and local algebraic operations at grid
points.

1 Introduction

Magnetohydrodynamics (MHD) describes the flow of electrically conducting fluids
in magnetic fields by coupling the Maxwell and Navier-Stokes equations. MHD
flows arise in the interiors of stars and planets, in smelting and processing liquid
metals and semiconductors, and in magnetic confinement fusion reactors [5].
The MHD equations have many structural similarities with recently-developed
continuum models for suspensions of rod-like particles [13, 22, 23] that are based on
Jeffery’s equation for a single axisymmetric particle in Stokes flow [2, 16, 17]. This
work describes how a numerical method for solving the MHD equations [6] using
the lattice Boltzmann approach [1, 19] can be adapted to simulate these suspensions.
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2 Lattice Boltzmann Hydrodynamics

The Boltzmann equation describes a rarefied gas using a single scalar field f (x, c, t)
for the number density of particles at position x moving with velocity c at time t ,

∂tf + c · ∇f = C[f, f ]. (1)

The left-hand side represents linear advection of f with the particle velocity c.
All nonlinearity is confined to the right-hand side. Boltzmann’s binary collision
operator C[f, f ] describes collisions between pairs of particles via a nonlocal
integral operator over c. The Navier-Stokes equations describe solutions of the
Boltzmann equation that vary slowly compared to the timescale of collisions [4].

The lattice Boltzmann approach restricts c to a discrete set c0, . . . , cN , thus
replacing f (x, c, t) with a discrete set of functions fi(x, t) that evolve according
to

∂tfi + ci · ∇fi = −1

τ

(
fi − f (0)i

)
(2)

for i = 0, . . . , N . This right-hand side models collisions through a linear relaxation
on a prescribed timescale τ towards equilibria f (0)i that are prescribed functions of
the local fluid density ρ and velocity u. These macroscopic quantities are given by
moments of the fi ,

ρ =
N∑

i=0

fi, ρ u =
N∑

i=0

cifi . (3)

In 2D, the ci are commonly chosen to be the nine shown in Fig. 1 with [21]

f
(0)
i = wiρ

{

1 + 3u · ci + 9

2

(

(ci · u)2 − 1

3
|u|2

)}

. (4)

The weights are w0 = 4/9, w1,2,3,4 = 1/9 and w5,6,7,8 = 1/36. From (2) we can
derive the lattice Boltzmann equation for some transformed variables f i ,

f i(x+ cit, t +t) = f i(x, t)−
t

τ +t/2
(
f i(x, t)− f (0)i (x, t)

)
. (5)

We can integrate (2) along its characteristics [14] for a time stept , or we can apply
a Strang splitting into advective and algebraic parts that are solved separately [8].

Using a multiple-scales expansion of both the fi and the time derivative in a
small parameter ε = τ/T with suitable solvability conditions, we can find solutions
of (2) for which ρ and u evolve on a slow hydrodynamic timescale T according to
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Fig. 1 The nine discrete
velocities c0, . . . , c8 used for
the hydrodynamic scalar
fields fi and the five discrete
velocities (red, thicker lines)
used for the magnetic vector
fields gi . The ci are scaled so
that each particle propagates
from a grid point x to an
adjacent grid point x+ cit
over a time step. The grid
points are indexed by I and J

J+1

J

J -1

1+I1- I I

0 1

26

3

4

5

7 8

∂tρ + ∇·(ρu) = 0, ∂t (ρu)+ ∇·(Π(0) +Π(1) + · · · ) = 0. (6)

These are macroscopic mass and momentum conservation laws. The solvability
conditions leave ρ and u, the quantities conserved under collisions, unexpanded,
while the momentum flux Π =∑

i cicifi is expanded in ε as Π = Π(0) + Π(1) +
· · · .

The equilibria (4) giveΠ(0) = c2
sρ I+ρ uu with pressure p = c2

sρ and constant
sound speed cs = 1/

√
3 in “lattice units” with x = t = 1. We thus recover the

compressible Euler equations at leading order. The multiple-scales expansion gives

Π(1) = − τ ρc2
s

(
(∇u)+ (∇u)T

)
+ τ ∇·(ρu u u), (7)

so at next order we recover the Navier-Stokes viscous stress with dynamic viscosity
μ = τρc2

s , and an error term τ ∇·(ρuuu). The error term is smaller than the viscous
stress by the square of the Mach number |u|/cs. It is an artifact created by using the
discrete velocity set in Fig. 1 with only nine velocities.

3 Lattice Boltzmann Magnetohydrodynamics

The magnetic field B evolves according to Maxwell’s equation ∂tB + ∇×E = 0,
where E is the electric field. We can rewrite this equation in divergence form as

∂tB+∇·Λ = 0 (8)
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using the tensor Λ with components Λαβ = −εαβγ Eγ . This now resembles the
momentum equation in (6), except Π = ∑

i cicifi is symmetric by construction,
while Λ is antisymmetric. It is thus impossible to represent (8) using scalar fields
fi .

Instead, inspired by work conducted at the Schlumberger-Doll laboratory to
simulate magnetic resonance imaging of flow in porous media [12], we can represent
the magnetic field as the sum of a set of kinetic vector fields gi (x, t) that evolve as

∂tgi + ci · ∇gi = − 1

τΛ

(
gi − g(0)i

)
, (9)

where

g(0)i = Wi
(
B+!−1ci ·Λ(0)

)
, (10)

withΛ(0) = uB−Bu. It is sufficient to use five discrete velocities in 2D, as shown
in Fig. 1, with weightsW0 = 1/3,W1,2,3,4 = 1/6 and lattice constant ! = 1/3.

Summing (9) over i and applying another multiple-scales expansion gives

∂tB+∇·(Λ(0) +Λ(1) + · · · ) = 0, (11)

for the moments

B =
4∑

i=0

gi , Λ(n) =
4∑

i=0

ci g
(n)
i . (12)

We obtain ideal MHD at leading order as Λ(0) = uB− Bu. The first correction is

Λ(1) = −τΛ !∇ B, (13)

for which (11) gives the resistive MHD induction equation with resistivity η =
τΛ !,

∂tB = ∇×(u×B)+ η∇2B, (14)

using ∇·B = 0. The Lorentz force (∇×B)×B exerted by the magnetic field on
the fluid can be rewritten as the divergence of the Maxwell stress. The Maxwell
stress can be included in the equilibrium momentum flux Π(0) by redefining the
f
(0)
i [6]. The resulting algorithm has been employed for large simulations of 3D

MHD turbulence [24] and of liquid metal cooling blankets for fusion reactors [20].
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4 Jeffery’s Equation for Axisymmetric Particles

Jeffery’s equation describes a torque-free axisymmetric rigid particle immersed in a
Stokes flow with a uniform velocity gradient L at infinity [2, 16, 17]. The unit vector
p directed along the symmetry axis evolves according to

ṗ = Ω · p+ β (E · p− pp · E · p) , (15)

whereΩ = 1
2 ( L−LT ) and E = 1

2 ( L+LT ) are the antisymmetric and symmetric
parts of the tensor L. The last term in (15) preserves the normalisation |p| = 1, as
ṗ · p = 0. The Bretherton shape parameter β equals (r2 − 1)/(r2 + 1) for spheroids
with aspect ratio r , so β ≈ 1 for slender rods with r & 1, while β = 0 for spheres.

To describe a dilute suspension of particles we treat p(x, t) as a vector field, and
replaceLwith the local velocity gradient ∇u, assumed to vary on lengthscales much
larger than the particle size. We also replace ṗ with a material time derivative,

∂tp+ u · ∇p = p · ∇u+ ( β − 1) E · p− β pp · E · p. (16)

To make a closer connection with the MHD induction equation, and because lattice
Boltzmann algorithms simulate compressible fluids with finite sound speeds, we
introduce P = ρ p, normalised by |P| = ρ. The vector field P evolves according to

∂tP = ∇×(u×P)− u∇·P+ ( β − 1) E · P− ( β/ρ2)PP · E · P. (17)

The first term on the right-hand side now exactly matches the MHD induction
equation (14). The remaining terms arise because we have replaced ∇·B = 0 by
|P| = ρ, and because particles with β < 1 do not align perfectly with the velocity
gradient, in contrast to magnetic fields. However, if we represent P = ∑

i gi as
in Sect. 3 we can obtain ∇·P from Tr Λ using (13), and E from T = Π − Π(0)

using (7), giving

∂tP = ∇×(u×P)+ 1

τΛ!
u Tr Λ+ 1 − β

2τc2
sρ

P · T + β

2τc2
sρ

3 PP · T · P. (18)

5 Discretisation by Strang Splitting

To discretise the above, we separate the algebraic right-hand side of the kinetic
equation for the gi from the pure advection ∂tgi + ci · ∇gi = 0 that gives rise to the
∇×(u×P) term. The advection can be solved exactly, as in (5), and the algebraic
terms by the Crank-Nicolson method. The lattice Boltzmann method relies upon an
almost exact cancellation between the Crank-Nicolson truncation error and the error
due to Strang splitting [3, 8].
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The algebraic terms are best treated by evolving the moments of the gi , then
reconstructing the gi from the moments. For example, if we represent P using the
five discrete velocities shown in Fig. 1, P, Λ and M = ∑

i cicigi form a basis of
moments sinceMαβγ ≡ 0 for α �= β. We can reconstruct the gi from

giβ = 1
2

(
ciαΛαβ + ciγ ciαMγαβ

)
for i �= 0, g0β = Pβ −Mααβ. (19)

We can similarly complete ρ, ρu,Π to form a basis for the nine moments of the fi .
The non-equilibrium momentum flux T = Π −Π(0) evolves under collisions as

∂tT = − (1/τ)T . (20)

Discretising this ODE using the Crank-Nicolson method gives

T (t +t)− T (t)
t

= − 1

2τ
(T (t +t)+ T (t)) , (21)

which rearranges into

T ′ = τ −t/2
τ +t/2 T , (22)

on writing T ′ for T (t +t) and T for T (t). Similarly, the Crank-Nicolson method
for the evolution of Tr Λ, using Tr Λ(0) = 0, gives

Tr Λ′ = τΛ −t/2
τΛ +t/2 Tr Λ. (23)

A partial Crank-Nicolson approximation for the algebraic terms in (18) is

P′ − P
t

= 1

τΛ!
u Tr Λ̃+ 1 − β

2τρc2
s
P · T̃ + β

2τρ3c2
s
P P · T̃ · P, (24)

where Λ̃ = 1
2 (Λ

′ +Λ) and T̃ = 1
2 (T

′ + T ). The right-hand side is evaluated using
only P, rather than a mixture of P and P′. A justification for this approximation is
that Tr Λ and T evolve on the fast collisional timescales τΛ and τ , while P evolves
on a slow hydrodynamic timescale. Solving (24) for P′ using (22) and (23) gives

P′ = P+ 1

!

t

τΛ +t/2 u Tr Λ+ 1 − β
2c2

sρ

t

τ +t/2 P · T

+ β

2c2
sρ

3

t

τ +t/2 P P · T · P, (25)

where every quantity on the right-hand side is evaluated at time t .
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To evolve the remaining moments Λ and M , we form the non-equilibrium part
of each moment using P, evolve the non-equilibrium part using a Crank-Nicolson
time step, then reconstruct the full moment using P′, for example

Λ′ = Λ(0)′ + τΛ −t/2
τΛ +t/2

(
Λ−Λ(0)), (26)

where Λ(0) = uP − Pu and Λ(0)
′ = uP′ − P′ u. This procedure ensures that the

relations (7) and (13) expressing E and ∇·P in terms of non-equilibrium moments
hold despite P changing. It is equivalent to the so-called exact difference method for
implementing body forces in lattice Boltzmann hydrodynamics [9, 18]. Taking the
trace of (26) gives (23) as above, since Tr Λ(0)

′ = Tr Λ(0) = 0. From P′, Λ′ and
M ′ we can reconstruct the post-collisional functions g′i using (19), then advect them
to adjacent grid points to obtain the gi at the next time step,

gi (x, t +t) = g′i (x− cit). (27)

6 Numerical Example: Poiseuille Flow of a Suspension of
Long Rods

Jeffery’s equation describes how fluid flow affects the orientation of suspended
particles. To obtain interesting behaviour, the particles should in turn affect the
flow. Continuum models of active rod suspensions [13, 22, 23] contain a stress
proportional to pp, equivalent to the Maxwell stress due to a magnetic field in an
incompressible fluid. As a first step, we consider a suspension of passive long rods
(r & 1) large enough to be unaffected by Brownian motion. The momentum flux is
then [10, 11, 15]

Π = c2
sρ I + ρ uu− μ (2E +N ppp · E · p) . (28)

The anisotropic extra stress along pp proportional to the non-Newtonian parameter
N ∼ φr2/ log r can be significant for r & 1 even at low volume fractions φ.

This anisotropic viscous stress is mathematically identical to a common model
for the stress in a strongly magnetised plasma, known as Braginskii MHD, if we
take p = B/|B| to be a unit vector parallel to the magnetic field. To obtain (28) from
our kinetic formulation we adjust (22) to apply a different relaxation time τ‖ to the
component p · T · p of the stress [7]

T ′ = τ⊥ −t/2
τ⊥ +t/2 T +

(
τ‖ −t/2
τ‖ +t/2 − τ⊥ −t/2

τ⊥ +t/2
)

ppp · T · p. (29)
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The time τ⊥ determines the fluid viscosity perpendicular to (or in the absence of)
the particles, while τ‖ = (1+N/2) τ⊥ is enhanced by a factor ofN/2 as in (28). We
can still obtain a kinetic approximation to the strain rate from the isotropic formula

E = (
T − T ′ )/(2 ρ c2

st), (30)

because E is determined by the advective terms on the left-hand side of (5).
The Poiseuille flow of such a suspension, with u = u(y, t) x̂ driven by a constant

body force f x̂ in the usual rheological axes, is governed by the coupled system [10]

∂t θ = − (1/2) (1 − β cos 2θ) ∂yu+ κ ∂yyθ, (31a)

∂tu = f + ∂y
(
ν(θ) ∂yu

)
. (31b)

The effective viscosity is a function of the angle θ between the rods and the x-axis,

ν(θ) = ν0
(
1 +N sin2 θ cos2 θ

)
. (32)

This system also includes a small orientational diffusivity κ ∝ τΛ analogous to
the resistivity in the MHD induction equation (14). For β < 1 it has solutions that
oscillate in time as the rods rotate. Figure 2 shows this oscillating parabolic profile
in a numerical experiment with β = 0.9, N = 10, and θ = sin(2πy) initially.

Fig. 2 Oscillatory streamwise velocity in Poiseuille flow for a suspension of elongated particles
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7 Conclusion

A lattice Boltzmann approach has been presented for simulating Jeffery’s equation
that describes the evolution of the orientation field p for a suspension of axisymmet-
ric rigid particles, exploiting its close similarity with the MHD induction equation.
The primary difference is the replacement of the divergence-free constraint ∇·B = 0
by the normalisation condition |p| = 1. The necessary extra gradient information is
available locally at grid points from the non-equilibrium parts of the hydrodynamic
and orientational kinetic fields. Jeffery’s equation underpins continuum models
of many physical systems involving suspensions of non-spherical particles: liquid
crystals, active rods, gyrotactic bacteria, and ferrofluids [22, 23].
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A Deep Smoothness WENOMethod with
Applications in Option Pricing

Tatiana Kossaczká, Matthias Ehrhardt, and Michael Günther

Abstract We present the novel deep smoothness weighted essentially non-
oscillatory (WENO-DS) method and its application in finance. To improve the
existing WENO method, we apply a deep learning algorithm to modify the
smoothness indicators of the method. This is done in a way that preserves the
consistency and accuracy of the method. We present our results using a European
digital option as an illustrating example. Here we avoid the undesirable oscillations,
especially in the first time steps of the numerical solution.

1 Introduction

In this work, we use the newly developed weighted essentially non-oscillatory
(WENO-DS) method for solving the (backward-in-time) Black-Scholes equation

Vt + 1

2
σ 2S2VSS + rSVS − rV = 0, t ∈ [0, T ], (1)

where S is the price of an underlying asset at time t , r > 0 is the riskless interest
rate and σ 2 is the volatility.

The WENO method [9] is a high-order method, originally developed for solving
hyperbolic conservation laws, where strong discontinuities appear in the solution.
Later, it was also generalized also for solving of nonlinear degenerate parabolic
equations [10]. Many modifications of the original WENO schemes have been done
later and we focus in this paper on the WENO-Z method introduced in [1] and
MWENO method developed in [2].

T. Kossaczká (�) · M. Ehrhardt · M. Günther
Angewandte Mathematik und Numerische Analysis, Bergische Universität Wuppertal, Wuppertal,
Germany
e-mail: kossaczka@uni-wuppertal.de; ehrhardt@uni-wuppertal.de; guenther@uni-wuppertal.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_54

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_54&domain=pdf

 885 55738 a 885 55738 a
 
mailto:kossaczka@uni-wuppertal.de

 12511 55738 a 12511 55738
a
 
mailto:ehrhardt@uni-wuppertal.de

 23467 55738 a 23467 55738 a
 
mailto:guenther@uni-wuppertal.de

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-11818-0_54


418 T. Kossaczká et al.

In computational finance problems, we often face the problems with disconti-
nuous initial or terminal data. Therefore, the WENO scheme has been used, e.g. in
[3, 6] for solving of these problems. In this paper, we solve the European digital
option pricing problem with the following terminal and boundary conditions:

V (S, T ) =
{

1, if S ≥ K,
0, if S < K,

V (S, t)→ 0, for S → 0, V (S, t)→ e−r(T−t), for S → ∞,
(2)

with K being a strike price.
Although the WENO scheme should avoid the spurious oscillations in the

solution, they are still present in some cases, especially in the first time steps of
the numerical solution. This motivates us to use the enhanced WENO-DS scheme
[7, 8] for solving the European digital option pricing problem.

2 The WENO-DS Scheme

Here we briefly summarize the basic idea of the WENO-DS method. We consider
the following diffusion-convection-reaction partial differential equation (PDE):

∂u(x, t)

∂t
= a0

∂2u(x, t)

∂x2 + a1
∂u(x, t)

∂x
+ a2u(x, t), (x, t) ∈ �× (0,∞), (3)

where a0, a1 and a2 are constant coefficients. We introduce the uniform spatial grid
xi = x0 + ix, i = 0, . . . , N . The semi-discrete formulation of (3) can be written
as

dui(t)

dt
= a0

û
i+ 1

2
− û

i− 1
2

x2
+ a1

ũ
i+ 1

2
− ũ

i− 1
2

x
+ a2ui(t), t > 0, (4)

where ui(t) approximates pointwise u(xi, t) and ûi+1/2 = û(ui−2, . . . , ui+3),
ũi+1/2 = ũ(ui−2, . . . , ui+2) are the numerical flux functions. In order to obtain
these values, the WENO discretization is used.

The basic idea of the WENO scheme is to combine the numerical approximations
of the flux functions on three substencils to a final numerical approximation on the
main stencil. For this purpose, the nonlinear weights ωm, m = 0, 1, 2, have to be
calculated. For example, for the approximation of the positive part of the numerical
flux of the parabolic term, one obtains

û
i+ 1

2
=

2∑

m=0

ωmû
m

i+ 1
2
, (5)
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where the explicit formulas for ûmi+1/2 as well as expressions of ωm can be found
in [2]. For the formulas of the numerical fluxes and the nonlinear weights for the
hyperbolic term we refer to [1].

To measure the smoothness of the solution on each of three candidate substencils,
the smoothness indicators βm,m = 0, 1, 2 [4] is used. In [7] a new idea of improving
these smoothness indicators was introduced. Namely they are computed as the
multiplication of the original smoothness indicators βm and the perturbations δm,
where δm is an output of a particular neural network algorithm. The new smoothness
indicators take the form

βDSm = βm(δm + C), m = 0, 1, 2, (6)

where C is a constant that ensures the consistency and high-order accuracy of the
new method, which was analytically proven in [7] and [8]. Here, also a detailed
explanation of this method can be found.

3 Numerical Results

We first use the following variable transformation:

S = Kex, τ = T − t, V (S, t) = Ku(x, τ) (7)

and substitute this into (1) and (2). Then we obtain the (forward-in-time) PDE:

uτ = σ 2

2
uxx +

(
r − σ 2

2

)
ux − ru, x ∈ R, 0 ≤ τ ≤ T . (8)

This equation is of the form (3) and can be easily discretized using the WENO-
DS scheme for both the hyperbolic and parabolic terms. It should be noted that for
the temporal discretization, we use a third-order total variation diminishing (TVD)
Runge-Kutta method, imposing intermediate boundary conditions as in [3]. Python
with the Pytorch library is used for the implementation.

To obtain the enhanced WENO-DS scheme for solving the European digital
option pricing problem, we train a convolutional neural network (CNN) on a large
set of data. For the training, we set K = 50, T = 1, and randomly generate the
parameters

σ = 0.31 + max(0.07a,−0.3),

r = 0.11 + max(0.07b,−0.1),
(9)

where a and b are normally distributed. Here, the problems with different combina-
tions of σ and r are covered. We use the computational domain [xL, xR] = [−6, 1.5]
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Fig. 1 The structure of the convolutional neural network

partitioned into 100 space steps and use the temporal step size τ = 0.8x2/σ 2.
As we mentioned earlier, the spurious oscillations mainly occur in the first time
steps of a numerical solution. Therefore, we proceed with a training as follows.

First, the parameters (9) are randomly generated. We initialize the weights of
the CNN randomly and perform a single time step of a solution. The structure of
the CNN can be seen in Fig. 1. We emphasize that we use a rather small CNN to be
computationally efficient. We use the same CNN structure for training both WENO-
DS for the hyperbolic term and WENO-DS for the parabolic term. We compute the
values udiff1, udiff2, which represent an effective preprocessing of the solution from
the current time step, since they give us information about the smoothness of the
solution. They are given by

udiff1,i = ū(x̄i+1)− ū(x̄i−1), udiff2,i = ū(x̄i+1)− 2ū(x̄i )+ ū(x̄i−1), (10)

with

x̄i = (xi−k, xi−k+1, . . . , xi+k),

ū(x̄i ) =
(
u(xi−k), u(xi−k+1), . . . , u(xi+k)

)
,

(11)

where 2k+1 is the size of the receptive field of the whole CNN. They are then used
as input values for the first hidden layer.

Then we calculate a loss with

LOSS(u) =
N−1∑

i=0

[
max(ui − ui+1, 0)

]
, (12)

where ui is a numerical approximation of u(xi). This loss is positive, if the
approximation of the solution is decreasing in x (in true solution it should be only
increasing), so we test the monotonicity of the solution. After that, the gradient
with respect to the weights of the CNN is calculated using the backpropagation
algorithm. Then, the Adam optimizer [5] with a learning rate of 0.001 is used
to update the weights. Next, we test the model on a validation set and repeat the
above steps with newly generated parameters (9). After the training, we select the
weights from the training step, at which the model performed best on the validation
problems.
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Fig. 2 Loss values for different validation problems

(a) (b)

Fig. 3 Comparison of the original WENO and WENO-DS methods, N = 100. (a) Solution at the
first time step, σ = 0.4 and r = 0.15. (b) Solution at the last time step, T = 1, σ = 0.3 and
r = 0.2

In Fig. 2, we show the evolution of the loss value for the problems from the
validation set. We see that the loss is decreasing and select the model obtained after
the last training step as our final WENO-DS scheme.

We compare the solution at the first time step on Fig. 3a and see that the WENO-
DS reliably eliminates the oscillations that occur when using the original WENO
scheme (WENO-Z scheme [1] for the approximation of the hyperbolic term and
MWENO scheme [2] for the approximation of the parabolic term).

In most cases, the original WENO scheme is able to handle these oscillations
with increasing number of time steps. However, in some cases the oscillations are
still present. Figure 3b shows the solution at time T = 1 and we see that our method
produces a smooth solution unlike the original WENO method.
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Table 1 Comparison of the L∞ and L2-error of original WENO and WENO-DS methods for
the solution of the transformed Black-Scholes equation (8) with various parameters σ and r

L∞ L2

σ r WENO WENO-DS WENO WENO-DS

0.28 0.13 0.000933 0.000908 0.000660 0.000644

0.1 0.05 0.002751 0.002655 0.001196 0.001158

0.3 0.2 0.001120 0.000858 0.000650 0.000621

0.2 0.1 0.001833 0.001687 0.000890 0.000865

0.15 0.05 0.002446 0.002352 0.001055 0.001034

0.4 0.1 0.000676 0.000661 0.000570 0.000557

We compare the L∞ and L2 errors in Table 1 and show that the WENO-DS
method has a smaller error in all cases. Thus, we are not only able to eliminate the
spurious oscillations, but also improve the quality of the numerical solution.

4 Conclusion

In this work, we applied the newly developed WENO-DS method to the European
digital option pricing problem that has discontinuous terminal data. In this problem,
the spurious oscillations are present in the solution when the standard WENO
scheme is used. We have shown that they can be successfully eliminated using
the WENO-DS method. To this end, we trained a CNN to modify the smoothness
indicators of the original method. Since we can obtain smaller errors with the
proposed algorithm, the quality of the numerical solution was also improved.
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Proactive Dengue Management System
Synergize by an Exponential Smoothing
Model

W. A. U. K. Wetthasinghe, A. M. C. H. Attanayake, U. P. Liyanage,
and S. S. N. Perera

Abstract In a critical area like health sector centralized computer system helps to
improve the efficiency of the health system. In particular, controlling an epidemic
is usually difficult in developing countries. In this study we introduce a multi-
platform, centralized pro-active management system to manage dengue controlling
activities in Sri Lanka. The system make common platform (ProDMS) for all sectors
who contribute their services for mitigating dengue. We mainly focused to the
special feature of the system which enhance the centralized property. Cross platform
environment was developed under this feature as a bridge to connect researches
and general public. ProDMS is a internet base web application and researches can
plug their dengue forecasting models to the system and publish their outputs as
graphs through the web system. The ProDMS web application, which consisting
of plug and play system architecture concepts, fully support for any statistical or
mathematical model to publish its results online. In this work we use one of the
univariate time series modelling approaches; namely exponential smoothing to plug
with the system. This research helps to enhance efficiency of Dengue controlling
process and support to generalize centralization.

1 Introduction

Information centralization is a prevalent technique in information technology and
also plays a major role in technological development in the present world in many
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fields. Having information in a centralized location would be advantageous to
users to make illustrations and their associated conclusions rapidly. Transparency,
productivity, Efficiency and centralized information are the advantages along with
many others that motivate the implement of such centralized system in any
real situation. In particular, the information systems in the health sector require
centralized operational possibilities and the quick access of information to make
decisions as quickly as possible. Addressing these advantages, we developed a
centralized system for dengue management.

Dengue is a vector-borne viral infection that transfers by the bite of an infected
mosquito. In last five decades, dengue has reached to the level of hyper epidemic
decease state in Sri Lanka [1]. Recent statistics illustrates 105049 suspected dengue
cases for the year 2019 and 27886 cases in year 2020, making dengue is still the
major threat in Sri Lanka [2].

In the absence of a fully effective vaccine or treatment [3], controlling vector
density is the only mitigating technique that leads to the prevention. Most of dengue
epidemic strategies are based on reactive system rather than pro-active system.
National Dengue Control unit, Epidemiology Unit, government and privet hospital
administrators, provincial/regional health officers and other corresponding parties
apply appropriate integrated vector management strategies to control the spread
of the disease transmission [4]. Hence, there is a need of general infrastructure or
mechanism that allows efficient collaboration among all contributing parties. There-
fore, in this study, such a system called “Proactive Dengue Management System
(ProDMS)” is proposed to have efficient dengue management and prevention.

The proposed System (ProDMS) provides an integrated environment to all the
stakeholders: policy-makers, researchers and general public. ProDMS platform is
a cross-platform GIS based distributed system for monitoring, forecasting and
controlling the dengue epidemics. Since various types of factors influencing the
spread of the disease, mathematical and statistical models play a major role in
identifying and forecasting the dynamics of the dengue disease. Further, the system
will function as a dengue early warning system, which allows authorities to predict
and control dengue epidemics before it rises to peak levels; thereby, efficiently
controls the dengue epidemics.

The other commonly existing systems provide facilities to integrate the dengue
models with management systems that are developed on same platforms, e.g.
DengueME [5]. However, up to the authors’ knowledge, they have no ability to
make connections between applications that are developed on different platforms.
In such scenarios, researchers are unable to develop and simulate the results of
their models in the comfort and specific platforms. In the ProDMS, the plug and
play architecture is used to overcome such weaknesses. Further, using methods
that allows to communicate and synergies features across platforms, the authors
introduce a novel concept to expand the use of computational mathematics and
statistic in the process of efficient decision making towards the dengue dynamics.
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2 Pro-Active Dengue Management System (ProDMS)

The main objective of the ProDMS is develop the system to provide an integrated
environment to the health policy makers, researchers and general public to synergize
the prevention of Dengue epidemics through sharing information, knowledge
enhancements, collaborations and community engagements [6].

The first prototype of the ProDMS platform and its plug and play architecture
have been tested by incorporating a exponential smoothing (statistical) model that
forecasts dengue dynamics. However, the current prototype of the ProDMS enables
to visualize the result of its plugged the statistical model. Further, the system now
allows the public and policy holders to perform different action towards dengue
management related activities. The research component of this work is introducing
a system architectural design that communicates dengue forecasting models with
the web based application.

3 System Architecture and Implementation

Statistical model integration process is comprised of three components namely,
central database, web based management system and dengue modeling tools. In the
standard development mechanisms, statistical models and web based platforms are
developed using different languages as well as environment. Therefore, the results
may not be presented in a single environment. Herein, we introduce a steady system
architecture and use a plug and play independent agent to make connections among
the components. All links of the system build with data ropes. In this study, we use
JavaScript Object Notation (JSON) data carrier as the data rope.

The properties of JSON: human readable text and language independence, were
utilized in the stability enhancing of the cross-platform data integration. Main web
based system share the dengue related data that exists in the data management
system through REST API. The REST API is designed to grab advantage of existing
protocols. REST can be used over any protocol, but usually takes advantage of
HTTP when it comes to web APIs, therefor, in ProDMS as well. Fielding and Taylor
introduced the REST API design [7]. Since the data is not integrated with methods
and resources, the REST API enhances the plug and play architecture [8].

Further, the JSON data structures is defined according to centralized system
database structure. This allows the third party users to request the data through
the system in a secure manner through the REST API. Since JSON is language
independent data format, it is compatible with most of the scientific simulation
platforms. Figure 1 describe the idea of the connectivity among system components.

In this work R software is used to implement the statistical model. R is one of
widely used statistical programming platform that supports the JSON data carrier,
[9]. Within the plug and play architecture, the ProDMS web based application is
featuring the connectivity with the statistical models developed in R, while JSON
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Fig. 1 Structure of statistical model integration process

is bridging the data communication. However, the data resolution at the ProDMS’s
stored data, e.g., weekly or monthly, have to be tallied with the data requirements of
the models developed in R. The simulation results generated by statistical models
are communicated through the integrated REST API using JSON data carrier. This
enables an independent system connectivity among dengue model and database, and
consequently, a secure system.

Currently system offer reported dengue cases, rainfall, maximum and minimum
temperature and humidity under the monthly resolution. Among them, the statistical
model use only reported dengue cases as input the parameter of the model.
Therefore, the model filter the JSON data and extract relevant data fields for the
model.

The important phase of the process exhibits the simulation results via web
application. In this task, forecasting models communicates their outputs using JSON
format according to given structure. These JSON structures are provided by the
ProDMS API for anyone to use. Further, model passes the configuration details via
output JSON. Followings are the information that should include in the JSON to use
ProDMS platform.

• Model behavior: This property use to identify the model continuity. Model
should mention that whether the model is running on “continuous time” or
“discrete time”. In the case of continuous time, ProDMS automatically scale and
interpolate appropriate values when they are being displayed. For the discrete
time scales, no adjustment will be made. This ensures the agility of the systems
for any type of output given by the external models.

• District: In representing district related dengue dynamics, the external Model
should mention the district of the output data so that it would be correctly
displayed.

• Time period: Model should mention the time period which is used for the model
simulation.

The ProDMS support for visualizing dengue data for its users, such as island-
wide epidemics, summery results, forecasting information, and etc. . . , supported
by Google-API. Further, the model results can be interpreted using infrastructures
of the ProDMS system. Data are entered from dengue forecasting models can be
exhibit in meaningful ways by using the system features. Researchers can use that
facility to exhibit their findings to public via more general and popular way using
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ProDMS web application. This enables users and policy makers to get a wide view
of the ongoing epidemics and lead to better management.

4 Results and Discussion

4.1 Testing

One may find different mathematical and statistical models in literature such as
compartmental models and regression models addressing dengue transmission [10–
14]. For this study we perform some testing with the exponential smoothing model
developed by our research group in previous studies [10] with use of Colombo
Municipal Council (CMC) data. Figure 2 exhibits the actual dengue data which
are existing in the system database.

Users can generate graphs in real time based on data of exponential smoothing
model and compare with real data. Since we formulated the exponential smoothing
model based on CMC data, in this study we offered only CMC data. In exponential
smoothing, recent observations are weighted more heavily than older observations.
Simple, double or Holt winters exponential smoothing model will be fitted to
the data according to the seasonal and trend structures present in the data. ‘ets’
function of the ‘forecast’ package which is available in R language is used to fit the
appropriate exponential smoothing model. Figure 3 illustrates the comparison of R
simulation results and actual data.

Fig. 2 Reported dengue data from, CMC area
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Fig. 3 Comparison of model results and actual data

4.2 Future Direction

The architecture allows future extensions to synergize more mathematical, statistical
or hybrid models. Then the users can choose the appropriate model for their purpose
and simulate results. Moreover, this system can be directly use to manage other
epidemic situations such as dengue and COVID-19.

5 Conclusion

In this study, we introduced a plug and play system architectural design to
develop infrastructure to synergize dengue forecasting models with the web based
application. By this architecture, the connectivity among ProDMS, Databases and
External models is archived with minimum dependencies. Consequently, a better
communication among researchers and the public society, and hence, better dengue
management. The systems architecture itself allows researches to use the available
resources to test their modules, motivating the collaborative research activities
that involve different components. Further, this study has provided a platform
to researches to present their finding directly to the general public inspiring the
commercialized research outcomes.
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Multipatch ZIKV Model and Simulations

Arsha Sherly and Wolfgang Bock

Abstract In this article we compare two multi-patch models for the spread of Zika
virus based on an SIRUV model. When the commuting between patches is ceased
we expect that all the patches follow the dynamics of the single patch model. We
show in an example that the effective population size should be used rather than the
population size of the respective patch.

1 Introduction

Zika Virus belongs to the family Flaviviridae, genus Flavivirus. ZIKV disease is
primarily vector-borne, which is transmitted by Aedes mosquitoes [1]. This disease
is also found to be sexually transmissible [2]. Eventhough most patients show mild
symptoms, recent studies show that this virus attack results in neurological disorders
like Guillain-Barré syndrome (GBS) [3]. Another important characteristic of this
virus is its pathogenicity to fetuses causing Microcephaly in newborn babies [4].

The history of ZIKV disease known so far starts with the isolation of Zika
virus from a rhesus monkey in Uganda around April 1947. There onwards it
has spread across the world with the largest outbreak recorded in 2015-16 across
South America [1, 5]. With no vaccines or medications found so far, the disease
spread can only be controlled by non-pharmaceutical interventions. Also increased
international travel, evolution and mutation of viruses and their transmitting agents
like mosquitoes, suitable environmental conditions etc lead to an increase in further
outbreaks even in lesser probable places. The influence of human mobility plays
an important role in transmitting diseases across continents. With more flight
connectivity and affordable modes of transport disease transmission can also be
faster. The primary objective of this study is to include spatial dependence to the
mechanistic model of ZIKV spread. This is very relevant as the parameters involved
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in the model will be different for different places. So the dynamics will be exhibiting
variations spatially. In this article we use an SIRUV model to describe the disease
dynamics. This model divides the population into various compartments namely
susceptible, infected and recovered. The interaction between various host and vector
compartments, spread across different patches, is modeled using a coupling matrix
and certain parameters.

We have discussed two models in Sects. 2 and 3. The results of numerical
simulations are provided in Sect. 4. Comparing the two models exemplarily shows
that the incorporation of the effective population size is crucial. While in a model,
which just takes into account, the total population size of the patches, a decoupling
does not lead to the single patch dynamics, where as a model which incorporates
the effective population size shows this desired property.

2 Multi-Patch ZIKV Model

In this section we give a multi patch model for studying the ZIKV disease spread.
Let the space domain be divided into small areas which we name as patches. The
ZIKV model in a specific patch is also developed using different compartments.
Here the host and vector population consists respectively of susceptible and infected
compartments in each patch and we consider the recovered ones only in host
population of each patch. We use either a subscript or a superscript (i, j or
k) to distinguish these compartments and the parameters patchwise. Let us first
assume that the whole population is commuting between the patches and the rate
of transition from patch (i) to (j) be pij .

Remark 1 The matrix P with entries pij is the residence time budgeting matrix.
Here pij represents the time spent by people in patch i on average in patch j in unit
time [6]. For example on average if a person in patch i spent 8 hours in patch j , then
pij = 8

24 , provided that unit time is one day.

We have deduced the following model from similar models in the literature used
for other epidemiological studies [7].

dSi

dt
= μi (1 − Si)− Si

( ∑

1≤j≤n
β
j
vhpij Vj +

( ∑

1≤j≤n
βihh

(
pij + pji

)
Ij − βihhpii Ii

))

dIi

dt
= Si

( ∑

1≤j≤n
β
j
vhpij Vj +

( ∑

1≤j≤n
βihh

(
pij + pji

)
Ij − βihhpii Ii

))

− μiIi − γiIi

dRi

dt
= γiIi − μiRi

dUi

dt
= νi (1 − Ui)− ϑiUi

∑

1≤j≤n
Ijpji

dVi

dt
= ϑiUi

∑

1≤j≤n
Ijpji − νiVi .
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3 Redefining the Model for ZIKV

Following some insights from [8] and [9] we have developed a new model to
describe the ZIKV disease spread. In [9] a term called contact rate is clearly defined,
which is the average number of adequate contacts per day of an infective person
from patch j with any individuals in patch i. With this in consideration we redefine
the parameters used as follows

αj = number of infectious contacts that is happening per infected mosquito per unit
time with the people present in patch j .

βj= number of infectious contacts that is happening per infective individual per unit
time with the people present in patch j .

γj = number of recoveries that is happening per unit time in patch j .
ϑj = number of infective contacts that is happening per infected human with

mosquitoes in patch j in unit time.

Let us focus on patch j and see how many susceptibles from patch i gets infected in
patch j . If Nj inhabitants are residing in patch j , they commute to other patches in

unit time. So the effective population in patch j is given by Njeff = ∑n
k=1 pkjNk .

By the definition of αj , the number of people getting into adequate contacts with the
mosquitoes in patch j is given by αjVj . The effective population of susceptibles
in patch j is

∑n
k=1 pkjSk among which pijSi are coming from patch i. In turn, the

number of susceptibles from patch i who get infected in patch j due to mosquitoes
is given by

αjVj
pijSi∑n
k=1 pkjNk

.

Now we focus on the infections between humans. The number of infections
happening in patch j in unit time due to human-human interactions is given by
βj I

j

eff, where I jeff is the effective number of infected people who came to patch j

in unit time which is given by I jeff = ∑n
k=1 pkjIk . The total number of infections

happening in patch j is given by βj
∑n
k=1 pkjIk , out of which the number of

infections happened to the susceptible people of patch i is

βj

n∑

k=1

pkjIk
pijSi∑n
k=1 pkjNk

.

Now we have to introduce fractions by normalising each compartmental values. For
example we define Si = Si

Ni
or as in the vector population we have Ui = Ui

Mi
, where

Mi is the number of vectors present in patch i.

Remark 2 For Ui the normalisation yields,
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dUi
dt

= νi(Mi −Ui )− ϑiUi
Mi

n∑

k=1

pkiNkIk

⇔ MidUi

dt
= νi(Mi −MiUi)− ϑiUi

n∑

k=1

pkiNkIk

⇔ dUi

dt
= νi(1 − Ui)− ϑi Ui

Mi

n∑

k=1

pkiNkIk.

The following system of ODEs describe disease spread in each patch i

dSi

dt
= μi(1 − Si)−

n∑

j=1

αjMjVj
pij Si∑n
k=1 pkjNk

−
n∑

j=1

βj

n∑

k=1

pkjNkIk
pij Si∑n
k=1 pkjNk

dIi

dt
= −(γi + μi)Ii +

n∑

j=1

αjMjVj
pij Si∑n
k=1 pkjNk

+
n∑

j=1

βj

n∑

k=1

pkjNkIk
pij Si∑n
k=1 pkjNk

dRi

dt
= γiIi − μiRi

dUi

dt
= νi(1 − Ui)− ϑi Ui

Mi

n∑

k=1

pkiNkIk

dVi

dt
= −νiVi + ϑi Ui

Mi

n∑

k=1

pkiNkIk.

4 Comparison of Both Models in Three-Patch Scenario

In a case where n = 3 we numerically simulated both the models and compared
the results. We obtained the influence of the residence time budgeting matrix on
the multi-patch model. Here we restrict ourselves to consider three patches with the
same set of parameters and population sizes. The movements between these three
patches are defined using the residence time budgeting matrix P . The question is
how far does the dynamics deviate from the single patch case, when the movement
between the patches is controlled using the pij values. We use the parameters and
population sizes, as given in Table 1, for the numerical simulation. We are studying
two cases—the three patches being coupled and completely decoupled respectively.
For the first case

P =
⎛

⎝
0.2 0.7 0.1
0.5 0.1 0.4
0.3 0.6 0.1

⎞

⎠ (1)
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Table 1 Note that the parameters and population sizes here are chosen for display of the qualitative
behaviour and are not taken from any reference

μ α β ϑ ν N M

10/(1000*365) 0.008 0.01 0.4 1/14 20000 100000

Fig. 1 Phase portrait for three patches using model 1 (Sect. 2) and model 2 (Sect. 3) for the case
where the patches are coupled using the matrix P from (1)

Qualitatively, the two models exhibited similar dynamics in the case when P �=
I in Fig. 1, but the results were quantitatively non-identical. The dynamics was
supposed to be similar for the single patch and multi-patch models for the case
P = I . But we have not seen this property for model 1. This is implied in Fig. 2.

5 Conclusion

In this study we have considered two different models to describe the dynamics of
ZIKV spread. We compared the two models to identify the suitable model. When the
commuting between patches is ceased we expect that all the three patches follow the
dynamics of the single patch model. The first model failed to satisfy this condition
where as the second model was successfully exhibiting this property. This gives rise
to a more thorough study of the second model in a forthcoming work.
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Fig. 2 For the same set of parameters as in Fig. 1 when P is set to identity matrix we see the given
results where the red starred curve is the phase portrait of the single patch model
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Discrete Port-Hamiltonian Coupled Heat
Transfer

Jens Jäschke, Matthias Ehrhardt, Michael Günther, and Birgit Jacob

Abstract Heat transfer and cooling solutions play an important role in the design of
gas turbine blades. However, the underlying mathematical coupling structures have
not been thoroughly investigated. In a previous work, we successfully modelled
a simplified version of this problem as an infinite-dimensional system. Here,
we construct a spatial discretization for the above problem and investigate its
properties. We show that the discrete system is less restrictive than the original
infinite-dimensional system, suggesting something like a regularization effect due
to discretization.

1 Introduction

The heat transfer within the blade of a gas turbine defines an important task within
the simulation of gas turbines [1]. Here, we consider a simplified model system
[4], where the metal of the turbine blade itself is reduced to a one-dimensional rod
(a < xm < b). One end of the rod is in contact with an external thermal reservoir
representing the hot air driving the turbine, and the other end is in contact with the
relatively cooler air flowing through the blade’s cooling channel (i < xc < o).

The heat transfer along the rod is modelled as a simple heat equation (index ‘m’)
with Robin boundary conditions (also known as convective boundary conditions).
The cooling channels themselves are modelled as simple transport equations,
divided into an incoming channel part (index ‘in’) and an outgoing channel part
(index ‘out’), both connected to the rod at the coupling point.

Overall, we get a multiphysics model described by three coupled PDE models
for the heat equation in the metal and the transport equations for the incoming and
outgoing cooling air:
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Heat equation of metal

∂ϑm

∂t
= k

cm

∂2ϑm

∂x2
m

, a < xm < b, t > 0, (1a)

−k ∂ϑm
∂xm

(a, t) = αa
(
Text(t)− ϑm(a, t)

)
, t > 0, (1b)

−k ∂ϑm
∂xm

(b, t) = αb
(
ϑm(b, t)− ϑin(c, t)

)
, t > 0, (1c)

Transport of incoming cooling air

∂ϑin
∂t

= −v ∂ϑin
∂xc

, i < xc < c, t > 0, (2a)

ϑin(i, t) = Tinlet(t), t > 0, (2b)

Transport of outgoing cooling air

∂ϑout
∂t

= −v ∂ϑout
∂xc

, c < xc < o, t > 0, (3a)

ccv
(
ϑout(c, t)− ϑin(c, t)

) = αb
(
ϑm(b, t)− ϑin(c, t)

)
, t > 0. (3b)

In a previous work [4] we have shown that this multiphysics system can be
formulated as an infinite-dimensional Port-Hamiltonian system (pHs) [2, 3]. Here,
we will show that discretizing the three subsystems separately will define three
index-0 port-Hamiltonian descriptor (pHDAE) systems [6] (E is the identity), which
can be combined to form a single pHDAE system when properly coupled. pHDAE
systems generalize the PHS setting from ODEs to DAEs. For an ease of reference
we recall.

Definition 1 (Port-Hamiltonian Descriptor System, pHDAE [6]) Let X ⊂ R
n

the state space, x(t) ∈ X the state, u(t), y(t) ∈ R
m the input and output, E ∈ R

l×n
the flow matrix, z ∈ R

l the efforts, J,R ∈ R
l×l the structure and dissipation

matrices, B,P ∈ R
l×m the port matrices and S,N ∈ R

m×m the feed-through
matrices. Then the system of differential (-algebraic) equations

Eẋ = (J − R)z+ (B − P)u, (4a)

y = (B + P)�z+ (S −N)u, (4b)

associated with the Hamiltonian function H ∈ C1(X,R), is a port-Hamiltonian
descriptor system, if the following properties hold:
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1. The extended structure and dissipation matrices �,W ∈ R
l+m×l+m defined as

� =
(
J B

−B� N

)

, W =
(
R P

P� S

)

(5)

satisfy � = −�� andW = W� ≥ 0, i.e.W is positive semi-definite.
2. ∂H

∂x
= E�z.

2 Discretization of the Heat Equation

We choose Im+ 1 grid points x0 = a, . . . , xIm = b and a step size h = (b− a)/Im.
We discretize the spatial derivative in (1a) by the standard second order difference
quotient at x1, . . . , xIm−1. Denoting the temperature at the grid points xi by
Ti(t) = ϑ(xi, t), both boundary conditions (1a), (1c) can be solved for T0 and TIm.
Summing up, we get with T (m) := (T1, . . . , TIm−1)

�

Ṫ (m) = k

cmh2

(
1

1 + h
k
αa

(
e1e

�
Im−1 + eIm−1e

�
1

)
+ tridiag(1,−2, 1)

)

︸ ︷︷ ︸
Am :=

T (m)︸︷︷︸
z :=

(6)

+ k

cmh2

(
e1 eIm−1

)

︸ ︷︷ ︸
B :=

(
Text

ϑin(c, t)

)

︸ ︷︷ ︸
u :=

.

With Am, B, z and u defined above, and setting J = 0, R = −Am, P = 0, S = 0,
N = 0, we get the pHDAE structure of type (4). Condition (5), i.e. W ≥ 0, holds
as R is positive semi-definite due to the Gershgorin circle theorem for all physically
meaningful (i.e. positive) parameters h, k and αa , αb.

3 Discretization of the Transport Equations

To discretize the transport equations (2a), (3a) with respect to space, we choose
Ic + 1 grid points x0, . . . , xIc and a first-order upwind discretization (for v ≥ 0).
Replacing T0 by the inlet boundary condition (2b), we arrive at the following semi-
discrete system with T (in) := (T1, . . . , TIc )

�:
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Ṫ (in) = −v
h

tridiag(−1, 1, 0)
︸ ︷︷ ︸

Ac :=
T (in)
︸ ︷︷ ︸
z :=

+v
h
e1 · Tinlet. (7)

In order to get a pHDAE structure, we split the matrix of (7) into J = 1
2 (Ac − A�

c )

and R = − 1
2 (Ac + A�

c ), cf. (4) and set

B� = v

h

(
1
2 0 . . . 0 1

2

)
, P� = v

h

(
− 1

2 0 . . . 0 1
2

)
, S = κ, N = 0, u = Tinlet,

with κ ≥ 1. With these choices, we get

W =
(
R P

P� S

)

= v

h

(
tridiag(− 1

2 , 1,− 1
2 )

1
2 (−e1 + eIc )

1
2 (−e1 + eIc )� κ

)

.

Again, the Gershgorin circle theorem yields the positive semi-definiteness ofW .
For the outgoing cooling air (3a) we proceed analogously, but replace the

coupling condition (3b) with a simple input similar to Eq. (2b). Equation (3b) is
later included as a coupling condition in the coupled system in Sect. 4. We then
arrive at the semi-discrete system

Ṫ (out) = −v
h

tridiag(−1, 1, 0)T (out) + v

h
e1 · T (out)

inlet , (8)

with T (out) := (T1, . . . , TIc )
�. Making the same choices as above, it is obvious

that this is also a pHDAE.

4 The Coupled Discrete System

In the previous sections we have formulated the semi-discretized subsystems as
three port-Hamiltonian systems of the type (with x ∈ {m, in, out}):

Ṫ (x) = (J (x) − R(x))T (x) + (B(x) − P (x))u(x),
y(x) = (B(x) + P (x))�T (x) + (S(x) −N(x))u(x).

According to [6], an interconnection of port-Hamiltonian descriptor systems
(pHDAEs) (see Definition 1) is again a pHDAE if we can find an interconnection
satisfying

Mu+Ny = 0, (9)
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with any matricesM and N . Note, however, that this does not reduce the number of
inputs and outputs in general. The resulting pHDAE then has the form, cf. (5)

⎛

⎜
⎜
⎝

I 0 0
0 0 0
0 0 0
0 0 0

⎞

⎟
⎟
⎠

⎛

⎝
Ṫ
˙̂u
˙̂y

⎞

⎠ =

⎛

⎜
⎜
⎝

� −W 0 0
I −M�

0 −I
0 M

0 −N�
N 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

T

û

ŷ

0

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

0
0
I

0

⎞

⎟
⎟
⎠ u, (10)

y = ŷ, (11)

with

T (t) =
⎛

⎜
⎝

T (m)(t)

T (in)(t)

T (out)(t)

⎞

⎟
⎠ ∈ R

Im−1+2Ic , û(t), ŷ(t) ∈ R
4,

� −W = % diag
(
�(m) −W(m), �(in) −W (in), �(out) −W (out))%�,

as in Definition 1 with a permutation matrix

% =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 0 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is worth mentioning that the additionally introduced variables û and ŷ are just
copies of the inputs u and outputs y. Note that the above property makes no
statement about the index of the resulting pHDAE. While this is common also
for coupling “regular” ODEs, it is important to keep in mind, since even when all
subsystems are index-0 (i.e. ODEs), the coupled system can have a higher index.

We can now check whether the coupled system (10) exhibits the form (9). The
inputs u and outputs y of the coupled system (10) are

inputs: u =

⎛

⎜
⎜
⎜
⎝

u
(m)
1
u
(m)
2

u(in)

u(out)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

T
(m)

ext
ϑin(c, t)

T
(in)
inlet

T
(out)
inlet

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (12)
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outputs: y =

⎛

⎜
⎜
⎜
⎝

y
(m)
1
y
(m)
2

y(in)

y (out)

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k
cmh2

1
1+ 1

h
k
αa

T
(m)
1

k
cmh2

1
1+ 1

h
k
αb

T
(m)
Im−1

v
h
T

(in)
Ic

+ κT (in)
inlet

v
h
T

(out)
Ic

+ κT (out)
inlet

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, y(m) =
(
y
(m)
1
y
(m)
2

)

.

(13)

The input of the heat equation still references ϑin(c, t), a quantity of the
continuous system. From Eq. (2a) as well as Eq. (7), we can see that it is equivalent

to T (in)
Ic

of the discrete cooling channel:

u
(m)
2 = ϑin(c, t) = T (in)

Ic
= h

v
y(in) − hκ

v
u(in).

Equation (3b) yields the coupling condition

ccvT
(out)
0 − ccvT (in)

Ic
= αbT (m)Im

− αbT (in)
Ic

to the outgoing cooling channel, i.e. using (12), (13) and the explicit formula of TIm

ccvu
(out)−ccv h

v

(
y(in)−κu(in)) = cmhy(m)2 + αb

1 + 1
h
k
αb

u
(m)
2 −αb h

v

(
y(in)−κu(in)).

Together this leads to an interconnection relation of the form (9)

⎛

⎝
0 1 hκ

v
0

0 − αb

1+ 1
h
k
αb

(cch− h
v
αb)κ ccv

⎞

⎠

︸ ︷︷ ︸
M

u+
(

0 0 −h
v

0
0 −cmh αb hv − cch 0

)

︸ ︷︷ ︸
N

y = 0,

and therefore, the considered coupled system is a pHDAE.
However, the above model does not define a Dirac structure for (y, u) and is

therefore not an energy-conserving coupling in terms of the quantity acting as
energy in the Hamiltonian under consideration, i.e., not the physical energy. Thus,
the criteria [6] for index reduction and row operations to reduce the system are not
satisfied.
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5 Conclusion

We have found that the multiphysics approach to discretization before coupling
works quite well and requires only a small change in our transport equations.
Interestingly, unlike the continuous system, it has no constraints on the parameters,
but leads to a pHDAE that potentially has a nonzero index. In future work, following
the ideas of Kotyczka and Lefèvre [5], we will consider our multiphysics problem as
a discrete-time port Hamiltonian system arising from a discrete-time Dirac structure,
that is obtained by a symplectic Gauss-Legendre collocation method.
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A Non-Reflecting Boundary Condition
for Multispeed Lattice Boltzmann
Methods

Friedemann Klass, Alessandro Gabbana, and Andreas Bartel

Abstract Artificial boundary conditions are commonly employed in numerical
simulations to confine very large or unbounded domains to a computationally
feasible finite domain. The implementation of an artificial boundary condition
should cause no interaction with the bulk dynamics, and in particular should not
create artifacts such as reflections of pressure waves. In the context of the Lattice
Boltzmann Method (LBM), standard velocity or pressure boundary conditions
do not fulfill this requirement. This problem is further emphasized when using
multispeed LBM models, in which several layers of boundary nodes interact with
the bulk dynamics. In this work, we take a first step towards the definition of a
discrete artificial boundary condition for LBM based on stencils with multiple speed
levels.

1 Introduction

Artificial boundaries are commonly posed whenever the domain of interest is
embedded in a large or even unbounded domain, e.g. in numerical studies in the
field of astrophysics or acoustics. Their key property is to have no effect on the
bulk dynamics, since they should only serve in the truncation of the computational
domain. In the mesoscopic framework of the Lattice Boltzmann Method (LBM),
where Boundary Conditions (BC) are set in terms of values assigned to discrete
distribution functions [11], this task is more complex than in the macroscopic
case. Approaches to model artificial boundaries in the LBM found in the literature
include characteristic BC [3], absorbing layers [7] and the so-called Discrete
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Artificial BC (DABC) [1, 2]. Implementation of the latter requires the solution of
a subproblem that uses information from previous time steps to mimic the systems
evolution on a larger grid. High order LBM based on multispeed lattices represent
a powerful framework which allows the extension of the applicability, potentially
beyond Navier-Stokes [8, 9, 12]. However, they are not commonly adopted since the
definition of suitable BC is made difficult by the presence of multiple speed levels.
Few BCs for such multispeed (thermal) lattices can be found in the literature, e.g.
[4, 6] and, to the best of our knowledge, there are currently no explicit formulations
of artificial BC for multispeed lattices. In this work, we take a first step towards the
definition of accurate and efficient DABC for multispeed LBM.

This article is organized as follows: In Sect. 2, we summarize the LBM algorithm.
In Sect. 3, we describe the DABC and discuss its extension to multispeed lattices.
We validate this extension on numerical results in Sect. 4 before summarizing our
findings in Sect. 5.

2 The Lattice Boltzmann Method (LBM)

LBM [11] is a mesoscopic fluid dynamics solver, discrete in time and velocity,
where the description of a fluid in d space dimensions is based on the synthetic
dynamics of a set of populations fi sitting at discrete lattice sites. The discretization
of the velocity space is typically coupled to a Gauss-Hermite quadrature, which
ensures that all the moments of the equilibrium distribution function are exactly
preserved up to a certain desired order. The q abscissae of the quadrature, c1, . . . , cq ,
form the velocity stencil, which dictates how information propagates at each time
step. Depending on the specific stencil adopted, it is common to distinguish between
the different LBM models using the notation DdQq. Here we consider the D2Q17
model, Fig. 1, which is a 7th-order quadrature rule [8, 10]. Quadrature weights are
given in Table 1.

The evolution of the system is governed by the lattice Boltzmann equation:

fi(x+ cit, t +t) = fi(x, t)− t
τ

(
fi(x, t)− f eq

i (x, t)
)

(1)

with time step t , and relaxation rate τ towards the discrete analogon of the
Maxwell-Boltzmann distribution (using macroscopic density ρ and velocity u)

f
eq
i (ρ,u) =wiρ

(
1 + u · ci + 1

2c2
s

(
(u · ci )2 − u2

)
+ u·ci

6c4
s

(
(u · ci )2−3u2

))

(2)

with lattice speed of sound cs and the quadrature weights wi (Table 1).
The LBM algorithm is based on the so-called stream and collide paradigm:

The right hand side of Eq. (1) is referred to as collision step, driving populations
towards the local equilibrium, while the left hand side of Eq. (1) corresponds to the
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Fig. 1 Velocities ci for the D2Q17 stencil. It is a minimal set for square lattices to exactly recover
the moments of the distribution up to the third order [10]

Table 1 D2Q17 quadrature
weights wi for each velocity
group. FS means
full-symmetric, i.e.,
(±1,±1)FS =
{(−1,−1), (−1, 1), (1,−1), (1, 1)},
and cs is the lattice speed of
sound

ci wi

( 0, 0) 0.121527777777778

(±1,±1)FS 0.175781250000000

(±2,±2)FS 0.014062500000000

(±3,±3)FS 0.001996527777778

( 0,±3)FS 0.027777777777778

cs 1.224744871391589

streaming step, in which populations are assigned to neighbouring nodes following
the directions ci . Macroscopic density ρ and velocity u are defined as the velocity
moments of the particle distribution. Thanks to the underlying quadrature rule, they
can be computed as summations over the discrete populations:

ρ =
q∑

i=1

fi, ρu =
q∑

i=1

fici . (3)
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3 Discrete Artificial Boundary Condition

The task of any Boundary Condition (BC) in the LBM context is to set the popula-
tions that remain unspecified after the streaming step. Standard BCs will impose a
macroscopic pressure or velocity. Such a constraint leads to a system of equations
in the unknown populations. However, this will give rise to reflections which are
propagating into the bulk of the computational domain. Since an artificial boundary
just accounts for the need of truncating the physical domain, this behaviour is clearly
unphysical. Thus, artificial boundaries should be treated with a non-reflecting BC.

In the Discrete Artificial Boundary Condition (DABC) [1], the unknown popula-
tions are obtained by solving a so-called subproblem, a separate LBM simulation
that takes into account information from a specified number of preceding itera-
tions/time steps. This strategy has the advantage of working exactly in the same
mesoscopic framework as the original LBM simulation and no additional structural
assumptions have to be made.

Let us revise the general procedure [2], by considering a rectangular computa-
tional grid of size Lx × Ly and a maximal history depth Hmax. For the DABC on
the right boundary, the computational domain of the subproblem is (H + 1) × Ly ,
where the history depth H = min(iter,Hmax) is the number of previous time steps
to be taken into account.

By interpreting the subproblem as an extension of the original grid by H layers,
we can classify any node as either belonging to the original grid, the subproblem,
or their intersection �. That is, � is the set of nodes that form the right boundary of
the original problem and the left boundary of the subproblem.

Algorithm 1 Right LBM subproblem for time level tk
1: Inputs:

max. M, grid size (M(H+1),ny), , max. H, initial fields: ,u
2: Initialize:

Set f sub = f eq = f eq( ,u), itersub = 1 and f sub(x , tk−H) = f (x , tk−H)
3: while itersub ≤ H do
4: for all Gridpoints do
5: Update equilibrium distribution f eq

6: Collide & Stream
7: if itersub < H then
8: Left BC of subproblem: f subi (x , tk−H+itersub ) = fi(x , tk−H+itersub )
9: else
10: Right BC of original problem: fi(x , tk) = f subi (x , tk)
11: end if
12: Update macroscopic quantities
13: end for
14: itersub = itersub+1
15: end while

r

rt

g

g g

g g

g

Now, let us assume we are at time tk . The nodes xγ ∈ � are initialized with
populations from time tk−H , while the remaining nodes of the subproblem are
set to a given equilibrium. Then, we proceed with the usual LBM scheme, using
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x

y

Fig. 2 Sketch of populations assigned in a subproblem for the lower boundary. The dashed
rectangle contains the subproblems domain. Black and hollow nodes are fluid nodes for the
original problem and subproblem, resp. Intersection � is colored in blue. At each iteration in the
subproblem, orange populations are taken as a BC from the history of the original lattice at time
tk−H+iter. Green populations are the final output of the subproblem at time level tk

the previously computed populations fi(xγ , tk−H+iter) as a BC on �. Finally,
the unknown populations of the original problem are obtained as post-streaming
populations of the subproblem at time tk . We remark that (i) there is no need
for a BC at the right boundary of the subproblem, since any error will not
propagate to the original grid and (ii) the given initial equilibrium should encode
any external information available to obtain accurate results. See [1] for a discussion
on initialization strategies.

When considering multispeed stencils, two extra ingredients need to be taken into
account. First, the amount of layers in the subproblem has to be multiplied by the
maximal horizontal displacementM of the stencil, since populations can propagate
to theirM-th nearest neighbours. Second, � will consist ofM layers of nodes. Both
aspects are depicted in Fig. 2 (for lower boundary), while the procedure for solving
a right subproblem (i.e., an east artificial boundary) is summarized in Algorithm 1.

4 Numerical Results

We consider a simple isothermal flow created by an isolated vortex, which travels
towards the right boundary (x = 0.75) in the spatial domain [−0.75, 0.75]×[−3, 3].
The space is discretised with step size h = 0.01. The initial fields are assigned as:

u(x, y) = u0 +
{

0 if x2 + y2 ≥ r2

v(x, y) otherwise
, v(x, y) = 1

2
2
− x2+y2

b2

(
y

−x

)

cs,

with u0 = cs · (0.2, 0)T , r = 0.7, b = 0.15 and ρ(x, y) = 1 and the subproblems
are initialized with a density of unity and velocity of u0. The simulation is conducted
at a fixed Reynolds number Re = 10. We measure the L2-errors in the macroscopic
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Fig. 3 Evolution of L2-errors in density and velocity. The DABC at various values for Hmax is
compared to the extrapolation BC. Top panels: Relative errors in ρ and ux . Lower Panel: Absolute
error in uy . The D2Q17 stencil was used for simulation

fields with respect to reference fields ρref,uref. Such fields are obtained from a
reference LBM simulation that uses a sufficiently large computational domain,
ensuring that no information from the boundaries propagates into the domain of
interest for the relevant amount of iterations. To simplify our analysis, the effect
of the left boundary is neglected by imposing the corresponding populations from
the reference simulation at the appropriate time. Upper and lower boundaries are
periodic. The right boundary is equipped with the DABC.

For comparison, we also equip the right boundary with a second order extrapo-
lation scheme [5], where the unknown populations at the right boundary are defined
as

fi(xi, yj ) = 4fi(xi−1, yj )− fi(xi−2, yj )

3
.

In Fig. 3 we show the time evolution of the error for the different macroscopic
fields, comparing the results obtained with the DABC with different Hmax with
those given by the extrapolated BC. We observe that the extrapolated BC causes
significantly larger reflections, causing the error in the macroscopic fields to
oscillate with decaying amplitude. The DABC does not exhibit this behaviour.
Instead, the error initially grows as the vortex starts to interact with the boundary
but then quickly drops, asymptotically approaching zero. As expected, usage of a
higher Hmax leads to lower errors. Since the reference value of uy is zero, we show
the absolute error in uy in the lower panel of Fig. 3.
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5 Conclusion

In this work we have extended a DABC to the D2Q17 LBM. Our numerical
results have shown that non-reflecting BC provide significantly higher accuracy
over standard BC for the modeling of artificial boundaries. We consider this to
be a promising first step towards the development of DABC for multispeed LBM,
capable of combining accuracy and computational efficiency. In particular the
latter aspect will be object of future studies, where we will analyze the thread-off
between performances and accuracy while varying Hmax. Finally, a more thorough
study of initialization strategies for the subproblems and a comparison with other
approaches, like the perfectly matched layer BC, appear promising candidates for
future research.
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Correlation Matrices Driven by
Stochastic Isospectral Flows

Michelle Muniz, Matthias Ehrhardt, and Michael Günther

Abstract In many important areas of finance and risk management, time-dependent
correlation matrices must be specified. We create valid correlation matrices by
extending the idea of correlation flows based on isospectral flows. To incorporate
the stochastic behavior of correlations, we adapt this approach by modeling the
isospectral flow as a stochastic differential equation (SDE) instead of an ordinary
differential equation (ODE).

The solution of this SDE lies on the manifold of symmetric and positive semi-
definite matrices, so structure-preserving schemes are needed for its numerical
approximation. We apply stochastic Lie group methods based on Runge-Kutta–
Munthe-Kaas schemes for ODEs to guarantee that the numerical solution evolves
on the correct manifold. We also present an application example to illustrate our
methodology.

1 Introduction

In this paper, we construct time-dependent correlation matrices that approximate the
true correlation using real market data, reflect the stochastic nature of correlations,
and satisfy the following properties of a valid correlation matrix:

1. All diagonal elements of a correlation matrix are equal to one and absolute values
of all non-diagonal elements are less than or equal to one.

2. Correlation matrices are real symmetric and positive semi-definite, i.e. all
eigenvalues are non-negative.

To ensure these properties, we take up the idea presented in [3, 6]. The authors
constructed covariance flows, i.e., covariance matrices based on the isospectral flux

M. Muniz (�) · M. Ehrhardt · M. Günther
Bergische Universität Wuppertal, Wuppertal, Germany
e-mail: muniz@uni-wuppertal.de; ehrhardt@uni-wuppertal.de; guenther@uni-wuppertal.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Ehrhardt, M. Günther (eds.), Progress in Industrial Mathematics at ECMI 2021,
The European Consortium for Mathematics in Industry 39,
https://doi.org/10.1007/978-3-031-11818-0_59

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11818-0_59&domain=pdf

 885 55738 a 885 55738 a
 
mailto:muniz@uni-wuppertal.de

 11058 55738 a 11058 55738 a
 
mailto:ehrhardt@uni-wuppertal.de

 22014 55738 a 22014 55738 a
 
mailto:guenther@uni-wuppertal.de

 -2016 61494 a -2016
61494 a
 
https://doi.org/10.1007/978-3-031-11818-0_59


456 M. Muniz et al.

Ṗt = [Yt , Pt ] , t ≥ 0 , (1)

where P0 is a given valid covariance matrix, i.e. symmetric and positive semi-
definite, Yt is a skew-symmetric matrix, Yt ∈ so(n), and [A,B] = AB − BA is
the matrix commutator. The solution Pt is a differential curve on the manifold

Ŝym(n) = {Pt = QtP0Q
�
t : Qt ∈ SO(n), P0 positive semi-definite} , (2)

where SO(n) denotes the space of orthogonal matrices with determinant +1. Note
that the matrices in Ŝym(n) are similar to P0.

The corresponding correlation flow is obtained by the transformation Rt =
"−1
t Pt"

−1
t with "t =

(
diag(Pt )

)1/2.
Our goal is to extend this approach by incorporating the stochastic behavior of

correlations. To this end, we formulate an isospectral flow based on (1) driven by a
stochastic differential equation (SDE) rather than an ordinary differential equation
(ODE). Since the solution of this SDE evolves on the manifold Ŝym(n), we need
a method for its numerical approximation that preserves the geometric properties
of the manifold. Therefore, we will present a structure-preserving Euler-Maruyama
scheme based on Runge-Kutta-Munthe-Kaas (RKMK) schemes for ODEs on mani-
folds [5]. Further details on stochastic RKMK schemes can be found in [2, 4].

The remainder of the paper is organized as follows. In Sect. 2 we construct
covariance flows based on an isospectral flow driven by a SDE. Since correlation
matrices play an important role in finance and risk management we provide an
application example of our methodology from the viewpoint of a risk manager using
real market data in Sect. 3. A conclusion of our results is given in Sect. 4.

2 Covariance Flows Based on Stochastic Isospectral Flows

The space of covariance matrices Ŝym(n) is a homogeneous manifold, i.e. there
exists an elementQ in a corresponding Lie group such that $(Q,P1) = P2 for two
arbitrary elements P1 and P2 of the manifold. The considered Lie group regarding
isospectral flows is the space of rotation matrices SO(n) and the map $ : SO(n) ×
Ŝym(n)→ Ŝym(n), called the Lie group action, can be chosen as

$(Q,P ) = QPQ� , (3)

see [5]. Corresponding to this Lie group action there exists a Lie algebra action
λ : so(n)× Ŝym(n)→ Ŝym(n) given by

λ(�,P ) = exp(�)P exp(−�) , (4)
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where the Lie algebra so(n) is the tangent space at the identity I of the Lie group
SO(n), i.e. so(n) = TISO(n), which is the space of skew-symmetric matrices.

The matrix exponential exp : so(n)→ SO(n), �  → ∑
k≥0�

k/k! acts as a map
from the Lie algebra to the Lie group and its derivative is given by

(
d

d�
exp(�)

)

H = (
d exp�(H)

)
exp(�), d exp�(H) =

∑

k≥0

1

(k + 1)! adk�(H) ,

(5)
see [1, p. 83]. By ad�(H) = [�,H ] = �H −H� we express the adjoint operator

ad0
�(H) = H, adk�(H) =

[
�, adk−1

� (H)
] = ad�

(
adk−1
� (H)

)
, k ≥ 1 .

Theorem 1 Assume that d exp�(H) in (5) is invertible and let�t ∈ so(n) be driven
by

d�t = Atdt +
m∑

i=1

�i,tdWi,t , �0 = 0 . (6)

Then Pt = exp(�t )P0 exp(−�t) obeying

dPt =
(
[
Y0,t , Pt

]+ 1

2

m∑

i=1

[
Yi,t ,

[
Yi,t , Pt

] ]
)

dt +
m∑

i=1

[
Yi,t , Pt

]
dWi,t (7)

is an isospectral flow in Ŝym(n), where Yi,t ∈ so(n) for i = 0, . . . , m.
The coefficients in (6) are given by

At = d exp−1
�t

(
Y0,t − 1

2

m∑

i=1

Ci,t
)
, �i,t = d exp−1

�t
(Yi,t ) ,

where

Ci,t =
(

d

d�
d exp�t (�i,t )

)

�i,t

=
∞∑

k=0

∞∑

j=0

1

(k + j + 2)

(−1)j+1

k!(j + 1)! adk�t

(
ad�i,t

(
adj�t (�i,t )

))
.

The SDE (7) and the coefficients in (6) can be derived by applying Itô’s lemma to
Pt = exp(�t )P0 exp(−�t) and assuming an additive perturbation by independent
Wiener processes W1,t , . . . ,Wm,t to the ODE (1). Since exp(�t )P0 exp(−�t)
corresponds to the Lie algebra action (4) with P ≡ P0, the solution Pt will evolve
in Ŝym(n) by construction.
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The expression d exp�(H) in (5) is invertible if the eigenvalues of ad� are
different from 2�πi with � ∈ {±1,±2, . . . }. The inverse converges for ‖�‖ < π

and is given by

d exp−1
� (H) =

∞∑

k=0

Bk

k! adk�(H) , (8)

where Bk denotes the Bernoulli numbers (see Lemma III.4.2 (Baker, 1905) in [1]).
Note that the assumption of a SDE in the Lie algebra gives the benefit of applying

actions in a linear space whereas applying linear actions to (7) on the manifold
Ŝym(n) would result in a drift-off.

3 Simulation of Correlation Flows

We assume the following scenario: A risk manager retrieves from the middle office’s
reporting system the initial correlation matrix

Rhist
0 =

(
1 −0.0159

−0.0159 1

)

, (9)

of the moving correlations between the S&P 500 index and the Euro/US-Dollar
exchange rate on a daily basis computed with a window size of 30 days from January
3, 2005 to January 6, 2006 seen in Fig. 1. Furthermore, we assume that the risk
manager is aware of the density function of the considered correlation as the path
shown in Fig. 1 is only one of many possible realizations. Therefore, we estimate
a density function from the historical data using kernel smoothing functions (see
Fig. 2). Now, the risk manager’s task is to create valid time-dependent correlation
matrices that reflect the stochastic nature of correlations while trying to match the
density function of the historical data.

Our proposed methodology for the risk manager is given by the following steps:

1. Compute a covariance matrix P0 based on the historical correlation matrix
Rhist

0 and consider the covariance flow Pt = exp(�t )P0 exp(−�t) obeying (7)
where the skew-symmetric matrices Y0,t , . . . , Ym,t are set such that they contain
parameters as degrees of freedom.

2. Solve the SDE (6) in the Lie algebra numerically and define a solution of
(7) according to the Lie algebra action (4). Transform the obtained covariance
matrices to corresponding correlation matrices.

3. Estimate the density function from the so-obtained correlation flow and calibrate
the involved parameters such that the density function of the correlation flow
matches the density function of the historical correlation.
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Fig. 1 The 30-day historical correlations between S&P 500 and Euro/US-Dollar exchange rate,
source of data: www.yahoo.com
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Fig. 2 Empirical density function of the historical correlation and the correlation flow between
S&P 500 and Euro/US-Dollar exchange rate, computed with the MATLAB function ksdensity

These steps are now specified for n = 2 and m = 2.

Setting P0 and Y0,t , Y1,t , Y2,t
For the construction of P0 we set D as the diagonal matrix containing the
eigenvalues of the estimated covariance matrix of the whole historical data and we
tried to find an orthogonal matrixH such that P0 = H�DH and ‖R0 −Rhist

0 ‖F →
min, where R0 = "−1

0 P0"
−1
0 with "0 = (

diag(P0)
)1/2 (see [3]). We report the
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so-found covariance matrix as

P0 =
(

0.0233 −0.0005
−0.0005 0.0427

)

. (10)

Time-dependent, skew-symmetric matrices Yi(t) can be obtained by multiplying
an arbitrary time-dependent function gi(t) with the generator G of so(2), i.e.
Yi(t) = gi(t)G for i = 0, 1, 2. Experimenting with different functions we chose

g0(t) = x1t sin(x2t), g1(t) = x3 + x4t, g2(t) = x5 + x6t, (11)

as they worked best regarding the given historical data. The parameters x1, . . . , x6 ∈
R can be associated with possible degrees of freedom.

Structure-Preserving Euler-Maruyama Scheme
We solve (7) with the initial value and coefficients specified in the previous step by
applying the following algorithm which is based on RKMK schemes for ODEs [5].

Algorithm Divide the time interval [0, T ] uniformly into J subintervals [tj , tj+1],
j = 0, 1, . . . , J − 1 and define  = tj+1 − tj and Wi ∼ N(0,). Starting with
t0 = 0 and �0 = 0 these steps are repeated until tj+1 = T :
1. Let Pj be the approximation of Pt at time t = tj .
2. Compute �1 by applying the Euler-Maruyama scheme to the SDE (6).
3. Define a numerical solution of (7) as Pj+1 = exp(�1)Pj exp(−�1). ��
The computation of the correlation flow can be listed as an additional step:

4. Set Rj+1 = "−1
j+1Pj+1"

−1
j+1 with "j+1 = (

diag(Pj+1)
)1/2.

Calibration
We calibrate the parameters x1, . . . , x6 in (11) such that the mean squared error,
1
N

∑N
j=1

(
f hist(zj )− f flow(zj )

)2 is minimized, where f hist(z) and f flow(z) are
the empirical density function of the historical data and the correlation flow, resp.,
estimated with the MATLAB function ksdensity at N = 100 equally spaced
points.

Choosing (x1, x2, x3, x4, x5, x6) = (6.22,−5.22, 9.88,−5.19,−0.62,−16.63)
we computed a mean squared error of 9.57 · 10−4. A corresponding plot that shows
how well the density function of our correlation flow approximates the historical
data can be found in Fig. 2.

4 Conclusion

We have presented an approach that shows that the correlation model of [6] can be
extended such that the stochastic behaviour of correlations is included by modelling
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the isospectral flow as a SDE instead of an ODE. Moreover, we introduced a
structure-preserving scheme that keeps the numerical solution of this stochastic
isospectral flow on the correct manifold Ŝym(n). Lastly, we have seen that our
methodology for the approximation of correlation matrices based on the stochastic
isospectral flow works quite well. In future work one could extend our model such
that more correlations (n > 2) are approximated. For this purpose, one could adjust
the number of diffusion coefficients Yi,t and the time-dependent functions gi(t) or
apply higher order methods.
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Investigation of Darwin Model with Two
Types of Coulomb Gauge Condition in
Frequency-Domain Electromagnetic
Finite-Element Method

Hiroyuki Kaimori, Takeshi Mifune, and Akihisa Kameari

Abstract In quasi-static electromagnetic field analysis, the Darwin model, which
considers inductive and capacitive effects, has attracted much attention. Many
previous methods require the additional scalar potentials for low-frequency (LF)
stabilization, as low-frequency stabilization is essential to obtain a correct solution
in broadband simulations. Additionally, it is necessary to solve the issues related
to eddy current by considering the inductance and capacitance effects. In this
paper, two new effective methods in the frequency domain are proposed for quasi-
static electromagnetic finite-element method using an iterative matrix solver. The
proposed methods are the Coulomb gauge condition applied without any additional
scalar potential and the Coulomb gauge condition applied with redundant variable to
improve numerical stability. The proposed methods can also be used for calculations
using external electrical circuits. The numerical results verify the effectiveness of
the two proposed methods.

1 Introduction

Although the quasi-static electromagnetic finite-element method (FEM) of the A-φ
formulation can solve issues related to eddy current, it cannot manage the capacitive
effects because the formulation neglects displacement currents. Therefore, the
Darwin model [1, 2] was investigated for the quasi-static A-φ formulation [2, 5–
9]. The Darwin model treats the dielectric as an electrostatic field, neglecting
the displacement current. However, the electromagnetic field FEM of the A-φ
formulation of the Darwin model struggles to obtain a correct solution under
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ungauged conditions. This problem is known as low-frequency (LF) stabilization
[3, 4]. Therefore, in the aforementioned methods, additional scalar variables are
defined to improve the numerical stability. The LF-stabilization has been discussed
numerically in terms of ill-conditioned coefficients, such as singular matrices. This
may be why it is often solved using direct matrix solvers. However, the physical
meaning of why the gauged condition requires an additional scalar variable has not
been fully clarified.

In this paper, we clarify the reason for using the Coulomb gauge condition in the
Darwin model of the A-φ formulation. We propose two new methods for the Darwin
model that are effective in the frequency domain: (1) by not defining additional
variables and (2) by defining redundant variables. Note that the redundant variables
are defined by satisfying the gauge condition, whereas in previous studies, additional
variables are defined for numerical stability. Both methods satisfy the numerical
stability requirement of LF-stabilization and provide the correct solution. The
parallel connection model of an inductor and capacitor is analyzed and compared
with the conventional eddy current analysis to verify the effectiveness of both
methods.

2 Potential Formulation with Darwin Model

2.1 Darwin Model with Coulomb Gauge Condition

We consider the finite-element method of the A-φ formulation using the Darwin
model. According to Helmholtz’s theorem, a vector field can be decomposed into
two components: transverse and longitudinal. By applying this theorem to the
electric field E, the transverse component ET is represented by the magnetic vector
potential A as the induced electric field, and the longitudinal component EL is
represented by the electric scalar potential φ as the Coulomb electric field [1].
Therefore, E can be expressed in the frequency domain (by jω) as:

E = ET + EL = −jωA −∇φ. (1)

Applying Eq. (1) to the Darwin model, the constitutive equations: Ohm’s law and
the relation between E and electric flux density D are defined as follows:

J e = σ(ET + EL) = −σ(jωA + ∇φ), (2)

D = εEL = −ε∇φ, (3)

where σ is the conductivity and ε is the permittivity. Note that D is expressed in the
relation EL. By substituting the constitutive equations into the Ampere-Maxwell
equation and the continuity equation of the A-φ formulation, we obtain the Darwin-
Ampere-Maxwell equation and the Darwin continuity equation as follows:
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∇ × (ν∇ × A)+ σ(jωA +∇φ)+ ε(jω∇φ) = J s , (4)

−∇ · {σ(jωA +∇φ)+ ε(jω∇φ)} = 0. (5)

where ν and J s denote the reluctivity and the source current, respectively. The
displacement current term is approximated by ∂t εE, as the 2nd derivative of time
is neglected, ∂2

t εA = 0 [2, 5]. The practice of neglecting the ε∇φ terms in
Eqs. (4) and (5) is common in the A-φ formulation of eddy current analysis,
which can be solved precisely by iterative solvers without imposing the gauge
condition. Although Eqs. (4) and (5) do not impose the gauge condition, the
iterative solvers are generally significantly slow [5]. Unfortunately, we cannot
obtain convergence solutions with IC-BiCGStabs solver. To avoid this, it may be
necessary to apply artificial conductivity to the nonconductive region [2], which
may lead to unexpected errors in the conductive region (the skin effect cannot be
correctly described). To solve this problem, we consider imposing the Coulomb
gauge condition [3, 7], which is formulated as follows:

∇ · εjωA = 0. (6)

Applying the Galerkin procedure to the weak forms in Eqs. (4)–(6) and imposing
the Coulomb gauge condition on the Darwin model, the proposed A-φ formulation
is given by:

∫

�

N · {∇ × ν∇ × A + ∇ · ε(jω∇φ)− J s}dV +
∫

�C

N · {σ(jωA + ∇φ)}dV = 0, (7)

−
∫

�C

W {∇ · σ(jωA + ∇φ)}dV −
∫

�

W {∇ · ε(jω∇φ)}dV = 0, (8)

∫

�

W {∇ · ε(jωA)}dV = 0, (9)

where N and W are the edge and nodal test functions, and � and �C denote the
entire and conductive region, respectively. By constructing a matrix for the system
of Eqs. (7)–(9) and symmetrizing the Darwin continuity equation by dividing by
jω, the formulation can be obtained as:

(
KνAA + jωCσAA CσAφ + jωCεAφ
CσφA + jωCεφA − j

ω
Cσφφ + Cεφφ

)(
A

φ

)

=
(
JA

0

)

. (10)

Here,A and φ are discrete vectors containing unknowns, andKν ,Cσ , andCε denote
discrete material matrices of reluctivity, conductivity, and permittivity, respectively.
The subscripts AA, Aφ, and φA in the discrete material matrices indicate that they
are associated with variablesA and φ. Eq. (10) can provide the means to improve the
convergence characteristics and generate the correct solutions. However, the number
of iterations of the iterative solvers tends to increase for high frequency problems. To
improve the convergence characteristics, additional scalar variables, such as electric
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scalar potential φ = φ+ψ [4] are introduced, but their physical meaning is not clear.
Therefore, we introduce the A-φ formulation using redundant variables to improve
the convergence characteristics of the iterative solvers. We define the redundant
variable χ in the entire region using a similar general gauge function:

A = A′ + (jω)−1∇χ, φ = φ′ − χ. (11)

Eq. (11) neglect the 2nd derivative of time for φ and A. Substituting Eq. (11) into
Eqs. (7)–(9), we obtain another A-φ formulation, which uses redundant variables:

∫

�

N · {∇ × ν∇ × A′ + ∇ · ε(jω∇(φ′ − χ))− J s}dV +
∫

�C

N · {σ(jωA′ + ∇φ′)}dV = 0,

(12)

−
∫

�C

W {∇ · σ(jωA′ + ∇φ′)}dV −
∫

�

W {∇ · ε(jω∇(φ′ − χ))}dV = 0, (13)

∫

�

W {∇ · ε(jωA′ + χ)}dV = 0. (14)

By constructing a system matrix for Eqs. (12)–(14), symmetrizing the Darwin
continuity equation by dividing by jω, and transposing the rows, the formulation
is obtained as:

⎛

⎜
⎜
⎝

KAA + jωCσAA CσAφ + jωCεAφ −jωCεAχ
CσφA + jωCεφA − j

ω
Cσφφ + Cεφφ

−jωCεχA −Cεχχ

⎞

⎟
⎟
⎠

⎛

⎝
A′
φ′
χ

⎞

⎠ =
⎛

⎝
JA

0
0

⎞

⎠ (15)

Note that the symmetric system matrix can be solved correctly by adding χ to
Eq. (10). Noticeably, χ is not defined as the gauge condition or LF-stablization.
Moreover, both formulations can be solved using iterative solvers by applying the
Coulomb gauge condition.

2.2 Necessity of Coulomb Gauge Condition

The role of the Coulomb gauge condition in providing the correct solutions is
discussed in this section. It is known that the A-φ and A formulations of a full
wave can be solved correctly. However, the A-φ formulation of the Darwin model
cannot neglect φ because the representation in Eq. (3) is defined for the Coulomb
electric field. D of the A-φ formulation for a full wave is defined as:

D = εE = −jωεA − ε∇φ. (16)
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Additionally D in the Darwin Model is defined by Eq. (3). To express D in a manner
that yields the correct solution in the Darwin model, the divergence in both Eqs. (3)
and (16) must be equal:

∇ · jωεA + ∇ · ε∇φ = ∇ · ε∇φ. (17)

The first term on the left-hand side of Eq. (17) is the Coulomb gauge condition
defined in Eq. (6). Therefore, the Coulomb gauge must be treated explicitly in the
A-φ formulation of the Darwin model.

In addition, Gauss’s law in the A-φ formulation is represented in the quasi-
electrostatic equation as:

∇2 · ε∇φ +∇ · jωεA = ρ. (18)

The 2nd term on the left-hand side of Eq. (18) is considered to be 0, which is exactly
the Coulomb gauge condition in Eq. (6) for the electrostatic equation. Consequently,
the electric field of the Darwin model solves the electrostatic field.

3 Numerical Results

A parallel connection model of an inductor and capacitor, in which the inductive
effect is dominant at low frequencies and the capacitive effect appears at high
frequencies, was analyzed. The model and parameters are shown in Fig. 1a. In this
case, the capacitive effect appeared as an induced electric field in the dielectric
region of the capacitor and ferrite. The boundary conditions were B · n = 0,
E × n = 0 for both sides in the Y direction, and H × n = 0, D · n = 0,
J ·n = 0 for the other boundary surfaces. An AC voltage of 1 V and a frequency of
100–10 MHz in 10-fold increments were applied to the terminals positioned in the

Fig. 1 Parallel connection model of an inductor and capacitor. (a) Model and (b) impedance
characteristics
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Fig. 2 The electric flux density distributions solved by the Darwin model without additional scalar
variables at 10 MHz

Y-direction of the bottom surface by given φ. The output currents were calculated
as the current passing through the bottom surface of the terminal. The IC-COCR
solver was applied to solve the symmetrical matrix of equations. Figure 1b shows the
impedance characteristics of the proposed Darwin model without additional scalar
variables (MF), with the addition of redundant variables (MF2), and conventional
eddy current analysis (AC), which includes the inductive effect only, for reference.
Above 1 MHz, the results of the Darwin models MF and MF2 were the same,
but different from AC because of phase shift caused by the capacitance effect.
Figure 2 shows the electric flux density distributions at 10 MHz solved using the
Darwin model without additional scalar variables. As can be seen, the electric flux
density appears around the capacitor, ferrite, and between the coil turns. Below
100 kHz, the number of iterations for AC, MF, and MF2 was almost the same,
averaging approximately 900. However, the MF increased to approximately 2000
iterations above 100 kHz. Therefore, the redundant variables may have improved the
convergence characteristics. The reason for the increase in the number of iterations
in MF will be discussed in future studies.

4 Conclusions

We presented the quasi-static electromagnetic A-φ formulations of the Darwin
model using two different approaches: (1) without additional variables and (2) with
the addition of redundant variables. We explained the necessity of the Coulomb
gauge condition for the Darwin model and showed that it is an electrostatic field
approximation. It was verified that both method can calculate the electric field
correctly and that a capacitive effect can be obtained using the parallel connection
model of an inductor and capacitor.



Darwin Model with Two Types of Coulomb Gauge Condition 469

References

1. Larsson, J.: Electromagnetics from a quasistatic perspective. Amer. J. Phys., 75, 3, 230–239
(2007)

2. Koch, S., Schneider, H. and Weiland, T.: A low-frequency approximation to the Maxwell
equations simultaneously considering inductive and capacitive phenomena. IEEE Trans. Magn.,
48, 2, 551–514 (2012)

3. Hiptmair, R., Kramer, F. and Ostrowski, J. M.: A Robust Maxwell Formulation for All
Frequencies. IEEE Trans. Magn., 44, 6, 682–685 (2008)

4. Ostrowski, J. and Hiptmair, R.: Frequency-Stable Full Maxwell in Electro-Quasistatic Gauge.
SIAM J. Sci. Comput., 43(4), B1008–1028. (2021)

5. Ho, S. L., Zhao, Y., Fu, W. N. and Zhou, P.: Application of Edge Elements to 3-D Electromag-
netic Field Analysis Accounting for Both Inductive and Capacitive Effects. IEEE Trans. Magn.,
52, 3, Mar. 7400504 (2016)

6. Zhao, Y. and Fu, W. N.: A Novel Coulomb-Gauged Magnetic Vector Potential Formulation
for 3-D Eddy-Current Field Analysis Using Edge Elements. IEEE Trans. Magn., 53, 6, June,
9400704 (2017)

7. Zhao, Y. and Tang, Z.: A Novel Gauged Potential Formulation for 3-D Electromagnetic Field
Analysis Including Both Inductive and Capacitive Effects. IEEE Trans. Magn., 55, 6, June,
7200905 (2019)

8. Jochum, M., Farle, O., and Dyczij-Edlinger, R.: A New Low-Frequency Stable Potential
Formulation for the Finite-Element Simulation of Electromagnetic Fields. IEEE Trans. Magn.,
51, 3, March, 7402304 (2015)

9. Badics, Z., Pavo, J., Bilicz, S. and Gyimothy, S.: Subdomain Perturbation Finite-Element
Method for Quasi-static Darwin Approximation. IEEE Trans. Magn., 56, 1, June, 7503304
(2020)



Statistical and Machine Learning
Methods for Automotive Spare Parts
Demand Prediction

Tiago Carmo, Manuel Cruz, Jorge Santos, Sandra Ramos, Sofia Barroso,
and Patrícia Araújo

Abstract Nors is a Portuguese group working on transport solutions. One of Nors
companies is a wholesaler of automotive spare parts dealing with several hundreds
of thousands of references, provided by different suppliers which have their own
lead-time and order periodicity. Given the magnitude of the references set, the stock
value and operational costs are non-negligible factors concerning their impact on the
company operational results. Nors already has a mathematical prediction model for
the spare parts ordering and management system. This work intends to improve the
existing model through the application of Neural Networks, namely Long Short-
Term Memory (LSTM) Neural Networks, both as a standalone prediction model
and as a combination with the existent one. The results show that in fact there is an
improvement with a consequent potential reduction in stock and warehouse costs.

1 Introduction

High number of references and suppliers cause a need for good prediction algo-
rithms to manage stocks and orders and fulfil the maximum of the existing demand.

Nors group has a sales prediction algorithm which bases its prediction in 11
different methods [1]. To attempt to improve the existing algorithm, we implement
recurrent neural networks [3], specifically, LSTMs [2]. LSTMs are widely used for
time series prediction, reason for its application in this problem. The main difference
between LSTMs and regular neural networks is the fact that LSTMs have the ability
of capturing long-term temporal dependencies. Instead of a feed-forward approach,
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in which the input is passed from one layer to the next one and so-on, recurrent
neural networks feed the information to the different layers in loops. In a layer,
each cell receives two inputs: the outputs of the previous layer and the vector of
states from the current cell from the previous time step. The units of these recurrent
neural networks also have a difference: they are gated recurrent units. That is, these
gates can “decide” how much information is stored in each cell at each time step in
order to keep the relevant information and avoid it to be “diluted” if we kept all the
information from all inputs. In this work, LSTMs were used as regressors, predicting
a single value from a sequence vector, in this case, one LSTM for each time series
(each reference) in a total of 2565. They were used not only to predict the company
sales, but also as predictors of the errors of the existing methods’ forecasts. This
last procedure constitutes the main novelty of the proposed work since, as far as we
know, it has never been proposed before.

The preliminary parametrizations were implemented both in MATLAB and
Python, to compare these languages in terms of accuracy and running times. The
final experiments were performed only in MATLAB and the simulation results show
that this approach is valid and that it improves the existing prediction algorithm.

Following this introduction, in the next section we describe the data and the
methodology, in Sect. 3 we present the computational results on a subset of Nors
real data and in the final section we discuss the results and draw some conclusions.

2 Materials and Methods

The dataset used in the simulations is a small subset from one supplier of
the company. It has 2565 reference entries and a 50-month time history. These
references represent different types of automotive spare parts from a single supplier
and with a broad range of frequency sales. The dataset also includes the original
forecasts (corresponding to the output of the 11 methods) made by the Nors sales
prediction algorithm. The dataset matrix is very sparse, containing many references
with few or even no sales. The heterogeneity of the dataset is also reflected by the
fact that there are references that have a lot of sales but without following any
apparent pattern, and a lot of low-rotation ones. These factors make it difficult to
choose the global parameters of the LSTMs, because, despite being individually
trained, they all share the same configuration (same parameters).

The data were split addressing 47 months for the training set and 3 months
for testing. After some preliminary tests, we obtained the final architecture and
hyperparameters for the LSTMs. It was used a single hidden layer, the Adam [4]
optimizer (an extension to the stochastic gradient descent method) and a piecewise
learn rate schedule with a drop factor of 0.2 and a drop period of 25 epochs. The
search space for the number of hidden units was 60 + 10k, k = 0, 1, . . . , 6, for the
learning rate 0.0005+0.0001k, k = 0, 1, 2, 3, 4, 0.001+0.001k, k = 0, 1, . . . , 9 and
0.01+0.01k, k = 0, 1, 2, 3, 4, and for the number of epochs 60+20k, k = 0, 1, 2, 3.

After the tests, the chosen values for the hyperparameters were 60 hidden
units, 0.005 for the learning rate and 100 epochs. The values chosen for these
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hyperparameters were the ones that resulted in much lower running times, with good
performance. This performance was measured as the percentage of references that
had a lower error than the original Nors prediction.

These parametrizations were implemented both in MATLAB and Python for
performance testing (running times and accuracy). Since there was no significant
differences between both methods and since the existing methods are already
implemented in MATLAB, it was decided to use this platform for the final
simulations presented in the next section. Prophet [5] was also used to serve as a
comparison [6].

3 Results

3.1 LSTMs as Sales Predictors and as Predictors of the 11
Nors Original Methods’ Errors

To perform sales predictions, LSTMs were trained, and each month took about 45
min. of running time to get the results (around 1 sec. per reference). We compared
the LSTM results with the method chosen by the Nors algorithm, both with exact
results and with them rounded to the nearest integer. When considering the exact
results, 33.1 % of the references have a better result than the method chosen by
the Nors algorithm as the best one and 51.5 % of the references have a worse result.
When considering the results rounded to the nearest integer, 11.4 % of the references
are better than the best original one and 18.7 % are worse (Table 1, first column).

To predict the errors of the 11 Nors original methods, the training of the LSTMs
took about 21 hours, which gives about 42 min. for each month and each method
(around 1 sec. per reference). The errors are calculated by Erri = Ŝi − S, i =
2, 3, . . . , 11, whereErri represents the error of method i’s prediction, Ŝi the method
i’s monthly sales prediction and S the real monthly sales for each given reference.

After supplying the LSTMs with these errors and obtaining their predictions, the
original methods are adjusted in order to incorporate a prediction of its own errors.
That is done according to Ŝi∗ = Ŝi − ˆErri , i = 2, 3, . . . , 11, where Ŝi∗ represents
the new method i’s prediction, now with a neural network prediction of its original
error, and ˆErri represents the prediction of the error of method i’s prediction. The
corresponding results are presented in Table 1.

Table 1 Percentage of cases where each LSTM method obtained better (B) or worse (W) results
than the method chosen by the algorithm implemented in Nors Group [1]

Method NN M2 M3 M4 M5 M6 M7 M8 M9 M10 M11
Exact B 33.1 12.1 85.0 21.3 27.3 24.4 16.6 34.9 26.9 21.8 26.7

W 51.5 19.8 8.3 24.8 27.1 25.5 29.2 28.3 25.0 33.2 25.0
Rounded B 11.4 7.6 80.7 7.5 6.4 7.1 8.2 9.0 8.0 9.0 4.0

W 18.7 4.4 3.2 2.9 5.6 5.2 5.0 7.6 5.9 7.2 4.5
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3.2 Accuracy Metrics

To better evaluate the performance of the LSTMs according to the business
perspective, some accuracy metrics were used. To do so, the methods involved were
first partitioned in the following subsets:

• C1: Set of the 11 methods already implemented in the Nors algorithm.
• C2: LSTMs as sales predictor.
• C3: Set C1 plus set C2, consisting in a total of 12 methods.
• C4: Set of all the 22 methods involved, the 11 in C1, C2 and the 10 LSTMs

applied to the errors of the C1 methods (except for method 1).
• C5: Prophet [5]: a forecasting procedure for time series developed by Facebook.

Prophet is designed to be fully automatic, although the user may tune several
parameters. In this work we made several experiments, using different values for the
parameters seasonality_mode (fits additive or multiplicative seasonality) and inter-
val_width (confidence interval parametrization). Concerning the first parameter, the
overall performance was similar in both options, except for the computation time
where the multiplicative model took around 5 times more than the additive version.

In average, each reference of each original method is computed in 1.15 × 10−6

seconds, each reference of each LSTMs’ method takes 1.00 seconds to compute
and Prophet (additive model) takes about 1.38 seconds to compute each reference’s
prediction. The accuracy metrics considered were the following:

• Hits: Percentage of references where prediction matched the exact monthly sale.
• Service Level: Percentage of references where the prediction plus a safety stock

was enough to satisfy the demand.
• Stock Out: Percentage of references where the prediction plus a safety stock was

not enough to satisfy the demand.
• Excess: Percentage of references overordered.
• Stock Out Parts: Percentage of parts that did not satisfy the demand.
• Excess Parts: Percentage of parts that were ordered in excess.

Nors Group also has implemented a safety stock [1] which is a dynamic approach
that evaluates, for a given reference in a certain month, the minimum stock needed
in order to satisfy a certain service level. This evaluation takes into consideration
the medium error of the reference predictions from the last 12 months and a
management decision parameter (α) that is settled using the errors of the previous
forecasts, as defined in [1, equation (20)]. This parameter was set with a value
α = 0.04 that would result in a service level of around 96%.

All the references’ demand was forecasted for the following months: November
2019; January, October, November and December 2020; January and February
2021, and the corresponding accuracy metrics were computed (see Table 2).

The accuracy metric of forecasting the monthly sales’ exact value (Hits), ranks
all the bundles of methods (C1 to C4) as outperforming the Prophet algorithm (C5),
with C2 having a slightly worse performance than C1, C3 and C4.
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Table 2 Percentages of the different accuracy metrics for each month and each set of methods

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Subsets Hits Service Level

Nov. 2019 59.3 56.0 59.1 59.1 49.0 95.6 96.3 95.7 95.7 85.0

Jan. 2020 58.2 54.6 58.0 58.3 50.0 96.5 97.1 96.5 96.4 88.0

Oct. 2020 61.3 58.8 61.4 60.9 52.0 97.0 97.2 96.9 96.9 92.0

Nov. 2020 64.0 61.4 63.7 62.7 53.0 97.5 97.6 97.5 97.5 93.0

Dec. 2020 64.3 61.6 64.1 63.5 52.0 97.5 97.7 97.5 97.3 94.0

Jan. 2021 71.2 70.3 71.4 71.1 57.0 99.5 99.6 99.6 99.5 95.0

Feb. 2021 67.5 61.8 67.1 65.9 59.0 97.5 97.8 97.7 97.5 95.0

Average 63.69 60.64 63.54 63.07 53.14 97.30 97.61 97.34 97.26 91.71

Stock out Excess
Nov. 2019 4.4 3.7 4.3 4.3 81.4 81.9 81.5 81.3

Jan. 2020 3.5 2.9 3.5 3.6 82.7 84.0 82.8 82.6

Oct. 2020 3.0 2.9 3.1 3.1 81.2 81.3 81.1 80.8

Nov. 2020 2.5 2.4 2.5 2.5 82.1 82.3 82.1 82.1

Dec. 2020 2.5 2.3 2.5 2.7 81.3 81.8 81.3 81.1

Jan. 2021 0.5 0.4 0.4 0.5 83.4 82.9 83.4 82.7

Feb. 2021 2.5 2.2 2.3 2.5 79.3 79.3 79.3 78.7

Average 2.70 2.40 2.66 2.74 81.63 81.93 81.64 81.33

Stock out parts Excess parts
Nov. 2019 7.7 9.4 7.6 8.2 148.1 162.8 147.8 147.0

Jan. 2020 4.7 3.7 5.1 5.8 173.6 180.4 172.6 174.0

Oct. 2020 4.3 3.7 4.3 4.2 192.9 220.2 194.1 195.5

Nov. 2020 5.3 4.5 5.3 5.3 208.7 243.0 213.4 214.2

Dec. 2020 6.2 3.7 6.3 6.7 174.3 199.2 175.2 174.7

Jan. 2021 26.2 24.4 26.1 26.2 130.1 143.7 131.6 132.2

Feb. 2021 4.2 4.8 3.9 4.7 202.0 244.9 223.2 224.1

Average 8.37 7.74 8.37 8.73 175.67 199.17 179.70 180.24

Considering the Service Level, it can easily be seen that (apart from Prophet, C5)
all the sets fulfil the 96% service level intended by Nors Group. It seems important
to notice that, even when adjusting the Prophet confidence interval parametrization
to 99%, the results return a Service Level of 93.4%, which is significantly lower than
the Nors threshold of 96%. As such, C5 was not included in the remaining tables.

Looking at the Stock Out we can see that the LSTMs as sales predictors (C2) as
well as when adding them to C1 (C3) outperform C1. Regarding the Excess Stock,
a clear improvement is noted with all the methods together (C4), having the lowest
value of references overordered. However, it is important to note that the quantity
ordered to the supplier is a function of the predicted value. In fact, the orders are
dependent of several factors as it may be seen in [1]. Moving on to the percentage
of Stock Out Parts there is a clear similarity between C1 and C3 (having the same
average percentage), but C2 is performing clearly better than the other bundles.
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Finally, when looking at the Excess Parts, adding LSTMs’ methods does not
seem to improve so much to the Nors implemented algorithm.

4 Discussion and Conclusions

Setting the management decision parameter α = 0.04 as described in Sect. 3.2
results in a Service Level very close to what was intended (96%) for all sets of
methods except for Prophet (C5), reason why its results were not presented for most
of the accuracy metrics.

When considering the single method C2 (LSTM) and comparing with C1 which
contains the 11 different existent methods, they have similar performances (some-
times even outperforming C1), that is, the networks as sale predictors performs
similarly to the best one out of 11 methods, which is a very good indicator of the
strong performance of the LSTMs in this context. Also, adding C2 to C1 (when we
use LSTMs to correct the existent methods prediction), set C3, the percentage of
exact matches (Hits) are similar to C1 and the percentage of references and pieces
in excess are reduced, and also slightly increasing the Service Level. Finally, all of
the deterministic and LSTMs methods (set C4) also reduces the Excess stock as well
as the service level, while still reaching the 96 % Nors mark for this supplier.

All of these results point to an improvement to the current algorithm, potentially
saving the company in stock and warehouse expenses. As future work, we will try
to create subgroups of references to use specialized LSTMs for each of them hoping
to further improve the obtained results. We are also confident on the possibility of
using this approach in other similar problems from industry.
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The Parareal Algorithm and the Sparse
Grid Combination Technique in the
Application of the Heston Model

Anna Clevenhaus, Matthias Ehrhardt, and Michael Günther

Abstract The sparse grid combination technique is an efficient method to reduce
the curse of dimensionality for high-dimensional problems, since it uses only
selected grids for spatial discretization. To further reduce the computational com-
plexity in the temporal dimension, we choose the Parareal algorithm, a parallel-
in-time algorithm. For the coarse and fine solvers in time, we use an efficient
implementation of the Alternating Direction Implicit (ADI) method, which is an
unusual choice due to the larger computational cost compared to the usual choice of
one-step or Runge-Kutta methods. In this paper we combine both approaches and
therefore obtain a even more efficient computational method for parallelism. The
application problem is to determine a fair price of a Put option using the Heston
model with correlation. We analyze this model as an example to illustrate this
advantageous combination of the sparse grid with the Parareal algorithm. Finally,
we present further ideas to improve this advantageous combination of methods.

1 American Option Pricing Under the Heston Model

The payoff function for a Put option with a predefined strikeK and the price for the
underlying asset S is given by

φ(S) = max(K − S, 0).

The Heston model [4] describes the dynamics of the asset price S and the variance
ν which is by definition the square of the volatility of the asset price. To price an
American put option using the Heston model, we have to solve a free boundary
value problem. We seek for

(
P(S, ν, t), Sf (t), νf (t)

)
in t ∈ [0, T ], where Sf (t)

and νf (t) are the free boundary values at time t and P(S, ν, t) fulfills
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P(S, ν, t) = φ(S) for S ≤ Sf (t), P (S, ν, t) > φ(S) for S > Sf (t).

The differential operator for P(S, ν, t) is given by

L[P ] = 1

2
νS2 ∂

2P

∂S2
+ρSνσνSν ∂

2P

∂S∂ν
+ 1

2
σ 2
ν ν
∂2P

∂ν2
+rS ∂P

∂S
+κν(ν−μν)∂P

∂ν
−rP,

where r is the interest rate, κν is the mean-reversion rate, σν is the volatility-of-
variance and μν is the long-term mean of the variance ν. As for the variance ν > 0
holds, the Feller condition 2κνμν > σν has to be fulfilled. The correlation between
S and ν is denoted by ρSν ∈ [−1, 1]. After time reversal τ = T − t , the differential
operator has to fulfill the inequality

∂P

∂τ
−L[P ] ≥ 0

and the initial condition

P(S, ν, 0) = φ(S), S > Sf (0).

At the boundaries of the asset, the payoff function, and at the boundaries of the
variance, the inequality of the differential operator has to be fulfilled. To avoid an
explicit computation of the free boundary value problem, we apply an operator
splitting and recast the problem into a linear complementarity problem with an
auxiliary variable λ [7]

⎧
⎨

⎩

∂P
∂τ

−L[P ] = λ,
λ ≥ 0, P − φ(S) ≥ 0,

(
P − φ(S))λ = 0.

(LCPλ)

In this mixed formulation of the LCP, λ plays the role of a Lagrange multiplier.

2 The Sparse Grid Combination Technique

The sparse grid idea is motivated to reduce the curse of dimensionality for solving
PDEs [1]. Let x ∈ �2 = [0, 1]2 be defined by the multi-indices

l = (l1, l2) ∈ N
2
0, j = (j1, j2) ∈ N

2
0, N = (N1, N2) = (2l1 , 2l2). (1)

such that we can define a tensor based grid �l whose grid nodes are given by

xl,j = (xl1,j1 , xl2,j2) for j1 = 0, . . . ,N1 and j2 = 0, . . . ,N2.
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The mesh width defined by this grid is h = (2−l1 , 2−l2). If for some applications
being sensitive to disordered grids, the difference between l1 and l2 is to high, we
obtain these kind of grids and therefore avoidable modelling errors. To avoid those
errors, we set a minimum for li > lmin = 3, s.t. each spacial direction has at least 9
grid points. Let u be the continuous solution on �2 and ul the discrete solution on
�l with l = (l1, l2). The hierarchical surplus of ul is denoted by

δ(ul) = ul − ul−e1 − ul−e1 + ul−e1−e2 with e1 = (1, 0)�, e2 = (0, 1)�,

where w1 only depends on h1, w2 only on h2 and h1 and h2 are independent from
each other. Further w1, w2, w1,2 are bounded. Based on the error splitting

u− ul = h2
1w1(h1)+ h2

2w2(h2)+ h2
1h

2
2w1,2(h1, h2),

we derive the error spitting of the hierarchical surplus

δ(u− ul) = O
(
h2

1h
2
2

)
= O

(
2−2|l|1

)
.

For the highest information gain for the sparse grid solution usn of level n = |l|1, the
sparse grid combination technique

usn =
∑

|l|1≤n
δ (ul) =

∑

|l|1=n
ul −

∑

|l|1=n−1

ul

is derived by the combination of the hierarchical surplus and the error splitting.
Since the sparse grid combination technique is developed on �2, we define x =
(y, z) ∈ [0, 1]2 and obtain S ∈ [Smin, Smax] and ν ∈ [νmin, νmax] by using the
following transformation

ψ−1(y) = S0 + α · sinh(y · (c2 − c1)+ c1),

c1 = sinh−1
(
Smin − S0

α

)

, c2 = sinh−1
(
Smax − S0

α

)

,

where α describes the degree of the non-uniformity of the grid and P(S0, ν0, T )

denotes the option price which we are interested in. If α is small, we obtain a highly
non-uniform grid and else wise the non-uniformity aspires to a uniform grid. For
z we use the transformation analogously. Using finite difference stencils of second
order, the semi-discrete partial differential complementarity problem (PDCPλ)

∂P

∂τ
= FP(τ)+ λ(τ), P (τ) ≥ φ(ψ−1(y)

)
,

(
P(τ)− φ(ψ−1(y)

))�
λ(τ) = 0,

is derived.
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3 Temporal Discretization and the Parareal Algorithm

We discretize the time uniformly, using τ = T/Nt we obtain the temporal time
points τk = k · τ with k = 0, . . . , Nt . With uk describing the discrete solution at
time step τk and g describing the discrete payoff value, we gain the fully discrete
linear complementarity problem, cf. [7]

T(uk, λk, τ k) =
{
uk+1 = Auk +τλk,
λk+1 ≥ 0, uk+1 ≥ g, (λk+1)�(uk+1 − g). (DLCPλ)

Within this problem, we have to solve two separate problems. In the first step a
system of linear equations has to be solved and in the second one a variable update
is done. The system of equations is solved by the modified Craig-Sneyd scheme
with the additional parameter λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y0 = uk +τA(τ k, uk) +τλk ,
Yi = Yi−1 + θτ

(
Ai (τ k, Yi)−Ai (τ k, uk)

)
, i = 1, 2,

Ŷ0 = Y0 + θτ
(
A0(τ

k, Y0)−A0(τ
k, uk

)

Ỹ0 = Ŷ0 + ( 1
2 − θ)τ

(
A(τ k, Ŷ0)−A(τ k, uk)

)

Ỹi = Ỹi−1 + θτ
(
Ai (τ k, Yi)−Ai (τ k, uk)

)
, i = 1, 2,

ũk+1 = Ỹ2,

whereA0 is the operator for the mixed derivatives,A1 the operator of the derivatives
of the first coordinate direction, A2 the operator of the derivative of the second
direction and A the sum of all operators. The operators are defined due to the
underlying pricing model, the Heston model. An improved way of implementation
of the ADI schemes is used [9], where the computation is based on matrices instead
of vectors and thus reduces the computational effort as redundant computations are
avoided. Since numerical results show N1 − 2N2 = 2l1 − 2 · 2l2 = 0 is a feasible
choice [5], we apply additional restrictions to l [2]. The restrictions can vary from
the strict condition l1 > l2 being fulfilled for every single sparse grid to a softer
condition where max l1 > max l2 holds. We focus on the strict difference between
l1 and l2 and introduce the parameter ldiff = min(l1 − l2). The second step, the
variable update can be done component wise by applying

{
uk+1 = max(ũk+1 −τλk, u0),

λk+1 = max(0, λk + (u0 − ũk+1)/τ )
.

As u0 = ψ(φ(S)), we set λ0 as the zero vector.
The Parareal algorithm is an iterative parallel-in-time method and can be viewed

as either a multigrid method or a multiple shooting method [8]. Within the iterative
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procedure, two different solvers are used. For both solvers, we consider the temporal
operators as previously described. Both solvers themselves converge to the exact
solution. The difference between the fine and coarse solvers is based on the
considered spatial grid, the fine solver F solves the problem on usn with NF time
steps and the coarse solverG on usn−1 withNG time steps. We initialize the algorithm

by introducingNτ equal time slices, s.t. τ̃p = [(p−1)·τ̃ , p ·τ̃ ], whereτ̃ = T
Nτ

.
The initial value for the first time slice is always given by the initial condition.
The initial guess for each time slice is calculated by the coarse solver. Since the
fast solver solves one time slice in each iteration, after at least Nτ iterations the
exact solution computed by F would be obtained. Therefore the maximum number
of iterations J must be much smaller than Nτ . After initialization, the iterative
procedure begins. First, the fine solver computes in parallel the solution of each
time slice with the initial values. Let uji be the discrete solution to the time slice τ̃i
at the j -th iteration. A serial correction step over all time slices follows

u
j+1
i+1 = G(uj+1

i , τ̃i , τ̃i+1)+ F(uji , τ̃i , τ̃i+1)− G(uji , τ̃i , τ̃i+1).

4 Numerical Results

In this section, we analyze the effect of reducing the grid resolution in the volatility
direction on the accuracy as well as the application of the Parareal algorithm to the
run time. We consider the following set of parameters

T = 0.25, K = 10, ρSν = 0.1, r = 0.1, κν = 5, μν = 0.16, σν = 0.9, J = 3, lmin = 3,

|l|1 = 12, S ∈ [0, 3K], ν ∈ [0, 3], αS = αν = 2, Nτ = 16, NF = 100, NG = 25.

This financial parameter set is often used and therefore is chosen to gain a
comparison for results [3]. Table 1 contains the computed Put option prices for
different grid resolutions, for each resolution the results are very close to the
reference values obtained in [3]. Further we get to know that even for very small
volatility values and a high reduction in resolution the results are comparable to the
sparse grid solution containing also solutions with l1 = l2, which requires almost
twice the amount of grid points as the restricted sparse grids and thus twice the
computational time.

Figure 1 shows the run time results for different parallel processors using the
same parameter set as before, but using different |l|1 values. We observe that the
sparse grid technique is more efficient than the combination with the Parareal
algorithm, due to increased communication time. To underline this fact, we observe
that the runtime increases almost linearly with the number of processors. Note, that
we choose ldiff = 0 for a fair comparison, as the increase of ldiff > 1 is only suitable
for the parareal algorithm. Using such a increased sparse grid as underling grid
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Table 1 Solution values for the different spot asset prices for the parameter sets compared to
reference values computed by the Parareal algorithm using sparse grids

ν0 = 0.0625

S0 8 9 10 11 12

[3] 2.0000 1.1081 0.5204 0.2143 0.0827 Grids

ldiff 0 2.0000 1.1078 0.5202 0.2138 0.0821 13

1 2.0000 1.1078 0.5202 0.2138 0.0821 11

2 2.0000 1.1075 0.5202 0.2138 0.0821 9

3 2.0000 1.1076 0.5201 0.2137 0.0821 7

Fig. 1 The dashed line corresponds to the constant serial run time using sparse grids and the solid
line represents the run time for the Parareal Algorithm with sparse grids with 4, 8, 12 and 16
parallel processors and ldiff = 0

structure for the parareal algorithm, we would obtain a smaller runtime. This is only
one of further improvement strategies which have to be applied to obtain a benefit
even for smaller problems.

5 Conclusion and Outlook

The numerical results show that even the additional restriction l1 > l2 with ldiff
large, which leads to a high resolution reduction in the volatility direction is
feasible. To obtain better results for using the Parareal algorithm in combination
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with the sparse grid approach, we need to further improve the resulting algorithm.
Fortunately, beneath the idea of using ldiff > 1 there are two ways to reduce
the computational cost. The first idea is based on the structure of the sparse grid
combination technique. Since in the presented approach all sparse grids of level
|l|1 − 1 have to be computed by the fine and the coarse solver, we can easily
reduce the overhead by reusing the results. The second is based on parallelizing
the computation of the sparse grids within the coarse solver, since they can each be
computed independently.
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A Higher-Order NSFD Method for a
Simple Growth Model in the Chemostat

Fawaz K. Alalhareth and Hristo V. Kojouharov

Abstract Accurate numerical methods that also preserve the important properties
of dynamical systems are essential, especially when approximating systems in
science and engineering. In this paper, we analyze a simple growth model in the
chemostat and present a new higher-order nonstandard finite difference (NSFD)
method for it, which is positivity-preserving, elementary stable, and also of second-
order accuracy. A set of numerical simulations is also presented to support the
theoretical results.

1 Introduction

Nonstandard finite difference (NSFD) methods are widely used to solve many
problems in science and engineering. The NSFD methods approximate the solutions
of continuous problems and preserve some critical properties of the exact solutions,
such as positivity and the local stability of the equilibria, among others. A
methodology for designing positive and elementary stable nonstandard (PESN)
numerical methods [2] was recently proposed for solving general autonomous
systems with positive solutions [7]; however, they are only of first-order accuracy.
More recently, a methodology for constructing second-order NSFD methods has
been developed for one-dimensional differential equations [3, 4]; however they are
only elementary stable [1] and do not preserve the positivity of solutions. This work
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proposes and analyzes a new second-order NSFD method for a simple growth model
in the chemostat. T he NSFD method can be also applied to other two-dimensional
autonomous differential equations in science and engineering.

The paper is organized as follows. In Sect. 2, we analyze a modification of
the simple chemostat model, which incorporates the constant input and death
of bacteria. Next, we present a new positivity-preserving, elementary stable, and
second-order accurate nonstandard numerical method for solving the chemostat
model. In the last section, a set of numerical simulations is presented that validate
the theoretical findings.

2 A Simple Chemostat Model with Bacterial Input

The chemostat is an experimental device that was invented simultaneously by
Monod and Novick-Szilard [6], which is widely used to model many ecological
problems. In this paper, we examine a modification of the classical simple chemostat
model [5, 6] by considering the dynamics of a single bacteria, B, and a growth-
limiting substrate, S, under a constant input of the bacteria at the dilution rate D
and bacterial cell death at the constant rate m. In this case, the modified chemostat
model is given by the following system of ordinary differential equations:

dS

dt
= DSin︸ ︷︷ ︸

input

− DS︸︷︷︸
dilution

− qμ(S)B
︸ ︷︷ ︸

consumption by B

= f1(S, B),

dB

dt
= DBin︸ ︷︷ ︸

input

− DB︸︷︷︸
dilution

+μ(S)B
︸ ︷︷ ︸
growth

− mB︸︷︷︸
death of B

= f2(S, B),

(1)

where Sin an Bin denote the concentrations of the input nutrient and bacterial
biomass, respectively, and q is the yield constant. The growth rate function is given
by the well-known Monod function:

μ(S) = μmaxS

K + S , (2)

where μmax is the maximal growth rate, and K is the half-saturation constant. A
straightforward equilibrium analysis reveals that system (1) has one equilibrium
E∗ = (S∗, B∗), where

B∗ = DBin

D̂
+ D

qD̂
(Sin − S∗)

and
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S∗ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sin + D̂K

μmax−D̂ + qμmaxBin
μmax−D̂ −

√(
Sin + D̂K

μmax−D̂ + qμmaxBin
μmax−D̂

)2 − 4 D̂SinK

μmax−D̂
2

, if D̂ < μmax

D̂SinK

D̂K + qμmaxBin
, if D̂ = μmax

Sin + D̂K

μmax−D̂ + qμmaxBin
μmax−D̂ +

√(
Sin + D̂K

μmax−D̂ + qμmaxBin
μmax−D̂

)2 − 4 D̂Sink

μmax−D̂
2

, if D̂ > μmax

,

with D̂ = D +m. In addition, one can also easily show that the cone

R
2+ = {(S, B) : S,B ∈ R and S,B ≥ 0}

is positively invariant for system (1). Examining the Jacobian matrix

J (S, B) =
(−D − qB μmaxK

(K+S)2 −qμ(S)
B
μmaxK

(K+S)2 μ(S)− D̂

)

, (3)

at the equilibrium E∗ = (S∗, B∗), one can show that E∗ = (S∗, B∗) is locally
asymptotically stable, since det (J (S∗i , B∗

i )) > 0 and −trace(J (S∗i , B∗
i )) >

0. Finally, using the Dulac’s Criterion and applying the Poincaré-Bendixson’s
Theorem we can conclude thatE∗ attracts any trajectory in � = {(S, B) : S+qB ≤
Sin + qBin}, and therefore, E∗ is also globally asymptotically stable.

3 A Higher-Order NSFD Method

In this section, we present the new second-order accurate, positivity-preserving, and
elementary stable nonstandard (SOPESN) numerical method for system (1):

Sk+1 − Sk
ϕ1(h, Sk, Bk)

= wk1
(
D(Sin − Sk)− qμ(Sk)Bk

)
,

Bk+1 − Bk
ϕ2(h, Sk, Bk)

= wk2
(
D(Bin − Bk)+ μ(Sk)Bk −mBk

)
.

(4)

where

wk1 =
{

1, if f1(Sk, Bk) ≥ 0
Sk+1
Sk
, if f1(Sk, Bk) < 0

and wk2 =
{

1, if f2(Sk, Bk) ≥ 0
Bk+1
Bk
, if f2(Sk, Bk) < 0

.

Here, (Sk, Bk) denotes the approximation of the exact solution (S(tk), B(tk)) to the
system (1), where tk = kh, with k positive integer and step-size h > 0. The modified
nonstandard denominator function ϕi : R+ × R

2+ → R+ in the proposed SOPESN
method is chosen as follows:
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ϕi(h, S, B) = h− qi(S, B)h
2

2
+ O(h3), (5)

where

qi(S, B) =

⎧
⎪⎨

⎪⎩

−
( ∂fi(S, B)

∂S

f1(S, B)

fi(S, B)
+ ∂fi(S, B)

∂B

f2(S, B)

fi(S, B)

)
, fi (S, B) > 0

2fi(S, B)

Xi
−
( ∂fi(S, B)

∂S

f1(S, B)

fi(S, B)
+ ∂fi(S, B)

∂B

f2(S, B)

fi(S, B)

)
, fi (S, B) < 0

,

with X1 = S and X2 = B.

Theorem 1 The NSFD method (4) for approximating the solutions of the con-
tinuous model (1) is positivity-preserving, elementary stable, and of second order
accurate when using the modified nonstandard denominator function (5).

Proof Positivity of the method can be seen by rewriting system (4) in the following
explicit form:

Sk+1 =
⎧
⎨

⎩

Sk + ϕ1(h, Sk, Bk)f1(Sk, Bk), if f1(Sk, Bk) ≥ 0
S2
k

Sk − ϕ1(h, Sk, Bk)f1(Sk, Bk)
, if f1(Sk, Bk) < 0

,

Bk+1 =
⎧
⎨

⎩

Bk + ϕ2(h, Sk, Bk)f2(Sk, Bk), if f2(Sk, Bk) ≥ 0
B2
k

Bk − ϕ2(h, Sk, Bk)f2(Sk, Bk)
, if f2(Sk, Bk) < 0

.

(6)

Since ϕi(h, Sk, Bk) > 0, then clearly Sk > 0, implies Sk+1 > 0, and Bk > 0 implies
Bk+1 > 0.

Next, it is easy to see from the formulation (4) that the equilibrium E∗ =
(S∗, B∗) of Equation (1) is a fixed point of the NSFD method and vice versa,
and that there are no other fixed point of (4). Finally, since E∗ = (S∗, B∗) is
locally asymptotically stable, the eigenvalues of the Jacobian matrix (3) evaluated
at E∗ = (S∗, B∗) are λi < 0 for all i = 1, 2. To show elementary stability we next
consider the linearized version of system (1):

(S′(t), B ′(t))T = J (S∗, B∗)(S(t)− S∗, B(t)− B∗)T . (7)

Since the matrix J (S∗, B∗) is diagonalizable, there is a 2 × 2 invertible matrix P
such that diag(λ1, λ2) = P−1J (S∗, B∗)P . Using the change of variable (S̄, B̄)T =
P−1(S(t)− S∗, B(t)−B∗)T , then it can be easily seen that Eq. (7) is equivalent to

(S̄′(t), B̄ ′(t))T = diag(λ1, λ2)(S̄, B̄)
T . (8)
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After applying the SOPESN method to Eq. (8) and since λi < 0 for all i = 1, 2,
then

S̄k+1 = S̄k

1 − ϕ1(h, S̄k, B̄k)λ1
, B̄k+1 = B̄k

1 − ϕ2(h, S̄k, B̄k)λ2
. (9)

Since the eigenvalues λi < 0,∀i = 1, 2, then clearly 1 − ϕi(h, S̄k, B̄k)λi > 1 and
hence 0 < 1

1−ϕi(h,yk1 ,yk2 )λ1
< 1 which implies S̄ki → 0 and B̄k → 0 as k → ∞, i.e.,

E∗ = (S∗, B∗) is a stable fixed point of the SOPESN method (4).
Finally, to prove the second-order accuracy of the SOPESN method, let us first

consider the case of fi(S, B) > 0. Using Taylor series expansion about tk yields

S(tk+1)−
[
S(tk)+ ϕ1(h, S(tk), B(tk))f1(S(tk), B(tk))

]
= f1(S(tk), B(tk))h

+
( ∂f1(S(tk), B(tk))

∂S
f1(S(tk), B(tk))+ ∂f1(S(tk), B(tk))

∂B
f2(S(tk), B(tk))

)h2

2

− ϕ1(h, S(tk), B(tk))f1(S(tk), B(tk))+ O(h3) = O(h3),

and, similarly,

B(tk+1)−
[
B(tk)+ ϕ2(h, S(tk), B(tk))f2(S(tk), B(tk))

]
= O(h3).

Similarly, one can show the second-order accuracy of the new NSFD method in the
case of fi(S, B) < 0, by using Taylor series expansion about tk and also Maclaurin
series of

1

1 − fi(S,B)ϕi (h,S,B)
Xi

.

4 Numerical Simulations and a Conclusion

To illustrate our theoretical results we use the new SOPESN method (4) with the
following nonstandard denominator function

ϕi(h, Sk, Bk) = 1 − e−qi (Sk,Bk)h
qi(Sk, Bk)

, i = 1, 2, (10)

where qi(S, B) is selected as in Sect. 3 which satisfies the conditions of Theorem 1,
and compare it to the second-order explicit Runge-Kutta (ERK2) method, the
Explicit Euler (EE) method, and the first-order positivity-preserving and elementary
stable nonstandard (PESN) method [7].
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Fig. 1 Comparison of SOPESN and PESN method when μmax = 0.3, m = 0.2, D = 0.4, K =
0.1, q = 10−8, Bin = 0.5, Sin = 1.5 and h = 0.9
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Fig. 2 Comparison of SOPESN, ERK2 and EE numerical methods when solving the model (1),
using μmax = 0.3, m = 0.2, D = 0.4, K = 0.1, q = 10−8, Bin = 0.5, Sin = 1.5 and h = 7

In Fig. 1, we compare our SOPESN method with the first-order PESN method,
for h = 0.9 and initial conditions S(0) = 2, B(0) = 1, and can see that the SOPESN
method converges much faster to the exact solution. As can be seen in Fig. 2, for
h = 7 and initial conditions S(0) = 2, B(0) = 1, the numerical solution from the
ERK2 method increases and eventually blows up to infinity as time increases, i.e.,
does not preserve the stability property of the equilibrium. Similarly, the EE method
does not preserve the positivity and elementary stability either, as the numerical
solution oscillates before eventually blowing up. However, the SOPESN method’s
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numerical solution converges to the exact solution, for any size of the time step h >
0, with a second-order accuracy while preserving the positivity and local stability
property of the equilibrium.

The numerical simulations presented here demonstrate the advantages of the new
SOPESN method as compared to standard numerical methods, which shows the
importance of the elementary stability and positivity-preserving properties of the
new NSFD method in addition to its higher-order accuracy than traditional NSFD
methods.
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Stability and Convergence of a Class of
RKDGMethods for Maxwell’s Equations

Adérito Araújo and Sunčica Sakić

Abstract This paper is concerned with a Runge-Kutta Discontinuous Galerkin
(RKDG) method for solving the time-dependent Maxwell’s equations in the context
of light propagation in the human eye. The method is based on a discontinuous
Galerkin (dG) method for the spatial discretisation of the partial differential equa-
tions (PDEs) and an explicit fourth-order Runge-Kutta method for the integration
of the resulting system of ordinary differential equations (ODEs). The stability and
convergence properties of the method are studied and experimentally inspected.

1 Introduction

In recent decades, medical imaging techniques have contributed significantly to
the understanding of the internal structures of the eye, as well as to the diagnosis
and treatment of many diseases. Our research group is particularly interested in
investigating efficient algorithms to simulate the propagation of light in the human
eye, with the aim of identifying the conditions that lead to different pathologies
[1, 2]. In [3], we used Maxwell’s equations to model the electromagnetic wave
propagation through the cornea, in order to explain which factors lead to the
deterioration of corneal transparency.

Maxwell’s equations are the fundamental set of equations that describe the
behaviour of an electromagnetic wave interaction with materials [7]. In this work,
we consider the time-dependent Maxwell’s equations in the transverse electric (TE)
mode [8] that correspond, in the conservative form, to the two dimensional system
of PDEs
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(
ε 0
0 μ

)
∂u

∂t
+ ∇ ·

⎛

⎝
0 −Hz
Hz 0
Ey −Ex

⎞

⎠ = 0, (x, y, t) ∈ �× (0, T ], (1)

with u = (Ex,Ey,Hz)�, where Ex and Ey are electric field components and Hz is
the magnetic field component, respectively. Here � is a bounded polygonal domain
in R

2, T is a real scalar, ∇· the divergence operator, and ε and μ are the electric
permittivity and the magnetic permeability of the medium, respectively. The electric
permittivity tensor ε is two dimensional symmetric, uniformly positive definite (for
almost every (x, y) ∈ �) and uniformly bounded with a strictly positive lower
bound, while the magnetic permeability μ is a scalar function varying in space.
The model is completed with initial conditions and perfect conductor boundary
conditions [9].

2 Discretisation Method

In this section, we introduce the numerical method for the discretisation of (1). We
will consider a method of lines approach to the numerical solution: we first discretise
the PDEs in space with a nodal dG method [6] and then we integrate the resulting
system of ODEs with an explicit Runge-Kutta type method [4].

For the space discretisation, we consider a conformal triangulation Th = {Tk}Kk=1
of �, with a spatial discretisation parameter h = maxk=1,...,K diam(Tk). On each
triangle Tk , the solution is approximated by a polynomial ukh of degree less than
or equal to N . The global solution is approximated by a numerical solution uh
obtained by a direct sum of the K local polynomial solutions ukh, connecting all
local solutions via numerical fluxes [2]. The space discretisation leads to a linear
system of ODEs

duh

dt
= Lh(α)uh, (2)

where the parameter α is related to the numerical flux used in the discretisation: for
α = 0, we have a central flux, and for α = 1, we have an upwind flux. For a fixed
mesh, it is clear that operator Lh depends only on α.

To define the fully discrete scheme, the system of ODEs (2) needs to be integrated
in time. A common choice [6] is to use the standard explicit 4-stage fourth order
Runge-Kutta (ERK4) method. The major drawback is that this method is memory
demanding and has a small stability region. To overcome these limitations, we
will consider an explicit low-storage Runge-Kutta type method. One of the best
known methods of this class is the low-storage 5-stage fourth-order LSERK(5,4)
method, introduced in [5]. When compared with the standard ERK4, this method
reduces memory requirements without significantly increasing computational costs.
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An alternative to LSERK(5,4) is the version that uses 14 stages, proposed by
Niegemann et al. in [10], the LSERK(14,4). Unlike the five stage version, this
method come with extra costs due to the more internal stages. However, the
advantage of LSERK(14,4) reflects in the stability of the RKDG method as we will
see in the next section.

3 Stability and Convergence

In this section we analyse the stability and convergence of the proposed RKDG
method for the normalised TE-mode of Maxwell’s equations, obtained by making
dimensionless each quantity that appears in initial equations. Informally speaking,
we consider ε = diag(1, 1) and μ = 1. All experiments shall be performed on
domain� = (−1, 1)2 tessellated into structured grids of various sizes (see Table 1).

3.1 Stability

To analyse the stability of the RKDG method, we start by illustrating the behaviour
of the spectrum of the semi-discrete dG operatorLh given in (2). In our experiments,
we consider the mesh parameters from Table 1 for K = 32 elements and we fix the
order of the polynomial approximating the local solution at N = 4. The number of
interpolation points on each triangle Tk isNp = (N+1)(N+2)/2 = 15. Since there
are three fields whose solution is unknown (Ex , Ey and Hz), the dG semi-discrete
operator is of size K ×Np × 3 = 1440.

Each of plots in Fig. 1 corresponds to 1440 eigenvalues λ of the semi-discrete dG
operatorLh given in (2), denoted by blue asterisks, and 4(λ)) and 5(λ) corresponds
to the real and imaginary part of the eigenvalue λ, respectively. Note that, by
decreasing the parameter α, the spectrum is getting closer to the imaginary axis.
Consequently, for α = 0 all eigenvalues become purely imaginary. This is a result
of the energy-conserving nature of central flux.

In Fig. 2 the regions of absolute stability of the three proposed numerical
integrators (ERK4, LSERK(5,4) and LSERK(14,4)) are illustrated and compared
with the eigenvalues λ of the semi-discrete operator for the upwind case. As we may
see, LSERK(14,4) has the widest stability region. In other words, LSERK(14,4)
allows bigger time-steps t to integrate (2) without compromising its stability
properties.

Table 1 Description of meshes used for numerical tests

Minimal distance between two vertices (hmin) 0.70 0.56 0.28 0.14 0.07

Number of triangles (K) 32 50 200 800 3200

Number of vertices (Nv) 25 36 121 441 1681
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Fig. 1 Spectrum of dG operator for TE-mode of Maxwell’s equations

3.2 Convergence

For purposes of convergence analysis, we set the initial condition as the planar wave
(Ex(x, y, 0), Ey(x, y, 0),Hz(x, y, 0))� = (0, 0, cos(πx) cos(πy))�. The exact
solution of (1) with perfect conductor boundary may be easily constructed. In our
numerical tests, we used the LSERK(14,4) method and the final time was set to
be T = 0.1. The difference between the exact and approximate solutions in L2-
norm are computed, and the associated orders of convergence in space and time are
determined.

To illustrate the order of convergence in space, we fixed the time-step at t =
10−4. The computations are performed for both central and upwind fluxes on
different meshes, given in Table 1, and the polynomial degrees varied from one to



Stability and Convergence of a Class of RKDG Methods for Maxwell’s Equations 497

-20 -15 -10 -5 0 5
-15

-10

-5

0

5

10

15

ERK4

LSERK(5,4)

LSERK(14,4)
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Fig. 3 L2-error for field Ex versus h for central flux (left) and upwind flux (right)

four. In Fig. 3 we present the L2-errors for the component Ex of electric field, into a
plot whose axes are logarithmically scaled. As we may see, when the central flux is
used, the order of convergence is aroundO(hN), while for upwind fluxes we observe
higher order, up to O(hN+1), in accordance with theoretical results presented in the
literature (see [1] and the references therein).

To visualise the convergence in time, the polynomial degree and the number of
elements in the mesh have been set to N = 8 and K = 3200, respectively. In Fig. 4
the L2-errors for the component Ex of electric field is computed while decreasing
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Fig. 4 L2-error for field Ex versus t

the time-step t . The results illustrate the fourth-order convergence in time. Same
results were obtained for both central and upwind fluxes.

4 Conclusion

We studied the stability and convergence of a class of RKDG methods for the
discretisation of the time-domain TE-mode Maxwell’s equations. This class uses
a dG method for the spatial discretisation and a fourth-order Runge-Kutta type
integrator for solving the resulting system of ODEs. When the LSERK(14,4) time
integrator is consider, it was shown that the spectra of the fully discrete scheme
remain in its stability region. The convergence of the method was analysed in both
space and time, confirming the theoretical convergence rates for both upwind and
central fluxes.
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Safeguarding the Nation’s Digital
Memory: Bayesian Network Modelling
of Digital Preservation Risks

Martine J. Barons, Thais C. O. Fonseca, Hannah Merwood, and David
H. Underdown

Abstract Archives comprise primary sources which may be physical, born digital
or digitised. Digital records have a limited lifespan, through carrier degradation,
software and hardware obsolescence and storage frailties. It is important that the
original bitstream of these primary sources is preserved and can be demonstrated to
have been preserved. Soft elicitation with experienced archivists was used to identify
the most likely elements contributing to digital preservation success and failure
and the relationships between these elements. A Bayesian Network representation
of an integrating decision support system provided a compact representation of
reality, enabling the risk scores for various scenarios to be compared using a linear
utility function. Thus, the effect on risk of various actions and interventions can be
quantified. This tool, DiAGRAM, is now in use.

1 Introduction

Archives comprise primary sources which can be physical, born digital and
digitised. Digital records have a limited lifespan, through carrier degradation,
software and hardware obsolescence and storage frailties. It is important that the
original bitstream of these primary sources is preserved and can be demonstrated to
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have been preserved; this consumes significant resources [1]. Digital preservation
(DP) is crucial for ensuring the longevity of societal history, for research, legal
accountability, government and business planning. It is a maturing field, with the
main standards around 20 years old. Larger (and relatively better funded) archives
such as national, state and provincial archives in high income countries have been
engaged in DP for longer periods. It is now becoming a pressing issue for all
archives.

The archival sector typically lacks sufficient people, sufficiently skilled people
and sufficient funding to undertake all possible mitigations against these risks. Thus,
there is a need for support in choosing the mitigation strategies which bring the
largest and most immediate reduction in overall risk levels in the current context of
an individual archive: there is not a ‘one-size fits all’ solution.

The National Archives in the United Kingdom (TNA), and the Applied Statistics
& Risk Unit (AS&RU) at the University of Warwick collaborated to build decision
support suitable for identifying risks to digital archives and quantifying the efficacy
of mitigation strategies, the Digital Archiving Graphical Risk Assessment Model
(DiAGRAM) [2].

2 Methodology

Soft elicitation [3] with experienced archivists was used to identify the most
likely elements contributing to digital preservation success and failure and the
relationships between these elements. This established, it became obvious that a
Bayesian Network [4, 5] representation of an integrating decision support system
(IDSS, [6, 7] would be appropriate as a compact representation of reality in this case.
However, not all the data required to quantify the model was available, so structured
expert judgement was employed to provide data in the gaps. The IDSS is a new
paradigm for drawing together evidence from different parts of large systems to
provide decision support. Each part of the system is typically overseen by a panel of
domain experts using their own data and, often complex, models. Panels contribute
key summaries of future expectations under different candidate policy decisions.
The IDSS then allows the decision centre to calculate expected utility scores for
these candidate policies for comparison and decision support.

2.1 Bayesian Networks

A discrete Bayesian Network as defined in [4] is a compact representation of the
joint probability distribution p(x) of a p-variate vector of random variables X =
(X1, . . . , Xp)

′. The model is specified by the set N = (X,G,P) with elements
given by
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1. a graph G = (V ,E) with nodes V and connections E;
2. a set o variables X representing the nodes of G;
3. a set of conditional distributions P with distribution pi(xi | xpa(i)) for each
Xi ∈ X,

where Xpa(i) is the set of parents of Xi . A Bayesian Network model is composed
by the representation induced by N which is given by

p(x) =
∏

ν∈X
pi(xν | xpa(ν)).

The inferential problem depends on the computation of P(Xν = xν | ε), Xν ∈ X
given a set of evidences ε, that is, the computation of total probabilities depending
on sums and multiplications. However, this computation is costly even for small
p. Often algorithms such as Logic Sampling are used to approximate the predic-
tive probabilities of interest. In the context of categorical data, the distributions
assumed for the observations are multinomial such that Xi | Xpa(i) = j, θ ij ∼
Mult (Mij , θ ij ) and are represented as conditional probability tables (CPTs). If a
Dirichlet prior with parameter aij is assumed for θ ij then the posterior distribution
is Dirichlet with parameter N ij + aij with Nijk the counts of {Xik = xik} when
{Xpa(i) = j}. For a practical guide on how to perform inference and prediction
using Bayesian Networks see [8].

Where data was not available, Structured Expert Judgement (SEJ) was used to
quantify experts’ uncertainties on the values for the conditional probability tables.

2.2 Structured Expert Judgement

Expert judgement is pervasive in all forms of risk analysis [7]. Structured expert
judgement elicitation is a well-established paradigm for eliciting expert judgements
of uncertain quantities and event occurrences [9]. Structured protocols seek to mit-
igate the most pervasive cognitive frailties when asking for subjective judgements,
such as group-think, availability bias, personality effects and overconfidence. We
used the recently-developed IDEA protocol [10]. Calibration questions are included,
drawn from existing surveys and reports, on which individual experts’ accuracy and
informativeness can be calculated for performance-weighted pooling of the results
into a single distribution, using the classical approach [11].

3 DiAGRAM

The Digital Archiving Graphical Risk Assessment Model (DiAGRAM) is a bespoke
tool developed to facilitate the computation of digital preservation risks and provide
comparison of competing policies. It aims to improve users’ understanding of digital
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Fig. 1 Qualitative description of the digital preservation system

archiving risks, empower archivists to compare and prioritise different threats to
the digital objects and to aid in quantifying the impact of risk events and risk
management strategies on digital preservation to support decision making.

The model contains the network elicited using soft elicitation G and the
conditional probability tables P representing the uncertainty in the nodes obtained
via historical data when it is available, and through SEJ elicitation otherwise.

3.1 Network Structure Construction

The variables and the qualitative relationships between them were elicited through
close communication with domain experts. The experts’ collective views were
represented by a Directed Acyclic Graph (DAG) (Fig. 1). The variables included
in the model were Digital Object, Identity, Conditions of Use, Intellectual Control,
Information Management, Technical Skills, Operating Environment, Content Meta-
data, Technical Metadata, Checksum, File Format, Bit-preservation, Obsolescence,
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Tools to render, Storage Medium, Storage Life, Replication and Refreshment,
System Security, Integrity and Renderability.1 The variables Intellectual Control
and Renderability comprise the utility function which provides comparative scores
for candidate policies in the policy comparison step. See [2] for further details on
structure construction and node definitions.

3.2 Expert Elicitation Results

SEJ was used in DiAGRAM to quantify Storage life, Obsolescence, Technical
Metadata, Tools to Render, Conditions of Use, Content Metadata, Identity, Integrity,
Bit Preservation and Renderability. In the elicitation sessions, 22 participating
experts answered 20 calibration questions and 24 questions of interest. The trans-
formed Kullback-Leibler divergence and the performance-weighted outcomes for
all experts are presented in Table 1. The results show experts 8, 12 and 16 had the
best performances on the calibration questions and experts 13, 20, and 21 had the
worst performances.

3.3 Joint Probability Distribution

This section computes the probability distributions based on the structure, tables
elicited from experts and data available. The data sources used were: the 2019 JISC
digital skills survey of over 300 UK archive professionals; the cloud data storage
providers on access and durability; data from the Environment Agency on the long-
term flood risk of UK postcodes; and data from TNA on file formats by digital object
type.

In DiAGRAM, of the 21 nodes, 9 have the probabilities customisable by the users
to reflect their institution: Digital Object, Operating Environment, Replication and
Refreshment Storage Medium, Technical Skills, Information Management, System
Security and Checksum.

For comparative purposes DiAGRAM provides a Baseline Model (BM) where
the customisable nodes are set to: (1) no technical skills; (2) good level of system
security (74%); (3) 0% of files have a check-sum; (4) 14% of files have sufficient
internal information management systems in place; (5) 100% of the digital archive
is born digital; (6) 100% of storage media are stored on outsourced (cloud) storage;
(7) 100% of files have a good replication and refreshment strategy in place; (8)
operating environment was considered 100 % as all files have copies in different
locations; (9) The risk of physical disaster (flood risk rating) is very low. For this
baseline model, the conditional probability table for the node Identity obtained in

1 See DiAGRAM’s ‘Glossary’ tab here: https://nationalarchives.shinyapps.io/DiAGRAM/.
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Fig. 2 Conditional probability table for the node Identity obtained in DiAGRAM for the baseline
Commercial Backup model

DiAGRAM for this setup is presented in Fig. 2. Probability tables for all nodes can
be obtained and are used to compute the final utility function.

3.4 Utility Computation and Scenario Evaluation

In consultation with a wide range of digital archivists, the utility for DiAGRAM
was defined as Renderability and Intellectual Control. Renderability (R) captures
the need for the digital object to have a sufficiently useful representation of the
original file. ‘Sufficiently useful’ depends on the use to which a digital object is
being put. Intellectual Control (IC) is the archivist’s need to have full knowledge of
the digital object’s content, provenance and conditions of use. IC requires sufficient
metadata that the archivist can identify the appropriate object, see how it relates to
other objects from the same source, and understand whether they have the copyright
permissions to make reproductions, or if data protection, etc. prevents the object
from being made publicly available (and how long those restrictions will remain
applicable).

We compare the Baseline Model with the alternative scenario of Commercial
Backup (CB), which is as for BM but improving information management to 43 %
and technical skill level to 30 %. The risk scores for BM and the CB are compared
using a linear utility function (Fig. 3). The CB scenario has larger total score (62:
IC = 20, R = 42) than BM (44: IC = 6, R = 38), showing that moving to CB improves
digital preservation.

Acknowledgments The authors acknowledge with gratitude valuable contributions to the project
by staff from partner institutions,2 and by the additional experts who participated in the elicitation.
This work was supported by: the National Lottery Heritage Fund under project reference
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2 See project webpage: https://www.nationalarchives.gov.uk/information-management/manage-
information/preserving-digital-records/research-collaboration/safeguarding-the-nations-digital-
memory/.
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Computational Methods for Market
Making Algorithms

Olivier Guéant

Abstract With the rise of electronification and trading automation, the task of
quoting assets on many financial markets must be carried out algorithmically
by market makers. Market making models and algorithms have therefore been
an important research topic in recent years, at the frontier between economics,
quantitative finance, scientific computing, and machine learning. The goal of this
text is (i) to present a typical multi-asset market making model relevant for most
over-the-counter markets, (ii) to show how to use stochastic optimal control tools
to derive a theoretical characterization of optimal quotes in that model, and (iii) to
discuss the various methods proposed in the literature that could be used in practice
in the financial industry for building market making algorithms.

1 Introduction

In finance, securities may be traded through exchanges or over-the-counter (OTC)
directly between two parties. In OTC markets, some market participants are
systematically providing liquidity to the others by showing/answering prices at
which they agree to buy and sell the assets and contracts they cover. These market
participants are called dealers or market makers and they play a central role in the
functioning of markets.

With the rise of electronification and trading automation, the task of quoting
assets on OTC markets must be carried out algorithmically by market makers.
Market making models and algorithms have therefore been an important research
topic in recent years, at the frontier between economics, quantitative finance,
scientific computing, and machine learning.
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In the 1980s, long time before algorithmic trading became necessary, economists
proposed models where one or several risk-averse market makers optimized their
pricing policy for managing their inventory risk (see [16–18]). More than twenty
years later, Avellaneda and Stoikov revisited in [1] that literature with a quantitative
finance viewpoint and proposed a model based on stochastic optimal control tools
to help market makers determine their optimal quotes. This model inspired both
academics and practitioners who then developed several realistic extensions—in
particular for OTC markets (foreign exchange, bonds, etc.) although the paper was
initially developed for stock markets. In [14], Guéant, Lehalle, and Fernandez-
Tapia proved the first set of mathematical results on the Avellaneda-Stoikov model,
derived closed-form approximations of the optimal quotes, and proposed extensions
to include a drift in the price dynamics and adverse selection. Cartea and Jaimungal,
along with several researchers added many features to the initial models: alpha
signals, ambiguity aversion, etc. (see [7–10]). They also proposed a slightly different
optimization framework where market makers maximize their expected profit minus
a running penalty to avoid holding large inventories whereas [1] relied on an
exponential utility function. To cite a few other extensions, general intensities and
partial information in [6], persistence of the order flow in [19], multiple requested
sizes in [4], client tiering and access to a liquidity pool in [2].

In most practical cases, market making algorithms must be built for entire
portfolios whereas most models proposed in the literature have been single-asset
ones until recently. Guéant and Lehalle were the first to touch upon a multi-asset
extension of models à la Avellaneda-Stoikov in [13] and a complete analysis for
the various objective functions present in the literature have been carried out in [12]
(see also the book [11]). In spite of equations characterizing the optimal quotes,
approximating numerically the optimal quotes remains a research problem, because
of the curse of dimensionality. The goal of this chapter is to present a typical multi-
asset market making model (Sect. 2), a theoretical characterization of the optimal
quotes in that model (Sect. 3), and to discuss the various methods proposed in the
literature that could be used in the financial industry (Sect. 4).

2 A Multi-Asset Market Making Model

We present here a typical model for the market making of d ≥ 1 assets.
For i ∈ {1, . . . , d}, the reference price of asset i is modeled by a process (Sit )t∈R+

with dynamics dSit = σ idWi
t and Si0 given, where (W 1

t )t∈R+ , . . . , (W
d
t )t∈R+ are d

Brownian motions with correlation matrix (ρi,j )1≤i,j≤d—hereafter we write " =
(ρi,j σ iσ j )1≤i,j≤d .

At each point in time, the market maker chooses the price at which she is ready
to buy/sell each asset: for i ∈ {1, . . . , d}, we let her bid and ask quotes for asset
i be modeled by two stochastic processes, respectively denoted by (Si,bt )t∈R+ and

(S
i,a
t )t∈R+ . For i ∈ {1, . . . , d}, we denote by (Ni,bt )t∈R+ and (Ni,at )t∈R+ the two
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point processes modeling the number of transactions at the bid and at the ask,
respectively, for asset i. In this simple model, the transaction size for asset i is
constant and denoted by zi . The inventory process of the market maker for asset i,
denoted by (qit )t∈R+ , has therefore the dynamics dqit = zidNi,bt − zidNi,at with qi0
given, and we denote by (qt )t∈R+ the (column) vector process (q1

t , . . . , q
d
t )

�
t∈R+ .

For each i ∈ {1, . . . , d}, we denote by (λi,bt )t∈R+ and (λi,at )t∈R+ the intensity

processes of (Ni,bt )t∈R+ and (Ni,at )t∈R+ , respectively.1 We assume that the market
maker stops proposing a bid (respectively ask) price for asset i when her position in
asset i following the transaction would exceed a given threshold Qi (respectively
−Qi). We assume that the intensities verify λi,bt = $i,b(δ

i,b
t )1{qit−+zi≤Qi } and

λ
i,a
t = $i,a(δ

i,a
t )1{qit−−zi≥−Qi } where the processes (δi,bt )t∈R+ and (δi,at )t∈R+ are

defined by δi,bt = Sit − S
i,b
t and δi,at = S

i,a
t − Sit , for all t ∈ R+. Moreover,

we assume that the functions $i,b and $i,a are twice continuously differentiable,
decreasing2 with ∀δ ∈ R, $i,b/a

′
(δ) < 0, and such that limδ→+∞$i,b/a(δ) = 0

and supδ
$i,b/a(δ)$i,b/a

′′
(δ)(

$i,b/a
′
(δ)
)2 < 2.

Finally, the process (Xt )t∈R+ modelling the amount of cash on the market
maker’s cash account has the following dynamics:

dXt =
d∑

i=1

S
i,a
t z

idN
i,a
t − Si,bt zidNi,bt =

d∑

i=1

(
δ
i,b
t z

idN
i,b
t + δi,at zidNi,at

)
−

d∑

i=1

Sit dq
i
t .

For the market maker, a classical optimization problem consists in maximizing
the expected value of an exponential utility function (with risk aversion parameter
γ > 0) applied to the mark-to-market (MtM) value of the portfolio at a given time
T , i.e. the amount XT plus the MtM value

∑d
i=1 q

i
T S

i
T of the assets at time T :

sup
(δ

1,b
t )t ,...,(δ

d,b
t )t ,(δ

1,a
t )t ,...,(δ

d,a
t )t∈A

E

[

− exp

(

−γ
(
XT +

d∑

i=1

qiT S
i
T

))]

,

where A is the set of predictable processes bounded from below. Alternatively, we
can consider a risk-adjusted expectation for the objective function:

sup
(δ

1,b
t )t ,...,(δ

d,b
t )t ,(δ

1,a
t )t ,...,(δ

d,a
t )t∈A

E

[

XT +
d∑

i=1

qiT S
i
T − 1

2
γ

∫ T

0
q�t "qt dt

]

.

Results for one of the two optimization problems usually translate into results for
the other.

1 Intensities are instantaneous probabilities to trade in this context.
2 The probability to trade with a client depends monotonically on the proposed price.



512 O. Guéant

3 Theoretical Results

The above problem is a stochastic optimal control problem that can be solved by
using a Hamilton-Jacobi-Bellman (HJB) equation and a verification argument. In
our case, the HJB equation is

0 = ∂tu(t, x, q, S)+ 1

2

d∑

i,j=1

ρi,j σ iσ j ∂2
SiSj

u(t, x, q, S)

+
d∑

i=1

1{qi+zi≤Qi } sup
δi,b
$i,b(δi,b)

(
u(t, x − ziSi + ziδi,b, q + ziei , S)− u(t, x, q, S)

)

+
d∑

i=1

1{qi−zi≥−Qi } sup
δi,a
$i,a(δi,a)

(
u(t, x + ziSi + ziδi,a, q − ziei , S)− u(t, x, q, S)

)
,

for all (t, x, q, S) ∈ [0, T )×R×∏d
i=1

(
ziZ ∩ [−Qi,Qi])×R

d , where {ei}di=1 is
the canonical basis of Rd and the terminal condition is

u(T , x, q, S)=− exp

(

−γ
(

x +
d∑

i=1

qiSi

))

,∀(x, q, S) ∈ R×
d∏

i=1

(
ziZ ∩ [−Qi,Qi ]

)
× R

d .

Using the ansatz u(t, x, q, S) = − exp
(
−γ

(
x +∑d

i=1 q
iSi + θ(t, q)

))
, it is

straightforward to verify that solving the above HJB equation boils down to solving
the following system of nonlinear ordinary differential equations:3

0 = ∂t θ(t, q)− 1

2
γ q�"q

+
d∑

i=1

1{qi+zi≤Qi }ziH
i,b
ξ

(
θ(t, q)− θ(t, q + ziei)

zi

)

+
d∑

i=1

1{qi−zi≥−Qi }ziH
i,a
ξ

(
θ(t, q)− θ(t, q − ziei)

zi

)

with terminal condition θ(t, q) = 0, where, for each i ∈ {1, . . . , d}, Hi,b/a(p) =
supδ

$i,b/a(δ)

γ zi
(1 − exp(−γ zi(δ − p))).

Then, one can prove the following theorem using a verification argument (see
[12], with slightly different notations):

3 It is indeed a system of nonlinear ordinary differential equations because the variable q takes
discrete values.
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Theorem 1 There exists a unique function θ : [0, T ] ×∏d
i=1(z

i
Z∩ [−Qi,Qi])→

R, C1 in time, solution of the above equation. Moreover, for i ∈ {1, . . . , d}, the
optimal bid and ask quotes are characterized by

δ
i,b∗
t = δ̃i,b∗

(
θ(t, qt−)− θ(t, qt− + ziei )

zi

)

for qt− + ziei ∈
d∏

j=1

(
zjZ ∩ [−Qj ,Qj ]

)
,

δ
i,a∗
t = δ̃i,a∗

(
θ(t, qt−)− θ(t, qt− − ziei )

zi

)

for qt− − ziei ∈
d∏

j=1

(
zjZ ∩ [−Qj ,Qj ]

)
,

where the functions δ̃i,b∗(·) and δ̃i,a∗γ (·) are defined by

δ̃i,b/a∗(p) = $i,b/a−1
(
γ ziH i,b/a(p)−Hi,b/a ′(p)

)
.

4 Numerical Methods

The above theorem states that finding the optimal quotes boils down to solving
two problems:4 (i) finding a numerical approximation of the function θ and (ii)
computing the functions δ̃i,b/a∗ for i ∈ {1, . . . , d}. The latter problem does not
raise any issue as the functions can be computed asset by asset by using classical
optimization techniques. For the former, one needs to approximate numerically the
solution of a system of nonlinear ordinary differential equations. For that purpose,
two families of methods exist: grid methods where the solution is approximated
at specific points and formula methods where the solution is approximated using
simple or complex “combinations” of simple functions.

In the literature, it is common to see finite different methods on a grid to
approximate θ . More precisely, Euler monotone schemes – explicit or implicit – are
often used to solve this type of problems (see for instance [2, 4, 12]). Grid methods
are very efficient in the one-asset case (d = 1) or when d is small (say d ≤ 3).
However, because they require a grid of dimension d + 1 (one dimension of time
and d dimensions for the assets) grid methods naturally suffer from the curse of
dimensionality and cannot be used for larger d.

Grid methods can nevertheless be used if one reduces beforehand the dimen-
sionality of the problem. An interesting way proposed in [4] consists of (i)
approximating the covariance matrix " by a low-rank symmetric matrix by using
a principal component analysis and keeping k ≤ 3 risk factors—and therefore
replacing the d-dimensional variable q by a low-dimensional one corresponding to
the k risk factors—and (ii) replacing the risk limits in terms of assets (Qi)i by risk

4 For most extensions of the above model, these two problems remain the relevant ones.
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limits in terms of factor exposures. By using this approximation, θ can be regarded
as a function of time and risk factors and approximated using a grid of dimension
k + 1 and not d + 1.

To beat the curse of dimensionality, formula methods can of course be used.
Closed-form formulas have been proposed in [12] and more recently in [5]. In
[5], the idea was to “approximate” the system of nonlinear ordinary differential
equations by a multi-dimensional Riccati equation that can be solved in closed form.
The approximation of θ turns out to be a polynomial of degree 2 in that case and
approximations of the optimal quotes are then derived asset by asset using the above
equations. This type of techniques provides great results, as exemplified in [5].

In order to approximate the optimal quotes using a formula method, another
interesting idea consists in looking for the function θ and sometimes the optimal
quotes themselves in the form of neural networks using reinforcement learning
techniques. Promising results in this line can be found in [15].

Numerical examples regarding credit indices are presented in [12]. For bonds, the
papers [4] and [15] contain interesting illustrations. The case of foreign exchange
has been tackled recently in [3] and should attract more interest in the near future.
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Study of Self-Adjoint Singularly
Perturbed BVP by Septic Hermite
Collocation Method

Archna Kumari, Shallu Shallu, and V. K. Kukreja

Abstract Self-adjoint singular perturbed boundary value problems are analysed
using orthogonal collocation on finite elements with septic Hermite as a basis
function. The roots of shifted Legendre polynomials are taken as collocation points.
After discretization using septic Hermite collocation method, the BVP reduces to
a banded system of 6N × 6N linear equations. The proposed method is found to
be stable and has an order of convergence of six. To validate the accuracy of the
method, SHCM is applied on few test problems. The method exhibits excellent
results for very small value of the perturbation parameter to the range of 2−1000

and beyond. This demonstrates the efficiency and reliability of the method.

1 Introduction

Consider the following self-adjoint singularly perturbed boundary value problem
(BVP),

Lε ≡ εy′′ +m(x)y′ + n(x)y = p(x), x ∈ (a, b), (1)

with condition:

y(a) = A, y(b) = B, (2)

where 0 < ε << 1 is a small perturbation parameter and m(x), n(x) and p(x) are
sufficiently smooth functions, such that m(x) > m∗ > 0 and n(x) > n∗ > 0. Under
these conditions Eqs. (1)–(2) have a unique solution. In general, the solution y(x)
may exhibit two boundary layers of exponential type at both end points x = a and
x = b.
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Self-adjoint singular perturbation problems arises in the various fields of science
and engineering such as mass and heat transfer problems [1], fluid dynamics [2],
chemical and biological dynamics [3], elasticity, and optimal control [4]. It is a well-
known fact that the solution of self-adjoint singularly perturbed boundary-value
problem displays a multiscale character. In some regions, i.e., a thin layer where
the solution varies rapidly, while behaves regularly and slowly when away from
the layer solution. When the perturbation parameter ε → 0, major computational
difficulties arise and the standard methods do not yield accurate results for all value
of x. Many numerical methods are available in the literature to solve the second-
order self-adjoint singular perturbation problems [5, 7]. For details, one can refer to
the survey article by Kadalbajoo and Patidar [8].

2 Description of Septic Hermite Collocation Method

Septic Hermite collocation method (SHCM) is one of the weighted residual
methods. It is a combination of the finite element method and orthogonal collocation
method with septic Hermite as the basis function, which is C3 continuous. Let
π = {a = x0 < x1 < · · · < xN = b} be the partition of given domain [a, b] into N
number of subdomain called finite element, with uniform step size h = (b − a)/N .
Now, the physical solution y(x) over the domin [a, b] can be approximated by a
piecewise Hermite polynomials of 7th degree as follows:

ȳ(x) =
N∑

k=0

[akAk(x)+ bkBk(x)+ ckCk(x)+ dkDk(x)],

where ak , bk , ck , dk are unknown constants and Ak(x), Bk(x), Ck(x) and Dk(x)
are septic Hermite interpolating polynomials of degree seven. The details of these
polynomials are given in [9].

In SHCM, the given domain [a, b] is discretized into N number of sub-domains
called finite element and h is uniform spacing. After the discretization, each element
[xk, xk+1] is mapped to [0, 1] by using the transformation η = x−xk

h
. Further,

roots of sixth degree shifted Legendre polynomials are used as collocation points.
Six interior collocation points within each element [xk, xk+1] are introduced. More
details about SHCM is given in [9].

2.1 Choice of Trial Function and Discretization Process

The approximate solution ȳ of exact solution y in kth element can be written as:

ȳ(x) =
8∑

i=1

ai+6k−6Hi(η), 0 ≤ η ≤ 1, (3)
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where a′i s are the unknown variables and k = 1, 2, . . . , N . Using the approximate
solution (3) in the Eqs. (1)–(2) at qth collocation point, the discretized set of
equations can be written as:

8∑

i=1

ai+6k−6

[

εH ′′
i (ηq)+m(ηqh+xk)hH ′

i (ηq)+n(ηqh+xk)h2Hi(ηq)

]

= h2p(ηqh+xk), (4)

where q = 1, 2, . . . , 6. The system (4) consist of 6N equations involving 6N + 2
unknowns. Two extra unknowns are calculated using boundary conditions y(a) = A
and y(b) = B. After using the boundary conditions, the system (4) reduces to matrix
form as:

SX
N = L

N, (5)

where S is coefficient matrix and X
N = [a2, a3, . . . , a6N, a6N+2]T are the

unknowns vector to be determined and L
N is the column vector. The matrix S

is diagonally dominant and non-singular. The matrix system (5) is solved using
MATLAB software. However, the matrices S and L

N for i = 1, 2, . . . , 8, q =
1, 2, . . . , 6 are defined as follows:

S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εH ′′
i (ηq)+ hm(ηqh+ x1)H

′
i (ηq)+ n(ηqh+ x1)h

2Hi(ηq), at k = 1, i �= 1

εH ′′
i (ηq)+ hm(ηqh+ xk)H ′

i (ηq)+ n(ηqh+ xk)h2Hi(ηq), at k = 2, 3, . . . , N − 1,

εH ′′
i (ηq)+ hm(ηqh+ xN)H ′

i (ηq)+ n(ηqh+ xN)h2Hi(ηq), at k = N, i �= 7

L
N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2p(ηqh+ x1)− A(εH ′′
1 (ηq)+ hm(ηqh+ x1)H

′
1(ηq)

+n(ηqh+ x1)h
2H1(ηq)), at k = 1,

h2p(ηqh+ xk), at k = 2, 3, . . . , N − 1,

h2p(ηqh+ xN)− B(εH ′′
7 (ηq)+ hm(ηqh+ xN)H ′

7(ηq) at k = N
+n(ηqh+ xN)h2H7(ηq)),

3 Stability Analysis

Let θS, θLN is the inbuilt error in the calculation of S and L
N respectively and

suppose XN be the solution of the system (5), i.e.,

(S+ θS)XN = L
N + θLN. (6)

Septic Hermite collocation method is said to be stable if ∃ non-negative constants
L1, L2, L3 such that the system (5) has a unique solution for ||θS|| ≤ L3 and
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||XN − XN || ≤ (L1||θS|| ||XN || + L2||θLN ||). (7)

Since the matrix S is diagonally dominant, therefore, using the result of [11]:

||S||−1 ≤ 1

min{7(ε/h2 +m∗/h+ n∗), 8(ε/h2 +m∗/h+ n∗)} ≤ L

h2 = v,
(8)

where mi ≥ m∗ > 0, ni ≥ n∗ > 0 and maximum value of all septic Hermite basis
function is less than or equal to one. Thus

||XN || ≤ ||S−1|| ||LN || ≤ L. (9)

Choose a positive constant u < (1/2)v, then whenever ||θS|| ≤ u, Eq. (6) has
unique solution for

||(S+ θS)−1|| = ||(I + S
−1θS)−1

S
−1|| ≤ 2v,

because ||S−1θS|| ≤ ||S−1|| ||θS|| ≤ 1
2 . Since (S+θS)(XN−XN) = θSXN−θLN ,

therefore,

||XN − XN || ≤ ||S+ θS||−1(||θSXN − θLN ||)
≤ 2v(||θS|| ||XN || + ||θLN ||),

which ensures the stability of the septic Hermite collocation system.

4 Convergence Analysis

Theorem 1 ([12]) Let y(x) be the solution of Eqs. (1)–(2) such that y(a) ≥ 0 and
y(b) ≥ 0. Then Lεy ≥ 0, ∀x ∈ (a, b) implies that y(x) ≥ 0, ∀ x ∈ [a, b].

Theorem 2 ([12]) Let y(x) be the solution of Eqs. (1)–(2). Then,

‖y(x)‖ ≤ Kε
(‖p‖
n0

+max(|A|, |B|)), ∀x ∈ [a, b],

where 0 < n0 < n(x) ∀ x ∈ (a, b) and ‖.‖ is maximum norm.

Theorem 3 ([12]) Let y(x) be the solution of Eqs. (1)–(2) andm(x), n(x) and p(x)
are sufficiently smooth functions in [a, b], then ∃ a constant Kε such that:

|y(j)| ≤ Kε, ∀x ∈ [−1,−ω)
⋃
(−ω, 1], j = 0, 1, . . . , 4.
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The bounds on the solution and its derivatives in the layer region [−ω, 0)⋃[0, ω]
are provided in the next two theorems.

Theorem 4 ([12]) Let y(x) be the solution of Eqs. (1)–(2) and p(x) sufficiently
smooth function in [a, b], then ∃ a constants Kε and 1 > 0 such that:

|y(j)(x)| ≤ Kε
[
1 + ε−j e1x/ε

]
, ∀x ∈ [−ω, 0), j = 1, 2, . . .

Theorem 5 ([12]) Let y(x) be the solution of Eqs. (1)–(2) and p(x) sufficiently
smooth function in [a, b], then ∃ a constants Kε and 1 > 0 such that:

|y(j)(x)| ≤ Kε
[
1 + ε−j e−1x/ε

]
, ∀x ∈ [0, ω], j = 1, 2, . . .

Theorem 6 ([10]) Let ȳ(x) be the septic Hermite splines approximation from the
space H̆ to the solution y(x) of the Eqs. (1)–(2). If p(x) ∈ C2[0, 1], then the uniform
error estimate is given by:

‖ y − ȳ ‖∞≤ Kεh6.

5 Results and Discussion

The maximum absolute error of each example are calculated by using the formula:

ENε = max
1≤i≤N+1

|yex(xi)− yapp(xi)|

where yex(xi) denotes the exact solution and yapp(xi) denotes the numerical
solution of given Eqs. (1)–(2).

Example 1 Consider the self-adjoint singularly perturbed problem [6, 7] with the
boundary conditions:

−εy′′(x)+ y(x) = −(cos2(πx)+ 2επ2 cos(2πx)), x ∈ [0, 1]
y(0) = 0, y(1) = 0.

The exact solution of the given problem is:

y(x) = e
−(1−x)√

ε + e−x√
ε

1 + e −1√
ε

− cos2(πx)

The estimated maximum absolute error is presented in Table 1 and the comparison
of maximum absolute error for different values of ε and N with fitted finite
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Table 2 Comparisons of maximum absolute error of Example 1 for different values of ε and N

N = 8 N = 16 N = 32 N = 64

SHCM

ε = 10−3 1.922453E−08 1.317701E−11 5.551115E−15 7.105427E−15

ε = 10−4 1.413032E−04 1.192632E−06 1.831640E−09 9.100498E−13

ε = 10−5 5.379017E−03 1.078566E−03 3.501474E−05 1.558968E−07

Soujanya and Reddy[6]

ε = 10−3 6.15E−02 1.38−E02 3.28E−03 8.07E−04

ε = 10−4 7.15E−02 1.72E−02 3.76E−03 8.47E−04

ε = 10−5 7.30E−02 1.88E−02 4.60E−03 1.04E−03
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Fig. 1 Exact and approximate solution of Example 1 for (a) N = 64. (b) ε = 10−10, N = 128

difference method [6] is given in Table 2. The graphical behavior of the numerical
and exact solution is given in Fig. 1.

Example 2 Consider the self-adjoint singularly perturbed problem [6] with the
boundary conditions:

−εy′′(x)+ (2 − x2)y(x) = 1, x ∈ [−1, 1]
y(−1) = 0, y(1) = 0.

The exact solution of the given problem is:

y(x) = 1

(2 − x2)
− e

−(1+x)√
ε − e

−(1−x)√
ε .

Table 3 shows the maximum absolute error for different values of ε and N . A
comparison of maximum absolute error with fitted finite difference method [6] is
reported in Table 4. Figure 2 shows the behavior of numerical and exact solutions
for different ε and N .
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Table 4 Comparisons of maximum absolute error of Example 2 for different values of ε and N

N = 8 N = 16 N = 32 N = 64

SHCM

ε = 10−3 1.989101E-03 8.425183E−03 1.644760E−02 1.644760E−02

ε = 10−4 2.398622E−03 1.986540E−04 9.628221E−04 3.386290E−03

ε = 10−5 9.570772E−03 5.578023E−03 1.100222E−03 5.874330E−05

Soujanya and Reddy[6]

ε = 10−3 1.89E−02 1.56E−02 1.65E−02 1.68E−02

ε = 10−4 1.61E−02 6.09E−03 3.37E−03 3.78E−03

ε = 10−5 1.61E−02 5.96E−03 1.87E−03 6.50E−04
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Fig. 2 Exact and approximate solution of Example 2 for (a) N = 64. (b) ε = 10−10, N = 128

6 Conclusion

In this work, the septic Hermite collocation method is developed to solve the self-
adjoint singular perturbation problems. From the theoretical analysis, it can be found
that the proposed method is stable and has sixth-order convergence. SHCM with
uniform mesh is applied to two different problems. The numerical results exhibit
that the proposed technique is efficient, reliable, and works even for a very small
perturbation parameter (ε), which is never reported in the literature.
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Data-Driven Approach for Systemic
Risk: A Macroprudential Perspective

Flavia Barsotti

Abstract This paper proposes a sovereign CDS analysis for systemic risk, assum-
ing a macroprudential perspective and building on the modelling framework
proposed by Baglioni and Cherubini (J. Econ. Dynam. Control 37:1581–1597,
2013). A data-driven approach applied to CDS quotes is considered to estimate
a reduced form model for the marginal intensity of defaults at country level and
investigate the presence of common factors. Results show a systematic effect
on default intensities, rank correlation and common factors for countries in the
sample with specific geographic differences. This is an important empirical evidence
to further investigate how to model, measure and assess the drivers explaining
heterogeneity in impacts across countries and build early warning indicators to
support strategic decision making.

1 Introduction

From a macroprudential perspective, policy decision makers have faced challenging
times all over the world to contain and manage the unprecedented effects caused
by Covid-19 pandemic and build trust. Some countries have taken the decision
of strict lockdown measures which in turns might have caused contraction in the
economy for different sectors. As the economic fundamentals weaken, risk aversion
begins to play a predominant role for agents [3]. The increased uncertainty affecting
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the world since 2019 is reflected in impacts on CDS spreads, as market-implied
measure embedding default risk. This economic situation could potentially trigger
cascading defaults for sovereigns. In order to build a preliminary empirical evidence
at EU level, this paper entails an empirical study to investigate the dynamics of
sovereign CDS and systemic risk from a macroprudential perspective, focusing
on the credit risk component captured by CDS quotes and potential joint default
effects. The paper proposes a data-driven approach to analyse the dynamics of
sovereign CDS and systemic risk. Starting from the works by [1] and [6], a data-
driven approach applied to CDS quotes is considered to estimate a reduced form
model for the marginal intensity of defaults at country level. This information is
then used to investigate the presence of common factors across economies for 8
European countries. Results show a systematic impact on pair-wise rank correlations
and co-movements of the series for CDS sovereign market-implied indicators and
marginal probabilities estimates. This is an important empirical evidence suggesting
to build more extensive analysis to identify the factors explaining heterogeneity
across countries by disentangling the default risk components and assessing the
specific role of both systematic and non-systematic drivers [2].

2 Macroprudential Perspective: Risk Decomposition

The paper proposes a data-driven approach to investigate the implications on CDS
market indicators in terms of credit quality and default risk of sovereigns close to
the pandemic event outbreak. A key factor for macroprudential policy is building
an holistic view on the financial system. This is fundamental to prevent overlooking
the dependencies and impacts of its inner working mechanism and manage potential
costs, instability and systemic risk patterns. From a mathematical point of view, this
paper tackles the problem of estimating a reduced form approach for the drivers
underlying the probability of a systemic risk event by leveraging on the marginal
default probabilities of a set of obligors (e.g. sovereign), the pair-wise correlation of
intensities and the identification of a common factor. The analysis of non-systematic
components is beyond the scope of the present paper.

2.1 A Reduced Form Model for Sovereign Default Risk

As in [1], the paper considers a reduced form model where the default probability
of each obligor i follows a Poisson process with intensity λ̂i . The intensity captures
the instantaneous relative increase in the probability of an event, namely

dPi(t) = λ̂iPi(t), (1)

with Pi(t) being the probability of default at time t . The survival probability of a
generic obligor i at time T is
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Pi(φi > T ) = exp
(−λ̂i (T − t)), (2)

with φi indicating the default time and {λ̂i , λ̂j } the marginal sovereign default
intensities of obligors {i, j}. Following the modelling dependence framework in
[1, 6], we consider a common factor F and estimate its intensity λ̄F,ij as

λ̄F,ij = 2ρ̂ij (λ̂i + λ̂j )
3(1 − ρ̂ij ) , (3)

with ρ̂ij being an estimate of the pair-wise correlation ρij . For each rank correlation,
we can then have an estimate of the common factor intensity1 and analyze the
impacts per geographic location.

2.2 Data

The analysis considers a sample of weekly observations of the most liquid 5Y
CDS quotes for European sovereign CDS over the period Jan-2016/Jan-2021.
Based on the financial nature of CDS contracts, their quotes enable to isolate the
credit risk associated to its reference entity. In the case of sovereign, this plays
a fundamental role for systemic risk measurement and assessment. In line with
[6], this paper considers 8 European countries belonging to Northern Europe (e.g.
Germany, France, Netherlands, UK—Northern EU) and Southern Europe (e.g.
Greece, Italy, Portugal, Spain—Southern EU). As in [1], following the standard
market approximation, the generic marginal intensity (e.g. hazard rate) λ̂Cjt for
sovereign Cj at time t is estimated as

λ̂Cjt =
CDSjt

LGD
, (4)

with CDSjt denoting the CDS quote for obligor j at time t and LGD the loss given
default. Figure 1 reports the time series of hazard rates for CDS sovereign obligors
in the sample and Table 1 the associated descriptive statistics.

3 Empirical Evidence

The empirical evidence deriving from the estimation results highlights a certain
degree of heterogeneity in the impacts of the pandemic outbreak in the sample.

1 As estimate of the common factor F , this first empirical analysis considers a 30%−quantile
measure over the set of estimates.
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Fig. 1 Sovereign hazard rates. The plots report the hazard rates implied by CDS quotes for 8 EU
Sovereign entities over the period Jan-2016/Jan-2021: Germany, France, Netherlands, UK, Greece,
Italy, Portugal, Spain. The marginal intensity for Sovereign Cj at time t is measured via the hazard
rate λ̂Cjt defined in Eq. (4). Plots (a)–(b) report the hazard rates with a split by region, e.g. Northern
EU Countries (a), Southern EU Countries (b). Plot (c) reports the comprehensive overview for all
countries. Table 1 reports the corresponding descriptive statistics
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Table 1 Descriptive
statistics. Sovereign hazard
rates implied by CDS quotes.
Time window:
Jan-2016/Jan-2021

Northern EU Sovereign Mean Std dev Min Max

Germany 0.0015 0.0005 0.0008 0.0028

France 0.0031 0.0012 0.0017 0.0078

Netherlands 0.0019 0.0007 0.0010 0.0041

UK 0.0046 0.0012 0.0025 0.0084

Southern EU Sovereign Mean Std dev Min Max

Greece 0.0717 0.0520 0.0098 0.2379

Italy 0.0207 0.0067 0.0082 0.0392

Portugal 0.0185 0.0139 0.0039 0.0551

Spain 0.0083 0.0030 0.0036 0.0175

Figure 1 reports the marginal intensities representing instantaneous probabilities
of default at sovereign level and Table 1 the corresponding descriptive statistics. The
economic impact of the outbreaks and its persistence are evident from the results.
Looking at the whole time window Jan 2016/Jan 2021, Southern EU Countries
show a systematic higher intensity level, if compared to Northern EU Countries.
Table 1 highlights the presence of differences in the order of magnitude for specific
descriptive statistics on the intensity levels λ̂Cjt , reflecting the corresponding

difference in the embedded riskiness2: λ̂Cjt ∈ [0.0008, 0.0084] for Northern EU

Countries, while λ̂Cjt ∈ [0.0036, 0.2379] for Southern EU Countries. Regarding
Northern EU Countries, UK is ranked first (e.g. riskiest) over most of the time
window3. The ranking among these intensities is: UK, France, Netherlands and
Germany. By directly comparing the average intensity levels on Dec-2019 and Mar-
2020, empirical evidence shows increases driven by scaling factors ranging from 1.4
(Netherlands) to 2.48 (Portugal). Regarding Southern EU Countries, results show
Italy and Greece even more affected than Portugal and Spain since the start of
the pandemic in 2019. To further investigate the impacts, focusing on Q1 2020
and considering relative changes in the intensity level enable a comprehensive
comparison around the beginning of the pandemic event outbreak. When computing
relative changes in the intensity levels in Q1 2020 across EU Countries, results show
a peak for all countries, with relative increases4 lying in the interval [38 %, 96 %].
Figure 2 and Table 2 suggest an interesting economic evidence from the pair-
wise rank correlation estimates at country level in terms of co-movements. For
Northern EU Countries, while Germany-France (France-Netherlands) correlation
has the highest (lowest) values until Q3 2020 (Q4 2020), data points are located

2 Observe also the column “Mean”, reporting the average intensity levels over the period.
3 Exception for Q1 2017 where France shows a higher peak. From an economic perspective,
disentangling the impacts deriving from Brexit would be an interesting topic to analyze for UK:
this is beyond the scope of the present paper and left as extension for future research.
4 The relative changes in the intensity levels are computed by considering the absolute variation in
λ̂Cjt (variation over one time step) divided by the initial intensity level λ̂Cjt . The highest relative
changes are reported for Portugal, Spain, France and Greece, within the interval [67 %, 96 %].
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Fig. 2 Sovereign rank correlation. The plots report the pair-wise rank correlation computed based
on CDS quotes for 8 EU Sovereign entities over the period Mar-2020/Mar-2021. The plot at the top
provides the pair-wise rank correlations for 4 Northern EU Countries, e.g. UK, Germany, France,
Netherlands. The plot at the bottom provides the pair-wise rank correlations for 4 Southern EU
Countries, e.g. Greece, Italy, Portugal, Spain

Table 2 Descriptive
statistics. Rank correlation.
Time window:
Mar-2020/Mar-2021

Northern EU Sovereign Mean Std dev Min Max

Ger-Fra 0.8583 0.0587 0.7638 0.9192

Ger-Ned 0.7375 0.1324 0.3408 0.8493

Ger-UK 0.8108 0.0900 0.6045 0.9085

Fra-Ned 0.6737 0.1848 0.1118 0.8902

Fra-UK 0.7791 0.1111 0.5634 0.9694

Ned-UK 0.7955 0.0938 0.4569 0.9065

Southern EU Sovereign Mean Std dev Min Max

Gre-Ita 0.8522 0.0835 0.6742 0.9542

Gre-Por 0.8069 0.1138 0.6305 0.9680

Gre-Spa 0.6437 0.1910 0.3583 0.9441

Ita-Por 0.9249 0.0240 0.8845 0.9817

Ita-Spa 0.8374 0.0829 0.7034 0.9666

Por-Spa 0.9219 0.0629 0.8409 0.9861
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Table 3 Descriptive
statistics. EU common factor
estimates

Sovereign Mean Std dev Min Max

Northern EU 0.0128 0.0035 0.0038 0.0184

Southern EU 0.1222 0.0425 0.0588 0.2625

above a correlation value of 0.6 from Q2 2020 onward for all cases. Overall, the
rank correlation has an increasing trend until Q2 2020 for all countries and then a
more stable behaviour around a high correlation value. For Southern EU Countries,
the same initial increasing trend before Q2 2020 is not a common feature. This is
strengthened after Q3 2020 and reaches its maximum in Q1 2021, when all series are
above 0.9, thus reflecting the interconnectedness of the economies, the associated
riskiness and strong co-movement behaviour5. The estimates of the common factor
in Table 3 highlight a difference of one order of magnitude between Northern
EU and Southern EU Countries. The estimates would need further investigation to
disentangle the underlying components, both from an economic and mathematical
perspectives. A Marshall-Olkin copula model [5] could be used to further explore
the interplay between the sovereign default risk and the dynamics of the banking
sector, as in [6], together with non-systematic components. Moreover, a comparison
with alternative benchmark models for the dependence structure would be desirable.
This is beyond the scope of this first empirical investigation and is left for future
research on systemic risk attribution.

4 Conclusion

Building on the work by [1], this paper focuses on a sovereign CDS analysis
of systemic risk assuming a macroprudential perspective. The paper proposes a
data-driven approach applied to CDS quotes to estimate a reduced form model
for the marginal intensity of defaults at country level. It considers 8 European
sovereign obligors to assess the pandemic implications on the economies. According
to results, a systematic effect in default intensities, rank correlation and common
factor is observed in the sample. However, geographical differences in terms of
macroeconomic perspective (e.g. rank correlation) and credit risk perspective (e.g.
marginal intensity, common factor) are present. Empirical evidence highlights a
strong co-movement on pair-wise correlations between sovereign default intensities.
These preliminary results suggest the basis for a deeper analysis to identify the
factors driving heterogeneity across countries. Future research should focus on
developing a comprehensive mathematical framework to simultaneously asses:
i) the interplay between sovereign-banking system defaults and non-systematic
components, ii) the interconnectedness of the banking system, by means of complex

5 Rank-correlations associated to Greece have a U-shaped behaviour, with a minimum for Q2-Q3
2020. The interplay between financial and non-financial effects could be a relevant driver.
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theory and specific dependence metrics (as alternative to [5]). From a macropruden-
tial perspective, designing a formal framework enabling to identify early warning
economic indicators would be important to support policy-makers decisions on
systemic risk and financial stability.
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Modelling Ozone Disinfection to Prevent
Covid-19 Transmission

Sam Rolland, Hamid Tamaddon Jahromi, Jason Jones, Alberto Coccarelli,
Igor Sazonov, Chris Kershaw, Chedly Tizaoui, Peter Holliman,
David Worsley, Hywel Thomas, and Perumal Nithiarasu

Abstract A modelling approach is proposed to study ozone distribution and
destruction in indoor spaces. The level of ozone gas concentration in the air,
confined within an indoor space during an ozone-based disinfection process, was
modelled. The emission and removal of ozone from the air volume were carried
out using a generator located in the middle of the room. The computational
fluid dynamics (CFD) model proposed accounts for ozone generation and decay
kinetics, and buoyancy variations in the airflow. This framework was validated
against experimental measurements at different locations in the room during the
disinfection cycle. The model was then applied to a more challenging environment
and demonstrated the suitability of ozone circulation as a disinfection process. The
study also highlights the need for a well-controlled ozone removal process.

1 Introduction

The transmission of Covid-19 and many other pathogen can be disrupted by use
of strong oxidisers in the disinfection process, [1]. Ozone, being a gas, has the
advantage of reaching aerosol particles as well as surface-deposited pathogens,
[2, 3]. As an oxidiser, it also has severe drawbacks for human health if inhaled
[4], particularly in people subject to respiratory conditions, [5]. The use of ozone
to control the spread of Covid-19 is therefore of high interest but must also be used
very carefully to avoid adverse effects, which motivates the present study. The work
builds on prior research [6] to extend the model validation and investigate how well
a portable ozone generator performs in disinfecting teaching spaces.
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2 Method

The study relies on the formulation of the computational model to reproduce the
physics involved in ozone dispersion and its implementation as user routines in
a finite volume code (Ansys Fluent). Experiments were run for validation and
compared to the numerical results. Finally, a new case was run with a more
challenging geometry was run to observe whether single-point ozone generation
can provide a satisfactory result where a recess is present in the room.

2.1 Numerical Method

The flow problem is solved numerically using a finite volume formulation based on
the incompressible conservation equations of mass (1) and momentum (2):

∇u = 0, (1)

ρ (∂u) / (∂t) = (μ+ μt)∇2u− ρ(u∇)u− ∇p + F. (2)

In the equations above, ρ is density, u is velocity, μ is molecular viscosity, and p is
pressure. F is a buoyancy source term based on the solutal expansion, βc = 0.001,
and the concentration gradient, (C − C∞):

F = g βc(C − C∞) ŷ. (3)

The vector ŷ above is the unit vector of direction of application of gravity g. The
reference concentration of ozone for the study is taken to be C∞ = 0. The transport
of ozone concentration is solved with an additional conservation equation:

ρ (∂C) / (∂t) = −ρ(u ∇)C +D∇2C + ρ (S − kC) . (4)

The value for diffusion coefficient of ozone in air was set as D = 3.1116 10−5

m2 s-1. The terms S and (kC) are a volumetric source term and a destruction
term respectively. The destruction is a first-order concentration-dependent function
characterised by a decay rate k.

The turbulent properties of the flow are resolved using the Spalart-Allmaras
formulation, adding one transport equation to be solved for the eddy viscosity ν̂
[7, 8].

∂ν̂

∂t
+ ∇ (

ν̂u
) = 1

σv
∇
((
μ

ρ
+ ν̂

)

∇ · ν̂ + Cb2
(∇ν̂)2

)

+ Cb1Ŝν̂ −
(
Cw1ν̂fw

)
.

(5)
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The dynamic turbulent eddy viscosity μt in Eq. (2) is calculated using ν̂ and a wall
function. For concision, readers are referred to text book materials [9].

2.2 Experimental Work

The experimental validation work was carried out in a simple cuboid room of
dimensions 4 m×4.3 m×2.7 m shown in Fig. 1a. A commercially available ozone
generator was used to generate and destroy ozone (Duo20, Advanced Ozone
Products, UK). The Duo20 unit works in generation mode with a flow rate of
335 m3 h-1, and a generation rate of 7 g h-1. In ozone destruction mode, the flow rate
is 245 m3 h-1, with an ozone decay rate k = 0.1 min-1. The unit can also be used
in circulation-only mode, where the flow rate is the same as that used in generation
but no ozone is produced (Fig. 1b).

Cycle 1 was run experimentally, and subsequently modelled (Table 1). Two
more cycles were run in the simulations for discussion. The ozone distribution was
sampled using a BMT 932 ozone monitor in four locations shown in Fig. 1a chosen
to sample varied flow conditions: direct flow above the generator (sensor 4), in the
corner of the room (sensor 1), near the room ventilation outlet (sensor 3) and against
the wall (sensor 2).

Fig. 1 Experimental set up of the flow and measurement conditions. (a) Room used for the
experiment with sensor locations and (b) flow through the ozone generator in generation and
destruction modes

Table 1 Timings of the
ozone disinfection cycles

O3 generation Circulation O3 destruction

Cycle 1 180 s 120 s 600 s

Cycle 2 240 s 60 s 600 s

Cycle 3 300 s 0 s 600 s
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3 Results and Discussion

3.1 Validation Case

The CFD predicted circulation of ozone is shown in Fig. 2. The data obtained from
the validation cases shows that a reasonable agreement can be obtained between
the experimental and the simulated data, however this is done without replicating
the exact experimental running conditions (Fig. 3). It is apparent that the ozone
concentration continues to increase during what is intended as the circulation-
only phase of the cycle. This was initially interpreted as an homogenisation of
the ozone concentration in the room, but soon found insufficient to explain the
continued rise [6]. Two more cycles were modelled with longer generation cycles.
These match the experimental data more closely. It is the authors’ interpretation
that switching the device to a circulation cycle does not end the ozone generation
immediately, and some hysteresis exists in the shut-down of ozone generation.
As soon as the generator is in destruction mode, the model is able to reproduce
experimental results, thus showing that generation and destruction rates can be
modelled accurately. These observations are valid at all four sensor locations, thus
supporting a good numerical reproduction of the ozone circulation experimentally
observed.

3.2 Extension Case

The use of the second case enabled an insight into a geometrically more complex
laboratory environment with a recess above the worktops, below wall-mounted

= 1 s = 4 s = 10 s

= 60 s = 180 s = 300 s

Fig. 2 Ozone concentration in the simple room used for validation
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Fig. 3 Time-series of ozone concentration at each sensor location (experiment and simulations)

cupboards. These are the areas at risk when using a single-source in a disinfection
cycle. The room is 43% larger than the room in the validation case (6 m × 3.6 m
× 2.9 m). The density was normalised by the highest ozone density achieved in the
simulation to focus on distribution independent of the value assigned to the ozone
flux S. The generation-only cycle shown in Fig. 4 represents 300 s. It is notable that
within 300 s all relative concentration is above 0.8, including the areas in the recess
of concern without a circulation cycle.

4 Conclusion

The method developed was shown to describe the convection and diffusion of the
ozone solute phase accurately using a simple turbulence model (Spalart-Allmaras),
a buoyancy term formulated to couple phase concentration and convection, and a
surface flux and first order volumetric source terms for generation and destruction
boundary conditions. Numerical results are in good agreement with the experi-
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= 75 s 150 s = 225 s

= 300 s (center) = 300 s (front) = 300 s (back)

Fig. 4 Relative density contours of ozone concentration in the laboratory

mental measurements. The study showed that issues are not so much in transport
modelling as in the faithful reproduction of the generation cycle, principally
attributed to experimental uncertainty. The application of the model to a new room
geometry shows that diffusion of ozone ensures that a single-source ozone generator
also works for a significantly larger room with non-uniform features likely to be
areas where the users of the room may come in direct contact with the the virus.
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