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Preface

There has been a surge of interest in understanding business processes in healthcare
over the past few years. While there are many treatises on particular technical and
economic facets of such processes, little has been written on their specific quantifica-
tion. Hence, the editors felt there had never been a better time to write a book giving
an overview on quantitative aspects of relevant business processes in healthcare. As
they cover a very broad spectrum of disciplines including mathematics, game theory,
social sciences, machine learning, and economics, the diversity of topics could not
be comprehensively covered in a single volume. However, this book aims to present
a selective coverage of the core elements and recent topics from within the broad
field of healthcare business processes.

This book is primarily directed at practitioners in thefield of healthcare economics,
applied probability, statistics, and machine learning. By keeping the mathematical
prerequisites simple and to a minimum, the book will be of interest and accessible to
the majority of readers. As far as possible, the development is self-contained while
necessarily condensed.

The book is divided into three distinct parts, together with supplementary mate-
rials. The first part looks at Value Creation and Managing Intellectual Property in
the Life Science Industry, an extremely important aspect of any knowledge-based
industry. The second partModelling Specific Business Processes in the Life Science
Industry relates to some selected topics encountered in healthcare business. The third
part Specialized Quantitative Tools in the Life Science Industry finally provides an
insight on the development of somemathematical tools from analysis and probability
theory.

All chapters discuss basic elements of business issues encountered in healthcare,
ranging from fundamental properties to simulation methods, as well as discussing

v
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legal and societal ramifications. The appendix provides background material and
code details as specified in the respective chapters.

Lucerne, Switzerland
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Value Creation, Valuation and Business
Models in the Pharmaceutical Sector

Michael Blankenagel, Jung Kyu Canci, and Philipp Mekler

1 Value Principles in the Pharmaceutical Industry

The pharmaceutical industry is a key, yet complex sector within the global econ-
omy. Organizationally, its complexity is outlined by an involved business model, an
intricate organizational structure, and a challenging environment. Economically, the
pharmaceutical industry has been characterized by high profit margins; this mainly
as a result of substantial research and development (R&D) investment and its legal
protection by patents. Over time the original situation has evolved further, gener-
ating two major types of pharmaceutical firms: originators and generic producers.
High R&D investment is a characteristic of the originator pharmaceutical companies
which produce patent-protected drugs, as well as biotech specialists which produce
biologics. The generic producers, on the other hand, do not incur the initial R&D
expenses (or less so) and in general produce drugs lacking patent protection. On top
of this now traditional set, new segments have arisen in the pharmaceutical indus-
try, comprising services in or around the traditional drug industry, e.g. diagnostic or
data-oriented endeavours.

What defines the process of value creation in pharmaceutical firms? In the long
run, it is the role of successful R&D as a driver of value creation. This long-term view
of value creation has particular implications: (i) R&D is a critical input to long-term
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growth and the pharmaceutical sector is one of the highest R&D-intense sectors, (ii)
this intense R&D effort is only economically feasible when protected by intellectual
property legislation and (iii) successful R&D leading to the discovery of new drugs
increases its economic footprint by improving the society’s health status and well-
being. The present chapter attempts to outline value creation, value protection and
value estimation using the above ideas.

2 Value Creation in the Pharmaceutical Industry

In the pharmaceutical industry value is typically created in one of four business
modalities: (1) disease solution providers, (2) breakthrough innovators, (3) commer-
cial optimizers and (4) value players (Behnke et al. 2014; Buldyrev et al. 2020; Clark
et al. 2021).

(1) Disease solution providers:
Such companies approach competition by offering differentiated products and
services based on thorough understanding of the disease and customers. Gilead’s
unique HIV combination therapies drove an eightfold increase in the company’s
share of the HIV/AIDS drug market in the 2010s. As another example, Novo
Nordisk’s leadership in diabetes care largely explains why its 2016-20 EBITDA
margin was higher than would have been expected from its relative share of the
pharma market as a whole.

(2) Breakthrough innovators:
Such companies create one-of-a-kind products, requiring less emphasis on
sophisticated commercial capabilities. For example, around2010,Celgene (since
2019 a Bristol Myers Squibb company) changed the game in multiple myeloma
by developing innovative applications for the historically negatively connotated
Gruenenthal drug thalidomide. Roche built its leadership position in oncology on
Genentech’s breakthrough work in systematically developing humanized mono-
clonal antibodies.

(3) Commercial optimizers:
These extract maximum value from proven, not always highly differentiated,
products. A typical example is Pfizer, which built a dominant position in the
branded primary care category by figuring out how to commercialize acquired
assets, especially products that lacked significant clinical differentiation.

(4) Value players:
These are companies having achieved leadership in generics by deploying dif-
ferentiated business capabilities to build scale and breadth in their target geogra-
phies. Such companies achieve success by developing differentiated business
capabilities; India-based Cipla or Teva out of Israel may serve as typical exam-
ples. Cipla has focused on manufacturing low-cost generic drugs for fatal dis-
eases afflicting large populations in developing countries. Teva has succeeded in
the US and other Western markets by successfully challenging the intellectual
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property positions of originator companies and being first to market with new
generics.

Illustration: Category leadership versus profitability (adapted from Behnke et al.
(2014)).

3 ‘Keeping Focus’: The Traditional Value Token

Since the early 2000s building leadership in a particular value creation category
has become crucial for success in pharma. Seven of ten leading value creators, e.g.
Roche in oncology andNovoNordisk in diabetes care, generated at least 50% of their
revenues from one particular therapeutic area. In some extreme cases (e.g. Biogen in
neurology and Incyte in oncology) more than 90% of revenues came from a single
therapeutic area.

Category leaders have privileged access to all stakeholders in a given category.
This allows them to identify and satisfy unmet customer needs, often at the intersec-
tion of science, logistics and marketing. Their product and regulatory functions ben-
efit frommore expertise and stronger relationships, enabling them to get innovations
to market faster and with a higher success rate. They are well placed to understand
and price the best business development opportunities and are a preferred partner
for smaller companies to develop and market their products. Lastly, their market
presence and strong customer relationships improve commercial efficiency.
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Illustration: Profit growth by business area (adapted from Clark et al. (2021)).

4 ‘Extending Horizons’: Innovation-Integration Across
the Value Chain

Outside of classical pharma, growth in healthcare services and technology has been
accentuated, as old and new players are bringing technology-enabled services to
help improve patient care and therapeutic efficiency (Clark et al. 2021). Healthcare
services and technology companies are serving nearly all segments of the healthcare
ecosystem. These efforts include working with payers and providers to better enable
the link between actions and outcomes, to engage with consumers, and to provide
real-time and convenient access to health information. Venture capital and private
equity have fueled much of the innovation in the space: more than 80 percent of deal
volume has come from these institutional investors, while more traditional strategic
players have focused on scaling such innovations and integrating them into their
core. Driven by this investment, multiple new models, players and approaches are
emerging across various sub-segments of the technology and services space, driving
both innovation (measured by the number of venture capital deals as a percent of
total deals) and integration (measured by strategic dollars invested as a percent of
total dollars) with traditional payers and providers. In some sub-segments, such as
data and analytics, utilization management, provider enablement, network manage-
ment and clinical information systems, there has been a high rate of both innovation
and integration. For instance, in the data and analytics sub-segment, areas such as
behavioural health and social determinants of health have driven innovation, while
payer and provider investment in at-scale data and analytics platforms has driven
deeper integration with existing core platforms. Other sub-segments, such as patient
engagement and population health management, have exhibited high innovation but
lower integration. Traditional players have an opportunity to integrate innovative new
technologies and offerings to transform and modernize their existing business mo-



Value Creation, Valuation and Business Models … 7

dels. Simultaneously, new (and often non-traditional) players are well positioned to
continue to drive innovation across multiple sub-segments and through combinations
of capabilities.

5 Value Protection: Intellectual Property in the Life
Sciences

In his paper on business innovation and growth (Ahlstrom 2010), David Ahlstrom
argues that the main goal of any business is to develop new and innovative goods
and services that generate economic growth while delivering important benefits to
society. Steady economic growth generated through innovation plays a major role
in producing increases in per capita income. Small changes in economic growth can
yield very large differences in income over time, making firm growth particularly
salient to societies. In addition to providing growth, innovative firms can supply
important goods and services to consumers.

Classically, among the more advanced methodologies, static net asset value
(NAV)-based valuations have been used to attempt catching the ‘true’ value of a
patent. However, it has become increasingly evident that uncertainty in a patent’s life
cycle must be considered when performing patent valuation. For these reasons, a new
family of quantitative models which account for uncertainty by means of stochastic
(Monte Carlo) simulations have been used by several groups and companies.

5.1 Patent Evaluation

5.1.1 General

A key feature of patents in the pharma and biotech industries is that their value is
uncertain. There is a large gap between patent value studies and cost-benefit analysis
tools. Existing valuation approaches do not consider a patent’s life cycle, an important
and unique characteristic of pharma and biotech patents.

Hence, some authors propose a quantitative stochastic model that accounts for
uncertainty and solves the problem by means of Monte Carlo simulations. This is
done to model the uncertainty in a patent’s value as a stochastic process and use
a mean-reverting process to model changes in the value during the patent’s life
cycle. Furthermore, one can perform comparative parameter analyses and discuss
the implications of the proposed model.
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5.1.2 Pharmaceutical Patent Evaluation Approaches

As exemplified by Banerjee et al. (2019), one can classify typical patent valuation
approaches into two different groups: an expert approach and a monetary approach.
The most intuitive approach is based on expert knowledge, which can be considered
easy, often proprietary, and sometimes quite subjective. It mainly relies on compar-
ison metrics, sum-of-parts values and on historical precedents.

The monetary approach, on the other hand, tries to evaluate the patent’s economic
value via monetary categories such as cash flow or profit patents may be able to
generate in the future. These methods can be further sub-grouped on the basis of
their operating approaches: (1) the cost approach, (2) the market approach and (3)
the income approach.

(1) Cost approach:
In this approach, patents are valued on the basis of reproduction cost (i.e. all
cost associated with purchase or development of a replica of patent under con-
sideration) and replacement cost (i.e. cost to be incurred to obtain an equivalent
patent asset having similar use/or function). In both of thesemethods, the present
prices are considered. Typical heads include cost of research and development,
promotional expenses, management time, legal licensing and registration fees,
and opportunity cost (if any). The method also takes into account obsolescence
costs like technological, economical and functional obsolescence.

(2) Market approach:
In this subgroup, the patent value is estimated by taking reference of openmarket
values, where there is evidence of prices, at which similar assets with similar uses
have changed hands. If the asset is unique in nature, then comparison is done on
the basis of utility, technological specificity and property. Data is collected from
different sources like company annual reports, specialized database of royalty
rates, stock price, legal decisions and pure patent deals.

(3) (Mixed) income approach:
Under this approach, the patent is valued on the basis of the future benefits
that would accrue from the concerned patent and discounted by an appropri-
ate discount rate. Often such models of patent valuation have been obtained
from the academic literature. These can be categorized into four sub-groups,
i.e. income approach, indicator-based approach, mixed approach and market
approach according to their working methodology. The most pertinent (mixed)
income approaches are tabulated in Table1.

The approach based on net present value (NPV) is well accepted, but static.
Here, the NPV of a patent is derived by comparing all expected future cash flows
generated by the patent with the expected costs to determine whether the patent will
be profitable. A positive NPV suggests that the patent will be profitable. NPV is the
dominant patent evaluation approach, but limited because of static future revenues
assumption. Some adjustments of NPV have been proposed (risk-adjusted NPV,
using different interest rates to more or less discount future revenues), and still do
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Table 1 Comparison of (mixed) income approach methods of patent valuation (adapted from
Banerjee et al. 2019)

Source Methodology Advantages Disadvantages

Reitzig (2000) Option Several risk effect
factors incl.

No asset risk change
over time

Leone and Orianim
(2021)

Option Patent option
characteristics

No asset risk change
over time

Triest and Vis (2007) Income; DCF Economic patent value Needs
market/technology
info

Sebastian et al. (2010) Option; Simulation Project time risk incl. Assumption restricted
model

Meeks and Eldering
(2010)

DCF method Technology and
litigation data

Needs historical
transaction data

Sereno, 2010 Option based DCF Values tech./proc.
innovation

No asset risk change
over time

Sohn et al. (2013) Classification tree Willing-to-sell/buy
angles

Practice constraints

Russel (2016) DCF; Value weight Investor valuation
disclosed

Needs CF, disc.rate,
expiry data

not account for uncertainty explicitly. This always assumes that future cash flows
will be fixed.

5.1.3 Patents as Options

To view patents as a volatile financial asset, elements out of option pricing theory
have been used. Here, in contrast to the traditional NPV approach, real option theory
provides a more realistic way to value strategic growth opportunities and uncer-
tainty. In addition, decision tree method to value a biotech company based on its
R&D (Kellogg and Charnes 2000) is being considered, as well as an abandon-option
view when valuing patents and patent-protected R&D projects (Schwartz 2004). The
underlying uncertainty view is critical for valuing patents and because the dynamic
characteristics of patent value are inherited. Combining real options with binomial
trees to assess patent renewal strategies has also been studied (Baudry and Dumont
2006).

5.1.4 Patent Evaluation Using the S-Curve Life Cycle

The completion of successful pharmaceutical R&D steps in each phase increases the
potential value of a patent. In the early stages of patent licensing, the patent’s value is
low due to risks and uncertainties. Later (phases 1–3) the value grows as the poten-
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tially huge market revenues protected by the patent are realized. This underlines the
importance of considering life cycles in evaluating pharmaceutical R&D programs:
different phases of drug R&D generate diverse risks (Myers and Howe 1997). Risks
that have a significant effect on a patent’s value gradually diminish over time until the
final market launch phase is reached. The patent value changes dramatically during
the life of an R&D project; the company needs to adjust its cash flow in different
phases of R&D (Villiger and Bogdan 2005).

The S-shape curve life cycle of patent value (adapted from Wu and Wu (2011)).

6 Modelling the Patent Value as a Stochastic Process

The patent life cycle is modelled as a standard stochastic mean-reverting process
(Ornstein-Uhlenbeck mean-reverting).

6.1 The Patent Life Model

• To describe the dynamics of the patent value V as a stochastic process, assume
that V follows the standard Brownian motion.

dVt

Vt
= αt dt + σ1dz1.

• This indicates that the patent value V is uncertain and stochastic over time. The

instant rate
(
dVt
Vt

)
, the change in V, accounts for two sources of uncertainty.

• The drift αt represents the slope of the long-term path of V . The second term (σ1)
characterizes the volatility of the patent value process, where dz is an increment
of a standard Brownian motion.
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• Applying the life cycle of the patent, value stochastically converges the initial high
growth rate generated by patents to a reasonable and sustainable growth rate over
time. To ensure convergence of the drift αt , it is modelled s.t. the slope of the
long-term path of V follows a mean reversion process:

dαt

αt
= η(ᾱ − α)t dt + σ2dz2.

• This denotes a standard uncertain process for the drift αt , (Ornstein-Uhlenbeck
process); η represents one half of the decay rate of the drift αt , which moves the
long-term average drift ᾱ. The change in the speed of adjustment η > 0 measures
the mean compared to the mean drift.

• The above equation is a continuous expression of the patent value V, and the
patent value under uncertainty is simulated by converting it into a discrete form
expression.

• By Ito’s lemma the equations shown above can be re-written as follows:

Vt = Vt−1e(
αt− 1

2 σ 2)�t+σ1ε
√

�t ,

where αt = αt−1e−η�t + (
1 − e−η�t

) [
ᾱ + (r−ρ)

η

]
+ σ2

√
1−e−2η�t

2η ε
√

�t .

Parameters Notation
Initial patent value V0
Initial expected rate of growth for patent value α

Initial volatility of patent value σ

Half decay rate of the growth of the drift η

Long-term drift rate of patent value ᾱ

Time interval �t
Long-term patent value μ̄

Duration T
Patent value V

6.2 Viewing a Generic Case

Here, the model is applied to the case of a pharmaceutical company negotiating a
phase 2 patent license. Analysing the uncertainty in the life cycle of the patent’s
value in this case reveals the following uncertainties: (i) Although the potential sales
of the patent are considered stable, the sales parameter is in fact a pinpoint estimate,
and actual sales fluctuate over time. (ii) The duration of phase 3 is unknown. (iii)
The life cycle must be considered to reflect the real-world setting.

If the companyuses theNPVmethod to evaluate its patent, the effect of uncertainty
cannot be considered because of the pinpoint parameters. Second, the NPV method



12 M. Blankenagel et al.

assumes that revenue flows are pinpoint estimates and constant over time, which
is unrealistic for the patent life curve. Given the background, the proposed model
describes mean-reverting motions with uncertainties, and the S-shaped life cycle can
be used.

Because companies treat patent negotiations as business secrets, obtaining actual
case figures is difficult. Nevertheless, the proposed model can be applied easily
by inputting different case settings. The model was applied to this case using data
reported in the literature.

The starting value (Vo) of the patent in the initial R&D stage is set at $1 million,
which indicates that, although the patent is promising, licensing is very risky in
this stage. The sales growth (α) is used as a proxy for the patent value, that is, the
drift rate is 10%. The patent value volatility (σ ) is 8% annually, which reflects the
uncertainty about annual sales, and the reversion rate (η) is set at 2% in this analysis.
The long-term patent value (μ) can be derived from government or institutional
surveys.

For example, if the population of patients requiring drug treatment is 1 million
worldwide, the population can be indicated in terms of sales. Therefore, an equi-
librium level of $50 million annual sales revenues is assumed in the stable stage
of the patent life cycle. By managing forecasts after acquiring the phase 2 patent,
the company can launch the new treatment 2–3 years after the manufacturing plants
have been constructed and the process development has been completed. Within 5–7
years after the launch, the new treatment will grow exponentially and reach stable
market sales. In this analysis, it is assumed that the duration (T ) of the patent’s life
cycle is 20 years.

6.3 Interferon Beta 1a: A Real-World Case

Interferon beta-1a is a cytokine in the interferon family used to treatmultiple sclerosis
(MS). Avonex was approved in the US in 1996, and in the European Union in 1997,
and is registered in more than 80 countries worldwide. It is the leading MS therapy
in the US, with around 40% of the overall market, and in the EU, with around 30% of
the overall market. It is produced by the Biogen-IDEC and has been marketed under
the trade names ‘Avonex’ (Biogen) and ‘Rebif’ (Merck KGaA). Peak global sales
have been around USD 5 bn (Avonex: 3 bn, Rebif: 2 bn) in the period 2013–15.

An analysis of interferon beta-1a/Avonex, based on the potential market and the
price that Biogen was expected to charge, yielded a present value of USD 3.4 bn,
prior to consideration of the initial development cost. The initial cost of developing
the drug for commercial use was estimated at USD 2.875 bn.

At the time of this particular analysis, the duration of patent protection on Avonex
was another 17 years, and the then current long-term treasury bond rate was 6.7%.
Using an aggregated stock market analysis, the average variance in firm value for
publicly traded biotechnology firms (‘volatility’) was found to be 0.224.
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To stochastically estimate the patent value, the Black-Scholes formula adjusted
for dividends has been used (as detailed in Sect. 6.1):

d1 = ln 3422
2875+(0.0675−0.589+ 0.224

2 )·17
9.4377·√17

N ( d1) = 0.872

d2 = ln 3422
2875+(0.0675−0.589− 0.224

2 )0.17
9.4377·√17

N ( d2) = 0.2076.

The patent value is C = 3422e−0.0579×17 × 0.872 − 2875 × e−0.067×17 × 0.2076
= 907 (USD mn).

Contrast this result with the net present value of this project:

N PV = 3422 − 2875 = 547 (USD mn).

Although the NPV of the patent yields only USD 547 mn, the Black-Scholes model
evaluates the patent fat USD 907 mn. The higher value in the latter case means
that the patent holder may take advantage in delaying launch and waiting for better
market conditions. Less time to the end of patent life will decline its value because
it will increase the cost of delay. As can be seen from this example, patent valuation
using real options has led to a higher value than by using NPV. The effect would be
even more marked if the NPV is near zero or negative. Hence, real option pricing
models can be better value metrics than traditional methods in determining the value
of intangible assets based on the benefits of bringing the asset owner.

7 The Future of Value and Valuation in Pharma

Category and capability leadership hold the keys to superior value creation and even
survival in pharma. Companies that stick to the old model of diversifying assets
and spreading R&D bets across many categories will likely find themselves running
conglomerates of sub-scale businesses.As the innovation bar for attractive reimburse-
ment rises, they will face low profitability and negative returns on R&D. Category
leaders will have more resources to invest in product development, commercializa-
tion and acquisitions. Because assets owned by sub-scale companies will be worth
more in the portfolios of market leaders, current owners will risk being consolidated
by the winners. Copying today’s proven business models does not guarantee future
success. Inevitably, today’s leaders will use their market influence to raise the bar for
competitors. However, there is good news for companies still building their category
leadership positions.

(1) Data shows that winning in pharma depends on scale within categories rather
than across the broader pharma market. In an increasingly fragmented industry,
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categories are often defined farmore narrowly than the traditional therapeutic and
disease areas.Over the past decade, for example,Astellas has achieved leadership
positions in urology and transplants and is currently shaping a narrower category,
uro-oncology. In the future, there will be many similar opportunities to define
and lead new categories in pharma.

(2) It is seen that today’s pharma category leaders only use a small fraction of the
tools and tactics successfully employed in other industries. For example, the
standard commercial model in pharma relies on unit-based pricing, a narrow
product definition (pill or vial) and long-established promotional techniques.
All three elements are ripe for disruption.

(3) Pharma companies still operate in a high-margin environment. As a result, they
often focus on defending their positions rather than doing things differently.

Current leaders face a particular dilemma: leaders that change too early risk losing
attractive cash flows from established business models; those that move too late risk
being disrupted by emerging competitors. In the recent history of the industry, it
seems that leaders have more often erred on the side of holding on to old models
for too long, leaving room for more aggressive players to disrupt them. New and
innovative business models across verticals can generate greater value and deliver
better care for individuals. New and innovative business models are beginning to
show promise in delivering better care and generating higher returns. The existence
of these models and their initial successes are reflective of what we have observed in
the market in recent years: leading organizations in the healthcare industry are not
content to simply play in attractive segments and markets, but instead are proactively
and fundamentally reshaping how the industry operates and how care is delivered.
While the recipe across verticals varies, common among these new business models
are greater alignment of incentives typically involving risk bearing, better integration
of care, and use of data and advanced analytics.

The pharma industry continues to evolve, with potential disruptions affecting all
parts of the value chain, fromR&D to patient care. The future success of today’s mar-
ket leaders will be determined by how they react to these changes. Pfizer has already
started to apply its commercial optimizer model in specialty businesses. And many
companies struggle to repeat breakthrough innovation in a particular disease area,
because competitors soon close the gap with similar products. To stay ahead of the
competition, breakthrough innovators often evolve into disease solutions providers in
the categories they helped create. In oncology, for example, Roche has been building
a sophisticated business system on the strength of its breakthrough cancer therapies.
Future winners will actively disrupt current business models, including their own.
For example, pricing models will increasingly shift from per-pill pricing to outcome-
based and at-risk models. Disease solution providers will move to own ‘episodes of
care’, including diagnostics, drugs, devices and treatment protocols.
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Limited Commercial Licensing
Strategies: A Piecewise Deterministic
Differential Game

Domenico De Giovanni and Jung Kyu Canci

1 Limited Commercial Licenses in the Pharmaceutical
Industry

In 2021 the members of the Word Trade Organization signed the so-called TRIPS
(Trade-Related Aspects of Intellectual Property Rights). https://www.wto.org/
english/docs_e/legal_e/27-trips_01_e.htm.

This declaration gives the opportunity to governments of developing and least
developed countries to issue limited commercial licenses (denoted by LCL) also
know in literature with the name compulsory licenses (CL. According to its name, a
limited commercial license is a government authorized non-voluntary license from
a patent holder (henceforth H) to a third party, usually a generic producer (denoted
by G). The government of a country C, which in what follows will be always a
developing or least developed one, may issue a CL for a drug, covered by intellectual
property, only under certain conditions. The most relevant one is when the sales SH
of the patent-holder H of a drug D does not reach an expected target sale denoted
by S̃, in the situation where H is the unique producer of the drug H in the country.
Therefore, a CL is issued if in a regime of monopoly a certain drug as a selling result,
that is below the expected one (i.e., S̃). Often the sale target S̃ is not public, so it is
considered a random variable and it is set taking into consideration, for example, the
expected case of cases of the disease, for which the drug was developed.
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In the article Sarmah et al. (2020) the authors considered different scenarios,
where a pharma manufacturer invests in R&D, obtaining the intellectual property of
a new drug. This patent can be subjected to a limited commercial license. The author
considered four different periods:
t0 In this period the pharma company H invests in R& D for developing a new

drug. At the end of this period H owns the patent for the new drug.
t1 In this period the company H launched the drug in the market of a country C.

During this period the market is a monopoly, because H is the unique company
having the right to produce the drug.

t2 In this period the government of the country C may issue a limited commercial
license. This happens in the case the selling result SH1 does not reach the selling
target S̃ in the previous phase t1. If the CL is issued, a competitor G (generic
producer) also has the right to produce the drug, H must license G to produce
the drug, but G has to pay a royalty fee to H. If in period t1 the selling target S̃
is reached, then the CL is not issued and so H operates in a monopoly system.

t3 The intellectual property of H expires andHmust operate in a freemarket, where
a generic producer may produce the drug.

Compulsory licensing has been the subject of interest in numerous recent studies.
For example, Scherer (1977) discusses how regulators can use limited commercial
licensing to restore competition in industries. Aoki and Small (2004) views compul-
sory licensing as a tool of anti-competitive practices and shows that it creates signif-
icant losses. Seifert (2015) documents that compulsory licensing decreases incen-
tives for innovations, but creates benefits to consumers and total welfare. Bertran
and Turner (2017) suggest that a, in duopoly, suitable royalty payments are required
to improve social welfare. Bond and Saggi (2014) analyze the role of compulsory
licensing in determining consumer access to a patented product sold by a patent-
holder. They suggest that compulsory licensing guarantees consumer access to the
patented product and increment the chances of voluntary licensing and results in
the patent-holder switching from voluntary licensing to entry. In the same spirit,
Stavropoulou and Valletti (2015) find that the overall welfare effects of compul-
sory licensing are positive even if taking into account innovation incentive. Finally,
empirical studies analyze the effects in terms of incentives to innovate compulsory
licensing. For instance, Baten et al. (2017); Moser and Voena (2012) suggest that
compulsory licensing pushes innovators to create new patents.

In the article Sarmah et al. (2020), the authors analyze a dynamic gamebetween the
patent-holder H and a generic producer G. They considered three different scenarios,
described in the picture below
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The authors in Sarmah et al. (2020) compare the different three above scenarios.
The incertitude due to the risk of a compulsory license makes an investment in R&D
less attractive. The issue of a compulsory license should improve the access to a
new drug, but the economic-market setting should appropriately remunerate pharma
companies and guarantee the profitability of the investments in R&D.

The authors in Sarmah et al. (2020) have shown that a sufficient high royalty, paid
in period t2 in the case of a CL, could at the same guarantee enough good condition
to H, the intellectual-property holder, and assure enough sustainable access to the
drug.

The outline of this paper is as follows. In the next Sect. 1.1 we study the problem
of determining, whether the CL will be issued. In Sect. 2 we model concerning a CL
by using Differential Game Theory, as presented in Dockner et al. (2000). In Sect. 3
we explain how the model can be solved. Section4 gives some perspective for future
work on the subject.

1.1 Probability of Issuing a CL

In the stochastic scenario it is extremely important to predict whether the limited
commercial license will be issued or not. We consider the cumulative function
FS̃(x) = Prob(x ≤ S̃).

By denoting SH1 the selling result in phase t1, than the probability that the CL is
issued is equal to FS̃(SH1) = Prob(SH1 ≤ S̃), because the CL is issued in the case
the sale target result S̃ is not reached in phase t1.

Therefore, we need to estimate which value can have S̃, and whether the selling
result SH1 may reach the value S̃.

In Sect. 5 in Sarmah et al. (2020), the authorsmodel H’s belief about government’s
target by using a log-logistic random variable, thus they assume

FS̃(x) = 1

1 + (
x
a

)−b
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for suitable values of a and b depending on the market setting, in their article the
authors have set a = b = 2.

Therefore, we can estimate S̃ by calculating the expected value of the log-logistic
random variable.

Anew idea to estimate,whether the sailing result reaches the value of the estimated
value for S̃ is given by using a counting process on the random variable SH1 .

One of the easiestmodels of the counting process is the so-called (stationary) Pois-
son process. We consider a subdivision of an interval in sub-intervals with endpoints
a1 < a2 < . . . < ak . For any index 1 ≤ i ≤ k − 1 we consider a time bi ∈ (ai , ai+1)

and an integer ni . We denote by N (ai , bi ] the number of events of the process hap-
pening in the interval (ai , bi ]. In the Poisson process, we have

Prob(N (ai , bi ] = ni , i = 1, . . . , k − 1) =
k−1∏

i=1

(λ · (bi − ai ))ni

ni ! e−λ·(bi−ai ), (1)

where λ is the parameter, which characterizes the Poisson process.
In the model, the time-points ai ’s and bi ’s can represent some marketing actions,

workshops, scientific-information meetings, etc.
Note that the above formula (1) appears slightly simpler in the case bi = ai+1 for

all index i . The model is called stationary because the distributions are stationary,
in the sense they do not depend on the numbers ai ’s and bi ’s, but on the differences
bi − ai .

Therefore, we can subdivide the period t1 in the CL-model above into several sub-
intervals and estimate the corresponding selling sub-results ni in each sub-period and
with the above formula to calculate how is realizable (i.e., probable) theminimal goal
S̃.

As a first approximation we can consider a unique period t1 (with no subdivision),
obtaining as a model a classical (univariate) Poisson distribution.

Another possible way is to consider the notion of the Hawkes process. The idea is
that the selling of a new drug in a country is a self-exciting counting process. Indeed,
by assuming the trivial hypothesis that the drug has a positive effect in treating the
corresponding disease (for which the drug was developed), then the selling of a drug
dose positively influences the selling of the next doses.

2 A Differential Game of Limited Commercial Licensing

In an environment in which a limited commercial license might be issued at some
future point in time, the problem of drug pricing and R&D in product innovation
depends on the stage of the process of issuing a CL. In each different stage of this
process, the actors involved are allowed to take different actions, according to which
stage is currently active. To model the different behavior of the actors involved in
each stage of the limited commercial license’s life, we make use of the framework
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of piecewise-deterministic differential games described in Dockner et al. (2000). In
this setup, a discrete set of modes, M , models have different stages of the system.
In each mode, players are allowed to take some actions. Switches between modes
are randomly driven by a continuous-time Markov chain with values in M . The
probability of switching between two modes of the systems in general depends on
the actions taken by the players and the state variables of the system. While we refer
to the above-mentioned book of Dockner et al. (2000) for a detailed treatment of
piecewise-deterministic differential games, in what follows we describe the details
of our model of pricing and product innovation in the uncertain environment of a
limited commercial license. In the following parts we will use the standard notation
as the one used in the book of Dockner et al. (2000) (Chapter 8).

2.1 Preliminaries

We consider a piecewise-deterministic game with two players. The first, which we
will refer to as the innovator (I ), who has developed a patent for a new drug and
started selling the product in a new, underdeveloped, country. The second, which we
will call the generic producer (G), we want to exploit the patent of the innovator.
On top of both players, there is a regulatory authority (the government or similar) in
charge of evaluating the needs of the country in terms of the new drug, and eventually
issuing a CL. We will assume that the issue or not of a CL depends only on sales of
the new drug, leaving aside political/economical reasons.

We now introduce a set M = {1, 2, 3} of modes of the system. Broadly speaking,
M identifies the stages involved during the life of a new drug with the following (this
of course can be changed according on how much emphasis we want to put in each
stage of development):

– 1 indicates the stage in which the innovator launches a new drug on the market;
– 2 models the situation in which a CL is currently active;
– 3 represents the end of the process, where the patent expires.

Next, we introduce the following notation (i ∈ {I,G}): Let xi = xi (t) represent
the cumulative sales of player i up to time t and pi = pi (t) be the price of the drug
decided by player i at time t . Moreover, let AI = AI (t) model the innovator’s effort
in product innovation at time t . The evolution of the cumulative sales of each player
is governed by the so-called players’ instantaneous sales functions, fi , that is

ẋi (t) = dxi (t)

dt
= fi (xI , xG, pI , pG, AI ,m) (2)

for m ∈ M . We observe that the functions that govern instantaneous sales depend
on the mode of the system. This is a feature of piecewise-deterministic games that
allows to take into account the different phases of the development of the limited
commercial license.
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2.2 Profits and Sales in Each Regime

We now specify how sales evolve and what profits the players obtain in each mode
of the system:

– In mode 1, since no limited commercial license exists, the generic producer is not
allowed to sell the drug, and fG (xI , xG, pI , pG, AI , 1) = 0. On the other hand,
the innovator operates in a situation of monopoly, as they are the only seller in the
market. We assume that their instantaneous sales are

f I1 = f I (xI , xG, pI , pG, AI , 1) = a − bI pI + θ AI , (3)

where a is the market potential, bI is the market elasticity with respect to the
price of the patented product, and θ is the market sensitivity to improvements in
the product. In this regime, the innovator’s instantaneous profit is modeled as the
difference between instantaneous market revenues and costs for production and
product development, that is

πI (pI , AI , 1) = (pI − cI ) f I,1 − l A2
I

being cI the marginal production cost for production and l the coefficient for the
(quadratic) cost in product development.

– In mode 2, the limited commercial license has been issued. This means that the
generic producer has entered the market in exchange for a royalty to be paid to the
innovator. The sales functions are described as follows:

fG2 = fG (xI , xG, pI , pG, AI , 2) = a − bG pG + θ AI (4)

f I2 = f I (xI , xG, pI , pG, AI , 2) = a − bI pI + θ AI (5)

being pG, bG the price assigned by the generic producer and their price elasticity,
respectively. The profit functions take into account the royalty that G needs to pay
to the innovator, as described in the following

πG(pG, 2) = (pG − cG − R) fG2 (6)

πI (pI , AI , 2) = (pI − cI ) f I,2 − l A2
I + R fG2 , (7)

where R is the royalty that G needs to pay for a unit of the drug sold.
– In the last stage of the game, as the patent has expired, the generic producer
enters the market without the need for a limited commercial license. Hence, a
classical price competition takes place. Sales functions and profits are described,
respectively, as

fG3 = fG (xI , xG, pI , pG, AI , 3) = a − bG pG + θ AI (8)

f I3 = f I (xI , xG, pI , pG, AI , 3) = a − bI pI + θ AI , (9)
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and

πG(pG, 3) = (pG − cG) fG3 (10)

πI (pI , 3) = (pI − cI ) f I3 . (11)

Here, we are implicitly assuming that as the patent expires the innovator stops
research in product innovation.

2.3 Switching Between Stages

In the setupwe have inmind, switches between onemode of the system to another are
endogenous to the problem itself. In particular, when the innovator enters a market
with a new drug, they does not know if and when a limited commercial license would
be issued at some future point in time. For this reason,we now introduce a continuous-
timeMarkovchainwith values inM that drives switches betweenmodes, as it follows.
Let us fix a probability space (�,F,P) and define a continuous-time Markov chain
ξ = ξ(t) : � × [0,∞) → M , which generates the information flow represented by
the family of σ -algebras {Ft }t≥0. This stochastic process is deterministic everywhere
but at random times τi , i = 1, 2, . . .where ξ jumps. The instant of times in which the
chain jumps model the switches between regimes. The randomness of this process
mimics the uncertainty of the market players about the eventual issue (and the time
of issue) of the limited commercial license.

The probability law which drives the jumps of ξ , and hence the switches between
the stages of developments of the limited commercial license, is described by a set
of function λm,n : � → R+, for m, n ∈ M,m �= n, defined as

λm,n(t, xI , XG, pI , PG, AI ) = lim
dt→0

P (ξ(t + dt) = n|ξ(t) = m)

dt
(12)

which defines the conditional probability,measured at time t , of switching frommode
m to mode n of the system in an infinitesimal amount of time dt to be proportional
to dt . Such functions, usually known as hazard functions, are part of our modeling
framework, as they completely characterize the Markov chain itself.

In our setup, the system might go from mode 1 (the innovator has entered the
market) to mode 2 (the limited commercial license has been issued) if the sales of
drug are sufficiently low. It is thus meaningful to assume that the corresponding
hazard function λ1,2, which roughly speaking defines the probability of issuing the
CL, is a decreasing function of the cumulative sales in mode 1 of the system, as
follows:

λ1,2 = λ1,2(t, xI , XG, pI , PG, AI ) = δ1,2

xI
.



24 D. De Giovanni and J. K. Canci

On the other hand, the CL may never be issued if the drug reaches a considerable
amount of potential patients. In such cases, the system might go directly from stage
1 to stage 3, where the patent has expired. In the same spirit of our reasoning above,
the hazard function for such kinds of switches should be directly proportional to the
amount of sales in mode 1, that is:

λ1,3 = λ1,3(t, xI , XG, pI , PG, AI ) = δ1,3xI .

To close our model, we need to define the intensity of switches between mode 2 and
mode 3 of the system. Since the expiration of the patent is independent on the sales
of the product, we just assume a constant hazard function, that is

λ2,3 = λ2,3(t, xI , XG, pI , PG, AI ) = δ2,3.

2.4 The Problem

The problem is defined as a differential game, in which both players choose their
strategies so as to maximize the discounted expected value of future profits. Let r be
the rate used by both players to discount their profits. Define the objective functionals
of both players, in each mode of the system m, as follows:

JG(x, y, pI , pG , AI ,m) = E

(∫ ∞

0
e−rsπG (pG , ξ(s)) |xI (0) = x; xG(0) = y; ξ(0) = 1

)

JI (x, y, pI , pG , AI ,m) = E

(∫ ∞

0
e−rsπI (pI , AI , ξ(s)) |xI (0) = x; xG(0) = y; ξ(0) = 1

)

Then, both players choose their pricing and product development strategies so as
to maximize the objective functional above under the dynamic constraints given by
(12) and

ẋi (t) = dxi (t)

dt
= fi (xI , xG, pI , pG, AI ,m) i ∈ I,G;m ∈ M . (13)

3 Solving the Model

To solve the problem, one must first choose the type of strategies available to the
players. As it is standard in the theory of stochastic (in this case piecewise determin-
istic) differential games, two classes of strategies are available. Open-loop strategies
correspond to an entire path chosen for the control variable, while with closed-loop
strategies (also known as feedback or Markov strategies) the control variable are a
function of the observed level of the state space. The latter class of strategies is more
appealing as it appears to be more realistic than open-loop strategies. On the other
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hand, solving for feedback strategies is, in general, much more difficult. In the case
of the problem at hand, we do believe that it can be solved in closed-loop strategies,
with the help of the paradigm of backward induction and numerical techniques.

Let us begin with feedback strategies, also known as Markovian strategies. In
this setup, the optimal controls are expressed in terms of the state variables, that is
pi (t) = ψi (xI (t), xG(t)). This means that at each time players perform an action
based on the observed state of the system. In this case, the solution of the problem
can be expressed in terms of a system of Hamilton-Jacobi-Bellman equations. Let
Vi (x,m) denote the value function of player i ∈ {I,G} in regimem ∈ {1, 2, 3}, with
x = (xI , xG). Then, for Vi (x,m) to be the solution of the piecewise-deterministic
differential game, they must solve the following system:

rVi (x,m) = max
pi

{
πi (pi ,m) + d

dxI
VI (x,m) f I (x, pI , pG, h)+

d

dxG
VG(x,m) fG(x, pI , pG, h) +

∑

n �=m

λn,m (Vi (x, n) − Vi (x,m))

⎫
⎬

⎭

(14)

Let us now focus on open-loop strategies. In this case, the actions of the players
are expressed in terms of time, the regime of the system and the state of the system
at the last observed switch, that is pi (t) = φi (m (s(t)) , x (s(t)) , t − s(t)), where
s(t) denotes the time in which the last switching of regime occurred before time t .
In such case, the value functions depend explicitly on time. Thus, for Vi (x,m, t) to
be the solution to the problem under piecewise open-loop strategies, they must solve
the following system of Hamilton-Jacobi-Bellman equation:

rVi (x,m, t) − d

dt
Vi (x,m, t) = max

pi

{
πi (pi ,m) + d

dxI
VI (x,m, t) f I (x, pI , pG , h)+

d

dxG
VG(x,m, t) fG(x, pI , pG , h) +

∑

n �=m

λn,m (Vi (x, n, 0) − Vi (x,m, t))

⎫
⎬

⎭

(15)

The systems of equation in (14) and (15) describe sufficient conditions for the
solution of the problem sketched in Sect. 2. However, both conditions do not admit
closed-form solution, so that we must use a mix of analytical and numerical tech-
niques to derive the optimal policies followed by the players. One approach is to
discretize the system of Hamilton-Jacobi-Bellman equation by means of a semi-
lagrangian approach (Falcone and Ferretti 2013).1 This entails splitting the time
horizon into a sequence of equidistant steps. We then approximate the variable x(t)
by means of the sequence xhn . We will make use of the conditional probability that
the process will jump from mode i to mode j in an analogous time step, which we
approximate as

1 Applications of Semi-Lagrangian schemes in economics and management can be found in Santos
and Vigo-Aguiar (1998), Grüne and Semmler (2004), De Giovanni and Lamantia (2018).
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Ph
x,i, j (q) = 1 − e−hλi, j (x,q). (16)

The continuous-time optimal control problem is thus replaced by the following
first-order discrete-time approximation

V h(x, i) = max
q1,q2,...

Ex,i

⎧
⎨

⎩

∞∑

l=0

Nl+1−1∑

n=Nl

hβnπξl (xhn , qn−Nl )

⎫
⎬

⎭
, i ∈ I , (17)

where we set the discount factor β = e−ωh . Camilli (1997) shows that V h(x, i)
satisfies the following dynamic programming equation

V h(x, i) = max
q

Ex,i
{
hπ i (x, q) + βV h(xh1 , i)

}
. (18)

Finally, (18) gives the discrete-time infinite dimensional system of equations sat-

isfied by the value functions V h(x)
de f= {

V h(x, i) : i ∈ I
}

V h(x, i) = Ni
(
V h(x)

)
i ∈ I, (19)

where the dynamic programming operators Ni (·) are defined by

Ni
(
V h(x)

) de f= max
q

{
hπ i (x, q)+ βPh

x,i (q)V h(x + hG(x, q, i), i)+
∑

j �=i

Ph
x,i, j (q)V h(x, j).} (20)

Problem (20) is still infinite dimensional in the state variable. However, we can
convert it into a set of finite-dimensional equations by partitioning the state space
into a grid � = {xk : k = 1, . . . , K } and solve (20) only for x ∈ �. To make the
scheme operative, we need to reconstruct the values V h(xk + h f (xk, α, i), i) since
in general the points xk + h f (xk, α, i) do not coincide with any point of �.

4 Perspective

We have outlined a novel framework for the analysis of investments of a large com-
pany under the risk of limited commercial licensing. The framework captures all
the key features on the subject and allows researchers to tackle important research
questions such as

– How does the risk-limited commercial licensing affect the investment patterns of
innovators in research and development?
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– How does limited commercial licensing impact in the pricing of new, licensed,
products?

– Can a regulator devise a licensing mechanism that boosts investments in research
and developments and protect public welfare at the same time?

In future research, we plan to exploit the setup produced in this paper with the
aim of tackling the research questions above.
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Partnership Models for R&D
in the Pharmaceutical Industry

Gianpaolo Iazzolino and Rita Bozzo

1 Introduction

The Research and Development [R&D] process in the pharmaceutical industry is
particularly complex and demanding. The pharmaceutical company’s ability to be
innovative and competitive is determined by the success of the R&D process, since
the result of research coincides with the organization’s source of profit. In addi-
tion to its intrinsically complex nature, the process is very sensitive to economic,
technological, and social factors, which leads the pharmaceutical company to face
continuous challenges. The world today seems to be moving much faster compared
to a few decades ago, with disruptive innovations that must be responded to with a
minimum reaction time in order to survive in the market. This requires companies
of all sectors to adapt faster, to be flexible, and always ready to seize opportuni-
ties and defend themselves against unexpected and unpredictable threats that can
emerge in the rapid course of events. In the past, the pharmaceutical sector found
it difficult to adapt to these new conditions, remaining rooted in traditional systems
and showing a certain reluctance toward the innovations that have totally changed
many other industries. This has led to a decreasing trend in the productivity of R&D
investments. As Greiner’s theory of evolution shows, crises drive growth. Also in
this case, the temporary crisis has given an input to the companies in the sector for a
greater opening toward new business models, causing significant changes especially
in the R&D structure. However, progress in this direction may not be sufficient to
put the pharmaceutical industry in a completely safe position, as it yet has to be apt
for new challenges.

G. Iazzolino (B)
Department of Mechanical, Energy and Management Engineering, University of Calabria,
Building 41/C, 87036 Rende, Cosenza, Italy
e-mail: gianpaolo.iazzolino@unical.it

R. Bozzo
University of Calabria, Rende, Cosenza, Italy
e-mail: rita.bozzo97@gmail.com

© The Author(s) 2023
J. K. Canci et al. (eds.), Quantitative Models in Life Science Business,
SpringerBriefs in Economics, https://doi.org/10.1007/978-3-031-11814-2_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11814-2_3&domain=pdf
mailto:gianpaolo.iazzolino@unical.it
mailto:rita.bozzo97@gmail.com
https://doi.org/10.1007/978-3-031-11814-2_3


30 G. Iazzolino and R. Bozzo

2 The Problem of R&D Efficiency of Pharmaceutical
Companies

2.1 Eroom’s Law

R&D efficiency is typically measured as the ratio of output to input. The most
commonly used outputs are the number of approved NMEs (New Molecular Enti-
ties), the number of scientific publications, patent applications, or patents granted
(Schuhmacher et al. 2021). The costs of the R&D activity or the number of per-
sonnel employed in these activities are typically used as inputs. However, correctly
measuring inputs and outputs of pharmaceutical research and development is quite
difficult, given the complexity of the process, which includes multiple and hetero-
geneous sources of knowledge and lasts for several years. Furthermore, the process
is more than ever influenced by external sources such as collaborations with public
and private institutions, partnerships, and knowledge spillovers.

In recent decades, a sharp decline in R&D efficiency has taken place within the
pharmaceutical industry as a result of the increasing complexity of R&D activities.
Although investments in pharmaceutical R&D have seen a significant increase in
recent years, the production of new approved drugs has instead slowed down. This
caused the decline in efficiency that led to the creation of a new term, the “Eroom’s
law”, inwhich theword “Eroom” is “Moore” read backward, to highlight the contrast
with the advances of other forms of technology (like transistors) over time. The term
was coined by researchers from Sanford Bernstein (UK), following the detection
of an exponential increase in the overall cost of research and development on new
drugs approved by the FDAover the past 60years. They discovered that the number of
new drugs approved by the US FDA per billion dollars of research and development
spending in the pharmaceutical industry has halved approximately every 9years since
1950 (Scannell et al. 2012) (Fig. 1).

The same researchers who observed this dynamic and who coined the expression
“Eroom’s law” also provided an explanation of the main causes of this decreasing
trend. The first is called “better than the Beatles problem” referring to the fact that
it would be difficult for new pop songs to be successful if they had to be necessarily
better than the Beatles. What happens to new drugs is very similar: as the basket
of approved and marketed drugs is already rich in effective medicines, it becomes
increasingly difficult to develop new ones that are on par or better in terms of effec-
tiveness. This discourages research and development in some areas that have already
been explored and instead encourages the search for drugs that treat more difficult
diseases and that hence face greater obstacles to approval and adoption. The second
cause is the so-called “cautious regulator problem”, which refers to the progressive
reduction of risk tolerance by drug regulatory agencies. Whenever there is a negative
event such as the removal of a drug from themarket for safety reasons, the regulations
tighten, making R&Dmore complex and time consuming, therefore more expensive.
While in the past there was less risk aversion, today patient safety comes first, even
if this leads to increased costs and a slowdown in innovation. A further cause is the
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Fig. 1 R&D efficiency trend in the pharmaceutical industry. Source Scannell et al. (2012)

“throw money at it tendency”, namely the tendency by pharmaceutical companies
to increase R&D inputs, adding personnel, and investing additional resources with
the illusory aim of improving company competitiveness. Today this trend seems to
be decreasing, as many R&D costs are being cut, and productivity does not seem
to suffer. Finally, the latest cause of Eroom’s law is the “basic research-brute force
bias”, or the tendency to think that an improvement in basic research and in screen-
ing methods performed in the first steps of the standard discovery and pre-clinical
research, can increase the safety and efficiency of clinical trials. However, this belief
proved to be fallacious; in fact, the probability that a drug successfully passes clinical
studies has remained almost constant for 50years, and the overall efficiency of R&D
activities has therefore decreased (Scannell et al. 2012).

Excessively long lead times mainly affect cost increases and the risk of industry
rivalry (Schumacher et al. 2016). The cost increase is due to the cost capitaliza-
tion, since these costs are incurred many years before the launch of any successful
drug. Furthermore, excessively long timescales reduce the probability of being first
on the market, since many companies focus on the same targets and compete only
on time. The causes of the increasing R&D times are the long and strict regulation
procedure to ensure the safety and efficacy of drugs and the interest of research
increasingly oriented toward new and complex therapeutic areas aimed to differen-
tiate from the competition. This implies a greater number of failures and therefore
increasing costs. Another important consequence is the decrease in production in
terms of new approved drugs. The majority of R&D investments are concentrated in
therapeutic areas with unmet needs where the risk of failure is very high. With such
high attrition rates, to have a good chance of getting at least one successful drug at
the end of the process, it is necessary to screen a very large number of molecules.

Furthermore, the expiration of patents on blockbuster drugs, the entry into the
market of generic drugs at competitive prices and the increasingly tight budget of the
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Fig. 2 Number of New
Molecular Entities Approved
Per US$ Billion R&D Spend.
Source Ringel et al. (2020)

healthcare industry are surrounding conditions that make the challenges for pharma-
ceutical companies even more difficult and demanding.

Over the past decade, some scholars have noted an inversion of Eroom’s law.
As of 2010, there have been an additional 0.7 launches of new molecular entities
(NMEs) per million dollars of R&D spending per year by 2018. The main reason
is the increase in success rates, mainly due to the availability of better information
for decisions (Ringel et al. 2020). However, the efficiency of R&D activities is still
a key challenge for this industry (Fig. 2).

To outline the challenges the pharmaceutical industry has been facing in recent
years, at first the R&D costs trend is analyzed, then the outputs produced, i.e., the
number of products in the pipeline, which are considered as a measure of R&D
activity.

2.2 Analysis of R&D Costs in the Pharmaceutical Sector

As previously mentioned, the pharmaceutical industry is one of the sectors that
boasts the largest investments in R&D. Globally, USD 186 billion was spent on
R&D in 2019, for a total of 50 billion more than in 2012 and the trend is strongly
growing. Total pharmaceutical R&D spending is estimated to be USD 230 billion
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in 2026 (EvaluatePharma, 2020).1 An increasing use of resources in Research and
Development should be an indicator of the greatest commitment of companies in
the search for innovations, and therefore be considered positively. However, this is
not the case in the pharmaceutical industry, where the greatest investments are the
consequence of an increasingly inefficient use of resources (Fig. 3).

Among themajor companies are top investors Swiss companies Roche andNovar-
tis, followed by the US Pfizer, Merck and Co., Bristol-Myers Squibb, and Johnson
& Johnson (Christel 2021). Roche is the pharmaceutical company that devotes the
most resources to R&D (over 14 billion US dollars in 2020) and forecasts for the
next few years seem to confirm this hegemony.

To conduct a more in-depth analysis on the trend of R&D costs and on the output
of the R&D activity, data relating to 15 pharmaceutical companies were collected,
including the global top ten by turnover in 2020 and 5 other smaller companies, but
still counted among the Big Pharma, having a total annual production value of more
than 10 billion US dollars. They are the most influential companies in the pharma-
ceutical industry, leading the entire industry and having great power over the global
economy. Two clarifications are necessary: Johnson & Johnson is a multinational
that does not operate exclusively in the biopharmaceutical sector, but also produces
personal care products, self-medications, and medical devices, so the value of pro-
duction does not refer only to the pharmaceutical sector. Another company could
fully fall under Big Pharma, namely the German Boehringer Ingelheim. However,
due to the lack of data available, it was excluded from the set of companies.

1 https://fondazionecerm.it/wp-content/uploads/2020/07/EvaluatePharma-World-Preview-2020_
0.pdf.

https://fondazionecerm.it/wp-content/uploads/2020/07/EvaluatePharma-World-Preview-2020_0.pdf
https://fondazionecerm.it/wp-content/uploads/2020/07/EvaluatePharma-World-Preview-2020_0.pdf
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As regards R&D costs, data about the 15 companies were collected from 2015 to
2020. As can be seen in Fig. 4, the trend in R&D spending in recent years has largely
been increasing, demonstrating that the majority of pharmaceutical companies are
raising their investments in R&D in absolute terms year by year.

It is necessary to take into account the complexity of estimating R&D costs,
which in some cases could also contain expenses for the acquisition of external
R&D projects. For example, Gilead Sciences incurred R&D cost of approximately
US$ 5 billions in 2020. However, this figure does not take into account the purchase
of IPR&D (In-process R&D), which would raise the total amount of expenditure to
around 10 billion.

In addition to observing an overall growing trend in terms of absolute expenditure,
it is also important to relate this expenditure to the total value of production. As
shown in Fig. 5, in recent years the percentage has remained almost constant for all
the companies considered, except for Gilead Sciences and Abbvie which reached a
peak in 2019 and 2018, respectively, and then returned to values similar to those of
previous years.

The highest percentage is that of Gilead Sciences, which in 2019 invested 40%
of the total value of production to R&D expenses.

2.3 Analysis of Pipeline Drugs

A drug pipeline refers to the set of drugs under development by a pharmaceutical
company. A pipeline includes products belonging to all the phases, i.e., pre-clinical
phase, clinical test phases, regulatory approval phase, andmarket launch phase. How-
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ever, only those in the post-launch monitoring phase are considered to be part of the
pipeline, while drugs whose development has stopped or is complete are typically
excluded. The size of a company’s drug pipeline is a good indicator of the dynamism
of R&D activities. Having a large number of drugs in the pipeline means having
more opportunities to obtain successful drugs, thus mitigating the risk of failures.
Overall, in recent years, the number of pharmaceuticals in the pipeline of companies
around the world has seen and continues to see a slight increase (Informa Pharma
Intelligence, 2021),2 which is, anyway, less than the growth in R&D investments.
However, the annual growth rate is highly variable according to the phase consid-
ered. Typically, higher growth rates occur in the pre-clinical phase, while the most
“stagnant” phases are always phase II and phase III of clinical trials (i.e., those in
which the attrition rate is highest). Among the 15 pharmaceutical companies ana-
lyzed, there are many differences in terms of pipeline size; among those with the
highest average number of drugs in the pipeline is Novartis, which had 232 drugs in
the pipeline in January 2021. Lastly, Gilead Sciences, with an average number of 69
drugs in the pipeline in the last 7 years, has recorded a significant increase in the last
year (Fig. 6).

2 https://pharmaintelligence.informa.com/~/media/informa-shop-window/pharma/2021/files/
infographic/pharmard_whitepaper.pdf.

https://pharmaintelligence.informa.com/~/media/informa-shop-window/pharma/2021/files/infographic/pharmard_whitepaper.pdf
https://pharmaintelligence.informa.com/~/media/informa-shop-window/pharma/2021/files/infographic/pharmard_whitepaper.pdf
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Intelligence, 2021

With regards to the trend in recent years, in Fig. 7we can observe variable behavior
among different companies. The size of the pipeline has always remained close to the
average value for Bayer, Otsuka, Eli Lilly, and Novartis. More significant changes
were recorded for Takeda, GlaxoSmithKline [GSK], and AstraZeneca. In particular,
GSK and AstraZeneca have recorded a sharp decline in the number of drugs in the
pipeline in recent years.

In general, there is a positive correlation between R&D expenditures and the
average size of the pipeline: companies that spent more resources in R&D over the
6years maintained an overall higher average number of drugs in the pipeline than
thosewho invested less. However, there are companies that have proved less efficient,
since despite spending a lot, they have notmanaged to keep a sufficiently high number
of drugs in development (Fig. 8). The trend of costs and the trend in the number of
pipeline drugs can be jointly observed to get an idea of the efficiency of investments
in research and development, considering the totality of all 15 companies analyzed.
The results are visible in Fig. 9. As can be seen, the total costs are increasing, while
the total number of drugs in the pipeline has a downward trend. In 2020, however, a
reversal of direction as far as the number of drugs in development takes place.

3 New R&D Open Innovation Models for Pharmaceutical
Companies

The imbalance between inputs and outputs has put a question mark over the long-
term sustainability of the R&D model of the pharmaceutical sector and has forced
large companies to seek solutions that allow them to improve their productivity. On
the one hand, there are compelling and established reasons behind the choice of a
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closed R&D process—which basically consists in preventing the disclosure of all the
important information to the outside. The most notable motivations are the fear of
the competition (that could use this information to be the first in the market), the need
to protect the intellectual property, and the confidentiality of the patients’ data (Au
2014). On the other hand, this closed model did not prove to be the most effective
because of the evidence previously provided. This is critical for all the companies
in the industry, which are impelled by the imperative of continuously innovating
and staying competitive. Therefore, all the pharmaceutical companies are changing
their business models, in particular their strategies for R&D, moving toward more
“open” models, where the knowledge is shared between different actors. The newly
developed business model features collaborations with a variety of actors, including
academic research institutions, private and public organizations, and other companies
operating in the healthcare environment at every stage of the R&D process.

In recent times and with ever-increasing intensity, Big Pharma is among the main
players in transactions such as mergers and acquisitions [M&A], partnerships and
collaborations, and outsourcing of products and processes, which involve a com-
plete restructuring of the R&D. Following the example of other industries which
pioneered the sharing of knowledge, pharmaceutical multinationals have started to
realize the full potential of open innovation. Companies can therefore acquire prod-
ucts, processes, or entire companies to fill any gaps in their product portfolio or
simply to enrich their pipeline of candidate drugs, or they can access external know-
how in outsourcing, to broaden their knowledge and contribute to the discovery of
new compounds. Also, FDA and EMA decided to give free access to their clinical
trial database in order to let anyone use the data to help accelerate the new drug
development process and make the approval process more efficient (Au 2014).

The open innovation in the pharmaceutical industry is linked to the important
concept of “absorptive capacity”, which is defined as a firm’s “ability to recognize
the value of external knowledge, assimilate it, and apply it to commercial ends”
(Cohen and Levinthal 1990). The new business models promoted by pharmaceu-
tical companies are based on this ability. Pharmaceutical companies benefit from
absorbing external knowledge from other practitioners in the field in order to best
adapt to the latest technologies and innovations (Romasanta et al. 2022). Patterson
and Ambrosini (in Patterson and Ambrosini (2015)) defined the absorption process
of the pharmaceutical industry as follows: search and recognize the value of new
knowledge (through connections with universities, research organizations, and so
on), assimilate it (namely, process and interpret it), acquire the rights of using this
knowledge, transform the knowledge further developing it and combining it with the
existing knowledge of the company and at the end exploit this knowledge to obtain
important results (Patterson and Ambrosini 2015). In general, pharmaceutical com-
panies have several options available to access external knowledge. They can apply
traditional strategies such as M&A, licensing agreements, and partnerships with
research institutes or universities, in order to strengthen the internal R&D efforts,
and/or take advantage of opportunities throughout the R&D value chain to access
external sources of innovation. Open innovation models are increasingly popular:
they consist of new ways of carrying out R&D activities within the organizations,
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actively involving external actors, whether they are experienced researchers from
academic institutions or scientists. A growing number of pharmaceutical companies
are turning to these alternativemodels of open innovation, breaking down the barriers
between the internal organization and the environment that surrounds it, populated
by a large number of actors that can bring significant value to the company. The
companies are required to integrate different strategies, both traditional and inno-
vative, so as to build new and more efficient R&D models. Currently, the standard
for pharmaceutical multinationals consists in having a portfolio mainly containing
externally generated projects (Schuhmacher et al. 2013). Two different types of R&D
partnerships, related to different kinds of resource outsourcing, can be identified:

• Outsourcing of products within different stages of the R&D process or of entire
processes, through license agreements or M&A (direct partnerships).

• Outsourcing of knowledge, consisting in the integration of external knowledge
within the organization through collaborations, partnerships, and open knowledge
platforms (indirect partnerships).

Direct outsourcing, obtained through direct partnerships, brings more immediate
benefits, such as a rapid increase of drug candidates in the pipeline, but it is more
expensive and therefore riskier. Furthermore, throughdirect outsourcing the company
could risk losing its ability to innovate, excessively relying on external sources.
Indirect outsourcing, via indirect partnerships, can lead to greater difficulties in the
immediate term, as integrating internal and external knowledge is not always easy,
but in the long term it can bear fruit at much lower costs than direct outsourcing
(Fig. 10).

The models included in both the categories of direct and indirect partnerships will
be described.

Fig. 10 Direct and indirect partnerships.eps
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3.1 Mergers and Acquisitions

Thepharmaceutical sector has always been characterized by an intenseM&Aactivity,
in which large multinationals acquire smaller companies with the aim of increasing
size and quality, as well as diversifying their drug pipeline. Through these types of
operations, pharmaceutical companies seek to promote better financial and opera-
tional performance. The term M&A refers to transactions that take place between
two entities that combine in some way. Even if, usually, the two terms “merger”
and “acquisition” are used interchangeably, they refer to two distinct operations.
In a merger, two companies of similar size merge to form a single entity, while an
acquisition takes place when a larger company buys a smaller company, completely
absorbing it. Both types of operations can be hostile or friendly.

The most common reasons why pharmaceutical companies frequently resort to
this type of transaction are the following:

• Offset the loss of revenue due to the expiration of blockbuster drugs and the entry
into the market of generic drugs;

• Expand its research scope to include new therapeutic areas;
• Access patented technologies of strategic importance;
• Expand the drug pipeline;
• Enter new markets.

In the pharmaceutical industry, M&A transactions are usually of the horizontal type.
It means they take place between companies both producing drugs, but which differ,
for example, by therapeutic areas treated or by type of drugs developed. The most
popular acquisitions are those that large pharmaceutical companies operate toward
small biotech companies, in order to include in their R&D project portfolio, not only
drugs obtained from chemical or artificial products, but also drugs produced from
living organisms. Pharma Intelligence (2020) reports that from 2010 to 2019 there
were over 700 M&A transactions in the pharmaceutical and biotech industries, with
Abbvie, Takeda, and Bristol-Myers Squibb in the top three by number of agreements
signed. Indeed, in 2018, Takeda acquired Shire for $62 billion, while in 2019, Bristol-
Myers Squibb acquired Celgene ($74 billion) and Abbvie Allergan (for $63 billion)
(Statista, 2021).3

3.2 In-licensing Agreements

Pharmaceutical companies can acquire the right to dispose of a drug patented
by another company (or a research laboratory) through a licensing agreement, in
exchange for paying royalties to the licensor company. Pharmaceutical and biotech-
nology companies are turning to the in-licensing agreements with increasing fre-
quency. This leads to considerable advantages on both sides: the in-licensing allows

3 https://www.statista.com/statistics/518674/largest-mergers-acquisitions-pharmaceutical/.

https://www.statista.com/statistics/518674/largest-mergers-acquisitions-pharmaceutical/
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pharmaceutical companies to enrich their pipeline and to market new drugs in autho-
rized countries. On the other hand, the advantage for the biotechnology companies
is that they can access the resources needed for the development of the final stages of
the development process, for clinical trials, for the production and distribution, shar-
ing the risk with companies that are larger and more solid from a financial point of
view. Today many of the candidate drugs included in the big pharma pipeline are not
developed in-house, but outsourced to other companies, typically smaller and more
research-focused, just like biotechnology companies. Pharmaceutical companies that
own most internally developed drugs are commonly referred to as “research-based”.
A drug obtained via a licensing agreement can be in different stages of development,
so it can also be ready to market. In this case, the license covers only the sale of the
drug. If the drug is still under development, the company that purchased the license
will have to take care of the continuation of this process. The achievement of certain
milestones in development can involve the payment of additional royalties to the
licensor.

In some respects, licensing agreements are much more convenient compared with
the traditional drug discovery process, in which a company embarks on a project by
investing large sums and taking a very high risk. Furthermore, in-licensing is more
attractive than M&A operations. This is because the licenses allow pharmaceutical
companies to purchase the rights to experimental drugs without having to carry
the entire baggage of another organization. According to an analysis carried out
by KPMG (2021),4 593 licensing agreements were signed between pharmaceutical
companies around the world in 2020, with a substantial growth compared to the 360
of the previous year. Among the top deals of 2020 we find the $1.7 billion worth
deal between Roche and Blueprint. With this agreement, Roche has added Blueprint
medicine RET inhibitor pralsetinib to its cancer drug portfolio. Another remarkable
licensing agreement is the one signed by AstraZeneca and Daiichi Sankyo for one of
the Japanese pharmaceutical company’s antibody-drug conjugates (ADCs). Further
agreements were signed by Sanofi, Merck and Co., Abbvie and Eli Lilly (Taylor,
2021).5

3.3 Outsourcing R&D Processes from CROs

Contract ResearchOrganizations [CROs] are organizations that operate in the service
sector providing support to pharmaceutical and biotechnology companies. The latter
can outsource research services for new drugs or medical devices, avoiding the huge
costs that these processes would require if carried out internally. Research services
range from drug discovery to commercialization, with a particular focus on the clin-
ical phase. Rather than hiring permanent employees with the specialist knowledge

4 https://advisory.kpmg.us/content/dam/advisory/en/pdfs/2021/biopharmaceuticals-deal-trends.
pdf.
5 https://www.fiercebiotech.com/special-report/top-15-biopharma-licensing-deals-2020.

https://advisory.kpmg.us/content/dam/advisory/en/pdfs/2021/biopharmaceuticals-deal-trends.pdf
https://advisory.kpmg.us/content/dam/advisory/en/pdfs/2021/biopharmaceuticals-deal-trends.pdf
https://www.fiercebiotech.com/special-report/top-15-biopharma-licensing-deals-2020
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necessary to perform some of the activities included in the development process
in-house, pharmaceutical companies can pay a CRO to carry out these activities
externally. The CRO, acting as an independent contractor with specialist knowledge,
performs a number of tasks to help complete the new drug development process
faster, more efficiently, and at a lower cost. CROs can be large multinationals or
small specialized companies. Leading Contract Research Organizations worldwide
include the Laboratory Corporation of America Holdings, IQVIA, Syneos Health,
and Pharmaceutical Product Development. The global CRO market in 2015 began a
period of unstoppable growth, reaching a total value of over 40 billion US dollars in
2020 which is estimated to exceed 60 billion by 2024 (HKExnews, 2020).6

3.4 R&D Collaborations

R&D collaborations belong to the category of indirect partnerships, as they do not
involve the direct purchase of outsourced products or services from a third party, but
instead the sharing of knowledge that leads to the development and marketing of new
drugs. In the pharmaceutical industry collaborations with third parties are aimed to
access specialized know-how,whether it is fromother companies, such as biotechnol-
ogy companies, or from entities belonging to the academicworld, such as universities
and private or public institutions. Given the growing complexity of the R&D of new
drugs, today, collaborations have increased considerably, creating real ecosystems
in which knowledge can be shared much more simply. Collaborations are used to
access knowledge, concerning for example new drug targets, biomarkers, animal
models, and translational medicine. Alliances, collaborations, and partnerships can
bring substantial improvements in clinical success, while reducing long development
times and total expense. Through them, each company canmaintain only its own core
competencies and rely on third parties just to acquire knowledge regarding areas of
non-competence. Indeed, in recent years, R&D leaders have realized that by main-
taining the total depth and breadth of research projects, the totality of activities cannot
be done through internal efforts alone. Numerous pharmaceutical companies have
movedR&D locations close to the finest academic institutions.One example is Pfizer,
which in 2014 opened a new research facility in Cambridge (Massachusetts), where
two of the world’s most famous academic institutes are based, Harvard University
and theMassachusetts Institute of Technology (MIT). The advantages are reciprocal:
pharmaceutical companies can benefit from the flows of knowledge promoted by the
academic environment and academic partners can count on the economic support of
the large pharmaceutical multinationals. In addition to Pfizer, GSK andMerck & Co.
have also initiated massive collaborative operations (Schumacher et al. 2016). Roche
Holdings official website writes: “As a pioneer in healthcare we are committed to
driving groundbreaking scientific and technological advances that have the potential
to transform the lives of patients worldwide. But we can’t accomplish this on our

6 https://www.statista.com/statistics/813502/market-size-clinical-cro-worldwide/.
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own. Only by partnering with the brightest minds in science and healthcare can we
serve the needs of patients” (RocheWebsite). On the same page, Roche reports some
useful data to understand the company’s effort in enforcing external collaborations:
40% of total sales come from a partner or in-licensed products, 50% of the pipeline
comes from outside the organization and there are 220 active global partnerships.
Over time, this has certainly contributed to making the company one of the world
leaders in the industry.

3.5 Public-Private Partnerships

Public-Private Partnerships (PPPs) consist of collaborations between public organi-
zations and private companies with the purpose of carrying out different projects.
Typically, these agreements are used to finance projects such as the construction of
public transport networks, and parks. In the pharmaceutical industry, these agree-
ments provide for the financing of R&D activities through public funds or charities
aimed at discovering newdrugs, especially in therapeutic areaswhere there are unmet
medical needs and where pharmaceutical research is less active. An example of a
successful PPP is IMI [Innovative Medicines Initiative], a public-private partnership
between the European Union and the European Federation of Pharmaceutical Indus-
tries and Associations [EFPIA], which aims to speed up drug development, making
it better and safer, especially in areas of particular need. IMI creates a real network of
experts to promote pharmaceutical innovation in Europe, bringing together universi-
ties, small- and medium-sized enterprises, pharmaceutical multinationals, research
centers, patient organizations, and regulatory authorities (European Commission,
2020).7 Funding comes from both the European Union and the EFPIA. From 2004 to
2020, funds were raised for a total of over 3 billion euros (IMI Europe). EFPIAmem-
ber companies do not receive money through IMI but contribute to the partnership
by providing staff, funds, clinical data, samples, compounds, etc. The beneficiaries
of these resources are universities, research organizations, small- to medium-sized
companies, and all the entities listed above, which work to achieve common goals.
Among the most famous multinationals, Sanofi, GSK, J&J, and AstraZeneca are
the ones that contributed the most, providing several teams working on numerous
projects. Public-private partnerships are an open innovation model that helps com-
panies improve business competitiveness and reduce R&D costs. Furthermore, they
mitigate competition and help reduce the fragmentation of knowledge typical of the
pharmaceutical sector (Schumacher et al. 2018).

7 https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/
innovative-medicines-initiative_en.

https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/innovative-medicines-initiative_en
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3.6 Crowdsourcing

The term crowdsourcing refers to a type of activity carried out online in which a
company, an organization, an institution, or a private individual proposes a prob-
lem and requests opinions, suggestions, and ideas to solve it from internet users.
It is a valid economic model for the development of projects, which promotes the
meeting between supply and demand. Crowdsourcing has become a very common
practice in the pharmaceutical industry: companies create platforms on which to
post problems and questions, inviting all experts to find solutions in exchange for
a cash prize. The basic concept is always that of the absorption of knowledge from
the external environment, as in partnerships and collaborations. Crowdsourcing is
an extremely open, highly innovative, and inexpensive model that brings different
benefits to the organizations. Through it, pharmaceutical companies can have access
to a broad solution diversity and specialized skills can mitigate the risk that competi-
tors would exploit the same openness and increase the brand visibility (Christensen
and Karlsson 2019). Sanofi, Eli Lilly, Bayer, and AstraZeneca are just some of the
companies that have fully exploited the potential of crowdsourcing by creating spe-
cific platforms, directly accessible from their websites. On these platforms, it is also
possible to access a large set of data to deepen one’s knowledge on human diseases,
collections of targeted molecules, and compounds at various stages of the develop-
ment process. In this way, a bilateral sharing of knowledge is created and innovation
is easily promoted. One of the best-known Open Innovation platforms is InnoCen-
tive,8 a global network where experts from different industries propose solutions to
problems posted by public and private companies, government institutes, non-profit
organizations, research institutes, and public and private laboratories. InnoCentive
is a startup born from the multinational Eli Lilly, with the aim of seeking outside the
company solutions to problems that internal experts were unable to solve. Among
the most well-known challenges is that of TB Alliance, a non-profit organization
that deals with discovering and developing new economic drugs for the treatment
of tuberculosis. To involve as many people as possible, the TB Alliance proposed
a contest on InnoCentive in which it sought a solution to reduce the process cost
of an existing drug. Ultimately, the solution was found by two scientists, benefiting
millions of people with the disease, particularly in developing countries. Other com-
panies have, instead, a more cautious approach to crowdsourcing. They promoted
initiatives like challenges, calls for tenders, and real contests. It is the case of Roche,
Takeda Italia, and Pfizer.

8 www.innocentive.com.

www.innocentive.com
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3.7 Innovation Centers

Another model of open innovation is innovation centers, i.e., real centers that bring
together scientists belonging to pharmaceutical multinationals and academic experts
from all over the world, with the aim of promoting intense collaborations that can
lead to innovative solutions. This model can be considered as a hybrid between a
centralized R&Dmodel with elements of open innovation (Schumacher et al. 2018).
Merck has built its innovation center in Darmstadt, Germany, creating a welcoming
and inspiring environment where both employees and partners can grow their ideas.
An academy is also held in the center, where talented young people are guided in
a training process aimed at building solid and profitable knowledge. Roche owns 7
innovation centers around the world (Zurich, Shanghai, New York, Munich, Basel,
Copenhagen, Welwyn) where the sharing of skills, information, and technologies is
encouraged. J&J also boasts 4 innovation centers in San Francisco, Boston, Lon-
don, and Shanghai, where integrated teams of experts continuously collaborate with
entrepreneurs and scientists from around the world contribute to progress in the phar-
maceutical field. Innovation centers, therefore, form ecosystems in which knowledge
can circulate more quickly and efficiently, bringing numerous benefits to all the play-
ers involved and promoting scientific progress on a global level.

3.8 Open Source

Open source is a widely used model in the software industry, where it has gained
tremendous success in the last few years. The model consists in making source code,
blueprints, or documentation available free of charge to anyone, so that it can be
further developed or modified and then shared with the community. Open source
is therefore based on transparency, it promotes free access to knowledge to obtain
collaborative improvements without any financial compensation in return. All these
concepts seem to clash with the general principle of the pharmaceutical industry,
which is rather closed and highly competitive. However, the ultimate goal of phar-
maceutical companies should be to create drugs that can improve people’s living
conditions, and not to make the highest profits possible. Therefore, open-source
models would fit well with the principles that, in theory, the pharmaceutical industry
should adhere to. The issue is actually more complex, because if the information on
the development of new drugs was shared without any form of protection, pharma-
ceutical companies would hardly be able to obtain profits so as to recover research
costs and, therefore, would be discouraged and probably R&D would suffer a major
setback. For this reason, open source in the pharmaceutical sector has not had the
same success as in the software industry. However, several open-source initiatives
have been promoted by pharmaceutical companies such as GlaxoSmithKline, which
together with MIT and Alnylam Pharmaceuticals, formed the “Pool for Open Inno-
vation against neglected tropical diseases”, which allows free access to 2,300 patents
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on drugs that treat tropical diseases. Another example is the “Drugs for Neglected
Diseases Initiative”, a free platformonwhich information on the discovery and devel-
opment of drugs for the treatment of diseases such as sleeping sickness, pediatric
HIV, and Chagas disease is shared by AstraZeneca, Bayer, Bristol-Meyers-Squibb,
Novartis, GSK, Pfizer, Sanofi, and Takeda (Schumacher et al. 2018). Open source
in the pharmaceutical field is therefore mainly used to promote the development of
drugs intended for the treatment of widespread diseases, especially in developing
countries.
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Pharma Tender Processes: Modeling
Auction Outcomes

Philipp Mekler and Jingshu Sun

1 Introduction

Tendering is a commonly used process where government and public institutions
grant bidding opportunities for large projects with a defined bidding target and a
defined bidding date. Pharmaceutical tenders represent the process when a number
of manufacturers offering the price of similar or comparable products to win the
privilege to gain the monopsony in the market. During the confidential bidding pro-
cess, the winning party is offered the opportunity to sell the bidding product at a
pre-defined price for a fixed period of time, which reflects the nature of tendering
as “winner takes it all”, as stated by Petrou (2016). From the contract or mechanism
design theory perspective, tendering process can be linked to auction theory in view
of competition. Thus auction theory is widely used in modeling the price competi-
tion during the tendering process. From the social welfare perspective, according to
Simoens and Cheung (2019), the tendering process encourages competition and thus
cuts the price, which is significantly beneficial to yield short-term savings, especially
under extreme budget constraints. In the literature of pharmaceutical tendering, there
are two main branches of research: The first stream provides qualitative descriptions
on tendering and procurement systems of different countries and their impact, both
short-term and long-term, on drug price and market concentration. In addition to
overall nationwide impact, some researchers also examine the determinants of bid-
ding behaviors. The second stream focuses on the empirical estimation of the best
winning bidding prices in pharmaceutical tenders.
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This review focuses on two parts: an overview of tendering systems and elements,
and a summary of empiricalmethods to predict the best bidding price. It will startwith
an introduction of pharmaceutical bidding in Sect. 1. Then in Sect. 2, the tendering
system in four different countries is discussed qualitatively and the impact on local
pricing and market landscape is evaluated. Section3 follows with a definition of the
scope of pharmaceutical bidding from auction theory. This includes the common
auction elements such as auction time, information asymmetry, and players. Next,
in Sect. 4 we summarize the two most commonly used empirical methods for price
auction prediction. In this section, we also cover recently involved testing methods
for price estimation. Section5 provides thoughts on different empirical models and
proposes best practice to select models based on experimental data.

2 Pharmaceutical Tendering

Pharmaceutical tendering is a common procurement process across countries but
could be regulated quite differently depending on the healthcare system of each
country. Maniadakis et al. (2018) points out that several factors contribute to these
differences, including demographic dynamics, economic growth, and distribution of
public bodies. In this section, we summarize the pharmaceutical tendering market
from four different countries, both at nation level and at the state or province level.
We select the following four countries from four different continents to reflect the
diverse nature of pharmaceutical tendering process with different regulatory set up
and economic situations. We also provide an overview of the impact of pharmaceu-
tical tendering on drug price and market dynamics.

2.1 Pharmaceutical Tendering Mechanism in Different
Countries

In this subsection, we summarize the public pharmaceutical tendering system in
different countries. Most countries follow the Public Procurement Act at the country
level, while for other large countries such as Brazil and China, procurement for
pharmaceutical auctions is organized at state or province level.

2.1.1 Tendering Mechanism in Sao Paulo, Brazil

In Brazil, the Public Procurement Act effective 1993 regulates the procurement pro-
cess of public goods, including all pharmaceutical procurements, as illustrated by
Paulo et al. (2013). The Act requires that all public bodies show a clear description
with detailed documentation of the input good, bidding quantity, product quality,
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origin, and delivery details. According to Paulo et al. (2013), the Brazil legislation
specifies two forms for standard purchasing inputs: physical submission and elec-
tronic reverse auctions. Paulo et al. (2013) also point out that within the physical
submission, there are two types of auctions, open competitive bidding and invited
bids. Within electronic auctions, there are three types, first-price sealed bid auction,
English auction, and two-stage auction. There are some additional auction require-
ments, for example, high-value contracts can only be completed through open com-
petitive bidding. Sao Paulo has to follow additional rules due to its large population,
unique economic contribution, and complex industrial situation. First, all the procure-
ments in Sao Paulo have to be placed via the common electronic platform, namely,
only in the form of an electronic reverse auction. In terms of auction type, there is also
a difference where only first-price sealed bid auction or two-stage auction is allowed.
The auction type is determined by the value of contracts. Low-value contracts are
acquired through first-price sealed bid auctions. The first-price auction is achieved
in two steps in Sao Paulo: in the pre-bidding stage, the auction notice is available
for five days with detailed description of bidding information, terms, and conditions;
in the bidding stage, the bidder submits one single sealed bid before the deadline
without knowing the identity of the other bidders. According to Paulo et al. (2013), in
Sao Paulo, public hospitals, health agencies, and medical centers obtain prescription
drugs in a de-centralized way, in which each entity is responsible to acquire what is
needed. These public bodies have to rely on the auction-based tendering process to
acquire those generic drugs in Sao Paulo.

2.1.2 Tendering Mechanism in South Africa

The Public Procurement Act in South Africa has been effective since 1982. The
scope of procurement by the national government includes the essential drugs in the
public healthcare system. According to Wouters et al. (2019), those essential drugs
are further divided into 15 different categories and for each tender, the effective
period ranges from two to three years. Market authorization is needed to access the
SouthAfrican tendering system.Both localmanufacturers and international suppliers
are allowed to participate in the bid but in most situations, international suppliers
participate through their locally registered subsidiaries and offices. Different from the
first-price sealed bid auction mechanism adopted by many countries, South Africa
uses a two-stage scoring system to determine the winning supplier. In the first stage,
the manufacturer who offers the lowest price among bidders gets 90 points while at
the same time remaining suppliers get deductions in proportion to the difference to
the winning offer, which is calculated by a publicly announced method. Then, in the
second stage, the 10 points left are divided based on an empowerment score, also
called “broad-based black economic empowerment score”. This score is decided by
the government with a set of criteria, including the diversity of equity owners and
managerial roles. When granting the winning bid, price is not the only determinant.
Wouters et al. (2019) mention that other ad hoc factors are also considered. For
example, under consideration of local economic growth protection, the government
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may also accept a price mark up to 10 points for national suppliers. In addition
to economic factors, industry diversity, labor market balance, and trade situation
are also considered. Thus, to keep a proper balance between demand and supply,
the government even splits the winning bidding offer between multiple firms if the
products are not clearly differentiated. Gray and Suleman (2014) summarize that
the bidding process in South Africa is highly regulated and less price originated
compared to other countries.

2.1.3 Tendering Mechanism in Cyprus

Petrou (2016) points out that the pharmaceutical market in Cyprus is highly frag-
mented between the public and private sector, where the public sector has strong
regulations on supply and demand. In contrast, regulations only apply to the private
market in terms of the price. The wholesale price in the private section can be signifi-
cantly higher than the official price, where pharmacies add a largemark up. Tendering
helps lower the price on both generic and branded products, up to 95 percent of the
price for a generic drug and up to 80 percent of the price for a branded drug. Petrou
and Talias (2014) state that, however, until 2017, Cyprus was the only country in the
EU that did not have a universal coverage national health system (NHS). Petrou and
Talias (2015) further state that all the drugs for public healthcare are procured by the
Ministry of Healthcare (MoH) by tendering.

2.1.4 Tendering Mechanism in Guangdong, China

Yao and Tanaka (2015) state that Pharmaceutical tendering in China is also imple-
mented at a province level due to the different economic situations across the nation.
In Guangdong province, manufacturers can bid for multiple heterogeneous prod-
ucts and complete multiple bids simultaneously. This allows suppliers to combine
multiple products together during the bidding process, contrary to the traditional
single-product bidding. However, this mechanism is different from package bid-
ding, where bidders can take advantage of the preferred items for higher revenue. In
Guangdong, multiple bidding items are allowed but suppliers have to submit the bids
separately for each kind of drug. Although the bidding is operated at province level,
certain procurement rules still have to be followed at a national level, for example, the
rules for drug listings. In China, the central government and provincial municipalities
issue multiple layers of drug listings that can be procured, further divided to essential
drugs, list A drugs and list B drugs, as introduced by Yao and Tanaka (2015). The
above-mentioned categories differ in terms of reimbursement rules and pricing poli-
cies. Thus, the price of drugs in China is determined by combining market-driven
elements with government regulations. In terms of bidding rules, in Guangdong
province, a four-step bidding process is implemented through an online platform.
Yao and Tanaka (2015) further explain that: In the first steps, the government screens
the access authorization of all interested firms. The Good Manufacturing Practice
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(GMP) and Good Supply Practice (GSP) certificates are the prerequisites for bidding
participation. In the second step, the bidding drugs are classified into one-shot and
three-round bidding drugs. Only essential drugs can be procured in the tendering pro-
cess. One-shot bidding is used for emergency products, low-priced drugs, and drugs
for rare diseases or controlled by governments. Compared to three-round drugs, the
competition on one-shot drugs is lower. In the third step, all the participating suppli-
ers offer the bidding price in the pre-procurement stage. If the bidding product is a
controlled product, then the winner is already secured in this stage. Otherwise, the
bidding needs to go through the three rounds of bidding. In the last step, the par-
ticipants are bidding on the final outcome. Unlike the first-price sealed bid auction
where the lowest price bidder wins all, in Guangdong, the process is operated in
three rounds in which the highest price bidder is removed from the game after each
round. In each round, the supplier is able to set and change the price according to
the bidding results from the previous rounds. In addition, in each round a quota is
set and short-listed suppliers will stay in the game until the final quota is reached.
Thus, the bidding process in Guangdong province China is much more complicated
than a normal first-price auction bid.

2.2 Effect of Pharmaceutical Tendering

There has been a lot of discussion on the effectiveness of pharmaceutical tendering
system and its impact on individuals and society. Two substantive areas that have
been empirically examined are price competition and market concentration.

2.2.1 Pharmaceutical Tendering and Price Competition

Many studies have empirically examined under the pharmaceutical procurement
process, and how the price of drugs and volume of bid change in response to increased
competition. In the literature, the effect on price is evaluated separately by product
attribute, which is divided into generic drugs and brand-name drugs (also called
branded drugs). Brand-name products refer to the drug that is originally developed
by a pharmaceutical company, approved by the authority for market access, and sold
exclusively under brand name for a fixed time period under patent protection. After
the expiration of patency, the branded drug becomes a generic drug that contains the
same amount of active ingredients as other generic drugs. The key difference between
a branded drug and a generic drug is the exclusive patent protection mechanism and
this exclusive right significantly changes the manufacturer’s ability to manipulate the
price. This is the reason the effect of pharmaceutical tendering is examined separately
for these two kinds of drugs.

Petrou (2016) assesses the long-term effect of tendering on price for branded
products in the Cyprus market and finds superior price reduction effect through ten-
dering. Using continuous 7-year data from 2006 to 2012 with 36 branded products,
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Petrou (2016) adopts the repeated measures generalized linear model and empiri-
cally proves that tendering retains its capability in reducing the initial drug price
[?]. In addition, the downward trend on price exhibits a continuous trajectory. Tech-
nically, within the repeated linear model the paper also includes other potentially
explanatory variables such as interchangeability, indication, administration status,
sales volume as well as triple interaction terms to account for any variances. Finally,
Petrou (2016) introduces Greenhouse-Geisser correction to adjust for time-variant
elements in price reduction and concludes that tendering shows a significant long-
term price reduction effect and the effect is further moderated by product attributes
including interchangeability, in-patient status, and indication.

Wouters et al. (2019) also investigate the long-term effect of tendering for
medicines and find similar results based on a 14-year period of tendering data for
South Africa but focusing on generic drugs. Computing three different types of price
index (Laspeyres, Paasche, and Fisher indexes) across multiple medicine categories,
the paper finds that the price in most medicine categories drops consistently over
time and the medicine procured through public systems is always lower than the
ones from private systems (Wouters et al. 2019). Tendering in general is quite effec-
tive in securing a lower drug cost.

While most research focuses on the tendering effect either on generic drugs or
branded drugs, Paulo et al. (2013) study the interaction of drug entry on drug price
between the two types. The authors identify the causal effect of a generic drug’s entry
on the bidding participation rate of branded drugmanufacturers and the consequences
on price paid for the bid. They examine the following three questions: how branded
suppliers’ participation decision will change in reaction to the presence of a generic
drug entry; how the paid bid price would change after a generic supplier appears in
the competitive bidding setting; and whether there is a statistical difference on bids
and price bid between generic and branded pharmaceutical manufacturers. By using
the Brazil transactional procurement data with 30448 records from 2008 to 2012,
Paulo et al. (2013) analyze 3859 different drugs from 425 active ingredients using
a 2SLS (Two-Stage Least Squares) approach with Instrumental Variables. In order
to establish the causal relationship between generic drug entry and the result of the
three questions mentioned above, exogeneity requirements must be satisfied in the
generic entry decision. This requirement, widely used in econometrics, mandates
that the choice of instrument variable should not correlate with any explanatory
variables but only the generic entry decision. Paulo et al. (2013) take advantage of
the objective nature of patents expiration and the government setting of auction dates
to construct an instrument variable, which is further defined as the difference in days
between patent expiration date and the tendering session starting date. By the two-
stage regression with the inclusion of fixed effect on product, public body, and time,
Paulo et al. (2013) suggest that the bidding price of branded suppliers is lowered
in response to the entry of generic supplier and the price paid for pharmaceuticals
reduces by seven percent due to the fierce competition by the new entry.
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2.2.2 Pharmaceutical Tendering and Market Concentration

In addition to the bidding price change with pharmaceutical tendering, many studies
have empirically identified how tenders have changed the market dynamics for phar-
maceutical suppliers, including number of participants, market concentration index,
and market dynamics.

Paulo et al. (2013) use a 2SLS model to examine the effect of a generic drug entry
on the number of branded drug suppliers in the market. It is common knowledge that
the fierce competition after the presence of a generic producer will discourage the
participation of branded manufacturers. Paulo et al. (2013) validate this empirically
with multiple versions of regression including General Least Squares, 2SLS, fixed
effects with drug and buyer-specific features, time-specific fixed effects, and the
health indicators of the municipalities where the manufacturer is based. The statisti-
cally significant negative parameter estimation on the dummy variable representing
generic drug entry shows that the presence of a generic drug supplier indicates a
reduction in the total number of suppliers for branded drugs in the market by 35 per-
cent. Thus, the increased competition prevents one-third of branded suppliers from
staying in the market.

While some researchers focus on quantifying market dynamics using the number
of bidders in the market, other researchers such as Wouters et al. (2019) use the
Herfindahl-Hirschman (HH Index) index to measure how fierce the market concen-
tration level. Wouters et al. (2019) use the HH index, which not only considers the
number of firms/suppliers in the market, but also considers the relative market shares
of those firms. It is computed by summing up the squared market share for each sup-
plier in the market. If all firms in the market have equal market shares, the HH index
would be minimized. Thus, increasing the HH index indicates uneven distribution of
market shares and it is scaled from 0 to 100000 with 0 denoting perfect competition.
By calculating the HH indices over a 14-year period, Wouters et al. (2019) find that
in general tendering does not change the overall moderate to competitive tendering
market in Africa with HH index less than 2500. However, the authors also find that
the number of firms actually winning the bid decreased in some drug categories.
Overall, the tendering market in South Africa remains moderately competitive in
most drug categories.

3 Tendering as Auction: Scope and Concept

Due to the complexity of real-world auction cases, in auction theory there are many
different auction types, each of which denotes its own assumptions and requirements.
In this section, we summarize the most common auction type for tendering and its
assumptions. These assumptions correspond to a priori distribution of models for
price estimation. Thus, finding the correct auction type is an essential step before
fitting empirical models.
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3.1 Tender Versus Auction

As introduced in Sect. 1, a tender is a closed price offer where each bidder keeps their
own price, not knowing the other’s price. Auctions are characterized as transactions
with a specific set of rules detailing resource allocation according to participants’
bids. They are categorized as games with incomplete information because in the vast
majority of auctions, one party will possess information related to the transaction
that the other party does not. In a general sense, tender can be viewed as a private
form of auction where prices are not transparent to other parties during the bidding
price. Thus, auction theory can also be used in the tender process to analyze optimal
bidding strategies, find equilibrium bidding price as well as evaluate bidding design.

3.2 Independent Private Value Auction

The basic auction environment consists of the following four elements: the number
of players (bidders) n, one object i (drug) to bid on, the actual value of the object vi ,
and bidders signal si . The signal reflects how much each bidder values the bidding
product i , which is not necessarily the same as the actual value of the bidding object.
If each bidder has a different view about how much the bidding product means to
them, namely each bidder has a different private information (signal) and if knowing
the other’s signal may change the perception of their own value, this would be a
common value model. In contrast, during the tendering process, each bidder has their
own private information about the value of the bidding product. This signal would
not change even if information from others is required. This is called the Independent
PrivateValue (IPV) auction.Under the normal tendering setting, tendering is typically
an IPV auction. Using the notations, this means, bidder i’s information (signal) is
independent of bidder j’s information. Moreover, bidder i’s value is independent of
bidder j’s information—so bidder j’s information is private in the sense that it does
not affect anyone else’s valuation.

3.3 First Price Sealed Auction

IPV auction focuses on whether the information and value for each bidder is inde-
pendent. In addition to independency, another very important element in auctions is
winning prices. There are multiple forms of auction such as absolute auction, min-
imum auction, sealed auction, reserve auction, etc., depending on the winning rule
and completeness of information on other bidders. In a sealed bid auction, bidders
submit their bid bi , ... bn simultaneously, and the bidder who offers the highest bid (in
tender case, lowest tendering price) wins the bid and pays the bidding prices offered.
“Sealed” means each bidder submits the bid privately so no one else knows the infor-
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mation, while “First Price” means the winning bidder pays the winning price, not
the second winning price. It is quite obvious that bidders would not bid on their true
values because this brings no profit/benefit. Normally by bidding a little bit lower
(in tender cases higher tendering price), bidders can gain margins.

3.4 Number of Bidders

Number of bidders in a single bidding round reflects the scale of a specific bidding
process. Number of bidders highly depends on the number of competing manufac-
turers in the market. For biosimilar bidding, the number of bidders is usually small
while for other generic drugs, the number of bidders could be quite large. Yao and
Tanaka (2015) empirically examine the determinants of bidding behavior by using the
provincial-level data consisting of 2758 bidders, with 757 being the highest number
of manufacturers in the same bidding round. So far, this is a truly large-scale study
with observational data. For literature incorporating structural models, researchers
tend to use a finite number of bidders in the simulation stage and quite a small number
of bidders in the empirical estimation. For example, Yao and Tanaka (2015) consider
n = 7 bidders in the Monte Carlo Simulation and during the empirical illustration,
the paper used California Highway Procurement data with 2–7 bidders. Guerre et al.
(2000) used n = 5 bidders in the classical paper proposing non-parametric estimation
of first-price auctions. To sum up, for empirical studies using structural models or
non-parametric models, the number of bidders normally ranges from 2 to 10. For
studies using observational studies, the number of bidders could be much greater.

4 Empirical Methods for Price Auction Estimation

The previous three sections summarized the pharmaceutical tendering background
and auction types qualitatively. In this section, we will focus on the methodology
to estimate the most important parameter in the tendering price—bidding price. As
introduced in Sect. 3, most tendering processes could be modeled theoretically by
auction theory. In empirical literature, first-price auctions are the auction type that
has been researched most frequently, through structural or reduced form methods.
Structural approaches mainly focus on recovering the distribution of observed bids
or bidder’s private value in order to extrapolate the unobserved valuation of the
bidders. Considering the nature of all structural estimations, they rely heavily on
assumptions of the underlyingdistribution,which is indirectly reflectedby the auction
type in terms of information asymmetry, information completeness, and the presence
of signaling. Reduced form estimations mainly target at solving the selection bias
problem, where endogenous factors can bias the estimation results of exogenous
variables. By rearranging the equations algebraically until every endogenous variable
is on the left side of the equation and all the exogenous variable (also including lagged



60 P. Mekler and J. Sun

endogenous ones) is on the right side of the equation so that potential selection
bias has been resolved. In this section, we discuss these two methods through the
estimation on bidding price.

4.1 Bidding Price Determinants Estimation with Reduced
Form Approach

Yao and Tanaka (2015) empirically examine the determinants of suppliers’ bidding
behavior in amultiple bidding setting using a provincial pharmaceutical procurement
dataset consisting of 19818 biddings from 2758 bidders on 37 groups of drugs from
2007 to 2009. Considering the bidding setting where the winning price is only known
to the final winner, bidding price would introduce selection problems when using
a non-random subsample to use that price to all participants. Thus a simple OLS
or GLS regression with bidding price as the dependent variable is not feasible. In
presence of selection bias, the paper used the Heckman Selection Model to correct
for endogeneity. Yao and Tanaka (2015) start with the simplest model construction:

yi j t = xi j tβ + ui jt (1)

si j t = 1
{
s∗
i j t > 0

}
(2)

s∗
i j t = zi j tγ + vi j t (3)

where yi j t is the bidding price for bidder j on product i in year t , xi j t are vectors of
explanatory variables that would affect bidding prices. The paper includes number
of bidders, spatial distance between the bidder and the auctioneer, product specific
features including product range and standards, quality specific features including the
technological skills, experience, and multiple bidding potential. In Yao and Tanaka
(2015)’s definition, ui jt represents the idiosyncratic error which is not correlated
to any of the variables and vi j t represents the idiosyncratic error during selection.
si j t is a latent variable and Eqs. (2) and (3) jointly describe the choice made by the
auctioneer.Directly estimating the above two equations or usingmaximum likelihood
alternatively both suffer from multicollinearity. The authors used the panel data
version of the Heckman selection model with the Mundlak-Chamberlain approach
to correct the selection bias as follows:

yi j t = xi j tβ + ci j + ui jt (4)

s̃i j t = 1
{
ηt + zi j tγt + zi jϕt + ei j t > 0

}
(5)

ei j t = ai j + vi j t (6)
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where ci j is the unobservable and zi j is a vector representing the means of xi j t . Since
ei j t is not depending on zi j , Eq. (1) is converted to the following equation:

yi j t = xi j tβ + ci j + ρE
(
ei j t | zi j , s̃i j t

) + vi j t (7)

By first estimating the possibility of selection, pooled OLS is then applied to the
selected sample and the paper discovers that more fierce competition and more win-
ning experience encourage suppliers to bid much more aggressively on the bidding
prices and consequently make lower bids. In addition, those bidders that are in less
competitive groups are less sensitive to the number of participants and their past
winning times.

4.2 Structural Estimation of Auction Models

The empirical nature that uses structural econometric modeling approaches to under-
stand firm and consumer behavior has attracted wide interest. The estimation of
auction mainly focuses on the private value of the bidders. The earliest literature on
structural estimation of auction prices dates back to 1992,where Paarsch (1992) intro-
duce parametric structural models to estimate private and common value first-price
sealed auctions. After that, much literature examine the same topic using paramet-
ric structural models, including (Donald and Paarsch 1993; Elyakime et al. 1994;
Flambard and Perrigne 2022; Campo 2022). All of these papers model the game
as a first-price auction game where the Bayes-Nash equilibrium is the end point
and the idea to parametrically estimate the distribution of bidder’s private value is
achieved by inverting the equilibrium function of private value from observed bids.
Guerre et al. (2000) introduce the two-stage optimal estimation of private value in
a non-parametric way. This non-parametric method has been widely researched and
applied in following studies, with the emergence of another approach, called the
quantile-based estimation. In this subsection, we’ll first go over the structural liter-
ature of first-price auctions and the experimental evidence of the estimations. Then,
we’ll discuss the non-parametric development of structural estimation, including
two-stage estimation and quantile-based estimation.

4.2.1 Reasonable Structural Estimation of Price Auction

Bajari and Hortacsu (2003) use experimental data to examine whether four different
kinds of structural models give reasonable estimates on bidders’ private value. Many
researchers have challenged the strict rationality assumptions imposed by parametric
models to be infeasible in reality. The critics focus onmapping the estimation results,
bidders’ valuations to the bidders’ true private information. Bajari and Hortacsu
(2003) structurally estimated four models under the first-price auction setting: risk
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neutral Bayes-Nash, risk averse Bayes-Nash, Quantal Response Equilibrium (logit
equilibrium model), and an adaptive model of learning.

Assuming there are i = 1 . . . N symmetric bidders in the market and vi denoting
the valuation of one single and indivisible product. Each bidder’s valuation vi is iid
with cdf F(v) and pdf f (v); bi denoting the simultaneously submitted bid by bidder
i; ui denoting the utility.

Then under the risk neutral Bayes-Nash model, the first-order condition for max-
imizing expected profit can be expressed by

v = b + F(φ(b))

f (φ(b))φ′(b)(N − 1)
(8)

Using G(b) and g(b) as the distribution and density of the bids, the above equation
can be written as follows:

v = b + G(b)

g(b)(N − 1)
(9)

Next under the risk averse Bayes-Nash model, the first-order condition is

vi = bi + θi

Yi (bi )
(10)

where 1—θi represents Bidder i’s risk preference, also known as the coefficient of
relative risk aversion.

Thirdly, under the logit equilibrium model, with the extreme value distribution:

σ (bi ; vi ,B) = exp (λπ (bi ; vi ,B))∑
b′∈B exp (λπ (b′; vi ,B)) (11)

where B(b | v) represents a symmetric strategy, which is a measure that gives every
bid b a probability based on the condition upon a valuation v. An equilibrium is a
bidding function B(b | v) that is a fixed point, that is B (b | vi ) = σ (bi ; vi ,B).

Finally, for the simple adaptive model, the first-order condition for maximizing
expected profit is

v̂i t = bit + Ĝ (bit | hit )
ĝ (bit | hit ) (N − 1)

(12)

By using the structural estimation to measure the closeness of the estimated val-
uation distribution of the above four models with the true distribution of bidders’
private value, Bajari and Hortacsu (2003) calculate the Kolmogorov-Smirnov dis-
tance between the distribution and true values. The paper notices that given the
number of bidders is large enough, the three models except QRE are able to uncover
the deep parameter. When the number of bidder is small, the estimation result is not
stable enough and is more sensitive to the choice of models. Rational models give
better estimated results than the behavioral models.
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4.2.2 Two-Stage Non-parametric Structural Estimation of Price
Auction

Guerre et al. (2000) point out that the structural econometrics approach on price
auction has to rely exclusively on the parametric requirement of the distribution of
bidders’ private value. However, the strong assumption may not be met completely
in both observational and experimental data. Guerre et al. (2000) also mention the
computational limitation for structural models due to its dependency on complex
numerical computations and simulations to find out the Bayesian Nash equilibrium.
Instead, Guerre et al. (2000) propose a two-stage indirect process to estimate the
distribution of bidder’s valuation from observed bids without computing Bayesian
Equilibrium or imposing any parametric assumptions on the observed bids.

The main idea of Guerre et al. (2000)s two-stage approach is that constructing
a function with the distribution of observed bids, corresponding bids, and corre-
sponding density function to represent the private value of each bid. This idea is
implemented in the first step by making a set of pseudo-private values according to
the observed bids’ kernel distribution and density function. Then, the density of the
bidder’s private value can be estimated non-parametrically using the pseudo sam-
ples. Guerre et al. (2000) prove the uniform consistency property of the estimator by
showing it has the best uniform convergence rate in estimating the latent density.

For amore detailedmodel specification, let i denote bidder i = 1 . . . I and vi as the
private value for the bidding product, and p0 as the reservation (lowest possible) price.
Let F(vi ) denote the common distribution of private values and f (vi ) denote the
density. Under the Bayesian Nash Equilibrium of symmetric bidders, the equilibrium
bid bi for bidder i is:

1 = (vi − s (vi )) (I − 1)
f (vi )

F (vi )

1

s ′ (vi )
(13)

With non-parametric identification, the previous equation can be rewritten that
now expresses the individual private value vi as a function of the individual’s equi-
librium bid bi , its distribution G(·), its density g(·) as follows:

vi = ξ (bi ,G, I ) ≡ bi + 1

I − 1

G (bi )

g (bi )
(14)

For estimation, considering L auctions, G(·) and g(·) can be estimated by

G̃(b) = 1

I L

L∑

l=1

I∑

p=1

1
(
Bpl ≤ b

)
(15)

g̃(b) = 1

I Lhg

L∑

l=1

I∑

p=1

Kg

(
b − Bpl

hg

)
(16)
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where hρ is a bandwidth and Kg(·) is a kernel with a compact support. In this paper,
the author uses a tri-weight kernel and uses 1.06 as the bandwidth. We’ll discuss
more about the choice of kernel and bandwidth in the last section of this review with
real data.

Then as an illustration, the paper conducts a Monte Carlo Simulation with 200
auctions and 5 bidders over 1000 observed bids to empirically verify that the latent
density of bidder’s private values can be estimated from available bids.

4.3 Quantile-Based Non-parametric Estimation of Private
Value

After Guerre et al. (2000)s paper on the two-stage optimal non-parametric structural
estimation approach, numerous studies have focused on releasing the assumption on
the distribution of observed bids. Marmer and Shneyerov (2012) identify the idea
to estimate a bidder’s valuation distribution in another flavor, estimating it based on
the quantile representation of the first-order condition. Under the risk neutral Bayes-
Nash model, the Guerre et al. (2000) paper transform the first-order condition for
optimal bids and expresses a bidder’s value as an explicit function of the submitted
bid, the Probability Density Function (PDF) and Cumulative Distribution Function
(CDF) of bids, as shown in Eq. (10). Marmer and Shneyerov (2012) further propose
to estimate the valuation distribution based on the quantile representation of the first-
order condition. This indicated, when there is the strict monotone condition on the
equilibrium bidding strategy, the valuation quantile function Qv(·) can be expressed
as

Qv(α) = Qb(α) + 1

I − 1

α

g (Qb(α))
′ 0 ≤ α ≤ 1 (17)

where Qb(·) is the bid quantile function. In Eq. (17), Marmer and Shneyerov (2012)
propose to first estimate Qv(·) using plug-in estimators for g(·) and Qb(·) and subse-
quently estimate the valuation density using the relationship f (v) = 1/Q′

v

(
Q−1

v (v)
)
.

They prove that the quantile-based estimator is asymptotically normal and has the
optimal rate of Guerre et al. (2000)s definition of Private Value (GPV).

Marmer et al. (2010) also use the quantile-based non-parametric approach to infer
the PDF of private values on first-price auctions under the Independent Private Value
(IPV) construction. They disclose a fully kernel-based estimator of the quantiles and
PDF over observed bids and estimate it non-parametrically. They are also able to
achieve the optimal rate with Guerre’s paper and under proper choice of bandwidth,
the estimator is also asymptotically normal. While Marmer et al. (2010)s paper have
already released one of the steps in Guerre et al. (2000)s paper on constructing
pseudo values, Luo and Wan (2017) go one step further and propose a fully tuning-
parameter-free estimator for the valuation quantile function. This means to estimate
the quantile function of the valuation requires neither the choice of a kernel nor a
bandwidth. They provide a trimming-free smoothing estimator and this estimator
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is also asymptotically normal and is the same as the optimal rate of Marmer et al.
(2010)s paper. Liu and Luo (2017) investigate the comparison of valuations in first-
price auctions using non-parametric tests. Building on the fact that two distributions
of private valuationswould be the same if and only if the integrated quantile functions
are identical, the paper proposed a test statistic that measures the square distance
between the sample analogues of the linear functional for bid samples.

5 Non-parametric Estimation on Observational Data

In this section, we briefly introduce the process of applying non-parametric structural
estimation on real-world observational tendering data. This includes a description
of a sample dataset coming from one of the affiliates of a large pharmaceutical
company, the initial findings from basic data visualization, the process to formulate
the empirical model, the choice of parameters during the non-parametric estimation,
and the conclusions from the estimation.

5.1 Dataset

The dataset comes from one of the affiliates of a large multi-national pharmaceu-
tical company, containing around 1500 tendering records over a three-year period
from 2018 to 2020. Tender records cover three main generic products in oncology
with biosimilar competition. Tendering process in the concerned country follows
the typical first-price sealed bid auction where competitors place the tender offer
simultaneously without knowing the other’s price as signals. In addition, through
market research and discussion, for the three products involved in the tendering pro-
cess, we can assume there are three main participants in the market (including the
manufacturer). Figure1 gives the description of the dataset:

5.2 Visualization and Descriptive Analysis

With real-world tendering result datasets, based on our experience, we first start by
visualizing and cleaning the datasetwith a fewplots and descriptive statistics.Wewill
explain in more detail which variables and information have been used to perform
exploratory data analysis and what information could be relevant to down-streaming
modeling tasks. The first dimension to explore is the tender-specific information and
we plot basic descriptive statistics like bar plot density plot on categorical variables
such as Tender Type, Hospital (Customer), Hospital Type, Tender Result, Bidding
Product, Discount Rate, and kernel density plot on numerical variables such as Man-
ufacturing Price,Winning Price, andWholesale PriceMargin. This information gives
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Fig. 1 Three dimensions of tender dataset

us an overview of the distribution of tender-related attributes. Similar to our assump-
tions to real-world bidding setting, most of the categorical are skew-distributed with
highly imbalanced classes.We account for that in our estimation by using re-sampling
methods to create more balanced classes by imposing different class weights.

In addition to visualizing variables in single dimensions, we also perform pivot
analysis across multiple dimensions, such as bar plot of tender results by product
type, bar plot of tender type by product, bar plot of tender result by tender type,
and bar plot of tender result by tender quantity (convert numerical quantity to cat-
egorical intervals). For confidentiality reason, we only describe the methodologies
in visualization, rather than the actual results. These plots provide us with the inter-
actions between variables and help us to verify some of the business assumptions,
which will be further explained in more detail in the next section. To summarize,
exploratory data analysis and descriptive statistics are a critical step to perform on a
real-world dataset as the starting point before modeling and estimation. It provides
initial insights and helps validate some of the key assumptions to choose the most
accurate auction forms.

5.3 Assumptions Validation

As described in Sect. 3, Tendering Scope and Auction Forms are defined by a set of
conditions and assumptions. Choosing the most accurate auction form is the most
critical step for modeling pharmaceutical tendering in a real-world setting. However,
in most real-world cases, the datasets do not completely follow one exact type of
auction form and some of the assumptions need to be verified for modeling. In this



Pharma Tender Processes: Modeling Auction Outcomes 67

part, we’ll illustrate how to perform validity checks on real-world datasets for the
four most important assumptions to determine the corresponding auction form.

First, from an auction theory perspective, the starting point is to examine the
number of players in the game, which maps the number of manufacturers (bidders)
in a pharmaceutical tendering setting. This information is examined by a simple
frequency count of the Manufacturer (bidder) in the dataset. One important check is
to confirm that the products from manufacturers are perceived as “Biosimilars” to
each other with the same standards of quality, safety, and efficacy since first-sealed
auction form requires each bidder to bid on non-differentiated products. For non-
competing biosimilar manufacturers, which offer low quality products or products
with different biologic compositions are not eligible to be counted as players (bidders)
in the modeling process. Thus the key point to check is the count of manufacturers
in the dataset and keep those who offer biosimilar products.

Next, the validity check should focus on the bidding rule. This includes both qual-
itative and quantitative checks. Qualitative check deals with the following questions
relevant to tender managers or tender specialists who manage and perform the actual
bidding process:What is the tender submission process?Does the participating entity
have any information about the other competitors before the bidding process? Are
bidding prices submitted simultaneously in each round? Or sequentially where some
competitors could signal the others’ behavior? Howmany rounds of bidding are con-
tained in a full bidding process? Is there any entry threshold for each round and how
is it defined? These questions require qualitative checks with business stakeholders
or tender managers who actually participate in the tendering process. In addition, the
number of rounds in a tender process can be quantitatively verified in the dataset by
grouping records by unique tender id (if it exists) and count the number of records
under each tender id.

Then, the most important validity check is on the winning rule since first-price
sealed bid auction requires “lowest price winning rule” which means the winner is
solely determined by the raised bidding price, with no other factor taken into account
such as brand perception and loyalty, quality, and packaging. This assumption check
is performed quantitatively on the dataset by first grouping all the bidding records by
the unique identifier of a tender, for example, tender id (if it exists), and extracting
the lowest bidding price under the same id; next, extract the final winning price of
each tender and comparing it with the lowest bidding price to check whether the
two figures are equivalent. Theoretically, with the “lowest price winning rule” the
lowest bidding price in a tender should be the same as the final winning price of
the bid. However, in real-world bidding datasets, sometimes the two figures can be
different. The underlying reason could be that the manufacturer who offered the
lowest bidding price could not fulfill the bidding quantity completely due to logistics
blocker or insufficient remaining quota. Under this situation, those tender results
should be excluded from the modeling to avoid adding noise to the models and
estimation. Thus it is very crucial to perform a quantitative check to validate the
“lowest price winning rule”.

Finally, based on our analysis on the dataset, verifying the winning quota is the
last step for the validity check. This includes would the winner take all the quota as
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submitted in the bid (Winners take all)? Or the ending quota could be smaller/larger
than the submitted amount? In some cases, the winner cannot get exactly the same
amount as submitted during the bidding price. This happens most frequently when
there is a mix of biosimilar manufacturers and non-competing biosimilar manufac-
turers in the bidding round. And in the above case, there is a very high probability
that the previous “lowest price winning rule” does not hold. Winners may only get
a subset or part of the submitted bidding quantity and the remaining small portion
may go to the non-competing biosimilars due to their extremely low price compared
to biosimilars. This assumption on quota is generally examined in the dataset by
comparing the column indicating submitted quota and the column indicating win-
ning quota. If these two columns are not the same, normally we should dive deeper
to check which one is larger and whether the pattern is consistent. At the same time,
this assumption is always examined together with the previous one “winning rule”.
If the winning quota diverges with the submitted quota, we must be very cautious
on choosing the auction form since the first-price sealed bid auction does not apply
anymore.

5.4 Modeling and Estimation

After checking the assumptions on the real-world tendering dataset, we confirm that
for the country concerned, the bidding formcan bewellmodeled as a first-price sealed
bid auction.After data cleaning and processing,we follow themethodology proposed
by Guerre et al. (2000) with Two-Stage Non-Parametric Structural Estimation to
compute the Cumulative Density Function of the private value for bidders.

Using the Two-StageNon-Parametric approach byGuerre et al. (2000), we extract
theWholesaler Price after Discount (MTS price) in the dataset to obtain the observed
bids and use I = 3 to represent the three main suppliers in the market. Following the
two-stage estimation process, first according to Eq. (14), we are able to construct a
sample of pseudo-private values using non-parametric estimates of the distribution
and density functions of observed bids (MTS Price). Then for the second step, using
Eqs. (15) and (16), we are able to get the distribution of the bidders’ valuation
with the choice of bandwidth and kernel. Similar to Guerre et al. (2000)s method,
we also try the Triweight Kernel and the Epanechnikov Kernel. For bandwidth,
we use a loop to select the most reasonable bandwidth ranging from 0.35 to 2.6
(the above range is decided by observing the pattern of the distribution plot). After
obtaining the distribution of valuation, we use KS test (Kolmogorov-Smirnov test)
and standardization to map back to the bidding price of actual bids in order to
get the Probability Density Function and Cumulative Distribution Function for the
probability to win. After obtaining the Cumulative Distribution Function of bidder’s
private values, given a constant bidding price x , with the definition of Cumulative
Distribution Function, we can easily get the probability that the X will take a value
less than or equal to x . According to the bidding setting, if the bidding price of other
competitors is less than the bidder’s offering price, the bidder will lose this bid. This
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means the area under the CumulativeDistribution Function curve and to the left of the
raised price x denotes the probability that the competitor price will be lower than the
raised bid. Thus, the winning probability is obtained by subtracting the probability
from 1.

5.5 Adjustments and Lessons Learned

In the previous section, we discussed how to perform validity checks on the real-
world tendering data to determine themost appropriate auction forms.This is themost
important step since in real-world settings, it is hard to meet all the assumptions of a
specific auction form due to the complexity of bidding system design and actual bid-
ding process implementation. At the same time, policy and regulatory requirements
also impose some constraints on meeting all the requirements and assumptions of an
auction type. This directly leads to the fact that during the modeling and estimation
process, we often need to use “rule of thumb” to determine some of the parameters
that best fit and depict the dataset, instead of pre-defined parameters from previous
assumptions. One example in our estimation case is the choice of Kernels and their
bandwidth using the two-stage methodology in the Guerre et al. (2000) paper.

All the estimation process in the real-world tendering data is implemented in
Python 3.6. When selecting the kernel, there is no clear evidence that the tri-weight
kernel should outperform other kernels. Also for the bandwidth choice, it is more
of a rule of thumb instead of mathematically proved constant. As explained in the
previous paragraph, finding the best combination of kernel and bandwidth with a
real-world tendering dataset requires iterative computation and it is a more heuristic
process. Thus, we tried all the possible combinations of bandwidth and kernel to get
the most meaningful valuation distribution.

In terms of take-aways and lessons learned from fitting observational data, we
find that a well-established structural model is the theoretical foundation. In addition
to that, adjustments should also be made to understand the data and give intuitive
explanations to the data. Different choice of parameters results in different distribu-
tions of valuations, where the probability to win should not have multiple spikes in
real-world bidding practices. Thus, fitting non-parametric structural models should
always consider the underlying business rationale.
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Multi-Echelon Inventory Optimization
Using Deep Reinforcement Learning

Patric Hammler, Nicolas Riesterer, Gang Mu, and Torsten Braun

1 Introduction

The operation of supply chains is amajor cost driver for allmanufacturing companies.
It is imperative to keep this cost at a minimum and the service level at a maximum to
enable companies to redirect investment to their core goals, such as the development
of new drugs in the healthcare industry. The field that deals with this task is called
inventory management and has served as an intensely studied research area for many
decades. In practice, companies often rely on parameterized reorder policies for the
operation of inventory management (e.g., De Kok et al. 2018). These consist, for
example, of a periodic reorder timing (T) and a reorder quantity (Q) that depends
on the difference of the current inventory on hand (IOH) and the target IOH. The
conceptual designs of such parameterized reorder policies are usually hand-crafted
and based on historical experiences, sales forecast information, and safety stock
considerations. Parameterized reorder policies are intuitive and easily applicable—
on the other hand, they tend to be an oversimplified solution for a complex challenge
due to the stochastic characteristics of the problem: E.g., demand anomalies require
a situational T and Q, which highlights the importance of so-called dynamic reorder
policies.
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Finding an optimized, dynamic reorder policy for a given network of inventory
systems is a challenging task. With recent advances in the field of Artificial Intelli-
gence (AI), the question naturally arises: Can AI help to make better decisions, and
thus, reduce the cost for the operation of supply chains? This question is justified,
especially when one considers that the best chess player in the world is not a human
being anymore (Silver et al. 2017). Just like chess, inventory management is a chal-
lenge in which the optimal sequence of decisions is sought. If with chess, we are
looking for the optimal sequence of decisions that maximize the chances of winning,
in the case of inventory management we are looking for the optimal sequence of
decisions that minimize the cost.

Reinforcement Learning (RL) is the paradigm in the field of machine learning
dedicated to learning an optimized policy in sequential decision-making challenges.
At a high level, an agent takes situational decisions and receives feedback on the
quality of the agent’s decision in return. As a consequence, the agent takes the
feedback into account to improve the policy. In the latest research publications,
policies are based on deep neural networks, inwhich case themethodology is referred
to as Deep Reinforcement Learning (DRL). DRL has recently attracted considerable
attention: An RL agent beats professional players in the classic board game Go,
which is considered to be the most challenging board game use-case for AI due to its
high number of possible combinations (Silver et al. 2016). DRL enables autonomous
driving (Kiran et al. 2020) and can potentially be leveraged for precision dosing in
the healthcare sector (Ribba et al. 2020). In this chapter we review the applicability
of DRL for Multi-Echelon Inventory Optimization (MEIO).

This chapter aims to provide an introduction to the domain of MEIO with RL
and is structured into eight sections: Sect. 2 introduces the term MEIO and explains
the multiple challenges that are connected to it from an optimization perspective.
Section3 provides a brief overview of research streams in the field MEIO. Section4
connects the topics MEIO and RL before Sect. 5 provides a detailed introduction to
the concept of RL. Section6 showcases an experiment to evaluate the applicability
of RL in MEIO challenges. In Sect. 7 the results are discussed. Section8 provides an
outlook of potential future research streams. Section9 showcases conclusions and
provides an outlook of future research efforts.

2 Challenges of Multi-Echelon Inventory Management
from an Optimization Perspective

The goal of inventory management optimization is to optimize the reorder policy in a
way so that the cost related to the operation of inventory systems are minimized. This
section introduces five layers of complexity explaining why inventory management
is a highly challenging optimization task:

The major operational cost of inventory systems can be structured into holding-,
shortage-, and reordering costs. This aspect introduces the first layer of complex-
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ity with regards to the optimization challenge: Minimizing holding cost through
lowering the inventory level increases the likelihood of a stock-out and the associ-
ated shortage costs. To prevent stock-out, the ordering frequency can be increased,
whereby this impacts the reordering cost on the other hand. This observation suggests
that each cost category is interrelated leading to a complex, non-linear cost function.

The second layer of complexity is due to the stochastic characteristics of an
inventory system: Each day, the IOH is reduced by the number of outgoing items
(e.g., because of sales). This value depends on customer behavior, which can be
estimated but is always associated with uncertainties, which is why this challenge
falls under the category of stochastic optimization. Next to the demand, the lead time,
which is defined as the time duration between order placement and supply delivery
is another stochastic parameter. As a consequence, the decision-making must be
optimal under the consideration of uncertainty.

The third layer is due to the interconnected characteristic of reordering policies
within a supply chain distribution network. This can be briefly illustrated by an exam-
ple: A large reorder from one warehouse can use up the entire reserves of the parent
warehouse, with all further reorders from other warehouses subsequently no longer
being able to be serviced. This example makes clear why the optimization must be
carried out holistically and not in a warehouse-by-warehouse manner. Optimization
approaches addressing this holistic problem characteristic are referred to as MEIO.

The fourth layer results from the third layer: Given the fact that the optimal order-
ing policy of an individual inventory system can only be found if the reorder policy of
the entire inventory system network is optimal, this leads to a high number of param-
eters that have to be optimized. Many algorithms that still meet the requirements
related to a highly complex cost function, stochastic system dynamics, and holistic
optimization fail to scale to real-world supply chain dimensions. The holistic view of
the problem leads to a dilemma: Either one resorts to high-performance algorithms,
which outperform the rule-based approaches by far, or one wants to perform a holis-
tic optimization, in which case the high-performance algorithms are not applicable
anymore. This is probably also the reason why many companies still use comparably
simple methods such as rule-based control.

The fifth layer is the variability of model and optimization goal assumptions:
Multi-Echelon Inventory Systems (MEIS) can be divergent, convergent, sequential,
or mixed (Clark and Scarf 1960). The policy to be optimized can either be periodic
(all reorders at fixed time intervals) or dynamic (De Kok et al. 2018). The same
applies to the reorder quantity: This can be flexible for certain applications—in other
cases, the lot sizes are fixed and the optimization goal is to select the best available
option. It can be seen that optimization algorithms must be adapted to the specific
situation and that the underlying model assumptions are highly variable. In the next
section, it will be shown that many traditional optimization approaches have to be
tailored exactly to the problem—and general applicability is not given.

In the remainder of this section, we want to emphasize a potential solution to this
dilemma—before that we want to have a deeper look at existing research efforts in
the MEIO domain.
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3 Literature Review of Inventory Management

Due to the immense relevance and high complexity of multi-echelon inventory man-
agement, many research paths have developed in the areawith the first major research
papers dating back to the 1960s. De Kok et al. (2018) composed a comprehensive
literature overview on stochastic multi-echelon inventory models. In fact, most of the
research efforts from the early days focused on the development of exact models: In
Clark and Scarf (1960) a mathematical proof was presented that the reorder policy
of an individual warehouse can only be optimal if the reorder policy is optimal for
the entire network. However, due to the complexity of the problem, these models
are based on highly-simplified assumptions limiting the applicability to real-world
supply chains (Gijsbrechts et al. 2021). De Kok et al. (2018) state that develop-
ing optimal policy structures has turned out to be intractable. This fact, combined
with the technological development in the semiconductor field and the associated
increase in computational capacities, has led the research focus shifting to other
methodologies such as parameterized, simulation-based, and approximative policy
optimization. These are by no means completely separate fields of research—many
seminal papers proposed a combination of the aforementioned algorithm categories.
In order to provide the reader with an easy-to-understand intuition, the three areas
are discussed separately below.

Parameterized policy optimization experienced its rise in the 1990s (De Kok
et al. 2018). One prominent representative of parameterized policies is the base-
stock policy, also known as (s, S) inventory control policy. Each time when the
inventory level drops below the reorder point s, a reorder is triggered to fill up the
inventory level to a target inventory level S. Now, the entire inventory systembehavior
can be described in two parameters (s, S). The task of optimally configuring these
parameters has been tackled via meta-heuristic or simulation-based approaches.

Heuristic methods aim at solving optimization problems under the constraint of
limited prior knowledge and limited time. Examples of heuristic methods are, e.g.,
genetic algorithms (Grahl et al. 2016).

Unfortunately, there are some disadvantages associated with heuristic methods:
(1) they do not provide optimality guarantees, and (2) they lack general applicability.
If there are changes in the supply chain network structure or in themodel assumption,
the method needs to be revised—whereby finding the right parameters can become
a huge effort.

Simulation-based policy optimization is a frequently used approach with numer-
ous variations (Chu et al. 2015). The main ingredients are: (1) A model simulates
the inventory system network taking policy parameters as an input and outputs the
corresponding performance measures. Three model categories are particularly well
suited: TheMEIS can be interpreted as a classic coupled tank system in control engi-
neering turning the problem into a set of complicated differential equations which
is challenging to be solved. Another option is an agent-based model as performed
in (Chu et al. 2015). Each individual inventory system is modeled by the interaction
of four different agents: A facility agent, an order agent, a shipment agent, and a
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customer agent. The characteristic of such an agent-based system can be catego-
rized as a black-box function. The third option is a hybrid model allowing to access
specific model structures while other components remain black-box functions. (2)
A Monte-Carlo method estimating the expected value of the performance measure
for a given set of policy parameters over multiple simulation time steps. (3) An
optimization algorithm evaluating how to update the policy parameters to iteratively
optimize the performance. Two drawbacks are related to this approach. Similar to the
heuristic methods, theMonte-Carlo estimation performed in step (2) is computation-
ally intense leading to poor scaling properties. Secondly, the optimization algorithm
converges to a minimum, but this may be a bad local minimum.

Approximative policy optimization interprets the inventory system as a Markov
Decision Process (MDP) which is covered in more detail in Sect. 4.1 (Powell 2007).
MDPs are typically solved with dynamic programming (DP) approaches. However,
due to the complexity of the system, these methodologies do not have the required
scaling properties to be a suitable solution to a MEIO challenge. Thus, approximate
dynamic programming approaches have been developed to simplify the underlying
dynamic program. According to Gijsbrechts et al. (2021), these can be structured
into three distinct research branches: The first branch exploits the problem structure
by simplifying assumptions such as very short lead times. Another branch aggre-
gates multiple states to a single state based on hand-crafted features. The third
branch approximates the value or the policy function of the MDPs. Two famous
representatives using function approximation are linear programming-approximate
dynamic programmingApproximateDynamic Programming (LP-ADP) andRLwith
the remainder of this chapter focusing on the latter method.

4 Reinforcement Learning for Inventory Management

4.1 Markov (Decision) Processes

The operation of inventory systems is related to multiple stochastic processes
(e.g., the demand and lead times) and can be modeled as a Markov Process (MP)
(e.g., Broyles et al. 2010). The relevant components and quantities describing a
Markov chain are states, transition probabilities, and, optionally, performance met-
rics describing the quality of a state. Figure1a showcases aMarkov chain modeling a
highly-simplified inventory system for explanatory purposes. The state space consists
of two states representing a low IOH-level (LIOH) and a high IOH-level (HIOH).
Each time step, the IOH transitions from one state to another state if the IOH exceeds
(e.g., through backordering) or falls below (e.g., through customer demand) a certain
threshold—otherwise the system remains in the same state. The set of all transition
probabilities is referred to as system dynamics and regulates the probabilities via
which the state of the system changes to another state and remains constant over
the full period of time to fulfill the so-called Markov property. The system dynam-
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Fig. 1 (a) Describes the stochastic behavior of the inventory systems IOH in a highly-simplified
way. In each time step the system can either remain in the same state or transition to the other state.
Processes such as the demand may cause the IOH to decrease. Processes such as reordering may
increase the IOH. The behavior of the system is describedwith the system dynamics displayed in (b).
(d) Displays a MDP with a policy responsible for the reorder decision summarized as π (the policy)
and non-controllable processes such as the demand. In each time step, an agent takes a decision
(reorder or no reorder) according to the policy. The overall system behavior can thus be defined as
a combination of the policy π and the system dynamics P as illustrated in (e)

ics result from processes impacting the state of the inventory systems such as the
demand and reordering activities. In this use-case, we consider one performancemet-
ric describing the overall cost associated with the operation of the inventory system.
To create an intuition, we can associate the state HIOH with low cost and the state
LIOH with high cost. This example is arbitrary and for explanatory purposes only,
but could be justified with a higher likelihood of the event of a stock-out in case
of a LIOH and with shortage cost outweighing the cost for holding a high number
of inventory. The expected cost over multiple time steps depends on the number
of time steps and the equilibrium distribution describing how often the system is in
state LIOH or HIOH respectively. The equilibrium distribution solely depends on the
system dynamics and can be calculated analytically or in case of complex Markov
chains estimated with a Markov Chain Monte Carlo (MCMC) simulation.

The Markov model is a suitable framework for describing stochastic systems—
however, to use it as a basis for finding an optimal control strategy some extensions
need to be applied: Firstly, we need to differentiate processes, which influence the
system dynamics, into controllable and non-controllable processes. With regards to
an inventory system, e.g., the reorder decision is a controllable process,whereby there
are limited options to control the customers demand. The non-controllable processes
remain referred to as system dynamics, whereby controllable processes are denoted
as the policy.Modelwise, thismeans that each system state (LIOH/HIOH) is followed
by a decision (e.g., reorder (R)/not-reorder (NR)) taken by an agent in accordance
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with the policy, which by itself is followed by the successor state with a dependency
on the selected action and the corresponding system dynamics. With the possibility
of actively intervening into the system through the policy, we have introduced the
concept of an MDP (Puterman 1990). Figure1c highlights the difference between an
MP and an MDP. The policy is referred to as an optimal policy in case it minimizes
the expected overall cost in a way that no other policy can be associated with a lower
expected overall cost.

As mentioned, however, this is a greatly simplified model and the reality is far
more complex. On the one hand, an order does not immediately lead to an increase
in the inventory level. Instead, it often takes a few days for the delivery. A policy
should be aware of open orders to avoid multiple reorders in a low inventory level
state. In fact, this is one aspect explaining why the state space is of much higher
complexity than displayed in Fig. 1: There must be a specific state for each IOH and
open order combination, whereby the open-order situation can be quantified with
two additional dimensions: the order timing and the order quantity. Furthermore, the
inventory level should be structured in a much more fine-granular way: We need one
state for each possible inventory level—instead of grouping it into low and high IOH-
levels. Moreover, the action choices need to be revised: In Fig. 1 it is distinguished
between reordering and not-reordering. In reality, inventory systems can select one of
the multiple order quantities. These examples should provide the reader an intuition,
why the real state and action space is much more complex and high-dimensional
compared to the simplified variant illustrated in Fig. 1.

5 Introduction to Reinforcement Learning

RL is a promising approach to tackle inventory optimization challenges because of
the following reasons:

• The policy can be represented by a deep neural network with all its related advan-
tages: The representative capacity of neural networks is high, allowing to properly
identify n-order dependencies of the input variables. In addition, deep neural net-
works are capable of generalization: It is not necessary to simulate every situation
in a training stage (which would be computationally impossible)—it is enough to
have encountered a limited set of situations and apply an action that performed
well according to generalized experiences. Furthermore, the input values can be
relatively unstructured and may include information that is redundant to identify
the optimal control.

• RL is generally applicable to every inventory system setups—with only little expert
knowledge or intense model tuning required. Intuitively speaking, the algorithm
finds its own way to the optimal policy. This is the aspect that distinguishes RL
from other methods that are often used in inventory optimization challenges—
especially from heuristic approaches.
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• Thanks to the expected reward properties which are discussed in the following
section, RL is optimizing decisions considering the long-term outcomes instead
of optimizing the short-term consequences. This is a very important feature of
many decision-making processes.

5.1 Value-Based Methods

We already introduced five essential components in RL. The current state of a system
is captured in a state vector. In an inventory system context, this state vector may
include the current inventory level on hand and the open-order situation. The agent
then applies a policy taking the state vector as an input and mapping it onto an
action vector. This action vector may include information such as whether to reorder
and how much to reorder. The action is subsequently applied to the environment
causing effects regarding the systems state: The system transitions from one state to
another state. Next to the state, the environment returns another signal that enables
the policy to learn an optimal policy: The reward. The reward provides the agent
with the information, whether the action taken in the last state was actually a good
choice or not. In the case of a supply chain cost optimization use-case, this reward
may represent the overall cost. However, optimizing the immediate reward can be
myopic: In the short term, total cost can be reduced by not ordering and avoiding
transportation cost. In the long term, this causes shortage cost due to stock-out. This
example showcases the need to consider the long-term consequences of an action. A
mathematical basis for integrating these long-term consequences is provided by the
Bellman equation: The quality of a state is defined as the expected sum of rewards
collected in the next time step and all future time steps. This value can be assigned
to every state (state value v), and to every state-action pair (action value q) (Sutton
and Barto 2018a).

The state value is defined as the expected reward Gt at time step t conditioned on
the state St at time step t following a policy π .

V (s) = Eπ [Gt |St = s] (1)

The expected reward Gt can be expressed as the sum of rewards collected at
the next time step and all future time steps k. Since the uncertainty increases with
increasing k, each reward can be considered with a discount factor γ t+k+1, with
γ ∈ [0, 1]. If γ = 1, each future reward is weighted equally, independent of the
moment of occurrence. In contrast to this, a γ close to zero focuses on nearby
rewards through masking out distant future rewards. From this it follows that

V (s) = Eπ

[ ∞∑
k=0

γ k Rt+k+1|St = s

]
(2)
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Fig. 2 An agent applies a policy π(at |st ) by mapping a state vector st onto an action vector at .
The action is then applied to a system that is denoted as environment. The systems state is changed
due to the agents action with the new state st+1 and the reward signal rt+1 passed to the agent

The summand related to k = 0 need to be extracted from the sum, to prepare the
following steps introduced in Eq.3–5.

V (s) = Eπ [Rt+1 + γ

∞∑
k=0

γ k Rt+k+2|St = s] (3)

The expected reward depends on the policy π(a|s) and the system dynamics
p(s ′, r |s, a). Taking these equations as deterministic equations helps to move them
out of the expected value:

V (s) =
∑
a

π(a|s)
∑
s ′

∑
r

p(s ′, r |s, a)[r + γEπ [
∞∑
k=0

γ k Rt+k+2|St+1=s ′ ] (4)

A close look suffices to replace the remaining term in the expected value with
a deterministic expression. The term within the expected value is similar to the
expression in Eq.2. The only difference is that Eq.2 formulates the state value for
state s, where the expected value in Eq.4 refers to the expected value of the successor
state s ′. Therefore Eq.4 can be rewritten as

V (s) =
∑
a

π(a|s)
∑
s ′

∑
r

p(s ′, r |s, a)[r + γ vπ (s ′)] (5)

Equations1–5 andmore details are summarized by Sutton and Barto (2018b). The
expected reward of a state or a state-action combination depends on the policy π ,
system dynamics p, the reward of the current time step r , the discount factor γ , and
the quality of the next state vπ (s ′).While the policy-dependency seems to be intuitive
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(the better the decision-making, the better the expected outcome), one challenging
factor must be considered: Both, the system dynamics p and the state-values may
be unknown. One way to deal with this is to try to estimate the value function V (s)
and to further improve the estimation with every additional interaction.

Two common value function estimation methodologies exist: The Monte-Carlo
(MC) method and Temporal Difference (TD) learning (Sutton and Barto 2018a).
Both are based on the Bellman equation. The MC method learns in an episode-by-
episode sense by accumulating the reward encountered after taking action at in state
st in time step t . On the other hand, the TD method allows updating the state value
in every time step.

The TD method is based on the definition of the expected reward:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + γ 3Rt+4 + ... (6)

The γ for the second summand and all following summands can be factored out.

Gt = Rt+1 + γ · (Rt+2 + γ 1Rt+3 + γ 2Rt+4 + ...) (7)

As a consequence, the expected reward of the current time step t can be formulated
as a sum of the reward and the expected reward of the next time step t + 1:

Gt = Rt+1 + γGt+1 (8)

The characteristics illustrated in Eq.8 can be leveraged as a basis for learning:
The expected rewards Gt and Gt+1 are estimates and may originate from a model
output. On the other hand, the right side of the equation incorporates a Rt+1 which
has been encountered by interacting with the environment. Thus, it can be assumed
that the right side of the equation is generally more accurate and can serve as the TD
target. The left-hand side can be seen as a TD prediction. The difference between
TD target and TD prediction can be understood as the TD error. This underlines the
analogy to supervised learning methods. A model can now be trained according to
the prediction and the target, wherein RL the target is only a better estimate and in
supervised learning ground truth. From another perspective, while the goal of super-
vised learning is to minimize the difference between the prediction and the target,
RL faces an additional challenge as the target is a moving target being updated in
every learning step. The procedure of updating an estimate with another estimate is
called bootstrapping and explains why RL is typically more computationally inten-
sive compared to supervised learning. Next to the learning aspect, RL is also more
computationally intensive from a sampling process perspective. In supervised learn-
ing, the labeled dataset is usually static and already given at the beginning of the
learning process. In the case of RL, the data is collected during the learning process
through interacting with an environment.

The value function V (St ) can be updated with the temporal difference using the
following update rule:
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V (St ) = V (St ) + α[Rt+1 + γ V (St+1) − V (St )], (9)

with α representing the update step length. An analogous contemplation can also be
carried out for action values.

So far, it was discussed how to estimate and update a value for each specific state.
Each state must be visited multiple times until the value function can estimate the
corresponding value accurately. This is possible if the state of the environment can be
described with a discrete vector and a limited amount of distinct states. However, if
the state space becomes more numerous or even continuous, this approach becomes
infeasible due to computational complexity—the computation time to develop an
appropriate value estimate for each state would grow toward infinity. For this reason,
we need to look at models that can approximate without much loss of performance.
Is it possible to draw conclusions from an experience in one state for similar states?

This question leads inevitably to the topic of neural networks. The idea of lever-
aging Multi-layer Perceptrons (MLPs) as non-linear function approximators in RL
was considered to be unstable until Mnih et al. (2013) proposed Deep Q-Networks
(DQN). Two contributions are responsible for this breakthrough:

Firstly, the concept of an experience replay buffer was introduced: Instead of
learning fromexperiences as they occur, they are stored in a table named replay buffer.
The information stored consists of the state-action pair st , at , the corresponding
reward rt + 1 and the successor state st + 1. Subsequently, the experience-making
and the learningprocess canbe seen as decoupledprocesses as the learning takes place
on the basis of randomly selected samples from the replay buffer. This procedure
removes the temporal correlation between the samples and stabilizes the convergence
properties.

Secondly, the concept of target networks was introduced: Two function approxi-
mators are used instead of one: (1) A target network and (2) a behavior network. The
target network represents a copy of the behavior network and is used to calculate the
Bellman update. The Bellman update is used to update the parameters of the behavior
network. The parameters of the target network are periodically updated according to
the behavior network. This concept keeps the target more stable compared to updat-
ing the target in every time step and has a stabilizing effect on the training process.
Many extensions of DQN have been published such as Double Deep Q-Networks
(Double DQN) (van Hasselt et al. 2015), Prioritized Experience Replay (Schaul et al.
2015), or Dueling Deep Q Networks (Dueling DQN) (Wang et al. 2016).

Despite all advantages, value-based methods cannot handle continuous action
spaces without leveraging an additional optimization technique. According to
(Lillicrap et al. 2015), the idea to simply discretizing a continuous action space
into a fine-granular discrete action space often fails: Even small systems with little
degrees of freedom are related to a sprawling action space leading to a too high
sample complexity. One method to enable the control of continuous action spaces is
introduced in the subsequent section.
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5.2 Policy-Based Methods

This section introduces the fundamental concepts of policy-gradient algorithms. The
underlying idea is to represent the policy by a parametric probability distribution
πθ(s) = P(a|s, θ), where θ represents the parameters of the function approxima-
tor. In contrast to value-based methods, the output represents a probability density
function that assigns a probability to each possible action. Typically, policy-gradient
algorithms try to adapt the model parameter θ by estimating the gradient of the
expected return G (Sutton et al. 1999). Intuitively, this can be interpreted to mean
that actions that have led to a positive outcome are more likely to be selected in the
future in the same or similar states:

∇θEa∼πθ (s)[G(a)] (10)

The gradient of the expected value cannot be calculated analytically due to the
infinite set of state-action combinations. Alternatively, two common methods for
estimating the gradient exist REINFORCE (Sutton et al. 1999) and the reparameteri-
zation trick (Kingma andWelling 2013). In the following, REINFORCE is described
in three steps. Firstly, an episodes trajectory τ of length T including state, action,
and reward information is collected:

τ = (s0, a0, r1, s1, a1, r2, s2, ..., aT , rT+1, sT+1), (11)

with st , at , rt representing the state, the action and the reward at time step t .
In a second step, the expected reward of each visited state is estimated: The reward

rk of each time step within the trajectory multiplied with its corresponding discount
factor γ is accumulated:

Gt ←
T+1∑
k=t+1

γ t−k−1Rk (12)

where k denotes the number of time steps ahead of t .
Finally, the model parameters are updated according to the following equation:

θt+1 = θt + αGt
∇θπ(At |St , θt )
π(At |St , θt ) (13)

The process of estimating the expected reward is similar to the Monte-Carlo
method, which is related to some advantages and disadvantages: On the one hand,
the estimate is unbiased as it is based on a real trajectory. On the other hand, only a
small change in the policies’ parameters may change to another decision within the
trajectory leading to a completely different outcome. This is why the estimation is
related to a high-variance-affected credit assignment. Furthermore, the weakness of
REINFORCE can be seen from another perspective: Imagine an agent taking a bad
decision in time step t and good decisions in all successor time steps. REINFORCE
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rewards the bad action for its long-term positive outcome. This explains, why policy-
based methods are considered to be less sample efficient. An alternative approach
to reduce variance in the update steps can be found in the reparameterization trick.
The policy π(a|s, θ) is reformulated by a probability distribution gθ depending on
an expected value μθ , standard deviation σθ and a stochastic value ε.

gθ (ε) = μθ + εσθ (14)

This transformation decouples the expectation of the policy parameter θ and has a
simplifying effect on the calculation of the gradient. Research papers demonstrate
that the reparameterization trick has a variance-reducing effect (Xu et al. 2018).

5.3 Actor-Critic Methods

Actor-critic methods consist of a policy-gradient-based actor and a value-function-
based critic. The actor maps the state vector onto an action vector and its correspond-
ing update step works in the same way compared to the policy-gradient techniques
introduced in Sect. 5.2. The critic takes the state vector and the action vector chosen
by the actor as input and maps it on a scalar critic value. The critic value serves as a
reward signal for the actor. In contrary to policy-based methods, the expected return
is not estimated according to the Monte-Carlo method as denoted in Eq.12. Instead,
the expected reward is estimated according to the critic network. Two fundamental
representatives are presented in Eq.15 and in Eq.16.

∇θ J (θ) = E

T−1∑
t=0

∇θ logπθ(at |st)Q(s, a) (15)

and the Advantage Actor-Critic as denoted in Eq.16,

∇θ J (θ) = E

T−1∑
t=0

∇θ logπθ(at |st )A(s, a), (16)

whereas the advantage is defined as A(s, a) = Q(s, a) − V (s). Substituting the
Monte-Carlo-based expected reward estimate with a value-function-based expected
reward estimate counteracts the high-variance issue related to pure policy-gradient-
based methods.

The field of actor-critic methods has evolved rapidly in recent years and numer-
ous extensions have been developed. One measure to stabilize the training process
is to parallelize the learning process (Mnih et al. 2016). Asynchronous Actor-Critic
(A3C) uses multiple agents with identical model architecture interacting with their
own copy of the environment and collecting their own experiences. Two novel update
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strategies are to be considered: Firstly, the decentralized agents perform an asyn-
chronous update step of the centralized agent using their own network gradients.
These gradients contain information on how to update the network parameters based
on the individual agent’s experiences accumulated over multiple timesteps. Further-
more, the decentralized network parameters are substituted with the parameters of
the global network. This parallelization has a stabilizing effect since the learning
process is based on decoupled learning experiences similar to the experience replay
buffer proposed in Sect. 5.1. In addition to the parallelization, the authors pointed out
another important property: Adding the policy entropy H (π(·|st)) as a regularizer
to the objective function reduces the risk of converging to a bad local optimum.

6 Evaluation

In the previous sections, many theoretical points have been discussed. Now, we are
interested in how well RL works in practice. Thus, a small experiment is conducted:

The environment: A divergent 2-layer MEIS is considered. One middle warehouse
orders supply from a factory and distribute supply to two leaf warehouses. The
following assumptions are applied: The factory-level inventory system always has
enough supplies to serve orders from a middle warehouse. The middle warehouse
and the leaf warehouses can be affected by stock-out. The demand at the leaf ware-
houses is triggered by local wholesalers and hospitals and is modeled with a normal
distribution. The demand at the middle warehouse corresponds to the orders of the
two leaf warehouses (Fig. 3).

The cost. The delivery of an order is accomplished after a stochastic lead time,
provided that sufficient supplies are available on the upstream level. Unserved orders
due to stock-out are backlogged. The longer the waiting time for unserved demand
gets, the higher is the likelihood of a buyer withdrawing the order leading to shortage
cost at leaf warehouse level. Stock-out may occur at the middle warehouse level as
well, however, this does not directly lead to lost sales since the middle warehouse
is not directly connected to the market and therefore the shortage cost at middle
warehouse level are assumed to be zero. In addition to shortage cost, there are holding
cost and reordering cost. The overall cost in each time step is denoted in Eq.17:

ctotal(t) =
∑
iεM

ci,shortage(t) + ci,reordering(t) + ci,holding(t), (17)

while each cost type is defined as
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Fig. 3 The environment setup consists of four inventory systems, whereby three of them are to be
controlled by the RL agent. The material flow is from top to bottom while the information flow (the
orders) is from bottom to top

cshortage(t) = kshortage · min(0, iohi (t)) · pppi (18)

creordering(t) =
{
0, if no reorder

min(cmin.reordercost , kreorder ∗ qireorder ), otherwise
(19)

cholding(t) = kholding · max(0, iohi (t)) · pppi , (20)

whereby cshortage(t), creordering(t), cholding(t) denote the shortage, reordering, and
holding cost at time step t. kshortage and kreorder denote cost specific constants and
pppi , iohi (t) represent the price per product and the IOH at inventory system i and
time step t. To transform the cost minimization challenge to a maximization task, we
define reward = −ctotal .

The state. The state vector consists of four elements per warehouse: (1) the current
IOH, (2) the order quantity of the oldest open order, (3) the number of dates since
the oldest open order was placed, and (4) the reorder quantity of all open orders.
The respective state vectors for each warehouse are concatenated into a global state
vector. The resulting state dimension is 12, if we consider three warehouses with
four corresponding state dimensions.

The action. The output space is 13-dimensional as the agent has the choice to choose
one out of 13 options. The first option is that no warehouse orders—all remaining
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Table 1 Specifications

Category Variable Value

Environment specifications

Factory IOH Always sufficient

Overall cost Always zero

Middle warehouse Lead time distribution Normal distributed

Lead time exp. [days] 2

Lead time std. [days] 1

Price per product [CHF] 50

Min. reorder cost [CHF] 1000

Reorder cost constant [CHF] 0

Shortage cost constant [CHF] 0

Holding cost constant [CHF] 0.1

Leaf warehouse Demand distribution Normal distributed

Daily demand exp. [days] 3300

Daily demand var. [days] 100

Lead time distribution Normal distributed

Lead time exp. 2

Lead time std. 1

Price per product [CHF] 100

Min. reorder cost [CHF] 5000

Reorder cost constant [CHF] 0.5

Shortage cost constant [CHF] 10

Holding cost constant [CHF] 0.1

Max. backlog duration [days] 7

Agent Specifications

Agent Approach A3C

Model Actor model FCMLP

Actor model: No. layers 3

Actor model: No. neurons per
layer

64

Critic model FCMLP

Critic model: No. layers 3

Critic model: No. neurons per
layer

64

Training No. episodes 500K

No. time steps per training
episode

365

Optimizer Adam

Learning rate 0.0001

Discount factor (γ ) 0.99
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Fig. 4 Visualization of the RL model training performance. The blue line reflects the smoothed
scores, i.e., smoothedmeans of negative cost achieved during training. The blue shaded area denotes
standard deviations of these score values. The orange line denotes the overall best result obtained
so far during training

options represent the situation that only one warehouse can reorder at the same time
step while the reorder quantity can be small, medium, large or extra large.

The agent. The optimal policy is developed with the A3C approach. The model
consists of two Fully-Connected Multi-layer Perceptrons (FCMLPs)—one for the
actor and one for the critic. Further model and training hyperparameters are listed in
Table1.

Figure4 illustrates the training performance progress. It can be observed that the
cost converges to an annual cost of below 10M CHF. However, the cost fluctuation
remains on a high level. This issue is further discussed in Sect. 8.

7 Discussion of Results

Section6 describes an experiment on MEIO with the A3C approach. The RL agent
is capable of learning a reorder policy with minimized overall cost for a small,
divergent multi-echelon network. It remains a research question to be answered, how
good the performance is compared to other optimization methods. Gijsbrechts et al.
(2021) performed a similar experiment by comparing two different kinds of base-
stock policies: One base-stock policy is associated with constant base-stock values,
while the other is state-dependent, whereby the corresponding base-stock values are
selected by an A3C agent. The experiment shows, that the A3C-based approach
outperformed the other approach by 9–12% less overall cost. On the other hand, the
experiment performed in Sect. 6 shows, that the training converges to a minimized
cost—on the other hand, the variance of the performance remains comparably high
and no performance guarantees are given. In summary, RL shows promising results
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for inventory management tasks and many other sequential decision-making use-
cases, however, a number of research challenges complicate the applicability to
real-world systems. Some of them are introduced in Sect. 8.

8 Outlook

The most important open research challenge in the field of MEIOwith RL is to make
DRL-agents reliable and trustworthy. The experiment presented in Sect. 6 demon-
strated, that A3C learns an optimized policy. Numerous very good runs alternate
with a few very bad runs. With a deep neural network as a function approximator, the
policy remains a black-box function with limited interpretability and thus no perfor-
mance guarantees can be given. It still needs to be clarified how the trustworthiness
of DRL can be increased and guaranteed. One research branch targeting this is anal-
ysed by Garcýa and Fernández (2015). Another aspect targets the environment: This
is based on simplifying assumptions that often do not match the properties of real
supply chains. One example is perishability and associated write-off cost in case of
product expiry. Other examples are physical constraints (e.g., constraint workloads
regarding the number of processible orders) or legal constraints (e.g., fixed safety
stock regulations). Furthermore, the demand, which is sampled from a normal dis-
tribution in Sect. 6 may oversimplify the real demand characteristics and make the
simulation-based learned policy not suitable for the application in real-world set-
tings. Special events (e.g., a pandemic leading to demand artifacts) or low demands
in the rare disease area facing high uncertainty may lead to poor results in reality if
they are not considered in the simulation. In future research efforts, this characteristic
could be captured with temporal point processes (e.g., Reinhart 2018).

9 Conclusions

DRL is a rapidly evolving research field. Experiments show two-fold results: On the
one hand, DRL learns an optimized reorder policy with a low overall cost. On the
other hand, the performance variance is relatively high with many good episodes
alternating with some poor episode results. This makes DRL a promising approach
to optimizing inventorymanagement in the future—however, with the current lack of
performance stability, DRL inventory management requirements and state of the art
are too remote to be considered as a serious alternative for application to real-world
supply chains.
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10 Acronyms

AI Artificial Intelligence
A3C Asynchronous Actor-Critic
FCMLP Fully-Connected Multi-layer Perceptron
DDPG Deep Deterministic Policy Gradient
DPG Deterministic Policy Gradient
DQN Deep Q-Networks
DRL Deep Reinforcement Learning
LP-ADP Approximate Dynamic Programming
MARL Multi-agent Reinforcement Learning
MC Monte Carlo
MDP Markov Decision Process
MDP’s Markov Decision Processes
MEIO Multi-echelon Inventory Optimization
MEIS Multi-echelon Inventory Systems
MLP Multi-layer Perceptron
MLP’s Multi-layer Perceptrons
PPO Proximity Optimisation
RL Reinforcement Learning
SAC Soft Actor-Critic
TD Temporal Difference
TRPO Trust Region Policy Optimisation
Double DQN Double Deep Q Networks
Dueling DQN Dueling Deep Q Networks
IOH Inventory on hand
T Reorder timing
Q Reorder quantity
MCMC Markov Chain Monte Carlo
LIOH Low IOH-level
HIOH high IOH-level
R Reorder
NR Not-reorder
MP Markov Process
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An Invitation to Stochastic Differential
Equations in Healthcare

Dimitri Breda, Jung Kyu Canci, and Raffaele D’Ambrosio

1 Introduction

A typical family of differential/integral equations studied in healtcare or in finance
is the following one:

Vt = V0 +
∫ t

0
α(s, Vs)ds +

∫ t

0
σ(s, Vs)dWs, (1)

where V = (Vt : 0 ≤ t ≤ T ) is a d-dimensional quantity, which for example could
represent the values of assets in a portfolio and W is a Brownian motion (briefly
introduced in the next section).

The above type of equations are an important tool in mathematical finance.
Equation in (1) is the integral version of the equation

dVt

dt
= α(t, Vt ) + σ(t, Vt )

dW

dt
. (2)

Indeed by operating the integral operator f (t) �→ ∫ t
0 f (s)ds on the left of (2), we

obtain
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∫ t

0

dVs

ds
ds =

∫ t

0
dVs = Vt − V0.

By operating the integral operator to the right-hand side of (2), we obtain

∫ t

0

(
α(s, Vs) + σ(s, Vs)

dW

ds

)
ds =

∫ t

0
b(s, Vs)ds +

∫ t

0
σ(s, Vs)dW.

Therefore, we obtain

Vt − V0 =
∫ t

0
α(s, V Ss)ds +

∫ t

0
σ(s, V Ss)dW,

that is Eq. (1).
Now we multiply both hand sides of (2) by dt to obtain the differential equation

dVt = α(t, Vt )dt + σ(t, Vt )dW.

1.1 Brownian Motions

There are several ways to define what is a Brownian motion. We present the one
contained in (Gobet 2022, Definition 4.1.1 at page 120)

Definition 1.1 (Brownian Motion in Dimension 1) ABrownianmotion in dimension
1 is a continuous-time stochastic process {Wt ; t ≥ 0} with a continuous path, such
that

• W0 = 0;
• the time increment Wt − Ws (0 ≤ s < t) has the Gaussian distribution with zero
mean and variance (t − s);

• for any 0 = t0 < t1 < . . . < tn , the increments {Wti+1 − Wti | 0 ≤ i ≤ n − 1} are
independent.

A discretization of a Brownian motion is a random walk, or in other words a
Brownian motion is the continuous version of a random walk.

One denotes a Brownian motion with the letter W because the mathematical
theory of Brownian motions was formalized and studied by Wiener in the middle of
the twentieth century. The name “Brownian” comes from the botanist Robert Brown,
who used this model of motion (without formalizing it) for describing the movement
of a particle (pollen) in water.

Nowadays, Brownian motion is used in finance (e.g., for evaluating assets, port-
folio, gains, wealth...) and healtcare, see for example, Donnet and Samson (2013) or
Ferrante et al. (2005) in the case of pharmacokinetic/pharmacodynamic models (aka
PK/PC models).
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Brownian motion has the advantage to be a good tool for modeling in finance by
using mathematical models, and so via equations.

The mathematical disadvantage is that a Brownian motion, considered as a func-
tion of the time t is continuous but not always derivable. But, this disadvantage
turns into an advantage, because it may cover a large set of examples in real-world
problems.

Thus, the integral
∫ b

a f (t)dW in the case of a Brownianmotion W has nomeaning
in the traditional sense as Riemann–Stieltjes Integral. The notion of Ito’s integral
gives a definition for the integral

∫ b
a f (t)dW in the case of a Brownian motion W .

1.2 Ito’s Integral and Solutions of Geometric Brownian
Motions (GBM)

In this section, we show the definition of Ito’s integral and some of its applications.
Everything is considered in dimension 1; thus, every function considered is a function
of the time t and assumes values inR (real numbers). The extension of the case where
the outputs of our functions are d-dimensional vectors in Rd is straightforward.

Definition 1.2 (Ito’s Integral) Let f be a continuous function with respect to time t
on an interval [a, b]. Assume that W is a Brownian motion. Then we define the Ito’s
integral of f with respect to W as

∫ b

a
f (t)dW = lim

n→∞

n−1∑
i=0

f (ti )(Wti+1 − Wti ),

where t0 = a < t1 < . . . < tn−1 < tn = b represent the endpoints of a subdivision
of the interval [a, b] in n subintervals.

One can see that the limit converges in probability.
The condition f continuous can be weakened. Since we are considering t belong-

ing to intervals, we are considering the σ -algebra of borelian on R (i.e., the Borel
algebra, which is generated by open sets in R). In Definition 1.2, it is enough to
ask that f is Borel-measurable (preimages of Borel sets are Borel sets). Continuous
functions are Borel-measurable, but there are Borel-measurable functions that are not
continuous. For example, piecewise functions areBorel-measurable.Amore “exotic”
example is the indicator function χQ (which is 1 in the rational numbers Q and zero
otherwise), it is a Borel-measurable function even if it is highly non-continuous.

One can find the definition of Ito’s integral in (Shreve 2004, Sect. 4.3, precisely on
page 134). In Shreve (2004) the assumption on f is that the function f is an adapted
stochastic process, that can be essentially translated into being a Borel-measurable
function over time. Alternatively, one can read (Gobet 2022, Sect. 4.2, pages 132–
135).
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Roughly speaking, Ito’s integral is defined as a Riemann Integral, where we sub-
stitute a “linear deterministic variable x” with a stochastic one. So, in other words,
we can say that an Ito’s integral is a limit of a sequence of stochastic Riemann’s sums
(or in case a stochastic Legesque Integral). But note that, in the definition of Ito’s
integral, one always take a “left” stochastic Riemann’s sum.

In Eq. (1), the integral
∫ t
0 α(s, Vs)ds is a deterministic one (i.e., no random vari-

able appears), thus this is Riemann’s integral (or Lebesgue’s one). The integral∫ t
0 σ(s, Vs)dWs is an Ito’s one.
For a given realization (or simulation) of the Brownian motion Wt , it is possible to

determine an approximation for Vt . But sometimes, an exact value for the determin-
istic integral or an exact value of the Ito’s integral are not determinable. It is always
possible to give an approximated value for the integrals.

For some special cases, it is possible to find exact solutions of the equation in (1),
for example, in the case of a Brownian motion, where α and σ are constant. If so,
the function Vt is (1) is called geometric Brownian motion.

As a straightforward application of Ito’s formula (see for example, (Shreve 2004,
Theorem 4.4.1, p. 138), or (Gobet 2022, Theorem 4.2.5 p. 137) for a more general
formulation) proves that

Vt = V0 · e
(
α− σ2

2

)
t+σ ·Wt

is the solution of the Eq. (1) in the case Vt is a geometric Brownian motion.

1.3 Existence of Solutions of Stochastic Differential
Equations

Under certain hypotheses, Eq. (1) admits a solution, which is unique. Thiswas proven
by Pardoux and Peng in Pardoux and Peng (1990).

Theorem 1.1 (Pardoux and Peng 1990) Let W be a Brownian motion and α, σ

the functions of Eq. (1). Let T > 0 be a given real number. Suppose that α, σ are
continuous functions and there exist a constant Cα,σ (depending of α and σ ) such
that, for all t ∈ [0, T ] and x, y, we have

• |α(t, x) − α(t, y)| + |σ(t, x) − σ(t, y)| ≤ Cα,σ |x − y|;
• sup0≤t≤T (|α(t, 0)| + |σ(t, 0)|) ≤ Cα,σ .

Then, for each V0 ∈ R, there exists a unique solution of Eq. (1).

Unfortunately, the above theorem does not give a method for determining the
solution for the Eq. (1). In some cases, for example, for geometric Brownian motion,
the solution is explicitly determinable. But in general, there is no general approach
for solving all equations of the shape as in (1). Only in a few cases, we are able to
apply an algorithm or formula for solving exactly a stochastic differential equation.
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The conditions contained in the above theorem are “uniform Lipschitz condi-
tions”. This is not so surprising. For deterministic equations and so ordinary dif-
ferential equations, the Picard–Lindelöff Theorem requires Lipschitz condition as
well (recall that the Picard–Lindelöff Theorem gives sufficient conditions for the
existence and uniqueness of ordinary first-degree differential equations). Actually,
the proof in the stochastic case of SDEs looks like the analogous of the ODEs case,
where there is a somewhat fixed point theorem. In the Picard–Lindelöff Theorem,
the Banach–Caccipoli’s fixed point theorem is used.

In Theorem 1.1, they use a fixed point theorem. The proof could inspire a way to
find a method for finding a numerical approximation of the solution, which is not so
efficient. For more details about the proof of Theorem 1.1, see for example, Pardoux
and Peng (1990) or Ma and Zhang (2002).

2 Numerical Methods for SDEs

Theorem 1.1 only provides the assumptions that Eq. (1), equipped by the initial value
V (0) = V0, for the existence and uniqueness of its solution. However, this result is
only qualitative and does not provide any methodological tool to compute such a
solution. It is also worth highlighting that analytical solutions to SDEs can only
be provided for a limited amount of simple cases; the most realistic ones, due to
their complex structure, can only be numerically solved. The design and the analysis
of reliable, efficient, and accurate numerical methods for SDEs have attracted the
literature of the last couple of decades.A very brief—and far frombeing exhaustive—
list of references contains Bouchard and Touzi (2004), Gobet et al. (2005), Arnold
(1974), Buckwar and D’Ambrosio (2021), Buckwar et al. (2005), Buckwar et al.
(2010), Burrage and Burrage (2012), Burrage and Burrage (2014), Burrage and Tian
(2004), Chen et al. (2020), D’Ambrosio and Giovacchino (2021a), D’Ambrosio and
Giovacchino (2021b), D’Ambrosio and Scalone (2021b), Fang and Giles (2020),
Vom Scheidt (1989), Gardiner (2004), Higham (2001), Higham (2000), Higham
(2021), Higham and Kloeden (2005), Hutzenthaler and Jentzen (2015), Hutzenthaler
et al. (2011), Kloeden (2002), Kloeden and Platen (1992), Ma et al. (2012), Mao
(2007),Melbø andHigham(2004), Saito andMitsui (1996),Milstein (1994),Milstein
et al. (2002), Misawa (2000), Neuenkirch et al. (2019), Rössler (2010), Rössler
(2009), Rössler (2006), Ruemelin (1982), Abdulle et al. (2014), Chartier et al. (2014),
Abdulle et al. (2013), Abdulle et al. (2012), Cohen and Vilmart (2022), Chen et al.
(2016), Cohen and Dujardin (2014), Cohen (2012), de la Cruz (2020), de la Cruz
et al. (2019), de la Cruz et al. (2017), Jimenez and de la Cruz Cancino (2012), de la
Cruz et al. (2010) and references therein. In the remainder of the treatise, we aim to
provide a few examples of such methods taken from the most famous ones. Anyway,
before listing specific methods, let us recover two fundamental notions in stochastic
numerics, that provide a measure for the accuracy of the corresponding scheme: the
concepts of strong and weak convergence.

Given the uniform partition
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Ih = {tn = nh, n = 0, 1, . . . , N = T/h} (3)

of the interval I = [0, T ]; let us denote by Vn the numerical solution to (1) in the
point tn , computed by a given numerical scheme. The main question is the following:
how far is the numerical solution from the exact one? Does the gap between them
collapse as N goes to infinity? The following definition (see Kloeden and Platen
1992; Higham 2001, 2021 and references therein) helps clarify this scenario.

Definition 2.1 Given a numerical method computing Xn ≈ X (tn), with tn ∈ Ih , we
say that the method

• is strongly convergent with strong order p if there exist three positive constants
C , p and h∗ such that

sup
tn∈ Ih

E

[∣∣Xn − X (tn)
∣∣
]

≤ Ch p, (4)

for any h ≤ h∗. The strong order p is the biggest number such that (4) holds true;
• chosen a functional space S and given � ∈ S, we say that the methods are weakly
convergent with weak order q if there exist three positive constants D, q, and h̃
such that

sup
tn∈ Ih

∣∣∣∣E
[
�(Xn)

] − E
[
�(X (tn))

]∣∣∣∣ ≤ Dhq , (5)

for any h ≤ h̃. The weak order q is the biggest number such that (5) holds true.

Usually, S is the space of algebraic polynomials of degree q. In other terms,
Definition 2.1 gives two possible measures for the accuracy of a stochastic numerical
method: the expected error (strong convergence) and the gap between the expecta-
tions of the numerical and the exact solutions (weak convergence). One can prove
that strong convergence implies weak convergence, while the vice versa is generally
not true.

2.1 Euler–Maruyama Method

The simplest numerical method for deterministic differential equations y′(t) =
f (t, y(t)) (i.e., the famous Euler method) is obtained by means of truncated Taylor
series arguments as follows. First of all, let us compute

y(tn+1) = y(tn + h) = y(tn) + hy′(tn) + O(h2)

= y(tn) + h f (tn, y(tn)) + O(h2).

Neglecting the term O(h2) and reading the corresponding approximate equality
among exact values as an exact equality among approximate values yields
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yn+1 = yn + h f (tn, yn), n = 0, 1, . . . , N . (6)

Last equality provides the nonlinear difference equation defining the Euler method.
Clearly, solving such a nonlinear difference equation is not simpler than solving the
original ODE and, indeed, it is used to start a step-by-step procedure for the pointwise
computation of the numerical solution.

This approach does not directly apply to SDEs, due to the nowhere differentiability
of the involved stochastic processes. However, Taylor expansions generalize in the
so-called Ito–Taylor expansions, thanks to the Ito formula. Indeed, specifying (1) to
a subinterval [tn, tn+1) of the discretization Ih leads to

V (tn+1) = V (tn) +
∫ tn+1

tn

α(s, V (s))ds +
∫ tn+1

tn

σ(s, V (s))dW (s).

Computing α(s, V (s)) and σ(s, V (s)) by the Ito formula and considering only the
very first term, i.e., α(s, V (s)) ≈ α(tn, V (tn)) and β(s, V (s)) ≈ α(tn+1, V (tn+1)),
yields

V (tn+1) ≈ V (tn) + hα(tn, V (tn)) + σ(tn, V (tn))�Wn,

with�Wn = W (tn+1) − W (tn) (it is worth recalling that, by definition of theWiener
process,�Wn is a normal randomvariablewith 0meanandvarianceh).Recasting this
approximate equality among exact values as an exact equality among approximate
values get

Vn+1 = Vn + α(tn, Vn)h + σ(tn, Vn)�Wn. (7)

Equation (7) gives the so-called Euler–Maruyama method for SDEs. Clearly, if the
diffusion coefficient σ is identically zero (i.e., the problem is deterministic), then the
Euler–Maruyama method (7) recovers the deterministic Euler method (6).

One can prove that the strong order of the Euler–Maruyama method is p = 1/2,
while its weak order is q = 1. For a formal proof of the strong and weak convergence
of the Euler–Maruyama method, the interested reader can refer to Higham (2021)
and references therein.

2.2 ϑ–Maruyama Methods

The Euler method can be merged into a larger family of methods, well-known as ϑ–
Maruyama methods (see, for instance, Buckwar andSickenberger 2011;D’Ambrosio
and Giovacchino 2021a; D’Ambrosio and Scalone 2021a; Higham 2000, 2021 and
references therein). The starting point to develop ϑ-Maruyama methods is similar to
that for Euler–Maruyama method, i.e.,
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V (tn+1) = V (tn) +
∫ tn+1

tn

α(s, V (s))ds +
∫ tn+1

tn

σ(s, V (s))dW (s),

but the deterministic integral is approximated by the following quadrature formula:

∫ tn+1

tn

f (t, X (t))dt = [
(1 − ϑ) f (tn, X (tn)) + ϑ f (tn+1, X (tn+1))

]
�t.

Then, the corresponding approximate solution to (1) is given by

Vn+1 = Vn + (1 − ϑ)hα(tn, Vn) + ϑhα(tn+1, Vn+1) + σ(tn, Xn)�Wn, (8)

n = 0, 1, . . . , N − 1. Equation (8) collects the family ofϑ–Maruyamamethods. Rel-
evant cases are given for ϑ = 0, leading to Euler–Maruyama method, for ϑ = 1/2,
leading to the stochastic trapezoidal method and ϑ = 1, leading to the stochastic
implicit Euler method. It has been proved (see Higham 2021 and reference therein)
that allϑ–Maruyamamethods have a strong order 1/2 andweak order 1, as it happens
for Euler–Maruyama method. However, even if the accuracy is the same, selecting
proper values of ϑ may provide very good stability improvements (Buckwar and
Sickenberger 2011; Higham 2000; D’Ambrosio and Giovacchino 2021a).

2.3 Stochastic Runge–Kutta Methods

The relevant class of Runge–Kutta methods has its own stochastic counterpart in
the family of stochastic Runge–Kutta methods (SRK; see, for instance, Buckwar
et al. 2010; Burrage and Burrage 2012, 2014; Burrage and Tian 2004; D’Ambrosio
and Giovacchino 2021b; Ma et al. 2012; Rössler 2010, 2009, 2006 and references
therein). In this section, we look at SRKmethods for (1) as the stochastic perturbation
of deterministic Runge–Kutta methods as follows:

Vn+1 = Vn + h
s∑

i=1

biα(tn + ci h, V̂i ) + �Wn

s∑
i=1

diσ(ti + ci�t, V̂i ), (9)

with

V̂i = Vn + h
s∑

j=1

ai j α(tn + c j h, V̂ j ) + �Wn

s∑
j=1

γi j σ(ti + c j �t, V̂ j ), i = 1, 2, . . . , s. (10)

The number s appearing above is the number of internal stages and an s-stage SRK
method in the form (9)–(10) is uniquely identified by its coefficients bi , di , ai j , and
γi j , i, j = 1, 2, . . . , s, that can be collected in the following Butcher tableau:
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c1 a11 a12 . . . a1s γ11 γ12 . . . γ1s

c2 a21 a22 . . . a2s γ21 γ22 . . . γ2s
...

...
...

...
...

...
...

...
...

cs as1 as2 . . . ass γs1 γs2 . . . γss
b1 b2 . . . bs d1 d2 . . . ds

. (11)

The internal stages V̂i , i = 1, 2, . . . , s, provide approximations to V (tn + ci h)

and the way they relate to each other makes the corresponding methods implicit or
explicit. Explicit methods, i.e., with ai j = γi j = 0 for j ≥ i , have been developed
in Vom Scheidt (1989); Ruemelin (1982) and provided the condition for the mean-
square convergence

s∑
i=1

bi =
s∑

i=1

di = 1.

Further results, including the development and analysis of implicit methods, have
been investigated in Buckwar et al. (2010), Burrage and Burrage (2012), Burrage
and Tian (2004), D’Ambrosio and Giovacchino (2021b), Rössler (2010), Rössler
(2009), Rössler (2006) and references therein.A two-step generalization of stochastic
Runge–Kuttamethods has been introduced and analyzed inD’Ambrosio and Scalone
(2021b).

3 A Numerical Evidence on PK/PD Models

Let us now provide a brief selection of numerical experiments showing the effective-
ness of the aforementioned approaches. The test is focused on the application of ϑ

methods (8) to the following pharmacokinetic/pharmacodynamic (PK/PD) models,
given by the stochastic Gompertz PD model of the bacterial count under the effect
of an antibiotic Ferrante et al. (2005)

dNt = (r − b log(Nt ) − kCt )Ntdt + γ NtdWt , (12)

where r is the intrinsic growth rate, b is the growth deceleration rate, k is the bacterial
effect of the drug, and γ is a constant parameter. This equation is coupled with a
deterministic constraint on the antibiotic concentration Ct , given by

Ct = Dka

V (ka − ke)

(
e−ket − e−ka t

)
, (13)

where D is the dose of antibiotic, V the volume of distribution, ka and ke are the
absorption and elimination constants, respectively. The profile of the numerical solu-
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Fig. 1 Numerical solution of the PK/PD model (12)–(13), computed by the ϑ method (8) with
ϑ = 1/2, with D = 1, ka = 0.1, ke = 0.2, V = 10, r = 0.1, b = 0.2, k = 0.1, γ = 1

tion of the overall PK/PD model (12)–(13) is depicted in Fig. 1. Such a graph is
obtained by applying the ϑ method (8) with ϑ = 1/2 and shows the usual functional
Gompertzian growth, in coherence with the behavior expected from the model.
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Life Events that Cascade: An Excursion
into DALY Computations

Young Lee, Thanh Vinh Vo, Derek Ni, and Gang Mu

1 Introduction

Background and motivation of the study. In most applications concerning point
processes, we are generally confronted with the problem that we do not have the
times at which events have taken place. In such cases, the only information we have
is the number of events over a given interval, but the event times are unknown. For
example, since there can be many automobile accidents per day in the USA, it is
common to record the number of accidents for that day, rather than the exact times
at which these events happened.

The purpose of the present article is to spell out closed-form solutions for some
functionals of the number of events over a given interval within a class of point
processes that exhibit self and externally excitatory interactions. Intuitively, a process
is self-exciting if the occurrence of past events makes the occurrence of future events
more probable.

The origin of point processes incorporating both self- and external excitations
date back to 2002, when the authors Brémaud and Massoulié (2002) introduced this
model under very general conditions. In this paper, we perform inference on a model
that combines both self-exciting behavior and externally exciting components as
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set forth in Dassios and Zhao (2011), where they incorporated the shot-noise Cox
processes (Mohler 2013) as the external component while maintaining the Hawkes
process (Hawkes 1971) for self-excitations. We shall henceforth call this process the
Hawkes–Cox model.

Related work. Inference for point processes with the combined elements of endoge-
nous and exogenous components have been studied in the machine learning commu-
nity. Linderman and Adams (2014) introduced a multidimensional counting process
combining a sparse log Gaussian Cox process (Møller et al. 1998) and a Hawkes
component to uncover latent networks in the point process data. They showed how the
superposition theorem of point processes enables the formulation of a fully Bayesian
inference algorithm. Mohler (2013) considered a self-exciting process with back-
ground rate driven by a log Gaussian Cox process and performed inference based on
an efficientMetropolis adjusted Langevin algorithm for filtering the intensity. Simma
and Jordan (2010) proposed an expectation–maximization inference algorithm for
Cox-type processes incorporating self-excitations via marked point processes and
applied to a very large social network data.

We note that a variety of methods have been developed for the estimation of self
or external excitations for point processes: variational flavors (Mangion et al. 2011),
expectation propagation (Cseke and Heskes 2011), and the usage of thinning points
and uniformization for non-stationary renewal processes, (Gunter et al. 2014; Teh
and Rao 2011).

Perhaps themost intimately related work to ours is that of Da Fonseca and Zaatour
(2014) where the authors looked at the functionals of event counts over an interval
for a Hawkes process (Hawkes 1971). In this work, we proposed an inference proce-
dure for the Hawkes–Cox model which captures both the self and external excitatory
relationships over a given interval. As a by product, we extend some theoretical cal-
culations needed to give explicit highermoments to calculate the covariance structure
while generalizing the results of Da Fonseca and Zaatour (2014).

Contributions. Consider the scenario where we do not know the exact times at
which events happen, but we have the number of events that have occurred in a given
interval.We propose an inference procedure to learn the Hawkes–Coxmodel that can
capture both self- and external excitatory relationships under these circumstances.
Our major contributions are as follows: (i) We develop closed-form solutions of
some functionals for the Hawkes–Cox process. (ii) Special attention is given to the
covariance function of event counts over an interval. We show that the covariance
structure over the number of jumps in an interval enjoys analytical tractability. This
measure is extremely important as it supports the clustering property of the self-
exciting property of the Hawkes process and the external excitation features of the
Cox process. (iii) We developed an inference procedure through L2 regularization to
learn parameters where estimation is almost instantaneous. (iv) We finally conclude
by demonstrating the usefulness of applying Hawkes–Cox to model financial trade
volumes.
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2 The Hawkes–Cox Framework

Background on point processes. This section introduces some pieces of counting
process theory needed in what follows. The homogeneous Poisson process N̂ =
{N̂ (t) : t ≥ 0} with intensity m has the following properties: (a) The process starts
at 0 with N̂ = 0; (b) the process has independent increments, i.e., for any ti , i =
0, ..., n the increments N̂t1 − N̂ti−1 are mutually independent; (c) there exists a non-
decreasing right continuous function m : [0,∞) → [0,∞) with m(0) = 0 such that
the increments N̂t − N̂s for 0 < s < t < ∞ have a Poisson distribution with mean
value function m(t) − m(s).

The Hawkes–Cox Model. We are interested in a counting process N (t) whose
behavior is affected by past events, which contains both self- and externally excita-
tion elements. Our point process N (t) has a non-negative Ft− stochastic intensity
function λ(t) of the form:

λ(t)=B0(t) +
∑

i :t>Ti

H(Yi , t−Ti )+
∑

i :t>Si

C(Xi , t−Si ), (1)

where B,H and C are functions whose definitions will be made precise in Definition
1 below. The sequence (Ti )i≥1 denotes the event times of N , where the occurrence
of an event induces the intensity to grow by an amount H(Yi , t−Ti ): this element
captures self-excitation. At the same time, external events can occur at times Si and
stimulate with a portion of C(Xi , t−Ti ): this is the externally excited part. The quan-
tities X and Y are positive random elements describing the amplitudes by which λ
increases during event times. The quantity B0 : R+ �→ R+ denotes the deterministic
base intensity. We write Nt := N (t) and λt := λ(t) to ease notation and {Ft } being
the history of the process and contains the list of times of events up to and including
t , i.e. {T1, T2, ..., TNt }.

We now give specific forms for B,H and C through the definition of the Hawkes–
Cox model.

Definition 1 The Hawkes–Cox process is a point process N on R
+ with the non-

negative Ft conditional random intensity

λt =a+(λ0−a)e−δt +
Nt∑

i=1

Yi e
−δ(t−Ti )+

Jt∑

i=1

Xi e
−δ(t−Si ), (2)

for t ≥ 0, where we have the following features:

• Deterministic background. a ≥ 0 is the constant mean-reverting level, λ0 > a is
the initial intensity at time t = 0, δ > 0 is the constant rate of exponential decay.
B0(t) = a + (λ0 − a)e−δt ;

• External excitations. Xi are levels of excitation from an external factor. They
form a sequence of independent and identically distributed positive elements with
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Fig. 1 A sample of a Hawkes–Cox process. In the top plot, the blue line corresponds to the counting
process of interested event times, while the black line shows the counting process of the external
event times. The bottom graph plots the realized intensity function λt
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distribution function H(c), c > 0. Si are the times at which external events happen
and it follows a Poisson process Jt of constant rate ρ > 0. Similar kernel types
are used in Fisher and Banerjee (2010); Du et al. (2015), to name a few. Note that
C(Xi , t − Si ) := Xi e−δ(t−Si ).

• Self-excitations. Yi are levels of self-excitation, a sequence of independent and
identically distributed positive elements with distribution function G(h), h > 0,
occurring at random Ti . Following the occurrence of events, the impact of these
events will saturate and the rate at which this occurs is determined by the constant
δ. Note that H(Yi , t − Ti ) := Yi e−δ(t−Ti ).

For illustration, we present a sample simulation path obtained from the above param-
eterization in Fig. 1, showing generated event times. From this figure, we can see that
the intensity process is excited by both the event times of interest (in crosses ×) and
the external events (in circle ◦).

Note that fromDefinition 1, if we set X ≡ 0 and Y to be a constant, we retrieve the
model proposed by Hawkes (1971). If we set Y ≡ 0 and X to be a positive random
elements, we get the model proposed by Cox and Isham (1980). In addition, setting
X = Y = 0 returns us the inhomogeneous Poisson process, Daley and Vere-Jones
(2003). Furthermore, letting X = Y = 0 and λ0 = a simplify to the Poisson process.

2.1 The Choice of Kernel and the Rôle of δ

The kernel for the externally excited component is known as the shot noise (Cox and
Isham 1980; Møller 2003) where C(Xi , t − Si ) = Xi e−δ(t−Si ). This is a deliberate
choice with δ being shared between the background rate B0 H and C to ensure
that the process inherits the Markov property, see Brémaud and Massoulié (2002);
Blundell et al. ( 2012). This property is essential to the derivation of the functionals
in Sect. 3. The term δ determines the rate at which the process decays exponentially
from following arrivals of self-excited and externally excited events.

3 Dynkin’s Formula

The Markov property is the key property that allows one to invoke certain tools to
obtain the moments for the number of events in an interval, rather than the number of
events at a current time t > 0. Among these tools are the infinitesimal generator and
martingale techniques. For a Markov process Xt , consider a function f : D → R.
The infinitesimal generator of the process denoted A, is defined by

A f (x) = lim
h→0

E
[

f (Xt+h)|Xt = x
] − f (x)

h
.
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For every function f in the domain of the infinitesimal generator, the process

Mt := f (Xt ) − f (X0) −
∫ t

0
A f (Xu)du

is a martingale (Øksendal and Sulem 2007). Thus, for t > s, we have

E

[
f (Xt )−

∫ s

0
A f (Xu)du

∣∣∣Fs

]
= f (Xs)−

∫ s

0
A f (Xu)du

by the martingale property of M . Rearranging, we finally obtain Dynkin’s formula
(see, Øksendal and Sulem (2007))

E [ f (Xt )|Fs] = f (Xs) + E

[∫ t

s
A f (Xu)du

∣∣∣Fs

]
. (3)

In the following section, we will heavily rely on this formula to compute some
distributional properties of the Hawkes–Cox process.

4 Theoretical Moments

Our aim is to compute the following quantities: mean, variance and covariance of
the number of events in an interval τ , rather than at a fixed time t , as investigated by
Dassios and Zhao (2011). To do so, we appeal to the techniques and manipulations
presented in the previous section.

To ease notations, the first and second moments of levels of self- and external
excitations X and Y , respectively, are denoted by

μ1G :=
∫ ∞

0
hdG(h), μ2G :=

∫ ∞

0
h2dG(h),

μ1H :=
∫ ∞

0
cd H(c), μ2H :=

∫ ∞

0
c2d H(c)

as well as the constant

k := δ − μ1G .

First note that the joint process of {(λt , Nt )}t≥0 is aMarkov process. This can be seen
by proving that the expression λTk only depends on λTk−1 and {Nt : Tk−1 ≤ t ≤ Tk}.
By the Markov property and using the results in Øksendal and Sulem (2007); Davis
(1984), the infinitesimal generator of the process (t,λt , Nt ) acting on a function
f (t,λ, n) is given by
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A f (t,λ, n) = −δ(λ − a)
d f

dλ
+ λ

(∫ ∞

0
f (t,λ + y, n + 1)dG(y) − f (t,λ, n)

)

+ ρ

(∫ ∞

0
f (t,λ + c, n)d H(c) − f (t,λ, n)

)
.

4.1 The Moments of Counts in an Interval

In order to obtain the expected number of jumps for an interval (s, t], we apply
Dynkin’s formula as in Eq. (3). By setting f (t,λ, n) = n, we have that An = λ.
Since Nt − Ns − ∫ t

s λudu is a martingale, we have E[Nt − Ns − ∫ t
s ANudu|Fs] =

0. Rearranging, we get

E [Nt |Fs] = Ns + E

[∫ t

s
λudu

]
. (4)

Due to Fubini’s Theorem, we interchange the order of expectation and the integral
subsequently yields

E [Nt |Fs] = Ns +
∫ t

s
E [λu |Fs] du. (5)

Remark that this equation could have been obtained by recalling that
(Nt − ∫ t

0 λsds)t∈[0,T ] is a martingale, by definition of the intensity of a point process,
Daley and Vere-Jones (2003).

We can now give an explicit expression for the expectation of the number of events
in an interval.

Proposition 1 The expectation of the number of jumps over an interval τ is given
by

lim
t→∞E

[
Nt+τ − Nt | λ0] = aδ

δ − μ1G
τ =: hτ

1 (6)

Proof An application of tower property of expectation yields

E [Nt − Ns | λ0] = E[E [Nt − Ns |Fs] |F0]
= μ1(t−s) + 1

k
(1−e−k(t−s))(E[λs |F0]−μ1)

= μ1(t − s) − 1

k
(λ0 − μ1)(e

−kt − eks),

for s < t . Setting t ← t+τ and s ← t and letting t →∞ and under the stationary
condition μ1G < δ, we obtain the expression in Eq. (6). �
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We interpret this quantity as the long-run expectation of the number of events
during a given time interval of length τ .

We now calculate the long-run variance of the number of jumps during an interval
of length τ . We first note that

Var[Nt − Ns |F0]
= E[(Nt − Ns)

2|F0] − (E[Nt − Ns |F0])2. (7)

We proceed by calculating the first quantity on the RHS in Eq. (7). First, note that

E[(Nt −Ns)
2|F0] = E[E[(Nt − Ns)

2|Fs]|F0].

Given the previous two results, we can now state the expression for the variance
of the number of events in an interval of length τ :

Proposition 2 The variance of the number of jumps over an interval τ is given by

lim
t→∞Var(Nt+τ − Nt |F0)

= lim
t→∞E([Nt+τ − Nt )

2|F0] − lim
t→∞(E[Nt+τ − Nt |F0])2

= θ

k
+ 2

k

(
μ1Gμ1 − μ2

1 + (2θ + μ2G )θ

2k2
+ ρμ2H

2k

)
τ − 2

k2

(
(2θ + μ2G )θ

2k2
+ ρμ2H

2k
+ μ1Gμ1 + μ2

1

)

:= hτ
2 . (8)

4.2 The Covariance

We now turn to perhaps the most important quantity: the covariance function which
carries information regarding the clustering nature of Hawkes–Cox. To calculate this
cross-expectation of the number of events during different time intervals, we first
need to determine the following expression:

E[(Nt1 − Nt )(Nt3 − Nt2)|F0] − E[(Nt1 − Nt )|F0]E[(Nt3 − Nt2)|F0],

where t0 < t < t1 < t2 < t3. For simplicity, we let τ := t1 − t and τ = t3 − t2. We
further define the lag of Hawkes–Cox as τ̃ := t2 − t1. We state the following:

Proposition 3 The covariance of the number of jumps in a given interval τ with lag
τ̃ can be explicitly expressed as

Cov(τ , τ̃ ) = lim
t→∞

(
E[(Nt+τ − Nt )(Nt+2τ+τ̃ − Nt+τ+τ̃ )] − E[(Nt+τ − Nt )]E[(Nt+2τ+τ̃ − Nt+τ+τ̃ )]

)

= (μ1τ )2 +
[(

1 − e−kτ

k

)2

e−kτ̃

(
(2θ + μ2G )θ

2k2
+ ρμ2H

2k
+ μ1μ1G − μ2

1

)]
=: hτ

3 . (9)
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5 Learning and Optimization

We present an optimization technique to learn the parameters of the Hawkes–Cox
process. Consider the cost function J of the following form:

J (ϕ) =
3∑

i=1

∣∣∣ lim
t→∞ Cϕ

i (t) − Ci

∣∣∣
2 + λreg F(ϕ),

where Cϕ
i (t) denotes the theoretical function of moments for Hawkes–Cox. Cϕ

1 (t) =
E(Nt+τ − Nt ), Cϕ

2 (t) = Var(Nt+τ − Nt ) and

Cϕ
3 (t) = E[(Nt+τ − Nt )(Nt+2τ+τ̃ − Nt+τ+τ̃ )] − E[(Nt+τ − Nt )]E[(Nt+2τ+τ̃ − Nt+τ+τ̃ )]

and Ci being the corresponding empirical function of moments in a given interval
τ and lag τ̃ where λreg is a parameter that controls the level of regularization in
the optimization scheme with F being the regularization term. The first role of the
penalization term F is to ensure uniqueness of the solution. Indeed, if F is convex
in the ϕ, then for λreg large enough, the entire functional J will be convex and the
solution will be unique. Note that the difference in the square terms are deviations
of the theoretical functions of moments against the corresponding empirical values.
Let the parameters of interest be ϕ. The learned parameter ϕ̂ is obtained from

ϕ̂ = argmin
ϕ

J (ϕ),

where ϕ is the parameter of interest. The details of optimization tools are presented
in the experiment section.

6 Synthetic Experiments

We evaluate our proposed optimization method using both simulated and real-world
data, and show that our approach significantly outperforms the baseline.

With estimation being almost instantaneous, we demonstrate the usefulness of
Hawkes–Cox to model financial trade volumes. Empirical evidence have shown
that trading activity is not a random process but rather produces time sequences
that exhibit clustering behavior (Filimonov and Sornette 2012). If it was the case,
a homogeneous Poisson process would have been a suitable candidate to model
trade arrival times. Possible exogenous liquidity and news shocks are being capture
through the external excitation component of Hawkes–Cox.

We show that our model achieves better accuracy in the prediction compared to
MLE and also a homogeneous Point process (HPP).
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6.1 Calibration

The experiments on assessing the stability and accuracy of the learned parameters
from the Hawkes–Cox process are studied. First, we illustrate the generation of
the synthetic data. Then we briefly review the MLE method before presenting the
calibration results obtained with the proposed optimization method.

6.1.1 Synthetic Data Generation

For simplicity, we assume the levels of excitation X · and Y· be drawn from random
elements of exponential distribution with mean parameter ψ. One reason is that this
makes the data generation process simple since an efficient simulation algorithm is
available (Dassios and Zhao 2011). To avoid giving more weight to some param-
eters over others, we simply assume the following ground truth parameters for the
simulation of the synthetic data. All parameters are set to a value of 1 except for
the decay δ and the initial intensity λ0. The decay parameter δ is set to a value of
2 because it has to be greater than ψ to respect the stationarity condition (Brémaud
and Massoulié 1996; Brémaud et al. 2002), while λ0 is set to 2 such that (λ0 − a)

is non-zero. In addition, we arbitrarily set the maturity time T to 5,000 to allow
for long-term stationary conditions to be achieved. We spell out the values of the
parameters in Table2 for ease of reading.

6.1.2 Maximum Likelihood Estimation

For practical applications, the MLE method has frequently been employed as the
standard for parameter estimation on statistical models due to the lack of efficient
and fast inference algorithms for large datasets. Presumably, the popularity of using
MLE is due toOzaki (1979)whofirst appliedMLEprocedures to estimate parameters
of a Hawkes process. For example, despite the Markov chain Monte Carlo (MCMC)
methods giving exact solutions in the limiting cases, they may be too slow for many
practical applications (Kuss andRasmussen 2005). Other inference techniques, albeit
faster than MCMC, are still comparatively slower compared to MLE for practical
purposes. Here, we use MLE to learn the set of parameters ϕ = {a, δ,ψ, ρ}.

To account for randomness from the simulations, the MLE result is obtained from
100 samples of Hawkes–Cox processes simulated with the ground truth parameters
described in Sect. 6.1.1 or Table2. The technical approach for computing the min-
imum is by using a bounded constrained optimizer built upon MATLAB function
fminsearch, which in turn employs the Nelder–Mead simplex method (Nelder and
Mead 1965). We bound our search space from 0 to 10.

We find that the learned MLE parameters, presented in the first row of Table3,
are close to the ground truth parameters, where their standard errors are displayed in
the corresponding brackets. However, a careful inspection of their 95% confidence
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intervals (i.e., ± two standard errors from the estimates) suggests that the estimates
are not adequate, as the confidence intervals for a, δ and ψ failed to contain the true
values. Additionally, in Table3, we compute the mean absolute difference (MAD) of
the learned parameters against their ground truth values. This MAD value for MLE
suggests that the learned parameters only deviate from (on average) the true values
by 0.13.

We report that the MLE method takes quadratic time to run due to the evaluation
of the loglikelihood function. In our case, we find that each MLE took around 846s
to complete.

6.1.3 L2−Regularization

We replicate the above experiments but now with the proposed L2−regularization
method described Sect. 5. Since estimation is almost instantaneous, we perform the
assessment by simulating 1,000 sample paths of Hawkes–Cox processes. We repeat
the experiments for different configurations of the tuning parameters, that is, interval
τ in the range of 0.5–10.0, and regularization parameter λreg in the range of 0.0–1.0.

We present theMADof the learned parameters against the true values correspond-
ing to various configurations in Table1, and the most accurately learned parameters
from varying the λreg is tabulated in Table3. Interestingly, we find that the higher

Table 1 Themean absolute differences for the learned parameters against their true values, obtained
with our inference technique over various configurations of τ and λreg . The MADs are computed
by averaging over 1,000 simulation paths. The results, for which the lower MAD the better, that are
lower than 0.01 are highlighted in bold. Observe that as the interval τ increases, the stronger the
regularization parameter λreg required for better parameter estimations

Interval Regularization Parameter λreg

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0 0.0014 0.1835 0.3369 0.7770 0.9804 1.0033 1.0238 1.0422 1.0592 1.0748 1.0900

2.0 0.0096 0.0190 0.0420 0.0593 0.0779 0.0928 0.1046 0.1197 0.1309 0.1416 0.1503

3.0 0.0105 0.0098 0.0115 0.0217 0.0357 0.0358 0.0459 0.0550 0.0593 0.0694 0.0721

4.0 0.0440 0.0186 0.0115 0.0043 0.0086 0.0200 0.0261 0.0333 0.0313 0.0449 0.0534

5.0 0.0715 0.0537 0.0253 0.0224 0.0202 0.0058 0.0163 0.0119 0.0173 0.0185 0.0328

6.0 0.1037 0.1041 0.0813 0.0610 0.0318 0.0418 0.0195 0.0217 0.0093 0.0092 0.0105

7.0 0.1200 0.1985 0.1225 0.1173 0.0789 0.0476 0.0376 0.0409 0.0278 0.0181 0.0150

8.0 0.1445 0.2668 0.1958 0.1685 0.1269 0.0941 0.0932 0.0561 0.0370 0.0430 0.0199

Table 2 Ground truth parameters used in simulating the synthetic data

Name Maturity

Time

Initial

Intensity

Background Decay Excitation External

Intensity

Value T = 5000 λ0 = 2 a = 1 δ = 2 ψ = 1 ρ = 1
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Table 3 The learned parameters {a, δ,ψ, ρ} and their standard errors (enclosed in brackets) asso-
ciated with the MLE method and the proposed inference technique. For the proposed optimization
method, the results with the best MAD correspond to each τ are shown. We note that, with the
exception of the MLE, the confidence intervals of the learned estimates contain the true parameters

Method τ λreg a (true = 1) δ (true = 2) ψ (true = 1) ρ (true = 1) MAD

MLE – – 0.8785 0.0343 2.2155 0.0707 1.1778 0.0320 1.0011 0.0141 0.1290

Functional

Moment

Matching

Method

1.0 0.0 1.0000 0.0483 2.0046 0.1217 1.0006 0.0515 1.0003 0.0173 0.0014

2.0 0.0 1.0044 0.0498 2.0239 0.1614 1.0092 0.0703 0.9992 0.0200 0.0096

3.0 0.1 1.0090 0.0560 2.0227 0.2440 1.0053 0.1062 0.9980 0.0219 0.0098

4.0 0.3 1.0047 0.0594 1.9955 0.3290 0.9955 0.1493 0.9963 0.0249 0.0043

5.0 0.5 1.0028 0.0641 1.9927 0.4526 0.9933 0.2074 0.9935 0.0259 0.0058

6.0 0.9 1.0013 0.0668 1.9817 0.5067 0.9893 0.2369 0.9934 0.0265 0.0092

7.0 1.0 0.9991 0.0719 2.0373 0.6516 1.0160 0.3063 0.9943 0.0306 0.0150

8.0 1.0 1.0004 0.0727 2.0530 0.7587 1.0227 0.3620 0.9964 0.0323 0.0199

the interval τ , we require a higher regularization parameter λreg to obtain the best
results. Additionally, we also observe that the best parameter fitting gets worse (in
terms of MAD) the higher the τ , this is most likely due to information loss as we
aggregate over counts over a coarser granularity. Similarly, note that the standard
errors increase as well.

We conclude that our method produces estimations that are very close to the true
values as compared to the MLE method, as illustrated in Table3. Further, in contrast
to the MLE method, our regularization technique only took 1.2 s (175 times faster
than MLE) for parameter estimations, on average (Table4).

Table 4 The learned parameters {a, δ,ψ, ρ} and their standard errors (enclosed in brackets) associ-
ated with the MLE method and our inference technique. For the proposed optimization method, the
results with the best MAD in prediction correspond to each τ are shown. Further, the Hawkes–Cox
process is shown to perform much better than the Homogeneous Poisson Process
Method τ λreg a δ μ1G ρ MAD

HPP – – 0.4334 0.0000 – – – – – – 274

MLE – – 0.1876 0.0000 3.3782 0.0002 1.9156 0.0001 0.0001 0.0000 274

Functional

Moment

Matching

Method

10 0.1 0.1003 0.0593 1.0208 1.5189 0.5721 0.7962 0.1547 0.1191 260

30 0.1 0.0815 0.0820 1.6336 2.8913 1.0572 1.7038 0.0898 0.1083 207

60 0.5 0.0654 0.0549 3.1429 3.8649 2.1338 2.4790 0.0594 0.0709 153

120 0.3 0.0698 0.0621 2.1910 3.6380 1.5687 2.5068 0.0526 0.0803 183

180 1.0 0.0690 0.0441 4.9340 3.7163 3.6692 2.6728 0.0117 0.0238 138

360 0.9 0.0428 0.0376 5.5690 4.7926 4.3617 3.6969 0.0084 0.0073 118

600 0.2 0.0420 0.0366 5.3028 4.8700 4.2769 3.9015 0.0161 0.0335 126
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7 Disability Adjusted Life Years

DALY. The notion of the disability-adjusted life year (DALY) has been introduced
in the 1990s. DALYs are important measurements that link the burden of disease in
populations with the degree of morbidity, disability, and long-term survival. They
were initially developed to gauge the global burden of disease and to determine a
strategy for the evaluation of health benefits and its associated cost-effectiveness.One
DALY is the equivalent of a year of healthy life lost if a person had not experienced
a particular disease. Different theoretical and methodological challenges persist,
which are likely to affect both the computation and interpretation of DALY estimates
(Mathers et al. 2008).

The computation of DALY and its challenges. DALY calculations consist of two
smaller estimates: (i) the number of years lived with disability (YLD); and (i i) the
number of years of life lost (YLL) associated with the condition of interest. DALYs
are estimated as the sum of the YLD and YLL pillars. YLD for different diseases
is calculated using disease-specific disability weights that range between 0 (perfect
health) and 1 (death) and the duration of disability. YLL is calculated using estimates
of mortality associated with the condition of interest when untreated, life expectancy,
and age at death.

At times, scarce, reliable population-based data on disease parameters, specifi-
cally incidence of deaths and diseases, make estimating DALY of a specific disease
difficult, especially in lowermiddle-income economies (Kularatna et al. 2013;Wyber
et al. 2015). Hence, standard techniques to deal with this uncertainty is to employ a
sampling-based estimation procedure. In this approach, each parameter is modeled
by a probability distribution centered upon the optimal estimate of the parameter
with a range reflecting uncertainty (Puett et al. 2019; Noguera Zayas et al. 2021).
Typically, disability weights weremodeled using the continuous uniform distribution
and the expected number of deaths were modeled using the Poisson distribution.

Proposed methodologies. Standard methods dictate the use of Poisson distribution
to obtain estimates for the expected number of deaths and specific diseases. Recall
that in a Poissonian framework, the probability of the number of deaths occurring in
an age group happens with a fixed average rate, and is independent of the time since
the last event. We propose the use of the intensity function in Eq. (2), for modeling
purposes,which relaxes thePoisson assumptionof stationary increments. It allows for
the possibility that the rates need not be constant but can varywith time. This choice of
intensity is general enough to encapsulate certain stylized facts of rates of deaths and
diseases, such as nonlinear trend characteristics. Here, we illustrate the estimation
procedure by applying the techniques presented earlier to obtain an estimate for the
parameters for Hawkes–Cox process model, generalizing the Poissonian feature that
is widely used in the literature.We first suppose that we observe the number of deaths
(or number of diseases) across age groups, as tabulated in Table5. For simplicity,
we further suppose that there are three parameters to estimate, absorbed in θ ∈ R

3.
Define the function Aθ which takes the form
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Table 5 Number of deaths or diseases, stratified by age

Age Group
(↓) ,Year (→)

20xx 20xx+τ 20xx+2τ ... 20xx+2τ

0–4 R1 R2 R3 ... RN

5–14 ... ... ... ... ...

15–44 ... ... ... ... ...

45–59 ... ... ... ... ...

60+ ... ... ... ... ...

Aθ =
⎛

⎝
m1 − hτ

1
m2 − hτ

2
m3 − hτ

3

⎞

⎠

where m1, m2, and m3 denote the observed mean, variance, and covariance of the
number of events within an interval with a predetermined specification of τ and δ
given in (10), (11), and (12), respectively. The quantities hτ

1, hτ
2, and hτ

3 given in (6),
(8), and (9), respectively, are functions of the parameters. Let Ri denote the number
of deaths (or number of diseases) falling in age group i . Furthermore, let N be the
number of age groups remaining. In this case, we have

m1 = 1

N

N∑

i=1

Ri (10)

m2 = 1

N

N∑

i=1

R2
i − m2

1 (11)

m3 = 1

N

N∑

i=1

(
Ri × Ri+�

)
−

(
1

N

N∑

i=1

Ri

)
×

(
1

N

N∑

i=1

Ri+�

)
(12)

where� = �δ/τ. One can then evaluate θ̂ such thatAθ̂ = 0 using standardmethods
ofmoment matching (Hall 2004).With the estimated parameters, one can then obtain
distributions related to the number of deaths and specific diseases. By a similar token,
the same procedures may be applied to obtain suitable distributional properties for
different age groups. This framework gives a natural way to deal with uncertainties
in DALY computations, which subsumes the Poissonian assumptions.
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8 Concluding Remarks

In this paper, we derive explicit moments and the covariance function of the number
of events over an interval for the Hawkes–Cox process. The future evolution of this
point process is influenced by the timing of past events whose intensities are affected
by a self-excitingmechanism and an exogenous component.We develop an inference
procedure through regularizations taking into account the theoretical functionals and
showing that estimation is almost immediate. Empirical experiments on real data
sets demonstrate its superior scalability and predictive performance.
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