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Chapter 21
Preventing Pandemics: Earth Observations 
for One Health

Maya V. Mishra 

 Introduction

Somewhere in a cave in southern China, a colony of bats rustles and squeaks. The 
stone floor is coated in guano, or bat excrement, lending a musky scent to the air. 
Soon the bats will take flight for the evening, soaring through the sky in search of 
prey. During their nightly ranging, these bats will consume many insects, keeping 
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populations in check and therefore playing an important role in their ecosystems 
(Kunz et al., 2011). They also provide prey for avian raptors (Wu et al., 2019), and 
for humans, they possess commercial value for their role in traditional medicine 
(El-Sayed & Kamel, 2021).

Bats also have a hidden physiological talent: they can play host to a number of 
diseases, enabling them to spread pathogens to each other and to other creatures 
without becoming sick themselves (O’Shea et al., 2014). Unfortunately, this natural 
advantage also threatens human health: diseases can be transmitted to other animals 
through contact with the bats or their feces and can then make the leap to humans, 
sometimes to devastating worldwide effects (Wang & Eaton, 2007).

In our third year of the COVID-19 pandemic, many of us have become unexpect-
edly familiar with zoonotic diseases, those infections originating in animals. But we 
tend to lose sight of the broader context in which this pandemic emerged. The zoo-
notic origins of COVID-19 are not unique: about three-quarters of emerging dis-
eases newly recognized by epidemiologists can be traced to animals (Rabozzi et al., 
2012), and zoonoses make up 60% of the total number of infectious diseases affect-
ing humans (Meurens et al., 2021).

In the pandemic age, there is no need to overstate the necessity of monitoring 
disease emergence and investigating the factors that affect this process. Humanity’s 
increasing encroachment into the Earth’s wild places has brought people and live-
stock into a higher degree of contact with wildlife (Rabozzi et al., 2012). Diseases 
are therefore more likely to be transmitted from wildlife to domestic animals, where 
they then can make the jump to humans in an event known as a “"spillover” (Rabozzi 
et al., 2012).

However, we know much less about the specific conditions that influence disease 
spillovers. Studying disease emergence involves not only human factors, but also 
those concerning animals and the environment. These three areas are united through 
the framework of One Health. This term encompasses a way of approaching scien-
tific and legislative issues with an interdisciplinary perspective that recognizes the 
overlapping priorities of human, animal, and environmental health. Today, this 
approach has been institutionalized by such organizations as the United States’ 
Centers for Disease Control and Prevention (CDC), which has had a One Health 
Office since 2009 (One Health, 2021), and has been adopted as a key principle by 
others, including the World Organization for Animal Health (“One Health,” n.d.).

The One Health framework also clarifies the role of Earth observations (EO). 
EO, which encompass a wide range of data types on relevant environments and 
habitats worldwide, can be gathered via remote sensing by spaceborne satellites. 
The instruments aboard these satellites can collect data within each facet of One 
Health: on the human and animal side, they can track animal presence, land use 
change, and deforestation from space, identifying the areas in which humans or 
livestock might encounter wild animals. In terms of environmental health, satellites 
can assess ecosystem health through various imaging methods as well as gathering 
precipitation and climate data that govern where disease-transmitting species can 
occur. The National Aeronautics and Space Administration (NASA)’s fleet of satel-
lites has been collecting these and similar EO for years.
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In this chapter, I discuss uses of EO in a One Health framework to prevent dis-
ease spillover and reduce disease burden worldwide. The data enable three broad 
approaches that align with the three One Health areas: wildlife-based approaches, 
which center around the wild animals that carry disease; environment-based 
approaches, which focus on climate and habitat variables that dictate where species 
may occur; and human-based approaches, which track human impacts on wild areas 
and assess the risk of spillover. Critically, all of these categories can be integrated 
with other interdisciplinary forms of data—including social, economic, and politi-
cal information—to succeed in preventing disease. I conclude by discussing past 
examples of EO use to predict and prevent disease through a One Health framework 
and emphasize how preventative measures must address causes, rather than symp-
toms, of relevant human behaviors in order to avert disease emergence and 
decrease burden.

Innovative combinations of EO data have the potential to decrease the burden of 
existing diseases as well as to assess the risk of spillover events in time and space. 
If we can predict where and when spillovers are likely to occur, we can take steps to 
prevent them. As the COVID-19 pandemic has emphasized, informed preventative 
measures—enabled by Earth observations—could save millions of lives from dis-
ease and death.

 Wildlife-Based Approaches

Zoonotic diseases, by definition, have animal hosts, or reservoir species, in which 
the pathogens circulate. Aquatic birds are the reservoir for influenza (Parrish et al., 
n.d.); SARS, and likely COVID-19, has their reservoir in bats (Li et  al., 2005). 
Reservoirs are part of the reason that zoonotic diseases are so difficult to eliminate: 
even if cases in humans can be significantly reduced—a difficult task in itself—
future interactions between humans and the host species could facilitate new spill-
overs of the pathogen, leading to additional outbreaks.

It is therefore critical to investigate where these reservoir species are located, as 
well as any movements and behaviors that may bring them into close contact with 
humans. To this end, EO provide invaluable insight that can be paired with in situ 
data for more comprehensive wildlife tracking. A plethora of innovative combina-
tions of data are available to inform future efforts to decrease potentially disease- 
spreading human-wildlife interactions by promoting conservation, benefiting both 
humans and other species.

The keystone of wildlife-based approaches to preventing disease is spatial track-
ing data on the reservoir species themselves. In the past, radio trackers required 
researchers to carry an antenna and monitor the creature of interest on foot or in a 
vehicle or aircraft, requiring significant time and energy investments (Robertson 
et al., 2012). Satellites have streamlined this process, allowing scientists to collect 
larger quantities of accurate location data without spending long hours in the field.
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GPS trackers placed on individual creatures rely on orbiting satellites to deliver 
location data to scientists. While one might envision the classic large collar on an 
elephant or lion, researchers worldwide are collaborating through the International 
Cooperation for Animal Research Using Space (Icarus) to tag and track smaller 
animals using a satellite-based system (About Icarus, n.d.). Icarus’ focal species 
include a number of reservoir taxa, including birds and bats. Animals can be tracked 
in real time, with the data routed to Movebank, an open-access database (Kranstauber 
et al., 2011; The Internet of Animals, n.d.). Icarus and other similar initiatives can 
provide platforms for forecasting movement and migration patterns to reduce 
human-wildlife contact, therefore also lessening the risk of a spillover event.

Direct tracking data can be supplemented with other spatial data to paint a clearer 
picture of species presence, abundance, and behavior. Camera trapping data can be 
used to estimate the abundance of reservoir species individuals in a set area. The 
Wildlife Insights database represents one such collaboration in the field, containing 
over 22 million camera trap images analyzed by artificial intelligence, which can 
provide data on species presence and abundance around the world (Wildlife 
Insights, n.d.).

Citizen science data can also be used to monitor species locations and distribu-
tions, through widely accessible phone applications such as iNaturalist (iNaturalist, 
n.d.) and eBird (eBird Science, n.d.). Anyone may submit species sightings, which 
provide large and spatially far-ranging datasets to scientists. While the quality of 
these data can vary, citizen science can provide an important supplement to other 
data sources. By tracking which species have been observed by people in different 
locations, it can also provide insight, if not an exact measure, of the degree of 
human-wildlife interaction, which could inform estimates of spillover risk.

Knowing where reservoir species are located is critical information to preventing 
spillover events. However, as suggested by the One Health framework, species dis-
tributions must be integrated with human population characteristics in order to 
accurately assess and mitigate the risk of disease transmission.

 Environment-Based Approaches

All species have specific environmental requirements to persist long-term in their 
habitats—they can only survive in certain temperature ranges, for example, or they 
might require particular levels of rainfall. As climate change increases temperatures 
around the world, affecting seasons and weather patterns, the geographic ranges in 
which species can exist are also changing (Lippi et al., 2019). Mapping key environ-
mental variables allow us to project the future range shifts of key species in order to 
determine populations at risk. The environmental variables observed by satellites, 
including temperature, rainfall, and land cover type, are critical to projecting where 
and when species will exist, in turn contributing to predictions of where disease may 
emerge. This allows preventative measures to be deployed to get ahead of outbreaks 
and manage risk.
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Thus far, this work has largely been conducted with insect vectors of disease, 
such as mosquitoes (Lippi et al., 2019), ticks (Slatculescu et al., 2020), and flies 
(Moore & Messina, 2010). These vectors carry many known diseases, including 
malaria, Lyme disease, and sleeping sickness, and previously unknown illnesses are 
emerging at a rapid rate (Bartlow et al., 2019). The World Health Organization esti-
mates that vector-borne diseases cause over 700,000 deaths globally each year, with 
cases well into the hundreds of millions (Vector-Borne Diseases, n.d.).

Mosquitoes are colloquially known as the world’s deadliest animal, causing 
between 700,000 and 2.5 million deaths every year (Kamerow, 2014). Different spe-
cies of mosquito carry a number of zoonotic pathogens, the deadliest being malaria, 
which is carried by Anopheles mosquitoes (CDC, 2020): half the world’s population 
lives at risk of the disease (Kamerow, 2014). Other species of mosquito harbor yel-
low fever, Zika, and West Nile virus, among others (Avŝiĉ-Zupanc, 2013). These 
diseases’ high burden makes tracking mosquito abundance and distribution critical 
to preventing significant morbidity and mortality.

Because of the temperature and rainfall dependence of mosquitoes’ life cycles, 
the highest burden of mosquito-borne disease cases occurs in warm, tropical areas 
where the insect can reproduce and cause infection year-round (Le et al., 2019). 
Mosquito forecasting based on temperature and precipitation variables has become 
an important tool, especially in areas that experience this increased burden. EO 
provide consistent and accurate data to drive these models (Chuang et al., 2012), 
with variables such as vegetation density and water content measured by the Landsat 
and Sentinel satellites (Tsantalidou et al., 2021). Predictions of mosquito density 
allow public health institutions to roll out preventative measures, including public 
awareness campaigns and insecticidal efforts (Giordano et al., 2018).

In a similar manner, tick abundance can also be predicted using EO. Ticks are 
another significant contributor to the overall vector-borne disease burden world-
wide, carrying Lyme disease, tick-borne encephalitis, and other illnesses (Slatculescu 
et  al., 2020). For ticks, evaluating a combination of climate variables as well as 
habitat suitability in terms of land cover and use is necessary to determining where 
these species may establish in our changing world (Slatculescu et al., 2020). Past 
studies have relied on satellites for these data, including Landsat for land cover 
imagery (Slatculescu et al., 2020) as well as Terra’s Moderate Resolution Imaging 
Spectroradiometer (MODIS) for the normalized difference vegetation index 
(NDVI), or “greenness,” of plant matter (Da Re et al., 2019). Tick species distribu-
tion models predict that warming temperatures will significantly increase the abun-
dance of ticks in northern areas, which previously had low burdens of insect presence 
and consequently tick-borne illness (Sagurova et al., n.d.; Slatculescu et al., 2020). 
With science providing a foundation for proactive management, these areas can now 
prepare for heightened tick presence with campaigns to educate the public on tick- 
safe behavior and make healthcare providers aware of the risk.

Ticks and mosquitoes are two of the most widely studied insect vectors, but the 
principles of climate and habitat discussed here can also be applied to other species, 
including the tsetse fly, which carries sleeping sickness (Moore & Messina, 2010), 
and the kissing bug, which transmits Chagas disease (Klotz et  al., 2014). Vector 
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ranges are predicted to shift and expand with our changing climate (Bartlow et al., 
2019), and EO data can be employed to train models and predict these shifts under 
various future climate scenarios. For the communities projected to be at a height-
ened risk of disease burden, these studies have and will provide a critical head start 
on disease prevention.

While species distribution modeling for health-related purposes has historically 
been applied largely to insect species, it can also be used to an extent for mamma-
lian and avian reservoir species. Variations in climate or ecosystem structure can 
affect habitat use, migration patterns, and other relevant animal behaviors, and these 
key factors can in turn affect the degree of human contact with species that could 
spread disease.

 Human-Based Approaches

In a final application of the One Health framework, measuring the presence and 
effects of humans on wildlife habitat is especially critical to determining disease 
risk. Human activities, including logging, agriculture, and construction, among oth-
ers, have increasingly encroached on the habitats of many species. These endeavors 
increase the likelihood of human-animal contact that may lead to a spillover event 
in two main ways. First, the people conducting these activities spend a large amount 
of time in largely intact natural habitat, increasing the chance they may encounter 
wildlife. Additionally, there is evidence across multiple reservoir taxa and study 
systems to suggest that when habitat is fragmented or destroyed, disease transmis-
sion from wildlife increases (Goldberg et al., 2008; Plowright et al., 2011; Suzán 
et al., 2008). This makes it more likely that people living and working in these areas 
will not only encounter wildlife, but also that this wildlife will be carrying and 
transmitting disease.

EO have long been used to visualize habitat degradation, including tracking 
deforestation with Landsat imagery (Souza et al., 2013) and wildfire effects with 
instruments aboard the Suomi National Polar-orbiting Partnership (NPP) satellite 
(Ba et al., 2020). EO can also provide data on human encroachment by measuring 
urban expansion with MODIS (Mertes et al., 2015) as well as land use change for 
agricultural intensification, again with Landsat (Kontgis et al., 2015). These data 
can all inform integrated models of spillover risk that incorporate human, animal, 
and environmental factors.

A concrete example of the potential for data integration and intervention across 
the fields of One Health to prevent disease involves logging. Logging activity, aside 
from destroying habitat, involves many individuals spending a large amount of time 
in forests, and many loggers hunt bushmeat for supplemental income and food 
(Poulsen et al., 2009). This latter activity unsustainably decreases wildlife popula-
tions (Poulsen et al., 2009) and poses a high risk of spillover (Schilling et al., 2020), 
as hunters come into close contact with the animal’s bodily fluids, facilitating dis-
ease transmission. Maps of logging activity combined with species distributions can 
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therefore be used to evaluate the risk of encountering reservoir species and advise 
loggers accordingly. EO can contribute to both of these parts: as previously dis-
cussed, wildlife can be directly tracked or modeled using climate and habitat data, 
and logging roads and forest degradation can be mapped using LiDAR data (Affek 
et  al., 2017), which can be obtained from the Global Ecosystem Dynamics 
Investigation (GEDI) instrument orbiting aboard the International Space Station 
(Rangel Pinagé et al., 2019).

Besides affecting habitat, the indirect effects of humans on wildlife could alter 
the risk of disease spillover. For instance, artificial nightlight from human electricity 
use has been shown to alter the activity patterns and behaviors of birds and bats 
(Sanders et al., 2021), which could change the degree of potential human exposure 
and contact with these reservoirs. Nightlight can be measured with Suomi NPP’s 
Visible Infrared Imaging Radiometer Suite (VIIRS) and can be integrated with ani-
mal tracking data (Ditmer et al., 2021) for a comprehensive look at behavior change 
and possible risks. The same principles can be applied to other indirect human 
effects, such as noise pollution.

The human side of the One Health trio is the one over which we have the most 
control: through innovative scientific investigation, we can track how our behaviors 
and policies with regards to nature affect our own health. Integrating human data 
from varied and diverse sources with those on animals and the environment is criti-
cal to creating policies and campaigns to prevent disease emergence and spread.

 Discussion

Even in the most densely populated cities, humans are deeply intertwined with the 
natural world in a rich and beautiful web. When we tug on one strand, the reverbera-
tions echo in directions we might not expect. Cutting down trees for timber might 
fulfill an economic need, but will also destroy habitat, driving reservoir species 
closer to humans and livestock and increasing the risk of disease transmission. The 
decisions we make in our stewardship of the natural world are critical to not only 
animal and environmental health, but also human health.

Earth observations can play a key role in this mission—from tracking individuals 
within reservoir species, to contributing climate data to species distribution models, 
to measuring human presence and expansion, satellites have become a critical 
source of information. EO data can be combined across these different fields to bet-
ter estimate the disease burden and risk of spillover. This will allow us to employ 
preventative measures and hopefully avoid the next global pandemic.

While the number of these interdisciplinary projects is still small, there are sev-
eral past examples of disease prevention projects that combine data across the areas 
of One Health. EO played a crucial role in an avian influenza early warning system, 
which was developed as a collaborative project between scientists at NASA, the US 
Department of Agriculture, and the Department of Defense (Avian Influenza Early 
Warning System: Using NASA Data to Predict Pandemics, 2010). Avian influenza 
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has unique spillover potential, as it is spread by highly mobile waterbirds, which 
can transmit the virus to flocks of domestic fowl (Avian Influenza Early Warning 
System, 2010). It can then more easily make the jump to human farmers, where it 
can cause severe illness: death rates between strains range from 2.5% to 50% (Skeik 
& Jabr, 2008).

The NASA models projected influenza outbreaks in time and space, relying on a 
comprehensive combination of data (Avian Influenza Early Warning System, 2010). 
Climate variables, including temperature, rainfall, radiance, and NDVI, were 
obtained from NASA satellites and integrated with maps of migratory flyways, spe-
cies prevalence data, and local socioeconomic conditions to create a weekly fore-
cast of illness (Avian Influenza Early Warning System, 2010). This type of 
interdisciplinary scientific work, which touches on each of the three One Health 
fields, will be critical in the future to avert possible pandemics. The framework of 
this system can hopefully be expanded to other zoonotic diseases in the future, such 
as those carried by bats, another highly mobile species.

Attempts to elucidate the social and environmental conditions surrounding spill-
over events are similarly critical to preventing future disease outbreaks. This work 
has been conducted with Ebolaviruses, which are thought to have their reservoirs in 
bats; confirmed spillovers were found to be associated with locations around forest 
edges and contact with bushmeat, with different strains exhibiting different charac-
teristics (Judson et  al., 2016). EO have also been employed in this space, with 
Landsat imagery supporting an association of Ebola outbreaks with human-intruded 
tropical forest areas (Tucker et al., 2002). Spillovers of Hendra virus (McFarlane 
et al., 2011), Nipah virus (McKee et al., 2021), and human monkeypox (Fuller et al., 
2011) have also been associated through EO and other data with various environ-
mental, human, and wildlife variables. This type of analysis, if applied more widely 
to known zoonoses, can be used to create spillover forecasts, warning people of the 
risk and therefore decreasing the likelihood of disease occurrence.

As the One Health space continues to grow and evolve, new combinations of data 
will lend us yet more insight on how we can predict and prevent disease. However, 
the results then need to be applied through policy and public education in order to 
be effective. To date, studies have emphasized that human-driven climate change 
and habitat destruction are not only devastating ecosystems, but also putting our 
own health at risk by increasing the burden of disease and the probability of spill-
over. Worldwide, we must reframe how we look at the natural world, transitioning 
from a lens of exploitation to one of conservation and value. This should be reflected 
in legislation and funding on local, national, and international scales.

The COVID-19 pandemic has also underscored just how interconnected humans 
are as well. Disease proliferation anywhere is a threat to people everywhere on 
Earth and, therefore, the ethos of collaboration across borders and disciplines that 
has arisen during the pandemic should continue to be supported after we emerge. 
This is facilitated by databases like Movebank and Wildlife Insights, which make 
data widely available to scientists around the world. Investigations that focus on 
human-animal interaction will also need to incorporate social, political, and 
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economic data to a higher degree in order to more fully depict the complexities of 
human society—and this will necessitate changes beyond the scientific.

For instance, simply legislating against hunting bushmeat is not a feasible mech-
anism to reduce the risk of spillover that accompanies it. Not only have attempts to 
eliminate the practice without significant control measures been ineffective in the 
past (Schilling et al., 2020) but this approach harms communities that rely on bush-
meat for subsistence (Brashares et al., 2011), rather than targeting the trade driven 
by higher-wealth areas that accounts for more of the overhunting and thus the spill-
over risk. Researchers must investigate what drives hunters to ply their trade, and 
legislators must pick up the mantle of addressing the roots of the issue (which are 
generally economic) rather than the symptoms. These principles apply to many of 
the human-animal interactions that may facilitate spillover events, including log-
ging, agriculture, and construction in wild areas.

No one area of science is sufficient to predict and prevent zoonotic disease emer-
gence and burden worldwide, just as no single government or organization can com-
pletely eliminate risk through legislation. In order to prevent the next pandemic, we 
must look beyond the boundaries of disciplines and nations, combining data and 
collaborating to protect the health of people, animals, and the environment worldwide.

References

About Icarus. (n.d.). Retrieved December 6, 2021, from https://www.icarus.mpg.de/28056/
about- icarus

Affek, A. N., Zachwatowicz, M., Sosnowska, A., Gerlée, A., & Kiszka, K. (2017). Impacts of 
modern mechanised skidding on the natural and cultural heritage of the Polish Carpathian 
Mountains. Forest Ecology and Management, 405, 391–403. https://doi.org/10.1016/j.
foreco.2017.09.047

Avian Influenza Early Warning System: Using NASA Data to Predict Pandemics. (2010). NASA 
Langley Research Center.

Avŝiĉ-Zupanc, T. (2013). Mosquito-borne diseases—A new threat to Europe? Clinical Microbiology 
and Infection, 19(8), 683–684. https://doi.org/10.1111/1469- 0691.12215

Ba, R., Song, W., Lovallo, M., Lo, S., & Telesca, L. (2020). Analysis of multifractal and organi-
zation/order structure in Suomi-NPP VIIRS normalized difference vegetation index series of 
wildfire affected and unaffected sites by using the multifractal detrended fluctuation analysis 
and the Fisher–Shannon analysis. Entropy, 22(4), 415. https://doi.org/10.3390/e22040415

Bartlow, A. W., Manore, C., Xu, C., Kaufeld, K. A., Valle, S. D., Ziemann, A., Fairchild, G., & 
Link to external site, this link will open in a new window, Fair, J. M., & Link to external site, 
this link will open in a new window. (2019). Forecasting zoonotic infectious disease response 
to climate change: Mosquito vectors and a changing environment. Veterinary Sciences, 6(2), 
40. http://dx.doi.org.ezproxy.princeton.edu/10.3390/vetsci6020040

Brashares, J. S., Golden, C. D., Weinbaum, K. Z., Barrett, C. B., & Okello, G. V. (2011). Economic 
and geographic drivers of wildlife consumption in rural Africa. Proceedings of the National 
Academy of Sciences, 108(34), 13931–13936. https://doi.org/10.1073/pnas.1011526108

Chuang, T.-W., Henebry, G.  M., Kimball, J.  S., VanRoekel-Patton, D.  L., Hildreth, M.  B., & 
Wimberly, M. C. (2012). Satellite microwave remote sensing for environmental modeling of 
mosquito population dynamics. Remote Sensing of Environment, 125, 147–156. https://doi.
org/10.1016/j.rse.2012.07.018

21 Preventing Pandemics: Earth Observations for One Health

https://www.icarus.mpg.de/28056/about-icarus
https://www.icarus.mpg.de/28056/about-icarus
https://doi.org/10.1016/j.foreco.2017.09.047
https://doi.org/10.1016/j.foreco.2017.09.047
https://doi.org/10.1111/1469-0691.12215
https://doi.org/10.3390/e22040415
http://dx.doi.org.ezproxy.princeton.edu/10.3390/vetsci6020040
https://doi.org/10.1073/pnas.1011526108
https://doi.org/10.1016/j.rse.2012.07.018
https://doi.org/10.1016/j.rse.2012.07.018


270

Da Re, D., De Clercq, E. M., Tordoni, E., Madder, M., Rousseau, R., & Vanwambeke, S. O. (2019). 
Looking for ticks from space: Using remotely sensed spectral diversity to assess Amblyomma 
and Hyalomma tick abundance. Remote Sensing, 11(7), 770. https://doi.org/10.3390/
rs11070770

Ditmer, M. A., Stoner, D. C., Francis, C. D., Barber, J. R., Forester, J. D., Choate, D. M., Ironside, 
K.  E., Longshore, K.  M., Hersey, K.  R., Larsen, R.  T., McMillan, B.  R., Olson, D.  D., 
Andreasen, A. M., Beckmann, J. P., Holton, P. B., Messmer, T. A., & Carter, N. H. (2021). 
Artificial nightlight alters the predator–prey dynamics of an apex carnivore. Ecography, 44(2), 
149–161. https://doi.org/10.1111/ecog.05251

eBird Science—EBird. (n.d.). Retrieved December 8, 2021, from https://ebird.org/ebird/science
El-Sayed, A., & Kamel, M. (2021). Coronaviruses in humans and animals: The role of bats in viral 

evolution. Environmental Science and Pollution Research, 28(16), 19589–19600. https://doi.
org/10.1007/s11356- 021- 12553- 1

Fuller, T., Thomassen, H. A., Mulembakani, P. M., Johnston, S. C., Lloyd-Smith, J. O., Kisalu, 
N. K., Lutete, T. K., Blumberg, S., Fair, J. N., Wolfe, N. D., Shongo, R. L., Formenty, P., Meyer, 
H., Wright, L. L., Muyembe, J.-J., Buermann, W., Saatchi, S. S., Okitolonda, E., Hensley, L., 
et al. (2011). Using remote sensing to map the risk of human monkeypox virus in the Congo 
Basin. EcoHealth, 8(1), 14–25. https://doi.org/10.1007/s10393- 010- 0355- 5

Giordano, B. V., Turner, K. W., & Hunter, F. F. (2018). Geospatial analysis and seasonal distribu-
tion of West Nile virus vectors (Diptera: Culicidae) in Southern Ontario, Canada. International 
Journal of Environmental Research and Public Health, 15(4), 614. https://doi.org/10.3390/
ijerph15040614

Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Estoff, E. L., & Chapman, C. A. (2008). Forest 
fragmentation as cause of bacterial transmission among nonhuman primates, humans, and 
livestock, Uganda. Emerging Infectious Diseases, 14(9), 1375–1382. https://doi.org/10.3201/
eid1409.071196

Home | Wildlife Insights. (n.d.). Retrieved December 7, 2021, from https://www.wildlifein-
sights.org/

INaturalist. (n.d.). INaturalist. Retrieved December 8, 2021, from https://www.inaturalist.org/
Judson, S. D., Fischer, R., Judson, A., & Munster, V. J. (2016). Ecological contexts of index cases 

and spillover events of different ebolaviruses. PLoS Pathogens, 12(8), e1005780. https://doi.
org/10.1371/journal.ppat.1005780

Kamerow, D. (2014). The world’s deadliest animal. BMJ: British Medical Journal, 348. http://
www.jstor.org/stable/26514797

Klotz, S. A., Dorn, P. L., Mosbacher, M., & Schmidt, J. O. (2014). Kissing bugs in the United 
States: Risk for vector-borne disease in humans. Environmental Health Insights, 8s2, EHI.
S16003. https://doi.org/10.4137/EHI.S16003

Kontgis, C., Schneider, A., & Ozdogan, M. (2015). Mapping rice paddy extent and intensification 
in the Vietnamese Mekong River Delta with dense time stacks of Landsat data. Remote Sensing 
of Environment, 169, 255–269. https://doi.org/10.1016/j.rse.2015.08.004

Kranstauber, B., Cameron, A., Weinzerl, R., Fountain, T., Tilak, S., Wikelski, M., & Kays, R. (2011). 
The Movebank data model for animal tracking. Environmental Modelling & Software, 26(6), 
834–835. https://doi.org/10.1016/j.envsoft.2010.12.005

Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., & Fleming, T. H. (2011). Ecosystem ser-
vices provided by bats. Annals of the New York Academy of Sciences, 1223(1), 1–38. https://
doi.org/10.1111/j.1749- 6632.2011.06004.x

Le, P. V. V., Kumar, P., Ruiz, M. O., Mbogo, C., & Muturi, E. J. (2019). Predicting the direct and 
indirect impacts of climate change on malaria in coastal Kenya. PLoS One, 14(2), e0211258. 
https://doi.org/10.1371/journal.pone.0211258

Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., 
Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S., & Wang, L.-F. (2005). 
Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748), 676–679.

M. V. Mishra

https://doi.org/10.3390/rs11070770
https://doi.org/10.3390/rs11070770
https://doi.org/10.1111/ecog.05251
https://ebird.org/ebird/science
https://doi.org/10.1007/s11356-021-12553-1
https://doi.org/10.1007/s11356-021-12553-1
https://doi.org/10.1007/s10393-010-0355-5
https://doi.org/10.3390/ijerph15040614
https://doi.org/10.3390/ijerph15040614
https://doi.org/10.3201/eid1409.071196
https://doi.org/10.3201/eid1409.071196
https://www.wildlifeinsights.org/
https://www.wildlifeinsights.org/
https://www.inaturalist.org/
https://doi.org/10.1371/journal.ppat.1005780
https://doi.org/10.1371/journal.ppat.1005780
http://www.jstor.org/stable/26514797
http://www.jstor.org/stable/26514797
https://doi.org/10.4137/EHI.S16003
https://doi.org/10.1016/j.rse.2015.08.004
https://doi.org/10.1016/j.envsoft.2010.12.005
https://doi.org/10.1111/j.1749-6632.2011.06004.x
https://doi.org/10.1111/j.1749-6632.2011.06004.x
https://doi.org/10.1371/journal.pone.0211258


271

Lippi, C.  A., Stewart-Ibarra, A.  M., Loor, M.  E. F.  B., Zambrano, J.  E. D., Lopez, N.  A. E., 
Blackburn, J. K., & Ryan, S. J. (2019). Geographic shifts in Aedes aegypti habitat suitability in 
Ecuador using larval surveillance data and ecological niche modeling: Implications of climate 
change for public health vector control. PLoS Neglected Tropical Diseases, 13(4), e0007322. 
https://doi.org/10.1371/journal.pntd.0007322

McFarlane, R., Becker, N., & Field, H. (2011). Investigation of the climatic and environmental 
context of Hendra virus spillover events 1994–2010. PLoS One, 6(12), e28374. https://doi.
org/10.1371/journal.pone.0028374

McKee, C.  D., Islam, A., Luby, S.  P., Salje, H., Hudson, P.  J., Plowright, R.  K., & Gurley, 
E.  S. (2021). The ecology of Nipah virus in Bangladesh: A nexus of land-use change and 
opportunistic feeding behavior in bats. Viruses, 13(2), 169. https://doi.org/10.3390/v13020169

Mertes, C. M., Schneider, A., Sulla-Menashe, D., Tatem, A. J., & Tan, B. (2015). Detecting change 
in urban areas at continental scales with MODIS data. Remote Sensing of Environment, 158, 
331–347. https://doi.org/10.1016/j.rse.2014.09.023

Meurens, F., Dunoyer, C., Fourichon, C., Gerdts, V., Haddad, N., Kortekaas, J., Lewandowska, 
M., Monchatre-Leroy, E., Summerfield, A., Wichgers Schreur, P. J., van der Poel, W. H. M., 
& Zhu, J. (2021). Animal board invited review: Risks of zoonotic disease emergence at the 
interface of wildlife and livestock systems. Animal, 15(6), 100241. https://doi.org/10.1016/j.
animal.2021.100241

Moore, N., & Messina, J. (2010). A landscape and climate data logistic model of tsetse distribution 
in Kenya. PLoS One, 5(7), e11809. https://doi.org/10.1371/journal.pone.0011809

O’Shea, T. J., Cryan, P. M., Cunningham, A. A., Fooks, A. R., Hayman, D. T. S., Luis, A. D., Peel, 
A. J., Plowright, R. K., & Wood, J. L. N. (2014). Bat flight and zoonotic viruses. Emerging 
Infectious Diseases, 20(5), 741–745. https://doi.org/10.3201/eid2005.130539

One Health. (n.d.). OIE  - World Organisation for animal health. Retrieved December 8, 2021, 
from https://www.oie.int/en/what- we- do/global- initiatives/one- health/

One Health | CDC. (2021, November 17). https://www.cdc.gov/onehealth/index.html
Parrish, C. R., Murcia, P. R., & Holmes, E. C. (n.d.). Influenza virus reservoirs and intermediate 

hosts: Dogs, horses, and new possibilities for influenza virus exposure of humans. Journal of 
Virology, 89(6), 2990–2994. https://doi.org/10.1128/JVI.03146- 14

Plowright, R. K., Foley, P., Field, H. E., Dobson, A. P., Foley, J. E., Eby, P., & Daszak, P. (2011). 
Urban habituation, ecological connectivity and epidemic dampening: The emergence of 
Hendra virus from flying foxes (Pteropus spp.). Proceedings of the Royal Society B: Biological 
Sciences, 278(1725), 3703–3712. https://doi.org/10.1098/rspb.2011.0522

Poulsen, J. R., Clark, C. J., Mavah, G., & Elkan, P. W. (2009). Bushmeat supply and consumption 
in a tropical logging concession in Northern Congo. Conservation Biology, 23(6), 1597–1608. 
https://doi.org/10.1111/j.1523- 1739.2009.01251.x

Prevention, C.-C. for D.  C. and. (2020, July 16). CDC  - Malaria—About Malaria—Biology. 
https://www.cdc.gov/malaria/about/biology/index.html

Rabozzi, G., Bonizzi, L., Crespi, E., Somaruga, C., Sokooti, M., Tabibi, R., Vellere, F., Brambilla, 
G., & Colosio, C. (2012). Emerging zoonoses: The “One Health approach.”. Safety and Health 
at Work, 3(1), 77–83. https://doi.org/10.5491/SHAW.2012.3.1.77

Rangel Pinagé, E., Keller, M., Duffy, P., Longo, M., dos-Santos, M. N., & Morton, D. C. (2019). 
Long-term impacts of selective logging on Amazon forest dynamics from multi-temporal air-
borne LiDAR. Remote Sensing, 11(6), 709. https://doi.org/10.3390/rs11060709

Robertson, B., Holland, J., & Minot, E. (2012). Wildlife tracking technology options and cost 
considerations. Wildlife Research, 38, 653–663. https://doi.org/10.1071/WR10211

Sagurova, I., Ludwig, A., Ogden, N. H., Pelcat, Y., Dueymes, G., & Gachon, P. (n.d.). Predicted 
northward expansion of the geographic range of the tick vector Amblyomma americanum in 
North America under future climate conditions. Environmental Health Perspectives, 127(10), 
107014. https://doi.org/10.1289/EHP5668

21 Preventing Pandemics: Earth Observations for One Health

https://doi.org/10.1371/journal.pntd.0007322
https://doi.org/10.1371/journal.pone.0028374
https://doi.org/10.1371/journal.pone.0028374
https://doi.org/10.3390/v13020169
https://doi.org/10.1016/j.rse.2014.09.023
https://doi.org/10.1016/j.animal.2021.100241
https://doi.org/10.1016/j.animal.2021.100241
https://doi.org/10.1371/journal.pone.0011809
https://doi.org/10.3201/eid2005.130539
https://www.oie.int/en/what-we-do/global-initiatives/one-health/
https://www.cdc.gov/onehealth/index.html
https://doi.org/10.1128/JVI.03146-14
https://doi.org/10.1098/rspb.2011.0522
https://doi.org/10.1111/j.1523-1739.2009.01251.x
https://www.cdc.gov/malaria/about/biology/index.html
https://doi.org/10.5491/SHAW.2012.3.1.77
https://doi.org/10.3390/rs11060709
https://doi.org/10.1071/WR10211
https://doi.org/10.1289/EHP5668


272

Sanders, D., Frago, E., Kehoe, R., Patterson, C., & Gaston, K. J. (2021). A meta-analysis of bio-
logical impacts of artificial light at night. Nature Ecology & Evolution, 5(1), 74–81. https://doi.
org/10.1038/s41559- 020- 01322- x

Schilling, M. A., Estes, A. B., Eblate, E., Martin, A., Rentsch, D., Katani, R., Joseph, A., Kindoro, 
F., Lyimo, B., Radzio-Basu, J., Cattadori, I. M., Hudson, P. J., Kapur, V., Buza, J. J., & Gwakisa, 
P. S. (2020). Molecular species identification of bushmeat recovered from the Serengeti ecosys-
tem in Tanzania. PLoS One, 15(9), e0237590. https://doi.org/10.1371/journal.pone.0237590

Skeik, N., & Jabr, F. I. (2008). Influenza viruses and the evolution of avian influenza virus H5N1. 
International Journal of Infectious Diseases, 12(3), 233–238. https://doi.org/10.1016/j.
ijid.2007.07.002

Slatculescu, A. M., Clow, K. M., McKay, R., Talbot, B., Logan, J. J., Thickstun, C. R., Jardine, 
C. M., Ogden, N. H., Knudby, A. J., & Kulkarni, M. A. (2020). Species distribution models 
for the eastern blacklegged tick, Ixodes scapularis, and the Lyme disease pathogen, Borrelia 
burgdorferi, in Ontario, Canada. PLoS One, 15(9), e0238126. https://doi.org/10.1371/journal.
pone.0238126

Souza, J., Siqueira, J. V., Sales, M. H., Fonseca, A. V., Ribeiro, J. G., Numata, I., Cochrane, M. A., 
Barber, C. P., Roberts, D. A., & Barlow, J. (2013). Ten-year landsat classification of defores-
tation and forest degradation in the Brazilian Amazon. Remote Sensing, 5(11), 5493–5513. 
https://doi.org/10.3390/rs5115493

Suzán, G., Marcé, E., Giermakowski, J. T., Armién, B., Pascale, J., Mills, J., Ceballos, G., Gómez, 
A., Aguirre, A. A., Salazar-Bravo, J., Armién, A., Parmenter, R., & Yates, T. (2008). The effect 
of habitat fragmentation and species diversity loss on hantavirus prevalence in Panama. Annals 
of the New York Academy of Sciences, 1149(1), 80–83. https://doi.org/10.1196/annals.1428.063

The Internet of Animals. (n.d.). Retrieved December 6, 2021, from https://www.icarus.mpg.
de/28546/icarus- internet- of- animals

Tsantalidou, A., Parselia, E., Arvanitakis, G., Kyratzi, K., Gewehr, S., Vakali, A., & Kontoes, 
C. (2021). MAMOTH: An earth observational data-driven model for mosquitoes abundance 
prediction. Remote Sensing, 13(13), 2557. https://doi.org/10.3390/rs13132557

Tucker, C., Wilson, J., Mahoney, R., Anyamba, A., Linthicum, K., & Myers, M. (2002). Climatic 
and ecological context of the 1994-1996 Ebola outbreaks. Photogrammetric Engineering and 
Remote Sensing, 68.

Vector-borne diseases. (n.d.). Retrieved December 7, 2021, from https://www.who.int/news- room/
fact- sheets/detail/vector- borne- diseases

Wang, L.-F., & Eaton, B.  T. (2007). Bats, civets and the emergence of SARS. Wildlife and 
Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species 
Transmission, 315, 325–344. https://doi.org/10.1007/978- 3- 540- 70962- 6_13

Wu, X., Pang, Y., Luo, B., Wang, M., & Feng, J. (2019). Function of distress calls in least horse-
shoe bats: A field study using playback experiments. Acta Chiropterologica, 20(2), 455–464. 
https://doi.org/10.3161/15081109ACC2018.20.2.015

M. V. Mishra

https://doi.org/10.1038/s41559-020-01322-x
https://doi.org/10.1038/s41559-020-01322-x
https://doi.org/10.1371/journal.pone.0237590
https://doi.org/10.1016/j.ijid.2007.07.002
https://doi.org/10.1016/j.ijid.2007.07.002
https://doi.org/10.1371/journal.pone.0238126
https://doi.org/10.1371/journal.pone.0238126
https://doi.org/10.3390/rs5115493
https://doi.org/10.1196/annals.1428.063
https://www.icarus.mpg.de/28546/icarus-internet-of-animals
https://www.icarus.mpg.de/28546/icarus-internet-of-animals
https://doi.org/10.3390/rs13132557
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://doi.org/10.1007/978-3-540-70962-6_13
https://doi.org/10.3161/15081109ACC2018.20.2.015

	Chapter 21: Preventing Pandemics: Earth Observations for One Health
	Introduction
	Wildlife-Based Approaches
	Environment-Based Approaches
	Human-Based Approaches
	Discussion
	References




