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Abstract. This paper views the learning path recommendation task as
a sequential decision problem and considers Partially Observable Markov
Decision Process (POMDP) as an adequate approach. This work pro-
poses M-POMDP, a POMDP-based recommendation model that man-
ages learners’ memory strength, while limiting the increase in complexity
and data required. M-POMDP has been evaluated on two real datasets.
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1 Introduction

Recommender systems (RS) in education help learners reach their learning goals,
while keeping care of the recommendation adoption. The recommendation are
sequences of resources, that maximise the probability the goal is reached. Such
recommender systems are Learning Path Recommender Systems (LPRS). LPRS
can be viewed as a sequential decision problem and approached by a Markov
Decision Process (MDP). However, in the educational context some elements
remain uncertain such as the learners’ knowledge level or the motivation [2].
LPRS can thus be formulated as a POMDP. Although the learners’ memory
ability is an important factor, it is seldom considered in recommendation, gener-
ally at the cost of a high model complexity. We intend to manage it to promote
the review of resources and foster long-term retention, with a limited complexity
in a learning environment where no metadata about the resources is provided.

2 Related Work

Learning path recommender systems (LPRS) are designed to recommend a
sequence of educational resources that contributes to reach a predefined goal. This
goal can be the knowledge increase, minimization of learning time, etc. Associated
models generally exploit the learners’ past interactions with pedagogical resources.
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Several approaches have been proposed to perform learning path recommenda-
tions, especially Markov-based algorithms, which are known to be good at deal-
ing with this sequential problem. In the educational context, MDP and POMDP
have shown to be relevant [2]. POMDPs compute a policy for selecting sequential
actions when information may be unobserved. A POMDP consists of a tuple of at
least 7 elements, among which the set of states, the set of actions, the observation
probability, a transition and a reward function, beliefs, etc.

Memory is important in education and numerous studies in psychology have
been interested in modeling human memory. They model how memory decays
with time, through a forgetting curve or a half-life regression model [4]. [5] studies
several forgetting curve models that incorporate human expertise: psychological
and linguistic features, to predict the probability of word recall. One main limit
of these works is their complexity and the large datasets they require.

3 Learners’ Memory Strength in a POMDP-Based LPRS

We formulate LP recommendation as a POMDP when no content information
about resources is available. An action is the act of accessing a resource. The
set of actions is thus defined as the set of resources, as in [2]. A state s is
defined by two simple attributes: sLP represents the learner’s history learn-
ing path and sKL represents the estimated knowledge level of the learner. As
resources are not indexed, we propose to represent the learner’s knowledge
for each resource in sLP . To limit the complexity, we discretize the knowl-
edge level [3]. Given that action a is taken in state s, the observation model
p(z|s, a) indicates the probability of observing z. The reward function is defined
as R(s, a) = r(sLP , a)+r(sKL, a). The transition function T models the possible
effects of the actions on a state. T (s, a, s′) = P (s′|s, a) = P (s′

LP |s, a)·P (s′
KL|s, a)

manages both attributes of the state independently [3].
Given an learning path LP , two cases arise when estimating a learner’s knowl-

edge level for a resource. First, if the action points to an evaluation resource er
(quiz, exam), the knowledge level KL(LP, er) can be directly estimated from
the grade obtained by the learner (eval(LP, er)). Second, if the action does not
point to an evaluation resource, we assume that (eval(LP, er)) is an accurate
indicator of knowledge level of all the resources that have been studied before
er. So, the knowledge level of the current resource cr can be estimated from
the evaluation resource that follows cr. We propose to apply a discount fac-
tor λ, the longer distant cr is from er, the lower the knowledge level for cr.
We present the way we estimate the knowledge level on cr as: KL(LP, cr) =
round(λdist(LP,cr,n eval(LP,cr))eval(LP, n eval(LP, cr))) where n eval(LP, cr) is
the next evaluation resource that follows cr in LP and dist(LP, cr, n eval(LP, cr))
is the distance between cr and the corresponding next evaluation resource.

Managing Learners’ Memory Strength. We propose Memory-based
POMDP (M-POMDP) that manages the learners’ memory strength to foster
resource reviewing. M-POMDP is intended to limit the increase in complexity. M-
POMDP stores learners’ memory strength in the state, as an additional attribute,



286 Z. Zhang et al.

under the form of a discretized attribute [4]. The corresponding attribute sNLT

is set as an array, where each element represents the number of times the corre-
sponding resource in sLP has been studied by the learner. It is used to evaluate the
need of review of this resource. sNLT is deterministically incremented each time
the learner interacts with a resource. In line with the literature, when a learner has
studied a resource MAXNLT times, it does not need to be reviewed.

Reward Function. sNLT is a supplement to sKL and impacts the reward
function. We propose to redefine the reward function as R(s, a) = r(sLP , a) +
r(sKL, a) + r(sNLT , a) where r(sNLT , a) is the reward function that computes
the reward based on sNLT , defined as follows: if the NLT is increased, it gains a
unit of reward uNLT ; otherwise the reward is 0.

Transition Function. The transition function T (s, a, s′) is also impacted
by sNLT . It is evaluated by three independent sub-functions: T (s, a, s′) =
P (s′

LP |s, a) · P (s′
KL|s, a) · P (s′

NLT |s, a). Since NLT is deterministic,
P (s′

NLT |a, s) = 1, so the transition function remains unchanged.
This simple solution faces a limit: the time gap between two actions is not

considered. Even if it could be simply stored as the last access date of each
resource, this would be at the cost of a significant increase in the number of
states due to the high number of possible values for this new attribute.

4 Experiments

Experiments are conducted on two real-world datasets: EOLE and the EdNet
datasets. EOLE, described in [6], is a medium-sized dataset that contains 3,972
interactions from 104 learners on 39 resources. The median length of LP is 38
and the repetition rate is 0.30. About EdNet1, it is a large dataset with a LP
median length of 15 (twice lower than for EOLE) and a repetition rate of 0.22.

Evaluation Protocol. We propose to adopt a leaving one out cross validation.
The interactions of each test learner in the review period are split into two.
The first 50% form the elements which help to determine the initial state of
the POMDP, the rest is used to evaluate the recommended LP. For the EdNet
dataset, we select the last 50% of interactions of each learner as the test set.

Parameter Settings. The length of the history is set to the average length of
the learning path in datasets (N = 7). The number of knowledge levels is set to
K = 4 [3], MAXNLT = 3 and λ = 0.9. The SARSOP solver [1] is used.

Evaluation Metrics. We use the well-known precision measure. To fit the
sequential characteristics of our data, we redefine the “matched” resources from
the upper part of the equation by the Longest Common Subsequence (LCS)
between RLP and ground truth LP (GTLP). This updated precision is defined
as Precision = |LCS(RLP,GTLP )|

|RLP | . Besides, we use precision of SLLP measure

1 https://github.com/riiid/ednet.

https://github.com/riiid/ednet
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(Similar Learners Learning Path) [6], noted PrecSLLP . Based on [6], learners are
split in three groups: Good (GL), Average (AL) and Promising (PL) Learners.

Table 1. Evaluation of POMDP and M-POMDP for EOLE and EdNet datasets

Dataset POMDP M-POMDP

Measures Knowledge level Knowledge level

ALL GL AL PL ALL GL AL PL

EOLE Prec 0.34 0.41 0.36 0.24 0.44 0.59 0.43 0.30

PrecSLLP 0.26 0.30 0.27 0.21 0.33 0.40 0.35 0.22

EdNet Prec 0.20 0.14 0.31 0.15 0.29 0.27 0.38 0.23

PrecSLLP 0.07 0.1 0.11 0.02 0.10 0.09 0.15 0.05

Table 1 presents the values of Prec and PrecSLLP . Considering the baseline
POMDP, Prec decreases with the level of the group, which was expected. This
confirms that POMDP recommends PL paths that are closer to those adopted
by learners with a higher level, which is confirmed by PrecSLLP . Considering
M-POMDP on the entire set of learners Prec and PrecSLLP are improved by
similar rates and the quality of the recommendations if also increased for each
group of learners. This confirms that the way M-POMDP manages learners’
memory strength seems to be adequate.

We can see that the values on EdNet are lower than for EOLE, explained
by the number of resources that is twice larger on EdNet; the average length of
learners’ learning path that is 3 times smaller than in EOLE. For M-POMDP,
the increase on Prec and PrecSLLP for the entire set of learners are similar.
Considering each group of learners, Prec is improved significantly for each group.
PrecSLLP remains stable with M-POMDP.

From these experiments, we can conclude that the simple way M-POMDP to
manages learners’ memory strength is adequate and fits medium size datasets.

5 Conclusion and Perspectives

This work focused on the learning path recommendation task through POMDP.
We have designed a model that manage learners’ memory strength with a limited
increase in complexity, validated experimentally. As a future work, we intend
to incorporate additional information in the model, whether they are teacher
expertise or from data.
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