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Preface

The 23rd International Conference on Artificial Intelligence in Education (AIED 2022)
was hosted by Durham University, UK. It was organized in a hybrid face-to-face and
online format. This allowed participants to meet in person after two years of running
AIED online only, which was a welcome change. However, as the world was only just
emerging from the COVID-19 pandemic and travel for some attendees was still a
challenge, online participation was also supported. AIED 2022 was the next in a
longstanding series of annual international conferences for the presentation of
high-quality research on intelligent systems and the cognitive sciences for the
improvement and advancement of education. It was hosted by the prestigious Inter-
national Artificial Intelligence in Education Society, a global association of researchers
and academics who specialize in the many fields that comprise AIED, including
computer science, learning sciences, educational data mining, game design, psychol-
ogy, sociology, linguistics, and many others.

The theme for the AIED 2022 conference was “AI in Education: Bridging the gap
between academia, business, and non-profit in preparing future-proof generations
towards ubiquitous AI.” The conference hoped to stimulate discussion on how AI
shapes and can shape education for all sectors, how to advance the science and
engineering of intelligent interactive learning systems, and how to promote broad
adoption. Engaging with the various stakeholders – researchers, educational practi-
tioners, businesses, policy makers, as well as teachers and students – the conference set
a wider agenda on how novel research ideas can meet practical needs to build effective
intelligent human-technology ecosystems that support learning.

AIED 2022 attracted broad participation. We received 243 submissions for the main
program, of which 197 were submitted as full papers, 37 were submitted as short
papers, and nine were submitted as extended abstracts. Of the full paper submissions,
40 were accepted as full papers and another 40 were accepted as short papers. The
acceptance rate for both full papers and short papers was thus 20%.

Beyond paper presentations and keynotes, the conference also included a Doctoral
Consortium Track, an Industry and Innovation Track, Interactive Events,
Posters/Late-Breaking Results, and a Practitioner Track. The submissions for all these
tracks underwent a rigorous peer-review process. Each submission was reviewed by at
least two members of the AIED community, assigned by the corresponding track
organizers who then took the final decision about acceptance. The conference also
included keynotes, panels, and workshops and tutorials.

For making AIED 2022 possible, we thank the AIED 2022 Organizing Committee,
the hundreds of Program Committee members, the Senior Program Committee
members, the AIED Proceedings Chair Irene-Angelica Chounta, and our Program



Chair assistant Jonathan DL. Casano. They all gave of their time and expertise gen-
erously and helped with shaping a stimulating AIED 2022 conference. We are extre-
mely grateful to everyone!

July 2022 Maria Mercedes (Didith) T. Rodrigo
Noboru Matsuda

Alexandra I. Cristea
Vania Dimitrova
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Invited Keynotes



The Role of AI and Gamification in the Future
of Healthcare

Lucia Pannese

imaginary, Milano, Italy
lucia.pannese@i-maginary.it

Abstract. In this keynote, Lucia Pannese shows how AI and Gamification
support medical practices and the impact that has on several health and care
interventions. Presenting a series of different examples about digital approaches
to health and care, this talk looks at the future of healthcare and to how learning
and development needs will be affected if AI and machine learning support
decision making and behavioural change.
The talk will start with a focus on the pervasiveness of gamification in

everyday life, something that usually people do not even recognize, given the
narrow understanding currently attributed to this life skill. After sharing defi-
nitions, understanding and some examples of gamification, game-based
approaches and enabling technologies for health and care, Lucia, who is a
mathematician by profession, will point at a series of critical issues that are too
often ignored in practical applications if machine learning and AI are applied in
these contexts. She will provocatively introduce some concepts of usefulness,
quantity of data, bias, measurement, clinical responsibility, clinical observation,
instability of models to show how complex and risky it is to produce an AI
based system.
This talk aims to trigger reflection and critical analysis at a time when

everyone is talking about AI and the danger of this extremely complex concept
just becoming a “buzzword” to attract attention without consideration of whe-
ther these solutions are genuinely innovative and useful.



Learning Engineering: Looking Back, Looking
Forward

Kumar Garg

Schmidt Futures, New York, USA
kgarg@schmidtfutures.com

Abstract. In this fireside chat, Kumar Garg will discuss some of the biggest
wins in learning engineering to date as well as discuss opportunities like
addressing the lack of large n studies. He will also outline some of Schmidt
Futures’ recent efforts including a new Learning Engineering Virtual Institute.
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How to Give Imperfect Automated
Guidance to Learners: A Case-Study

in Workplace Learning

Jacob Whitehill(B) and Amitai Erfanian

Worcester Polytechnic Institute, Worcester, MA, USA
{jrwhitehill,aberfanian}@wpi.edu

Abstract. In a workplace learning scenario in which workers in a sim-
ulated Material Recovery Facility learn to recognize and manipulate
objects on conveyer belts, we studied how imperfect guidance from a
machine learning (ML) assistant may impact learners’ experience and
behaviors. Specifically, in a randomized experiment (n = 181 partici-
pants from Amazon MTurk) we varied the assistant’s False Positive (FP)
and False Negative (FN) rates in detecting non-recyclable objects and
assessed the impact on learners’ performance, learning, and trust. We
also explored a soft highlighting [8] condition, whereby the assistant pro-
vides fine-grained information about how confident it is. We found evi-
dence that the FP/FN trade-off can impact learners’ performance when
working cooperatively with the assistant, and that the soft highlighting
condition may generate less trust from learners compared to the other
conditions. There was tentative evidence that workers’ behaviors were
impacted by the FP/FN trade-off of their assigned experimental con-
dition even after the ML assistant was removed. Finally, in a follow-up
study (n = 27) we found evidence that learners modulate their behaviors
based on the fine-grained confidence values conveyed by the assistant.

Keywords: Perceptual learning · Simulation-based learning ·
AI-based feedback · Material recovery facility

1 Introduction

As the field of machine learning (ML) continues to grow and proliferate into
daily life, the number and diversity of subjects in which AI systems for edu-
cation (AIEd) can provide learners with automated help will expand as well.
Whereas classical AI methods such as expert systems were instrumental in cre-
ating intelligent tutoring systems (ITS) in highly structured domains such as
computer programming and high school mathematics in the 1980s–90s [10], ML
has opened new possibilities to provide scaffolding, guidance, and feedback in
more flexible and open-ended domains such as medicine [14], sign language [4],
teacher training [1,15,17], waste management [11], and many more. It also has
the potential to augment standard ITS with new sensors that can better estimate
students’ emotions and thereby provide a more tailored learning experience [7].
c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 3–14, 2022.
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In AIEd systems based on classical AI techniques, the automated feedback
strategies are either manually programmed or inferred systematically from the
rules of the subject matter (e.g., laws of algebra). In contrast, ML provides more
flexibility because it can infer the correctness of a student’s answer, and suggest
helpful learning strategies, by harnessing swaths of both real and simulated data
from previous learners – all without the need for manually crafted heuristics. ML,
as the backbone of modern AIEd systems, has yielded powerful new feedback
mechanisms in intelligent learning platforms, e.g., automated testing methods
for novice programmers building interactive computer programs [13], and class-
room observation systems that can give teachers feedback about the quality of
their teaching based on audio [15] or video [1] of classroom interactions. The
reach of AIEd can thereby expand from traditional classroom-oriented subject
matter into more diverse fields, including the space of workplace learning where
human workers may acquire not just cognitive but also perceptual and motor
skills [16] to perform their jobs. This can manifest, for example, in an ITS or
perhaps a collaborative “assistant” that provides visual cues about which types
of objects in an airport screener are dangerous [2], or by suggesting a Python
implementation to a function whose specification was entered by the user [3].

ML in AIEd – Useful but Imperfect: Along with the great potential of
ML to expand the impact of AIEd come new challenges. One of the most severe
is that, since the system’s behavior is learned statistically so as to generalize
to new scenarios (e.g., to new students with answers similar, but not identical,
to those in the training set), its feedback is no longer guaranteed to be correct
– sometimes the AIEd system may make mistakes. Concrete instances of these
mistakes include telling a student that their solution to a computer programming
task is incorrect when in fact it is correct; suggesting to them a solution path
to a math problem that is either wrong or unnecessarily complicated; failing to
recognize the hand gesture of a student learning sign language; etc. Mistakes on
the part of the AIEd system may directly inhibit students’ learning by misguiding
and confusing them. Due to bidirectional influence of learning and trust between
a student and their teacher [12], such mistakes can also indirectly and negatively
impact learning if the student loses trust in the AI’s ability to help them. Given
an ML-based AIEd system’s fallibility, it is important to consider how to set the
learners’ expectations of and structure their interactions with the system so as
to optimize their learning.

How to Present Feedback on Binary Decisions: When developing ML-
based AIEd systems, the question arises of (1) whether, on some binary decision,
the machine should tend to err with more false positives (FP) or more false
negatives (FN). Binary decisions are ubiquitous in intelligent learning platforms,
e.g., judging whether a student’s hand-written solution in a mathematics ITS is
correct/correct, showing novice teachers a moment in a classroom observation
video when a teacher seems to speak angrily (or not) to their student, or flagging
an object as dangerous/non-dangerous in an augmented reality display to train
airport security officers. False negatives (misses) can result in missed learning
opportunities and overly optimistic self-assessments of learning, whereas false
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positives can confuse the student and damage trust in the AI. Related to the
optimum FP/FN trade-off is the question of (2) whether and how to provide to
the learner information about how confident the machine is in its own judgment;
might this information help the learner to interpret the feedback more judiciously
and preserve trust?

Case Study on Material Recovery Facilities: In this paper, we investigate
these two questions within a workplace learning case-study on material recovery
facilities (MRFs), i.e., recycling plants. MRFs sort objects by their materials so
that they can be bailed and reprocessed, and they form an important part of
waste management. MRF workers assist in this process by manually picking out
items that were incorrectly sorted by machines, as well as removing objects that
are dangerous. MRF work is arduous, with long shifts (often 10+ hours) and
physically demanding conditions, and can be dangerous (e.g., due to syringes
and other sharp objects on the belts). Because of high employee turnover, new
MRF workers must frequently be trained. Due to continually new kinds of man-
ufactured products that arrive at MRFs, workers must learn to recognize and
physically manipulate objects with different materials and appearance. Helping
new MRF workers to correctly recognize objects could thus boost the efficiency
of the MRF, improve waste management, and improve safety for workers (Fig. 1).

Fig. 1. Left: A material recovery facility (MRF) in which workers sort through items
on conveyer belts. Center: The simulated MRF [11] used in our experiment on worker
training with automated guidance. Right: Examples of soft highlighting [8] by the
machine learning assistant to express its confidence to the learner about whether each
highlighted object should be removed from the conveyer belts. (Color figure online)

Research Contributions: The central research question that we examine is:
How does the automated guidance provided by a machine learning
assistant for an object detection task (recyclable vs. non-recyclable
objects on a MRF conveyer belt) affect learners’ performance, learn-
ing, trust, and behavior? Aligned with our goal of examining workplace learn-
ing, we recruit our research participants (n = 181) from Amazon Mechanical
Turk, a marketplace for online work. By varying the system’s detection thresh-
old (higher FP/lower FN; lower FP/higher FN; or a threshold-free “soft high-
lighting” [8] approach) while keeping its overall discriminability constant, we can
explore how the learners in this task may respond differently to the information
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they receive in terms of their willingness to complete the task, their ability to
perform the task when guidance is available, and the degree to which they learn
to do the task independently. Further, we explore how much the learners’ trust
the system. In a follow-up study (n = 27), we also explored, for just the soft
highlighting condition, whether participants use the confidence information con-
veyed by the highlight intensity to modulate their decisions about which objects
to move. Our paper is, to our knowledge, one of the first to explore how imperfect
guidance from an AIEd system can affect learners’ experiences.

2 Related Work

Imperfect AI and Trust: The past few years have seen growing interest in
the ML, human-computer interaction, as well as the AIEd communities, in how
humans trust AI and how they can work together cooperatively. Kocielnik et
al. [9] investigated how the FP/FN trade-off affected users’ perceptions of the
machine’s accuracy as well as their acceptance of a ML-based tool that detects
scheduling requests from free-text emails. They found that users had more favor-
able impressions of the system when the detection threshold was adjusted to give
a lower FN rate in exchange for a higher FP rate. Hsu et al. [5] trained an auto-
matic auto-grader of students’ short-answer responses about computer science
topics; they then investigated students’ perceptions of the accuracy and fairness
of the system. Further, they explored how students’ (mis-)understanding of how
the system worked internally could affect the answers that students constructed
and submitted. Finally, in a research study toward increasing learners’ trust in
AI-based feedback systems, Hossain et al. [4] studied how experts perceive the
feedback generated from an automatic explainable hand-gesture feedback system
for learners of American Sign Language.

Soft Highlighting to Convey the Machine’s Confidence: In research
within the intersection of data visualization, ML, and human-computer inter-
action, Kneusel et al. [8] explored whether human workers benefit more from a
ML-based object detector on visual perception tasks, such as examining satel-
lite imagery for specific objects, when they have access to the confidence of the
machine’s predictions. They devised a “soft highlighting” mechanism, whereby
the machine’s detections were colored with an intensity proportional to the con-
fidence of the predictions, and found that human workers performed better on
the task with “soft” highlights than with binary (hard) object predictions.

MRF Training System: Our work builds on a prior workplace learning study
by Kyriacou et al. [11], who created a MRF simulator to compare different train-
ing strategies for human workers who are learning to sort different objects on
the conveyer belts. Similarly to our work, they examined how different accuracy
characteristics of a machine learning assistant can affect learners’ performance.
In contrast to their work, we hold the overall discriminability of the assistant
constant and manipulate the FP/FN trade-off in isolation. Moreover, we intro-
duce a new soft-highlighting condition and explore how the learners may benefit
from and mimic the behaviors exhibited by the assistant.
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3 Experiment I

We conducted a randomized experiment in which participants learned to rec-
ognize and manipulate garbage objects of different types in a simulated MRF.
The simulator we used was based on that of [11] but extended to support a
soft highlighting condition (described above). During the training rounds, the
participants received automated guidance from a ML assistant about whether
each object is recyclable. This can potentially help them to learn to recognize
the object types more quickly and thereby perform better on the task.

3.1 Participants

The participants (n = 181) in our study were adults (≥18 years) on Amazon
Mechanical Turk who had earned a “Masters” qualification.

3.2 Experimental Conditions

At the outset of the experiment, each participant was randomly assigned to one
of three different conditions: (1) FP = 0/FN = 0.11, i.e., the machine learn-
ing assistant will correctly highlight 89% of the non-recyclable objects and miss
11%; it will never falsely flag a recyclable object as non-recyclable; (2) FP =
0.11/FN = 0; the assistant never misses a non-recyclable object but occasion-
ally falsely flags recyclable object as non-recyclable; and (3) Soft highlighting:
every single object on the conveyer belt is highlighted, but the intensity of the
highlight corresponds to the confidence of the machine’s prediction. Importantly,
the overall discriminability of the object detector used for automated guidance
was held constant across all three conditions. The particular FP/FN values were
chosen based on previous work [11] with this simulator, which suggested that
the discriminability of the ML assistant needs to very high in order to be useful.

3.3 MRF Simulator

The simulator contains three conveyer belts, each of which has a different speed
and moves a never-ending stream of objects from left to right. In the task, the
goal is to remove only and all the non-recyclable items (syringes, broken glass,
coat-hangers, batteries, etc.) from the conveyer belts into a trash-can (a green
bucket shown at the top of the screen).

Machine Learning Assistant: During the training rounds (see Sect. 3.4), the
learner is aided by a simulated machine learning assistant that detects (with
imperfect accuracy) whether each object is recyclable or not. Across all three
experimental conditions, the discriminability of the assistant is held constant at
0.945. Specifically, we quantified discriminability as the widely used Area Under
the Receiver Operating Characteristics Curve (AUROC) metric. The AUROC
is equivalent to the probability, in a 2-alternative forced-choice task, that the
detector can correctly recognize the non-recyclable object from a random pair
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of objects (one recyclable, one not). In the two experimental conditions corre-
sponding to FP = 0/FN = 0.11 and FP = 0.11/FN = 0, a random number
generator determines whether each object is highlighted, depending on the FP
and FN rates and on whether the object is recyclable. In the third condition
corresponding to soft highlighting, no threshold is used, and instead the inten-
sity of the red color is proportional to a real-valued confidence score C for that
object in the interval [0, 1]. In particular, if the object is recyclable, then C is
drawn from a Beta distribution, i.e., C ∼ Beta(2, 4.675); if it is non-recyclable,
C ∼ Beta(4.675, 2). Under this generative process, non-recyclable objects tend
to have higher C values and thus are highlighted with a brighter red box. More-
over, the parameters for the probability distributions were chosen so that the
discriminability of the assistant is exactly 0.945 (i.e., P (Ca > Cb) = 0.945 where
Ca and Cb are the confidence values of a random non-recyclable and recyclable
object, respectively).

Scoring: In the pre-test, post-test, and each training round, the user’s score
starts at 100 and decreases by 1 whenever (a) the user misses a non-recyclable
object and it moves off the screen to the right; or (b) the user incorrectly moves
a recyclable item from the belt into the trash-can. Hence, the maximum score
in each round is 100, and it can decrease to 0 (or even below) if the participant
makes many mistakes. The training and testing rounds were essentially the same,
except that (a) the pre-test was shorter (1 min) than the other rounds (3 min),
and (b) the ML assistant was available only during the training rounds.

Good performance in the task requires quick and accurate visual recognition
of the objects and manipulation of the objects (using the mouse) from the belt
to the trash-can. There is also some strategy that can be beneficial to task
performance, e.g., prioritizing one belt over another due to the different speeds,
moving objects slightly so as to reduce occlusion, etc. Participants received $1.50
for completing the task; to incentivize good performance, they could also earn a
reward that increased linearly with their scores up to a maximum of $2.50.

3.4 Procedures

The experiment consisted of (1) a study overview; (2) task instructions; (3) pre-
test (1 min), during which no help from the ML assistant was provided; (4) two
rounds of training (3 min each), during which the machine learning assistant
provided automated guidance; (4) post-test (3 min), during which no help from
the machine learning assistant was provided; and (5) questionnaire about trust
in the system. All in all, the study takes about 12–15 min to complete.

3.5 Task Instructions

The instructions to the learners describe and show examples of the objects that
they should move from the belts into the green trash bucket. In addition, the
instructions explain that the machine learning assistant automatically flags cer-
tain objects as likely non-recyclable using a red rectangle. To set the users’ expec-
tations and promote effective usage of the assistant, the instructions explain:
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“The object detector is imperfect. You may find it useful to you as you play the
game as a way of focusing your attention on the correct objects, but you should
not rely on it completely. In particular, sometimes the detector will miss non-
recyclable objects and therefore not flag it. It may also make ‘false alarms’ and
highlight a recyclable object.”

3.6 Trust Questionnaire

To assess participants’ trust in the AI system after completing the task, we asked
them to complete a validated questionnaire on trust in technology [6], which con-
sists of 12 Likert items (e.g., strongly disagree to strongly agree with: “the system
is deceptive”) about the users’ impressions of the following attributes: deceptive,
underhanded, suspicious, wary, harm, confident, security, integrity, dependable,
reliable, trust, and familiar (some of these items are negatively scored). The
maximum score (most trusting) is 84 and minimum score is 12.

3.7 Measures

The simulator automatically records the participant’s score after every pre-test,
post-test, and training round. The scores on the pre-test tend to be higher than
in the other phases of the experiment since the pre-test is shorter (only 1 min),
and hence the participants have less time to make mistakes. The simulator also
records the responses to the trust questionnaire.

3.8 Results

A total of n = 181 total participants completed the task; in the FP = 0/FN = 0.11,
FP = 0.11/FN = 0, and soft-highlighting conditions, their numbers were 56, 60,
and 65, respectively. These numbers are not stat. sig. different (χ2(2) = 0.67403,
p = 0.7139) from a uniform distribution, and hence we do not conclude that any
condition caused participants to drop out more often than another.

Figure 2 (left) shows the mean score (along with its standard error) across the
three rounds separately for each experimental condition. The difference in mean
pre-test scores across condition was not statistically significant (F (2) = 0.906,
p = 0.406). As a general trend, participants in the FP = 0/FN = 0.11 condi-
tion tended to receive higher scores, followed by those in the soft highlighting
condition, and then the FP = 0.11/FN = 0 condition.

Figure 2 (right) shows the mean trust score (and s.e.) for each condition.

Task Performance with Automated Guidance We used a linear mixed-
effect model (repeated-measures design with subject id as the random effect
and pre-test score as a covariate) to analyze the scores during the training
rounds 1 & 2 when workers had access to the assistant. We found that: (1)
scores were stat. sig. higher when participants received guidance from the
assistant compared to on the post-test, when they did not receive guidance
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Fig. 2. Left: Mean scores (and error bars for standard errors, shifted slightly for read-
ability) for the different phases of the study, split by condition. Note that, as the
pre-test is only 1 min and participants have less time to make mistakes, the scores tend
to be higher. Right: Mean (and s.e.) trust questionnaire results, split by condition.

(t(360) = 3.325, p < 0.001); and (2) participants in the FP = 0.11/FN = 0
condition received stat. sig. lower scores compared to those in the other con-
ditions (t(178) = −1.992, p = 0.048). The soft-highlighting condition was also
associated with a lower score, but the effect was not stat. sig. (t(178) = −1.341,
p = 0.1816).

In terms of participants’ actions, we found a stat. sig. difference in the number
of non-recyclable objects moved into the trash-can (F (2) = 6.782, p = 0.001),
but not in the number of recyclable objects (F (2) = 1.301, p = 0.275), that
depends on the experimental condition. In particular, participants in the FP =
0.11/FN = 0 condition moved more non-recyclable objects (an average of 67.3
combined over rounds 2 & 3) compared to those in the FP = 0/FN = 0.11
(average of 59.9) or soft highlighting (58.1) conditions.

Learning to Perform the Task Without Guidance. We used ANOVA
(with pre-test score as a covariate) to assess whether participants’ scores on
the post-test differed with their experimental conditions. The difference was not
stat. sig. (F (2) = 0.62, p = 0.539). In terms of participants’ behaviors, we found a
borderline effect in the number of trashed non-recyclable objects (F (2) = 2.734,
p = 0.0677): the average number of such objects was higher for participants
in the FP = 0.11/FN = 0 condition (32.4 objects) and soft highlighting (31.7)
conditions compared to those in the FP = 0/FN = 0.11 (27.6) condition.

Trust. With an ANOVA, we found that the trust score calculated from the
questionnaire responses was stat. sig. related to the experimental condition
F (2) = 4.173, p = 0.0177). In particular, the soft-highlighting condition was
stat. sig. negatively associated with trust (t = −2.778, p = 0.006).
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3.9 Discussion

Workers benefited from the guidance of the ML assistant, as evidenced by their
higher scores during training rounds compared to the post-test. The fact that,
during the training rounds, the mean scores in the FP = 0/FN = 0.11 con-
dition were less than 82 (which, based on how the simulator was constructed,
is the expected value if the participants perfectly followed the assistant’s guid-
ance) could indicate that participants were reluctant to accept all the assistant’s
advice, or that doing so was too difficult (possibly due to the fast pace of the
simulation). Also, the fact that mean scores in the FP = 0.11/FN = 0 condition
during training rounds were greater than 0 (which, due to the higher number
of recyclable compared to non-recyclable objects, was the expected value for
perfectly following the assistant in this condition), but were lower during the
post-test than during training rounds, suggests that participants in this con-
dition did use the MLA, but they did not follow its guidance blindly. In our
experiment, a higher False Positive rate of the assistant was associated with
lower performance. This contrasts with the result of [9], thus suggesting that the
optimal FP/FN trade-off is likely task-dependent based on the cost of each kind
of mistake.

There was no stat. sig. impact of condition on learning. However, there was
a borderline effect of condition on the number of non-recyclable objects that
were trashed during the post-test. This result is encouraging, especially given
the short study duration, and suggests that the training effect of the MLA may
linger in users’ behaviors even after the MLA has been removed.

The soft highlighting condition was advantageous neither in terms of task
performance during training rounds nor in terms of learning. This contrasts with
[8], who found that participants could perceive more effectively when provided
with soft highlights rather than hard detections. Learners indicated that they
trusted the soft highlighting condition the least among the three assistant types.

4 Experiment II

Soft highlighting gives the learner information about the machine’s confidence
in its guidance. Does the learner’s likelihood of picking an object and moving
it to the trash-can increase when the object is highlighted with higher confi-
dence? To explore this, we conducted a follow-up experiment (n = 27 partici-
pants on Mechanical Turk) consisting of just the soft highlighting condition. We
assessed whether the probability distribution P (pick | c, isRecyclable) is equal
to P (pick | isRecyclable), where pick indicates whether or not the participant
picked the object; C is the confidence score of the object; and isRecyclable is
either recyclable or non-recyclable. If the distributions are equal (for both values
of isRecyclable), then by definition, the participants’ decisions to pick or not pick
the objects is independent of the confidence scores. From Bayes’ rule, we obtain:

P (pick | c, isRecyclable) =
P (c | pick, isRecyclable)P (pick | isRecyclable)

P (c | isRecyclable)
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Hence, for either value of isRecyclable, we can evaluate the hypothesis
that the decision to pick/not pick is independent of c by testing whether
P (c | pick,isRecyclable)

P (c | isRecyclable) equals 1 for all values of C. The numerator can be esti-
mated from the log data of participants’ actions in the MRF simulator about
the confidence scores of the objects they picked and whether they were recy-
clable or not; the denominator is given by the Beta distributions as described in
Sect. 3.3.

4.1 Results

To estimate P (c | pick, isRecyclable) for isRecyclable = false and pick = true, we
computed a histogram over the confidence scores of the picked objects using a
bin width of 0.1 over the interval [0, 1]. We were primarily interested in whether
there was a population-level association between picking behaviors and the con-
fidence scores, and hence we computed a histogram over the events of all n = 27
participants, summed over both training rounds, separately for the recyclable
and non-recyclable objects. We then computed the corresponding histogram
based on the generative process of the confidence scores themselves using the
appropriate Beta distribution (see Sect. 3.3). A χ2-test showed a stat. sig. dif-
ference between the distributions, both for isRecyclable = true (χ2(9) = 28.30,
p < 0.001) and for isRecyclable = false (χ2(9) = 38.33, p < 0.001). Also, Fig. 3
shows the probability ratio P (c | pick,isRecyclable)

P (c | isRecyclable) both for the recyclable (left)
and non-recyclable (right) cases. Despite some outliers that are partly due to
small numbers of observations in the outer-most histogram bins, participants’
likelihood of picking an object tends to increase with larger C.

Fig. 3. Left: Relative probability increase of picking up and disposing of a recyclable
object (left) or a non-recyclable object (right), given the assistant’s confidence C.

4.2 Discussion

We found stat. sig. support for the hypothesis that learners do take into account
the assistant’s fine-grained confidence, as conveyed by the soft highlights, when
deciding whether or not to pick or an object. This effect was observed for both
the recyclable and the non-recyclable objects, indicating that the influence of the
confidence scores goes beyond simple distinctions in the object’s recyclability.
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From the perspective of the designer of an AIEd system to provide better guid-
ance and feedback to the user, this result is encouraging as it shows an example
of when the confidence information is perceived by and acted on by the learner.

5 Conclusions

We conducted two experiments (n = 181, n = 27) on a workplace learning task
in which participants learned to recognize and manipulate objects in a simulated
MRF. We varied the FP/FN trade-off of the ML assistant that automatically,
but imperfectly, highlighted objects that were deemed to be non-recyclable and
thus should be moved to the trash-can. Moreover, we explored whether and how
soft highlighting, rather than binary thresholding, of the guidance may impact
participants’ performance, learning, and trust. Our results indicate that (1) the
FP/FN trade-off can affect learners’ cooperative task performance with the assis-
tant; (2) there was tentative evidence that the assigned experimental condition
affected learners’ behaviors – in terms of how many non-recyclable objects were
trashed – even after the assistant was removed; and (3) soft highlighting impacted
learners’ trust as well as their behaviors in the task.

Limitations: The experiments we conducted were short (about 12–15 min).
Moreover, the learning task we examined was about perception and motor con-
trol in a fast-paced environment. It is possible that different trends would be
found for different learning tasks (e.g., cognitive rather than perceptual).

5.1 Future Research

Better Framing of the AI Guidance/Feedback: Our results suggest that
learners trust the extra confidence information provided by the soft highlighting
condition less than a simpler binary guidance mechanism. In order to be both
more trustworthy and effective, the learners might need more thorough framing,
and possibly even some form of “pre-training”, about how the system works,
what its intentions are, and how they ought to make use of it.

Explaining the Optimal FP/FN Trade-Off: Given the contrasting results
of our study compared to [9], it would be interesting to change the scoring system
so that different mistakes (FP versus FN) resulted in different penalties, and to
investigate whether this affected the optimal FP/FN trade-off.

Acknowledgements. This research was supported by the NSF National AI Institute
for Student-AI Teaming (iSAT) under grant DRL #2019805. The opinions expressed
are those of the authors and do not represent views of the NSF. This research was also
supported by NSF award #1928506 (FW-HTF-RL).



14 J. Whitehill and A. Erfanian

References

1. Ahuja, K., et al.: EduSense: practical classroom sensing at scale. In: Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 3,
no. 3, pp. 1–26 (2019)

2. Akcay, S., Breckon, T.: Towards automatic threat detection: a survey of advances of
deep learning within X-ray security imaging. Pattern Recogn. 122, 108245 (2022)

3. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

4. Hossain, S., Kamzin, A., Amperayani, V.N.S.A., Paudyal, P., Banerjee, A., Gupta,
S.K.S.: Engendering trust in automated feedback: a two step comparison of feed-
backs in gesture based learning. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin,
R., Dimitrova, V. (eds.) AIED 2021. LNCS (LNAI), vol. 12748, pp. 190–202.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78292-4 16

5. Hsu, S., Li, T.W., Zhang, Z., Fowler, M., Zilles, C., Karahalios, K.: Attitudes
surrounding an imperfect AI autograder. In: CHI Conference on Human Factors
in Computing Systems (2021)

6. Jian, J.Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined
scale of trust in automated systems. Int. J. Cogn. Ergon. 4, 53–71 (2000)

7. Karumbaiah, S., Lizarralde, R., Allessio, D., Woolf, B., Arroyo, I., Wixon, N.:
Addressing student behavior and affect with empathy and growth mindset. Inter-
national Educational Data Mining Society (2017)

8. Kneusel, R.T., Mozer, M.C.: Improving human-machine cooperative visual search
with soft highlighting. ACM Trans. Appl. Percept. (TAP) 15, 1–21 (2017)

9. Kocielnik, R., Amershi, S., Bennett, P.N.: Will you accept an imperfect AI? Explor-
ing designs for adjusting end-user expectations of AI systems. In: CHI Conference
on Human Factors in Computing Systems (2019)

10. Kulik, J.A., Fletcher, J.: Effectiveness of intelligent tutoring systems: a meta-
analytic review. Rev. Educ. Res. 86(1), 42–78 (2016)

11. Kyriacou, H., Ramakrishnan, A., Whitehill, J.: Learning to work in a materials
recovery facility: can humans and machines learn from each other? In: Learning
Analytics and Knowledge (LAK) Conference, pp. 456–461 (2021)

12. Landrum, A.R., Eaves, B.S., Jr., Shafto, P.: Learning to trust and trusting to learn:
a theoretical framework. Trends Cogn. Sci. 19(3), 109–111 (2015)

13. Nie, A., Brunskill, E., Piech, C.: Play to grade: testing coding games as classifying
Markov decision process. In: Neural Information Processing Systems, vol. 34 (2021)

14. Randhawa, G.K., Jackson, M.: The role of artificial intelligence in learning and
professional development for healthcare professionals. In: Healthcare Management
Forum, vol. 33, pp. 19–24. SAGE Publications, Los Angeles (2020)
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Abstract. In this work, we evaluate the risk of early dropout in under-
graduate studies using causal inference methods, and focusing on groups
of students who have a relatively higher dropout risk. We use a large
dataset consisting of undergraduates admitted to multiple study pro-
grams at eight faculties/schools of our university. Using data available at
enrollment time, we develop Machine Learning (ML) methods to predict
university dropout and underperformance, which show an AUC of 0.70
and 0.74 for each risk respectively. Among important drivers of dropout
over which the first-year students have some control, we find that first
year workload (i.e., the number of credits taken) is a key one, and we
mainly focus on it. We determine the effect of taking a relatively lighter
workload in the first year on dropout risk using causal inference methods:
Propensity Score Matching (PSM), Inverse Propensity score Weighting
(IPW), Augmented Inverse Propensity Weighted (AIPW), and Doubly
Robust Orthogonal Random Forest (DROrthoForest). Our results show
that a reduction in workload reduces dropout risk.

Keywords: University dropout · Machine learning · Causal inference ·
Average treatment effect

1 Introduction

Research on actionable indicators that can lead to interventions to reduce
dropout has received increased attention in the last decade, especially in the
Learning Analytics (LA) field [18,29,31,32,34]. These indicators can help pro-
vide effective prevention strategies and personalized intervention actions [17,27].
Machine Learning (ML) methods, which identify patterns and associations
between input variables and the predicted target [25], have been shown to be
effective at this predictive task in many LA studies [1,4,10,15,23,26].

Dropout is a serious problem especially in higher education, leading to social
and financial losses impacting students, institutions, and society [7]. In particu-
lar, the early identification of vulnerable students who are prone to fail or drop
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their courses is necessary to improve learning and prevent them from quitting
and failing their studies [20].

We remark that among students who discontinue their studies, some sub-
groups are over-represented, something that needs to be considered when design-
ing dropout-reduction interventions. For example, in the UK, older students at
point of entry (over 21 years) are more likely to drop out after the first year com-
pared to younger students who enter university directly from high school [17],
something that we also observe in our data. In the US, graduation rates among
ethnic minority university students are lower than among White students [30]. Dis-
parities in dropout risk have been studied in previous work [11,13,14,16]. Recent
studies [8,21,22,24] look at the influence on student’s performance and dropout of
factors such as having a scholarship or being employed. In our work, we consider
the increased dropout risk of older students and of students who do not enter uni-
versity immediately after high school, and we study the effects of some features
such as age and workload (i.e., number of credits taken on the first year).

Research Contribution. In this work, we use causal inference methods to study
the effects of several features on the risk of early dropout in undergraduates
students. We consider students enrolled between 2009 and 2018 in eight centers
at our university. The average dropout rate we observe among these students
is 15.3%, which is lower than the European average (36%) [35]. The originality
of our contribution relies on its focus on students who have higher risk, the
combination of features, the use of causal inference methods, and the size and
scope of our dataset.

Specifically, we predict the risks of early dropout (i.e., not enrolling on the
second year) and underperformance (failing to pass two or more subjects in the
first year in the regular exams1) using Machine Learning (ML) methods. ML
models are created using features available at the time of enrolment and the
predictive performance of the models is evaluated in terms of AUC-ROC (Area
Under ROC Curve). For the sake of space, we focus our exposition on dropout.

Among features available at the time of enrolment, we obtain the most impor-
tant features for predicting dropout in our setting, which are the workload (num-
ber of credits taken) in the first year, admission grade, age, and study access
type. Focusing on the workload, which is the most important feature and one over
which first-year students have some level of control (only a minimum number of
credits is established), we compute its effect on dropout risk in different age and
study access type groups. We use causal inference methods to test the effects of
combinations of theses features, and calculate the average treatment effect on
dropout; the methods we use are the most used in the literature [2,3] includ-
ing Propensity Score Matching (PSM) [28], Inverse-Propensity score Weighting
(IPW) [6], Augmented Inverse-Propensity Weighted (AIPW) [12], and Doubly
Robust Orthogonal Forest Estimation (DROrthoForest) [5] methods.

1 These students have an opportunity of taking a resit exam which may finally result
in passing or failing the subject, but given that passing the regular exam at the end
of the course is expected, we consider failing the regular exam as underperforming.
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The rest of this paper is organized as follows. After outlining related work on
Sect. 2, the dataset used in this study is described and analysed in Sect. 3. The
methodology is presented in Sect. 4. Results are given in Sect. 5, and finally, the
results are discussed and the paper is concluded in Sect. 6.

2 Related Work

Machine Learning (ML) methods have been used to predict dropout and detect
students at risk in higher education and play essential roles in improving the
students’ performance [1]. In a reference [4], the impact of ML on undergraduate
student retention is investigated by predicting students dropout. Using students’
demographics and academic transcripts, different ML models result in AUCs
between 0.66 and 0.73. Another reference [7] develops a model to predict real-
time dropout risk for each student during an online course using a combination
of variables from the Student Information Systems and Course Management
System. Evaluating the predictive accuracy and performance of various data
mining techniques, the study results show that the boosted C5.0 decision tree
model achieves 90.97% overall predictive accuracy in predicting student dropout
in online courses. In a study [23], early university dropout is predicted based on
available data at the time of enrollment using several ML models with AUCs
from 0.62 to 0.81. Similarly, in a recent study [10], several ML methods are used
to predict the dropout of first-year undergraduate students before the student
starts the course or during the first year.

Some studies look at the features driving dropout. A reference [9] identifies
factors contributing to dropout and estimates the risk of dropout for a group
of students. By presenting the computed risk and explaining the reasons behind
it to academic stakeholders, they help identify more accurately students that
may need further support. In a research [33], the potential relationship between
some features (academic background, students’ performance and students’ effort
dimensions) and dropout is investigated over time by performing a correlation
analysis on a longitudinal data collected spanning over 11 years. The results show
that the importance of features related to the academic background of students
and the effort students make may change over time. On the contrary, perfor-
mance measures are stable predictors of dropout over time. Influential factors
on student success are identified in a reference [19] using subgroup discovery;
this uncovers important combinations of features known before students start
their degree program, such as age, sex, regional origin or previous activities.

Recent work uses sophisticated statistical methods including causal infer-
ence. In a very recent paper [21], using propensity score matching (PSM) it is
investigated whether university dropout in the first year is affected by participa-
tion in Facebook groups created by students. The estimated effect indicates that
participation in social media groups reduces dropout rate. Another recent paper
[24], implements an uplift modeling framework to maximize the effectiveness of
retention efforts in higher education institutions, i.e., improvement of academic
performance by offering tutorials. Uplift modeling is an approach for estimating
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the incremental effect of an action or treatment on an outcome of interest at the
individual level (individual treatment effect). They show promising results in
tailoring retention efforts in higher education over conventional predictive mod-
eling approaches. In a study, the effect of grants on university dropout rates is
studied [22]. The average treatment effect is estimated using blocking on the
propensity score with regression adjustment. According to their results, grants
have a relevant impact on the probability of completing college education.

In our paper, we carefully measure the effect of the most important features
(the number of credits in the first year, age, and study access type) on the early
risk of dropout in undergraduate studies. This effect is obtained for combina-
tions of these features. The Average Treatment Effect (ATE) is measured using
multiple causal inference methods [2,3] as discussed in the introduction. It is
noteworthy that according to a recent survey, the methods we use in this paper
have not been applied in related studies so far [1].

3 Dataset

The anonymized dataset used in this study has been provided by Universi-
tat Pompeu Fabra and consists of 24,253 undergraduate students who enrolled
between 2009 to 2018 to 21 different study programs offered by eight academic
centers. From this population, about 5% of cases were discarded for various rea-
sons: 54 had an external interruption in their education between the first and
second study year, 469 students did not have grade records (dropped out before
starting), 560 students were admitted but did not enroll for the first trimester,
and 74 cases did not have a study access type. Finally, 23,096 cases remained.

Students were admitted to university through four access types: type I stu-
dents took a standard admission test (81%), type II students moved from incom-
plete studies in another university or were older than 25 (10%), type III students
completed vocational training before (7%), and type IV students completed a
different university degree before (2%). First year courses add up to a total of
60 credits across all study programs, this is also the median number of credits
taken by first year students. However, students are also free to take additional
credits out of different educational offers at the university such as languages,
sports, and solidarity action.

The main studied outcome is dropout and consists of students who enroll
in the first year but not in the second year. We also studied underperformance,
which we defined as failing two or more subjects of the first year in the regular
exams. Out of 23,096 cases, 3,531 students drop out (15.3%) and 6,652 students
underperform (28.8%). Per-center dropout, underperformance, and other fea-
tures are shown in Table 1. There are various differences among centers.2 The
students in the School of Engineering and Faculty of Humanities have the high-
est dropout and underperformance rates and the Faculty of Communication has
2 ENG: Engineering, HUM: Humanities, TRA: Translation and Language Sciences,

POL: Political and Social Sciences, HEA: Health and Life Sciences, ECO: Economics
and Business, COM: Communication.
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Table 1. Per-center statistics: number of students, drop-out rate, underperformance
rate, percentage of national students, percentage of men, average age, average first year
credits, average grade on the first year, and percentage of students in access type I.

Center N Dropout
rate

Underperf.
rate

National
%

Male % Avg.
age

Avg.
credits

Avg.
grade

Access
type I

ENG 2,444 41% 56% 89% 79% 19.4 63.4 4.6 65%

HUM 1,749 22% 33% 90% 32% 20.3 63.1 5.9 76%

TRA 2,292 16% 28% 88% 18% 19.3 62.9 6.3 83%

POL 1,683 14% 27% 94% 55% 18.8 63.1 6.2 87%

HEA 1,206 14% 16% 93% 25% 19.0 60.2 7.2 82%

LAW 5,479 12% 32% 92% 33% 19.3 62.5 6.0 79%

ECO 5,707 9% 26% 93% 47% 18.5 62.9 6.3 88%

COM 2,536 7% 7% 96% 27% 18.8 61.7 7.5 84%

All 23,096 15% 29% 92% 40% 19.1 62.6 6.2 81%

the lowest dropout rate and the best performance. In the Faculty of Communica-
tion, which has the lowest dropout and underperformance rates, there are more
national students compared to other schools. In the School of Engineering, with
the highest dropout and underperformance rates, males are in the majority. The
average age in the two centers with the highest dropout and underperformance
rates (School of Engineering and Faculty of Humanities) is higher compared
to other faculties. In these two centers, the percentage of students admitted
through a standard test (study access type I) is lower than other centers, and we
can observe higher average number of credits and lower average grades in their
first year compared to others. In the Faculty of Humanities, 22% of the students
drop out (that includes 38% of those who underperform), while in the Faculty
of Law, with almost the same underperformance rate, only 12% of the students
drop out (including 18% of those who underperform). This might be partially
explained because in the Faculty of Law, students are one year younger (19.3
vs 20.3 years old on average) and are also slightly more likely to come directly
from high school (study access type I: 79% vs 76%).

4 Methodology

Our study focuses on modeling dropout and underperformance risks using data
available at the time students enrol. The feature set for our two models consists
of demographics (gender, age, and nationality), study access type, study pro-
gram, number of first year credits, and average admission grade. Different ML
algorithms: logistic regression (LR), multi-layer perceptron (MLP), and decision
trees are used to predict the risks. Both ML models are trained using students
enrolled between 2009 to 2015 (16,273 cases), and tested on students enrolled in
2016, 2017, and 2018 (6,823 cases). Due to space consideration and because of
the severity of dropout, we mainly focus on this risk. Using a feature selection
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Table 2. Dropout rate (%) across groups defined by age, workload (number of credits),
and access type. Differences of ten percentage points or more appear in boldface.

Center ENG HUM TRA POL HEA LAW ECO COM All

Age > Avg. age 45 28 24 21 13 21 16 12 26

Age ≤ Avg. age 39 21 15 12 15 10 8 6 13

Access types III/IV 44 28 27 23 16 18 21 11 24

Access types I/II 40 22 16 14 14 11 9 6 14

Credits > 60 47 29 22 22 21 19 11 7 18

Credits ≤ 60 39 20 15 13 13 10 9 6 14

Age > Avg. age & credits > 60 53 29 33 29 13 33 18 13 32

Others 39 22 16 13 14 11 9 6 14

Acc. types III/IV & credits > 60 51 36 61 27 15 33 23 10 30

Others 40 22 16 14 14 11 9 7 15

method based on decision trees (CART), we find that among the features avail-
able at the time of enrolment, the most important features in predicting dropout
risk are the number of credits in the first year (workload), admission grade, age,
and study access type.

In Table 2, we compare the dropout rate of different student groups in terms
of these features and some of their combinations (due to space constraints, we
omit some combinations). This comparison shows the following results. Students
older than the average age have higher rate of dropout than younger students,
across all centers except the Faculty of Health and Life Sciences (HEA). Students
admitted through study access types III and IV have a higher dropout rate
compared to the cases admitted through access types I and II; and students
taking more credits than the median also have higher dropout rate. Considering
combinations of these features, we can see that mostly older students with a
number of credits larger than the average, as well as students admitted through
access types III and IV who take a larger number of credits than the average
have higher dropout rates. Results for underperformance (omitted for brevity)
are similar, except in two senses: they do not hold for Engineering (ENG) and
Humanities (HUM), possibly in part due to the overall lower grades in these
centers compared to all others (Table 1), and they do not hold for credits alone,
but for credits in combination with other features.

We aim to determine the causal effects on dropout of the features we studied
by the following intervention: taking a workload in the first year of less credits
than the median. The number of credits taken is a feature over which students
have some degree of control at the enrolment time. Since higher dropout rates
are observed among older students and students with access types III and IV,
we are interested in the following scenarios:

– Scenario 1: in this scenario, the study group is limited to the first-year stu-
dents who are older than the mean. Among these, those with less workload
(credits < median) are considered as treated and those with more workload
(credits ≥ median) are regarded as a control group.
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– Scenario 2: in this scenario, the study group are all students. Older students
taking less workload (credits < median) plus all younger students are consid-
ered as treated, and older students with more workload (credits ≥ median)
are regarded as a control group.

– Scenario 3: in this scenario, the study group is limited to students from
access types III and IV. Among these, students with less workload (cred-
its < median) are considered as treated and students with more workload
(credits ≥ median) are regarded as a control group.

The propensity of treatment is estimated in each scenario using Machine Learn-
ing (ML) models and input features including demographics (gender and nation-
ality), study programs, and average admission grade. In scenarios 1 and 2, study
access type is also added as a feature, and in scenario 3, age is added as a fea-
ture. We compute the Average Treatment Effect (ATE) of each treatment on
the dropout probability using various causal inference methods:

– The propensity score matching method [28], in which data is sorted by propen-
sity score and then stratified into buckets (five in our case). In our work, we
obtain ATE by subtracting the mean dropout of non-treated (control) cases
from treated ones in each bucket.

– Inverse-Propensity score Weighting (IPW) [6]: The basic idea of this method
is weighting the outcome measures by the inverse of the probability of the
individual with a given set of features being assigned to the treatment so that
similar baseline characteristics are obtained. In this method, the treatment
effect for individual i is obtained using the following equation:

TEi =
WiYi

pi
− (1 − Wi)Yi

1 − pi
(1)

Wi shows treatment (1 for treated and 0 for control cases), pi represents
probability of receiving treatment (propensity score of treatment), and Yi

shows dropout (1 if drop out and 0 if not drop out) for individual i.
– Augmented Inverse-Propensity Weighted (AIPW) [12]: This method com-

bines both the properties of the regression-based estimator and the IPW
estimator. It has an augmentation part (Wi − pi)̂Yi to the IPW method, in
which ̂Yi is the estimated probability of dropout using all features applied to
the propensity score model plus the treatment variable. So, this estimator can
lead to doubly robust estimation which requires only either the propensity or
outcome model to be correctly specified but not both. We can compute the
treatment effect on individual i as:

TEi =
WiYi − (Wi − pi)̂Yi

pi
− (1 − Wi)Yi − (Wi − pi)̂Yi

1 − pi
(2)

– Causal forests from EconML package [5]: This method uses Doubly Robust
Orthogonal Forests (DROrthoForest) which are a combination of causal
forests and double machine learning to non-parametrically estimate the treat-
ment effect for each individual.
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Table 3. AUC-ROC of the prediction of dropout and underperformance across centers.
Centers are sorted left-to-right by decreasing dropout rate.

Center All ENG HUM TRA POL HEA LAW ECO COM

Dropout 0.70 0.72 0.72 0.68 0.67 0.57 0.64 0.67 0.68

Underperformance 0.74 0.82 0.80 0.73 0.69 0.53 0.64 0.69 0.76

Table 4. AUC-ROC of propensity score prediction.

Scenario 1 Scenario 2 Scenario 3

N 3,866 23,096 1,963

Model MLP MLP LR

AUC 0.75 0.91 0.75

In IPW, AIPW, and DROrthoForest, we obtain the individual treatment
effect TEi, which is the difference between the outcomes if the person is treated
(treatment) and not treated (control). In other words, this effect is the difference
of dropout probability when the student is treated and not treated; a negative
value shows a reduced dropout risk and a positive value indicates an increased
dropout risk. The resulting ATE is the average over individual treatment effects.

5 Results

The ML-based models of dropout and underperformance obtained using an MLP
(Multi-Layer Perceptron) with 100 hidden neurons show the best predictive per-
formance, with AUC-ROC of 0.70 and 0.74 for each risk respectively. Table 3
shows the AUC-ROC per center, and we observe that the AUC-ROC is in gen-
eral higher for centers with higher dropout and underperformance rates. We also
observe that dropout and underperformance predictions are not reliable for some
centers, particularly Health and Life Sciences (HEA), and Law, where the AUC
is less than 0.65.

For the three scenarios introduced in Sect. 4, the best predictive performance
results obtained for the propensity score of the related treatment are shown on
Table 4 in terms of AUC-ROC. Propensity is better predicted for scenarios 1 and
2 with the Multi-Layer Perceptron (MLP) and for scenario 3 with the Logistic
Regression (LR). In each scenario, we removed study programs with relatively
low predictive performance. According to the AUC values, ML models show
accurate results in all of the scenarios, especially in scenario 2. In all scenarios,
there is an overlap in the distribution of the propensity scores of treatment and
control groups to find adequate matches (figure omitted for brevity). This is a
necessary condition to be able to apply some of our methods.

Our goal is to determine whether these “treatments,” which have a common
feature of involving less workload, reduce dropout rate. The Average Treatment
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Table 5. ATE obtained using Propensity Score Matching with five buckets.

Propensity 1. Low 2. Med-low 3. Med 4. Med-high 5. High

Scenario 1 0.18 0.04 −0.05 0.02 −0.08

Scenario 2 −0.04 0.03 0.00 0.02 −0.42

Scenario 3 0.04 −0.08 −0.17 0.30 −0.22

Table 6. IPW, AIPW, and DROrthoForest results estimating the Average Treatment
Effect (ATE) and its 95% confidence interval [lower-ci, upper-ci] in three scenarios.

Scenario IPW AIPW DROrthoForest

lower-ci ATE upper-ci lower-ci ATE upper-ci lower-ci ATE upper-ci

Scenario 1 −0.06 0.02 0.11 −0.01 0.07 0.15 −0.07 −0.06 −0.05

Scenario 2 −0.03 0.03 0.09 −0.06 0.01 0.08 −0.04 −0.04 −0.03

Scenario 3 −0.12 −0.01 0.10 −0.10 0.01 0.12 −0.07 −0.05 −0.03

Effect (ATE) obtained using propensity score matching is shown on Table 5.
Across all three scenarios we can see mixed results, as in some propensity buck-
ets the treatment increases the risk of dropout (scenario 1, bucket “1. Low”;
scenario 3, bucket “4. Med-high”) while in other cases the results are neutral
or large reduction. In general, the results suggest that in high propensity to
treatment conditions (bucket “5. High” i.e., students who are already likely to
take less workload) there is a substantial reduction of the probability of dropout,
particularly in scenarios 2 and 3.

The ATE values obtained from IPW, AIPW, and DROrthoForest methods
are shown in Table 6 for all scenarios. In the case of IPW and AIPW, we can see
that the 95% confidence intervals (from “lower-ci” to “upper-ci” in the table)
contain the value zero. This means that the uncertainty in these methods is large
and we cannot establish with them whether there is a change in the dropout risk
due to the treatment. However, the results with the DROrthoForest method,
which is a combination method of causal forests and doubly robust learner, are
all negative with confidence intervals that do not contain the zero; indeed, they
show a reduction of the probability of dropout of about 5% points in all three
scenarios because of the treatment.

6 Discussion, Conclusions, and Future Work

In this study, we first created ML models to predict dropout (students who enroll
in the first year but do not show up in the second year) and underperformance
(failing two or more subjects in the regular exams of the first year), using only
information available at the time of enrollment. The obtained AUC-ROC of our
models were 0.70 and 0.74 for dropout and underperformance risks respectively,
which shows a relatively reliable prediction of students at risk. This is partic-
ularly true for centers having large risk of dropout or underperformance, while
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the performance of the same models for centers having lower risk is lower. This
is to some extent expected and in those cases we are modeling a phenomenon
that is more rare.

Next, we focused in dropout risk prediction and found that workload (first
year credits) was an important feature. We also compared dropout risk across
various groups of students. The comparison showed that to a large extent there is
higher probability of dropout in older students (age > average-age), in students
taking a higher workload (more first year credits than the established minimum
and the median), and in students admitted through access types III and IV.

We considered three scenarios using a combination of these features. In these
scenarios, interventions were designed having the common characteristic of a
reduced workload for students. In each scenario, the propensity score of the
treatment was obtained with AUC-ROC of 0.75–0.91 using ML-based models.
Then, for each scenario, the Average Treatment Effect (ATE) on dropout was
computed using causal inference methods. The results suggest a negative effect,
i.e., a reduction of risk of dropout, following a lower number of credits taken
on the first year. An actionable recommendation that these results suggest is
to ask students at risk (in this study, older students and students admitted
through access types III and IV) to consider taking a reduced workload (e.g., the
minimum established), or to ask educational policy makers to consider revising
the regulations that establish the minimum number of credits (e.g., to reduce
the current minimum).

In addition to creating ML models for early prediction of dropout and under-
performance risks that exhibit high predictive performance, the originality of this
contribution is focusing on the vulnerable groups of students prone to dropout,
studying combinations of different features such as workload, age, and study
access type, and using different causal inference models to calculate the effects
of these features on dropout in terms of ATE. Causal inference methods such
as the ones we used provide a path towards effectively supporting the students.
They also allow to perform observational studies, as education is a domain in
which some types of direct experimentation might be unethical or harmful. We
also used a large dataset and our results hold across substantially diverse study
programs. We stress that the methodology we described is broadly applicable.
Our findings are likely to be specific to this particular dataset, but show the
general effectiveness of the methodology in this setting.

More scenarios can be defined in terms of other combinations of the relevant
features, to determine their effects on dropout or underperformance. Addition-
ally, the causal inference methods used in this study can also be applied to other
risks faced by higher education students.
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Abstract. Block-based programming environments are increasingly used to
introduce computing concepts to beginners. However, novice students often
struggle in these environments, given the conceptual and open-ended nature of
programming tasks. To effectively support a student struggling to solve a given
task, it is important to provide adaptive scaffolding that guides the student towards
a solution. We introduce a scaffolding framework based on pop quizzes presented
as multi-choice programming tasks. To automatically generate these pop quizzes,
we propose a novel algorithm, PQUIZSYN. More formally, given a reference task
with a solution code and the student’s current attempt, PQUIZSYN synthesizes
new tasks for pop quizzes with the following features: (a) Adaptive (i.e., individ-
ualized to the student’s current attempt), (b) Comprehensible (i.e., easy to com-
prehend and solve), and (c) Concealing (i.e., do not reveal the solution code). Our
algorithm synthesizes these tasks using techniques based on symbolic reasoning
and graph-based code representations. We show that our algorithm can generate
hundreds of pop quizzes for different student attempts on reference tasks from
Hour of Code: Maze Challenge [11] and Karel [9]. We assess the quality of these
pop quizzes through expert ratings using an evaluation rubric. Further, we have
built an online platform for practicing block-based programming tasks empow-
ered via pop quiz based feedback, and report results from an initial user study.

Keywords: Block-based visual programming · Scaffolding · Task synthesis

1 Introduction

The emergence of block-based visual programming platforms has made coding more
interactive and appealing for novice students. Block-based programming uses “code
blocks” that reduce the burden of syntax and focuses on key programming con-
cepts. Led by the success of languages like Scratch [33], initiatives like Hour of
Code by Code.org [12], and online courses like Intro to Programming with Karel by
CodeHS.com [9,25], block-based programming has become integral to introductory
CS education.
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Programming tasks on these platforms are conceptual and open-ended, requiring
multi-step deductive reasoning to solve, thereby making them challenging for students.
To effectively support a struggling student to solve a particular task, it is important to
provide feedback on their attempts. However, on platforms that have millions of stu-
dents, it is infeasible for human tutors to provide feedback. Hence, there is a critical
need for automated feedback generation systems to provide personalized support to
students [13,22]. Existing work in the domain has explored various methods of person-
alized feedback generation within a task, such as providing next-step hints in the form
of next code blocks to use in a student attempt [26,31,35,36,44], providing adaptive
worked examples [28,32,43], and providing data-driven analysis of a student’s miscon-
ceptions [5,6,16,24,39–41].

def Run(){
move

move

turnRight

. . .
21 more action blocks

}

def Run(){
RepeatUntil(goal){

If(pathAhead){
move

}
Else{
If(pathRight){

turnRight
}
Else{

turnLeft
}}}}

T in C in,stuC in,�

def Run(){
move
turnLeft
RepeatUntil(goal){

?
}}

Q. Fill in the blank from:
move

turnLeft

turnRight

T quiz Cquiz with 1 blank Quiz

Task

Pop Quiz

Fig. 1. Illustration of our pop quiz based framework. The “Task” panel shows an input task T in

from HOC [11], the student’s current attempt C in,stu, and the solution code C in,� (not revealed
to the student). The student is currently unsuccessful in solving the task: the current attempt
C in,stu does not solve the visual puzzle within the maximal number of permitted blocks (7 blocks)
and does not use any of the required constructs (RepeatUntil and IfElse constructs). The
“Pop Quiz” panel shows a pop quiz generated by our algorithm in the form of task-code pair
(T quiz, Cquiz) along with a multiple choice question, introducing the RepeatUntil construct.
After the student solves the pop quiz, they resume working on the input task. The framework
would be invoked when a student needs help; importantly, the pop quizzes presented to the student
are adaptive w.r.t. the student’s current attempt C in,stu. Moreover, our algorithm generates pop
quizzes that are easy to comprehend and solve, and Cquiz sufficiently conceals C in,�.

In this paper, we investigate an alternate method of personalized feedback gen-
eration that guides a student towards a task’s solution while involving inquiry-driven
and problem-solving aspects [14]. In particular, we introduce a scaffolding framework
based on pop quizzes that contain new programming tasks presented as multi-choice
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questions.1 Our framework is inspired by prior studies that showed the efficacy of multi-
choice questions in helping novice students learn to code [17,19,30,38,42]. The frame-
work is designed to be invoked as follows: Given a task and a student’s current unsuc-
cessful attempt, the framework can help the student by presenting a pop quiz intended to
resolve their misconception. For the scaffolding to be effective, we center the design of
the new programming task for a pop quiz around three features: Adaptive, Comprehen-
sible, and Concealing; see details in Fig. 1 and Sect. 2.1. However, hand-crafting these
new quizzes is time-consuming and potentially error-prone when required for a large
number of tasks and different student attempts. To this end, we seek to automatically
generate these pop quizzes by synthesizing new programming tasks.

1.1 Key Challenges and Our Contributions

There are several challenges in synthesizing new visual programming tasks with the
above mentioned features, including the following: (i) current techniques for synthe-
sizing visual programming tasks do not adapt to student attempts [1]; (ii) the mapping
from the space of visual tasks to their solution codes is highly discontinuous as shown
in [1], and hence task mutation based techniques are ineffective [27,37]; (iii) the space
of possible tasks and their solutions is potentially unbounded, and hence techniques that
rely on exhaustive enumeration are intractable [2,4,37].

In this work, we develop a novel algorithm, PQUIZSYN, that synthesizes pop
quizzes with the desirable features of our scaffolding framework. Our algorithm over-
comes the above-mentioned challenges by using techniques of symbolic execution,
search algorithms, and graph-based code representations. Our key contributions are: (I)
We present a modular and extensible algorithm for generating pop quizzes that oper-
ates in three stages (see Sects. 2 and 3);2 (II) We show that our approach can generate
hundreds of pop quizzes for different types of student attempts on reference tasks from
real-world programming platforms (see Sect. 4); (III) We assess the quality of our algo-
rithm through expert ratings using a multi-dimensional evaluation rubric (see Sect. 5);
(IV) We have built an online platform with our framework and demonstrate the utility
of pop quiz based feedback through an initial user study (see Sect. 6).3

1.2 Additional Related Work

Feedback via Modelling Programming Concepts. Apart from the above-mentioned
methods such as next-step hints, there has been extensive work on feedback generation
via modelling programming concepts. Here, several techniques have been proposed,
including: (a) detecting challenging concepts by analyzing student attempts [6,39,40];
(b) discovering student misconceptions using task-specific rubrics and neural program
embeddings [41]; (c) defining concepts through knowledge components [3,15,34].

1 We refer to these multi-choice questions as “pop quizzes” as the framework could present these
quizzes whenever a student needs help [7].

2 Implementation of the algorithm is publicly available at https://github.com/machine-teaching-
group/aied2022 pquizsyn code.

3 https://www.teaching-blocks-hints.cc/.

https://github.com/machine-teaching-group/aied2022_pquizsyn_code
https://github.com/machine-teaching-group/aied2022_pquizsyn_code
https://www.teaching-blocks-hints.cc/
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Evaluation of Feedback Methods. An important aspect to consider when develop-
ing feedback generation methods is their evaluation criteria. Most next-step feedback
generation methods are evaluated based on expert annotations or automated proce-
dures [24,26,29]. In contrast, example-driven feedback techniques are typically evalu-
ated using a multi-dimensional rubric [32,43]. In our work, we evaluate the scaffolding
framework through expert ratings using a rubric, as well as an initial user study.

2 Problem Setup and Definitions

In this section, we formalize our objective and introduce important technical definitions.

2.1 Problem Setup

Task Space. We define the space of tasks as T. A task T ∈ T consists of a visual puzzle
and a set of available types of code blocks (e.g., move, RepeatUntil) allowed in the
solution code. Additionally, the solution code must be within a certain size threshold
in terms of the number of code blocks. We denote the current task that a student is
solving as T in ∈ T; see T in in Fig. 1. In this work, we use tasks from Hour of Code:
Maze Challenge [11] by Code.org [10] and Intro to Programming with Karel [9] by
CodeHS.com [8]; henceforth, we refer to them as HOC and Karel tasks, respectively.

Code Space. We define the space of all possible codes as C and represent them using
a Domain Specific Language (DSL) [20]. In particular, for codes relevant for HOC and
Karel tasks, we use a DSL based on [1]. A code C ∈ C has the following attributes:
Cblocks is the set of types of code blocks used in C, Csize is the number of blocks used,
and Cdepth is the depth of the Abstract Syntax Tree of C. We denote a distance metric in
this space as DC. For a given C ∈ C and a positive integer l, we define a neighborhood
function as NC(C, l) = {C ′ | DC(C ′, C) ≤ l}. The solution code C in,� ∈ C for the task
T in solves the visual puzzle using the allowed types of code blocks within the specified
size threshold. A student attempt for T in is denoted as C in,stu ∈ C.

Objective. For an input task T in with solution code C in,� and given the current stu-
dent attempt C in,stu, our objective is to generate a pop quiz in form of a new task-code
pair (T quiz, Cquiz) designed on the basis of the following features: (i) Adaptive, i.e.,
Cquiz accounts for C in,� and C in,stu, ensuring that Cquiz is individualized to the stu-
dent’s current attempt; (ii) Comprehensible, i.e., Cquiz solves T quiz correctly and the
pop quiz is easy to comprehend/solve without confusing the student; (iii) Concealing,
i.e., DC(Cquiz, C in,�) is high, ensuring that Cquiz sufficiently conceals the solution code
C in,� and does not directly reveal it in order to encourage problem-solving aspects.

2.2 Technical Definitions

Sketch Space. We capture the key conceptual elements of a code using a higher level
abstraction called a sketch [2,37]. The sketch of a code preserves its important pro-
gramming constructs. Similar to the code DSL, we define the sketch space S using a
sketch DSL based on [1]. Similar to the Abstract Syntax Tree representation of a code,
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we represent a sketch as a tree having the programming constructs as its nodes. The
mapping from the code space to the sketch space is captured by the many-to-one map,
Ψ : C → S, i.e., the representation of a code C in S is given by Ψ (C). As S is an abstrac-
tion of C, multiple elements of C can correspond to a single element in S. Similar to
DC and NC, we denote a distance metric in the sketch space as DS and a neighborhood
function as NS(S, l) = {S′ | DS(S′, S) ≤ l} for a given S ∈ S and a positive integer l.

Sketch Substructures. For a sketch S, we define a substructure as a sub-tree contain-
ing the nodes of S up to a particular depth and sharing the same root node; note that
a substructure of a sketch is also a sketch. We denote the set of all substructures of
S as SUBSTRUCTS(S) ⊆ S; the size of the set SUBSTRUCTS(S) is typically small.
For example, the sketch shown in Fig. 2b has the following 4 substructures: (i) {Run},
(ii) {Run {RepeatUntil(goal)}}, (iii) {Run {RepeatUntil(goal){IfElse (B)}}}, and (iv)
{Run {RepeatUntil(goal){IfElse (B){{}; {IfElse (B)}}}}}.

Code Reductions. For a code C ∈ C with sketch S := Ψ(C), consider one of the
sketches Ssub ∈ SUBSTRUCTS(S). We define the set of code reductions of C w.r.t.
sketch Ssub as all codes obtained by removing one or more nodes of C while preserving
the sketch Ssub; note that the reduction of a code is also a code. We denote the set of all
reductions as REDCODES(C | Ssub) ⊆ C. For example, for C in,� in Fig. 1 and Ssub =
{Run{RepeatUntil(goal)}}, the set REDCODES(C in,�| Ssub) has the following 3 codes:
(i) {Run {RepeatUntil(goal){move}}}, (ii) {Run{RepeatUntil(goal){turnRight}}},
and (iii) {Run{RepeatUntil(goal){turnLeft}}}.

3 Our Algorithm PQUIZSYN

In this section, we present our algorithm that generates pop quizzes via synthesizing
new tasks. One might be tempted to synthesize tasks by first generating a new visual
puzzle and then obtaining its solution code. As discussed in Sect. 1 and shown in [1], the
mapping from the space of visual tasks to their solution codes is highly discontinuous
and reasoning about desirable tasks directly in the task space is ineffective. However, the
task synthesis algorithm from [1] is not applicable to our work as we seek to generate
tasks that also account for the student’s current attempt. To this end, we develop a novel
algorithm PQUIZSYN (Programming Pop Quizzes via Synthesis) that generates tasks
adaptive to the student’s current attempt. Our algorithm operates in three stages: (i)
Stage 1 generates a sketch based on the task’s solution code and the student’s current
attempt; (ii) Stage 2 instantiates this sketch in the form of a new task-code pair; (iii)
Stage 3 generates the pop quiz from the new task-code pair. Figure 2a illustrates these
stages, and details are provided below.

3.1 Stage 1: Generating the Pop Quiz Sketch Squiz

We begin by describing Stage 1 of our algorithm as illustrated in Fig. 2a. In this stage,
GetSketch() routine returns a suitable sketch Squiz that is instantiated in the later
stages. The input to the routine is the student sketch Sin,stu := Ψ(C in,stu) and solu-
tion sketch Sin,� := Ψ(C in,�). By operating on the sketch space first, we can generate
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meaningful and adaptive codes in the later stages. To generate pop quizzes based on
the features mentioned in Sect. 2.1, we require the sketch of the pop quiz Squiz to have
the following attributes: (i) Squiz should direct the student towards the solution sketch
Sin,�, i.e., DS(Squiz, Sin,�) should be low; (ii) Squiz should be adaptive w.r.t. the stu-
dent’s sketch Sin,stu, i.e., Squiz ∈ NS(Sin,stu, l) for a low value of l. While these condi-
tions ensure that Squiz directs the student towards the solution sketch and is adaptive, it
could potentially lead to a sketch that does not belong to the set of substructures of the
solution sketch, i.e., Squiz /∈ SUBSTRUCTS(Sin,�)—in that case, there is no valid code
reduction of C in,� w.r.t. Squiz (see Sect. 2.2) and this makes it challenging to instantiate
sketches into desirable codes Cquiz (see algorithm variant PQS-ONEHOP in Sect. 5 and
Footnote 4). Hence, GetSketch() generates Squiz as follows (see Fig. 3):

C in,stu

C in,�

T in

S in,stu

S in,�

GetSketch() Squiz

S

Stage 1 Stage 2(i) Stage 2(ii)

Stage 3

Cquiz T quiz

Cquiz,k

Ψ

Ψ

Ψ−1

k

(a) Our algorithm PQUIZSYN

def Run(){
RepeatUntil(goal){

If(B){}
Else{
If(B){}
Else{}

}
}
}

(b) S in,�

def Run(){}

(c) S in,stu

def Run(){
RepeatUntil(goal){}
}

(d) Squiz

def Run(){
move

turnLeft

RepeatUntil(goal){
move

}
}

(e) Cquiz

Fig. 2. (a) illustrates PQUIZSYN. In particular, we can
instantiate the presented algorithm using input task T in,
its solution code C in,�, and the current student attempt
C in,stu from Fig. 1. The sketch of C in,� is shown in (b),
sketch of C in,stu is shown in (c), sketch of Cquiz is shown
in (d), and the code of the pop quiz Cquiz is shown in (e).

S

S in,stu

S in,�

{Run {RepeatUntil(goal)}}

{Run {RepeatUntil (goal){IfElse (B)}}}

l = 1

l = 2

l = 3

Fig. 3. PQUIZSYN Stage 1 for
the scenario shown in Fig. 1. X
shows substructures of S in,� in
l-hop neighborhoods of S in,stu

for l ∈ {1, 2, 3}. Details are
provided in Sect. 3.1.

(i) Pick l̂ as min l ∈ {1, 2, . . .} s.t. NS(Sin,stu, l)∩ SUBSTRUCTS(Sin,�) is non-empty.
(ii) Generate Squiz ∈ argminS∈NS(Sin,stu, l̂) ∩ SUBSTRUCTS(Sin,�) DS(S, Sin,�).

3.2 Stage 2: Synthesizing (T quiz, Cquiz) from Squiz

Next, we describe Stage 2 of our algorithm. We first generate Cquiz from Squiz, as illus-
trated in Stage 2(i) of Fig. 2a. Specifically, for a sketch Squiz generated in Stage 1,
we employ the code mutation methodology proposed in [1] to obtain a code Cquiz.
However, this methodology requires a meaningful starting code Cseed. Since Squiz ∈
SUBSTRUCTS(Sin,�) by the design of Stage 1, we begin by picking Cseed from the set
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REDCODES(C in,�| Squiz).4 The methodology of [1] provides us multiple code muta-
tions of Cseed. The extent to which these code mutations differ from Cseed and C in,� is
controlled by the constraints imposed based on the values of the boolean variables,
conditionals, and action blocks (move, turnLeft, turnRight, pickMarker, putMarker)
of Cseed, as well as constraints on the size of the obtained code. Specifically, these
mutations allow us to control the extent to which DC(Cquiz, C in,�) varies, which is a
desired feature as stated in Sect. 2.1.

Next, we generate a new task T quiz from a code Cquiz as illustrated in Stage 2(ii) of
Fig. 2a. Specifically, we generate T quiz such that its solution code is Cquiz. We achieve
this using techniques of symbolic execution and best-first search, building on the task
synthesis methodology presented in [1].

Name, source for T in C in,�
size , S

in,� for T in Squiz ∈ SUBSTRUCTS(Sin,�) #Cquiz #T quiz

T-1
HOC:Maze08 [11]

6
{Run {Repeat; Repeat}}

{Run} 22 220
{Run {Repeat}} 34 340

S in,� 179 1790

T-2
HOC:Maze16 [11]

5
{Run {RUntil {If}}}

{Run} 10 100
{Run {RUntil}} 6 60

S in,� 19 190

T-3
HOC:Maze18 [11]

5
{Run {RUntil {IfElse}}

{Run} 10 100
{Run {RUntil}} 6 60

S in,� 9 90

T-4
HOC:Maze20 [11]

7
{Run {RUntil {IfElse {{};{IfElse}}}}}

{Run} 10 100
{Run {RUntil}} 6 60

{Run {RUntil {IfElse}}} 9 90
S in,� 10 100

T-5
Karel:Opposite [9]

6
{Run {Repeat {IfElse}}}

{Run} 73 730
{Run {Repeat}} 118 1180

S in,� 343 3430
T-6

Karel:Diagonal [9]
8

{Run {While}}
{Run} 447 4470
S in,� 579 5790

Fig. 4. PQUIZSYN applied to six HOC and Karel reference tasks; see Sect. 4 for details. For
brevity, sketches have been abbreviated, e.g., RepeatUntil(goal) as RUntil.

3.3 Stage 3: Generating Multi-choice Question from (T quiz, Cquiz)

In this stage, we generate a pop quiz with a fixed set of answer choices; see Figs. 1 and 5.
We pick a task-code pair (T quiz, Cquiz), and expose only a part of Cquiz determined by
an exposure parameter k, i.e., Cquiz contains k blanks. These blanks must be filled
out by the student from the set of answer choices in a manner that would solve T quiz.
Specifically, we generate the pop quiz with k = 1 blanks. To obtain the blank for the
quiz, we do an in-order traversal of Cquiz and leave out the last leaf node as blank.

4 When Squiz /∈ SUBSTRUCTS(S in,�), we set Cseed as a random instantiation of Squiz – see
algorithm variant PQS-ONEHOP in Sect. 5..
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4 PQUIZSYN on Real-World Tasks

In this section, we present the performance of PQUIZSYN on six reference tasks taken
from real-world block-based programming platforms: HOC [11] and Karel [9]. The set
of these tasks along with their sources are mentioned in Fig. 4. These tasks differ in
complexity, measured in terms of the programming constructs of their solution code as
illustrated by the diversity of their respective solution sketches Sin,�. For the exhaustive
set of substructures of Sin,�, Fig. 4 lists the total number of pop quizzes, in the form of
unique task-code pairs (T quiz, Cquiz), generated by our algorithm. As can be seen in the
figure, our algorithm generates 50 to 1000s of pop quizzes for each substructure. For
any potential student attempt on these tasks, Stage 1 of PQUIZSYN would generate one
of these task-specific substructures by design – hence, for every attempt we can present
several unique yet adaptive pop quizzes to the student. Note that, our algorithm gener-
ates higher number of tasks than codes for each substructure. This is because the task
synthesis methodology used in Stage 2(ii) can generate more than one task for a single
code in Stage 2(ii) of Fig. 2a. In particular, for each new code, we obtain 10 diverse
tasks. For instance, Fig. 1 and Fig. 5 illustrate pop quizzes generated by PQUIZSYN for
the specific student attempts on tasks T-4 and T-5, respectively.

def Run(){
pickMarker

move

pickMarker

. . .
several more
action blocks

}

def Run(){
Repeat(8){
If(noMarker){

putMarker
}
Else{

pickMarker
}
move

}
}

T in
PREGRID POSTGRID C in,stuC in,�

def Run(){
Repeat(6){

pickMarker

?
}
putMarker

turnRight

}

Q. Fill in the blank from:
move

turnLeft

turnRight

pickMarker

putMarker

T quiz
PREGRID POSTGRID Cquiz with 1 blank Quiz

Task

Pop Quiz

Fig. 5. Analogous to Fig. 1, here we illustrate our framework on a Karel task, T-5 (see Fig. 4).
Karel tasks [25] comprise of a pair of visual grids, (PREGRID, POSTGRID), and the objective is
to write code that, when executed, transforms PREGRID to POSTGRID.
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5 Expert Study via Multi-dimensional Rubric

In this section, we evaluate PQUIZSYN w.r.t. the desired features specified in the objec-
tive, i.e., Adaptive, Comprehensible, and Concealing (see Sect. 2.1). In particular, we
seek to compare PQUIZSYN with its variants resulting from different design choices in
Sect. 3. To this end, we conduct an expert study via a multi-dimensional rubric.

Variants of PQUIZSYN Algorithm. We compare the performance of PQUIZSYN

with the following variants: PQS-FULLHOP, PQS-ONEHOP, and PQS-REDCODE.
PQS-FULLHOP and PQS-ONEHOP differ from PQUIZSYN only in the GetSketch()
routine used in Stage 1 of Fig. 2a when generating Squiz. In particular, Stage 1 of
PQS-FULLHOP always returns the sketch of the solution code, i.e., Squiz := Sin,�;
Stage 1 of PQS-ONEHOP returns a sketch directly from the 1-hop neighborhood of
Sin,stu, i.e., Squiz ∈ NS(Sin,stu, 1). The third baseline, PQS-REDCODE, differs from
PQUIZSYN only in Stage 2(i) of Fig. 2a when generating Cquiz from Squiz. In particu-
lar, Stage 2(i) of PQS-REDCODE generates Cquiz as a direct reduction of the solution
code w.r.t. the sketch obtained in Stage 1, i.e., Cquiz ∈ REDCODES(C in,� | Squiz).

Simulated Student Attempts. For this expert evaluation, we simulated unsuccessful
student attempts as seen in block-based programming domains [26]. In particular, for
each reference task, we manually created four student attempts as follows: (a) Stu-
A: C in,stu uses only action blocks, i.e., (move, turnLeft, turnRight, pickMarker,
putMarker); (b) Stu-B: C in,stu uses a subset of programming constructs in C in,�; (c)
Stu-C: C in,stu is structurally the same as C in,�, i.e., Sin,stu = Sin,�; (d) Stu-D: C in,stu has
a structure more complex than C in,�. These four types of attempts exhaustively cover
all the scenarios that an algorithm might encounter when deployed (see Sect. 6).

Multi-dimensional Evaluation Rubric. Inspired by the evaluation rubric in [32,43],
we assess pop quizzes on a multi-dimensional rubric with three attributes, each rated
on a three-point Likert scale (with higher scores being better). More concretely, we
have: (i) Adaptive attribute measuring the degree of individualization of the pop quiz to
the current student attempt (3: high; 2: medium; 1: low); (ii) Comprehensible attribute
measuring how easy the pop quiz is to comprehend/solve (3: easy; 2: might confuse
the student sometimes; 1: either incorrect or is very difficult to solve.); (iii) Conceal-
ing attribute measuring the extent to which the pop quiz conceals the solution code (3:
sufficiently conceals; 2: reveals the solution to some extent; 1: reveals the solution to a
large extent). Overall denotes the sum of scores across three attributes for a pop quiz.

Expert Study Setup. We picked three tasks spanning different types of constructs and
complexity: T-1, T-4, and T-5 from Fig. 4. Thus, in total we evaluated 48 scenarios: 4
algorithm variants × 4 student types × 3 tasks (see Figs. 1 and 5 as example scenarios).
Two researchers, with experience in block-based programming, evaluated each of the
48 scenarios independently. The evaluation was done through a web survey where a
scenario was introduced at random, and assessed based on the rubric.
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Algorithm Adaptive Comprehensible Concealing Overall

PQS-FULLHOP 2.0(0.7) 2.8(0.1) 3.0(0.0) 7.8(0.8)
PQS-ONEHOP 2.8(0.1) 2.5(0.6) 3.0(0.0) 8.3(0.7)
PQS-REDCODE 2.7(0.3) 3.0(0.0) 1.5(0.4) 7.2(0.7)

PQUIZSYN 2.7(0.2) 3.0(0.0) 2.9(0.1) 8.6(0.3)

Fig. 6. Mean (variance) attribute ratings for different algo-
rithms. Higher scores are better. PQUIZSYN performs well
across all three attributes and has the highest Overall score;
see Sect. 5 for details.

Expert Study Results. First,
we validate the expert ratings
using the quadratic-weighted
Cohen’s kappa inter-agreement
reliability value [32] for each
attribute: 0.62 (Adaptive), 0.69
(Comprehensible), 0.79 (Con-
cealing), and 0.7 (Overall).
The values indicate substantial
agreement between the raters.
The average ratings are pre-
sented in Fig. 6 and PQUIZSYN has the highest Overall score. We analyze these rat-
ings per attribute based on the Kruskal-Wallis significance test [21]; the results dis-
cussed next are statistically significant with p < 0.01. On the Adaptive attribute, PQS-
FULLHOP performs significantly worse because it does not account for the student
attempt (see Sect. 3.1). On the Comprehensible attribute, PQS-ONEHOP performs sig-
nificantly worse because there are instances where no valid code reduction of C in,� w.r.t.
Squiz is found (see Footnote 4, Sect. 3.2). Finally, on the Concealing attribute, PQS-
REDCODE performs significantly worse because it obtains Cquiz via a direct reduction
of C in,� without any mutation (see Sect. 3.2).

6 User Study via Online Platform

We have built an online platform with our PQUIZSYN framework using the Blockly
Games library [18]. The online platform is publicly accessible – see Footnote 3,
Sect. 1.1. The platform provides an interface for a participant to practice block-based
programming tasks, and receive pop quiz based feedback when stuck. In this section,
we report results from an initial user study to assess the efficacy of our scaffolding
framework in comparison to other feedback methods.

Participation Session and Feedback Methods. A single session on our platform com-
prises of three steps. In STEP-A, the participant is presented with a task and has 10
execution tries to solve it. If a participant fails to solve the task at STEP-A, they pro-
ceed to STEP-B with a randomly assigned feedback method (NOHINT, NEXTSTEP, and
PQUIZSYN as discussed below). After STEP-B, the participant resumes their attempt
on the task in STEP-C with 10 additional execution tries. Note that the feedback method
is invoked only once in a single session. Next, we describe different feedback methods
at STEP-B. NOHINT represents a baseline where the participant is directed to STEP-C
without any feedback. NEXTSTEP corresponds to next-step hints as feedback where the
participant’s code is updated to bring it closer to a solution code [26,31,35,36,44]; we
prioritized next-step edits involving programming constructs (e.g., RepeatUntil) over
basic actions (e.g., move). PQUIZSYN is our pop quiz based feedback.
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Feedback Total (STEP-B) Fraction solved (STEP-C)
Both T-3 T-5 Both T-3 T-5

NOHINT 151 63 88 0.046 0.079 0.023
NEXTSTEP 146 63 83 0.082 0.127 0.048
PQUIZSYN 148 62 86 0.128 0.177 0.093

Fig. 7. Results for tasks T-3 and T-5 (“Both” represents
aggregated results). In STEP-A, we had a total of 575 (293
for T-3, 282 for T-5) participants; about 0.774 (0.642 for T-
3, 0.911 for T-5) fraction failed to solve the task at STEP-
A and proceeded to STEP-B/STEP-C with a randomly
assigned feedback method.

User Study Results. We con-
ducted an initial user study
with participants recruited from
Amazon Mechanical Turk; an
IRB approval was received
before the study. The partic-
ipants were US-based adults,
without expertise in block-
based visual programming. Due
to the costs involved (over
3 USD per participant), we
selected two tasks for the study:
T-3 and T-5 from Fig. 4. We
present the detailed results in
Fig. 7. In total, we had 575 unique participants; out of these, 0.774 fraction failed to
solve the task at STEP-A and proceeded to STEP-B. PQUIZSYN was assigned to 148
participants in STEP-B (0.60 fraction successfully solved the presented pop quiz). Sub-
sequently, 0.128 fraction of these participants solved the task in STEP-C. Here, 0.128
measures the success rate of participants assigned to PQUIZSYN; in comparison, it is
0.082 for NEXTSTEP and 0.046 for NOHINT – see Fig. 7. Overall, the performance of
PQUIZSYN is better than NEXTSTEP (the gap is not significant w.r.t. χ2-test, p = 0.19)
and NOHINT (the gap is significant w.r.t. χ2-test, p = 0.01) [23]. These initial results
demonstrate the utility of providing pop quiz based feedback.

7 Conclusions and Outlook

We proposed a novel scaffolding framework for block-based programming based on
pop quizzes that involve inquiry-driven and problem-solving aspects. We developed a
modular synthesis algorithm, PQUIZSYN, that generates these pop quizzes. After con-
ducting an expert assessment using a multi-dimensional rubric, we developed an online
platform empowered by our scaffolding framework. While initial user study results with
our platform demonstrate the utility of our pop quiz based framework, there are several
interesting directions to continue this study, including: (i) extending our platform to pro-
vide multiple rounds of feedback within a single participation session and measuring
the efficacy of different methods; (ii) comparing our synthesized pop quizzes with those
generated by experts; (iii) conducting longitudinal studies with novice students to mea-
sure long-term improvements in problem solving skills; (iv) extending our framework
to more complex block-based programming domains.
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Abstract. Distance learning institutions record a high failure and
dropout rate every year. This phenomenon is due to several reasons such
as the total autonomy of learners and the lack of regular monitoring.
Therefore, education stakeholders need a system which enables them the
prediction of at-risk learners. This solution is commonly adopted in the
state of the art. However, its evaluation is not generic and does not take
into account the diversity of learners. In this paper, we propose a com-
plete methodology which objective is a more detailed evaluation of a pro-
posed educational prediction system. This process aims to ensure good
performances of the system, regardless of the learning profiles. The pro-
posed methodology combines both the identification of personas existing
in a learning context and the evaluation of a prediction system accord-
ing to it. To meet this challenge, we used a real dataset of k-12 learners
enrolled in a french distance education institution.

Keywords: Learning analytics · Assessment methodology · Risk
prediction · Learning profiles · K-12 learners

1 Introduction

Nowadays, schools and universities are moving towards online learning due to
the generalization of digital infrastructures and learning platforms which allow
to better meet the needs of learners. However, this learning modality is facing
many challenges, and the most widespread is the high failure rate among learners.
This phenomenon is due to many reasons such as the large diversity of student
profiles expressing different needs and requiring personalized support [23].

Virtual learning environments (VLE) store learner’s online activity. The cor-
responding data, called learning traces, is very diversified and is used by Learning
Analytics (LA) [19]. One aim among others is to provide educational stakeholders
with intelligent technology-based solutions to help them in identifying at-risk of
failure learners as early as possible. These solutions need to take into considera-
tion all learners behaviors. Therefore, a major issue is: does a system perform
equally with all learners profiles?

To answer this research question, we propose a methodology which is based on
the identification of personas, defined as learners profiles representations [8,22]
c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 41–52, 2022.
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and on the evaluation of model’s performances for each persona. We illustrate
the methodology on a case study (evaluation of a prediction model). To resume,
our main contribution relies on a more precise evaluation of educational systems,
taking into account the different learning profiles and based on a broad range of
metrics. We proceeded according to the following steps:

– Given the disparity of available learning traces, we defined several learning
indicators characterizing a learner’s behavior. Then, we identified homoge-
neous groups of learners sharing similar behaviors according to these indica-
tors. These learners groups are finally characterized into personas.

– We reviewed the existing assessment indicators and identified new ones to
complete the evaluation.

– We conducted a precise evaluation on a specific use case relying on a weekly
prediction approach.

We carried out our experimentation using real data of k-12 learners, enrolled in
a French distance learning center (CNED). This institution is characterized by
the multi-modality of learning and the total autonomy of its learners.

This paper is organized as follows. The Sect. 2 presents the general method-
ology and the used dataset. Section 3 and 4 present the first and second steps
of the methodology respectively. The results of the evaluation are detailed in
Sect. 5. A general conclusion and several perspectives are given in Sect. 6.

2 Evaluation Methodology

In this section, we start by describing the proposed the methodology and its
different steps. Then, we present our case study for the experimental part.

2.1 Methodology Description

In order to achieve our assessment objective, the methodology is organized
around three main steps (See Fig. 1):

1. Identification of learner profiles from learning. The profiles are charac-
terized by personas, containing key information about learners’ behaviors.

2. Run of the prediction system on the data and measurement of a complete
set of metrics, containing both precision metrics, as accuracy, and new time-
dependent ones (earliness, stability).

3. Deeper evaluation of the system according to the identified learners pro-
files and the various performance metrics.

2.2 Case Study

The case study concerns the k-12 learners enrolled in the physics-chemistry mod-
ule during the 2017–2018 school year within the French center for distance edu-
cation (CNED) [2]. It offers a large variety of fully distance courses to numerous
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Fig. 1. The in-depth methodology phases.

physically dispersed learners. The courses contents are both available online and
in printed papers which gives the learner the freedom to choose the learning
mode which suits him/her the best. Given the large number of learners and the
specificity of learning, it is highly time consuming for teachers to provide their
students with an effective and personalized feedback.

2.3 Data Description

The learning traces are collected from two data sources. The first one is the
Moodle platform, which generates the logs and the interaction traces between
the learner and the learning content. The second platform is GAEL, which is a
management system where all performance data, including grades, are stored.
In CNED, learners don’t start the school year at the same time t0 [2]. We select
learners with t0 between Sept. 1st and Oct. 31st, as they share similar learning
paths and characteristics. According to this information, our database gathers
learning traces of 639 learners. The learning period of the physics-chemistry
course is 300 d, during which 6 exams could be submitted. On average, learners
only submit around 4.51 assignments. The average mark on the submitted exams
is 13.73. However, if we consider setting the grade of 0 to the unsubmitted
assignments, this average is lowered to 10.21. The bi-modality (digital or paper-
based) of the learning makes the study of the dataset difficult. Indeed, learners
who use the course exclusively in paper format may not produce any logs and it
is therefore not relevant to compare them with active learners on the VLE. In
our dataset, we noticed that 37.25% of the population never logged in. To handle
this particularity, the dataset was divided into two subdatasets: one containing
data about learners who made at least one log on the VLE, and the other one
about those who have never logged in. Finally, the learners were classified into
4 classes according to their mean performance:

– Success (C1) : average score superior to 12.
– Medium risk of failure (C2) : average score between 8 and 12.
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Table 1. Number of students in each class for each subdataset.

logs no logs

C1 178 64

C2 53 29

C3 17 28

C4 153 117

Total 401 238

– High risk of failure (C3) : average score inferior to 8.
– Drop out (C4) : at least the two last assignments are not submitted.

The Table 1 summarizes the number of learners from logs and no logs sub-
datasets belonging to each class. The process of identifying learners profiles
within these classes is described in the following section.

3 Methodology Step 1: Identification of Learner Profiles

3.1 State of the Art

Learners’ behaviors are observed through their online learning traces. In LA,
multiple studies exploit this data to compare learners based on various indica-
tors, such as engagement [11], performance [4] or regularity [7]. In our context,
learning behaviors need to be described according to a set of indicators, allowing
a more detailed characterization of learners [22,24]. For this reason, we define
learners personas corresponding to typical learners identified through Machine
Learning classification processes [8]. In one hand, the identification of such per-
sonas enables a more precise description of the corpus, especially in terms of
learners profiles representation. In another hand, these personas meet the need
for an ethical learning analytics implementation [20], and ensure fair support
between learners and provide useful tools to the field stakeholders who need to
help their learners with equal support [10]. However, the diversity of the avail-
able data makes the task tricky: the variety of recorded data does not allow for
the same indicators to be computed all the time. The indicators we calculated
for the case study are described in the following subsection.

3.2 Study and Selection of Learning Indicators

Learning traces available in the CNED dataset are diverse and contain both logs
and performance data. This data was first used to define five absolute indicators
(e.g. calculated for each learner):

– Engagement reflects the learner’s activity on the VLE (logs) [11].
– Regularity translates the learner’s constancy of connection between the

beginning and the end of the course (frequency of connection) [2].
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– Curiosity expresses the intrinsic motivation of the learner to consult various
educational resources (variety of accessed content) [17].

– Performance corresponds to learner’s scores in the exams.
– Reactivity provides information about learner’s responsiveness during

course-related events (timeliness of the assessments)[7].

To go further, we completed these absolute indicators with a set of relative
indicators. The average of each indicator is computed for all learners, and the
associated relative indicator gives information about the behavior of a specific
learner profile comparing to his/her peers (negative or positive difference in
relation to the rest of the group). Both types of indicators were used as a basis
for the identification of learners profiles, described in the following subsection.

Obviously, engagement, curiosity and regularity (on the VLE) indicators,
based on the logs, were not computed for the no logs subdataset as associated
learners have never logged in.

3.3 Identification of Learners Profiles

For each subdataset, the study of learning indicators enables the identification of
learners profiles. These profiles correspond to homogeneous subsets of learners,
sharing similar behaviors, and are identified through different steps:

– Data-preprocessing:
• Data normalization: use of the RobustScaler1 method (ScikitLearn [15])

to improve the model’s performance.
• Outliers identification: Use of the IsolationForest2 algorithm [14] to set

apart the atypical data and increase model’s performance. This step is
crucial because outliers’ atypicity does not allow them to be associated
with other students.

– Identification of homogeneous groups of learners: k-means Algorithm
[13] is used to identify homogeneous groups of learners. Results are evaluated
with Silhouette analysis [18] and Davies-Bouldin Criterion [9]. We run the
algorithm with values from 2 to 15 and selected the one giving the best
performance.

– Description of learners profiles: each of the identified clusters are then
characterized by a size (number of associated students), its proportion in
dataset to which it belongs and a set of learning indicators. Outliers are not
discarded but are studied individually.

Applying this methodology, we identified 12 outliers among the 639 learners.
Each of the remaining learners is associated to one of the 21 identified learners
profiles. Some statistics are given in Table 2.

1 https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
RobustScaler.html.

2 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
IsolationForest.html.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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Table 2. Clustering results by subdatasets and classes.

Logs No logs

C1 C2 C3 C4 C1 C2 C3 C4

Number of inliers 176 52 16 151 63 28 27 115

Number of outliers 2 1 2 2 1 1 1 2

Optimal value of k 2 2 2 2 3 3 3 4

Silhouette index 0,44 0,30 0,85 0,28 0,43 0,36 0,36 0,34

Davies-bouldin index 1,00 1,45 0,07 1,32 0,85 0,96 0,92 1,04

3.4 Personas: Examples

Each persona contains a large variety of information: narrative description of the
learning behavior, its proportion in the dataset it belongs to, visual indicators
of the risk of failure, and learning modality (See Fig. 2).

Fig. 2. Example of two personas.

The utility of such personas is threefold. In addition to providing valuable
information about learners behaviors, they contribute to the improvement of the
results interpretation of a LA system. Finally, they are particularly interesting
for our study because they can be used to refine the evaluation of an educational
system. The results presented in the Sect. 5 confirm this last point.

4 Methodology Step 2: Earliness and Stability
Measurements

In addition to the usual performance measures, this section defines new met-
rics for a deeper evaluation of an educational prediction system. These metrics
consider the importance of the temporal evolution of the prediction.
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4.1 State of the Art

The main objective of the majority of educational prediction systems is the
early identification of at-risk of failure or dropout learners. Static and precision
Machine Learning (ML) metrics such as accuracy are mainly used to evaluate
the performance of educational prediction systems. For example, [5] studied the
accuracy of early warning system (EWS) on identifying at-risk students in a real
educational setting. The study of [12] aimed to improve the performance of a
dropout EWS by evaluating the trained classifiers with both receiver operating
characteristic (ROC) curves and precision-recall (PR) curves. [3] compared the
performance of a developped EWS on two different subjects based on the accu-
racy, the true negative rate (TNR) and the true positive rate (TPR) measures. [1]
compares the performance of different ML model in analyzing the problems faced
by at-risk learners enrolled in online university. This performance assessment is
based on accuracy, precision, recall, support and f-score results. The majority
of education prediction systems uses static and precision ML metrics for per-
formance evaluation. However, both learning and prediction are time-evolving.
Consequently, we need to consider the temporal dimension in the performance
measures and illustrate the evolution of the whole process over the learning
period. For this aim, we propose new metrics to evaluate the prediction and
which the definition is based on the regular tracking of the prediction results.

4.2 Metrics Description

Prediction Earliness: Researchers work on providing stakeholders with the
most accurate prediction results. A common theoretical definition of the early
prediction is the right time to identify at risk learners. The earliness of the right
prediction depends always on the studied context. We propose to measure the
earliest time to predict as accurate as possible the classes of learners. We define
the earliness of prediction as the mean time from which we start to correctly
predict the learners classes [6]. While defining this measure, we focus on at-risk
learners to best respond to the objectives of our study.

Prediction Stability: Stability is usually related to small changes in system
output when changing the training set [16]. In our context, we are interested in
temporal stability referring to the capacity of a classifier to give the same output
over time when training the same dataset [21]. We measure temporal stability
as the average of the longest sequences of successive right predictions [6].

5 Methodology Step 3: In-Depth Evaluation
of a Prediction System

This section presents the whole methodology from the prediction system descrip-
tion to the modeling and assessments steps. It ends up by a comparative study
based on the obtained results.
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5.1 Short Description of the Prediction Model

Our system is based on a weekly prediction model of at-risk of failure or dropout
learners. As explained, learners of the cohort are classified into four classes.
First, we went through both processes of features extraction and selection. Going
through these processes is important to select the activity features most corre-
lated to the learner’s final result as well as to minimize noise in the model. Thus,
each week wi, a learner is represented by a vector X composed of features going
from f1 to fn and the class y to which he belongs to. Each learner belongs to
one and only class over the year.

X =< f1, f2, ..., fn, y >

Each feature f1 to fn represents one learning activity till the prediction time
wi. For each prediction time wi, the value of one feature is added to that of
prediction time wi−1: we proceed to an accumulation of values. Based on the
accuracy results of [2], we use the Random Forest (RF) as a ML model for our
system.

5.2 Results

In the first evaluation phase, we divided the test dataset population into two
groups (logs, no logs) as explained in the Sect. 2.3. In this experimental part, we
report on the results of 3 metrics: accuracy, earliness and stability.

Accuracy Analysis. The curves of the Fig. 3 show a difference in the accuracy
between the test dataset of the total population, logs and no logs subdatasets.
Indeed, we notice that until almost the week 15, classes of learners who belong
to the no log group are the best predicted. In fact, the dropout class is the most
predictable one and is highly represented in the no log subdataset (cf. Table 1).
However, the further we advance in the school year, the more the prediction
results of logs and no logs converge towards almost the same values.

Fig. 3. Accuracy evaluation with total population and the two subdatasets (logs,
no logs).
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The Fig. 4 shows the curves of the evolution of the accuracy of the personas
identified in logs (A) and no logs (B) subdatasets. To ensure the figure lisibility,
we only present the results of one persona per class and by subdataset: personas
1, 4, 5 and 8 were selected for the logs subdataset, and personas 10, 13, 16 and
20 were selected for the no logs subdataset. From the different curves, we can
clearly notice that personas belonging to the same profile group do not have the
same prediction accuracy. Differently from the results shown in Fig. 3, even at
the end of the learning period, the accuracy curves do not converge towards a
same value for all the personas.

Fig. 4. Accuracy evolution of personas of logs (A) and no logs (B) subdatasets.

Earliness and Stability Analysis The Table 3 shows the results of earliness
and stability metrics of the test dataset, logs and no logs subdatasets. We can
notice that both logs and no logs have different values for the earliness. Further-
more, we can see from this table that the stability performances of the system
are different from one profile group to another. In addition, whatever the sub-
dataset is, the algorithm has the same stability and earliness performance for
each class. Thus, the dropout class has always the best metrics values, whereas
the medium risk class has the worst results.

Table 3. Earliness and Stability measurement of each class of a profile group.

Total logs no logs

Earliness Stability Earliness Stability Earliness Stability

Dropout 1.01 31.44 1.03 31 1 31.88

High Risk 3 16.55 1 7.5 3.57 19.14

Medium Risk 8.06 6.62 6.77 4.33 8.28 9.57

Success 1.1 28.38 1.12 28.69 1 28.6

Total 2.06 25.35 1.75 26.10 2.35 26.43
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The Table 4 shows the results of the earliness and stability metrics of each
persona belonging to logs or no logs subdatasets. We notice that the measures
are different from one persona to another. In addition, the difference is even
more tangible when it comes to the personas of medium (C2, in pink in Table
4) and high risk learners (C3, in yellow in Table 4). Due to the lack of pages,
we cannot report all the results: we only present a selection in order to illustrate
the kind of results that we can provide with the presented methodology.

Table 4. Earliness and stability for each persona.

Subdataset Persona Earliness Stability Subdataset Persona Earliness Stability

1 1.13 28.69 9 1 35

2 1 26 10 1 6

3 12.66 1.66 11 1 35

4 5.5 5.66 12 5 12

5 1 7.5 13 8.2 10.8

7 1 25.2 14 12 1

logs

8 1.04 32.31 15 6.5 8.5

16 24 23.2

C1 18 1 31.6

C2 19 1 35

C3 20 1 35

C4

no logs

21 1 33.16

5.3 Discussion

The previous tables and figures showed that the prediction algorithm out per-
forms globally (up to 93% of accuracy). However, the prediction algorithm
doesn’t exhibit the same performance with each learner profile. For example,
the successful learners and those who dropout are much better predicted than
those who are at-risk of failure. In addition, learners who belong to the log group
are also more accurately predicted. Earliness and stability results show that the
algorithm performance is dependent on the learners profiles. In order to provide
education stakeholders with accurate and reliable results over time, the predic-
tion system has to take into consideration the different learning profiles existing
within a cohort.

6 Conclusion and Perspectives

The identified learners profiles, characterized by personas, within our dataset
were diversified and confirmed that learners adopt different behaviors and must
receive an adapted support. In addition, the prediction model evaluation reveals
that the algorithm’s performances were not the same for all personas and classes.
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The obtained results answer our research question and confirm the interest of
personas in LA tools assessment. Furthermore, indicators such as earliness and
stability, which have been introduced, give information about the confidence
that a user can have in the system. Indeed, the usual accuracy metrics are insuf-
ficient to evaluate the weekly results of an educational prediction system. It’s
a reason why, we plan to investigate several research directions relying either
on personas or on new refinements in LA assessment. First, we believe that
the personas identified in year N could also be used as a basis for evaluating
classes in year N+1, assuming that the behaviors observed from one year to the
next are similar. This research context deserves attention because it would help
to provide quick feedbacks for teachers about their learners’ situations. This
early information could help them to promptly develop solutions for students
considered at risk. Secondly, we wonder how much the separation of the initial
dataset according to learning modalities (logs, no logs) and classes (C1, C2, C3,
C4) influences the performance of the learning systems, and particularly of the
prediction system in our case study. Therefore, it seems interesting to compare
the results with different partitions of the dataset. In one hand, it could allow
to highlight the key features which are essential to the good functioning of the
model. In another hand, this would further improve the explainability by allow-
ing teachers and academics to select the appropriate partition according to their
pedagogical objectives. Finally, both indicators presented (earliness and stabil-
ity) provided additional information about systems’ behavior. In that way, a
further work on these indicators and especially on their generalization seems to
be necessary, so that they can be used in a wider range of areas.
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Abstract. The widespread shift in higher education (HE) from in-person instruc-
tion to pre-recorded video lectures means that many instructors have lost access
to real-time student feedback for the duration of any given lecture (a ‘sea of faces’
that express struggle, comprehension, etc.). We hypothesized that this feedback
could be partially restored by analyzing student facial movement data gathered
during recorded lecture viewing and visualizing it on a common lecture time-
line. Our approach builds on computer vision research on engagement and affect
in facial expression, and education research on student struggle. Here, we focus
on individual student struggle (the effortful attempt to grasp new concepts and
ideas) and its group-level visualization as student feedback to support human
instructors. Research suggests that instructor supported student struggle can help
students develop conceptual understanding, while unsupported struggle can lead
to disengagement. Studies of online learning in higher education found that when
students struggle with recorded video lecture content, questions and confusion
often remain unreported and thus unsupported by instructors. In a pilot study,
we sought to identify group-level student struggle by analyzing individual stu-
dent facial movement during asynchronous video lecture viewing and mapping
cohort data to annotated lecture segments (e.g. when a new concept is introduced).
We gathered real-time webcam data of 10 student participants and their self-paced
intermittent click feedbackonpersonal struggle state, alongwith retrospective self-
reports.We analyzed participant videowith computer vision techniques to identify
facial movement and correlated the data with independent human observer infer-
ences about struggle-related states. We plotted all participants’ data (computer
vision analysis, self-report, observer annotation) along the lecture timeline. The
visualization exposed group-level struggle patterns in relation to lecture content,
which could help instructors identify content areas where students need additional
support, e.g. through student-centered interventions or lecture revisions.
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1 Introduction

1.1 Project Description

When instructors in higher education (HE) deliver in-person lectures, they can access a
form of real-time student feedback simply by ‘reading the room’. That is, by scanning
their students’ nonverbal cues, instructors can make inferences on the assumption that
the ‘sea of faces’ may express various cognitive and affective states relevant to group
instruction, such as struggle and comprehension. However, the widespread shift in HE
from in-person instruction to pre-recorded video lectures means that many instructors
have lost access to this form of feedback. We sought to test the hypothesis that this
feedback could be partially restored by analyzing student facial movement data gathered
during recorded lecture viewing and visualizing it on a common lecture timeline. To this
end, we developed a software prototype, PUZZLED, inspired by current research in
education, computer vision, and data visualization. The system was designed to identify
when and in what respect students are struggling, and to analyze and visualize results to
provide insights to human instructors.

In this report, we describe the prototype design and piloting in a small-scale
exploratory and feasibility study (N = 10), funded by the University of Edinburgh
Regional Skills program. As a key contribution of this paper, the study showed that
visual evidence can be extracted from video of student facial movement (e.g. eye gaze
aversion) that aligns temporally with aspects of a corresponding viewed lecture video.
That is, moments in the lecture video containing conceptually challenging content, omit-
ted background information, or other difficulties posed to student viewers (e.g. blurry
text) led to measurable student facial movements (e.g. expression changes). These con-
trasted with student facial movement data captured during introductory or otherwise
straightforward segments of the lecture video.

A second key contribution of this paper relates to the visualization of the data.
Current data visualization interfaces for time-based models are primarily anchored in
either absolute time (e.g. audience feedback during an in-person lecture, which uses
global timestamps), or abstract task time (e.g. time solving a problem, which is averaged
across individuals). Here, we integrate both by using global timestamps indexed against
a common reference timeline (feedback from asynchronous viewings of a video lecture).
This timeline is used to visualize group-level feedback from a student cohort at a granular
level. In this application, the visualization can inform instructors about how student
struggle relates to specific segments of the lecture.

1.2 Research Context in Education

Research on student learning, including in HE, suggests that struggle – the effortful
attempt to grasp new concepts and ideas – is important to the learning process [1–
5]. More precisely, there is differentiation between ‘unproductive’ struggle, such as
unresolved confusion that leads to task disengagement, and ‘productive’ struggle, as
when a challenging task is cognitively engaging. Productive struggle is important for
the development of students’ critical thinking and deep understanding [6–9, see also 10].
It can also indicate an appropriate level of challenge that maintains learner engagement,



Identifying Student Struggle by Analyzing Facial Movement 55

a key factor in HE student retention [11, 12]. In addition, research has found that equity-
oriented teaching both successfully challenges all students to engage in struggle, and
also supports all students through struggle [3, 5].

In onlineHE instruction, however, research indicates thatwhen students strugglewith
recorded video lecture content (when a question or confusion arises), it often remains
unreported, and thus unsupported by instructors, leading to lower student engagement
and greater attrition, relative to in-person courses [13, 14]. A growing number of students
are negatively impacted by this problem, given that recorded lectures are now a “main-
stream” part of online HE provision [15]. 94% ofUK universities make recorded lectures
available to students year-round, in part “as a catalyst for inclusivity” [16]. In addition,
European HE reform has promoted the expansion of e-Learning provision, including
online recorded lectures (75% of universities), as a means of “widening access” to HE,
while acknowledging that quality “teacher support” is needed to maintain learning with
“critical thinking” and “deep understanding” in online contexts [17, 18].

In principle, instructors canonly effectively support student struggle in online courses
of studentswho self-report. This poses a serious problem, as themove to onlineHEplaces
more demands on students to make their struggle known to instructors. Yet students
who do not have knowledge of the subject area, and/or are not skilled in self-regulated
learning, are less likely to self-assess and self-report their difficulties [19]. Additional
research suggests that self-reporting may privilege the subset of students who are vocal
about their struggles [20]. Thus, many students’ learning needs remain unsupported
in relation to recorded lecture content online [13]. Overall, this situation highlights
the tension between the benefits and drawbacks of online learning and its constitutive
technologies [21].

1.3 Research Context in Informatics

A range of literature has used estimations of student engagement or affect, primarily
using well-developed standards for assessing facial action units, along with self- and/or
observer-coded higher-level states correlated with quantitative face and postural data
[10, 22–25]. We take inspiration from these methods and bellwethers of feasibility. To
our knowledge, other studies using computer vision related analysis of student faces
involve participants interacting with virtual tutors or games, but not pre-recorded lecture
videos with human instructors, as we have done.1

The choice of educational material ‘delivery mode’ in our study (i.e. lecture videos
with a human instructor) can be understood in relation to our primary aim of supporting
human instructors, as compared to the aims of similar studies that seek to investigate
learning itself or to enhance virtual tutors. For our purposes, rather than seeking to
determine whether a student is ‘really’ struggling, we instead focus on providing infer-
ences about the student cohort that could motivate an instructor to re-evaluate aspects
of their lecture (e.g. content, delivery, pre-requisites, etc.) or provide corresponding
non-lecture-based student support (e.g. forums, further readings, etc.).

1 See our source video lectures (1a) and (1b), which played sequentially without interruption:
(1a) https://media.ed.ac.uk/media/1_yd7krol3 (1b) https://media.ed.ac.uk/media/1_ktjie97s.

https://media.ed.ac.uk/media/1_yd7krol3
https://media.ed.ac.uk/media/1_ktjie97s
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In educational technology research that does not involve face data, there are related
applications of data visualization that aim toprovide insights to instructors.Wedraw from
an example that uses a horizontal time axis and vertical axis of individual students to sur-
face salient patterns within a vast and complex student cohort (e.g. in aMOOC) [13].We
also build directly on a concept for annotating synchronously viewed content. The latter
implementation uses crowd-sourced structured tagging (live audience feedback) that is
visualized on a horizontal time axis, aligned with a video replay interface [21, 26].

Outside of education, computer vision research has sought to measure affective indi-
cators in participant video under ‘real world’ capture conditions. In an approach related
to ours, independent algorithms for classifying events in multiple low-level data streams
(face, posture, etc.) are followed by fusion and high-level affect classification [27].
Our approach also relates to research on stress using multimodal biosignal information
extracted from videos [28], in that we aspired to improve the accuracy of student struggle
estimation by correlating low-level objective measures (e.g. gaze direction) with real-
time and retrospective self-report. (Similar classification techniques have been used in
education research with sophisticated instruments in controlled environments [10], in
contrast to our use of webcams in everyday locations).

1.4 Research Context on Facial Expressions and Eye Gaze

Overwhelmingly, research on eye gaze centers on visual content fixation, to understand
how people look at text, mathematical formulas, videos, interfaces, etc. In contrast, a
smaller body of research considers eye gaze as an indicator of affective or cognitive state,
primary in terms of whether or not gaze is averted. In computer vision affect detection,
gaze aversion metrics have been used to improve automated classification of emotional
state [29]. In developmental psychology, research has confirmed that young children
judge faces to be engaged in thinking when viewing photos with subjects averting their
gaze [30]. (The study uses a similar approach to ground truth as the present one, in that
cognitive-affective states are inferred from images by independent raters). Educational
psychology research has also identified gaze aversion in young children as indicative of
thinking; this is suggested as a cue to instructors who must gauge how soon to expect a
verbal response following a question [31]. Research on inferring mental states from gaze
aversion supports the idea that disengaging from perceptual demands (such as looking
at an instructor) facilitates thinking [32].

2 Methodology

2.1 Participants and Study Design

Following ethics approval,we recruited university students (N=10) fromaUKpostgrad-
uate degree program in informatics. We offered a £10 voucher in exchange for roughly
45 min of participation. 7 female and 3 male volunteers responded with informed con-
sent (demographic data was self-reported in free text). 90% of ages fell in the range of
22–29, plus one 37-year-old participant, and ethnicity was entered as South Korean (1),
Chinese (2), Indian (2), or white/Caucasian (5). 70% of participants had subject matter
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experience ranging from 1–4 years; a further two had 0.25 years, and one had 8 years.
80% selected a multiple-choice answer to report having a “little” experience learning
through video lectures (20% chose a “lot”, and none chose “it’s new to me”, the sole
remaining option).

We invited the participants via an emailed link (with an anonymous unique identi-
fier) to start and complete their session in a single sitting. The web interface provided
instructions for positioning the webcam using a live feed from their own device (“ensure
that your face is in the middle of the image”). No webcam video was displayed during
recorded lecture viewing. A short 3-min practice session was offered with a separate lec-
ture not used for the study, to provide experience viewing and using the click feedback
interface, which offered the following button options and instructions:

• “Feels easy” - click when you think the content is easy for you to understand
• “Feels challenging” - click when you are able to follow the content, but it is not too
easy for you

• “I’m lost” - click when you cannot follow at all what the lecturer is talking about

The click feedback interface could be repositioned from left-to-right, while remain-
ing in a fixed row beneath the lecture video (Fig. 1). A further instruction stated “When
viewing the lecture, as your feeling changes, continue to click these buttons, to show how
you feel”. Following the practice lecture video, the participants were shown two different
lecture videos (ca. 3 min+ ca. 6 min= total ca. 10 min) from an existingMSc computer
vision course taught by the last author. The lecture videos played back-to-back automat-
ically, while participant webcam and click feedback was captured in real-time during
viewing. Participants were not informed that the lectures were not originally intended
for consecutive viewing, as the second lecture summarized a previous lecture not shown
to participants. This provided an experimental control indicator of ‘challenged’ reac-
tions not related to challenging subject matter. Upon completion, an ‘exit survey’ was
provided for retrospective self-report on the lecture material and feedback on the study
interface design.

There were some problems with both the interface code (cross-browser compat-
ibility) and comprehensibility of the instructions to participants. The data collection
succeeded as intended for participants 1–5 (50%). Participant 6 successfully provided
webcam data without click feedback, and we did not request a repeat session. For par-
ticipants 7–10, we requested a repeat session; 7–9 succeeded in their second session and
participant 10 succeeded in a third session. Thus, data on 40% of participants did not
relate to their first viewing of the lecture materials. However, for an exploratory pilot
and feasibility study, this was not a serious obstacle to completing its objectives.

Our hypothesis was that granular student cohort feedback on video lecture materials
could be provided to instructors by students who viewed videos asynchronously. We
sought to analyze student facialmovement data gatheredduring recorded lecture viewing,
and to visualize the cohort feedback on a common lecture timeline. Our expectation was
that computer vision techniques could identify positional changes in head orientation
and eye gaze direction, along with facial expression changes indicating struggle, and
that these could be correlated with independent observations inferring struggle-related
states, to provide a pathway to increasingly automated recognition.With all participants’
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data (computer vision analysis, self-report, observer annotation) plotted along the lecture
timeline, evidence for our hypothesis would be found if group-level patterns emerged in
relation to segments of lecture content. A toolchain of data processing and visualization
steps would then provide an overview of the student feedback in relation to the lecture
material. This could help instructors identify content that corresponded to a potential
requirement for further student support.

2.2 Data Analysis Techniques

Facial feature analysis was performed with OpenVINO, using models adapted from
Open Model Zoo.2 Pre-existing trained models for facial landmark localization, face
detection, gaze estimation, head pose estimation, and eyes open-or-closed state were
integrated with PUZZLED, to analyze participant video frames for eye gaze direction
and head orientation. While further analysis is needed to uncover potentially relevant
patterns in head orientation, we found a notable correlation between eye gaze direction
(aversion) and possible student struggle (see context in Sect. 1.4 and results in Sect. 3).

We normalized and smoothed out eye gaze direction to indicate a baseline bandwidth,
above which was classified as upward gaze and below as downward. We then filtered
out gaze direction data within the baseline band, treating it as direct video viewing
(including left-right patterns of reading on-screen text). We also filtered out downward
gaze data, since our self-report click feedback interface was below the video (Fig. 1),
and participants appeared to be saccading to the interface when contemplating or per-
forming click feedback. The remaining upward gaze data was plotted against real-time
and retrospective self-report and observer annotations. Notably, we did not treat it as a
universally valid measure of struggle (see below).

Lecture video player & feedback interface Webcam frame & computer annotation

Fig. 1. Frame layout of lecture video and self-report click feedback interface (l); webcam frame
of face with features detected and gaze direction (r). A planned production version would not
remotely transmit facial images, only non-visual data from webcam analyses performed locally.

2 https://docs.openvino.ai/latest/omz_demos.html.

https://docs.openvino.ai/latest/omz_demos.html
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Individual Classifications
Our approach is inclusive, in that it does not depend on generalizations across ethnicity,
culture, gender, etc., and can even remain robustwith respect to individual difference. For
example, for participant ‘052’, upward gaze likely indicates struggle, whereas for ‘409’,
it does not. This classification for ‘052’ is in part established through correlations with
the other within-subject data points (e.g. retrospective self-report that the first lecturewas
challenging and the second was not, and real-time self-report of challenge coinciding
with independent observer annotations of challenge).

Cohort Classifications
Similar to related work [33], which uses a percentage of frames with a target classifi-
cation (‘stress’) in a time window to generalize the classification to the window (stress
segment), we use a relative threshold of events with a target classification (‘struggle’)
within and across students to identify a relevant lecture segment in which students strug-
gled. In our case, we allow for sparse target classification events in different data streams
(Fig. 2): individual students (grey horizontal bars) self-reports of being challenged (blue
stars), computer-detected upward gaze aversion events (cyan dots), and independent
annotations of inferred challenge (red circles and dots), aggregated across students for
each bounded lecture segment (within green vertical lines).

Fig. 2. Example of two plotted segments, a (left), b (right). (Color figure online)

In the above illustration, relatively sparse struggle events do not meet the threshold
within the ca. 40 s window depicted (Fig. 2a, two lecture segments, 155 s–195 s), while
for a similar time window (Fig. 2b, one lecture segment, 320 s–360 s), relatively dense
struggle events generalize to a segment classification of cohort struggle.

Independent observations were done by three members of the research team (AE,
RF, AL), by viewing all the participant videos (without the lecture video), and using the
same click feedback interface as the participants. A further annotation option of “bored”
was added to the interface to allow for distinguishing between comprehension and dis-
engagement, and thereby to increase robustness in correlating data points for the ‘feels
easy’ option. A manual segmentation and annotation of the lecture was performed based
solely on its content, independent of any participant or observer data (e.g. ‘3:00–3:25,
introduction of new term’; ‘3:26–4:10, description of applying a technique’). Finally,
data from annotations, computer vision, real-time and retrospective self-reports, and
independent observations was plotted on the lecture timeline.
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3 Results

Given the structure of our study, there are two relevant sets of results. The first set of
results relates to the correspondence between computer vision data (eye gaze direction)
and manual annotation data (including student-self report and observer annotations).
These results indicate that the computer vision algorithm shows promise, and could be
developed in future work to increase automated analysis and tagging.

Fig. 3. The horizontal axis represents the lecture timeline from start time to end time. The black
line is a normalized and smoothed plot of all students’ vertical gaze direction, where the lowest
points are nearest to the median gaze bandwidth (i.e. looking towards any point left-to-right on the
horizon), and the highest points indicate peak vertical upward gaze. The red line is a normalized
and smoothed density plot of all struggle annotations (student self-report and three independent
observers). Agreement among annotators and self-reports are seen in the red peaks, and typically
track upward gaze (black peaks) as seen in the confluences that occur throughout, apart from a
notable red/black divergence in amiddle segment of the timeline (x-axis). This period of divergence
hypothetically corresponds to the increased level of click feedback during that timewindow, which
appears to cause a downward gaze towards the click interface below the video (see Fig. 1). In future
work, we will eliminate real-time student self-report and replace it with retrospective self-report
during a second video viewing, to mitigate the divided attention (and gaze patterns) between initial
lecture video viewing and concurrent feedback reporting. (Color figure online).

With respect to eye gaze direction, our results suggest initial evidence for a hypothesis
that intermittent periods of upward gaze aversion could be related to a ‘struggle state’,
perhaps related to increased mental effort (see Sect. 1.4), based on the correspondence
depicted in Fig. 3. Data from each individual is used to establish their own baseline
(median) vertical gaze direction, such that upwards gaze is a relative measure. Our aim
is to use multiple indicators of struggle that may vary across individuals, but that occur
consistently for a single individual. For example, an individual who does not exhibit
upwards gazewhen they strugglemight exhibit a different indicator.Our approach should
therefore be receptive to individual differences, whether cultural or idiosyncratic. If
heterogenous indicators have a greater density for a given lecture segment, this becomes
noteworthy for the instructor. (At present, head position data was too noisy to identify
any reliable correlations).
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Fig. 4. Prototype of instructor data visualization interface (darker/wider bars=more self-reported
student struggle). Vertical bars are density plots of the cohort. For example, at around 260 s, in
the lecture segment labelled ‘solution 1st step’, a greater proportion of students reported struggle
than elsewhere. This would suggest to the instructor that the lecture video segment could be
re-examined, to understand if the struggle was part of the pedagogical design (e.g. providing
‘food for thought’), or alternatively, if students need further support, and how to support them.
Support could include student-centered interventions (e.g. adding a forum or group study session,
linking to additional resources), or revising the lecture content as needed, by clarifying a term,
adding a visual example, etc. Horizontal bars indicate frequency of report. For example, student
‘378’ reported ‘feels challenging’ more frequently than all other students. The range of horizontal
bars gives the instructor an overview of the student cohort, which in this figure, suggests a large
proportion of the students are well-matched to the lecture content. Empirical survey data of the
students’ retrospective self-reports bear out this reading.

Our second set of results indicates how a data visualization of student struggle could
benefit instructors (Fig. 4). At present, for clarity, we illustrate a minimalist version of
an instructor interface prototype using only student self-report data. The figure caption
describes the visualization in detail.

A full-featured interface will include embedded lecture video, for the instructor to
‘seek’ to relevant video positions for lecture review. It could also include anonymized
background information for individual students who elect to disclose it (e.g. disabilities,
non-native speakers relative to lecture language, experience level in the subject matter).
These and other features would help instructors understand the overview.
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4 Discussion

The results from our initial experiments show that visual evidence can be extracted from
video of student facial movement that aligns temporally with aspects of a corresponding
viewed lecture video. In our exploration of study design, computer vision apparatus,
collected and analyzed data, and instructor interface design, we discovered strengths
and limitations of our approach. A core strength of our findings is that visual evidence
of struggle in facial movement analysis was often present during relevant segments of
the viewed lecture video. Relevant segments challenged student comprehension due to
either conceptual content or presentation issues such as a missing visual example. A
core limitation of our study design was gathering self-report feedback concurrently with
video lecture viewing, which interferedwith facialmovement data. Our study designwill
change in the future to allow more ‘naturalistic’ student viewing of the lecture. As there
was a strong agreement between students’ retrospective self-report and their real-time
click feedback, we envision building on this to allow students to retrospectively review
and annotate the video lecture.

The computer vision apparatus was largely effective, and we anticipate extending
it with further “struggle” detectors and increasing automation. A follow-on study with
the above-mentioned improvements in study design would provide a basis for training
a machine learning model that integrated video and annotation data. We could then test
how well it generalized to new student video.

We were often surprised by data we collected and analyzed, in terms of what it
contained and the patterns it revealed. For example, we did not expect students to exhibit
such pronounced facialmovementswhen viewing a video alone (e.g. nodding their head).
It was also interesting to see apparent visual manifestations of struggle correspond so
closely to aspects of the video lecture, ranging from the use of unexpected, unusual,
or new terms, to unclear lecture video imagery (e.g. blurry text), to future-oriented
references such as abstract descriptions, concretized with visual examples in a following
slide (a transition also reflected in the student data analysis).

Finally, taking the patterns we found in the data and visualizing them in an instructor
interface was not trivial. At times, when a relevant pattern in the data was strong con-
ceptually, it was opaque when the data was visualized. Other times, patterns in the data
were easy to overlook until they were visualized. While both of these issues are typical
of data visualization in the sciences, we were not able to fully anticipate how they would
arise in an interface for instructors to gain insights about a student cohort.

As the last author was also the instructor who wrote and delivered the video lectures,
it is of interest to report his takeaway from the study, irrespective of bias. His report is
suggestive of the potential benefits to instructors that we plan to explore systematically
in future work. He notes that in reflecting on his past in-person teaching, he indeed made
inferences about ‘face-to-face’ student cohorts by observing behaviors, e.g. different
forms of nodding in seeming comprehension, or less positive indicators such as paper
rustling, mobile phone usage, or staring at the desk.

For both in-person and recorded video instruction, he received positive student feed-
back, collected following his lectures. Having done this study, he now sees how student
feedback evolved from one recorded lecture segment to another, rather than being a
gestalt post-lecture impression. He also sees at a glance how many of the times that
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students indicated challenge corresponded to a lecture segment with presentation issues
as opposed to those with genuine challenging content (see Fig. 4).

5 Conclusion

This implementation of the PUZZLED prototype realized the aims of its design. It pro-
vided an instructor with insights about how segments of their lectures related to the
students’ experience of them. Conceptually challenging lecture segments corresponded
to pronounced student struggle patterns initially, which then transitioned back to a base-
line. In context, for the lecturer who structured the content, this indicated that students
were at least coping with and potentially learning advanced techniques in the subject
matter. A few students who struggled more often than others may have needed further
support to the get the most from the lesson. In still other instances, the content or order
of slides could be modified to provide (e.g.) visual examples at key moments.

We imagine that PUZZLED could also indicate where instructors might increase
the challenge level of under-challenging content, to encourage productive struggle. In
addition, we believe it can help contribute to more inclusive online HE instruction, by
facilitating instructors’ ability to receive non-verbal feedback from all students using
recorded video lectures. A second prototype will be tested with more instructors.
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Abstract. Many STEM problems involve visuals. To benefit from these prob-
lems, students need representational competencies: the ability to understand and
appropriately use visuals. Support for representational competencies enhances
students’ learning outcomes. However, it is infeasible to design representational-
competency supports for entire curricula. This raises the question of whether
these supports enhance future learning from novel problems. We addressed this
question with an experiment with 120 undergraduates in an engineering class.
All students worked with an intelligent tutoring system (ITS) that provided prob-
lems with interactive visual representations. The experiment varied which types
of representational-competency supports the problems provided. We assessed
future learning from a subsequent set of novel problems that involved a novel
visual representation. Results show that representational-competency support can
enhance future learning from the novel problems. We discuss implications for the
integration of these supports in educational technologies.

Keywords: Visualizations · Representational competencies · Future learning

1 Introduction

Instruction in STEM domains heavily relies on visual representations because much
of the content knowledge in such domains is visuospatial [1]. As a result, students
encounter multiple visual representations to learn about foundational concepts [1, 2].
For instance, when learning about sinusoids, engineering students typically encounter
the time-domain visual and phase-domain visual shown in Fig. 1.

Unfortunately, students often do not benefit from these visual representations. Stu-
dents’ difficulties in understanding visual representations are a major obstacle to their
success in STEM domains [1, 3], including engineering [4]. Such difficulties result from
a lack of representational competencies, that is, knowledge about how visuals reveal
information relevant to scientific concepts and practice [5, 6].

Further, challenges that are caused by lack of representational competencies are
particularly severe for students with low spatial skills [7]. For example, when translat-
ing between visuals in Fig. 1, students need to mentally rotate a phasor and project a
sinusoid’s amplitude to the magnitude of a phasor [8, 9].
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Fig. 1. Visual representations: (a) time-domain visual showing a sinusoid as a function of time;
(b) phase-domain visual showing sinusoid as rotating vector.

More crucially, lack of representational competencies could subsequently impede
students’ future learning because the concepts they learn today are the basis for their later
learning fromnovel problems. For example, studentswho fail to understand time-domain
and phase-domain visuals (Fig. 1) will likely struggle to learn about more advanced
concepts building on an understanding of these visuals, such as phasor addition.

Educational technologies offer a solution to this problem. They can provide adap-
tive support for representational competencies while students interact with visuals [10].
Prior research has established effective technology-based supports for students’ repre-
sentational competencies [10]. However, experimental evidence shows that designing
adequate supports requires substantial time and effort [10]. Consequently, it is infeasible
to design representational-competency supports for entire curricula. This raises the ques-
tion of whether the effectiveness of representational-competency supports generalizes
by enhancing students’ future learning of novel concepts with novel visuals. Addressing
this question will yield novel insights into the practicality of integrating supports for
representational competencies in technology-based curricula.

Given that issues due to lack of representational competencies are particularly severe
for students with low spatial skills, it is important to explore how spatial skills mod-
erate the effects of representational-competency supports on students’ future learning.
Addressing this question will yield novel insights into how representational-competency
supports relate to equity issues in STEM fields because students with low spatial skills
are disproportionally women [11] or have low socioeconomic status [12].

2 Literature Review

2.1 Supporting Representational Competencies

Previous research identified two broad types of representational competencies that play
an important role in learning with visuals in STEM [6]: sense-making competencies and
perceptual fluency. Since these competencies derive from different learning processes,
they should be supported by different types of instructional activities [13].

First, sense-making competencies describe explicit, analytical knowledge that allows
students to explain how visual features of representations map to domain concepts [14].
Sense-making competencies also involve the ability to connect multiple visuals based
on conceptual features [1, 6]. For example, students with sense-making competencies
understand that the y-maximum in the time-domain visual (Fig. 1a) shows the amplitude
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of a sinusoid and can map it to the length of the vector in the phase-domain visual
(Fig. 1b), which shows the same concept. Hence, sense-making supports prompt students
to explain how the features of visuals represent the same concepts [15, 16].

Second, perceptual fluency describes implicit and automatic knowledge allowing stu-
dents to quickly and effortlessly see connections among multiple visual representations
[17, 18]. For example, perceptually fluent students can quickly and effortlessly translate
between time-domain (Fig. 1a) and phase-domain visuals (Fig. 1b). Such perceptual
fluency frees cognitive resources that students can invest for higher-order thinking, cre-
ative problem solving, or learning advanced concepts [18]. Perceptual-fluency supports
expose students to a large number of simple recognition or classification problems that
involve various types of visual representations. Through repeated practice, students learn
to induce which visual features carry meaningful information [18].

Thus far, research has only examined whether these representational-competency
supports enhance learning from the problems that provide these supports [10]. Hence, it
remains unknown whether representational-competency supports are effective beyond
the duration of the support. This question relates to transfer research that has examined
how to prepare students for future learning experiences.

2.2 Transfer and Preparation for Future Learning

Current transfer research focuses on how instruction can prepare students to optimally
benefit from future learning experiences [19]. This research developed in response to
traditional transfer research, which defined transfer as the direct application of prior
knowledge or skills to novel problems [20]. However, students rarely demonstrated
this type of transfer, which led to criticisms of the traditional transfer definition [21].
The critiques argued that traditional transfer studies accept only specific evidence as
the “right” form of transfer by prioritizing models of expert performance [22]. Instead,
students often adapt their prior knowledge in a way that helps them learn about new
concepts [20]. In linewith this, “preparation for future learning” (PFL) research examines
how instruction can support students’ knowledge in a way that enhances their future
learning from novel problems [19].

However, little research has investigated transfer of representational competencies.
The few studies that have investigated this question rely on the traditional transfer frame-
work [23]. For example, Cromley [23] tested whether representational-competency sup-
port enhances students’ understanding of visuals they did not encounter during instruc-
tion, as assessed by a transfer posttest. Results showed advantages of representational-
competency supports on the transfer posttest. However, this research leaves openwhether
representational-competency supports enhance students’ learning from novel problems
in subsequent instruction. Research on expert problem solving suggests that represen-
tational competencies contribute to experts’ adaptive thinking about novel problems
[17]. First, sense-making competencies enable experts to analyze the deep structure
of a problem [24], allowing them to use representations to generate creative solutions
[25]. Second, perceptual fluency has been linked to adaptive thinking because the abil-
ity to quickly process information from given representations frees cognitive resources
to flexibly apply prior knowledge when solving new problems [18]. Thus, supporting
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students’ representational competencies may equip them with knowledge that enhances
their subsequent learning.

3 Research Questions

Our review of prior research shows that there is a gap between research on
representational-competency supports and research on transfer, especially from a PFL
perspective on transfer. Consequently, the following research question (RQ) remains
open:

RQ1: Do problems that support sense-making competencies and perceptual fluency
enhance students’ learning from novel problems?

Further, given that issues due to a lack of representational competencies are
particularly severe for students with low spatial skills, we explore:

RQ2: Do spatial skills moderate the effect of representational-competency supports?

4 Methods

4.1 Participants

The experiment was conducted as part of an introductory engineering course on signal
processing at a university in theMidwesternU.S.All 120undergraduate students enrolled
in the course participated. The course involved two 75-min class meetings per week. The
intervention took place in the first 3 weeks that covered sinusoids.

4.2 Signals Tutor: An ITS for Undergraduate Electrical Engineering

We conducted an experiment in the context of five units of Signals Tutor, an ITS for
undergraduate electrical engineering. Signals Tutor provides problems in which students
learn about sinusoids by manipulating time-domain and phase-domain visuals (Fig. 1).
Both visuals play an important role in learning advanced engineering concepts such as
Fourier analysis, circuit analysis, and single-frequency analysis of system. Signals Tutor
involves three types of problems.

Fig. 2. Example individual problem: students construct a phase-domain visual.
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Individual problems provide one visual representation per problem. While these
problems do not specifically support representational competencies, they familiarize
students with one visual at a time while asking students to relate the visuals to cor-
responding equations. As shown in Fig. 2. Above, individual problems ask students
to answer questions about sinusoids and to construct a visual representation based on
an equation by using an interactive visualization tool. Students receive error-specific
feedback and on-demand hints on all problem-solving steps, including the visuals they
construct.

Fig. 3. Example sense-problem: students reflect on time-domain and phase-domain visuals.

Sense problems support sense-making competencies. As shown in Fig. 3 above,
sense problems have two parts. First, students are given one visual (e.g., a time-domain
visual) and are asked to construct a second visual (e.g., a phase-domain visual) of the
same sinusoid. Second, students are prompted to reflect on how the two visuals represent
corresponding and complementary concepts related to sinusoids. Similar to individual
problems, students receive error-specific feedback and on-demand hints.

Fig. 4. Example perceptual problem: students quickly choose a phase-domain visual.

Perceptual problems support perceptual fluency by offering practice opportunities
to translate between visuals. As shown in Fig. 4 above, students are given one visual (e.g.,
a time-domain visual) and are asked to quickly choose one of four visuals (e.g., a phase-
domain visual) that shows the same sinusoid. The four choices are designed to emphasize
features that may confuse students. Perceptual problems do not provide any detailed
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feedback or hints. Students only receive correctness feedback because explanations could
disrupt perceptual processing [26]. Students receive many of these short problems with
numerous examples.

4.3 Experimental Design and Procedure

To investigate the effect of representational-competency support on students’ future
learning, we used a 2 (sense problems: yes/no)× 2 (perceptual problems: yes/no) design.
This yielded four conditions: (1) The control condition received only individual prob-
lems without representational-competency supports. (2) The sense condition received
individual and sense problems. (3) The perceptual condition received individual and
perceptual problems. (4) The sense-perceptual condition received individual, sense, and
perceptual problems.Across conditions,we adjusted the number of steps in each problem
so that all conditions received the same number of problem-solving steps.

The sequence of problems was organized as follows across the five Signals Tutor
units. As detailed in Table 1, Units 1–4 provided time-domain and phase-domain visuals.
Unit 1 was an introductory unit that familiarized students with basic sinusoids and with
time-domain and phase-domain visuals. Unit 1 was identical across conditions.

Unit 2 provided only time-domain visuals. Because individual problems ask students
to translate between equations and visuals, there were no sense problems for Unit 2.
Yet, Unit 2 offered perceptual problems that asked students to quickly translate between
equations and time-domain visuals. Students in the control and sense conditions received
only individual problems. By contrast, students in the perceptual and sense-perceptual
conditions received individual problems followed by perceptual problems.

Units 3 and 4 provided both types of visuals. For each of these units, students in
the control condition received only individual problems. Students in the sense condition
received individual problems followed by sense problems. Students in the perceptual
condition received individual problems followed by perceptual problems. Students in
the sense-perceptual condition received individual, then sense, then perceptual problems.
AcrossUnits 3–4,we implemented sense problemsbefore perceptual problems following
prior research suggesting that this sequence is more effective [27].

Finally, Unit 5 provided instructional problems on phasor addition, a novel, more
complicated concept that builds on the content covered in Units 2–4. Students used a
vector graph, a novel type of visual. Unit 5 served to assess students’ preparation for
future learning and was identical across conditions.

In the first course meeting, students were greeted by the research team and informed
about the study. Then, they worked on one Signals Tutor unit per meeting for the first five
meetings of the course. For Units 2–5, students received a pretest prior to the Signals
Tutor problems and a posttest immediately after. As Unit 1 was an introductory unit
administered in the first course meeting, it did not include a pretest or posttest. The
spatial skills test was given prior to the Unit 2 pretest.
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Table 1. Overview of Signals Tutor units

Unit Content Sinusoid visuals Experimental factors

1 Sinusoids, sinusoid visuals Time/phase domain None

2 Sinusoids as function of time Time domain Perceptual (y/n)

3 Multiple sinusoid visuals Time/phase domain Sense (y/n); perceptual (y/n)

4 Complex numbers Time/phase domain Sense (y/n); perceptual (y/n)

5 Sum of sinusoids Vector graph None

4.4 Measures

We assessed students’ learning gains with pretests and posttests for each unit (except
for the introductory Unit 1). Isomorphic test versions were counterbalanced across test
times (i.e., the versions had structurally identical items but used different examples).
Each test had ten multiple-choice items assessing students’ ability to internally visualize
andmanipulate sinusoids. Some items provided a visual of a sinusoid and asked students
to mentally modify it to answer questions about the sinusoid. Other items provided an
equation and asked students to mentally visualize the corresponding sinusoid to answer
questions. Students were not allowed to draw or use calculators. We computed accuracy
scores as the percentage of correctly answered itemson each test.Wecomputed efficiency
scores to take response time into account following [28]:

efficiency score =
Z(average correct responses) − Z(average response time per test item)√

2
(1)

Finally, we assessed spatial skills with the Vandenberg & Kuse mental rotation test
[29], which is a common measure in engineering education research [30].

5 Results

We excluded students from analysis who were absent from any test, whose test perfor-
mance was a statistical outlier (i.e., 2 standard deviations above or below the median),
or who dropped the course. As a result, a total of N = 117 students were included in the
data set (control: n = 28, sense: n = 28, perceptual: n = 32, sense-perceptual: n = 29).
We report partial η2 (p. η2) for effect sizes, with .01 corresponding to a small, .06 to a
medium, and .14 to a large effect [31]. Table 2 shows efficiency scores by unit.

5.1 Prior Checks

First, we checked for differences between conditions on the pretests for Units 2–5. A
multivariate ANOVA showed no significant effects of condition (ps > .10). However,
each unit’s pretest significantly correlated with the posttest (ranging from r = .274 to r
= .726; ps< .01). Thus, we included pretest as a covariate in the analyses for each unit.
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Second, we checked whether students showed learning gains after working with
Signals Tutor. We used a repeated measure ANOVA with test-time (pretest, posttest) as
the repeated, within-subject factor and average test scores across units as the dependent
measure. Results showed significant gains, F(1,116) = 87.871, p < .001, p. η2 = 431.
Separate repeated measure ANOVAs for Units 2–5 showed significant gains for all units
(ps < .01) with effect sizes ranging from p. η2 = .09 to p. η2 = .24.

Third, we checked whether representational-competency supports enhanced stu-
dents’ learning from Units 2–4; that is, on the units where these supports were present.
We conducted separate ANCOVAs for Unit 3 and 4, with pretest as covariate, the sense
(y/n) and perceptual (y/n) factors as independent variables, and posttest as dependent
measure. For Unit 2, we conducted similar ANCOVA but used only the perceptual factor
(y/n) as an independent variable. For accuracy, results revealed a significant interaction
between the sense and perceptual factors in Unit 4, F(1,116) = 4.499, p = .036 p.
η2 = .039. Predefined contrasts showed that students in the sense condition showed
marginally higher accurate posttest performance than students in the sense-perceptual
condition (p= .09). No other effects were significant (ps> .10). For efficiency, we found
no significant effects (ps > .10).

Table 2. Each unit’s means and standard deviations (in parentheses) of efficiency scores

Unit Test Control Sense Perceptual Sense-perceptual

2 Pre −0.199 (0.691) −0.127 (0.882) −0.681 (1.046) 0.108 (1.023)

Post 0.302 (0.927) 0.032 (0.778) 0.097 (.782) 0.528 (1.037)

3 Pre −0.338 (0.891) −0.495 (1.017) −0.345 (1.172) −0.341 (0.923)

Post 0.216 (0.958) 0.312 (1.135) 0.359 (1.011) 0.621 (0.823)

4 Pre −0.464 (1.190) −0.380 (1.014) −0.526 (.987) 0.100 (1.085)

Post 0.064 (1.057) 0.380 (0.881) 0.273 (1.010) 0.564 (0.886)

5 Pre −0.267 (1.160) −0.575 (1.013) −0.529 (.927) −0.401 (0.880)

Post 0.608 (1.036) 0.223 (1.235) 0.210 (1.167) 0.763 (1.118)

5.2 Effects on Future Learning

To test whether representational-competency supports enhance students’ learning from
novel problems (RQ1), we used an ANCOVAwith Unit 5 pretest as covariate, sense and
perceptual factors as independent variables, and Unit 5 posttest as dependent measure.
On the accuracy measure, results showed no significant effects (ps > .10). On the effi-
ciency measure, students who had received sense problems in Units 3–4 (i.e., students in
sense and sense-perceptual conditions) had significantly higher posttest efficiency than
students who had not received sense problems (i.e., students in control, perceptual con-
ditions), F(1, 116) = 7.366, p = .008, p. η2 = .063. Further, the sense and perceptual
factors interacted, F(1, 116) = 5.386, p = .022, p. η2 = .047. As shown in Fig. 5a,
students who had received both sense and perceptual problems in Units 3–4 had the
highest posttest efficiency in Unit 5.
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Next, we tested whether students’ spatial skills moderate the effect of
representational-competency supports (RQ2). To this end, we included spatial skills
as a covariate to the ANCOVA and an aptitude-treatment interaction of spatial skills
with the sense factor and the perceptual factor. This tests whether the continuous spa-
tial skills variable moderates the effect of sense problems and perceptual problems.
For efficiency, there was a significant interaction between spatial skills and the sense
factor, F(1,116) = 8.989, p = .003, p. η2 = .076 (Fig. 5b). To understand this effect,
we computed effect slices that estimate the effect of the sense factor for specific levels
of spatial skills. Students with high spatial skills (≥80th percentile of the sample, p =
.026) showed a significant benefit from receiving sense problems (i.e., sense and sense-
perceptual conditions). By contrast, there was no significant benefit of sense problems
for students with low spatial skills (≤20th percentile of the sample, p = .207).

Fig. 5. (a) Interaction between sense and perceptual factors on posttest efficiency. Error bars show
standard errors of the Estimated Marginal Means (EMMs); (b) effect of sense factor for levels of
spatial skills. EMMs were computed controlling for covariates.

6 Discussion

The goal of this paper was to investigate whether representational-competency supports
enhance students’ future learning from novel problems with novel visuals (RQ1). We
examined the effects of two types of representational-competency supports that were
provided in the form of sense and perceptual problems. Our results show that students
who received a combination of both problems showed more efficient posttest perfor-
mance after learning from novel visuals, compared to students who received problems
with no or with only one type of support. We interpret these findings in terms of the
preparation for future learning (PFL) transfer framework [19]. Students learned how to
make sense of representations through sense problems and how to quickly seemeaning in
the visuals through perceptual problems. Students appeared to be able to adapt these rep-
resentational competencies when learning about sums of sinusoids using an unfamiliar
vector graph. The finding that the combination of sense-making and perceptual-fluency
supports was most effective suggests that both types of representational competencies
are relevant to future learning experiences. Based on expertise research [18, 24, 25], we
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conjecture that sense-making competencies allow students to analyze a novel problem
to generate a solution, whereas perceptual fluency frees cognitive resources for them to
adapt prior knowledge to novel problems.

Further,we investigatedwhether spatial skillsmoderate the effect of representational-
competency supports (RQ2). We found that students with high spatial skills benefited
from sense problems, whereas students with low spatial skills did not. This suggests that
the sense problems disadvantaged students with low spatial skills; that is, students who
are already at a disadvantage in STEMdomains such as engineering.What might explain
this unfortunate effect? Sense problems support students in constructing mental models
of multiple visuals [32]. Students with high spatial skills might have the necessary cogni-
tive resources to spatially integratemultiple visuals in theirmentalmodels. Thismayhave
allowed them to efficiently incorporate a new visual in their mental model when learning
from Unit 5. In contrast, students with low spatial skills may find it more cognitively
demanding to integrate new visuals into their working memory. This finding suggests
that research needs to focus on studentswith low spatial skills. It is possible that our sense
problems did not offer optimal support for these students. For example, sense problems
could visually highlight correspondences between visuals after students make mistakes
in connecting the visuals. This may help low-spatial-skills students to understand spa-
tially distributed correspondences. Future research should examine whether redesigned
sense problems are effective for low-spatial-skills students. In the absence of redesigned
sense problems, low-spatial-skills students may need continued sense-making support
when they encounter novel visuals.

Finally, the results on the PFL assessment (Unit 5) differ from the results on the
manipulation checks (Units 2–4), where we only found an advantage of sense problems
on posttest accuracy (Unit 4). It is possible that the effectiveness of the sense problems
only appeared after students had sufficient practice in reflecting on how the two visu-
als show sinusoid concepts (i.e., after Unit 4). However, the effectiveness of perceptual
problems was not apparent immediately in Units 2–4, but only when students encoun-
tered novel problems with a novel visual in Unit 5. Thus, it seems that the ability to
process familiar visuals quickly and effortlessly did not pay off when the visuals were
familiar. However, it enabled students to solve novel problems more efficiently.

In sum, our study highlights the importance of assessing future learning. An inter-
vention that seems effective for all may lack long-term benefits for some students (e.g.,
low-spatial-skills students). An intervention that seems ineffective (e.g., perceptual prob-
lems) may have long-term benefits, including for students with low spatial skills. These
findings also have important implications for the design of adaptive educational tech-
nologies. Designing supports in a way that ensures long-term benefits may resolve the
impracticality of providing representational-competency supports for entire curricula,
which is infeasible because of the significant development costs.

Our study has several limitations. First, if focused on individual learning, whereas
STEM instruction often involves collaboration. Future research should test effects of col-
laborative representational-competency supports on future learning. Second, our study
only assessed students’ improvement of content knowledge. Future research should
additionally assess students’ learning sense-making competencies and perceptual flu-
ency. Finally, our study revealed the risk of disadvantaging students with low spatial
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skills. Future research should examine how representational-competency supports can
prepare these students for future learning experiences.

To conclude, our findings suggest that integrating sense-making supports and
perceptual-fluency supports in educational technologies enhances students’ learning
with novel visuals in novel tasks. This study is the first to show that representational-
competency supports have the potential to enhance future learning. However, our
study cautions that sense-making supports need to be designed in a way that better
serves low-spatial-skills students. Without research that examines long-term effects of
representational-competency supports, we may widen rather than close the achievement
gap in STEM domains.
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Abstract. Goal setting and planning are integral components of self-regulated
learning. Many students struggle to set meaningful goals and build relevant plans.
Adaptive learning environments show significant potential for scaffolding stu-
dents’ goal setting and planning processes. An important requirement for such
scaffolding is the ability to perform student plan recognition, which involves rec-
ognizing students’ goals and plans based upon the observations of their problem-
solving actions. We introduce a novel plan recognition framework that leverages
trace log data from student interactions within a game-based learning environment
called CRYSTAL ISLAND, in which students use a drag-and-drop planning sup-
port tool that enables them to externalize their science problem-solving goals and
plans prior to enacting them in the learning environment. We formalize student
plan recognition in terms of two complementary tasks: (1) classifying students’
selected problem-solving goals, and (2) classifying the sequences of actions that
students indicate will achieve their goals. Utilizing trace log data from 144 mid-
dle school students’ interactions with CRYSTAL ISLAND, we evaluate a range
of machine learning models for student goal and plan recognition. All machine
learning-based techniques outperform the majority baseline, with LSTMs outper-
forming other models for goal recognition and naive Bayes performing best for
plan recognition. Results show the potential for automatically recognizing stu-
dents’ problem-solving goals and plans in game-based learning environments,
which has implications for providing adaptive support for student self-regulated
learning.

Keywords: Plan recognition · Game-based Learning · Self-regulated learning

1 Introduction

Self-regulated learning (SRL) describes learning that is guided by metacognition, strate-
gic action, and motivated behavior [17, 20]. A key attribute of SRL is its focus on goal-
driven learning. Self-regulated learners formulate goals and develop plans for achieving
them, which are monitored and adapted based upon learners’ self-evaluated progress
[22]. Goal setting and planning is particularly important in scientific inquiry where
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learning is guided by students’ curiosity and motivation for acquiring knowledge, and
where students need well-defined plans to carry out productive investigations [9]. Self-
regulated learners set goals and sub-goals to complete a learning task [23]. To achieve
their goals, students build plans that outline approaches, such as strategies or sequences
of actions they intend to enact [22].

Learning environments that support goal setting and planning foster positive emo-
tions and can create opportunities for student success [4]. Adaptive learning environ-
ments provide a way to scaffold student goal setting and planning in a manner that is
individualized to each student. An important component of adaptive scaffolding is rec-
ognizing student goals and plans while the learner solves problems within the learning
environment [1]. The task of plan recognition is focused upon predicting an individual’s
high-level goal, and the plan for achieving it, based on lower-level observations of the
individual’s strategies and actions. Goal recognition is considered a special case of plan
recognition where the prediction task is focused only on recognizing high-level goals
[3]. While there has been considerable work on modeling student knowledge in adaptive
learning environments, limited research has been done on student plan recognition.

This paper presents a novel student plan recognition framework that uses machine
learning to build goal and plan recognition models to predict students’ problem-solving
goals and the series of actions students intend to achieve them. The framework is eval-
uated with CRYSTAL ISLAND, a game-based learning environment for middle school
microbiology, in which students utilize a novel planning support tool that encourages
them to externalize their goal setting and planning processes during science problem
solving. We utilize trace log data from students’ interactions with the planning sup-
port tool, as well as their other problem-solving actions in the game, to train multi-
label classification models to predict students’ goals and plans. Specifically, we predict
labels derived from student goals and a cluster-based representation of planned actions
for the goal recognition and plan recognition tasks, respectively. We present results
from a comparison of six machine learning-based classification techniques (support
vector machines, random forest, naive Bayes, logistic regression, multilayer perceptron,
long short-term memory networks) for modeling student goals and plans in CRYSTAL
ISLAND. Our findings indicate that long short-term memory (LSTM) networks show
promise in both goal and plan recognition tasks, which have potential to inform real-time
scaffolding to support student goal setting and planning.

2 Related Work

Goals and plans are critical in SRL. Winne and Hadwin’s Information Processing The-
ory of SRL posits that, throughout goal setting, planning, and enactment, students are
continually monitoring and controlling how their learning is unfolding so that they are
in control of their learning processes, and they are monitoring how effective these pro-
cesses are in contributing to learning, information processing, and task completion [21,
22]. This implies that students know to set subgoals, use the appropriate and effective
cognitive and metacognitive SRL strategies, and adapt the use of these strategies. How-
ever, how middle school students set goals and plans during science problem solving is
not well understood, leaving key questions regarding how to effectively support student
goal setting and planning in science learning environments [20].
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Despite the importance of student goal setting and planning in SRL, there has been
relatively little work on devising computational models of student plan recognition in
adaptive learning environments. An important exception is work on Andes, an intelli-
gent tutoring system for physics, which utilized Bayesian networks to model student
plans and make predictions about student actions during problem solving [6]. This work
exemplifies a successful application of plan recognition that informs adaptive support
to provide students with specialized help through hints.

Prior work has also investigated a restricted form of student plan recognition, i.e.,
student goal recognition, using trace log data from student interactions with a game-
based learning environment. A set of eleven goals were inferred from player activity.
Authors explored a variety of event representations, models, and different evaluation
metrics for accuracy and efficiency [10, 13, 15]. The most recent work found using
one-hot encoding vectors to represent in-game events as input for LSTMs achieved the
best performance predicting these game activity-derived goals [14]. Additionally, prior
work has highlighted similarities between natural language processing and plan recog-
nition, demonstrating the effectiveness of applying various natural language processing
techniques (NLP) to plan recognition tasks [2, 7].

In this work, we extend these findings by devising a novel student plan recogni-
tion framework that uses students’ in-game actions and planning support tool usage as
observed input and leverages neural embedding-based representations of student action
sequences from students’ externalized plans to produce target labels. This framework
utilizes two multi-label classifiers to compare six machine learning-based classifica-
tion techniques for modeling student goals and plans in CRYSTAL ISLAND. Our aim
is to demonstrate that a machine learning-based framework for student plan recogni-
tion can accurately model student goals and plans during science problem solving in a
game-based learning environment.

3 Goal Setting and Planning in CRYSTAL ISLAND

3.1 Planning Support Tool in CRYSTAL ISLAND

To investigate predictive models of student goal setting and planning during science
problem-solving,weutilize a game-based learning environment formiddle schoolmicro-
biology. CRYSTAL ISLAND features an interactive science mystery that engages stu-
dents in a process of scientific inquiry as they investigate the source of a mysterious
disease outbreak on a remote island research station. Students assume the role of an infec-
tious disease investigator who is taskedwith diagnosing the outbreak and recommending
a treatment and prevention plan.

In order to support student goal setting and planning in CRYSTAL ISLAND, we
have developed a planning support tool that incorporates design concepts from visual
programming languages [19] and AI planning [8]. Specifically, students utilize a block-
based visual interface to assemble hierarchical (i.e., two-layer) plans consisting of high-
level goals and low-level sequences of actions that can be enacted inCRYSTAL ISLAND
(Fig. 1). Students choose from a palette of pre-defined goal and action blocks in the tool.
The goal blocks represent possible subgoals that students may wish to achieve on their
way to solving the mystery, which are the overarching goal of the problem-solving
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scenario. Example goals include “Learn about outbreak” and “Report evidence-based
diagnosis”. Each action block lists specific steps that students can take to achieve a
goal. Example actions include “Read about how diseases spread” and “Use scanner to
test objects”. Goal and action blocks are connected to form plans. For example, if a
student sets a goal to “Explore Island”, they can place movement actions such as “Go
to Infirmary” under the goal block to indicate a necessary step needed to complete the
specified goal.

Fig. 1. Planning support tool in the CRYSTAL ISLAND learning environment.

Prior to engaging with CRYSTAL ISLAND, students watch a short, narrated video
that introduces the planning support tool and demonstrates how to use the tool to build
a plan. Once students begin using the game, they are prompted early on to set their own
goal(s) and build plans using the tool. Students use the tool by dragging and dropping
goal and action blocks onto a virtual canvas that serves as the planning area. After they
have formulated a plan, they can close the tool and choose to enact their plan (or not)
within the CRYSTAL ISLAND virtual environment. If students complete a goal or want
to remove a goal that they previously chose, they can drag the block to a trash icon in
the planning support tool. Upon deleting a goal block, students are prompted to indicate
whether they reached the discarded goal or not. Students are presented with mandatory
prompts to use the tool at major milestones in the science mystery, as well as every thirty
minutes during gameplay, and may also voluntarily access the planning support tool at
any time.
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3.2 Goal Setting and Planning Dataset

A study was conducted with 144 middle school students in the United States. Of these
students, 60% were female and the average age was 13.2 years. Students played CRYS-
TAL ISLAND remotely during asynchronous science class time due to a transition to
remote learning during the COVID-19 pandemic. Students were instructed to access
the game over a two-day span and were not given a time limit to complete the game.
Students also completed pre- and post-tests to assess science content knowledge, along
with a brief demographic survey. The pre- and post-tests consisted of 17 multiple choice
questions about microbiology that could be answered based on the curricular content in
CRYSTAL ISLAND. Interaction logs of students’ actions within the game and usage
of the planning support tool were logged automatically. Students on average played the
game for 94.7 min (SD = 47.7).

4 Student Plan Recognition in Game-Based Learning

We present a student plan recognition framework that utilizes trace log data from stu-
dents’ planning support tool usage and gameplay to induce multi-label classification
models to predict student goals and plans during science problem solving in the CRYS-
TAL ISLAND game-based learning environment. The input to the student plan recogni-
tion models is a feature vector representation of student actions distilled from students’
trace log data from the game. Students’ goals and plans from the planning support tool
are used to devise labels for training the plan recognition models using a supervised
learning approach. Specifically, each student action is annotated with a goal label and
plan label that signify the goal students are attempting next and the set of actions they
plan to take to achieve that goal, respectively. Below we describe the event sequence
representation, labeling approach, and evaluation methods utilized in the student plan
recognition framework.

4.1 Event Sequence Representation

Student interactions with CRYSTAL ISLAND generate trace log data that consists of
timestamped sequences of actions taken by students while playing the game. We refer to
these as event sequences. Based on prior work, each student action in an event sequence
is represented by three types of features: action types, action arguments, and locations
[14].

• Action type. Action type refers to categories of in-game activities undertaken by the
student within the learning environment. These actions ranged from viewing posters
and reading articles about viruses and bacteria to scanning items and talking to char-
acters. For example, “Movement” signifies moving to a particular location or “Con-
versation” means a student had a conversation with a non-playable character in the
game. There were 9 total action types.

• Action argument. Action arguments provide more details about the action type. For
example, if the action type is “BooksAndArticles”, the title of the book or article
the student read is included as the action argument. There were 108 unique action
arguments.
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• Location. Location represents the region of the virtual island where the action took
place. If the action type is “Movement”, the location is the place where the student
moved to. There were 24 unique locations in the game.

To prepare the dataset for student plan recognition, event sequences were segmented
according to student usage of the planning support tool. The intuition for this approach is
that students externalize their goals and plans using the planning support tool. Afterward,
they enact their plans by performing actions in the game. An event sequence concludes
when the student next reopens the planning support tool and changes their goals or plans,
thereby initiating a newevent sequence. In otherwords, an event sequence beginswith the
first student action after the planning support tool is closed. The event sequence concludes
with the last student action before next opening the planning support tool. In total, there
were 400 event sequences across all students. The length of event sequences ranged from
1 to 454, with a median of 30. The event sequences were constructed cumulatively to
allow for action-level prediction, with the maximum length of a sequence being 30. For
example, events one through 30 between planning support tool uses would translate to
30 rows of data, the first row only containing the first event, the second containing the
first and second event, and so on up to 30. Because LSTMs require fixed-length input
sizes, sequences of less than length 30were zero-padded. Once the event sequences were
created, we used one-hot encoding to convert student actions into a vector representation.
One-hot encoding vectors have been shown to work effectively in prior work on student
goal recognition in game-based learning environments [14].

Each plan that students constructed in the planning support tool consisted of a goal
and a set of actions. We utilized student goals from the planning support tool to devise
labels for the goal recognition task, andwe used sets of actions from the planning support
tool to devise labels for the plan recognition task. Event sequences were assigned labels
based upon students’ plans from their prior use of the planning sup-port tool. To illustrate,
consider the following example. A student opens the planning support tool and creates
a plan consisting of a goal and a set of actions (i.e., Plan 1). The event sequence that
follows this planning support tool interaction is assigned a goal and plan label based
upon the goals and set of actions that are included in Plan 1.

4.2 Goal Recognition Labels

The planning support tool allows students to select from 20 possible goals and was
designed so that each goal falls into one of 5 categories: (1) Collect Data, (2) Communi-
cate Findings, (3) Form Diagnosis, (4) Learn Science Content, and (5) Gather Informa-
tion. For our analysis, these five categories serve as goal labels, rather than using all 20
lower-level goals. Since students can create multiple plans at a time, we formalized goal
recognition as a multi-label classification task, assigning each event sequence a binary
label vector in which each element of the vector corresponds to a possible goal category.
The dataset had the following distribution of goal categories: (1) Collect Data: 22%,
(2) Communicate Findings: 4%, (3) Form Diagnosis: 13%, (4) Learn Science Content:
22%, and (5) Gather Information: 40%.
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4.3 Plan Recognition Labels

The planning support tool allows students to select from 55 possible actions to build
plans for achieving their intended goals. Similar to goals, the palette of actions in the
planning support tool was divided across six action categories. We utilized these higher-
level categories to represent the actions in students’ plans. Students’ plans typically
contained more than one action associated with a goal, with an average of 2.58 (SD =
1.96) actions per goal. To convert the action sets into labels for student plan recognition,
the following procedure was applied. First, all actions in a plan were concatenated using
the same order that students specified in the planning support tool. Next, SpaCy word
embeddings were applied to each categorical action set [18]. The resulting embeddings
were averaged for each set of actions in a plan. Next, k-means clustering was applied
to the word embeddings to separate the plans into clusters. The number of clusters was
determined visually using the Elbowmethod, resulting in 4 distinct groups of action sets
[5]. The resulting clusters were used to derive 4 possible class labels for plan recognition.

When reviewing patterns of action categories within the clustering, it seemed that
the most used action category in each plan aligned within the clusters. Cluster 0 (9%)
represents plans that mostly contain “Read Science Content”. Cluster 1 (30%) represents
primarily “Explore” action category usage. Cluster 2 (33%) represents plans that contain
mostly “Gather andScan Items”, andCluster 3 (28%) represents plans that containmostly
“Speak with Characters”.

Fig. 2. Procedure for translating student plans intomulti-label vectors for student goal recognition
(top) and student plan recognition (bottom).

These labels were assigned to event sequences in a multi-label fashion, similar to
the goal recognition task. Figure 2 illustrates the process for translating students’ plans
into label vectors for goal recognition and plan recognition, respectively.

4.4 Model Selection and Evaluation

We examined six different supervised learning techniques to induce multi-label classi-
fiers for student goal recognition and plan recognition: support vector machines (SVM),
random forest (RF), naive Bayes (NB), logistic regression (LR), multi-layer perceptron
(MLP), and long short-term memory (LSTM) networks. These models were selected to
establish a general baseline of results. Since this task has not been completed previously,
we chose mostly non-sequential models to analyze patterns of overall performance. We
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performed nested 5-fold cross validation using an iterative grid search for hyperparam-
eter tuning of all six models. Due to the limited representation of some of the labels, we
could not choose a k any greater than 5 without having one of the classes no longer repre-
sented in the training or test set. We used a stratified student-level split within the nested
cross validation to maintain a similar class distribution across the training and test sets
and to prevent data leakage between folds. For the non-LSTM models, we took the sum
of the one-hot encoding vector across events to handle different lengths of sequences
and created a single vector representing the number of times each type of action occurs
in a sequence. The LSTM received the entire one-hot encoding vector as input.

We utilized the macro-average F-measure to evaluate the models. F-measure has
been shown to be a good indicator of model performance in multi-label classification
tasks because it highlights incorrectly classified labels by basing the calculations on
false positives and false negatives [11, 12]. Since false positives and false negatives are
instances that can create user frustration, they are important indicators of performance in
an adaptive learning environment. In addition, we have an uneven distribution of classes
for both the goal and plan recognition tasks. Macro-average F-measure works well on
imbalanced datasets because it computes the average for each class label separately and
then aggregates them together [16]. Therefore, this metric is well suited for evaluating
models intended for use in adaptive learning environments.

5 Results

To investigate the effectiveness of the machine learning-based goal recognition and
plan recognition models, we compared all models against a baseline model that always
predicts the majority class.

5.1 Goal Recognition Results

Goal recognition results for all six models are shown in Table 1. All models except
random forest improved on the baseline in four out of five goal categories. Random
forest appeared to overfit to the majority class, and it performed similarly to the baseline
model. In some cases, an imbalance of the class labels causes classifiers to ignore the less-
represented classes, which could cause a model to overfit to the majority class. Because
random forest makes decisions based on information gain, it makes sense that it would
often favor choosing the majority class. The LSTM was among the top two highest-
performing models for four out of five classes, including one of the least represented
goal categories (i.e., Form Diagnosis). SVM, NB, LR and MLP all improved on the
baseline with respect to the macro-average F-measure. The LSTM showed the greatest
improvement on the baseline with a 42% relative improvement in the F-measure.

5.2 Plan Recognition Results

Table 2 shows the plan recognition results for all six machine learning models, as well as
the baseline. For the plan classes 0, 1 and 2, all machine learning-basedmodels improved
on the baseline. Naive Bayes showed the highest macro-average F-measure for plan
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Table 1. Average F-measure for each classification model and goal category in the student goal
recognition task. Distributions in results represent the test set and are averaged across 5 folds of
cross validation.

Collect data Comm.
findings

Form
diagnosis

Learn science
content

Gather info. Overall

N dis.t 21% 3% 3% 24% 49%

F F F F F Macro F

Maj. 0.00 0.00 0.00 0.00 0.74 0.15

SVM 0.20 0.07 0.22 0.20 0.71 0.28

RF 0.00 0.00 0.00 0.00 0.74 0.15

NB 0.42 0.12 0.23 0.43 0.58 0.35

LR 0.24 0.16 0.40 0.27 0.67 0.35

MLP 0.29 0.19 0.31 0.16 0.64 0.32

LSTM 0.32 0.35 0.47 0.35 0.62 0.42

classes 0 and 1. This could be due to the model attributing most input actions to all four
plan classes, causing the results to be improved.Themulti-layer perceptronoutperformed
the baselinemodel on themajority plan class, which indicates it more precisely predicted
the majority plan class than any other approach. The LSTM performed best again for
the least represented plan class. All models improved on the macro-average F-measure
compared to the majority baseline.

Table 2. Average F-measure for each classification model and plan class in the student plan
recognition task. Distributions in results represent the test set and are averaged across 5 folds of
cross validation.

Plan class 0 1 2 3 Overall

N dist. 8% 27% 28% 36%

F F F F Macro F

Maj. 0.00 0.00 0.00 0.55 0.14

SVM 0.36 0.35 0.20 0.29 0.30

RF 0.31 0.41 0.00 0.18 0.22

NB 0.53 0.54 0.17 0.48 0.43

LR 0.46 0.50 0.21 0.43 0.40

MLP 0.29 0.19 0.31 0.64 0.32

LSTM 0.48 0.47 0.31 0.38 0.40
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6 Discussion

Overall, the machine learning-based models show clear improvement with respect to
macro-averaged F-measure over a naive baseline on the student goal and plan recogni-
tion tasks. Prior work on student goal recognition found LSTMs to be the best perform-
ing model on a multiclass goal recognition task [14]. Our work extends these findings
by showing that LSTMs also perform effectively for goal recognition in a multi-label
context. Student plan recognition proved to be a more difficult task than student goal
recognition. Unlike goal recognition, there was not a single model that performed best
across all plan classes. For example, naive Bayes showed the highest macro-average
F-measure, but its predictions were consistently every plan class for a given set of input
actions. This type of prediction is not ideal to inform run-time scaffolding because it
does not provide a precise indication of what students are planning.

The imbalanced labels in the dataset presented challenges in training and evaluating
themodels for student goal recognition andplan recognition.However, it is representative
of the types of plans generated by students through their use of the planning support
tool in CRYSTAL ISLAND. Notably, we saw planning support tool usage decrease
over time, with students trending toward using the tool frequently in the first half of
the game, but less so as time went on. There were also different levels of granularity
associated with the different goal categories and plan classes. For example, goals related
to gathering information typically occurred early in the game, and they encompassed
a relatively broad set of possible actions. In comparison, goals in the Communicate
Findings category ideally occurred after a student formed a hypothesized diagnosis,
which typically occurs later in the game. The steps involved to communicate findings
are directly outlined in the game, and as a result, one would expect plans related to
this goal to occur less frequently. Encouragingly, the results show the promise of using
machine learning-based multi-label classification techniques for student goal and plan
recognition despite the inherent challenges of imbalanced data.

The wide variety of student plans also presented distinctive challenges for plan
recognition. Some students frequently used the planning support tool and updated plans
without being prompted, while other students opened and closed the planning support
tool only when required. This limits our framework because if students do not update
their plans, our framework interprets all input actions as being towards the same goal
and plan. Similarly, if students use the planning support tool sparingly, then the goal and
action labels might not be fully representative of the event sequences enacted in between
planning support tool uses Further enhancements to the framework could be added by
identifying when a plan has been completed through gameplay or a goal, so it is not
singularly relying on students to update their goals and plans. Additionally, more work
could be done to predict goal abandonment based on how long a goal or plan persists in
the planning support tool interactions. Such improvements could alter the distribution
in goal and plan labels and potentially help with recognition performance. Additionally,
more work could be done to predict goal abandonment based on how long a goal or plan
persists in the planning support tool interactions. Such improvements could alter the
distribution in goal and plan labels and potentially help with recognition performance.
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7 Conclusion

Goal setting and planning are key components of self-regulated learning. Adaptive learn-
ing environments show significant promise for adaptively scaffolding students’ goal
setting and planning processes, but they require computational models of student plan
recognition to do so. This work presents a student plan recognition framework that lever-
ages student goals and plans captured during interactions with a novel planning support
tool in a game-based learning environment for middle school microbiology. Students’
goals and plans were used to derive labels to formalize goal and plan recognition as
multi-label classification tasks. Several machine learning techniques were evaluated to
predict students’ goal and plan labels based upon observations of their problem-solving
actions in the game. In both tasks, we saw significant improvement on the majority base-
line with most machine learning models. LSTMs showed particular promise in both the
goal recognition and plan recognition tasks with respect to their ability to perform well
across all classes.

The results indicate the potential of integrating student plan recognition models into
real-time adaptive learning environments. Plan recognition models could be used to
drive adaptive scaffolding in the form of open learner models of student goal setting and
planning processes, or they could drive adaptive hints and prompts related to student
SRL. Additionally, future work could investigate additional nuances of student goal
setting and planning, which will contribute to more robust models because students can
work towards multiple goals and plans at a time or abandon goals and plans without
updating their planning support tool. Lastly, exploring additional sequential models and
a multi-task learning approach to student goal recognition and plan recognition is a
promising direction for future work.
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Abstract. Flipped classroom (FC) courses, where students complete
pre-class activities before attending interactive face-to-face sessions, are
becoming increasingly popular. However, many students lack the skills,
resources, or motivation to effectively engage in pre-class activities. Pro-
filing students based on their pre-class behavior is therefore fundamental
for teaching staff to make better-informed decisions on the course design
and provide personalized feedback. Existing student profiling techniques
have mainly focused on one specific aspect of learning behavior and have
limited their analysis to one FC course. In this paper, we propose a
multi-step clustering approach to model student profiles based on pre-
class behavior in FC in a multi-dimensional manner, focusing on student
effort, consistency, regularity, proactivity, control, and assessment. We
first cluster students separately for each behavioral dimension. Then, we
perform another level of clustering to obtain multi-dimensional profiles.
Experiments on three different FC courses show that our approach can
identify educationally-relevant profiles regardless of the course topic and
structure. Moreover, we observe significant academic performance differ-
ences between the profiles.

Keywords: Clustering · Time series · Self-regulated learning

1 Introduction

Flipped Classrooms (FC) courses are a form of blended learning where students
complete pre-class activities before attending interactive face-to-face sessions.
These courses allow students to conveniently access learning resources and inde-
pendently manage their studying time, which requires a high degree of self-
regulation. While pre-class activities are essential for course success [2,16], stu-
dents often do not engage with such activities due to a lack of motivation, time,
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or necessary skills [22]. Understanding student behavior in pre-class activities
can hence help the teaching staff identify these reasons and timely intervene.

Nevertheless, a large number of prior studies on FC have mainly focused on
the effectiveness and implementation of the approach rather than on students’
learning strategies during the course [22]. Moreover, the studies on learning
strategies have formerly used self-evaluating questionnaires [9,26], which can be
biased and do not acknowledge the dynamic nature of learning. Fewer works have
used log data from pre-class activities to predict student success. For instance,
[3] showed that the video usage frequency is correlated to student success, [1]
predicted homework grades by modeling student strategies as clickstream event
n-grams, and [17,28] identified at-risk students based on clickstream features.

Regarding clustering approaches to profile student learning behavior in FC,
[12] identified student learning strategies by examining the distribution of learn-
ing actions in students’ pre-class online sessions. In subsequent work, the same
authors examined student regularity of pre-class activities and its association
with course grades [13]. Other works used clustering techniques to analyze stu-
dent time management skills [6], study the evolution of video usage indicators
[23], and analyze consistency in student learning [25].

However, most of the aforementioned studies have investigated one specific
FC course only (e.g., [12,23]) and/or focused on one specific aspect of student
learning behavior (e.g., consistency [25], time management [13]). In other digital
learning environments, such as massive open online courses, [18] identified rule-
based clusters and explored the movement of students across clusters over time.
However, no groups of students with similar changing behavior were studied. In
contrast, [5] analyzed how students changed their studying strategies during the
course, but did not incorporate multiple student behavioral aspects like [18].

In this paper, we investigate the integration of multiple dimensions of stu-
dent behavior, including self-regulated learning (SRL), in data-driven student
profiles. To this end, we propose a multi-step clustering pipeline based on pre-
vious findings on SRL in online education. In the first step, we model students’
log data as time series and cluster student behavior individually in terms of
effort, consistency, regularity, proactivity, control, and assessment. Through a
second level of clustering, we integrate the obtained behavioral patterns into
interpretable multi-dimensional profiles. With our approach, we aim to combine
multiple behavioral dimensions to obtain interpretable student profiles in FC
and study how these profiles compare across FC courses (RQ1); as well as ana-
lyze the relationship between the detected profiles and academic performance
(RQ2). Our analysis on three FC courses shows that profiles integrating multi-
ple dimensions can be identified and interpreted using clusters’ prototypes and
that sometimes similar profiles emerge regardless of the course topic and struc-
ture. We also find a significant variance in academic performance across profiles.
The obtained profiles hence contribute to teachers’ understanding of student
behavior, enabling better-informed course decisions and student interventions.
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2 Method

To investigate student behavior in FC, we propose the multi-step clustering
pipeline depicted in Fig. 1. We first extract features from pre-class log data to
explain relevant dimensions of learning behavior (Sect. 2.1). Instead of cluster-
ing the multiple features in a single step, we propose a multi-step approach
that allows a better interpretation and understanding of the cluster composition
and characteristics. Thus, we perform a first clustering step separately for each
dimension (Sect. 2.2); and a second clustering step, in which we integrate the
obtained behavioral patterns into multi-dimensional profiles (Sect. 2.3). Source
code accompanying this paper: https://github.com/epfl-ml4ed/fc-clustering.

Fig. 1. Overview of the clustering pipeline.

2.1 Feature Extraction

Different aspects of SRL have been researched extensively (e.g., [9,25]). In a
meta-analysis on online education, [7] found significant associations with aca-
demic achievement for five sub-scales of SRL: effort regulation (persistence in
learning), time management (ability to plan study time), metacognition (aware-
ness and control of thoughts), critical thinking (ability to carefully examine mate-
rial), and help-seeking (obtaining assistance if needed). Based on these findings,
we use the following dimensions to represent student behavior: effort regulation
(Effort), time management (Consistency, Regularity, Proactivity), and metacog-
nition (Control). The nature of our log data does not allow us to represent critical
thinking and help-seeking. Assuming that there will be a significant association
between performance in pre-class activities and course grades (e.g., [16,17,28]),
we add a sixth dimension (Assessment) to our representation of student behav-
ior. We measure these dimensions using features that proved to be relevant
in prior work analyzing learning strategies in online or blended learning (e.g.,
[6,8,15,17,20]). Table 1 shows the dimensions and their respective features.

The first dimension, Effort , aims to monitor the intensity of student engage-
ment in the course, which is fundamental for learning success [9]. In contrast,
Consistency is concerned with the relative shape of student events, measuring
how student effort varies over time. Specifically, it estimates the intra-course
time management skills of the students, an important SRL aspect [7,25]. The
Regularity dimension is also associated with time management; it estimates the

https://github.com/epfl-ml4ed/fc-clustering
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Table 1. Features are grouped into six different dimensions. Each feature stems from
a relevant prior study and is accompanied by a short description.

Dimensiona Feature Description

Effort Total time online [8] Sum of session durations

Total video clicks [8] Video events (play, pause, stop, seek)

Consistency Mean session duration [8] Time measured in minutes

Relative time online Unit vector of total time online

Relative video clicks Unit vector of total video clicks

Regularity Periodicity of week day [6] Studying on certain day(s) of the week

Periodicity of week hour [6] Studying at certain hours of the day

Periodicity of day hour [6] Studying on certain day(s) & hours of the week

Proactivity Content anticipation [17] Fraction of videos (from subsequent weeks)
watched before the scheduled due date

Delay in lecture view [6] Time interval between the first views and the
due date of videos of prior weeks

Control Fraction spent [20] Real time spent watching the video divided by
its duration, averaged across videos

Pause action frequency [15] Mean number of pauses divided by the time
spent watching a video per video

Average change rate [20] Mean playback speed used to watch videos

Assessment Competency strength [17] Highest grade achieved by the student on a quiz
divided by the number of attempts

Student shape [17] Student’s tendency of obtaining the maximum
grade in a quiz in the first attempt

aFeatures names taken from original papers and implementation from [17].

intra-week and intra-day time management patterns (i.e., capturing whether a
student is regularly engaged on specific weekdays or day times), which have been
proved to be predictive of student success in MOOCs [6] and FC [13]. Another
dimension of time management, Proactivity , attempts to measure the extent
to which students are on time or ahead of the schedule [11]. Engagement in pre-
class activities has shown to be associated with exam performance [2,16]. The
Control dimension models the in-video behavior as a proxy of student ability
to control the cognitive load of video lectures (metacognition). The flow of video
information can result in cognitive overload and thus regular pauses can improve
learning outcomes [4]. In the platform, students are provided with functionalities
(e.g., pause button) to control video flows [4]. Finally, the Assessment dimen-
sion assumes that there is a relation between student performance in voluntary
non-graded online quizzes and the final course grade (e.g., [16,17,28]). Given
that learning is dynamic in nature [27], we model features as week-wise time
series (length equal to the number of course weeks). The only exceptions are the
Regularity features, whose computation requires evidence from all course weeks
and thus are computed for the whole course as a scalar.
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2.2 Identification of Behavioral Patterns

The first clustering step is done separately per dimension: we compute a pairwise
similarity matrix, feed it into a spectral clustering, and interpret its labels.

Similarity Matrix. First, we compute a pairwise distance matrix between stu-
dents separately for each feature. To compute distances between student time
series, we use the Dynamic Time Warping (DTW) distance [25]. DTW can iden-
tify similar patterns (e.g., peaks) regardless of small variations (shifts) in time.
In contrast, we use the Euclidean distance for the Regularity features, since they
are scalars and not time series. Second, we apply a Gaussian kernel to transform
the distance matrix into a similarity matrix. The standard deviation (σ) of the
kernel controls the blurring degree, which is useful to reduce the impact of stu-
dents with extreme behavior. We then add the similarity matrices of the features
of each dimension to get the dimension similarity matrix. We optimize the DTW
window size (w) and the width of the Gaussian kernel (σ) per dimension via a
grid search maximizing the clusters’ Silhouette score (see next paragraph).

Spectral Clustering. We apply Spectral Clustering [21] to cluster the similar-
ity matrix of each dimension separately. This clustering algorithm treats points
as nodes in a graph and then solves the graph partitioning problem. Unlike
K-Means, it is not limited to convex clusters. The algorithm outputs a vector
containing the cluster identifiers for each student. In total, there are as many
vectors as behavioral dimensions, and each vector length is equal to the num-
ber of students. We perform a grid search separately for each dimension using
k = 2, ..., 10 clusters. We use the Silhouette score [24] to determine the optimal
number of clusters as this heuristic is easy to interpret (higher scores indicate
high separability between clusters).

Labeling. We label the obtained clusters for each dimension according to the
intensity, shape (including peaks), and relation to key aspects of the course (e.g.,
exams), by thoroughly inspecting the time series of the students in each cluster.
When the patterns differ in more than one attribute (e.g., intensity and shape),
we choose the attribute that better explains each dimension. Labels are created
relative to other clusters and not in absolute terms. For instance, labeling a
cluster as Higher Effort does not mean effort exceeds a given threshold, but that
students in this cluster work more intensively than those in the other clusters.

2.3 Profile Creation

The second clustering step integrates all dimensions into a single learner pro-
file, enabling us to describe student behavior across dimensions (e.g., a cluster
with Higher Effort, Lower Assessment, Higher Control, etc.). We are hence able
to gain insights into the dependencies across dimensions. We take as input the
five/six annotated labels (one per dimension) from Sect. 2.2 and cluster them
using K-Modes (selecting K as in Sect. 2.2). K-Modes extends K-Means to use
the mode (most frequent element) instead of the mean to compute cluster cen-
troids from categorical data. These centroids provide insights into the cluster
composition (e.g., [25]) and will be analyzed in the next section.
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3 Experimental Evaluation

We evaluated our approach on three different FC courses. We first analyzed
and compared the obtained profiles across courses (RQ1) and then investigated
their relation to academic performance (RQ2). The study was approved by the
institutional review board (HREC No. 058-2020/10.09.2020).

Table 2. Characteristics of the FC courses.

Course Year Semester Students Female Event type No. events Fail

LA 2018/19 1 292 29% Video + Quiz 1, 033, 962 41%

FP 2018 3 216 20% Video 464, 115 2%

PC 2019 4 147 14% Video 156, 375 11%

Data Set. Our analysis is based on the log data collected from an EPFL online
institutional platform (custom Open edX installation) that tracked student pre-
class activities (watching video lectures and solving quizzes) in three FC courses.
The log entries are tuples reporting the user, the activity, and the timestamp
(e.g., user: 10, activity: play video 32, timestamp: 05-03-2018 12:06:01). The
three considered FC courses (Table 2) are compulsory courses for the Computer
Science and Communication Systems Bachelor degrees in EPFL. The first data
set was collected from two consecutive FC editions of the Linear Algebra (LA)
course, taught by the same lecturer and with a flipped duration of 10 weeks.
Among the three courses, this is the only one including online quizzes. The
second data set was collected from the FC edition of a Functional Programming
(FP) course with a flipped duration of 11 weeks. The third data set stems from a
FC course in Parallelism and Concurrency (PC) lasted 15 weeks. It is important
to note that this course was taught in a traditional way between weeks 4–7.

3.1 Behavioral Patterns and Multi-dimensional Profiles

We first examined the profiles obtained for LA and then compared the profiles and
behavioral patterns across courses (LA, FP, PC). Table 3 shows the characteristics
of the identified profiles for all courses, i.e., the centroids from the K-Modes
clustering. The centroid is the mode (majority label) of each learning dimension.
For instance, for profile A, the majority of students were labeled Lower Effort.

Profiling for LA. We identified five profiles (A, B, C, D and E) for LA. To
visualize their patterns, we inspected the barycenters (centroid) of each cluster.
To compute the barycenter, we used the DTW Barycenter Averaging method
that averages time series considering the DTW alignment and window constraint.

Figure 2 shows the barycenters as lines and the Euclidean mean of each week
as bars for Effort, Assessment, and Control. Concerning the Effort dimension,
the students with Lower Effort were less active (in terms of online time and num-
ber of video clicks) than the students with Higher Effort. One profile (C) exhibits
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Table 3. Percentage of students per profile for each course and profile description.

Profile % Dimension

LA FP PC Effort Consistency Regularity Proactivity Control Assessment

A 24 Lower Uniform Lower Peaks Delayed Lower Lower

B 18 28 35 Lower Uniform Lower Peaks Delayed Higher Higher

C 19 18 Higher Uniform Higher Peaks Anticipated Higher Higher

D 21 Lower Uniform Higher Peaks Delayed Higher Higher

E 18 Lower Uniform Higher Peaks Anticipated Higher Higher

F 15 27 Higher Midterm Higher Peaks Delayed Higher

G 25 Higher Midterm Lower Peaks Anticipated Higher

H 14 Lower Midterm Lower Peaks Delayed Lower

I 18 Higher Midterm Higher Peaks Anticipated Higher

J 20 Lower Midterm Lower Peaks Anticipated Lower

Fig. 2. Patterns for Effort (a), Assessment (b), and Control (c) for LA.

patterns of higher effort compared to the other four profiles. For Assessment,
the difference between the detected patterns again lies mainly in the intensity
(Fig. 2b). We observed two clusters, with one cluster (denoted as Higher Assess-
ment) exhibiting a higher pattern than the other cluster (labeled as Lower
Assessment). Different from Effort, most profiles showed Higher Assessment.
The difference in competency strength between the two clusters is very large,
with the Lower Assessment cluster having very low values. This observation
could suggest that Assessment is reflecting the differences in students’ willing-
ness to solve the quizzes rather than measuring their actual quiz performance.
For the Control dimension (Fig. 2c), we observed two groups: the Higher cluster
(76%) had a greater ratio indicating that it pauses the video more often than the
Lower cluster (24%). Higher pause frequency and longer pauses can be a result
of students taking time to reflect on unclear or interesting parts of a video [15].
It is worth noting that Control and Assessment are the only dimensions that
are paired. It is not surprising that the students that have Higher Control and
manipulate the video content more are also the students with Higher Assessment
that are engaged with the optional quizzes.
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While the aforementioned dimensions mostly capture the differences in the
intensity of student activity, Consistency captures differences in the relative
intensity (in terms of online session time and video clicks) over the whole course.
We obtained two distinct patterns shown in Fig. 3a. The majority of students
(84%) worked consistently over time with little or no peaks (Uniform), while
only a few students (16%) worked considerably more in the last week of the
semester (Final Exam). Interestingly, all the LA profiles are labeled with Uni-
form Consistency (see Table 3). This means the Uniform Consistency students
outnumber the Final Exam Consistency students in all profiles, indicating that
the differences in other dimensions were more significant or separable.

Regarding the Regularity patterns, Fig. 3b shows an example of the relative
frequency of events per day of the week for two example students. The (Higher
Peaks) student worked only on Sundays, Mondays, and Tuesdays. In contrast,
the student with (Lower Peaks) worked some weeks on Saturdays and other
weeks on the other days of the week without a clear pattern (Fig. 3b). The in-
person part of the course was taught on Tuesdays; this can explain the relative
peak in activity for (Higher Peaks) on Monday. Students in profiles A, and B
exhibit less regular working patterns than students in profiles C, D, and E.

Fig. 3. Patterns for Consistency (a), Regularity (b) and Proactivity (c) for LA.

Fig. 4. Consistency patterns for FP (a) and PC (b). In FP, most of the students show
increased activity for exams. In PC, the majority works consistently.
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Unlike other dimensions, Proactivity includes two features with contrasting
behavior: content anticipation and delay in lecture view. Figure 3c shows that
the Anticipated cluster (39%) has negative values in delay in lecture view, while
the Delayed cluster (61%) has positive values with a peak in the beginning.

Comparison Across Courses. In a second analysis, we compared the profiles
from LA with the ones identified for the other two courses (FC and the PC). We
obtained a total of 10 profiles, listed in Table 3. Profile B was found in all three
courses and profile C and F were found in two out of three courses.

From Table 3, it seems that Consistency has peculiar behavioral patterns
between courses. Figure 4 presents the relative time online for FP and PC. In
FP, three different patterns were identified (Fig. 4a). The students that worked
strongly for the midterm (Midterm), those that had more activity before both the
midterm and final exam (Exams), and those that had a normal-shaped activity
with a visible peak one week before the midterm (Uniform). For PC, we observed
two distinct behaviors (Fig. 4b). A group of students worked more during the
weeks before the midterm (Midterm), whereas another group worked more con-
sistently over the semester (Uniform). Note that there were no videos from weeks
4 to week 7 in this course, which explains the drop in activity during these weeks
for the Uniform group. In contrast to FP and PC, there is no pattern in LA (see
Fig. 3a) in which students work more intensely for the midterm exam; this could
be a result of the weekly online quizzes that kept the majority of the students
engaged almost uniformly during the semester.

Fig. 5. Academic performance for LA (a) and FP (b) and PC (c).

In summary, our approach can identify meaningful multi-dimensional profiles
across courses with different topics and structures. We observed profiles with
varying compositions and no completely aligned dimensions. The multiple com-
binations of dimensions reflect the complexity of learning behavior (RQ1).
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3.2 Relation to Academic Performance

We finally explored the relationship between the profiles and academic per-
formance, measured using the students’ final course grade1. For LA, a signif-
icant Shapiro-Wilk normality test (W = 0.96, p = 2.6e−07) indicated that
the grades were not normally distributed. We hence used the non-parametric
Kruskal-Wallis test to identify significant differences between profiles (χ2(4) =
12.7, p = 5.3e−03). We then performed pairwise comparisons between profiles
using the Wilcoxon Rank Sum test2. Subsequently, we replicated the analysis
using the grades from PC and FP3. Figure 5 shows the distribution of grades per
profile.

In LA, students in profile E have significantly higher grades than the students
in profiles A, B, C, and D. These differences in performance also emerge in the
failure rate for each profile. Students in profile E have a lower chance of failing the
course (failure rate: 19%) compared to students in profiles D (57%), A (48%),
C (38%), and B profiles (36%). When we compare the four other profiles to
profile E, we observe that Proactivity is the only difference between profiles E
(the best performing profile) and D (the profile with the highest failure rate).
Therefore, it seems that delaying lecture material and not being proactive results
in worse academic performance. Likewise, profile E and C only differ in the Effort
dimension, but surprisingly, profile E with Lower Effort outperforms profile C
with Higher Effort. We hypothesize that in this case, Effort is an indicator of
students struggling rather than a measure of commitment as expected [9].

In PC, profile C outperforms the other three profiles B, F , and J ; while
students in J perform poorly compared to profiles B, C, and F . In FP, students
in profile H perform significantly worse than the students in B, I, F , and G.
As shown in Table 3, these poor performing profiles (profiles H and J) are quite
similar. The results are as expected since both have Lower Effort, Lower Peaks
in Regularity, Lower Control, and increased activity before the midterm exam.
For PC, it is hard to identify the dimension responsible for the worse academic
performance of profile J , as the other profiles differ in several dimensions. For
example, it would be inaccurate to say that profile F outperforms profile J
despite having Delayed Proactivity because it is not the only dimension that
varies. For PC and FP, the combination of dimensions explains the differences in
performance rather than an isolated dimension.

In summary, we found significant differences in academic performance in all
three courses. Although the level of significance varies across courses, we found
coherent results between the shared profiles (RQ2).

1 Grades range from 1 to 6, with 6 being the best and 4 being the passing grade.
2 Correcting for multiple comparisons via a Benjamini-Hochberg (BH) procedure.
3 Shapiro-Wilk test for FP: W = 0.97, p = 5.6e−05; and PC: W = 0.97, p = 3.1e−03.

Kruskal-Wallis Test for FP: χ2(4) = 21.8, p = 2.2e−04; PC: χ2(3) = 13.4, p = 3.8e−03.
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4 Discussion and Implications

In this work, we combined multiple behavioral dimensions to obtain interpretable
student profiles in FC and analyzed how these profiles and their behavioral pat-
terns compare across courses (RQ1). We then showed the relation between those
profiles and academic performance (RQ2). Unlike prior work mostly focusing
on a single FC course [12,23], we applied our pipeline to three courses (LA, FP
and PC) with different topics, instructors, FC period length, and study level.

Our results showed that our pipeline can identify interpretable student pro-
files in FC, with some of them showing similar behavior across different courses
and others associated with a behavior unique to a specific course (RQ1). In
addition, our results emphasize the importance of taking into account the depen-
dencies between learning dimensions and analyzing them in combination rather
than focusing on an isolated dimension. It is noteworthy that despite Effort,
Consistency, Regularity and Proactivity are SRL skills, they do not always go
hand-to-hand in the profiles description. For example, Effort appears to be con-
stant in several profiles, and the profiles with the same effort magnitude differ
based on other dimensions (e.g., Consistency). This is in line with [19], where
three groups showed the same effort but a different consistency. Interestingly,
a profile with a Lower, Decreasing, and Delayed patterns in all dimensions was
also found among university students with high dropout rates [14] and profiles
A and H resemble the minimalist behavior identified by [23].

Our analyses also confirmed that there were some significant differences in
academic performance between the profiles (RQ2). From a pedagogical per-
spective, these results are mostly coherent with findings from prior work (e.g.,
[4,6,10,25]) showing that achievement is significantly higher for students with
high SRL skills (focusing on a single dimension). In LA, surprisingly, counter to
the work of [9], keeping all the other dimensions equal, the Lower Effort pro-
file (E) outperformed the Higher Effort profile (C). In contrast, in PC, profile C
(with Higher Effort) was the best performing profile. These differences exemplify
how the proposed pipeline expresses the profiles relative to the classmates of each
course. Likewise, the results from LA showed that Proactivity appeared to be the
most indicative behavioral dimension for academic performance: watching the
lecture videos ahead of schedule (like profile E) was associated with good aca-
demic performance, while delaying lecture material (like profile D) was related
to inferior academic performance, in line with [17]. Nevertheless, in PC, profile
F with Delayed Proactivity outperformed profile J with Anticipated Proactivity.
This does not rule out the importance of Proactivity but rather the limitations
of analyzing dimensions separately. Profiles F and J also differ in Effort, Reg-
ularity and Control, thus, the differences in academic performance in PC and
FP can be better explained with multi-dimensional profiles. Instructors should
acknowledge this to foster learning profiles beneficial to their course (e.g., profile
E), and prevent counterproductive behaviors (e.g., profile H).

In this work, we used three different data sets to provide a diverse evaluation
of our approach. From a research perspective, we proposed a method to help
both researchers and practitioners improve the understanding of student learn-
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ing in FC. From a teacher’s perspective, this study enables data-driven course
modifications (e.g., weekly quizzes) and better-informed student interventions.
In addition, students could receive automatic personalized feedback and rec-
ommendations depending on their profile. Overall, our work contributes to the
ongoing research of reusable analytics and to the generality of theories and pat-
terns of SRL. Nevertheless, further work is needed to assess the generalizability
of our results in other educational contexts.
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Abstract. Blended educational technologies can leverage complementary ben-
efits of physical and virtual manipulatives. However, it is not clear how best to
combine these manipulatives. Prior research has focused on combining physi-
cal and virtual manipulatives by offering them sequentially based on whether
they make a specific concept salient. This research has mostly ignored embod-
ied learning mechanisms that can ground students’ conceptual understanding in
bodily actions. To address this issue, we conducted a lab experiment on chem-
istry learning with 80 undergraduate students. We compared different ways of
sequencing virtual and physical manipulatives in ways that first engaged students
in embodied experiences or made the target concepts salient. Results suggest that
providing embodied experiences early in the learning sequence enhances concep-
tual learning. These findings extend extant theory on blending physical and virtual
manipulatives and provide practical advice for developers of blended interactive
educational technologies.

Keywords: Blended technologies · Physical/virtual manipulatives · Embodiment

1 Introduction

Blended educational technologies that combine physical and virtual experiences are
becoming increasingly popular [1, 2]. This has revived a century-old debate about when
physical manipulatives enhance learning [3]. For example, chemistry students may inter-
act with physical or virtual manipulatives while learning about atoms (Fig. 1). Physical
manipulatives are tangible objects that students construct with their hands (Fig. 1a).
Virtual manipulatives are displayed on a screen and are manipulated by mouse, key-
board, or touchscreen (Fig. 1b). The goal of blended technologies is to combine these
manipulatives in a way that leverage their complementary benefits [1, 2, 4].

A prevalent way of blending physical and virtual manipulatives is to provide them
sequentially [5–7]. However, prior studies yield conflicting results as to how physical
or virtual manipulatives should be sequenced (e.g., [5, 7]). To resolve these conflicts,
a dominant blending framework [1, 4] proposes that students should work with the
manipulative that makes task-relevant concepts salient by drawing students’ attention to
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Fig. 1. Physical (a) and virtual (b) manipulatives showing an atomic orbital energy diagram.

the concepts. When students switch to a different task, they may switch to a different
manipulative that better aligns with the concepts relevant to the new task.

A limitation of this blending framework is that it solely focuses on conceptual learn-
ing processes. Yet, embodied processes also affect students’ learning with physical and
virtual manipulatives [8]. Most prior research on blended educational technologies has
focused on conceptual processes (e.g., [9–11]) while disregarding embodied processes
[8]. The lack of research that integrates both processes is problematic. First, focusing on
only a subset of relevant processesmay lead to confounded experiments, whichmay con-
tribute to conflicting results from prior studies. Second, research needs to compare the
relative strength of these processes to determine which process accounts for the observed
sequence effects. Without such knowledge, we cannot make recommendations for when
students should receive a physical or virtual manipulative. Further, such knowledge will
determine which process adaptive blended technologies should trace to assign physical
or virtual manipulatives based on an individual’s learning progress.

To achieve these goals, we present an experiment that systematically varied design
features of manipulatives that affect conceptual and embodied processes. We tested
sequences of physical and virtual manipulatives within an intelligent tutoring system.

2 Theoretical Background

2.1 Learning Processes Affected by Physical and Virtual Manipulatives

A recent review [8] showed that prior studies mostly focus on how physical and virtual
manipulatives make concepts salient while fewer studies focus on embodied processes.

Conceptual salience describes the capacity of a visual representation to draw stu-
dents’ attention to visual features that depict conceptually relevant information [8].
Concepts may become salient because visual design features of the manipulative draw
students’ attention to them [12] or because students’ interactions with the manipulative
draw attention to a specific feature that depicts conceptual information [13].
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According to this perspective, whether a physical or virtual manipulative is more
effective depends on which makes a concept more salient [1]. For instance, physical
manipulatives are more effective if they allow students to experience spatial concepts
[14, 15] or offer concrete experiences relevant to the target concept [16]. As mentioned,
the dominant blending framework [1] recommends to match physical and virtual manip-
ulatives to learning tasks based on whether they make the target concept conceptually
salient. Indeed, this way of blending physical and virtual manipulatives leads to higher
learning gains than working with only physical or only virtual manipulatives [4].

In sum, the dominant view is that the type of manipulative that makes the target
concept salient should be most effective.

Embodied theory assumes that cognition evolved for humans to mentally simulate
effects of their actions [17, 18]. Hence, abstract thinking builds on mental simulations
of body actions. For example, understanding growth functions builds on experiences of
growth and increase in the real world. We distinguish two tenets of this theory [8, 13].

Explicit embodiment emphasizes the importance of explaining relationships between
kinesthetic experiences and concepts [8]. Physical manipulatives may allow students to
experience a target concept through the sense of touch and motion [19]. Students can
explicitly connect these embodied experiences to the concept. For example, suppose
manipulating a physical manipulative involves lifting an object. Prompting students to
explain how the physical effort associated with this action relates to concepts of kinetic
and potential energy can help students understand these concepts. Explicit embodied
experiences can perceptually ground students’ understanding of abstract concepts [20];
that is, students’ gradual understanding of abstract concepts based on concrete experi-
ences becomes increasingly stylized [21, 22]. Indeed, perceptual grounding enhances
learning outcomes [23]. Thus, explicit embodiment suggests that physical manipula-
tives are advantageous if they allow students to explain connections between the target
concepts and experiences of touch and movement.

Implicit embodiment emphasizes the importance of bodymovements without requir-
ing that students are aware of the connections between themovement and the concept [8].
Building on the idea that thought is a mental simulation of action [24, 25], even abstract
concepts (e.g., justice) are based on real-world experiences (e.g., balance), often with-
out our awareness of this connection [26]. This implies that instruction should invoke
embodied schemas relevant to the target concept [27]. Embodied schemas can be invoked
by metaphors, body movements, or gesture [28, 29]. Students’ learning of a concept is
enhanced if they receive instruction on the concept while moving their body in ways that
are synergistic to the associated embodied schema, even if they are not aware that their
movement related to the concept [20, 30]. For example, moving one’s hand upwards may
activate an embodied schema related to increase, which can help students learn concepts
related to growth.

Implicit embodiment is not only afforded by physical but also by virtual manip-
ulatives. When virtual manipulatives are manipulated in ways that invoke synergistic
embodied metaphors, students learn the target concept better than when manipulating
the same manipulative with less synergistic movements [31]. Because physical and vir-
tual manipulatives often engage students in different movements, implicit embodiment
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has implications for which type ofmanipulative ismost effective. For example, tomanip-
ulate a physical manipulative, a student maymove their hand vertically, which implicitly
invokes embodied schemas related to growth and increase. In contrast, a virtual manip-
ulative may require a sideways movement that invokes embodied schemas of balance
and equality. Depending on which embodied schema matches the target concept, one or
the other type of manipulative may be more effective [8].

In sum, implicit embodiment suggests that manipulatives are more effective if they
invoke embodied schemas that match the target concept without requiring awareness of
the match.

2.2 Blending Physical Versus Virtual Manipulatives

There is no empirical basis for the superiority of physical or virtual manipulatives [8].
Many studies showed that physical and virtual manipulatives complement each other by
making different concepts salient [1, 6, 9]. Hence, research investigated how to blend
these manipulatives by sequencing them in a way that best leverages their strengths
[7–13]. This yielded the dominant blending framework [1, 4], which suggests that
manipulatives should be chosen based on their ability to make concepts salient.

Yet, the dominant blending framework is limited because it is based on studies that
focused only on conceptual salience of the target concepts and thus conflated ways that
the manipulatives affected embodied processes [8]. Our prior work [32] started address-
ing this limitation. We systematically varied whether physical and virtual manipula-
tives implicitly induced embodied schemas that were synergistic to the target concepts,
offered explicit embodied experiences of the concepts, and provided visual cues that
made the concepts salient. We found that implicit embodiment yielded higher learn-
ing gains on a reproduction test. However, physical manipulatives that offered explicit
embodied experiences yielded higher gains on a transfer test. If explicit embodiment
was not available for a given concept, manipulatives (physical or virtual) that made the
concept salient yielded higher transfer gains. We interpreted the findings based on the
complexity of the learning outcome [13, 33]: Implicit embodiment enhanced simple
learning outcomes (i.e., reproduction). In contrast, explicit embodiment and concep-
tual salience (both explicit processes) enhanced complex outcomes (i.e., transfer). We
consider explicit embodiment more complex than conceptual salience because it allows
students tomakemore connections between themanipulative and the concept (embodied
plus visual experience vs visual experience only). This explains the benefit of explicit
embodiment compared to the effects of conceptual salience.

3 Research Questions and Hypotheses

Our prior study suggests that effects of physical and virtual manipulatives affect learning
outcomes not only via conceptual processes but also via embodied processes. Further,
the different processes affect different learning outcomes. This raises the question of how
manipulatives should be sequenced to best leverage implicit and explicit embodiment
as well as conceptual salience. Our prior study suggests two hypotheses:
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On the one hand, instruction often progresses from simple to complex. This yields the
simple-first (SF) hypothesis: Students should first work with manipulatives that engage
simple learning processes by implicitly inducing embodied schemas relevant to the
concept. Then, they should work with manipulatives that engage complex processes
by offering explicit embodied experiences of the concept. If explicit embodiment is
unavailable, the manipulative should make the concept salient. This should enhance
students’ ability to construct correct manipulatives (HSF-1) and learning gains (HSF-2).

On the other hand, students may need to acquire deep understanding of a complex
concept before they should practice simple recall. This yields the complex-first (CF)
hypothesis:Students should firstworkwithmanipulatives that engage complex processes
by offering explicit embodied experiences of the target concept (or, if not available, make
the concept salient). Then, they should work with manipulatives that engage simple
processes by implicitly inducing embodied schemas. This should enhance students’
ability to construct correct manipulatives (HCF-1) and learning gains (HCF-2).

The goal of the present study is to systematically test these hypotheses. To this end,
we conducted an experiment on students’ use of manipulatives in a chemistry lesson.

4 Methods

4.1 Participants

Eighty undergraduate students were recruited from our institution via flyers and emails.
Screening questions ensured they were naïve to the content and the manipulatives.

4.2 Experimental Design

In line with our prior study [32], we created four types of energy diagrammanipulatives.
For two concepts (A and B), they offered either conceptual or implicit-embodied expe-
riences: two physical manipulatives (physicalconceptual, PC; and physicalimplicit-embodied
PIE), and two virtual manipulatives (VC; VIE). As detailed below and shown in Table 1,
PC and PIE offered explicit-embodied experiences for concept A but not for concept B.

Table 1. Overview of physical (PC/PIE) vs virtual (VC/VIE) manipulatives and target concepts.

Concept A: Electrons Randomly Fill Equal-Energy Orbitals.
Atomic properties are determined by the location of their electrons in subatomic regions
called orbitals. Energy diagrams show the location of electrons and the relative energies
of orbitals (Fig. 1). Electrons fill lower energy orbitals before higher energy orbitals.
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Because equal-energy orbitals are equally likely to be filled, many atoms have alter-
native energy diagrams. A common misconception is that electrons fill equal-energy
orbitals from left to right, rather than randomly. Target concept A was for students to
learn that electrons randomly fill equal-energy orbitals.

To construct PC, students moved cards that showed electrons from the bottom up
to put them in orbitals (Fig. 1A). PC makes the concept salient because planning the
motor action involved in the vertical action requires attention to the height of the orbital
when students put a card in an orbital. However, this vertical action implicitly induces
a conflicting embodied schema because it aligns with a metaphor of increase [26] that
conflicts with the concept of equality.

To construct PIE, students held the cards next to the orbitals and moved their hands
horizontally to put them in orbitals. The horizontal action makes the concept less salient
because it does not require paying attention to the height of the orbitals. However,
this horizontal action implicitly induces beneficial embodied schemas for the concept
because horizontal actions induce a metaphor of equality [26].

Both PC and PIE offer explicit embodied experiences of concept A because students
can physically experience the height of the orbital.

To construct VC, students had to click a button at the bottom of the interface each
time before moving the mouse up to put arrows in orbitals. This vertical action makes
the concept more salient but implicitly induces a conflicting embodied schema.

To construct VIE, students had to move the mouse horizontally to click in equal-
energy orbitals (Fig. 1B). VIE makes the concept less salient but implicitly induces a
beneficial embodied schema.

VC and VIE offer no explicit embodied experience of concept A.

Concept B: Up and Down Spins Have Equal Energy. Electrons in the same orbital
have opposite spins (shown by up and down arrows; Fig. 1). Up and down spins are
equally likely. A common misconception is that the first electron in an orbital always
has an up spin. Hence, target concept B was for students to learn that both spins are
equally likely.

For PC, the card stack was sorted so that all cards had an up arrow. This makes the
concept more salient because students had to purposefully flip the arrows to show that
the spins are equally likely, which requires explicit attention. Yet, this implicitly induces
a conflicting embodied schema because it takes two actions to show a down spin (i.e.,
more effort) and only one action to show an up spin (i.e., less effort).

For PIE, the card stack was not sorted, so that up and down arrows were random.
This makes the concept less salient because the spin is already random and does not
require attention to a related action. Yet, this implicitly induces a beneficial embodied
schema because it takes the same number of actions and hence the same amount of effort
to show up or down spin.

In VC, students clicked to add arrows. The first click added an up arrow, the second
click flipped it to a down arrow. VC makes the concept more salient because students
had to purposefully flip the arrows. Yet, this implicitly induces a suboptimal embodied
schema because it took two clicks to show a down spin (more effort) but only one click
(less effort) to show an up spin. VC offers no explicit embodied experience of spin.
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InVIE, the first click created an arrow with random spin and the second click flipped
it. This makes the concept less salient but induces a beneficial embodied schema. VIE
offers no explicit embodied experience of spin.

PC, PIE, VC, and VIE offer no explicit embodied experience of spin.

Experimental Design: Sequences of Manipulatives. The experiment involved two
sessions. Session 1 covered concept A and session 2 covered concept B. The experiment
varied the sequence of mode (P-V vs V-P) and of design (IE-C vs C-IE).

Specifically, students were randomly assigned to one of four conditions for session 1:
PC-VIE, PIE-VC, VC-PIE, or VIE-PC. For session 2, students were assigned to a condition
that offeredmanipulatives they had not encountered in session 1. For example, if students
received PC-VIE in session 1, they received either PIE-VC or VC-PIE in session 2. This
ensured that all students received each manipulative. Further, this design allowed us to
test the two competing hypotheses in the following manner. The simple-first hypothesis
predicts an advantage for VIE-PC and PIE-VC over PC-VIE and VC-PIE because these
sequences engage students in simple learning processes first (i.e., VIE and PIE), and
then engage students in complex learning processes (i.e., PC and VC). For concept A,
this advantage should be particularly pronounced for VIE-PC because PC offers explicit
embodied experiences in addition to making the concept salient.

By contrast, the complex-first hypothesis predicts an advantage for PC-VIE and VC-
PIE over VIE-PC and PIE-VC because these sequences engage students in complex learn-
ing processes first (i.e., PC and VC), and then in simple learning processes (i.e., VIE
and PIE). For concept A, this advantage should be particularly pronounced for PC-VIE
because PC offers explicit embodied experiences in addition to making the concept
salient.

4.3 Materials

Intelligent Tutoring System: Chem Tutor. All students worked with Chem Tutor, an
intelligent tutoring system for undergraduate chemistry [34, 35]. Chem Tutor engages
students in iterative representation-reflection practices by asking them to construct
manipulatives and reflect on how the manipulative shows the target concepts.

Students worked through a sequence of eight problems focused on concept A and
five problems focused on concept B. Each problem asked students to construct an energy
diagram. Physical manipulatives (PC/PIE) were placed next to the computer (Fig. 1a).
Virtual manipulatives (VC/VIE) were embedded in Chem Tutor. Chem Tutor provided
feedback and on-demand hints on all problem-solving steps, including themanipulatives.
For physical manipulatives, the experimenter provided scripted feedback and hints that
matched those provided by Chem Tutor.

Measures. We assessed students’ conceptual knowledge with a pretest, immediate
posttest, and delayed posttest for each concept. For each concept, the tests included a
reproduction scale (i.e., assessing recall of information about the concept) and a transfer
scale (i.e., assessing the ability to apply the information to novel problems).

Further, as instruction was self-paced, we measured time on task for each concept.
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Finally, we computed errors as the proportion of mistakes per step in manipulating
VC and VIE with log data and in manipulating PC and PIE based on video recordings.

4.4 Procedure

The experiment involved three sessions in a research lab. In session 1, students completed
the concept A pretest, Chem Tutor problems on concept A, and took the concept A
posttest. In session 2 (2–5 days later), students completed the concept A delayed posttest,
the concept B pretest, Chem Tutor problems on concept B, and the concept B posttest.
In session 3 (2–5 days later), students took the concept B delayed posttest.

5 Results

5.1 Prior Checks

One student was excluded for scoring 2 standard deviations above the median. Repeated
measures ANOVAswith pretest, immediate, and delayed posttest as dependent measures
showed learning gains for all concepts and scales (ps< .01)with effect sizes ranging from
p. η2 = .568 to p. η2 = .876. For concept A, we found no significant condition effects on
pretest measures and time on task (ps > .10). For concept B, there were no significant
differences on the pretests (ps > .10), but a significant effect on time on task (p = .01).
Post-hoc comparisons showed that students in the PC-VIE condition took significantly
longer than students in the VC-PIE condition (p = .008). Time on task correlated with
posttests (r = −.244 to −.558). Thus, we use it as covariate in our analyses.

5.2 Effects on Error Rates During Interactions with Manipulatives

We used a repeated ANCOVA with mode-sequence (P-V vs V-P) and design-sequence
(IE-C vs C-IE) as independent factors, mode-type (P vs V) as repeated measures, pretest
and time on task as covariates, and errors as dependent measure. For concept A, the effect
of mode-sequence was significant, F(1, 72) = 5.309, p = .024, p. η2 = .069. Students
who received physical manipulatives first made fewer errors, which partially supports
HCF-1. For concept B, the effect of design-sequence was significant, F(1, 72) = 6.664,
p = .012, p. η2 = .085. Students who received implicit-embodied manipulatives first
made fewer errors. This finding supports HSF-1. Figure 2a-b illustrate these results.

5.3 Effects on Learning Outcomes

We used a repeated ANCOVA with mode-sequence (P-V vs V-P) and design-sequence
(IE-C vs C-IE) as independent factors, test-time (immediate, delayed posttest) and scale
(reproduction, transfer) as repeated factors, pretest and time on task as covariates, and
test scores as dependent measures. For concept A, there were no main effects of mode-
sequence and design-sequence (ps> .10), but mode-sequence interacted with test-scale,
F(1, 72) = 9.644, p = .003, p. η2 = .045. Pairwise comparisons showed that the P-V
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sequence yielded better transfer, F(1, 72) = 6.568, p = .012, p. η2 = .084, but did
not affect reproduction (F < 1). This effect held for PC-VIE and PIE-VC. This finding
partially supports HCF-2. For concept B, there were no effects of mode-sequence or
design-sequence (Fs< 1), thus supporting neither HSF-2 nor HCF-2. Figure 2c illustrates
the results.

Fig. 2. (a) Effect of mode-sequence on concept A errors; (b) effect of design-sequence on concept
B errors; (c) effects of mode-sequence on reproduction and transfer posttests. All bars show
estimated marginal means. Error bars show standard errors of the mean.

6 Discussion and Conclusion

Prior research recommends blending physical and virtual manipulatives by sequencing
them in a way that makes the target concepts salient. However, a mostly separate line
of research shows that explicit and implicit types of embodied processes also affect
learning with manipulatives. A severe limitation of prior research is that it had not
investigated all three types of processes together. Our prior research had contrasted
effects of conceptual, explicit-embodied, and implicit-embodied processes on learning
with manipulatives. Results had indicated that these processes differently affect learning
outcomes of varying complexity. This gave rise to two competing hypotheses about
sequencing physical and virtual manipulatives either so that they engage students in
simple learning processes first (i.e., via implicit-embodiment) or so that they engage
students in complex learning processes first (i.e., preferably via explicit-embodiment
or else via conceptual salience). While the results of the present experiment seem to
be complex, two relatively simple patterns emerge. First, explicit embodiment has a
strong effect on both errors and learning gains. Second, whether in the form of explicit
or implicit embodiment, some type of embodied experience at the beginning of the
learning sequence is advantageous. In the following, we discuss each pattern in turn.

First, the finding that the P-V sequence yielded fewer manipulative errors and higher
transfer gains for concept A than the V-P sequence partially supports the complex-first
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hypothesis. Recall that this hypothesis had also predicted an advantage of sequences that
startwith conceptual salience (i.e., in addition to amain effect of P-V>V-P, an advantage
of PC-VIE > PIE-VC). Yet, our results suggest that starting with physical manipulatives
that offer explicit embodied experiences of the target concept is sufficient. Engaging
students in additional complex processes with the concept early in the sequence is not
necessary. Further, in line with our prior research, engaging students in complex pro-
cesses first affects transfer rather than reproduction, suggesting that complex processes
align with complex learning goals.

Second, the finding that the IE-C sequence yielded fewer manipulative errors for
concept B partially supports the simple-first hypothesis. Recall that the physical manip-
ulatives offered no explicit embodied experiences for concept B. A sequence that first
engaged students in complex learning processes via conceptual salience did not offer an
advantage compared to implicit embodied experiences related to the concept. Thus, our
result indicates that in the absence of explicit embodied experiences, there is some advan-
tage of offering implicit embodied experiences at the beginning of a learning sequence.
Given that we contrasted this to a sequence that starts by making the concept salient, our
result shows that the benefit of initial implicit embodiment is stronger than a potential
benefit of starting with conceptual salience. However, the effect only bears out with
respect to reducing students’ errors on the manipulative, but not on learning outcomes.
It is possible that potential benefits of conceptual salience counteracted any potential
advantage of offering implicit embodied experiences first.

Our findings expand research on blending physical and virtual manipulatives in at
least two ways. First, our research is the first to consider conceptual salience as well
as explicit and implicit embodied experiences, yielding a systematic comparison of
sequences. Moreover, no prior research has compared explicit and implicit embodied
processes, even though they appear to yield dramatically different outcomes. Second, our
findings suggest that blending should not be done purely based on conceptual salience.
Wherever possible, manipulatives should first offer explicit embodied experiences of
target concepts. Otherwise, implicit embodied experiences can offer some advantages.
Consequently, adaptive blended learning technologies should not only trace students’
conceptual learning but should also trace their embodied engagements by assessing
movement and touch.

Our findings should be interpreted in light of several limitations. First, we focused on
one combination of concepts and manipulatives. Other manipulatives lend themselves
to studying different combinations of conceptual and embodied designs. For example,
we did not include a manipulative that offered implicit embodied experiences while also
making the target concept salient. Future research should examine whether it is possible
to combine benefits of implicit embodiment and conceptual salience, especially when
explicit embodiment is not available. Second, our experimentwas conducted in a research
lab and should be replicated in a realistic educational context. Third, while long for a lab
experiment, our interventionwas relatively short for realistic instruction. Future research
should examine sequence effects over longer periods.

In conclusion, blended educational technologies offer novel opportunities for com-
bining physical and virtual experiences. The dominant framework that guides extant
integrations of physical and virtual manipulatives focuses on conceptual salience while



Embodied Learning with Physical and Virtual Manipulatives 113

disregarding emerging findings about the importance of embodied engagement. Our
research systematically juxtaposed conceptual salience with two types of embodied
engagements. Our findings show that explicit embodied engagements early in a learning
sequence can significantly enhance students’ learning with manipulatives.
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Abstract. Recent years have seen a surge in research conducted on intelligent
online learning platforms, with a particular expansion of research conducting A/B
testing to decide which design to use, and research using secondary platform data
in analyses. This scientometric study aims to investigate how scholarship builds
on these two different types of research. We collected papers for both categories
- A/B testing, and educational data mining (EDM) on log data- in the context of
the same learning platform. We then collected a randomized stratified sample of
papers citing those A/B and EDM papers, and coded the reason for each citation.
On comparing the frequency of citation categories between the two types of papers,
we found that A/B test papers were cited more often to provide background and
context for a study, whereas the EDM papers were cited to use past specific core
ideas, theories, andfindings in thefield.This paper establishes amethod to compare
the contribution of different types of research on AIED systems such as interactive
learning platforms.

Keywords: Scientometrics · A/B testing · Online learning · AIED systems

1 Introduction

1.1 Research on Interactive Learning Platforms

Large-scale platforms for interactive online learning have become a core part of educa-
tional practice, a trend that has accelerated due to the pandemic-related shutdowns of
educational institutions. There are several benefits of interactive learning platforms for
learners. They make learning significantly more accessible [29] for learners unable to
travel, learners whose work constraints make class attendance infeasible, and learners at
home in quarantine. They are often also beneficial even when learners can attend class
in-person, enabling classroom instruction to be enhanced by using data from online
activities given as homework or in-class [34, 37]. Research-based platforms such as
intelligent tutoring systems tend to lead to substantial learning benefits, an average of
0.76 standard deviations better than traditional curricula [33].
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Even beyond these benefits, AIED learning platforms provide opportunities for
enhancing learning through research [32] and can support it by iterative refinement
through A/B tests and secondary data analysis. A large number of automated experi-
ments have been conducted on these online learning platforms. Initially, it was common
for single research groups to use their own platforms for research [2, 25]. In the early
2000s, the Pittsburgh Science of Learning Center (PSLC) built an infrastructure enabling
hundreds of studies to be conducted in classrooms [20], albeit in a relatively resource-
intensive fashion where researchers visited individual classrooms. In recent years, the
ASSISTments learning platformhas developed a research platform that allows automatic
deployment of studies across the web. This platform has been used by dozens of external
researchers to carry out their studies in thousands of math classrooms [27]. Increased
support for A/B studies has also been incorporated into MOOC platforms [30], leading
to large-scale studies such as [18], which tested an intervention in over 200 courses with
millions of enrolled learners.

There has been an even larger expansion in the use of AIED learning platform data
in secondary analyses by educational data mining (EDM) researchers. Initial research
within the educational data mining conference was heavily based on data sets from the
PSLC [19], with 14% of total analyses using DataShop data [1]. Over time, a range
of learning platforms have moved towards sharing their data publicly, increasing the
number of research questions that can be investigated by researchers without direct
access to a large-scale platform. Specific data sets have become standards for comparing
algorithms across papers – for instance, many papers have used a specific public data set
from ASSISTments, to study student knowledge modeling [17, 38, 39], and Cognitive
Tutor data has been used to compare ways to automatically refine knowledge structures
[14, 22].

Both A/B testing infrastructure and secondary data analyses have facilitated and
expedited research in the learning sciences, but the full details of how these trends have
impacted the field are not fully known.We know there are more papers, but how do these
papers influence the field? And do these two innovations influence future research in
similar ways or do they have different types of influence? In this paper, we investigate
the question of how the research afforded by these learning platforms impacts scientists
and projects even beyond the specific papers that are produced. In other words, what
is the scientific impact of each type of research, and is there a different impact on the
science of learning from A/B tests versus EDM analyses?

1.2 Scientometrics in Secondary Data Analysis

In answering this question, we draw upon methods and past work in scientometrics, the
field of scientific studywhich investigates the properties of scientific publications in order
to better understand science more broadly. One of the core and long-standing questions
and contributions of scientometrics has been in terms of comparing papers in terms of
citation counts [15, 31] and comparing the relative contribution of different scientists
[6]. This has been a prominent area of analysis in the learning analytics community. For
example, research studies have looked at what learning analytics and EDM papers are
most cited [1, 8, 36], and have analyzed the quantity of research output and collaboration
in order to rank universities and scholars [11, 36]. This work has been highly useful
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to researchers in understanding the state and scope of the field of learning analytics.
However, it does not answer our current research question around how this field makes
progress scientifically.

A second category of scientometric research in EDMhas focused onwhich topics are
being studied, andhow theseEDMtopics have shifted over time [8, 9], building on similar
long-standing trends in scientometrics more broadly [4]. Furthermore, researchers have
looked at the differences between the topics studied in learning analytics and educational
data mining [5, 10], which sub-community’s papers are cited more often [5, 10], and the
relationships between published topics [36].

A third category of existing scientometric research in learning analytics has inves-
tigated equity in the field’s practices. Concurrently with an increase in interest within
scientometrics more broadly in whether gender, race, and ethnicity influence publication
and citation patterns [16], learning analytics researchers have investigated the diversity
in the field [5, 24, 36]. Recent work has also studied the degree to which diversity in
samples is considered in secondary data analytics research (or even reported) [28]. The
results of [28] indicated that most papers in the field do not evenmention the background
of learners, much less check for algorithmic biases, which makes it challenging to gauge
the generalizability and transferability of our findings.

However, despite the considerable interest in scientometrics within communities
closely aligned with the AIED community, there has not yet been research on analyzing
citations to understand how researchers in these communities build on each others’
research or on why papers are cited. In other words, there has been research on who is
conducting research in these communities, and what they are researching, but not how
they are building upon each others’ research. Fortunately, there is considerable work in
the scientometrics community that we can build on in analyzing this question for EDM
andA/B testing research. Startingwith [12], scientometricians have attempted to identify
lists of reasons for why a scholar might choose to cite a specific paper. [3] expanded upon
a list by Garfield [12] in an extensive review, which [21] then distilled into a manageable
coding scheme. In this literature, one of the key steps towards understanding why a
citation occurs was developingmethods for the qualitative analysis of a citation’s context
[3, 7]. This literature found that researchers choose to cite a paper for a wide variety
of reasons, including both scientific reasons (crediting key past contributions, refuting
previously published ideas) and political reasons (citing an important member of the
field, citing papers from the venue being submitted to). Political citations can be quite
common – for example, a review of citations in computer science education found that
few citations actually involved building on the contributions in previous papers [23].

In this paper, we built on this past work to investigate our research question of why
researchers cite EDM and A/B testing papers, and what the differences are between the
citations to each type of paper.Wedo so by collecting a corpus of citations ofwork to each
type (citations all to work occurring in the same learning platform, to reduce confounds),
qualitatively coding the reasons for each citation, and then statistically comparing the
proportion of each reason for citation.
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2 Methods

2.1 Research Context

In this paper, we analyze the citations received by papers presenting research conducted
in the context of the ASSISTments platform [28]. ASSISTments is an online learning
system with 500K students and 20K teachers currently, primarily used for mathematics.
ASSISTments has users in over 20 countries, but the majority of learners are in the
United States of America. Randomized controlled studies have demonstrated positive
learning gains for students using the platform on an ongoing basis [26]. Learners using
ASSISTments complete mathematics problems, and can receive multi-step hints or scaf-
folding on demand or after making errors. ASSISTments provides support for mastery
learning, where learners continue working on a skill until they demonstrate they can
answer correctly three times in a row, and offers spiraling practice/review functionality
as well.

Among AIED learning systems, ASSISTments offers substantial support for exter-
nal researchers. Learning analytics and educational data mining researchers are able to
download (as of this writing) fourteen publicly available data sets named Open Released
Datasets,1 which offer extensive interaction log data, combined in some cases with addi-
tional data such as field observations of student affect or longitudinal student outcomes.
Dozens of external researchers have used data from the ASSISTments system in further
analyses.

ASSISTments also offers substantial support for A/B testing research, enabling a
researcher to conduct randomized experiments on learners across the United States,
usingE-Trials, theEd-TechResearch Infrastructure toAdvanceLearningScience [41].A
substantial number of external educational psychology and learning sciences researchers
have used the ASSISTments system to conduct A/B tests on a wide range of research
questions. The large scale of ASSISTments’ use in both learning analytics and A/B
testing research makes it an appropriate context to compare the scientific impact of
these two types of research.

2.2 Articles Studied

In this study, we compared the types of scientific impact achieved by two categories of
papers, referred from here onwards as the “target” papers. We selected all the papers
published up until March 2021 (when we pulled our data set for analysis) that leverage
theASSISTments platform for conducting the two different kinds of research.Wefiltered
out the papers which did not fall into either category.

The first type of papers (referred to as A/B papers) compare the impact of two
versions of a learning activity within the ASSISTments system. For the A/B papers,
students are experimentally assigned to one condition or the other, to evaluate the impact
of intervention on student learning or other outcomes.

1 The open released data sets are publicly available at https://www.etrialstestbed.org/resources/
featured-studies/dataset-papers.

https://www.etrialstestbed.org/resources/featured-studies/dataset-papers
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The second type of papers (henceforth referred to as secondary data analysis or EDM
papers), use interaction log data from the ASSISTments system to investigate a range
of research questions, including the impact of different behaviors on student outcomes,
the accuracy of different knowledge modeling algorithms, and the linguistic attributes
of ASSISTments math problems.

All the target papers for both categories were obtained from the publicly available
ASSISTments website, which provides a list of papers that use their Open Released
Datasets, as well as a repository of all the published randomized controlled experiments
using ASSISTments. This yielded a total of 27 target A/B papers, and 32 target EDM
papers. In March 2021, we used Google Scholar to obtain a list of papers citing each of
these target articles. An article was considered if the full text could be obtained either
openly over the internet, through the University of Pennsylvania library, or through
interlibrary loan. Both peer-reviewed and non-peer-reviewed (i.e. dissertations, xArxiv,
white papers) documents were included. Only articles in English were considered for the
review process. Duplicates were filtered out if a single paper was citing one target paper
more than once, however, if a single paper was citing different target papers multiple
times, then each citation was considered separately. This gave a total of 2418 citations
across all of the target papers (756 total citations for A/B papers, or 28 per paper; 1662
total citations for EDM papers, or 51.9 per paper).

We conducted statistical power analysis in order to determine howmany citing papers
to sample from this large number of articles for qualitative coding. An initial analysis of
the citations of two highly-cited papers was used to choose parameters for the statistical
power analysis. Statistical power was calculated using G*Power 3.1.9.4, assuming an
effect size where papers in one category were cited 50% more often for one reason than
the other paper category, with a baseline of 40% citation for the less common reason (i.e.
40% versus 60%; risk ratio= 1.5), with the allocation ratio set to one (i.e. wewill sample
approximately the same number of papers of each type), and α set to 0.05, using the Z
test of the significance of the difference between two independent proportions (this test
is mathematically equivalent to χ2 with one degree of freedom – they provide the exact
same p values). For this test, statistical power of 0.8 would be achieved with samples of
97 and 97. Given this goal number of papers, we conducted stratified random sampling
(stratified to equalize the number of citing papers per target paper as much as possible).
This resulted in a data set of 174 papers citing A/B papers and 167 papers citing EDM
papers for coding, moderately larger than the goal sample size.

2.3 Coding Scheme

We identified all the citations of any target papers within each article that cited one or
more of the target papers. In many cases a citing article cited multiple target papers, in
most cases all from the same type of paper (A/B or EDM) and in exactly one case from
both.

Next, we developed a coding scheme to identify the reasons why a citation might cite
an article. Our first step towards developing this coding scheme was to take an extensive
list of reasons why people cite published articles [21], which had been distilled from a
review of 30 studies on citing behavior [3]. We then eliminated reasons not found in our
citing articles or that would not be explicitly stated in the text surrounding a citation. For
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instance, [21] notes that authors may choose which paper to cite based on the availability
of full text for that paper, a reason that would be difficult to identify from how a paper
is cited within the text. We then removed or merged categories that were not clearly
differentiated from each other, and categories that did not seem to occur in our papers.
This yielded our final coding scheme for citations. As will be noted below, not all of the
categories we chose to code were ultimately found in our sample of citing papers. The
final coding scheme was:

Publication-Dependent Reasons
Citation due to some attribute of the publication being cited (in the target article).

P1: The target paper was the original publication in which an idea or concept was
discussed – a “classic” article.

P2: Using/giving credit to ideas, concepts, theories, methodology, and empirical
findings by others.

P3: Earlier work on which current work builds.
P4: Providing background, to give “completeness” to an introduction or discussion.
P5: Empirical findings that justified the author’s own statements or assumptions.
P6: Refuting or criticizing the work or ideas of others.
P7:Mentions of otherwork (“see also”, “see for example”, “cf”, “e.g.”, “i.e.”)without

further discussion.
P8: Used target paper’s dataset for secondary analysis.

Author-Dependent Reasons
Citation due to some attribute of the author being cited (in the target article).

A1: Paying homage to a pioneer in the research area/giving general credit for related
work.

A2: Ceremonial citation, the author of the cited publication is regarded as “authori-
tative”.

A3: Self-citation: one of the authors was also an author on the target article.
Note that this coding scheme is not exhaustive; some citations may not be coded as

representing any of these categories (for instance, articles cited as a part of the systematic
review of studies) for both types of paper.

Initially, a subset of citations for each target paper was coded2 in terms of this coding
scheme by two coders (the first and third authors), to establish inter-rater reliability, and
then the first author coded all the papers. If a coder judged that a paper was cited for
multiple reasons – for instance, if it was cited in different parts of the paper – multiple
codes were given. However, if a citing paper cited the same target paper multiple times
for the same reason, it was counted a single instance – i.e., if the citing paper cited the
target paper for reason P2 in four different places, it was treated as a single citation
because of reason P2.

The proportion of each citation category found across citing papers was compared
using the chi-squared test, between the two types of target papers (i.e. A/B versus EDM).
Both Bonferroni and Benjamini and Hochberg corrections were applied (separately).

2 The data set created is publicly available at https://osf.io/rmswe/?view_only=d496417aef1e
4046907d2271b8a86cbb.

https://osf.io/rmswe/?view_only=d496417aef1e4046907d2271b8a86cbb
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Inter-rater reliability (Cohen’s Kappa) was calculated for each coding category, treat-
ing each category as independent (i.e. a set of binary codes) since coding was non-
exclusive. The average Kappa across categories was 0.77 for A/B and 0.72 for EDM,
0.75 overall. Kappa was above 0.6 for every category. Categories P1, A1, and A2 were
never coded for any citation by either of the two coders. For A1 and A2, this might be
due to difficulty in identifying an author-dependent reason for citation from the text of
the paper; much of the research on author-dependent reasons for citation has involved
self-report rather than content analysis ([36, see review in [3]). The lack of application of
P1 may similarly be due to the difficulty of identifying it from the paper text. Although
the original reason for citing a paper may be its classic status, the practice of academic
writing may result in a paper being discussed in terms of a different reason.

3 Analysis and Results

After inter-rater reliability was established, the first coder coded every citation in every
paper. We next analyzed the prevalence of each citation category for each type of paper,
and whether the prevalence of any citation category was statistically significantly differ-
ent between the two types of papers. As mentioned above, within analysis we considered
each citing paper/reason combination only once for each target paper, even if a target
paper was cited for the same reason more than once in the same citing paper.

Table 1 shows that the most common citation category, for both papers, was P2,
using/giving credit to specific ideas, concepts, theories, methodology, and empirical
findings by others. It was seen in around more than half of the citations (averaged at the
level of citing papers) for target EDM papers, and 35.6% for A/B papers. P4 appeared in
a substantial 32.2% of citations for A/B papers, and about half of that in EDM papers.
Two categories were seen between 15% and 25% of the time for both types of papers:
P3, Earlier work on which current work builds, and A3, Self-citations. The remaining
three categories were seen less than 10% of the time for both papers.

Statistically significant differences between the twopaper types are given in boldface.
We then compared the prevalence of each citation category between paper A/B and

paper EDM using a chi-squared test. This test assumes that paper A/B and paper EDM
are cited by different sets of papers. In practice, only 1 paper in our sample cited both of
these two categories of papers (out of a total of 341 papers), so this seemed like a safe
assumption rather than a situation where a significantly more complex method tailored
to partial overlap of data sets would be warranted. The statistically significant categories
are P2 and P4. Category P2 stands for using/giving credit to specific ideas, concepts,
theories, methodology, and empirical findings by others, which was cited 35.6% of the
time by A/B papers, and 58.1% by the EDM papers, χ2 (df = 1, N = 341) = 17.26,
p = 0.00003. Category P4 represents providing background, to give “completeness” to
an introduction or discussion, and it was about twice as commonly cited in A/B papers
(32.2%) than in the EDM papers (16.2%), χ2 (df = 1, N = 341) = 11.87, p = 0.0005.
The full pattern of statistical evidence is given in Table 1.
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Table 1. The prevalence of different Citation Categories for each of the two paper types

Reason for citation Average prevalence (paper
AB)

Average prevalence (paper
EDM)

p value

P2: Using/giving credit to
specific ideas, concepts,
theories, methodology, and
empirical findings by
others

35.6% 58.1% 0.00003

P3: Earlier work on which
current work builds

18.4% 15.6% 0.49

P4: Providing background,
to give “completeness” to
an introduction or
discussion

32.2% 16.2% 0.00057

P5: Empirical findings that
justified the author’s own
statements or assumptions

9.8% 6.0% 0.20

P6: Refuting or criticizing
the work or ideas of others

1.2% 3.6% 0.14

P7: Mentions of other
work (“see also”, “see for
example”, “cf”, “e.g.”,
“i.e.”) without further
discussion

8.0% 9.0% 0.76

P8: Used target paper’s
dataset for secondary
analysis

4.0% 1.8% 0.22

A3: Self-citation 19.5% 24.6% 0.35

There is an inflated risk of Type I error since we ran eight statistical tests. To address
this risk, we applied Benjamini and Hochberg and Bonferroni post-hoc controls. No
significant tests became non-significant after the post-hoc test. Categories P2 & P4 were
found to have p< 0.001, so they remain significant after post-hoc control. All other tests
were non-significant, even without a post-hoc correction.

4 Conclusions and Discussions

In this study, we have investigated the reasons behind why scientists cited two types of
papers using AIED systems for research. One category of papers used the platform to
conduct automated A/B tests, the other category of papers used the platform’s data to
do secondary learning analytics (EDM) research.
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We distilled a list of eleven reasons on why a paper is cited from prior literature on
scientometrics, and then applied this list of reasons (as citation categories) to a sample of
papers that cited one of the two types of target papers, within the same learning platform,
with two coders who established inter-rater reliability for each code.Within this learning
platform, the EDM papers were cited almost twice as much as the A/B papers, which
may reflect several factors, including the relative contribution of each type of work, the
ease in building on work of each type, or the size of the large and flourishing learning
analytics research community.

In our findings, both types of papers were cited primarily for publication-based
reasons rather than author-based reasons (except for self-citation). However, this may
simply be due to the difficulty in identifying author-based reasons for citation. For
example, a paper may have been cited because of its author’s political power, but that
citation may then be justified within the paper in terms of some scientific aspect of the
paper, such as category P7 (citations to a paper as an example of some more general
category, without further discussion). As such, determining if a citation is author-based
probably depends on other forms of data collection such as anonymous surveys [32].

In comparing the two types of articles, two statistically significant differences were
found: the EDM type of papers were cited for reason P2 (Using/giving credit to specific
ideas, concepts, theories, methodology, and empirical findings by others) over 50%
of the time, which was 1.6 times more than A/B papers cited for that reason. This
finding suggests that EDM papers are more prevalent in generating ideas, concepts, and
empirical findings that other researchers in the field find useful. This type of research
directly contributes to the field moving forward.

On the other hand, category P4 (Providing background, to give “completeness” to an
introduction or discussion) was cited as a reason twice as many times by the A/B papers
than the EDM papers. These citations were primarily found in the ‘Introduction’ or the
‘Literature Review’ section of the papers. The findings might indicate that A/B papers
are being cited for related work, and to cover the breadth of the research related to that
topic, instead of directly building on previous work.

Overall, these findings seem to highlight the different types of contributions the
two types of papers make – EDM type of papers seem to have a larger impact on
subsequent research than A/B papers. A/B research studies seem to be carried out more
independently from prior work. One possible explanation for this pattern can be because
the range of potential design modifications is large and varies based on the original
design of the system being studied, whereas EDM algorithms tend to either compare
algorithms (directly using previouswork) or develop an analysis across papers (likework
on defining wheel-spinning and studying it). It is also possible that as the community
of learning platform A/B researchers develops, they will converge to a smaller set of
designs and begin to use P2 citations more often.

A limitation of this study remains that it investigated the citation reasons for two types
of research on a single learning platform. It is possible that some aspect of the design of
ASSISTments facilitated conducting work that would receive citations for specific ideas
more in EDM research than A/B research (although ASSISTments is one of the learning
platforms currently most committed to supporting external A/B researchers). It is also
possible that the learning domain (of mathematics) influenced the contributions made
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by the work, or that the community of researchers drawing upon mathematics education
research influenced this paper’s results. To drawmore substantial conclusions, this work
must be replicated within a wide variety of learning platforms (also varying by subject
matter). However, there are currently only a small number of learning platforms used
at scale both for A/B testing and learning analytics research, though this number is
increasing. In future work, we recommend that researchers focus analysis on single
platforms, as in this paper. Comparing between different platforms raises confounds not
present in single-platform analysis.

Other factors in the field may of course also impact how studies are cited. For
example, differences in the expectations of reviewers in venues that seemoreA/B studies
versus EDM studies may impact how authors cite papers when submitting to these
venues. The time it takes to conduct A/B studiesmay also explain the lower total quantity
of citation for A/B studies, although not why the type of citation differed.

Another limitation to the study was a possible lack of statistical power. Although
a power analysis was conducted prior to research, some rare categories had seeming
differences that were not statistically significant (i.e. 1.2% versus 3.6% for category
P6). Unfortunately, this limitation was unavoidable for the overall data set, even if we
had coded every example in the data (an arduous task). Power of 0.8 would only have
been achieved by category P6 if we had been able to code 878 examples of both A/B
and EDM, larger than the total current population for A/B, even if we had skipped the
necessary step of conducting a post-hoc correction. P5, the next closest category to
significance, would have required 1088 examples of each category. Thus, investigating
differences in categories this rare would require a substantially larger data set. It is
possible that this paper’s work can eventually contribute to such a goal, by developing
a categorization scheme and building a corpus of codes that can be used as a training
set for an eventual NLP approach that can automatically detect why one paper cites
another [13]. Ultimately, the work presented here suggests that EDM papers and A/B
testing papers are cited for different reasons. More comprehensively investigating this
topic – and investigating subcategories within these broader categories of research –may
help us to understand how scientific progress occurs, in our field and more broadly.
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Abstract. Video-based Learning (VBL) is a popular form of online learning,
which may lead to passive video watching and low learning outcomes. Besides
potential low engagement, VBL often provides very limited feedback on student’s
progress. As a way to overcome these challenges, we present student-facing visual
learning analytics (VLA) designed for the AVW-Space VBL platform. Using a
quasi-experimental design, we compared data collected in the same first-year uni-
versity course in 2020 (control group, 294 participants using the original version of
AVW-Space) to the 2021 data when 351 participants used the enhanced version of
AVW-Space (experimental group). We analysed various measures of engagement
(number of watched videos, comments, etc.) and learning (pre/post-study knowl-
edge scores). The findings show that VLA encourage constructive behaviour and
increase learning. This research contributes to using student-facing VLA in VBL
platforms to boost engagement and learning.

Keywords: Video-based learning · Visual learning analytics · Student model

1 Introduction

Learning by watching videos is increasingly popular due to its flexibility in time and
place.Many studies show that video-based learning (VBL) increasesmotivation, engage-
ment and learning [1, 2]. However, the lack of interaction with videos and humans, as
well as the lack of feedback and personalisation can turn VBL into a passive form of
learning, with learners simply watching the videos and not engaging deeply [2, 3]. Sev-
eral approaches have been used in VBL to overcome the engagement challenge, such
as integrating annotation tools [3] and quizzes [4]. Although these approaches address
the lack of human interaction and interactivity with videos, they do not provide person-
alised feedback to learners. One way to address these shortcomings is integrating visual
learning analytics (VLA) into VBL to boost engagement by providing feedback [5].

VLA can provide insights on learning resources [3, 6] and the student’s learning
progress. The former is the same for all learners, while the latter provides more per-
sonalisation [7]. Visualisation of the learner model provides up-to-date information to
the learner, such as progress in learning activities, knowledge and affective states [8, 9].
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Visualising this information helps learners assess their learning to make informed deci-
sions about what to do next to achieve their learning goals [9], and increases engagement
and learning [7, 10]. Although the effectiveness of student-facing VLA has been studied
in various educational platforms [11, 12], only a few studies have investigated the use
of VLA in video-based learning.

AVW-Space [13] is a VBL platform that supports engagement via note-taking, peer-
reviewing and personalised prompts [14, 15]. In AVW-Space, the learner can watch and
comment on videos, and rate peers’ comments. An early AVW-Space study [14] found
that students who commented on videos learnt more than those who watched videos
passively. Thus, a histogram and timeline of the class’s comments were added to AVW-
Space to encourage commenting and help students recognise the highly-attended video
parts [16]. However, these visualisations do not convey information about the learner’s
progress to help them regulate their learning activities.

This paper investigates the effectiveness of new VLA integrated into AVW-Space.
We present the effects of visualisations on students’ engagement and learning as well as
their subjective opinions on visualisations. This research contributes to the utilisation of
VLA to tackle engagement challenges in VBL. We defined three research questions:

RQ1. Do VLA increase engagement and foster constructive behaviour?
RQ2. What is the effect of the visual learning analytics on learning?
RQ3. What is the students’ opinion on different visualisations?

2 Related Work

The visualisation of the learning process offers evocative insight and allows students
to monitor and control learning [17]. Various types of information can be presented in
VLA [17, 18]. Competency tracking and displaying learning difficulties are examples of
cognitive visual analytics [19]. Behavioural visual analytics includes the progression in
learning tasks (e.g. watched videos) [20]. Some VLA go beyond the domain knowledge
and present the learner’s metacognitive state, such as study tactics and planning [21].
Other visualisations indicate students’ emotional status to increase emotional awareness
[22, 23]. Some visualisations provide analytics of social models such as comparisons
to the class [24]. However, the effectiveness of visualisations depends on their explain-
ability. Some studies suggest that learners find it hard to interpret the VLA to inform
their learning strategies [25]. Visualisations may even harm students’ motivation; some
research found that VLA caused social anxiety when students were presented with their
peers’ performance compared to themselves [26, 27].

Visual analytics has been applied to the learners’ interaction with video lectures, atti-
tudes, and learningperformance tofind themost difficult parts of the video [28].However,
these VLA were not displayed to the students. CourseMapper [3] uses students’ inter-
action with video to provide a heatmap on the video scrub bar to help students identify
the most viewed parts. CourseMapper also uses annotations timeframe and counts to
display an annotation map, which illustrates portions of videos which received more
annotations and likely contain interesting information. However, these visualisations
are the same for all students and do not provide any personalised information. A VBL
platform used in a flipped classroom [29] provides a simple visualisation of quiz scores
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and video completion rates to support students’ self-assessment. An experiment with
this visualisation showed that the learners who had access to the visualisation showed
higher engagement levels pre-class (e.g. watching videos and answering quizzes) and
in-class sessions (e.g., team discussion) without the instructor’s reminders. However,
these visualisations provided limited information on students’ performance. Thus, we
propose more detailed VLA to support engagement in VBL.

AVW-Space is a VBL platform designed for teaching transferable skills [13]. To
create a learning space in AVW-Space, the teacher first selects videos from YouTube.
AVW-Space supports engagement in two phases: 1) Personal space (Fig. 1), where
students watch videos and make comments, and 2) Social space (Fig. 2), where students
review and rate their peers’ comments. Personal Space is always available for students,
while Social Space becomes available after the teacher selects comments for review.

Fig. 1. Personal space in AVW-space

In Personal Space, students tag each comment by an aspect that the teacher defined.
The aspects aremicro-scaffolds for directing students to reflect on key points of the video
or their experience. A previous study on AVW-Space showed commenting and using
aspects had a positive effect on engagement and learning [14]. The analysis of comments
from previous studies differentiated low-quality comments, which merely repeat the
video content, from high-quality comments, in which students elaborated critically on
the video and reflected on their experience or planned for future improvement [30, 31].
Students whomade high-quality comments learnt more [31]. We added nudges to AVW-
Space, to foster good commenting behaviours (i.e. writing high-quality comments using
various aspects) [15, 16]. For example, if a student is passively watching a video and has
made no comments, the studentwill receive a nudge stating that commenting is beneficial
for learning. If the student used only one aspect when commenting, a nudgewill draw the
student’s attention to other aspects. AVW-Space analyses comment quality as students
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write them, using machine learning classifiers we developed to predict the comment
quality [15, 30]. When students write comments that merely repeat video content, they
will receive a nudge suggesting to think more critically about the video (as in Fig. 1).
A student who is watching the last part of the video and has made no self-reflective
comments, will receive a nudge to reflect on their previous experience. Previous studies
showed nudges significantly increased the number and quality of comments [15, 16].
However, the student might overlook nudges and not benefit from them, since they are
visible for a few seconds. Allowing students to review nudges they received could help
them understand the expectations for commenting.

Fig. 2. A screenshot of social space

AVW-Space provides interactive visualisations of comments from previous studies
(Fig. 1). The comment timeline represents comments as coloured dots on the video
timeline where the comments were made. The colour of a dot corresponds to the aspect
used. The learner can see the comment text by hovering over a dot (black box in Fig. 1)
[16]. These comments are static and selected manually from previous AVW-Space stud-
ies. The comment histogram illustrates the number of comments made for each video
segment. This way, AVW-Space supports social learning by allowing the student to see
what other students wrote about the same video. However, it is possible for a student to
use the comment timeline only for learning others’ opinions and still make no comment.
Thus, the timeline visualisation needs improvements to clarify its purpose.

In Social Space, students can rate comments by choosing the rating options defined
by the teacher. Students can see their own comments but cannot rate them or see their
received ratings.An early study showed that rating brings an additional benefit to learning
on top of commenting [14]. Hence, visualising the student’s progress in commenting
and rating could encourage more engagement. Moreover, visualising received ratings
could motivate students to write high-quality comments.
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AVW-Space is based on the ICAP framework [32], which categorises learners’ overt
behaviour into Interactive, Constructive, Active and Passive. The more engaged students
are, the more they learn (i.e. Passive < Active < Constructive < Interactive). Passive
learners receive information via merely watching videos. Active students perform addi-
tional actions like note-taking, but their annotations repeat the received information with
no elaboration. Constructive learners add new information that was not explicitly taught,
by reflecting on their knowledge and making connections. The last category, Interac-
tive, is not relevant for our research as AVW-Space does not support direct interaction
between students. Previous AVW-Space studies showed that nudges increased construc-
tive engagement [15, 16], but no research has investigated the effectiveness of VLA on
constructive behaviour. One of our goals is to address this gap.

3 Enhancing Visualisations in AVW-Space

To identify what VLA to integrate into AVW-Space, we analysed the students’ feedback
fromprevious studies.Most students requested a progress visualisation tomonitor videos
theyhavewatched and reviewed. Some students complained that nudges disappear before
they read them thoroughly, so they wanted to revisit them. Moreover, students wanted to
see ratings they received from their peers in theSocial Space.Wealso decided to provide a
personal timeline visualisation to allowstudents to compare their comment timeline to the
others’ comments timeline. We conducted rapid-prototyping and evaluated prototypes
by brainstorming and interviewing five domain experts. The visualisations went through
three iterations: a paper-based mock-up, a digital mock-up and functional visualisation
developed using D3.js and JavaScript.

Fig. 3. Video page with progress visualisation

Figure 3 shows the new progress visualisation at the top of the page, the list of
videos (unchanged) and the new green indicators of visited Personal and Social Space.
Each student can only see their own progress report, showing the number of watched
videos, commented videos, and videos on which comments are rated as well as whether
the surveys have been completed. The tasks in the progress report are presented in the
preferred order: watch a video, comment, and rate peers’ comments; since a previous
study showed some students rated peers’ comments before making their own comments
[33].
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Fig. 4. The enhanced personal space interface with the new visualisation

We replaced the comment histogram with a visualisation showing the student’s own
comments (Fig. 4). The comment list now shows the quality of each comment and the
nudges received. Students can read the nudge message by clicking on the dialogue icon.
The quality indicators are in three colours: red (off-topic), yellow (reflecting on the
video) and green (self-reflective or self-regulating). We also modified the Social Space
interface (Fig. 5). The student can now see a pie chart for their own comments, showing
ratings received from others. The number of ratings received for a particular option is
shown by hovering over the rating option on the pie chart. Students can also use a toggle
switch to see their own comments first and then others’ comments to rate.

4 Experiment Design

Fig. 5. Comment rating

We report on a quasi-experimental study, conducted in
a first-year engineering course at theUniversity of Can-
terbury in 2020 [15] and 2021 (ethical approval HEC
2020/12/LR-PS). The course had the same instructors
and structure in both years. Students worked on an
Engineering Without Borders project in teams, and
needed to give a group presentation in the last week
of the course. In both years, the students were noti-
fied about the online training for presentation Skills.
The students who watched at least one video on AVW-
space received 1%of the final course grade. The control
group consisted of the 2020 participants, who used the
original version of AVW-space presented in Sect. 2.
The experimental group consisted of the 2021 partici-

pants who could see the new VLA. The learning materials and procedure were identical
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in both years. There were four tutorial videos on how to give presentations, and four
example videos of real presentations [13]. Participants provided informed consent and
completed Survey 1, containing questions about the participant’s demographic, knowl-
edge, experience and training in giving presentations. Participants were instructed to
1) watch and comment on the tutorial videos, 2) critique the example videos, and 3)
rate peers’ comments. Finally, participants completed Survey 2, containing the same
questions about giving presentations. In the surveys, the participants had one minute
to list concepts about presentation skills. The students’ answers were marked automat-
ically, using the ontology developed in previous work [34]. The marks for conceptual
knowledge questions are used as the pre-/post-tests scores (CK1 and CK2).

Regarding the first research question (RQ1), we expected that the VLA will result in
a significant increase in the number of videos watched and commented/rated on in 2021
(Hypothesis H1). Secondly, because the quality of comments written is visualised in the
enhanced version of AVW-Space, we expected to see a significantly higher proportion
of constructive students in 2021 (Hypothesis H2). Our second research question (RQ2)
focuses on the impact of VLA on learning. A previous study [15] found that students
who engaged more deeply with AVW-Space and wrote high-quality comments learnt
more; we expected to see the same effect in 2021 (Hypothesis H3). We also expected
that more interactions with VLA will lead to more videos watched/commented on, and
more high-quality comments (Hypothesis H4). The last research question (RQ3) focuses
on the students’ feedback on VLA collected in Survey 2.

5 Results

351 students from the 2021 course and 294 students from the 2020 course completed
Survey 1 and watched at least one video. However, only 277 students in 2021 and 147
students in 2020 completed both surveys. The increase in survey completion in 2021
could be due to the survey status in the progress visualisation. There were no significant
differences between the groups in students’ demographics, CK1, training and experience
scores.

Effects of VLA on Engagement (RQ1): Table 1 presents the summary of interactions
with AVW-Space. The 2021 students watched more videos and wrote more comments
than the 2020 students, but there was no significant difference on the number of ratings
made. Students in 2021 made significantly more comments and received significantly
more nudges, which could be attributed to the visualisations in the Personal Space. In
addition, 2021 students watched and made ratings on significantly more videos, indicat-
ing that the progress visualisationmay havemotivated students to complete commenting
and rating. The number of days spent on AVW-Space increased significantly in 2021,
and Hypothesis H1 is confirmed.

Wecategorised the students post-hoc into three categories, using the ICAP framework
(Table 2). Studentswhowatched videoswithoutmaking any commentswere classified as
Passive. To distinguishConstructive fromActive students, we used themedian number of
high-quality comments made on tutorial videos, which was 2 in both years. We defined
Constructive students as those who wrote three or more high-quality comments, and
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Active students as those who wrote up to two high-quality comments. A chi-square test
of homogeneity between years and ICAP categories revealed a significant difference
(Chi-square = 45.24, p < .001) with effect size (Phi) of .26 (p < .001). A post hoc
analysis showed a significant increase of Constructive students and a significant decrease
of Passive students in 2021, confirming Hypothesis H2.

Table 1. Activities (mean and standard deviation)

2020 (294) 2021 (351) t-test

Unique videos 5.26 (2.74) 6.98 (2.24) t = 8.54, p < .001

Comments 10.29 (14.78) 14.04 (11.43) t = 3.34, p < .001

Nudges 19.76 (16.06) 23.26 (12.62) t = 3.02, p < .01

Ratings 21.74 (73.39) 23.55 (52.26) t = .36, p = .72

Videos commented 3.78 (3.29) 6.60 (2.74) t = 11.67, p < .001

Videos rated 1.16 (2.31) 6.44 (3.06) t = 24.91, p < .001

Days on AVW-Space 3.08 (1.93) 4.29 (2.93) t = 5.73, p < .001

Table 2. The distribution of ICAP categories in 2020/2021

ICAP categories 2020 (294) 2021 (351) Significance

Passive 75 (25.5%) 25 (7.1%) p < .001

Active 114 (38.8%) 141 (40.2%) p = .68

Constructive 105 (35.7%) 185 (52.7%) p < .001

Table 3 reports how each ICAP category interacted with VLA (hovering for longer
than 5 s or clicking). Constructive students interacted with all visualisations signifi-
cantly more than Active students (p < .05), except nudge visualisations. There was
no significant difference on interactions with progress visualisation between the Active
and Passive groups. However, Active students interacted significantly more with the
others’ comments timeline visualisation than Passive students (p < .001). The Passive
group neither used the personal timeline nor the rating visualisations since they made
no comments.

Effects of VLA on Learning (RQ2): Wedeveloped amodel (Fig. 6) for the 2021 class,
based on the hypotheses H3 and H4. The nodes represent the number of interactions
with visualisations (progress, personal space, rating or nudges), the number of videos
watched, the number of high-quality comments, and the conceptual knowledge score at
the end of the study (CK2). The circles represent latent variables, curved bidirectional
arrows for correlations and straight arrows link a predicting to a predicted variable.

The model was evaluated in IBM SPSS AMOS using the data from 277 students
who completed both surveys. The mean of CK1/CK2 for these students was 14.18
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Table 3. VLA interactions performed by different ICAP categories in 2021

Visualisation Passive (25) Active (141) Constructive (185) ANOVA

Progress 6.00 (7.56) 7.24 (6.84) 9.73 (8.76) F = 5.17, p < .01

Others’ timeline 4.72 (5.69) 18.99 (13.67) 33.06 (22.47) F = 39.69, p < .001

Personal timeline 0 .58 (1.11) 1.73 (2.32) F = 20.76, p < .001

Previous nudges 1.8 (3.09) .93 (1.85) 1.00 (1.64) F = 2.33, p = .01

Received ratings 0 .63 (2.08) 2.25 (4.78) F = 9.58, p < .001

± 6.05/13.53 ± 6.47, respectively. The chi-square test (14.01) for this model (df =
9, 19 estimated parameters) shows that the model’s predictions were not statistically
significantly different from the data (p = .12). The Comparative Fit Index (CFI) was
.99, and the Root Mean Square Error of Approximation (RMSEA) was .04. Hence,
the model is acceptable: CFI is greater than 0.9, and RMSEA is less than .06 [35].
The model indicates that a higher number of high-quality comments is associated with
a higher CK2 score (p < .01). The number of interactions with rating visualisations
positively affects CK2 (p < .001). Other links are all significant at p < .001 except
Progress visualisation → Video (p< .05) and Progress visualisation → Personal time-
line visualisation (p < .05). The covariances with e8 show that a student who interacts
with one visualisation is likely to interact with other ones. The model shows that the
number of videos watched, received nudges, and interactions with visualisations affect
the number of high-quality comments and consequently CK2, confirming hypotheses
H3 and H4.

Fig. 6. The path diagram for investigating how VLA affects learning

Subjective Opinions on VLA (RQ3): We collected the students’ feedback on visual-
isations in Survey 2. The progress visualisation received the most positive feedback
(90.97%) among all visualisations. Students reported that the progress visualisations
increased their motivation and facilitated learning organisation. 75% of feedback on the
timeline visualisations was positive, stating that timelines helped them compare their
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progress with the others and inspired them to comment (e.g. “It initially helped me to
grasp an idea of what kind of comments were being looked for. It also encouraged me to
try pick up on points in areas of the video which had less comments made.”). However,
some students found the timeline visualisations cluttered, and suggested adding filtering
functionality. Some students disliked seeing others’ comments, since they wanted to
form their own ideas. 70% of feedback on nudges visualisations and comment quality
indicators was positive, and students noted using them as feedback to improve comment-
ing and stay on track (e.g. “This tool can help you notice a pattern in the nature of hints
you are getting, to identify whether there is something you consistently fail to recog-
nise, or something you always comment on.”). Students who criticised quality indicators
suggested more explanation on their criteria. Lastly, 69% of feedback on rating visual-
isations were positive since they helped students see if their comments were useful to
their peers (e.g. “To motivate people to write good comments and also so they feel good
about the work they’ve done”). Some students found the rating visualisation unhelpful
since they disliked being judged.

6 Discussion and Conclusions

We proposed visual learning analytics for VBL in order to increase engagement and
learning. The visualisations are intended to assist students in monitoring and managing
their learning.Weconducted a study to investigate the effectiveness of the proposedVLA,
which confirmed our hypotheses. The newly introduced VLA enhanced engagement: the
experimental group participants watched more videos, wrote more comments, and spent
more days on AVW-Space than participants who did not receive VLA. Furthermore, the
proportion of students who wrote high-quality comments was higher when students had
access to VLA. The participants who interacted more with the visualisations made more
high-quality comments and learnt more. Our participants also found VLA motivational
and useful for monitoring their learning.

Despite the positive feedback from most participants on VLA, we discovered some
challenges. Firstly, some students could not interpret the quality indicators for com-
ments. Thus, we plan to add explanations in the future version. Furthermore, some
students found visualisations of others’ comments and peer ratings stressful, while oth-
ers found them useful in reflecting on their learning. As a way to deal with this feedback,
the future version should allow students to specify which visualisations they want to
see. Future work could also involve investigation of students’ learning strategies and
adapting visualisations to the students’ behaviours. The visualisations presented in this
research are intended to require minimum teachers’ involvement. However, teachers
must manually select comments shown in others’ comments timeline. Hence, potential
solutions for automating this task should be explored in future research.

The main challenge in studying the effectiveness of visualisations is in measuring
the interactions with them. Since most interaction types are in the form of hovering, it is
difficult to identify which interactions were intentional. Analysing eye gaze is one way
to investigate interactions more precisely, but it is time-consuming and impractical for
large classes. A limitation of our study was a single domain (presentation skills). Future
work will investigate the effectiveness of the visualisations in other domains.
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As discussed earlier, the literature on visualising the studentmodel inVBL is limited.
Our research addresses this gap and contributes to using student-facing VLA in video-
based educational platforms to boost engagement and learning. The source of require-
ment elicitation for designing VLA in this research is mainly from students’ feedback.
The visualisations suggested in this research are applicable to any VBL platform that
supports commenting and peer-reviewing.
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Abstract. While there is a substantial appetite in the United States for
improving media consumption skills, little work has focused on the biases
that can make inaccurate or misleading claims feel true. This skill is par-
ticularly difficult to teach, as effective instruction requires the instructor
to adapt course content to the specific beliefs of individual students,
a process that is unscalable in most classrooms. Here we examine the
impact of a novel method of user-centered personalized instruction that
uses value-adaptivity to highlight and address user bias in the context
of a civics education game. This intervention uses estimates of player
and content values to predict when players may be most susceptible to
biased reasoning and then intervene in those instances. We found that the
intervention successfully reduced bias among high bias-regulators with
practice. These results suggest that value-adaptive systems may be able
to support debiasing instruction in an effective, scalable way.

Keywords: Myside bias · Confirmation bias · Personalization ·
Educational games · Civic technology · Civics education

1 Introduction

The co-opting of social media platforms in large-scale disinformation campaigns
has spurred the development of novel tools and methods for more responsi-
ble media consumption. Much of this work focuses on the media content itself,
with researchers developing sophisticated machine learning models for classify-
ing patently false information [15,20]. Other work focuses on the opposing side of
the media equation: the user. This work examines methods for improving media
literacy (i.e., their ability to evaluate the credibility of the information they are
consuming) [10].

Less work, however, has focused on the dynamic relationship between the
media consumer and the content they are consuming, and in particular: how
that relationship can be a powerful source of bias and how best to mitigate
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those biases. Recognizing and reducing bias (sometimes called “debiasing”) [14]
is a critical component of any comprehensive 21st century civics education.
Civics teachers (along with those in the English Department) are often tasked
with equipping students with the media literacy skills they need to navigate an
increasingly fraught media landscape. One common approach to debiasing in
civics class is to ask a student to defend a political position that they themselves
do not hold (or actively oppose). This act of perspective taking can be powerful
[11], but efficient perspective taking requires that the teacher: 1) knows the posi-
tions of each student with respect to each topic, and 2) takes the time to match
students to positions individually. In a class of 30 students that might discuss a
topic a week, a systematic adherence to this approach is likely unscalable.

In the current experiment, we used Moral Foundations Theory [9] in conjunc-
tion with natural language processing methods to model student and content val-
ues. We used the relationship between those two sets of values to power a value-
adaptive debiasing intervention. This debiasing intervention was integrated into
an educational game designed to help students practice engaging in productive
civil discourse. We tested the efficacy of this novel approach to debiasing by exam-
ining students’ bias regulation, or their ability to ignore an intuitively correct
option (biased response) in favor of the actual correct option. Specifically, we
hypothesize that the bias regulation of students who saw the debiasing interven-
tion will improve over time relative to their peers who did not see the intervention.

The primary contribution of this work is the demonstration of a scalable
approach to debiasing instruction in civics education that is powered by a novel
method of personalized instruction: value-adaptive instruction.

2 Related Work

The fallibility of human rationality has long been established as an important
and consequential area of study [1,4]. In many cases, human cognition fails in
regular and predictable ways. As such, it is not unreasonable to attempt to iden-
tify the circumstances under which we may be most susceptible to these cognitive
biases and to develop training programs designed to mitigate the impact of the
most common or most critical biases. Despite the large body of work pertaining
to the identification and measurement of cognitive biases, the body of work per-
taining to the development and testing of so-called debiasing training programs
is relatively small [14]. This may be due to the fact that many cognitive biases
are quite robust, persisting even in the face of explicit debiasing instruction [5].

With respect to debiasing instruction, tasks that require participants to con-
sider the opposing viewpoint may mitigate the impact of biased reasoning. This
strategy shares many features with a skill called perspective taking, a common
instructional goal in civics curricula that can be complicated by the personal
nature of political beliefs. For example, a civics instructor might ask a student
who is anti-immigration to defend a pro-immigration stance. The serious con-
sideration of opposing perspectives may reduce the impact of bias. This kind of
individualized debiasing instruction is an example of what we call value-adaptive
instruction (i.e., instruction that is adapted to the specific values of the learner).
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Unfortunately, the traditional approach to value-adaptive instruction
described above is simply unscalable in classrooms of 20–30 students and in
courses that might cover 40 topics over the span of a school year. One potential
solution is to use technology to support the estimation of student and content
values. These estimations will never be as accurate as those from an expert
human instructor, but reasonably accurate estimations may allow us to provide
numerous individualized practice opportunities to students in a scalable way.
Moreover, it would allow us to use educational technologies to:

1. Estimate the impact of bias on informal reasoning tasks,
2. Predict when students may be most susceptible to biased reasoning, and
3. Provide targeted debiasing interventions precisely in those moments of vul-

nerability.

Myside Bias in Civics Education. In this study, we explore a particular type
of bias, termed Myside Bias, that is often found in civil discourse. In brief, Myside
Bias refers to one’s tendency to evaluate claims or evidence more favorably if
the claim or evidence supports one’s own beliefs or worldview [19]. Myside bias
has been characterized as both a more accurate term for Confirmation Bias [16]
and a subclass of Confirmation Bias [19] in various works. In the context of civil
discourse, myside bias can manifest as one’s inability to speak across ideological
lines to the values that motivate the beliefs of those they disagree with. It is
our tendency to reach for the argument that seems strongest to us, rather than
the argument that would appeal most strongly to whomever we are trying to
persuade.

Effectively choosing arguments that will be most persuasive to those with a
differing ideology requires two skills:

1. The ability to identify the values that underpin the beliefs of your interlocutor
2. The ability to choose an argument that best aligns with those values

Inherent in this second skill is the challenge of overcoming myside bias (in
this context, our tendency to choose an argument that aligns with our own
values instead of more persuasive options). In the current study, we examine a
value-adaptive intervention designed to mitigate the impact of myside bias when
choosing effective arguments in civil discourse. This intervention was integrated
into an educational game designed to give students opportunities to practice
these key discourse skills (Fig. 1).

3 Methods

A total of 87 students from high schools located in the Northeastern Region of
the United States participated in the study. Note that all demographics ques-
tions were optional, and a small number of students chose not to answer some
questions. The students where evenly split with respect to sex (41 females, 43
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Fig. 1. An annotated screenshot of a scenario. In each scenario, players must persuade
NPCs like Belle (A) to move into the TOWNSQUARE (B). To do this players must
identify which argument from the opposing side appeals to what Belle values. Per-
suading NPCs costs Energy (C). The bar positioned below each NPC represents their
political tribalism. Players must reduce an NPC’s tribalism before attempting to per-
suade them. They can do this by playing Discourse Cards (D) like Conversation Reset.
Finally, the action menu (E) allows the player to request a hint, end the day/turn, or
reference information in their notebook.

males, 1 other), and reflective of the racial demographics of the area (9 black or
African American students, 72 white or Caucasian students, and 4 students iden-
tifying as other/more than one race). Students from six classes (three English
classes and two Social Studies classes) participated in the study.

3.1 Leveraging NLP Alongside Theories of Moral Judgments

Any given student will, by definition, only exhibit myside bias when presented
with information that aligns with their beliefs. As such, crafting instructional
events that give students the opportunity to wrestle with their biases requires
three critical pieces of information:

1. An estimate of a particular student’s values. That is, if we were to
cover a new topic in class, can we be relatively confident that we could use
our understanding of their values to predict the kind of belief this student
will espouse?

2. An estimate of the political values latent in the content we are pre-
senting to this student. In the case of commonly debated topics, these latent
political values may be obvious. However, in the case of uncommon or novel
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topics, it may be substantially more difficult to predict which aspects of the
content will resonate with a particular student.

3. A means of understanding the relationship between the prior two sets of
values. For example, to what extent do a student’s values align with the values
latent in a news article? Will one aspect of a problem be more important to
this student than another aspect?

Moral Foundations Theory. We estimate the student’s values using the
Moral Foundations Theory Questionnaire [9]. Moral Foundations Theory [8,9]
argues that the moral judgements we make are directly related to the importance
we ascribe to a small set of moral foundations (e.g., care, fairness, authority, loy-
alty, sanctity). For example, if someone values the authority foundation (i.e., they
generally respect laws, traditions, and authority figures), we might expect them
to side with the police and the military on controversial matters. These moral
foundations have been empirically shown to be highly predictive of both general
voting behavior [6] as well as more specific political beliefs (e.g., “Climate change
is real”) [13,18]. The output of the Moral Foundations Questionnaire is a vector
of five scores, representing the degree to which the student values each of the
five foundations when making moral judgments.

It is worth reiterating that these are estimates of user values. The reasons
humans hold beliefs are numerous and personal. As such, we can say with relative
certainty that the model of human beliefs (based on values) employed in this
study is incomplete and flawed. What remains to be seen is whether the model
provides a good enough estimate of user beliefs to be useful in the context of
debiasing instruction.

Distributed Dictionary Analysis. We estimate the values latent in text con-
tent using natural language processing, specifically distributed dictionary repre-
sentations (DDR) [7]. DDR builds off of Word2Vec [17], which involves modeling
a large corpus of text data in a low-dimensional space, where each word can be
represented as a point in that semantic space. DDR was created to model psy-
chological constructs (such as the foundations in Moral Foundations Theory)
using this semantic space. That is, the foundation referred to as Fairness actu-
ally encompasses more than just the concept of fairness; it includes equality,
injustice, rights, and fraud. To find the point in the semantic space that matches
this more nuanced concept that we label Fairness, we first generate a concept
dictionary (i.e., a list of terms that approximate the meaning of the concept).
Because each word in the concept dictionary can be represented as a vector, we
can simply average across all word vectors in the dictionary to find the vector
that corresponds to our operational definition of the concept Fairness.

In this work, we follow the original procedure outlined in [7] to generate a
vector for each of the five moral foundations. Next, to estimate the values latent
in a piece of text, we compute the cosine distance between the representations of
each of the five moral foundations and the average representation of all words in
the text. Like the Moral Foundations Questionnaire, the output of this process is
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a vector of five scores, representing the degree to which the text was semantically
similar to each of the five foundations (see [2] for a more complete discussion
of this process). In our analysis, we used the pre-trained Google News corpus
(approximately 100 billion words) Word2Vec model1, and a Python implemen-
tation of Word2Vec [17] called gensim.

Computing Alignment. Because the outputs of the Moral Foundations Ques-
tionnaire and the DDR analysis are two vectors of equal length, measuring the
relationship between the two vectors can be done simply by computing the cosine
similarity between them. The extent to which the student’s values are similar to
the values latent in the content is termed Alignment. Previous work has shown
that Alignment is predictive of bias in argument evaluation tasks [3]. In the cur-
rent study, we use Alignment to predict where students might be most suscepti-
ble to biased reasoning during gameplay and to adapt the debiasing intervention
accordingly. It is worth clarifying that Alignment is essentially measuring the
presence of foundational concepts and their relationship to the user’s estimated
values. As such, we expect it to fail in the face of sufficiently nuanced language.
What the current experiment aims to test is whether or not the resulting model
of bias is good enough to be useful.

3.2 A Value-Adaptive Debiasing Intervention

The debiasing intervention was incorporated into Persuasion Invasion, an edu-
cational game called designed to help students practice productive civil discourse
skills. The goal of each level in Persuasion Invasion is to persuade ideologically
entrenched townspeople to engage with those they disagree with. Successfully
persuading a townsperson requires that the student 1) identify which of the five
moral foundations the townsperson values most, and 2) identify which of three
arguments from the opposing side appeals most to someone who values that
foundation. We expect that players may be biased to choose the argument that
aligns most to their own values rather than the argument that aligns with the
values of the townsperson they are attempting to persuade.

To mitigate the impact of bias, we integrated a value-adaptive debiasing inter-
vention into this Persuasion interaction. All students were randomly assigned
to one of two conditions: an adaptive condition or a control condition. The two
conditions were identical in every respect with one exception: When players in
the adaptive condition were asked to choose which of the three listed arguments
would be most persuasive to a townsperson, they saw one of the options pre-
sented in orange-colored text with an additional piece of instruction that read:

Caution: Orange-colored options might seem more persuasive
to you (based on your values). Remember to choose the best
response for [NPC NAME].

1 The pre-trained Google News model can be found here: https://code.google.com/p/
word2vec/.

https://code.google.com/p/word2vec/
https://code.google.com/p/word2vec/
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The orange-colored option corresponds to the option with the highest Align-
ment score (i.e., the option that, based on this methodology, aligns most closely
to this specific player’s values). The color orange was chosen because it is
attention-grabbing, but isn’t traditionally associated with correctness (as col-
ors like red and green are in the United States). Importantly, the orange-colored
option was not any more or less likely to be the correct answer; this intervention
is simply designed to elicit a more critical analysis of the options.

3.3 A Composite Measure of Bias Regulation

In previous work, Alignment-based estimates of potential bias have represented
the extent to which the user’s values align with the values of the correct response.
This made a direct comparison between Alignment and other baseline measures
possible. However, this Alignment-based estimate of bias is limited in that it fails
to account for the alignment between the user and the other potential options.
Imagine, for example, a case in which the correct option happens to also be
the option with the highest alignment. We would expect that, in this case, the
choice is easy, as there is no conflict between the intuitive choice and the correct
choice. This case also tells us nothing about the user’s ability to regulate their
own bias. Contrast this with a scenario in which the correct option happens to be
the option with the lowest alignment (i.e., least congruent with the user’s values).
Choosing the correct option in this case, may require the user to overcome their
own bias.

We used the alignment scores of all options presented to the user to generate
a more nuanced estimate of the amount of potential bias a student may be
overcoming at each opportunity. This novel composite metric, which we call the
Bias Regulation Index (BRI), is computed as follows:

BRI = (Ahighest − Achosen) + (Acorrect − Achosen) (1)

Here Ahighest represents the alignment score of the option with the highest
alignment score (i.e., the option we would expect a completely biased player to
pick). Similarly, Achosen represents the alignment score of the option the player
chose, and Acorrect represents the alignment score of the correct option. The first
set of parentheses in this equation essentially gives the player credit for choosing
an option that isn’t the option with the highest alignment, and gives them more
credit the farther away their choice’s score is from that highest score. This first
set of parentheses cannot penalize players, as they cannot chose an option with
a score higher than the highest score.

The second set of parentheses penalizes the player if they chose an option
with a higher alignment score than the correct option. If Acorrect < Achosen,
then the result of this second set of parenthesis is set equal to 0 to keep the
metric from crediting the players for choosing an incorrect option with lower
alignment than the correct option. Importantly, players are neither penalized
nor credited in this metric for choosing the correct option. The resulting sum of
these two sets of parentheses represents a student’s ability to overcome bias to
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Fig. 2. The three-way interaction between condition, opportunities and Bias Regulation
Index (BRI). We see that, while the relationship between BRI and performance remains
relatively constant with additional practice in the control condition, the relationship
seems to change in the adaptive condition. As the number of practice opportunities
increase, students in the adaptive condition with low bias-regulation appear to do worse
than their peers in the control condition, whereas students in the adaptive condition
with high bias-regulation appear to benefit from the intervention compared to their
peers in the control condition. (Color figure online)

choose the correct answer. Positive scores on this metric capture those instances
in which a student chooses the low-aligned correct score over the high-aligned
incorrect one. Negative scores capture those instances in which the player chooses
a high-aligned incorrect option over a lower-aligned correct one.

This metric is more nuanced than simply including the Alignment score of the
correct option, as it mitigates the impact of the option’s correctness on choice.
That is, did the player choose this because it is the correct option, or because
it aligned with their values. When the correct option is also the option with
the highest alignment score, the choice is easy and uninteresting. In contrast,
this metric focuses on instances in which the choice is difficult. We expect that
bias regulation will improve over time for students in the adaptive intervention
condition.

4 Results

We examined the impact of an intervention (designed to reduce bias) on in-game
performance. Recall that students in the adaptive condition had an in-game
experience identical to those in the control condition with one exception: during
Persuade actions, students in the adaptive condition saw an additional piece of
instruction that highlighted the option that most aligned with their values (i.e.,
had the highest computed Alignment) alongside a message warning the player
that they may be biased to select the highlighted option.
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4.1 Interaction Between Condition, BRI, and Number
of Opportunities

We expected that the relationship between bias regulation and performance will
be impacted by both experimental condition (i.e., the presence or absence of
the intervention) and practice. To test for interactions between experimental
condition, practice, and students’ ability to regulate bias with respect to perfor-
mance, we incorporated this new Bias Regulation Index (BRI) into the following
hierarchical mixed effects model:

Outcome ∼ BRI ∗ PO ∗ condition + (1|AP/Student) (2)

where Outcome represents the binary correctness score (0 = incorrect, 1 =
correct) for the multiple choice problem, and PO (Prior Opportunities) rep-
resents the number of times, prior to the current opportunity, that the player
has attempted a Persuade action. The model also includes the nested random
effects of AP status2 and the Student identifier. Table 1 shows the model results.

Table 1. Results from the hierarchical mixed effects model. There was a significant
three way interaction between Prior Opportunities, Bias Regulation and Condition.

Estimate SE P-val Sig

PO −0.015 0.009 0.070 .

BRI 23.339 4.954 0.000 ***

Condition (control) 0.067 0.145 0.646

PO:BRI 1.558 0.611 0.011 *

PO:Conditioncontrol 0.000 0.013 0.973

BRI:Condition (control) 3.163 6.603 0.632

PO:BRI:Condition (control) −1.583 0.806 0.049 *

As expected, we found a significant three-way interaction between Bias Regu-
lation Index, the number of prior practice opportunities, and experimental con-
dition (β = −1.583, p < .05). We used the R library interactions to explore
and visualize this interaction. Figure 2 shows the relationship between BRI and
Performance at three different opportunity counts. We see that, while the rela-
tionship between performance and BRI remains relatively stable across practice
opportunities in the control condition, the relationship between these variables
changes with practice in the adaptive condition. Recall that BRI scores below
zero indicate opportunities in which the student chose a high-aligned incorrect
option over a low-aligned correct one, and positive scores indicate opportuni-
ties in which the student chose a low-aligned correct option over a high-aligned
incorrect one. This graph suggests that the intervention may have caused stu-
dents with low bias-regulation to perform worse (potentially choosing the visually
2 AP Status was shown to be predictive of performance in previous work.
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salient orange-colored option more). However, students with high bias-regulation
seemed to benefit from seeing the intervention, outperforming their peers in the
control condition.

5 Discussion

We found that, by comparing estimates of student values to estimates of the val-
ues latent in text content, we could provide an adaptive intervention that appears
to have reduced the impact of bias on task performance (for high bias-regulators).
In the context the educational game, this effect appears to be gradual, increasing
with additional practice opportunities. This suggests that regulating bias in this
context is likely a skill that can be learned, but that it may also require many
practice opportunities to hone.

To measure the intervention’s impact, we developed a novel metric, the Bias
Regulation Index (BRI). BRI more accurately captures the difficulty of bias-
prone tasks, allowing us to measure a student’s capacity to overcome (or reg-
ulate) their own biases. In the future, value-adaptive systems may use BRI to
provide additional practice opportunities or individualized feedback to students
exhibiting low bias-regulation.

Why the adaptive debiasing intervention had a differential impact on low
and high bias-regulators remains an open question. While it may be tempting
write this off as another example of the “rich get richer” effect that can occur in
educational technology work, this would not explain the discrepancy in the per-
formance of low bias-regulators across conditions. That is, the intervention seems
to not only have made the rich richer, but the poor poorer as well. One potential
explanation for this effect is a simple misunderstanding about the nature of the
intervention. Low bias-regulators may have incorrectly interpreted the orange
color as an indicator of an option’s correctness (e.g., assumed it was a hint),
when in fact, there was no such relationship between correctness and color. This
may explain why low bias-regulators in the adaptive condition displayed worse
performance than their peers in the control condition.

Such confusion may have been avoidable with additional instruction about
the nature of the intervention. However, because students in the same class were
randomly assigned to either the control or adaptive condition, drawing attention
to the debiasing intervention (seen by those in the adaptive condition) may have
tainted the independence of the control condition.

5.1 Limitations

Perhaps the largest limitation of this debiasing intervention is the absence of
powerful social influences. It was unfortunately necessary to test the interven-
tion at the individual level, separate from peer-influence simply because half the
students within a classroom were assigned to the control group (no interven-
tion). Thus, the instruction pertaining to bias was given to each student in the
adaptive condition individually (via the interface). Future experiments might
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instead provide the bias instruction to the class as a whole, which might add
social pressure to make unbiased decisions.

Other limitations pertain to our participant population and experiment struc-
ture. While we believe our sample was representative of late high school-aged
students, there are known interactions between bias and age [12] that leave us
unable to confidently generalize these results to a population that includes older
players. Similarly, an important part of debiasing research is the longevity of
the effects [14]. As part of this work, we had originally planned to return to our
participants’ classrooms both one week and three weeks later to examine poten-
tial effects of the game on real-world classroom discussions. However, the onset
of the COVID-19 pandemic cut our original data collection plan short. Both of
these limitations are important areas of future work.

5.2 Potential Applications

This work has several potential applications. First and foremost, we believe
that educational technologies that implement value-adaptive debiasing interven-
tions allow instructors to provide students with opportunities to recognize and
overcome their biases. These technology-based interventions will never be as
nuanced as an intervention from an expert human instructor, but unlike tradi-
tional instruction, technology-based interventions like the one described in the
current study are scalable to any number of students. Because of these tradeoffs,
we see value-adaptive debiasing systems ultimately as a tool for supporting the
critical, real-world classroom discussions.

Beyond the classroom, value-adaptive debiasing systems might be embedded
into our interactions with media content. Here, such systems could make the
content consumer aware of the degree to which the content they are consuming
aligns with their own values. Alternatively, the system could alert the user to
engage their critical thinking faculties when the alignment between the content’s
values and their own is above a certain threshold. What remains to be seen is
how users will react to these kinds of interventions absent the affordances of
game environments.

6 Conclusion

In this study, we examined the impact of a value-adaptive debiasing intervention
on myside bias in the context of an educational game designed to teach produc-
tive civil discourse skills. We found a significant three-way interaction between
the number of prior practice opportunities, our measure of bias (BRI), and con-
dition (adaptive vs. control). Further investigation revealed that students in the
adaptive condition (i.e., who saw the adaptive intervention) got better at mit-
igating the impact of bias with practice relative to their peers in the control
condition. However, this was only true for high bias-regulators. While further
improvements are necessary to ensure that the impact of debiasing interven-
tions is equitable, this encouraging result demonstrates that value-adaptivity,
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this novel method of personalized learning, may be a useful tool for scalable
debiasing instruction. Value-adaptivity allows us to craft instruction that rec-
ognizes and reacts to the dynamic relationship between the media content and
the media consumer. With it, we can provide the rich, user-centered practice
necessary for any comprehensive media literacy education.
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Abstract. We investigate the utility of large pretrained language mod-
els (PLMs) for automatic educational assessment question generation.
While PLMs have shown increasing promise in a wide range of natural
language applications, including question generation, they can generate
unreliable and undesirable content. For high-stakes applications such as
educational assessments, it is not only critical to ensure that the gen-
erated content is of high quality but also relates to the specific content
being assessed. In this paper, we investigate the impact of various PLM
prompting strategies on the quality of generated questions. We design
a series of generation scenarios to evaluate various generation strate-
gies and evaluate generated questions via automatic metrics and man-
ual examination. With empirical evaluation, we identify the prompting
strategy that is most likely to lead to high-quality generated questions.
Finally, we demonstrate the promising educational utility of generated
questions using our concluded best generation strategy by presenting
generated questions together with human-authored questions to a sub-
ject matter expert, who despite their expertise, could not effectively dis-
tinguish between generated and human-authored questions.

1 Introduction

Practice questions and quizzes have been vital instruments for the assessment of
learning [1,20,27]. Engaging in retrieval practice by answering expert-designed
questions has shown to be more effective at improving learning outcomes [9,10], by
providing opportunities for recall of knowledge, applying knowledge to novel sce-
narios, and critical thinking and writing skills. The learning benefits are greater
than other means of pedagogy such as passively re-reading course materials or
studying notes [4,8–10,12,13] orwatching instructional videos [21]. However, these
questions are also known to be challenging to create: they usually take subject
matter experts (SMEs) a significant amount of time, which is both costly and
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labor-intensive [20]. Therefore, this question generation process does not easily
generalize and scale to the continually expanding repositories of educational con-
tent that need large banks of assessments to be effective sources of instruction.

To create a scalable question generation process, several recent works lever-
aged artificial intelligence (AI) methods for automatically generating questions.
For example, some prior works [5,25,26] focused on generating factual questions
using recurrent neural network (RNN) architectures. [28] designed a method to
select highly interesting phrases which a generated question is supposed to ask
about. The implications of these works are far-reaching. In addition to reducing
the labor and cost for producing assessment questions, automatic question gener-
ation methods have the potential to create a more engaging learning experience
by generating (i) personalized questions that adapt to each student’s learning
trajectory [7] and (ii) real-time pop-up quizzes while the student is reading a
textbook or watching instructional videos. Once trained, these methods have
been shown to perform well on question generation tasks. However, they require
custom model design and (sometimes significant) computational resources for
training, making them a less appealing option for practitioners who desire a
“plug-and-play” AI-assisted question generation process that allows them to
easily interact with an AI system without the need for model training.

Recently, a new paradigm in text generation using large pretrained language
models (PLMs), such as GPT-3 [3], is now making such “plug-and-play” ques-
tion generation a possibility. These PLMs have been pretrained on web-scale
data which equip the model with abundant knowledge of the language com-
pared to their earlier counterparts. Furthermore, they can be easily and effec-
tively adapted to various generation tasks via the “prompting” technique, where
the user simply specifies the generation task that they would like to perform as
a prompt. A prompt usually contains, in addition to a “query” from which the
PLM will generate the outcome, a series of examples in an input-output structure
that “teach” the model how to generate the output given the input specific to a
particular task. Figure 1 gives an example of using prompting to adapt a PLM
for machine translation and arithmetic question answering. Prompting provides
an easy interface and high controllability for users to interact with PLMs and
customize it for different generation tasks. Because of its simplicity and prac-
ticality, prompting techniques to adapt PLMs for downstream generation tasks
have attracted increasing attention in the past few years [11,16,18,19]. Figure 1
shows an example of prompting for machine translation, question answering.

Unfortunately, using prompts to adapt PLMs for question generation is chal-
lenging due to the open-ended nature of the process, i.e., it does not have a
clearly defined input-output structure. This poses certain challenges such as,
what content should the questions be generated from, how should we deal with
the fact that multiple different questions can be asked about the same concept,
etc. This open-ended nature makes question generation unique in contrast with
other generation tasks commonly studied in existing literature (e.g., in machine
translation, input and output are simply texts in the source and target lan-
guages, respectively). As a result, unlike other generation tasks where adapting
PLMs via prompting is straightforward (e.g., see Fig. 1 for an illustration), it is
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Fig. 1. Illustrations of adapting PLMs for machine translation and the challenges in
designing prompts to adapt PLMs for educational question generation.

unclear how to design effective prompts for PLMs in order for question genera-
tion. To the best of our knowledge, to date no existing literature has investigated
the modification of prompting strategy for question generation. To harness the
power of AI for educational question generation, prompt design for question
generation by PLMs is an exciting open problem.

1.1 Contributions

In this paper, we investigate the problem of effectively prompting a PLM to gen-
erate desirable, high-quality, educational practice questions. An effective prompt
strategy will enable us to leverage the power of PLMs with minimal effort and
without having to conduct model training with large volumes of domain-focused
content. We start with the core question: how do we design prompts such that
a PLM can generate the most desirable and effective practice questions? We
answer this question by proposing 5 different generation settings with a spe-
cific prompting strategy for each. We conduct a series of manual examinations
of the generated questions as well as automatic evaluations, which lead to the
empirical conclusion of the best combinations of our prompting strategy. This
strategy serves as an empirical guideline for practitioners to set up PLMs to
generate the best practice questions for educational purposes. Furthermore, we
evaluated the educational value of PLM-generated questions by presenting them
alongside human-authored questions for SMEs to discern the human-authored
from machine-authored questions. Evaluation by the respective SMEs (biology,
psychology, and history) demonstrated that the generated questions achieved
similar educational value relative to the human-authored ones, setting a strong
case for their practical utility. In essence, we emulate how real practitioners and
educators might be able to use these models to generate questions that meet
their need in a practical setting.
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1.2 Background: Large Pretrained Language Models and Prompting

We focus on large pretrained language models (PLMs) in this paper, specifi-
cally, auto-regressive PLMs, such as GPT that have become the dominant tools
for text generation. These models learn a distribution over text, which can be
decomposed auto-regressively as follows:

x ∼ pθ(x) = pθ(x1)
T∏

t=2

pθ(xt|x1, . . . , xt−1) . (1)

where pθ is the LM where θ represents all model parameters. In this paper, we
focus on an LM that is already trained on massive data and thus assume pθ is
fixed throughout this paper.

In practice, we will give the model some initial texts called a “prompt”
as input which instructs the model to generate specific texts. This is possible
because of the decomposition in Eq. 1. To see this, let c := [c1, . . . , cL] denotes
the prompt which consists of L ordered tokens cl. Then the LM models a con-
ditional distribution as follows:

pθ(x|c) = pθ(x1|c)
T∏

t=2

pθ(xt|x1, . . . , xt−1, c) . (2)

Equation 2 makes it possible to adapt an LM for a wide range of generation tasks:
depending on the interpretation of c, we can adapt a pretrained LM for a wide
range of tasks. [3] shows that, without further fine-tuning pθ, simply changing c
for different tasks perform on par with fine-tuning pθ. This makes it very easy
to use the LM because we only need to change the input to the model to adapt
it for a variety of tasks. See Fig. 1 for an illustration. The question now is how
to design such a prompt for question generation.

2 Exploring Prompting Strategies in Question Generation

Table 1. Summary of the four factors in our prompting strategy and the choices under
consideration for each factor.

Example structure

for question

generation

Data source

in the examples

Number of

examples

Lengths of context

and question in each

example

CAQ: context (C) and an

answer (A) and the output

contains a question (Q)

Content agnostic (SQuAD) One-Shot Small (avg. 15 words)

CTQA: (C) and a target (T)

and the output contains a

question (Q) and an answer (A)

Content specific Few-Shot Medium (avg. 25 words)

Five-Shot Large (40 and above)

Seven-Shot
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In the remainder of the paper, we set out to answer the question: how do we
design effective prompts for educational question generation? Answers to this
question will provide practitioners with clear guidance on how to better control
off-the-shelf PLMs for high-quality question generation. We take an empirical
approach and design a series of experiments to systematically investigate var-
ious factors that impact the effectiveness of prompting strategies for question
generation with PLMs. We propose four factors that are crucial considerations
to prompt design for question generation. Below, we detail these factors and
the possible choices that we study for each factor (see Table 1 for a high-level
summary). In contrast to automated prompting methods as in existing litera-
ture, our prompting design is interpretable and flexible, enabling practitioners
to explicitly control and iteratively refine the generation process as needed.

2.1 Example Structure for Question Generation

The first factor we investigate is the question generation formulation, i.e., the
input-output structure in each example that we will use to instruct and adapt the
PLM for question generation. Different formulations will likely impact the gener-
ated questions’ quality. In this work, we focus on contextualized question genera-
tion, in which a question is asked and the answer to it can be found within a given
paragraph. We compare two different generation setups. In the first setup, labeled
as CAQ, the input contains a context (C) and an answer (A) and the output con-
tains a question (Q). The context can be a short excerpt from a textbook and the
answer should correctly answer the generated question. This setup has been con-
sidered in a wide range of question generation tasks [5,26,28]. In the second setup,
referred to as CTQA, the input contains a context (C) and a target (T) and the
output contains a question (Q) and an answer (A). The target does not need to
be the answer to the generated question but guides the model to generate a ques-
tion to ask about the particular part in the context specified by the target. The
model also generated an answer in addition to the question. The intuition behind
this setup is that the model may generate more on-topic and relevant questions
because it is forced to also generate the answer. This setup is reminiscent of prior
work that leverages question answering modeling for question generation [6,17].

2.2 Data Source in the Examples

The second factor we investigate is the data source in each example, i.e., where
do the context, question, answer (target) come from? This question arises when a
user wants to generate questions for different subjects; depending on the subject,
the examples in the prompt may need to change so that PLM is given the
appropriate domain knowledge. We are most interested in whether we can use
the same set of examples that come from a generic source for question generation
across different subjects/content. We thus compare a content-agnostic and a



158 Z. Wang et al.

content-specific selection of examples. In the content-agnostic setup, we choose
examples from SQuAD [24], a generic, widely used question answering dataset
that can also be used for question generation. In the content-specific setup, we
choose examples in the same subject as the one in which the PLM will generate
questions.

2.3 Number of Examples

The third factor we investigate is the number of examples to include in the
prompt. Usually, PLMs’ performance improves with more examples. Neverthe-
less, because of the open-ended nature of question generation, it is unclear to
what point increasing the number of examples will help. We thus consider four
setups including One-shot, Few-shot, Five-shot, Seven-shot where “shot” refers
to the number of examples.

2.4 Lengths of Context and Question in Each Example

The last factor we investigate is the length of context and question in each
example. A context or question that is too short may limit the diversity and
complexity of the generated questions. A context or question that is too long
may contain irrelevant information which may confuse the PLMs, potentially
leading to generated questions that are irrelevant or off-topic. We thus compare
three different setups including small, medium, large contexts and questions
depending on the length of texts they contain. Small corresponded to questions
about 15 words in length, medium questions were around 25 words long, and
large questions were about 40 words long on average. Small contexts consist of
around 2 sentences, medium contexts around 4–5 sentences of information, and
large contexts usually a full paragraph or multiple paragraphs.

3 Experiments

We recommend the best prompt setting for each generation strategy that yielded
the best-generated questions. Code scripts, additional clarifications, and addi-
tional results such as examples of generated questions are publicly available.1

Experiment Setup. We choose biology as the subject to generate questions
and use the Openstax Biology 2e (Bio 2e) Textbook as the source for most of
our example content. In this paper, we focus on generating open-ended questions
of Bloom’s level below three because higher-order Bloom’s questions typically
involve making connections across larger content [2,14]. Generating diverse types
of potentially more challenging questions is left for future work. We also limit

1 https://github.com/openstax/research-question-generation-gpt3.

https://github.com/openstax/research-question-generation-gpt3
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our investigation to textual content and remove images, tables, links, and refer-
ences from the textbook. During generation, we first pre-select a fixed number
of examples from the textbook (and SQuAD, for the data source experiment;
see Sect. 2.2). During generation for all setups under each factor, we randomly
pick a fixed number of examples to serve as the prompt and another two queries,
i.e., with only the context (possibly also the target; see Sect. 2.1) from which the
PLM is asked to generate questions. Unless otherwise noted, for each query in
each setup under each factor, the PLM generates 75 questions for evaluation.
When generating questions for a factor, all the other factors are set to the same
value to ensure fairness in comparison. Throughout our experiments, we use the
GPT-3 Davinci API from OpenAI with temperature = 0.9 and top p = 1.

Evaluation Protocol. We primarily evaluate the quality and diversity of
the generated questions. For quality, we report perplexity and grammatical
error. Perplexity is inversely related to the coherence of the generated text; the
lower the perplexity score, the higher the coherence. To make the process com-
putationally efficient, we computed perplexity using a GPT-2 language model
for all generations. We computed grammatical error using the Python Language
Tool [22] which counts the number of grammatical errors averaged over all gen-
erated questions in each setup under each factor. For diversity, we report the
Distinct-3 score [15], which counts the average number of distinct 3-grams in
the generated questions. Furthermore, we believe that ensuring the generated
questions are safe, i.e., without profanity or inappropriate language is critical
for high-stakes educational applications. Therefore, we report the toxicity of
the generated questions, using the Perspective API [23], which is often missing
from the evaluation in existing question generation literature. Last but not least,
we perform a preliminary human evaluation to mark percentage of acceptable
questions for each setup under each factor. A question is considered acceptable
if it is coherent, on-topic, answerable, grammatically correct, and appropriate.
We conduct a more comprehensive human evaluation in Sect. 3.3.

3.1 Empirical Observations

Table 2. Results for the example structure comparisons, which show that the CTQA
structure is distinctly better than the CAQ structure.

Gen. format Diversity ↑ Perplexity ↓ Toxicity ↓ Gramm. error ↓ % acceptable ↑
CAQ 0.895 64.683 0.153 0.053 26.7%

CTQA 0.898 29.900 0.153 0.080 54.7%
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Structure of Examples in the Prompt. Recall that this experiment com-
pared CAQ and CTQA structures of the examples in the prompt (Sect. 2.1). The
results, presented in Table 2, show that, although the CTQA structure produces
questions of comparable diversity, quality, and toxicity, it generates about twice
as many acceptable questions as the CAQ structure. This comparison suggests
that CTQA is a superior example structure and confirms our earlier hypothe-
sis that asking PLMs to generate the answer in addition to only the question
is beneficial for improving the quality of generated questions. Additionally, the
generated answers can be potentially useful for evaluating a student’s perfor-
mance on the generated question. Ensuring that the generated answer correctly
answers the generated question is important ongoing work.

Table 3. Results for the example data source comparisons. Using content specific
examples gives superior generation performance compared to content agnostic example.

Gen. format Diversity ↑ Perplexity ↓ Toxicity ↓ Gramm. error ↓ % acceptable ↑
SQuAD 0.884 102.840 0.201 0.093 18.0%

OpenStax 0.895 64.683 0.153 0.053 26.7%

Data Source in Examples. Recall that this experiment compared whether the
examples come from the same subject (Bio 2e) as the query or a generic dataset
(SQuAD) (Sect. 2.2). The results in Table 3 showed that when a prompt consists
of examples from the same subject, the PLM can generate questions about twice
as effective as when using SQuAD examples across all metrics. These results
suggest that a generic set of examples may not adapt to question generation for
various domains and that appropriately choosing examples from desired subjects
is a better setup for question generation.

Table 4. Results for the number of examples comparisons. Five- and seven-example
settings yield better questions compared to one- and three-example settings.

# Examples Diversity ↑ Perplexity ↓ Toxicity ↓ Gramm. error ↓ % acceptable ↑
1 example 0.897 37.954 0.384 0.182 24.9%

3 examples 0.924 36.586 0.232 0.151 37.8%

5 examples 0.938 35.990 0.208 0.119 51.6%

7 examples 0.918 30.731 0.176 0.076 44.9%

Number of Examples. Table 4 shows the results comparing one-, three-, five-,
and seven-shots, i.e., the number of examples in the prompt. The results show
that one- and three-shots are ineffective; we observe that they produce a majority
of unacceptable questions. The five-shot condition results were optimal followed
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closely by the seven-shot, with the one-shot being most inefficient. We prefer
using the five-shot condition because here, the PLM generated more varied ques-
tions that are also of high quality. For example, although the model was only
given free-response questions, it could produce a small number of multiple-choice
or true-or-false questions.

Table 5. Results for the context and question length comparisons. We see that, in
general, short context and question lengths in the examples improve generation quality.

Context length Diversity ↑ Perplexity ↓ Toxicity ↓ Gramm. error ↓ % acceptable ↑
Short 0.861 33.452 0.329 0.380 22.0%

Medium 0.878 30.692 0.214 0.410 24.0%

Long 0.877 30.385 0.331 0.420 24.0%

Question length Diversity ↑ Perplexity ↓ Toxicity ↓ Gramm. error ↓ % acceptable ↑
Short 0.906 34.275 0.246 0.377 30.0%

Medium 0.893 33.704 0.318 0.487 23.7%

Long 0.885 30.38 0.295 0.610 14.7%

Lengths of Context and Question in Each Example. Table 5 shows the
results comparing different lengths of the question and context in each example,
respectively. In terms of question lengths, results suggested that a smaller ques-
tion length generally yields the best performance. In terms of context lengths,
results are mixed. This is likely because longer contexts contain information that
is not directly useful for generating questions and because longer texts lead to
longer prompts, which makes it more difficult to instruct the model to adapt to
the question generation task.

3.2 Discussions

From the above quantitative results, we obtain a good understanding of how
the different choices, while constructing the prompt for each generation strat-
egy, will impact the quality of the generated questions. It is clear that when
preparing examples to instruct and adapt PLMs for question generation, the
PLM is likely to generate higher quality questions given the prompt design: if
prompt contains five to seven examples that are in CTQA format, are chosen
from the desired subject, rather than generic content, and contain relatively
short contexts and questions. This recommendation has the potential to serve as
a guideline for practitioners when adapting off-the-shelf PLMs for their unique
question generation needs.
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3.3 Human Expert Evaluation for Multiple Subjects

Fig. 2. Human evaluation results. Left: the percentage of PLM-generated questions
that are recognized as human-authored by SMEs. Right: the percentage of PLM-
generated questions that SMEs considered as ready-to-use in their classes.

To validate the utility of the generated questions as well as to investigate whether
our best prompt strategy would result in good question generations across
domains (e.g., natural sciences, social sciences, and humanities), we engaged
biology, psychology, and history subject matter experts (SMEs) respectively to
evaluate the quality of questions from these domains generated using the best
prompting strategy.

For each domain, we chose 5 examples as the prompt and another 5 examples
with only the question and target as the query. For each query, we generated and
selected the 10 best questions. We then mixed these 50 questions together with
5 reference human-authored questions (one for each query) and presented them
to SMEs. SMEs were asked to (1) distinguish whether each question is machine
or human authored and (2) evaluate whether they would use the question in the
assessment they create for their class.

The results, shown in Fig. 2, suggest that the majority of PLM-generated
questions look “human-like” for SMEs and can be readily used in their respective
classes. This result is encouraging because it suggests that our prompting strat-
egy can effectively adapt a publicly available, general-purpose text generation
model for high-quality educational question generation. Table 6 demonstrates a
few successful generated questions.
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Table 6. Examples of three generated questions using our recommended prompting
strategy along with the context, target, and reference human-authored questions.

Context (Biology): At 0.1 to 5.0µm in diameter, prokaryotic cells are significantly smaller
than eukaryotic cells, which have diameters ranging from 10 to 100µm (Fig. 4.6). The
prokaryotes’ small size allows ions and organic molecules that enter them to quickly diffuse to
other parts of the cell. Similarly, any wastes produced within a prokaryotic cell can quickly
diffuse. This is not the case in eukaryotic cells, which have developed different structural
adaptations to enhance intracellular transport

Target: size

Reference human-authored question: Some unusually large cells do exist. How might such cells
solve the problem of diffusion?

Machine-generated question: Compare the size of prokaryotic and eukaryotic cells to describe
why diffusion is more rapid through prokaryotic cells

Context (Psychology): Sleep debt and sleep deprivation have significant negative psychological
and physiological consequences. As mentioned earlier, lack of sleep can result in decreased mental
alertness and cognitive function. In addition, sleep deprivation often results in depression-like
symptoms. These effects can occur as a function of accumulated sleep debt or in response to more
acute periods of sleep deprivation. It may surprise you to know that sleep deprivation is associated
with obesity, increased blood pressure, increased levels of stress hormones, and reduced immune
functioning

Target: sleep deprivation

Reference human-authored question: Which animal would be most likely to die from a lack of
sleep?

Machine-generated question: Sleep debt and sleep deprivation are associated with significant
negative psychological and physiological consequences. What are some of the potential consequences
of a person having less than optimal sleep?

Context (U.S. History): Opponents made clear their resistance to Garrison and others of his ilk;
Garrison nearly lost his life in 1835, when a Boston anti-abolitionist mob dragged him through the city
streets. Anti-abolitionists tried to pass federal laws that made the distribution of abolitionist literature
a criminal offense, fearing that such literature, with its engravings and simple language, could spark
rebellious Black people to action. Their sympathizers in Congress passed a “gag rule” that forbade the
consideration of the many hundreds of petitions sent to Washington by abolitionists. A mob in Illinois
killed an abolitionist named Elijah Lovejoy in 1837, and the following year, ten thousand protestors
destroyed the abolitionists’ newly built Pennsylvania Hall in Philadelphia, burning it to the ground

Target: anti-abolitionists

Reference human-authored question: How did anti-abolitionists respond to the abolition
movement?

Machine-generated question: What were some of the responses to the abolitionist movement?

3.4 Limitations and Future Work

Question generation is complex and is an active ongoing area of research. In this
work, we proposed four factors as the prompt design framework and conducted
a controllable scientific study on those factors. However, our investigation was
by no means exhaustive and several other factors have the potential to impact
question generation such as question difficulty, type (i.e., multiple-choice, fill in
the blank, etc.), and modality (i.e., potentially including tables and equations).
Investigations of more factors and complex interactions among them are left for
future work. In addition, our human evaluation was a small-scale experiment
because we were only able to engage the SMEs for a short time. The next step is
to conduct a large-scale evaluation that involves both instructors and students
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Table 7. Examples of failed cases and the failing reasons. Our prompting strategy can
still generate questions that contain grammatical errors and other types of errors.

(Biology): What is the correct statement is about centrosomes? (Multiple-choice question with
no options and bad grammar)

(Psychology): Sleep deprevation can lead to serious changes in the body. Which one of these
changes characterized by sleep deprivation? (grammatical and spelling errors)

(History): During the Gold Rush, the Forty-Niners did not find wealth so easy to come by,
most did not. (not a question)

in a safe environment to obtain a better understanding of the educational utility
of machine-generated questions. Lastly, our prompting strategy generated ques-
tions with grammatical errors and other problems at times; we show some failed
examples in Table 7. A promising future direction is to develop automated filters
capable of removing undesirable generated questions and only select the highest
quality ones, preferably also personalized to each student and instructor.

4 Conclusion

In this work, we investigate the best practices to prompt a PLM for educational
question generation. We develop and empirically study a prompting strategy con-
sisting of four different factors. Based on a series of quantitative experiments,
we recommended the choices for each factor under our prompting strategy that
led to high-quality generated questions. Human evaluations by subject experts
in three different educational domains suggest that most of the questions gener-
ated by a PLM with our recommended prompting strategy are human-like and
ready-to-use in real-world classroom settings. Our results indicate that properly
prompting existing off-the-shelf PLMs is a promising direction for high-quality
educational question generation with many exciting future research directions.
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Abstract. A legal casenote essay is a commonly assigned writing task to
first-year law students aiming to promote their understanding of legal rea-
soning and help them acquire writing skills in a legal domain. To ensure
law students master the legal casenote writing, it is critical that instruc-
tors monitor and evaluate students’ progress, and provide a timely and
specific feedback. This is, however, a challenging task to many instructors
as they often need to dedicate excessive time and effort to evaluate writ-
ing of and provide formative feedback to each individual student. We posit
a computational tool that can afford at-scale evaluation of legal casenote
writing may help remedy this challenge. Although quite some automatic
writing evaluation (AWE) tools have been applied in the domain of educa-
tion, the AWE tool that can analyse rhetoric of a legal casenote essay (i.e.,
specific rhetorical elements required by this task) is yet to be developed.
We made the first step towards developing such a tool. We manually anno-
tated each sentence in a corpus of 1,020 authentic casenote essays written
over 6 offerings of the first-year legal writing course and developed one tra-
ditionalmachine learning classifier (RandomForest) and twodeep learning
classifiers (based on vanilla BERT and Legal BERT pre-trained language
models). We found that the deep learning classifier based on Legal BERT
could correctly identify more than 86% of rhetorical moves in a casenote.
Our findings may be of a particular interest for educational researchers
and practitioners who seek to use the methods of artificial intelligence to
support legal writing education.

Keywords: Legal casenote writing · Automated writing evaluation ·
Rhetorical moves · Machine learning · Deep learning

1 Introduction

In contemporary society, lawyers are often required to analyse different legal texts
and clearly articulate this analysis in writing [28]. For this reason, writing legal
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documents of different genres – e.g., casenotes, memos, appeals and judgements
– is deemed to require a critical set of skills for aspiring lawyers. To provide law
students with the opportunity to acquire and hone their legal writing skills, and
to learn how to develop different legal documents, law educators administer many
writing assignments.

A legal casenote essay is usually the first writing assignment assigned to law
students in their freshman year. In this task, students analyse multiple docu-
ments that describe an authentic legal case decided at court, and write a sum-
mary (i.e., casenote) that provides essential information about the case including
the material facts, procedural history, court reasoning, and court decision. The
presence of these elements, commonly referred to as rhetorical moves [44], will
determine the casenote assignment mark. Importantly, this writing task is not
only considered potent to help first-year law students understand and commu-
nicate legal reasoning [8,31], but also to acclimate them to the culture of legal
writing, e.g., use of specialized vocabulary and formal syntax [36].

To ensure law students master the legal casenote writing, it is critical that
instructors monitor and evaluate students’ progress on this task, and provide
a timely and specific feedback [23,31] on how the casenote essay should be
improved. For example, an instructor may notice that the court decision move
was not provided in the casenote draft, and advise a student on how to include
this move in the next draft. This is, however, a challenging task to many instruc-
tors as they often need to dedicate excessive time and effort to evaluate writing
and provide formative feedback to each individual student [18,33]. This chal-
lenge is further amplified in large-enrollment courses, such as the first-year legal
writing course at many law schools, where instructors typically need to evaluate
a few hundred casenote submissions in a limited time frame.

We posit a computational tool that provides at-scale evaluation of legal
casenote writing may help remedy this challenge and benefit law students
and instructors. For instance, as the presence of rhetorical moves determines
the quality of a casenote, such computational tool may be applied to detect
rhetorical moves in a casenote draft, and, on that basis, tailor writing ana-
lytics to help students identify areas for improvement (e.g., missing required
rhetorical moves), and thus lessen marking burden for instructors. Following
recent advances in computational technologies for text analysis, especially those
grounded in machine learning (ML), quite some automatic writing evaluation
(AWE) tools have been developed and applied in the domain of education (e.g.,
[4,15,25,37]). Whereas researchers have documented empirical benefits of these
tools in supporting student writing in different genres and subjects, to our knowl-
edge, the existing tools appear to be limited in supporting casenote writing (for
details, see Sect. 2.2.). More research is hence needed to develop an AWE tool
that can analyse the specific rhetoric of a legal casenote genre and provide at-
scale support to law instructors and students working on this task.

In the present study, we took the first step towards developing such a tool.
Specifically, we investigated the affordances of state-of-the-art ML and deep
learning (DL) algorithms to automatically evaluate students’ responses to a legal
casenote assignment. To this end, we collected a corpus of authentic casenote
essays written by first-year law students over 6 offerings of the legal writing
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course. In these essays, we manually labeled each sentence with a corresponding
rhetorical move. Using this data set, we developed and evaluated performance
of several classifiers that can identify the presence of each rhetorical move in a
casenote essay with a high accuracy.

2 Related Work

2.1 Rhetorical Moves

A rhetorical move is theorised as a segment of text that fulfills a particular com-
municative purpose within a genre [16]. In other words, rhetorical moves are
building blocks of a genre and they jointly contribute to a coherent understand-
ing of a text [16,44]. Students are often required to provide a set of genre-specific
rhetorical moves in their essays. For instance, an argumentative essay may con-
tain the claim, evidence and rebuttal moves [1], whereas a literature review essay
may contain the summary of prior research, gaps in prior research and justifi-
cation for a new study moves [46]. The presence of rhetorical moves within the
essay often determines the communicative quality of that essay and a subsequent
grade the essay will receive. For this reason, educational researchers have utilised
rhetorical moves to theoretically guide the analysis of student writing across a
range of genres and disciplines [35]. Following this approach, in the present study,
we analysed the legal casenote writing from the perspective of rhetorical moves.

2.2 Automated Analysis of Rhetorical Moves in Student Writing

The AWE tools developed to date have mainly examined students’ writing on
the micro-level, e.g., lexical and syntactical errors, and only a few have examined
students’ writing on the macro-level, e.g., text structure and rhetorical moves
required by a task [2,43]. For example, the Academic Writing Analytics (AWA)
and AcaWriter [25] tools use a rule-based parser [38] to detect rhetorical moves in
students’ essays of different genres and tailor context-sensitive feedback to learn-
ers to help them improve their writing. The Mover [4] and the Research Writing
Tutor (RWT; [15]), on the other hand, harness supervised ML algorithms to
analyse rhetorical structure of research essays. These tools can identify rhetori-
cal moves that occur in a draft (e.g., “Establishing a Territory”, “Identifying a
Niche” and “Addressing the Niche”) and present these moves to a learner (e.g.,
as a color-coded text). In this way, a learner can gain a deeper insight into the
rhetorical structure of their draft, engage in metacognitive evaluation of the draft
(e.g., by appraising the extent to what the draft aligns to assessment criteria),
and improve their text accordingly (e.g., “It seems like I still have to address the
niche.”). For a more detailed overview of the aforementioned tools, see [24].

Whereas these tools have been found promising to support learners to revise
and improve their drafts of different genres, including argumentative law essays
[26,40], business reports [40], sections of research articles [15] and reflective essays
[29], the tool that can analyse rhetorical characteristics specific to legal casenote
writing and support learners in these assignments is yet to be developed. For
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instance, as legal casenotes are brief summaries of decided court cases, learners
are expected to concisely communicate essential information about the court
judgement in these documents [7,45]. To this end, many learners rarely use in-
text linguistic cues (e.g., “As a consequence...”) to signal rhetorical moves to
readers. For this reason, the existing rule-based systems that rely upon linguis-
tic cues to determine rhetorical moves do not appear to be fully applicable to the
analysis of legal casenote responses. Instead, supervised ML may be considered
a more viable approach towards creating a robust tool for automated evaluation
of rhetorical moves in casenote writing. Even though a small group of researchers
has already utilised supervised ML to classify rhetorical moves in student writ-
ing, and the systems developed (e.g., [4,15]) achieved good performance relative
to standards in discourse analysis (80% overlap with human evaluators recom-
mended in [5]), the classification tasks these systems attempted to address were
not explicitly related to legal writing. Moreover, the sets of texts researchers
used to train these systems did not appear to include legal documents. Adding
to this line of research, we collected and manually annotated a corpus of student
responses to casenote assignments, and used this dataset to create the classi-
fier that classifies rhetorical moves in a casenote. For this purpose, we explored
both traditional ML and DL approaches. Specifically, we attempted to address
the following research question: To what extent can a machine learning/deep
learning classifier accurately identify rhetorical moves in a legal casenote essay?

3 Method

3.1 Learning Task and Code Book

In a casenote assignment, students were required to analyse multiple documents
that describe an authentic legal case with court decision, identify major points of
the case and write up to a 500-word casenote that includes the following rhetori-
cal moves: (1) material facts that gave the rise to the original cause of action (2)
procedural history representing the proceedings that arose as a result of the cause
of action, e.g., arguments made by counsel (3) court reasoning, e.g., the reason-
ing of the Justices of the High Court, and (4) court decision and relief. The
presence of the rhetorical moves (1)–(4) determined the casenote assignment
mark. In addition, the students were required to use footnotes in their essays
to explicitly refer to relevant documents from the case. The use of footnotes
counted towards the assignment mark, too. Informed by these rhetorical and
marking requirements, we developed a codebook to define and categorise rhetor-
ical moves in a legal casenote. We included two additional categories that did
not count towards the mark, Title & Introduction that contained the essay title,
introductory comments and/or signposting in the first paragraph, and Other
Information that contained any information that could not be categorised into
any other category. The code book with examples is provided in Table 1.
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Table 1. Rhetorical moves in legal casenotes

Label Definition Example

Title & introduction Title, introductory comments

to the essay or signposting

LAW CASE REPORT

The case of McHale Watson

involved an unfortunate event that brought to

light the issues of a minor’s capability to be held to

the same standard of care under the tort of

negligence

Material facts The material facts giving rise

to the original cause of action

During the school holidays on January 21st 1957, the

respondent, Barry Watson, aged twelve years old was

playing with the appellant, Susan McHale, and

another girl both of whom aged nine years old

Procedural history The proceedings and

arguments that arose as a

result of the cause of action

This was an action commenced in the original

jurisdiction of the High Court of Australia

before Windeyer J in McHale v Watson (1964)

Court reasoning Court reasoning that includes

obiter and ratio

The appeal was argued on two grounds, firstly

that Windeyer J had errored in finding a variance

between an adult and child standard of care,

and, secondly that His Honour should have

found negligence, regardless of the measured

standard

Court decision The actual decision reached

and the relief granted

to the parties as a result

Justice Windeyer’s judgement was held by a

majority-of-three-to-one by McTiernan CJA,

Kitto J and Owen J, with only Menzies J dissenting

Footnote References to the case

documents cited

Wrongs Act 1958 (Vic) s 26

3.2 Dataset

We collected 5,800 responses to casenote assignments written by the first-year
law students at a large Australian university over 6 offerings of a legal writing
course between 2017 and 2020. Of these, we randomly selected 1,020 responses
(i.e., 170 responses from each offering) for manual labeling and ML/DL classifier
modeling. The average length of a casenote essay was 290.93 words (SD = 72.69).
This study was implemented with the approval from the Human Research Ethics
Committee (Project ID: 29451 ).

Two human raters, experts in this writing task, randomly selected 113
casenotes, i.e., approximately 10% of the dataset, trained together on how to
apply the code book for annotation (Table 1), and then separately annotated
these essays. The raters used sentences as the unit of analysis, because, com-
pared to paragraphs, sentences can afford more fine-grained analysis of a text
[10]. Specifically, the raters labeled each sentence in the essay with a correspond-
ing category from the code book. The inter-rater reliability between the two
raters was nearly 1 in all the categories, measured by Cohen’s kappa. The rea-
son for this almost perfect overlap may be because the casenotes were generally
short (approximately 26 sentences, on average) and some students introduced
optional headings to their essays to explicitly signal rhetorical moves. This, in
turn, could have made the training and annotation process more straightfor-
ward. One of the raters proceeded with the manual annotation and annotated
the remaining casenote essays. As the sentences belonging to the Other Informa-
tion category were not identified in the annotated casenotes, this category has
been removed from the final dataset. The descriptive statistics of the dataset is
provided in Table 2.
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Table 2. The descriptive statistics of the casenote dataset. Total: Total Number; Avg:
Average Number; Title: Title & Introduction; Material: Material Facts; Procedural:
Procedural History; CourtR: Court Reasoning; CourtD: Court Decision. Standard
deviation is provided in parentheses.

Total Title Material Procedural CourtR CourtD Footnote

Total casenote 1,020 609 848 859 856 722 836

Avg. words per casenote 290.93 (72.69) 18.27 (21.60) 47.67 (22.35) 73.82 (42.65) 126.29(57.06) 14.92 (17.92) 35.94(33.78)

Avg. unique words per casenote 156.63 (29.47) 15.02 (15.66) 38.76 (15.73) 54.27 (27.05) 86.53 (33.16) 13.16 (12.81) 14.90 (11.56)

Avg. sentences per casenote 26.23 (10.70) 1.44 (1.09) 3.86 (2.05) 5.32 (3.17) 8.98 (4.76) 1.43 (1.33) 7.06 (7.49)

Total sentences 23,347 966 3,873 5,460 9,167 1,142 2,739

Avg. words per sentence 13.28 (8.09) 13.73 (9.67) 12.51 (6.65) 13.97 (7.81) 14.02 (7.26) 11.36 (5.91) 11.16 (11.75)

Avg. unique words per sentence 12.21 (6.32) 12.12 (7.21) 11.89 (5.79) 13.07 (6.61) 13.31 (6.27) 10.68 (5.23) 7.89 (4.65)

3.3 Model Implementation

We utilised the manually annotated casenote dataset to train three classifiers
to identify rhetorical moves. In particular, one classifier was based on the tradi-
tional ML algorithm Random Forest [11] and the other two were based on the
deep learning (DL) algorithm BERT SCL (Bidirectional Encoder Representa-
tions from Transformers with Single Classification Layer; [17]). We describe the
implementation procedure below.

Random Forest. As Random Forest is deemed the one of the most widely used
traditional ML algorithms for classification tasks [42], we elected to implement
Random Forest in this study and compare its classification performance with the
state-of-the-art Deep Learning algorithms. We implemented the Random Forest
model using the sklearn1 Python package. We tuned the model hyper param-
eters using GridSearchCV2 Python package. To obtain input features for tradi-
tional ML models, researchers typically need to perform an extensive, manual
feature extraction from a raw text. We surveyed prior literature [3,12,20,30,49]
and identified two groups of features commonly used in the development of tra-
ditional ML models: (1) LIWC3 and (2) N-GRAM features. LIWC [34] is a predefined
dictionary of 84 features reflecting a frequency of different linguistic choices a
student made, e.g., function words, summary, affect, relativity and time orienta-
tion. N-GRAM features contain the 1000 most frequent unigrams and bigrams
extracted from a case note. We included both groups of features as input to our
Random Forest classifier.

BERT. Although DL classification models have demonstrated a considerable
performance in classifying legal texts (e.g., [32]), these models typically rely upon
a large amount of training data. In recent years, the development of pre-trained
language models, e.g., BERT [17], provided researchers with the opportunity to

1 https://scikit-learn.org/.
2 https://scikit-learn.org/stable/modules/grid search.html.
3 https://liwc.wpengine.com/.

https://scikit-learn.org/
https://scikit-learn.org/stable/modules/grid_search.html
https://liwc.wpengine.com/
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develop high-performing DL classifiers without necessarily using large datasets
for training. For this reason, we utilised the pre-trained BERT language models
in the current study. Specifically, we created two DL models based on BERT: (1)
BERT Base that uses a version of the BERT pre-trained on general texts (e.g.,
Wikipedia articles and books) and (2) BERT Legal4, a version of the BERT
pre-trained on the legal documents (e.g., legislation, court cases, contracts). To
fine-tune legal BERT, we followed the broader hyper-parameter search space
procedure proposed in [13]. Given that our dataset was relatively small, we set
batch size to 8 without setting a fixed maximum number of epochs to avoid
under-fitting. Then, an early stopping mechanism was applied based on valida-
tion loss. We applied a low learning rate of 1e−5 and a high drop-out rate of 0.2
which have been shown to improve regularization in [13].

Data Pre-Processing. In data pre-processing stage, we first split each casenote
essay into sentences using the sentence-tokenize5 routine of NLTK Python
package [9]. Each sentence was mapped to a corresponding label, i.e., manually
annotated rhetorical move: Title and Introduction, Material Facts, Procedural
History, Court Reasoning, Court Decision and Footnotes. Following recommen-
dations in [22], we randomly split the dataset using the 80%:20% train-test ratio,
i.e., 80% of data were used for model training and the remaining 20% were used
for model testing.

Model Training and Testing. We trained a single multi-label classification
model to classify the six rhetorical moves within a casenote. We detected an
unequal representation of outcome classes in the training sample, e.g., the num-
ber of sentences labeled as procedural history was nearly five times higher than
the number of sentences labelled as title & introduction. To mitigate the class
imbalance issue, we applied the SMOTE algorithm [14], motivated by prior
research that successfully applied this algorithm to balance outcome classes in
educational classification tasks (e.g., [6,27]). Using SMOTE, we over-sampled
minority classes and reached a parity in sample sizes between minority and
majority classes. In this way, we ensured that the model was evenly trained on
both minority and majority classes. We tested and compared the models’ perfor-
mance using the testing sample. To this end, we computed the four classification
performance metrics: Accuracy, Cohen’s κ (denoted as Kappa), AUC, and F1
score. To answer our research question, we evaluated the overall model perfor-
mance in classifying multiple labels at once, but also the model performance in
classifying each individual label, e.g., material facts vs. other rhetorical moves.

4 Results

The evaluation results show that BERT Legal outperformed the Base BERT
and Random Forest models, as indicated by the all four metrics (Table 3). In
4 https://huggingface.co/nlpaueb/legal-bert-base-uncased.
5 https://www.nltk.org/.

https://huggingface.co/nlpaueb/legal-bert-base-uncased
https://www.nltk.org/
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particular, the AUC of 0.956 achieved by BERT Legal indicates an outstanding
classification performance on the test dataset. Moreover, a better performance
of BERT Legal compared to BERT Base may have been expected given that
BERT Legal is pre-trained on legal texts.

We further evaluated how the three models classified each individual label.
The evaluation results are presented in Table 4. We thus found that DL models
outperformed Random Forest in correctly identifying all the labels. Base and
Legal BERT performed similarly well in detecting all the rhetorical moves, except
in detecting court decision (CourtD) where Legal BERT outperformed Base
BERT (0.971 vs 0.788, measured by classification accuracy). Overall, our results
indicate that Legal BERT classifier6 can correctly classify at least 86% of all the
sentences into one of the rhetorical moves, and, as such, may be a preferable DL
model for automatic detection of rhetorical moves in legal casenotes. We show
the confusion matrix of rhetorical moves predicted by Legal BERT in Fig. 1.

Table 3. The classification performance of Random Forest, BERT Base and BERT
Legal measured by Accuracy, Kappa, AUC and F1 score

Model Label Accuracy Kappa AUC F1

Random forest MULTI-6 0.743 0.691 0.945 0.734

BERT base MULTI-6 0.816 0.751 0.951 0.820

BERT legal MULTI-6 0.835 0.777 0.956 0.836

Note. MULTI-6: Classifying each sentence into one of the 6
rhetorical moves. The highest classification scores for each met-
ric are in bold.

Table 4. Accuracy and AUC scores the models achieved when classifying each rhetor-
ical move individually

Rhetorical move Random forest BERT base BERT legal

Accuracy AUC Accuracy AUC Accuracy AUC

Material 0.834 0.840 0.958 0.946 0.957 0.940

Procedural 0.728 0.758 0.874 0.829 0.868 0.818

CourtR 0.792 0.793 0.889 0.882 0.892 0.886

Title 0.834 0.866 0.984 0.945 0.984 0.938

CourtD 0.770 0.832 0.788 0.858 0.971 0.869

Footnotes 0.966 0.944 0.986 0.986 0.996 0.997

6 Source files of the casenote classifier developed in this study are publicly available
at https://bit.ly/3roDWTC.

https://bit.ly/3roDWTC


Towards the Automated Evaluation of Legal Casenote Essays 175

5 Discussion

5.1 Interpretation of the Results

Our results indicate it is possible to develop a highly accurate classifier of rhetor-
ical moves in legal casenotes written by first-year law students, a major contri-
bution of our study. More specifically, we found that deep learning classifiers
based on the state-of-the-art pre-trained language models outperformed Ran-
dom Forest, a traditional machine learning classifier. This finding conforms to
prior research suggesting that pre-trained language models can boost text clas-
sification performance compared to more traditional approaches [39], even when
using a relatively small corpus for model training [21], like in our study. We
also demonstrated that the deep learning classifier based on Legal BERT [13], a
language model pre-trained on a few hundred thousand diverse legal texts, can
be very accurate in identifying rhetorical moves in students’ casenotes. We note
that, while Legal BERT has been successfully applied in several analytical tasks
that involve legal texts (e.g., identifying topics in legal documents [41]), resolving
domain name disputes [47] and labeling factual information in legal cases [48],
to our knowledge, our study was the first to successfully apply a Legal BERT
model to detect rhetorical moves specific to legal casenotes.

Our results corroborate prior evidence (e.g., [48]) that Legal BERT generally
performs better on legal classification tasks compared to Base BERT, a language
model pre-trained on generic texts. In particular, we found that Legal BERT out-
performed the Base BERT over nearly 19% in detecting the court decision move.
This may indicate that the Legal BERT was more adept to specific vocabulary
and syntax of court decisions, compared to the base model. We, however, note
that Legal BERT tended to confuse mainly between procedural history and court
reasoning rhetorical moves (Fig. 1). We speculate this might be due to the similar
vocabulary that legal writers may use to describe the court procedure and court
reasoning, e.g., it may be possible that the arguments provided in procedural
history are reiterated in court reasoning to justify the final court decision. This
speculation should be tested in future work.

Fig. 1. The Confusion Matrix of predicted rhetorical moves based on the LEGAL
BERT model on the testing set
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5.2 Implications for Research and Practice

Our findings may be of a particular interest for educational researchers and
practitioners who seek to use the methods of artificial intelligence to develop at-
scale writing support to law students. For instance, the theoretical framing based
on rhetorical moves, and dataset creation and model development approaches
reported in this study can be applied in the context of legal writing tasks other
than the casenote, e.g., legal memos or argumentative essays, as these genres
also involve rhetorical moves. Equally important, the publicly available Legal
BERT classifier developed in this study can be used as a part of a future writing
analytics tool that can analyse a casenote draft. For example, the tool may color-
code the rhetorical moves in a draft, making it easier for instructor or a student
to identify the moves that still need to be included, a potential benefit towards
more efficient marking and formative feedback.

6 Limitations and Future Work

We identified a few major limitations to our study that may be addressed in
future research. First, as per our data labelling approach, we categorised each
individual sentence into only one rhetorical move. However, we acknowledge it
is possible that one sentence sometimes can be categorised into multiple rhetor-
ical moves, e.g., a compound sentence elaborating on court reasoning and court
decision. To address this challenge in future studies, researchers may need to
label discourse units that are more fine-grained than a sentence, e.g., idea unit
[19]. Next, even though we recorded in our analysis whether students provided
citations in their responses or not, the quality of citation use was not measured.
For example, our analysis could not distinguish whether a student merely copied
or more deeply analysed and transformed information from documents cited in
their casenotes. To remedy this issue, researchers may compute semantic simi-
larity between a casenote draft and each document cited in the draft, and use
this value as an additional feature to describe rhetorical moves in a casenote.
Last, we acknowledge that the classifier developed in this study should be val-
idated on casenote essays written at different law schools to ensure it performs
comparably well across different educational contexts.
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Abstract. Studies on automated short-answer scoring (SAS) have been
conducted to apply natural language processing to education. Short-
answer scoring is a task to grade the responses from linguistic infor-
mation. Most answer sheets for short-answer questions are handwritten
in an actual educational setting, which is a barrier to SAS. Therefore, we
have developed a system that uses handwritten character recognition and
natural language processing for fully automated scoring of handwritten
responses to short-answer questions. This is the most extensive scoring
data for responses to short-answer questions, and it may be the largest
in the world. Applying the Cohen’s kappa coefficient to the graded eval-
uations, the results show 0.86 in the worst case, and approximately 0.95
is recorded for the remaining five question answers. We observe that the
fully automated scoring system proposed in our study can also score with
a high degree of accuracy comparable to that of human scoring.

Keywords: Short answer scoring · Natural language processing ·
Handwritten character recognition

1 Introduction

Considering the current educational field, descriptive questions are often intro-
duced to properly evaluate the abilities developed in linguistics. Moreover, to
improve the scoring process’s efficiency and stability, the effective use of com-
puters and artificial intelligence has recently been increasing. There are approxi-
mately two types of descriptive questions: “essays without a correct answer” and
“short-answer questions with correct answers.” Many systems have been devel-
oped and have been practicalized for essays, especially in the United States.
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Some of the systems include the e-rater [2], IntelliMetric [19], intelligent essay
assessors (IEA) [7], and CRASE [13]. Although the importance of short-answer
questions has been recognized, various technical issues remain unsolved, such as
semantic incomprehension.

On the other hand, short-answer questions are often used in several cases.
Because short-answer questions are widely regarded as more orthodox, authentic,
and reliable than the traditional multiple-choice tests [6], they have the potential
to be used if the technical challenges for scoring are overcome. Automated short-
answer scoring (SAS) techniques for English language have undergone technical
improvements. Since the proposal of SAS that uses deep learning, its (SAS) per-
formance has improved [1,5,17]. Particularly, SAS was devised using a massive
transformer-based language model [8,12,21,22]. The demand of SAS is immea-
surable and is not limited to new tests. Therefore, recent studies on SAS for
practical purposes in Japan use data from actual mock examinations [8,15].

However, these studies have two unresolved problems. First, SAS requires
additional manual work. It takes time and effort to convert handwritten data
into electronic media because most of the descriptive answers in the educa-
tional domain are handwritten. The conventional SAS method aims to reduce
the effort involved in scoring and requires extra effort. Furthermore, annotations
were added as a guide for scoring to ensure accuracy. Considering its practi-
cal use in education, SAS requires improvements to eliminate these efforts. We
have produced a fully automated scoring system that reliably eliminates data
processing (such as annotations) and converts handwritten responses into text
data. Second, the data handled in actual educational settings were too few to be
verified on a large scale. When considering the privacy viewpoint, the amount
of data was limited, and the verification was limited to a small scale. We con-
ducted an experiment using data from a nationwide test and clarified that we
could guarantee high prediction accuracy, even with large-scale data from actual
educational settings.

The contributions of our research are as follows:

– We have developed a fully automated scoring system for handwritten
responses, making it possible to grade many handwritten responses with high
accuracy cost effectively.

– Large-scale data collected from two trial tests of entrance examinations
nationwide were used to verify the practicality of the method in education.

Section 2 describes the large dataset used for the trial test of Japanese com-
mon entrance examinations. Section 3 explains the handwriting recognition tech-
nology and the scoring model used. The recognition evaluation criteria were also
added. Section 4 presents the evaluation results, Sect. 5 describes the ablation
studies, and Sect. 6 concludes the paper.
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2 Trial Test Dataset for University Common Entrance
Examinations

2.1 Overview

We used the written answers in Japanese in the trial test for the university
common entrance examination conducted in 2017 and 2018. These exams are
for national and private Japanese universities and are jointly conducted by the
National Center for University Entrance Examinations, an independent admin-
istrative organization in Japan.

Approximately 500,000 examinees nationwide take the exams annually. These
exams are considered essential for admission to national universities. Moreover,
many leading private universities base their admission on these exams. Japanese
exam questions comprise only first-appearing questions and are conducted once
annually. While, SAT and ACT use test items repeatedly, and carry out many
times a year.

We used trial test data for university common entrance exams conducted
in 2017 and 2018. The test questions were prepared in a manner similar to
the production, and the quality of the test questions was rigorously examined.
Regarding the trial test, items on the national language (i.e., Japanese), mathe-
matics, geography, history, civics, science, and foreign languages (only in 2018)
were included. Descriptive questions were used only in Japanese and mathemat-
ics. Approximately 38% of high schools in Japan participated in this trial test;
nonetheless, candidates did not have to take all the subjects. We analyzed the
national language, which was taken by approximately 60,000 people. This is an
unprecedented number of short-answer data for analysis.

2.2 Short-Answer Questions

The national language test in the trial test consisted of five test sets, known as
the item bundles. One of these questions was a short-answer question. The test
set consisted of three test questions. In 2017, these three test questions needed to
be answered within 50, 25, and 120 characters, respectively. In 2018, the answers
were to be of 30, 40, and 120 characters. Two Japanese characters are roughly
equivalent to one English word. Figure 1 demonstrates a short-answer question
administered in 2018.

3 Method

3.1 Task Settings

We input the answers to a short-answer question converted into text data using
the automated handwriting recognition, and we output the corresponding pre-
dicted score. Subsequently, we demonstrate that our scoring model can predict
the scores correctly by comparing the manual scores based on the rubric or
scoring criteria. Regarding all the questions, we applied a single scoring model.
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Sentence
“. . . Consider a situation where you travel to a country
where you do not speak their language at all, and
you have to ask for something. Regarding this case,
pointing will work like magic. . . .”

Question
What does the underlined phrase,
“pointing will work like magic” indicate?

Student answer
It indicates that you can communicate your intentions,
even if you do not speak the language.

Score: 3/3

Fig. 1. Example of a short-answer question conducted in 2018. It is originally written
in Japanese and has been translated into English for reader’s understanding.

Figure 2 shows the task flow. We evaluate the performance using the score,
without modifying the character answer data and without adding any annota-
tion to the answer. The part that should be correctly identified as “ ” was
identified as “ ”. The quality of the written letters was sometimes insufficient.
This is because of stains that remained in the paper.

3.2 Handwriting Recognition

We employ the extracting, transforming, and loading (ETL) database, which has
offline Japanese handwritten single characters. This database consists of nine
datasets collected under different conditions [18]. Because the collected samples
are written in separate boxes similar to the answer sheet of university entrance
exams, the ETL database is appropriate for building an offline Japanese hand-
writing recognizer. This database covers the most common Japanese characters
belonging to 2965 kanji (Japanese Industrial Standards : JIS Level 1) and 94
kana categories. Although there are more kanji categories, the characters of JIS
Level 1 are mostly used daily and in examinations, whereas other kanji characters
are rarely used.

Based on the success of the ensemble convolutional neural networks (CNNs)
for Japanese historical character recognition [16], we also used an ensemble of
multiple well-known CNN models. Our recognizer consists of a visual geometric
group (VGG), MobileNet, residual network (ResNet), and ResNext networks
with 16, 24, 34, and 50 layers, respectively [9,10,20,23].

To train these CNNs, we applied multiple transformations such as rotating,
shearing, scaling, blurring, contrasting, and noise addition to avoid over-fitting
problems because the database had only approximately one million samples in
total. After training these CNNs using the ETL database, we fine-tuned them
using 100 manually labeled samples from our collected Japanese handwritten
answer database.
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A trained neural network provides a prediction output as a k-dimensional
vector of probabilities, where k is the number of categories for each character
sample. These prediction outputs are averaged together with an equal weight of
1.0 to form an ensemble prediction output. Thus, the top-most prediction is the
category with the highest probability in the ensemble prediction output. Figure 3
shows the procedure in which the CNN using 16, 24, and 50 layers is judged as
“指 .”Here, the CNN using 34 layers is judged as “提 ,” and finally it is judged
correctly as “指 .”

Fig. 2. Task flow Fig. 3. Ensemble CNN handwriting recogni-
tion

Owing to the ambiguities of some characters, we also use an N-gram language
model to correct misrecognized characters using the linguistic context. Consid-
ering every character of a text line, we computed the combined score based
on the recognition and language scores of each character. First, the recognition
score is the probability product of the previously recognized characters produced
by the ensemble CNN recognizer. Second, the language score is the probability
product of previous characters based on a five-gram Japanese language model
that has been pre-trained by the Japanese Wikipedia corpus. Although N-grams
are simple, they are sufficiently effective. Third, the combined score is a linear
combination of the recognition and language scores with a weight of α ∈ [0, 1].
Based on the combined score, we employ the beam search algorithm along the
text line with a beam width of ten to export the top-ten candidates with the
highest combined scores. However, only the highest combined score candidate
was used for scoring in this experiment.

3.3 Scoring Procedure

The methods by [8] and [15], which perform the same type of SAS in Japanese,
use an attention mechanism added to the bidirectional long-short term memory
(Bi-LSTM). Their method outputs a predicted score based on each scoring crite-
rion or rubric. However, our method does not accumulate scores for each scoring



Fully Automated Short Answer Scoring 185

criterion. It predicts the overall score. We explicitly utilize a multi-label classifi-
cation model by fine-tuning it with Bidirectional Encoder Representations from
Transformers (BERT) [4], which is pre-trained on Japanese Wikipedia.1 If we
consider the operation in large-scale tests, the scoring model should be imple-
mented more efficiently. Nevertheless, we must utilize a better language model
that is as accurate as possible.

The procedure is as follows (Fig. 4):

1. x = {x1, x2, . . . , xn} is input as the written answer converted to text data
using handwriting recognition, and the predicted score s ∈ C = {0, . . . , N}
for the answer is provided as the output of the label.

2. The sentence x of the written answer is decomposed for each token, and a
special token known as [CLS] is provided at the beginning of the sentence.

3. These token IDs are provided, and they are entered into the pre-trained BERT
using the Japanese Wikipedia. Thereafter, we converted them into series of
768-dimensional vectors.

4. Whereas BERT is composed of all 12 layers, we concatenate the vectors of
the [CLS] tokens of the last four layers of the hidden layer. Considering [4],
combining them improved the document classification accuracy, compared
to using only the [CLS] token vector in the final layer. Adam was used to
optimize the model. The batch size was 16, and the number of epochs was
five.

5. The vector of the combined classification [CLS] tokens is input into the clas-
sifier, and the predicted score s is output.

Fig. 4. Short-answer scoring model

3.4 Evaluation

The quadratic weighted kappa (QWK) [3] is often used as an evaluation index in
SAS, and we used it in this study. The QWK is used for multilabel classification
when an order relationship exists between labels. This index shows how well

1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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the correct and prediction labels match. The higher the value is, the better the
prediction.

The QWK is calculated as:

κ = 1 −
∑

i,j Wi,jOi,j
∑

i,j Wi,jEi,j
, (1)

where i and j represent the correct and predicted labels, respectively. O rep-
resents the ratio of each cell to the labels in the confusion matrix composed of
the correct and predicted labels. E represents the expected value of the label
belonging to each cell of the confusion matrix, assuming that the predicted and
correct labels are independent.

W represents the penalty when the prediction is incorrect, and it is expressed
as follows:

Wi,j =
(i − j)2

(N − 1)2
, (2)

where N represents the number of label classifications. W increases because the
difference between the correct and predicted labels increases.

The QWK score is a ratio that can consider a value between −1 and 1. A
negative QWK score indicates that the model is “worse than random.” A random
model should provide a score close to zero. Finally, the perfect predictions yielded
a score of one. According to [14], Cohen suggested a kappa result of 0.81–1.00,
which is interpreted as an approximately perfect agreement.

4 Experiments

4.1 Question Data

Six questions, including three questions each in 2017 and 2018, were classified
based on these conditions and classification methods. The number of answers
processed was approximately 60,000 in both 2017 and 2018. Table 1 shows the
statistics of the scoring for each question. The question ID, number of answers,
number of scoring conditions, score range, mean of the scores, standard deviation
of the scores, and number of characters allowed are presented chronologically.
We divided the data used for the BERT into 3:1:1 (= 60%:20%:20%) as the
training, development, and evaluation sets. The scoring accuracy was evaluated
using the QWK.
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Table 1. Descriptive statistics on scoring for each question

Questions # of # of scoring Score Mean # of characters

answers conditions range allowed

2017 #Q1 62,222 4 0–6 4.46 ± 1.67 <50

2017 #Q2 61,777 3 0–2 1.51 ± 0.86 <25

2017 #Q3 59,791 4 0–5 0.43 ± 1.10 80–120

2018 #Q1 67,332 3 0–3 2.51 ± 0.88 <30

2018 #Q2 66,246 3 0–3 1.87 ± 1.14 <40

2018 #Q3 58,159 5 0–3 0.76 ± 1.07 80–120

4.2 Evaluation Results

Considering this experiment, the number of answer characters required at the
university entrance level is relatively large, and the content is not plain. Regard-
ing such cases, it is essential to know how large a sample is needed to guarantee
the accuracy of the estimation.

Therefore, the sample size was changed to 50,000, 10,000, 5,000, 1,000, and
500, and the change in the QWK was observed. Table 2 shows the results, includ-
ing the full-size data of approximately 60,000. The bold text indicates the best
values.

Table 2. QWK for scoring each question

Questions Sample size

Full size 50,000 10,000 5,000 1,000 500

2017 #Q1 0.978 0.979 0.967 0.946 0.883 0.679

2017 #Q2 0.963 0.949 0.934 0.922 0.818 0.884

2017 #Q3 0.866 0.836 0.705 0.680 0.473 0.276

2018 #Q1 0.976 0.968 0.974 0.914 0.863 0.820

2018 #Q2 0.954 0.945 0.923 0.903 0.796 0.724

2018 #Q3 0.944 0.929 0.916 0.894 0.783 0.753

The following can be obtained from the steps above.

1. We observe that the accuracy is kept high by the method for all six questions,
regardless of the type of question. Even in the worst case of Q3 in 2017, the
QWK is 0.86; otherwise, it is 0.94 or higher.

2. Essentially, the larger the sample size is, the better the accuracy. This indi-
cates that the accuracy does not converge, which is an unexpected result.
The sample size of 60,000 seems large enough in a typical test. Nevertheless,
it shows that a more significant number is needed to improve the accuracy of
the prediction.
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This indicates in a sentence of a certain length, the variation in expressions
is highly diverse. Because the number of characters increased, the number of
variations increased exponentially, even if we have sufficient answer patterns
that would not be significant. Therefore, the learning never converges.

3. The easier the question is, the higher the scoring rate, and the better the
estimation accuracy. In both 2017 and 2018, Q1 was the easiest, and Q3
was the most difficult. The accuracy of Q1 was higher than that of Q3. This
tendency did not depend on the number of scores.

5 Ablation Study

We observed the effect on scoring accuracy in our model from two perspectives.
First, we considered the accuracy of handwriting recognition. We examined how
the recognition rate affected the overall scoring accuracy. Second, we considered
the position of the layer in the language-processing model. We changed the
information position extracted from the 12 layers of the BERT model and verified
how the change affected the overall scoring accuracy.

5.1 Effect of the Handwriting Recognition Models Used

To investigate the effect of the handwritten character recognition part on the
scoring accuracy, we compare the original ensemble model of four methods with
other methods. The compared methods are as follows:

1. No language model: This is a character recognition model without correction
of misrecognized characters by the N-gram language models.

2. VGG only: This is a single character recognition model without ensemble
learning.

3. DenseNet only: This is also a single character recognition model without
ensemble learning.

4. Ensemble 5: This is a character recognition model with ensemble learning of
five character recognition models.

Table 3 compared the QWK using each of the output results.

Table 3. Comparison of QWK by five methods

Questions The handwriting recognition models

Original No language model VGG DenseNet Ensemble5

2017#Q1 0.978 0.975 0.977 0.974 0.980

2017#Q2 0.963 0.957 0.957 0.952 0.959

2017#Q3 0.866 0.847 0.844 0.820 0.830

2018#Q1 0.976 0.973 0.972 0.970 0.970

2018#Q2 0.954 0.950 0.952 0.953 0.953

2018#Q3 0.944 0.937 0.933 0.935 0.941
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This shows that the model with ensemble learning with multiple character
recognition models has a higher overall accuracy than the model with a single
character recognition model. In addition, the results show that the accuracy of
the models with the modification in the language model is higher than that of
the models without modification. Moreover, increasing the number of ensemble
learning models did not change significantly, considering the accuracy. Consid-
ering these results, we observed that the overall accuracy was affected by both
the language model changes and character recognition model quality. Moreover,
we found that the overall accuracy was limited by improving the quality of the
character recognition model.

5.2 Effect of the Information Retrieved from the BERT Model

We investigated the effect of the different linguistic information retrieved from
BERT on the scoring accuracy. The BERT used in our study consists of 12 lay-
ers, and each layer is known to contain different information [11]. Specifically,
the layers close to the input, middle, and output parts possess morphological
information, syntactic information, and information that focuses on the seman-
tic information, respectively. We divided the BERT model into three parts: a
layer near the input, a middle part, and a layer near the output. Thereafter, we
examined the differences in the scoring accuracy between the three parts. Layers
1–4, 5–8, and 9–12 were extracted from the input section. The output from each
layer was input into the linear layer, and the score was predicted. Table 4 lists
the results for each accuracy. We observed that the scoring accuracy was the
highest when the information of layers 9–12 was extracted for each problem.

Table 4. Comparison of QWK by the different extraction layers

Questions The part of layers

1–4 5–8 9–12

2017#Q1 0.977 0.977 0.978

2017#Q2 0.952 0.955 0.963

2017#Q3 0.830 0.832 0.866

2018#Q1 0.969 0.972 0.976

2018#Q2 0.951 0.950 0.954

2018#Q3 0.936 0.939 0.944

This indicates that the system is paying particular attention to the semantic
information when performing automatic scoring tasks. Particularly, QWK in
2017#Q3 was different by 3.0 or more among all the questions, and the difference
was outstanding.
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6 Summary and Conclusions

We have investigated a fully automated scoring method for short-answers using
handwriting recognition data and have evaluated the system’s performance using
a large-scale national test. “Fully” indicates that there is no need to annotate the
scoring data or convert the handwritten text manually. We used very large data
conducted in two trial tests for university common entrance examinations and
used a pre-trained BERT model for scoring. We made the following observations.

1. When the data is sufficiently large, our method increases the scoring accuracy
without annotation and converts the handwritten text manually.

2. When we consider 25 to 120 character answers, learning often does not con-
verge, even with a data size of 50,000.

3. Even if some errors are caused by handwriting recognition, the accuracy of
scoring is guaranteed to some extent using the current technology.

This study reports the actual accuracy at the current technical level in a pro-
cedure without human intervention. Despite the variety in the types of questions
we considered, such as the number of characters in the answer and the difficulty
level, we could predict the scores with high accuracy in all cases. This suggests
that our procedure is effective for all short-answer questions, and SAS is suit-
able for large-scale testing using the current technology. In addition, our study
demonstrates the usefulness of the method for utilizing handwritten character
recognition models in SAS. We can serve as an opportunity to develop a new
learning method for educational application settings, where students often use
handwriting.
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Abstract. The advancement of knowledge in medicine presents an
important challenge when identifying gaps and deciding what content
to include in a medical school curriculum and how to establish learning
outcomes. Monitoring alignment between lesson objectives, the curricu-
lum and achievement of intended outcomes can be difficult. A system
that can automatically evaluate lesson objectives would be highly bene-
ficial. We aim to assess the efficacy of using machine learning techniques
to evaluate individual lesson objectives to a graduate entry allopathic
medical school curriculum. The school’s curriculum objectives consist
of 11 categories and 356 curriculum objectives sentences. We considered
the first year courses with a total of 1888 lesson objectives. Using various
word embeddings (TF-IDF, word2vec, fastText, BioBERT), we then use
cosine similarity to map each lesson objective to the curriculum objec-
tives. Cognitive levels of lesson objectives were compared against the
school’s curriculum using Bloom’s Taxonomy verbs. After implementa-
tion, 319 lesson objectives from each approach were randomly sampled
(sample size, 95% CL, 5% CI) to examine match with curriculum objec-
tives and curriculum categories. BioBERT performed best with 46.71%
and 80.56% match between lesson objectives and curriculum objectives,
and lesson objectives and categories, respectively. Further validation by
a domain expert shows 80% match (without order). Visualisation of the
Bloom’s Taxonomy cognitive levels of lesson objectives and school’s cur-
riculum objectives showed a good match. Machine learning can be used to
evaluate lesson and curriculum and automatically mapping lesson objec-
tives to the medical school curriculum and analysing cognitive levels of
lesson objectives.

Keywords: Natural language processing · Evaluate curriculum
mapping · Evaluate cognitive learning outcome

1 Introduction

A school’s curriculum acts like a blueprint for all the lessons. With the ever-
increasing amount of content and frequency of updates in the medical school,
keeping track of what was taught and checking if it is in-line with the school’s
curriculum has become an immense and immediate challenge. Over the years,
lessons delivered might diverge from the school’s main curriculum. Therefore,
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there is a need for the administrators to be aware of outdated or latest updates
in the lessons, to quickly and more frequently process all lesson objectives and
ensure it is in-line with the school’s curriculum. The aim of this paper is to assess
the efficacy of using machine learning techniques to automatically evaluate and
map lesson objectives with the school’s curriculum objectives. This is so that
we can quickly identify gaps, misalignment and bring to the users’ attention for
further action.

According to the constructive alignment framework [1], every lesson starts
with clearly written lesson outcomes that communicates what is expected from
the students by the lesson. Using a feedback loop, the lesson outcomes, teaching
approaches and assessments are constantly evaluated so that they are aligned
to the outcomes. In this paper, we will refer to learning outcomes as learning
objectives as it is the terminology that is used in our institution. We acknowl-
edge that there is a difference and debate within the field and would focus the
discussion on the use of machine learning techniques for curriculum mapping.

Machine learning techniques in natural language processing (NLP) are
automation techniques used to extract, represent and process semantics of natu-
ral texts. They are used in sentiment analysis, question and answering machine,
etc. Although to human it is easy to understand a sentence, it is a very diffi-
cult task for the machine to understand that a word “stop” can have different
meaning in “bus stop” and “please stop”. NLP has improved tremendously into
developing more natural language understanding (NLU) techniques. NLU adopts
transformers that provides general-purpose architectures with pre-train models
to help in representing words in multidimensional sentence or word embeddings.
With a good sentence or word representation we can potentially capture the
semantic context or meaning of each sentence or word then generate a mapping
between the school’s curriculum objectives and lesson objectives.

Another way to evaluate the lesson against the curriculum is to compare
the cognitive levels based on well-established knowledge framework such as the
Bloom’s Taxonomy [8]. Bloom’s Taxonomy is a hierarchical model that classifies
learning into six domains of different complexity and specificity. Each learning
objective begins with an action verb that would classify the different level of
learning expectation by the student. If we can automate the classification of the
objective sentences, we can visualize and compare the differences.

In this paper, we evaluate the lesson objectives against the curriculum objec-
tives by exploring different pre-trained word representation techniques and map-
ping them, as well as comparing their cognitive levels. In the next section, we
will expound on the related work in this area. Section 3 will explain in detail our
methodology applying different word representation techniques and a cognitive
classification model using a knowledge framework. The results will be presented
in Sect. 4. We will then discuss, provide recommendations and state the limita-
tions of this project in Sect. 5 and conclude in Sect. 6.



Machine Learning Techniques to Evaluate Lesson Objectives 195

The main contributions in this paper are:

– automated extraction of information from both the school’s curriculum objec-
tives and the first-year lesson objectives

– mapping between the first-year lesson objectives and the school’s curriculum
objectives

– categorization and comparison of the Bloom’s taxonomy cognitive domain
categories used in the school’s curriculum objectives and the first-year lesson
objectives

– consolidation and gap analysis between what was planned at the school level
and what was taught at the lesson level

2 Related Works

In this section we will provide a background on the related literatures in curricu-
lum mapping, word representation techniques and knowledge framework using
Bloom’s taxonomy. With this background, we will highlight the gaps that we
are attempting to bridge in the literature.

2.1 Curriculum Mapping

To align lesson objectives with school curriculum objectives, we looked at cur-
riculum mapping literature. According to some authors [2,7], there are limited
studies in the mapping of a medical school curriculum. Due to the lack of digiti-
zation and understanding of the bigger picture in the school’s curriculum, Chan
[2] mentioned it is difficult to introduce new content or review current taught
content. This had previously led Komenda [7] to create a framework to enhance
curriculum innovations and mapping using a network graph approach, but it
lacked in reporting the performance of their curriculum mapping algorithm. In
this work, we attempt to create curriculum mapping models that maps the con-
tent, as well as comparing cognitive levels using state-of-the-art natural language
processing techniques, and evaluating the performance of the model.

2.2 Sentence Representation

Before mapping the objective statements, it is necessary to accurately represent
the semantics of the sentence in the computer. For a computer to analyse a
sentence, words in the sentence need to be represented as a number or vector.
Komenda [7] proposed both a framework and a curriculum mapping model using
term-frequency inverse document frequency (TF-IDF) to convert sentences into
features to train their model. By using TF-IDF, the features do not take into
account the context of a word in the sentence, but simply count the occurrence
of each word without considering the order or the meaning of the words in a sen-
tence. We aim to explore and compare other methods to represent sentences like
Word2vec [10,12,13], fastText [5,11] and Bidirectional Encoder Representations
from Transformers (BERT) [4].
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Mikolov [10,12,13] started a major breakthrough in word representation
using Word2vec. This algorithm uses a neural network model to learn the n-
dimensional vector of each word in a large corpus of text using word associa-
tions. The team by Joulin and Mikolov [5,11] continued to improve the word
representation and created fastText.

BERT [4] word embedding is the state-of-the-art pre-trained language repre-
sentation model. The model is trained using a general-purpose “language under-
standing” model on a large text corpus (like Wikipedia). BERT captures the
context of each word in a sentence as it is trained bidirectionally (uses both left
and right of the sentence). Each word embedding depends on all other words
in the sentence. There are several other versions of BERT that are trained on
different domains. BioBERT [9] is trained on biomedical literature in PubMed
and will be more relevant for representing our medical school texts.

2.3 Knowledge Framework - Bloom’s Taxonomy Cognitive Domain
Levels

In addition to the automated extraction and mapping, we also wanted to explore
classifying lesson objectives and school’s curriculum objectives into different cog-
nitive levels. Bloom’s taxonomy is often used to measure cognitive levels in lesson
objectives [8]. Several papers have created classification models to automatically
classify lesson objectives into levels [3,14]. None of these papers have looked at
comparing curriculum objectives with lesson objectives.

Recognising the importance of aligning lesson objectives to curriculum objec-
tives [1], and the challenges due to the vast amount of text to manually read and
analyse, we explored ways to automate this process. Currently, there is a lack of
literature in the area of medical curriculum mapping with empirical approach. In
order to map curricula, we will look at various state-of-the-art pre-trained word
representation models to quantify the curriculum mapping. Lastly, to the best
of our knowledge, no work has automatically classified and compared cognitive
levels of medical lesson objectives against the school’s curriculum objectives.

3 Methods

Figure 1 provides a summary of our approach. In this paper, the constructive
alignment framework’s “Intended Learning Objectives” and “Teaching & Learn-
ing Activities” will be viewed as the school’s curriculum objectives and lesson
objectives respectively. We evaluate the lesson objectives and school’s curricu-
lum objectives in two different ways. Firstly, we use an automation to map
the lesson objectives to the school’s curriculum using an unsupervised transfer
learning model to generate sentence embeddings. We then derive the similarity
between the sentences using cosine similarity of the embeddings. Secondly, we
use Bloom’s taxonomy cognitive domain to categorize all the lesson objectives
and all the school’s curriculum objectives and compare their cognitive levels.
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Fig. 1. Summary of curriculum mapping approach. Lesson objectives and the school’s
curriculum are pre-processed prior to being mapped and classified using BioBERT and
Cosine Similarity. They are also mapped to Bloom’s Taxonomy levels and evaluated.

3.1 Data

School’s Curriculum Objectives. We obtained the school’s curriculum
objectives and first-year lesson objectives from the school’s administrator. The
school’s curriculum objectives consist of 11 categories as shown in Table 1a. Cat-
egories are a collection of related lesson objectives. The total number of objective
sentences are 356.

Lesson Objectives. The first-year lessons consist of 11 courses (Table 1b).
There are total of 1888 lesson objectives with 1687 unique objective sentences.

Each objective sentence is pre-processed by removing punctuations, numbers,
Unicode characters, null entry, convert to lowercase, remove unnecessary space,
carriage return, tab and stop-words (e.g. common words like “a”, “the”, etc.,
that does not add information to the text).

Table 1. Listing of (a) categories in school’s objectives and (b) first-year courses.

(a) Categories in school’s objectives (b) First-year courses
Category Category name

a SCIENTIFIC FOUNDATIONS

b BASIC CLINICAL SKILLS

c PREVENTION, (HEALTH PROMOTION AND OCCUPATIONAL HEALTH)

d DIAGNOSIS

e TREATMENT - ACUTE AND CHRONIC

f PATIENT SAFETY AND QUALITY IMPROVEMENT

g INFORMATION MANAGEMENT

h ETHICS, HUMANITIES, AND THE LAW

i PROFESSIONALISM

j LEADERSHIP

k SCHOLARSHIP AND LIFELONG LEARNING

ID Courses

1 CARE

2 Transition 1

3 Fundamentals of Clinical Practice

4 Molecules, Cells, and Tissues

5 Human Structure and Function

6 Brain and Behaviour

7 Body and Disease

8 Fundamentals of Research and Scholarship

9 Innovation and Design Thinking

10 Scholarly Development Programme

11 Research Methods and Analysis
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3.2 Mapping the Lesson Objectives to School’s Curriculum
Objectives

Sentence Representation. We used several word representation approaches
like TF-IDF, word2vec, fastText and BioBERT [9]. Each objective is considered
as a sentence that is represented by a vector.

Term Frequency Inverse Document Frequency (TF-IDF) (Eq. 1), is used to
represent objective sentences as a vector of features by computing the frequency
of term t (TF) in a document d, and the inverse document frequency of term t
(IDF). The lesson objectives produced 4,259 words and the school’s curriculum
objectives produced 1,721 words as features, respectively. Using the 967 over-
lapped word features between the two list of objectives, an objective sentence is
thus represented by a 967 dimension vector.

TDIDF (t, d) = TF (t, d) ∗ IDF (t) (1)

Word2vec [10,12,13] is a pretrained word representation that was trained on
Google News (about 100 billion words). The model contains vectors for 3 million
words and phrases, each represented by a 300 dimension vector. Sentence vectors
are obtained by summing up the vector for each word in a sentence.

fastText [5,11] is another pretrained word representation model that was
trained on Wikipedia 2017, University of Maryland, Baltimore County (UMBC)
webbase corpus, and statmt.org news dataset (16 billion tokens). It contains
one million word vectors with each word represented by a 300 dimension vector.
Similarly, each objective statement is represented by a sentence vector that is a
summation of the vector of each word in a sentence.

BERT [4] sentence embedding is a state-of-the-art pre-trained language repre-
sentation model. BERT is trained on non-medical related words. As our objective
sentences contain medical terms not found in common literature, we chose the
BioBERT-Large v1.1 (+ PubMed 1M) [9], which is pre-trained on biomedical
literature in PubMed. Each objective is treated like a sentence and represented
by a 768-dimensional sentence vector generated by BioBERT using the sen-
tence vector function of the pytorch pretrained bert python package.

Distance Measures - Cosine Similarity. Once vector representations are
obtained for both lesson objectives and school’s curriculum objectives, it is
possible to compare them through suitable distance measures, such as cosine
similarity. Cosine similarity was chosen as it considered the normalised vector
orientation and magnitude when computing two vectors. Its value will be closer
to 1 for the most similar sentences. Equation 2 shows the calculation of similarity
score between two vectors A and B.

similarity(A,B) = (A ∗ B)/(‖ A ‖ ∗ ‖ B ‖) (2)

From the above vector representations, we mapped each first-year lesson
objective to the most similar school curriculum objectives sentences using cosine
similarity. We evaluate the mapping by randomly sample 319 lesson objectives
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(sample size, 95% confidence level, 5% confidence interval) in 1687 unique sen-
tences in a total number of 1888 lesson objectives. We labeled 319 unique lesson
objectives that mapped to curriculum objectives.

We further evaluated the results by enlisting a domain expert, who is an
experienced faculty member in the MD Program to provide expert input on the
mapping. The domain expert was shown 20 lesson objectives and each lesson
objectives’ top 10 mapped curriculum objectives. The top 10 mapped curriculum
objectives are shuffled to reduce bias.

3.3 Bloom’s Taxonomy Cognitive Domain

We used a keyword match rule-based classification model to classify the sen-
tences into Bloom’s taxonomy cognitive levels (Algorithm 1.). The action verbs
(Table 2) are based on the six cognitive domain levels in the revised version of
Bloom’s Taxonomy [8]. The pre-processed objective sentences are joined into one
corpus and action verbs are keyword matched and counted for each level. Action
verbs found in stop-words are removed from stop-words.

Algorithm 1. Classifying Bloom’s taxonomy cognitive levels using action verbs

1. For each lesson objective
2. For each Blooms taxonomy category
3. For each action verb
4. If verb found in lesson objective
5. Lesson objective flagged in Blooms category

Table 2. Action verbs.

Remembering Understanding Applying Analysing Evaluating Creating

Define Ask Administer Analyse Appraise Adapt

Describe Associate Apply Break Argue Arrange

Enumerate Classify Calculate Down Assess Assemble

Identify Compare Chart Classify Choose Combine

Label Contrast Choose Compare Compare Compile

List Convert Collect Conclude Consider Compose

Match Describe Compute Connect Convince Construct

Name Differentiate Construct Contrast Critique Create

Observe Discuss Determine Correlate Debate Design

Read Distinguish Discover Criticize Defend Develop

Recall Estimate Employ Deduce Distinguish Devise

Recite Explain Examine Devise Evaluate Formulate

Recognize Identify Explain Differentiate Judge Generalize

Select Illustrate Illustrate Discriminate Justify Hypothesize

State Indicate Interpret Distinguish Persuade Integrate

Tell Infer Interview Experiment Rate Invent

Interpret Manipulate Explain Recommend Justify

Paraphrase Modify Infer Select Produce

Relate Relate Plan Propose

Summarize Report Question Reorganize

Transform Simulate Select Organize

Translate Solve Survey Rearrange

Teach Report

Use Simulate

Solve

Speculate
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4 Results

4.1 Mapping Lesson Objectives to School’s Curriculum Objectives

Through the above methods, we mapped each first-year lesson objective to a
list of top 10 similar school curriculum objectives sentences, and a list of most
similar school curriculum objective sentences.

The results of the word representation algorithms, namely TF-IDF,
word2vec, fastText and BioBERT, are shown in Table 3. A comparison between
the ground truth resulting from the manual labelling of human labelers, with
the automated mapping using cosine similarity is shown in Table 3.

Table 3. Evaluation of lesson objectives mapped to most similar curriculum objective.

Lesson objectives (n = 319, 95% CL, 5% CI)

BioBERT TF-IDF Word2vec fastText

Curriculum categories (%) 80.56 35.42 69.28 52.04

Curriculum objectives (%) 46.71 25.39 45.45 20.69

The evaluation by the expert shows 80% of the sentences matched without
considering the order, whereas 45% matched with the most similar objectives and
20% were found to have no match between lesson objectives and school curriculum
objectives. Table 4 shows an example of expert mapping of a lesson objective to top
10 mapped curriculum objectives. The corresponding cosine similarity scores are
shown in Table 4 but these were not made known to the expert.

4.2 Comparing Bloom’s Taxonomy Distribution

Using the action verbs (Table 2) in each objective, we plotted the frequency
of each Bloom’s Taxonomy cognitive levels (Fig. 2). The school’s curriculum
objective and lesson objectives consists of mostly understanding verbs (200, 1000
respectively) which is followed by remember verbs (100, 800 respectively). Both
objective statements have least creating verbs (less than 50).

5 Discussions

In this paper, we have demonstrated the use of advanced machine learning tech-
nique to map lesson objective sentences with school’s curriculum objective sen-
tences. Best percentage match for the approach was 80.56% and 46.71% for cur-
riculum categories and curriculum objectives, respectively. We have also obtained
and compared the cognitive levels of both lesson and curriculum objectives using
Bloom’s Taxonomy’s cognitive domain framework.



Machine Learning Techniques to Evaluate Lesson Objectives 201

Table 4. An example of expert mapping of a lesson objective to top 10 mapped
curriculum objectives. The top 10 mapped curriculum objectives are randomly ranked.
The expert was not shown the cosine similarity scores. Top 10 are based on cosine
similarity score.

Lesson objective School categories School objectives 1 - best match
blank - otherwise

Cosine similarity
score

Be able to define
the basic steps of
the transcription
cycle

SCIENTIFIC
FOUNDATIONS

Describe how errors in
cell division (meiosis,
mitosis) can result in
human disease

0.8989

SCIENTIFIC
FOUNDATIONS

Describe protein folding
and its relation to
protein structure and
function

0.8954

SCIENTIFIC
FOUNDATIONS

Describe the
biochemical and genetic
basis of heritable
diseases, recognizing
normal
process/structure and
contrasting with the
disease state

0.8943

SCIENTIFIC
FOUNDATIONS

Describe the structure
and function of
membrane ion channels,
along with their roles in
specific diseases

0.9045

SCIENTIFIC
FOUNDATIONS

Describe the structure
and function of
membrane receptors,
along with pathways of
signal transduction

1 0.9180

SCIENTIFIC
FOUNDATIONS

Describe the structure
of cytoplasmic filaments,
tubules, and motor
proteins, along with
their roles in cellular
function and response to
drug interventions

0.8951

SCIENTIFIC
FOUNDATIONS

Describe the structure
of membrane and
membranous organelles,
along with their role in
cellular function and
response to drug
interventions

0.9026

SCIENTIFIC
FOUNDATIONS

Describe the structure,
synthesis, control, and
importance of key
molecules in basic
cellular processes

0.9118

SCIENTIFIC
FOUNDATIONS

Discuss the processes of
transcription and
translation and their
relation to human
disease

0.9088

SCIENTIFIC
FOUNDATIONS

Discuss the role of
chromosome instability
and oncogenes in the
development of cancer

0.8935
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(a) School curriculum objectives (b) Lesson objectives

Fig. 2. Comparing frequency of using Bloom’s taxonomy category in (a) school cur-
riculum objectives and (b) lesson objectives.

5.1 Evaluating Through Curriculum Mapping

Using the current school’s curriculum objectives and lesson objectives, we repre-
sent each sentence applying different word representation approaches (TF-IDF,
word2vec, fastText, BioBERT) and find the closest matching sentence by calcu-
lating their cosine similarity. In Table 3, BioBERT is the best performing model
followed by Word2vec, fastText and TF-IDF. One possible reason why BioBERT
performed best is that it was pre-trained with medical words found in PMC and
PubMed. Word2vec is the next best performing pre-trained word representation
with mapped curriculum categories and objectives scoring 69.28% and 45.45%,
respectively. Word2vec is trained on Google News with 3 billion words. How-
ever, words in the news might not contain medical terms, which may explain
why the model did not perform as well. Likewise, fastText (52.04% category
mapped, 20.69% objectives mapped) is trained on Wikipedia, UMBC webbase
corpus and statmt.org news dataset, which recognises one million words, but
there could be limited medical terms in this dataset. The reason why TF-IDF
did not perform as well (35.42% category mapped, 25.39% objectives mapped)
could be due to the limited number of words (967 words), since only words that
appear in both corpus are included.

The map between the lesson and curriculum categories are derived from the
mapping between lesson and curriculum objectives with BioBERT showing the
best performing mapping algorithm at 80.56% (Table 3). This shows that, when
we map at the sentence level, we should get a map at a higher level such as the
categories.

Using the current school’s curriculum objectives and lesson objectives, we
represent each sentence with BioBERT [9] and use cosine similarity to find the
closest matching sentence. We have automated the mapping of the two objec-
tives and the percentage match shows that the algorithm matches well with
curriculum categories. After further evaluation of the objectives mapping by a
domain expert, 80% match without order was achieved. This shows that we can
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effectively use this algorithm to return the top 10 curriculum objectives for the
users to choose. This reduces the cognitive load of individuals who are trying to
map their lesson objectives to the curriculum objectives. Over time, this solu-
tion may potentially assist in the identification of gaps in the curriculum or
lesson objectives. The effectiveness of the approach can be seen by removing one
keyword from the school curriculum objective, with the cosine similarity score
dropping from 0.79 to 0.69 (Fig. 3).

Fig. 3. The change in cosine similarity between two sentences when an important word
is removed.

5.2 Evaluating Through Cognitive Levels in Bloom’s Cognitive
Domain

Comparing the distribution between the two objectives (Fig. 2), we can observe
that they are similar, and that both use a lower level of the Bloom’s taxon-
omy’s cognitive domain in remembering and understanding, then applying. For
first-year lesson objectives, it is expected that students will undergo basic sci-
entific training. However, there may be a need to review the school curriculum
objectives to raise the level of cognitive domains used in later years. It would be
interesting to examine the actual execution of the lessons from student feedback
to see if the content delivered matches the distribution of both objectives.

5.3 Recommendations and Limitations

There are several limitations to the keyword matching of action verbs as it might
be double counted. Especially if there is a higher level of action verbs used in an
objective, the higher level should be considered, as it might be implicit that the
lower level is already fulfilled.

We assumed that lesson and curriculum objectives are well-written and that
the lesson objectives are delivered according to what was written, which may
not be the case. Further work needs to be done to investigate what was taught.
This could be done through student feedback, student assessment and lesson
objectives to complete the loop in the constructive alignment model.
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For future experiments, word representation performance may be improved
by including the school’s category and goals in the word representation to
enhance the mapping. Furthermore, in our pre-processed words, we have removed
punctuations, stop-words and converted to lower case all sentences. We could
rerun the experiments to explore if retaining these features affects the perfor-
mance of the mapping.

6 Conclusion

Advanced machine learning techniques can be used to map lesson objectives to
school curriculum objectives. Simple action verb keywords can serve to identify
cognitive levels used in lesson and school curriculum objectives. Gaps in the
curriculum and lessons may also be identified by the module leads and addressed
by the school’s administrators to improve both the curriculum, and the lessons
through tracking curriculum variability [6] and visualisations.
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11. Mikolov, T., Grave, É., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in Pre-
Training Distributed Word Representations (2018)

https://doi.org/10.1007/978-3-030-52538-5_9
https://doi.org/10.1007/978-3-030-52538-5_9
https://doi.org/10.1371/journal.pone.0143748
https://doi.org/10.1371/journal.pone.0143748


Machine Learning Techniques to Evaluate Lesson Objectives 205

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed Rep-
resentations of Words and Phrases and their Compositionality. Adv. Neural Inf.
Process. Syst. 26 (2013)

13. Mikolov, T., Yih, W.t., Zweig, G.: Linguistic Regularities in Continuous Space
Word Representations (2013)

14. Omar, N., et al.: Automated analysis of exam questions according to Bloom’s
taxonomy. Proc. Soc. Behav. Sci. 59, 297–303 (2012)



Towards Generating Counterfactual
Examples as Automatic Short Answer

Feedback

Anna Filighera(B) , Joel Tschesche, Tim Steuer , Thomas Tregel ,
and Lisa Wernet

Multimedia Communications Lab, Technical University of Darmstadt,
Darmstadt, Germany

anna.filighera@kom.tu-darmstadt.de

https://www.kom.tu-darmstadt.de

Abstract. Receiving response-specific, individual improvement sugges-
tions is one of the most helpful forms of feedback for students, especially
for short answer questions. However, it is also expensive to construct
manually. For this reason, we investigate to which extent counterfactual
explanation methods can be used to generate feedback from short answer
grading models automatically. Given an incorrect student response, coun-
terfactual models suggest small modifications that would have led the
response to being graded as correct. Successful modifications can then be
displayed to the learner as improvement suggestions formulated in their
own words. As not every response can be corrected with only minor
modifications, we investigate the percentage of correctable answers in
the automatic short answer grading datasets SciEntsBank, Beetle and
SAF. In total, we compare three counterfactual explanation models and
a paraphrasing approach. On all datasets, roughly a quarter of incorrect
responses can be modified to be classified as correct by an automatic
grading model without straying too far from the initial response. How-
ever, an expert reevaluation of the modified responses shows that nearly
all of them remain incorrect, only fooling the grading model into think-
ing them correct. While one of the counterfactual generation approaches
improved student responses at least partially, the results highlight the
general weakness of neural networks to adversarial examples. Thus, we
recommend further research with more reliable grading models, for exam-
ple, by including external knowledge sources or training adversarially.

Keywords: Explainable AI · Short answer grading · Feedback

1 Introduction

Feedback is essential for learning as it helps uncover misconceptions, knowl-
edge gaps and avenues for improvement [25]. However, providing feedback is

This research is funded by the Bundesministerium für Bildung und Forschung in the
project: Software Campus 2.0 (ZN 01—S17050), Microproject: DA-VBB.

c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 206–217, 2022.
https://doi.org/10.1007/978-3-031-11644-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_17&domain=pdf
http://orcid.org/0000-0001-5519-9959
http://orcid.org/0000-0002-3141-712X
http://orcid.org/0000-0003-0715-3889
http://orcid.org/0000-0002-0870-7225
https://doi.org/10.1007/978-3-031-11644-5_17


Generating Counterfactual Feedback 207

Table 1. Example student answer, common feedback and generated counterfactual.

Question: What happens to the volume of the sound if you pluck

a rubber band harder?

Reference: The volume increases. The sound is louder

Response: It vibrates more and it gets lower. → Incorrect

Counterfactual: It vibrates more and it makes louder sound. → Correct

expensive for constructed response questions where each unique answer has to
be considered carefully. Nevertheless, since constructed response questions are
better suited to measuring complex skills compared to multiple-choice ques-
tions [16], the compromise is often to provide only verification feedback and
a reference solution. Generally, verifying responses is much faster than formu-
lating individual improvement suggestions. An example of verification feedback
including a reference solution can be found in Table 1. It stems from the Sci-
EntsBank [4] short answer grading dataset.

However, it can be hard to deduce one’s mistakes from comparing with a ref-
erence solution. Depending on the reference’s level of detail and exhaustiveness,
a learner’s response may not be covered by the solution or key differences may be
drowned out by too many details. As there are often multiple correct solutions
to short answer questions, learners may also have difficulties comprehending the
particular solution provided by the teacher, especially when the teacher uses
different terminology [31]. Thus, improvement suggestions in each learner’s own
words would likely be more helpful for learners [25].

Thus, this work proposes automatically generating counterfactual explana-
tions as response-specific improvement suggestions. Inspired by human counter-
factual reasoning [1], counterfactual explanation techniques essentially answer
the question “What if the model’s input would have looked like this instead?”.
The goal is to find small changes to the input features that would have changed
the initially predicted output to the desired outcome [30]. For instance, given
a learner response classified as incorrect by an automatic short answer grading
(ASAG) model, what small changes to the learner’s response would have led to
the answer being predicted as correct? An example can be seen in Table 1.

However, not every learner’s response lends itself to counterfactual feedback.
Some answers may be so far from correct, such as “I don’t know”, that only
massive changes would flip the predicted label to “correct”. Other responses may
be close to unreliable decision boundaries and lead to adversarial examples [6]
that are only predicted as correct but do not actually improve the response. For
this reason, this work addresses the following research question:

RQ: To which extent can we generate automatic feedback with counterfactual
explanations?

To this end, we make the following contributions:

– We show that counterfactual generation methods can modify student answers
to be automatically graded as correct by comparing three counterfactual
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generation models and a paraphrasing model on benchmark automatic short
answer grading datasets (Sect. 3.4).

– Having an expert reevaluate a subset of the modified responses shows that
almost all generated counterfactuals are adversarial examples instead of gen-
uine improvements (Sect. 3.5).

2 Generating Counterfactual Feedback

The main idea of this work is to generate counterfactuals of incorrect student
responses and explore their use as feedback. We develop and apply four approaches
for this purpose. First are two approaches we developed based on Minimal Con-
trastive Editing (MiCE) [23]. They aim to iteratively replace the most impactful
tokens in a response until it is graded as correct. Next is Polyjuice [32], a frame-
work trained to perform pre-specified modifications, such as negating or shuffling
entities in a sentence. Lastly, we develop an approach based on paraphrasing that
generates novel responses instead of replacing parts of the original answer.

2.1 Contrastive Infilling

The main idea behind contrastive infilling approaches is finding the input parts
detrimental to predicting the target class based on the model’s gradients and
replacing them with an editor model. MiCE [23] does this in two steps. In the
first step, an editor model is trained to reproduce original data inputs. For this
purpose, the most impactful tokens for the predicting model are masked so that
the editor can learn to fill in critical sections of a response. The editor also
receives the input’s label to learn to produce responses of a specific class. In
the second step, the editor iteratively fills in masked responses to find minimal
modifications that cause the predictor to output a target label [23].

Inspired by MiCE, we implement two infilling models, one utilizing target
labels and one without labels. The main idea behind cutting the labels used in
MiCE is to simplify the task by only correcting wrong responses. Adding the target
label does not carry any information in that case; it will always be the class “cor-
rect”. However, one loses the ability to produce partially correct counterfactuals.
Cutting the label requires a modification to the editor training proposed. While the
label model is trained to reproduce all student answers by infilling masked parts
of the student answers similar to MiCE, the other model is only trained to repro-
duce correct student responses. For both models, we randomly mask 20–55% of the
student answer, and both models receive the reference answer in addition to the
masked response. The label model is additionally conditioned on the target label in
the following format: “label: target label. input: masked student answer </s> ref-
erence answer”. Since the other model is only trained on correct responses and
does not need a label, instead the input is formatted as follows: “input: masked
student answer </s> reference answer”.

In the second step, we use the previously fine-tuned models to modify incorrect
student answers and perform up to four modification rounds. First, consecutive
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spans of tokens in the original student answer are masked based on importance
scores provided by the gradient attribution method Integrated Gradients [27]. We
create four masked versions in each round with 15, 30, 45, and 60% of the tokens
masked. We generate seven candidates for each masked student answer using a
combination of top-k = 30 and top-p = 0.95 sampling. At the end of each modifi-
cation round, the candidates are graded using an ASAG model, keeping only the
candidate with the highest target class probability. The modification process is
terminated when the candidate’s target class probability exceeds the classification
threshold or the maximum number of rounds is reached.

2.2 Polyjuice

In contrast to the previous approach, Polyjuice [32] aims to control the modi-
fication process through control codes. Instead of masking the tokens with the
highest impact and generating arbitrary replacements, Polyjuice uses a prede-
fined set of possible modifications, such as negating the meaning of the input or
shuffling key phrases or entities around. The type of modification also controls
where modifications can be made in the input so that the generated counterfac-
tual should be fluent. Since the modification process is more constrained and,
thus, may not be applicable to all student answers, we expect this method to
yield less counterfactuals overall compared to the other approaches. However,
any counterfactuals found should be more natural. We utilize Wu et al.’s [32]
implementation1 of Polyjuice to generate counterfactuals for incorrect student
responses allowing all predefined modification codes: negation, quantifier, shuf-
fle, lexical, resemantic, insert, delete and restructure.

2.3 Paraphrasing

Finally, we trained a T5 [22] model to paraphrase correct responses. In contrast
to the counterfactual methods described above, this model does not fill in masked
parts of the student response but generates a novel response instead. The main idea
behind this approach was to explore whether a model trained to generate various
correct responses to a question could also correct incorrect student answers. For
this purpose, we treat correct student responses and reference answers as para-
phrases of each other. While this is likely not accurate in practice as reference
answers tend to be more comprehensive than student answers, the idea is for the
model to learn the characteristics of correct answers. During training, it receives
either the student or reference answer and generates the respective counterpart.
After training, it gets incorrect student responses as input instead.

3 Experiments

The goal of our experiments is to determine to which extent feedback can be
generated with counterfactual explanation methods. For this purpose, we first
1 https://github.com/tongshuangwu/polyjuice.

https://github.com/tongshuangwu/polyjuice
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introduce the datasets and the ASAG model whose grading predictions will
be explained by the counterfactual approaches. Then we introduce the metrics
used to compare the approaches automatically, followed by insights gained from
having a domain expert manually reevaluate the generated counterfactuals.

3.1 Datasets

We select three diverse ASAG datasets for our experiments: SciEntsBank [4],
Beetle [4] and the English half of the Short Answer Feedback dataset (SAF) [7].
All three datasets offer a 3-way classification task with correct and incorrect
responses. While the third class for SAF is partially correct, the other datasets
include contradictory as final class. The datasets offer multiple test sets, aimed at
different grading scenarios. The unseen answer test split measures how well mod-
els perform on new answers to questions they were trained for, while the unseen
questions split contains completely novel questions. Since SciEntsBank, in
contrast to the others, contains multiple science domains, it also includes an
unseen domain test split. Beetle, on the other hand, only contains basic electri-
cal engineering questions and SAF is a computer science dataset in the communi-
cation network field. While SAF and Beetle consist of undergraduate responses,
SciEntsBank’s responses stem from American students in the grades 3 to 6.
In contrast to the other datasets, Beetle includes multiple reference answers
per question. In our experiments, we consider all reference answers.

3.2 Automatic Short Answer Grading Models

For each dataset, we train a BERT model that receives a student and reference
answer as input and predicts the response’s correctness. These three models
form the predictors for the counterfactual search and, thus, should be as reliable
as possible. For this reason, we follow the fine-tuning procedure used by Sung
et al. [28] and achieve the predictive performance depicted in Table 2.

Table 2. Accuracy (Acc), macro-averaged F1 (M-F1) and weighted F1 (W-F1) of the
automatic short answer grading models in percent.

Dataset Unseen answers Unseen questions Unseen domains

Acc M-F1 W-F1 Acc M-F1 W-F1 Acc M-F1 W-F1

SAF 77.1 75.5 77.1 52.9 57.5 52.9 – – –

Beetle 71.4 69.7 71.4 54.8 54.8 56.6 – – –

SciEnts. 72.9 70.9 72.9 59.7 50.9 59.7 61.5 54.6 61.5

3.3 Evaluation Measures and Experimental Setup

This paper focuses on two dimensions of counterfactuals that influence feedback
quality: validity and proximity. Counterfactuals are often considered valid
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when they lead to the desired prediction [30]. Thus, validity is usually measured
by calculating the percentage of counterfactuals that flipped the predicted label
to the desired outcome irrespective of the class predicted priorly. While that
works well for tasks where the predictors achieve nearly perfect accuracy, it
would overestimate the generators’ performance in our case, as the ASAG model
already misclassifies some of the incorrect student responses as correct without
any modification. For this reason, we exclude all answers already predicted as
correct from the evaluation. Furthermore, we hypothesize that counterfactual
feedback will work better for student responses that are closer to being correct
in the first place, such as partially correct responses in contrast to incorrect
ones. Therefore, we calculate the flip rate for each class separately.

Additionally, generated responses should be as close to the original stu-
dent answer as possible to ensure that only required changes are made and the
response follows the learner’s wording beyond that. Following related work [23],
we also use the word-level Levenshtein distance to measure the counterfactual’s
proximity to the original answer. It provides the minimum number of deletions,
insertions and substitutions needed to equalize two strings. The count is then
divided by the number of words in the original response to normalize it. As long
as the generated response is not longer than the original response, it can be seen
as the percentage of words modified.

All models introduced in Sect. 2 are trained on two Nvidia GX 2080 Ti cards
with 11 GB of RAM using gradient accumulation and mixed-precision floating-
point numbers. The exact hyperparameters used for each approach can be found
in our implementation.2

3.4 Comparison Results

Table 3 compares the counterfactuals generated by the Polyjuice, paraphrasing
and contrastive infilling approaches introduced in Sect. 2 on the SAF dataset. It
can be seen that the paraphrasing model succeeds in flipping the most labels to
correct with flip rates between 50% and 100%. However, it also generates coun-
terfactuals that differ vastly from the original student answer with an average
distance of 2.22 across test splits and classes. Polyjuice is the opposite, generat-
ing counterfactuals that are very close to the original with an average distance of
0.02 but seldom flip the label to correct. The contrastive infilling methods seem
to be more balanced, with an average flip rate of 24.2% without labels (infill) and
21.9% with labels (label infill) and average distances of 0.15 and 0.13, respec-
tively. They also show the expected behaviour of flipping more partially correct
responses than completely incorrect ones. While the paraphrasing model actually
generates more flips on incorrect student answers compared to partially correct
ones, they seem to be even more distant from the original responses.

Table 4 and Table 5 show the same comparison on the Beetle and SciEnts-
bank datasets. The infilling approaches perform slightly better on SciEnts-
bank compared to SAF, flipping on average 28.2% of the predictions without

2 https://github.com/joeltsch/CASAF-AIED2022.

https://github.com/joeltsch/CASAF-AIED2022
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Table 3. Flip rate (FR) and average distance (Dist) for counterfactuals generated on
SAF’s partially correct (Partial) and incorrect responses. Sample sizes are in brackets.

Approach Unseen answers Unseen questions

Partial (52) Incorrect (9) Partial (31) Incorrect (8)

FR Dist FR Dist FR Dist FR Dist

Paraphrase 50.0 1.72 77.8 3.89 96.8 1.60 100 1.66

Infill 25.0 0.19 11.1 0.11 35.5 0.12 25.0 0.19

Label infill 19.2 0.14 11.1 0.10 32.3 0.12 25.0 0.16

Polyjuice 0.0 0.01 11.1 0.01 3.2 0.03 0.0 0.01

using labels and 28.8% utilizing labels, with a comparable average distance of
0.15 for both approaches. On Beetle, the infilling approaches flip considerably
more predictions on average - at the cost of the much higher average edit dis-
tances. The labelless approach has an average flip rate of 55.9% and an average
distance of 2.37. The approach with labels flips 41.0% of the predictions on
average with an edit distance of 0.37. The paraphrasing model shows a similar
behaviour of high flip rates and high edit distances on all datasets, with distances
between 8 and 14 on Beetle. Additionally, Polyjuice produces few counterfac-
tuals on all datasets but has higher average edit distances on Beetle with 0.14
and SciEntsbank with 0.12 compared to SAF.

Table 4. Flip rate (FR) and average distance (Dist) for counterfactuals generated on
Beetle’s contradictory (Contra) and incorrect responses. Sample sizes are in brackets.

Approach Unseen answers Unseen questions

Contra (453) Incorrect (480) Contra (740) Incorrect (830)

FR Dist FR Dist FR Dist FR Dist

Paraphrase 74.2 8.56 78.3 10.63 76.9 8.04 74.7 13.27

Infill 60.9 2.77 63.3 2.18 46.5 2.38 52.8 2.14

Label infill 44.8 0.42 41.9 0.39 39.1 0.34 38.0 0.33

Polyjuice 1.8 0.11 2.1 0.14 1.8 0.12 3.3 0.17

3.5 Expert Regrading

While the flip rate indicates how many modifications lead to successful coun-
terfactuals, it only considers the predictor’s judgement and not whether the
predictor was fooled into an incorrect prediction. For this reason, we asked one
of the communication network experts involved in the original data annotation
to reevaluate the generated counterfactuals for the SAF dataset. We selected
SAF because it is the only dataset that includes elaborated feedback explain-
ing why the response was graded as incorrect. This dramatically simplifies the
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Table 5. Flip rate (FR) and average distance (Dist) for counterfactuals generated on
SciEntsBank’s contradictory (Contra) and incorrect responses. Sample sizes are in
brackets.

Approach Unseen answers Unseen questions

Contra (48) Incorrect (202) Contra (35) Incorrect (238)

FR Dist FR Dist FR Dist FR Dist

Paraphrase 72.9 1.54 74.8 1.82 65.7 1.69 68.5 1.65

Infill 31.2 0.16 33.2 0.17 17.1 0.12 31.1 0.15

Label infill 29.2 0.15 31.7 0.18 20.0 0.11 34.5 0.17

Polyjuice 2.1 0.14 1.0 0.12 5.7 0.12 2.5 0.11

reevaluation since the expert only has to determine whether the modification
corrects the mistake instead of regrading the responses from scratch.

The expert evaluated all counterfactuals the ASAG model predicted accu-
rately prior to modification and as correct after modification. There were 59
examples for the paraphrasing model, 1 for Polyjuice, 21 for the label infilling
approach and 25 for infilling without labels. In total, 106 examples were regraded.

Nearly all generated samples (N = 103) were adversarial examples and not
genuine corrections of the response. Of the 3 correct examples, 2 stem from
the paraphrasing model simply generating the reference answer to the question
instead of modifying the student answer. In general, the paraphrases were often
vastly different from the student responses, which matches the observations from
Sect. 3.4. Sometimes the paraphrasing model would also mix reference solutions
to multiple questions, which may be one of the reasons why it is so successful
at fooling the predictor. Humorously, some of the content added to the response
by the paraphrasing model was utterly absurd, such as “... 56.648 * 64 bit/s =
128 bit processing tables = 276 bit data transfer tables + 3 * 1.31 s to reach the
destination system ...”.

The infilling models also mostly produced adversarial examples with sense-
less modifications. For example, “... the issue with this case is ...” was replaced
with “... the issue with this narcotic is ...” which does not make any sense in
the communication network domain. Sometimes the model would also replace
words with special tokens, such as “<extra id 34>”. However, not all modifi-
cations made by the infilling models were adversarial. Some modifications truly
improved student responses partially, even if they were still incorrect overall.
For example, “extension headers are the way to put additional information
in the packet ...” was correctly replaced with “extension headers are used to
extend the fixed ipv6 header with additional options...”.

4 Related Work

In recent years, the need for understandable machine learning models has
given rise to diverse approaches aiming to explain the inner workings of neural
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networks. Such explanations can be used to increase the transparency and trust-
worthiness of automatic predictions [24]. The branch of explainable AI most rel-
evant to our work is based on counterfactual reasoning, revolving around how an
input’s features would have to differ as to change a model’s prediction. As there
are countless counterfactual explanation techniques and we already describe the
most relevant ones in Sect. 2, we recommend one of the excellent surveys summa-
rizing the state-of-the-art [2,12,26,30] for further reading and focus on related
work on generating elaborated feedback.

4.1 Elaborated Feedback Generation

Especially in the intelligent tutoring community, generating elaborated feedback
has been a hot topic for many years [3,8,14,20,29]. Older approaches mainly
focused on hand-crafting domain models and manually tailoring feedback sys-
tems to specific tasks [5,10,17]. More recently, research is exploring more flexi-
ble feedback systems for structured answer formats, such as programming exer-
cises [13], proofs [18], or multiple-choice questions [15,33]. Here the structure of
the response is exploited to automatically identify the kind of mistakes made,
for example, by using a compiler. The most similar to our work here is an app-
roach proposed by Olney [21]. They automatically generate elaborated feedback
for cloze-style questions by first generating a question about the relationship
between the correct cloze solution and the incorrect term provided by the stu-
dent. The answer to the synthetic question provided by an automatic question
answering system is then included as elaborated feedback.

For unstructured question formats, like essays and short answer questions,
flexible feedback systems mainly focus on a response’s language and style [11],
identifying justifications [19] or discovering which topics are covered in an
essay [9]. Only recently, a deep learning system to automatically generate elab-
orated feedback for short answer questions was introduced [7]. However, it relies
on feedback data which is still unavailable for most domains.

5 Conclusion and Future Work

In summary, this work compared four approaches to providing counterfactual
feedback to short answer questions. Three out of the four methods successfully
generated counterfactuals for at least a fifth of the incorrect responses in three
diverse short answer grading datasets. Around a quarter of incorrect responses
could be modified until the automatic grading model judged them correct with-
out diverging too far from the initial student response. However, a domain expert
still deemed nearly all modified responses incorrect. This result illustrates the
need for human evaluation of generated counterfactuals. In related work, coun-
terfactuals are mainly evaluated using flip rates and automatic proximity mea-
sures [12]. However, considering the high rate of adversarial examples observed in
this study, automatic metrics are not sufficient to capture the true usefulness of
generated counterfactuals. Thus, future work should include human judgements.
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Regarding the research question posed in this work, we conclude that coun-
terfactual explanations are unsuitable as feedback at the current state. However,
they can be even more helpful for teachers aiming to employ automatic grad-
ing models in practice. The generated counterfactuals could be used to identify
critical weaknesses of the grading model. For example, the humorous example
from Sect. 3.5 may indicate an inability to evaluate mathematical expressions
correctly. Generated counterfactuals could also be added to the training data
to facilitate adversarial training of more robust grading models. More robust
grading models may, in turn, produce better counterfactuals. Since we observed
genuine partial improvements in student responses in our experiments, incen-
tivizing the counterfactual model to search beyond adversarial modifications
seems like a promising avenue of future research.

Finally, the counterfactual generation methods themselves could be
improved. We showed that counterfactual generators vary greatly in the number
of label flips they entice and how dissimilar the modifications are to the orig-
inal. Thus, other approaches may yield more or better counterfactuals. Espe-
cially approaches utilizing external knowledge sources and other neuro-symbolic
methods may be beneficial for the short answer feedback task. The additional
knowledge could inform the search for sensible modifications or help identify
which parts of a student’s response are incorrect and, thus, should be replaced.
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Abstract. Nowadays, the use of distance learning is increasing, espe-
cially with the recent Covid-19 pandemic. To improve e-learning and
maximise its effectiveness, artificial intelligence (AI) is used to analyse
learning data stored in central repositories (e.g. in cloud). However, this
approach provides time-lagged feedback and can lead to a violation of
user privacy. To overcome these challenges, a new distributed computing
paradigm is emerging, known as Edge Computing (EC), which brings
computing and data storage closer to where they are required. Com-
bined with AI capabilities, it can reshape the online education by pro-
viding real-time assessments of learners to improve their performance
while preserving their privacy. Such approach is leading to the conver-
gence of EC and AI and promoting AI at the Edge. However, the main
challenge is to maintain the quality of data analysis on devices with lim-
ited memory capacity, while preserving user data locally. In this paper,
we propose an Edge-AI based approach for distance education that pro-
vides a generic operating architecture for an AI unit at the edge and a
federated machine learning model to predict at real-time student failure.
A real-world scenario of K-12 learners adopting 100% online education
is presented to support the proposed approach.

Keywords: Real-time feedback · Privacy · Federated learning

1 Introduction

In recent years, there has been a massive use of online courses, particularly
with the current Covid-19 pandemic. Although the distance education helped
in maintaining a certain continuity of the learning process, however it comes
with several challenges related to the infrastructure cost and preserving learners
privacy and security [6,9–11]. Conventionally, data are collected and stored in
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centralised repositories to be later analyzed to fulfill various learning analytics
objectives. However, with the excessive use of Internet of Things (IoT) tech-
nologies, there is an increasing amount of multi-source and heterogeneous data
collected and analysed by educational institutions. This increase in data creates
a risk of bandwidth saturation, which increases latency and leads to overuse of
computing resources. Recently, an alternative computing paradigm, Edge Com-
puting (EC) is being proposed to solve the aforementioned issues. It consists in
bringing computing and data storage closer to where they are required, which
increase performance while reducing operating costs [13]. Combined with the use
of AI, the Edge AI has multiple advantages such as bringing more security and
confidentiality by allowing the filtering and the aggregation of data before shar-
ing it at the network. The Edge AI can reshape the world of education today by
offering the potential to preserve privacy and to improve student performance,
confidence and mental well-being by delivering real-time feedback. The main
idea is to use analytical models at the edge. These models as well as the way
of their training on a distributed data and heterogeneous systems need to be
redesigned. To meet this challenge, Federated Learning (FL) [7] is emerging as a
promising technology. FL is a Machine Learning (ML) technology that enables
collaborative learning of a common model by a number of entities (users, organi-
zations) holding data locally. Unlike the traditional centralized ML approaches,
FL does not require data to be uploaded to a central repository. This feature
addresses our need for data privacy in online education.

In the frame of this work, we present how the Edge AI combined with FL
can be used to reshape the distance education and ensure more data privacy
while minimising the infrastructure usage. The proposed approach tackles at
first the architecture of the AI unit to be used at the edge. An AI unit represents
the device a learner can use in distance education. Secondly, we present a new
scenario of using Edge AI with FL to predict k12-learners’ failure. Indeed, the
real case study consists of learning data collected and stored in a centralized
repository within the National Center for Distance Learning (Cned1). To adapt
the data to a federated use, we used the TensorFlow Federated (TFF)2 and the
Artificial Neural Network (ANN) model to anticipate student failure as early
as possible. The federated ANN was evaluated under different client sample
selection strategies. The experimental results show that with proper selection of
training samples in a federated setting, the federated model can be as good as
the centralized model in anticipating students failure.

The rest of the paper is organized as follows: The Sect. 2 presents the related
works. Section 3 introduces our Edge AI based approach to reshape the distance
education. In Sect. 4, we present the case study of K-12 learners enrolled within
the Cned as well as the results of using a federated ANN model to predict student
failure. Section 5 presents the conclusions, the threats to validity and the future
works.

1 CNED: Centre national d’enseignement à distance.
2 https://www.tensorflow.org/federated?hl=fr.

https://www.tensorflow.org/federated?hl=fr
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2 Related Works

Techniques such as machine learning and data mining have been widely applied
in the context of e-learning [5,8,14]. Despite the diversity of the AI techniques,
the used methodology to apply them is common. It consists in collecting and
cleaning the data, then extracting the features and applying the AI algorithms.
Usually, the data is stored in central repositories (e.g. Cloud), which may result
in a breach of students privacy. According to [11], six distinct ethical con-
cerns are identified within the context of big data and personalized learning,
which are as follows: information privacy, anonymity, surveillance, autonomy,
non-discrimination, and ownership of information. These concerns have been
confirmed and discussed in numerous works [6,9,10]. Under the principle of
data protection, in many fields such as healthcare and industry, data are not
shared but stored and explored locally. Thus, in this case, we lose all the bene-
fits brought by the use of big data technology. To address this problem, FL [7]
is gaining momentum, especially with the emergence of the Edge AI paradigm.
The principle of FL is that many entities collaboratively form a common model
using their local learning data and communicate the updated model weights to
a central server. No data is shared or exchanged between the different entities,
thus reducing the risks related to privacy. An entity in FL can be a user (e.g.
IoT device) or an organization. Depending on the level of granulation of the FL
application, we distinguish two types of research work. On one hand the works
that focus on the inter-organisational FL such as in [2], The authors highlight the
confidentiality issues that hinder data sharing between different industrial orga-
nizations. To address this challenge, they present how FL can be used to predict
production line failures in different organizations. In [3], the authors proposed
a FL-based education data analysis framework that can be used to build data
analysis federations between many institutions. In [12,15], FL based approaches
have been proposed to address privacy issues and fully exploit the potential of
AI in healthcare domain. On the other hand, other research works focus on the
inter-devices (users) FL such as in [4], the authors used FL to predict the next
word prediction in a virtual keyboard for smartphones. In [16,17], FL is used to
provide personalized recommendations to users.

In this work, we focus on the use of FL on Edge computing-based system
for the distributed analytics in order to support real-time students’ assessment.
To our knowledge, we are the first to consider the application of FL at a fine-
grained level to reshape online education. According to the literature review, FL
in education [3] has only been addressed at the inter-institutional level.

3 Distributed Analytics and Edge Intelligence

In our work, we consider a generic distributed EC -based system composed of N
AI units at the edge EUs and one Coordinator Server CS as illustrated in Fig. 1.
In such system, data analytics is distributed over all the nodes and conventionally
only aggregated data or model parameters should be exchanged. However, if a
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Fig. 1. Generic distributed EC-based
system

Fig. 2. AI-Edge unit architecture

raw data related to a given user is generated elsewhere, for example at the
CS level, it can be transferred to the corresponding edge unit with a specific
message. The EUs can be homogeneous or heterogeneous (PC, mobile terminal,
industrial computer, IoT device, etc.) connected to the CS with a communication
infrastructure (Ethernet, WIFI, LTE, etc.).

3.1 AI-Edge Unit Architecture

The key architectural feature of the distributed system is the EU. Let us consider
U the set of EUs. Each unit EUi is characterized with a memory storage capacity
Mi, a processing power Pi, and a communication bandwidth Bi with the CS. It
incorporates three main functions: the operating model, the data storage unit,
and the learning model as shown in Fig. 2.

The Operating Model (OM): Depending on the application objective, this
model can perform different type of actions recommendation, alerting, predic-
tion, decision making, etc. In the literature, a multitude of techniques and algo-
rithms are developed for each type of action regarding the size of the available
data (SAD) as well as respecting some functional and non-functional constraints
(e.g. real-time and energy consumption). In the Edge computing paradigm, the
limited hardware resources lead rule-setting for the appropriate choice taking
into consideration the computation cost of the algorithm and the SAD. These
two parameters should fit respectively to the Pi and Mi of the corresponding
EUi. The execution of the operating model can be synchronised with a clock
frequency f , the arrival of a new data, or the user request.

The operating model can be performed using the global AI model parameters
collaboratively extracted on the CS or using the local parameters extracted from
the learning model function. This last case is quite pertinent while considering
specific user profile (e.g. disabled person).

After running the operating model, the generated actions will be communi-
cated to the user as well as saved on the data storage unit for the next model
training process (see Fig. 2).
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The Data Storage Unit (DSU): It contains four data categories: raw data,
aggregated data, previous actions, and the operating model parameters. At the
edge, we have to deal with the challenge of the limited storage capacity. In order
to achieve better AI model accuracy, data replacement policies should be defined
to keep the most pertinent data for the operating and learning models. Referring
to the cache memory replacement policies such us First in first out (FIFO), Most
recently used (MRU), or Least recently used (LRU), these techniques can be
adapted for our context. However in our knowledge, there is no specific research
focusing on this aspect. As future work, we are planing to consider a cost function
for each data and to evaluate its impact on the AI model accuracy. Indeed, we
think that the data replacement at the Edge is an application-oriented challenge
and it should be resolved according to the use case scenario.

The Learning Model (LM): It covers a large spectrum of learning techniques:
symbolic (e.g. production rules) and machine learning (e.g. ANN, random forest,
SVM). As same for the OM, the LM algorithm should 1) be adequate to the
execution support characteristics (operating frequency, Pi and Mi), 2) satisfy
non-functional constraints (e.g. energy consumption and thermal dissipation)
while considering embedded devices (tracking static and dynamic obstacles for
autonomous car), and 3) take into consideration the available small data (e.g.
no sufficient data for running a deep learning algorithm).

As our main objective is to keep data closer to where they are generated,
we propose a federated learning model well-traced on the distributed analytics
EC-based system in order to respect the privacy of data and to train the AI
model collaboratively with a subset of EUs A ⊂ U −→ A ∈ P(U). The M EUs
samples of A can be selected randomly among the N EUs of U or according to
a guided strategy of sampling (M << N).

3.2 Communication Protocol and High Level System
Reconfiguration

In order to ensure data transmission between the CS and the EUs, we pro-
pose a generic and open communication protocol dedicated to the distributed
Edge computing-based system. It is conceived at a high level of abstraction to
be transport technologies-independent, thus allowing easy integration of emerg-
ing technologies. The encapsulation of the protocol in software components will
guarantee the evolutionary as well as the scalability of the system according to
the number of EUs. Communication between nodes is provided by high-level
frames consisting of a sequence of fields that indicate:

– Header: The beginning of a new frame.
– Type: There are different types of frame: 1) RD (Raw Data), 2) AD for

sharing Aggregated Data with EUs as it respects users’ privacy, 3) TLM is
a command for a collaborative training of the learning model on a subset
of the EUs, 4) LMP Local Model Parameters from an EU, 5) MR (Model
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Fig. 3. Operating scenario with frame settings

Reconfiguration) is a broadcast of the global learning model to the EUs, and
6) AC (Action) corresponds to EU output.

– Sender: can be an EU or the CS.
– Receiver: that can be: 1) a specific EU (e.g. related raw data generated on

the CS), 2) a subset of EUs (for the collaborative training process), 3) all EUs
(updating the parameters of OM), or 4) the CS (receiving the local model
parameters from an EU). We highlight that when a generated data should be
stored locally the Sender and Receiver fields should have the same value.

– Data: According to the Type field, the transmitted information can be a raw
data, aggregated data, actions (OM output), the global OM parameters, or
the local extracted parameters from an EU.

– Time: All the generated and transmitted data are performed with time anno-
tation for functional verification and the overall system synchronisation. For
that reason, a Data Distribution Service (DDS) can be used in the distributed
analytics system for better real-time performance.

– Security: allows encrypted data for an enhanced security.
– Footer: The end of the frame.

Figure 3 offers an operating scenario with frame settings covering the initiali-
sation, the federated learning, and the operating model phases. At the beginning,
the CS initiates a frame of Type MR that allows the EUs to download the initial
OM parameters. After that, all the nodes start generating raw data through the
users activities. Having enough data distributed on the system will trigger the
frame TLM allowing several iterations of the FL process. In each iteration, the
EUs share their local parameters (frame LMP) and receive the global extracted
model (frame MR) from the CS. Over the time, the accuracy of the LM will be
improved with the incremental process of learning and with sharing aggregated
data (frame AD).
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4 A Real Case Study: K-12 Learners

As a proof of concept, this section presents how we can apply our Edge-AI based
approach to the Cned context. In addition, it presents the results of experiments
conducted to compare federated and centralized ANN models for predicting
failure of K-12 learners enrolled at Cned. The data are initially centralized on
the cloud. To adapt them to our federated context, we used TFF, which is an
open source framework developed by google for ML on decentralized data.

4.1 Context Description

The Cned provides a wide range of courses entirely online to k-12 learners who
are geographically dispersed around the world. These learners have different
demographic profiles and are unable to attend regular schools for many reasons.
The Cned offers the courses through a Learning Management System (LMS) and
provides with it a set of applications such as the education management system
GAEL that allows administrative tracking of the students. All data are stored
in a central repository and then analysed using ML techniques. For example,
one of the main concerns of the Cned is to reduce the high failure rate among
K-12 learners [1]. The Cned online teaching system has many limitations. First,
as learners are physically dispersed around 173 countries, they do not make
profit from the same quality of internet connection. Second, given the number of
learners and the range of levels offered by the Cned, there is a huge amount of
data generated on daily basis which has to be sent to a central repository without
being filtered. For such a process, a powerful infrastructure in terms of bandwidth
and storage resources is required. Third, sending user data containing sensitive
information to a central repository may be exposed to security issues that could
result in a breach of user privacy. Given all of these challenges, we believe that
using our Edge-AI based approach is appropriate for reshaping distance learning
at Cned.

The proposed approach (Sect. 3) can be easily transposed to the Cned con-
text. Indeed, students connect to the LMS and other applications via their ter-
minals (e.g. smartphone, tablet, personal computer), which represent the EUs.
Whereas the Cned storage infrastructure is considered as the CS. The number
of EUs is equal to the number of students. An open question is whether the
use of FL on EC-based systems allows building a reliable alert system that pre-
dicts student performance on a weekly-basis. Data is collected from two sources:
the LMS platform and the education management system GAEL. In the frame
of this work, our case study consists of K-12 learners enrolled in the physics-
chemistry course during the 2017–2018 school year. In total, there are 46 weeks
in the school year and 671 enrolled students that represents the number of EUs
in our system.
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Fig. 4. Federated approach Fig. 5. Centralized approach

4.2 Our Approach to Predict Students Performance per Week

To predict students performances on weekly-basis, the problem is formalized as
a n-classification problem. We adopted the same classification as well as features
introduced in [1]. The classification consists of three classes: high failure risk,
medium failure risk and success. On each week wi, a student is defined by a tuple
X = (f1, .., fm, y) where f1, .., fm are the features and y is the class to predict.
The student class may vary from one week to another. The selected features are
extracted from the two data sources including the LMS and GAEL (the selected
features are out of the scope of this work). For the reader information, the same
features have been used to train and test both centralized and federated ANN
models. Our main goal is to build an incremental ML model to predict student
performance over time. To mimic a real situation, two approaches have been
proposed: i) the centralized approach: as shown in Fig. 5, we first initialize the
model parameters, then we fit the model to the first three weeks of data. The
choice of this number is not arbitrary and was set based on experimentation.
Indeed, from week 4 on, the model starts to make good predictions. Each week,
the model is tested on the current week’s dataset and then trained on it. At
the end of each week, the model is updated and used to make predictions for
the following week. ii) the federated approach: as shown in Fig. 4, we adopt
the same principle of weekly validation and training. The main differences with
the centralised approach are: the use of federated data to train and validate
the model as well as the way the model is built through the communication
of model updates between the clients (EUs) and the server (CS). The process
starts with the initialization of the model parameters (CS) and then selects the
set of clients (EUs) that will participate in the model training phase. During the
first three weeks, the model is simply adjusted to the data. From week 4 on, the
model is tested to make predictions on the current week’s data, and then it is
trained on the local data of the selected EUs. Each EU fits the model on its own
data and then sends the model updates to the CS. The CS aggregates all the
updates and sends the model back to the clients participating in the training
phase. The training phase can last several rounds that are set on the basis of
experimentation. The number of selected EUs for the training phase may vary
from round to round as well as from week to week.
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Table 1. Federated configurations

nb clients (EU) Optimizer nb rounds LR

Config. 1 80 SGD-SGD 15 0.02–1.0

Config. 2 100

Config. 3 150

Config. 4 186

Fig. 6. Confusion matrix

4.3 Experiment Results

Different configurations have been used to build and evaluate the federated incre-
mental ANN model. A set of experiments have been conducted to find the best
parameters for our model, including defining the optimizer, the learning rate
and the number of rounds. Due to space limitations, the suitable parameters are
directly presented in the Table 1 and will not be discussed. The configurations
differ mainly in terms of the number of selected EUs (80, 100, 150, 186) to be
used during the training phase. In a federated context, this number is dynamic
and may vary during the training sessions, since EUs can connect/disconnect at
any time.
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Impact of the Client Selection Strategy on the Quality of the Pre-
dictions: The used data present imbalances with respect to the “medium risk
failure” class. Consequently, this class is not well detected, especially when EUs
participating in the training phase are randomly selected. First, we compared
the accuracy of the federated model using different numbers of EUs (80 and 100)
with two selection strategies. The first strategy consists in randomly taking a
set of client samples, for the training, without checking the proportions of the
3 classes taken in it. The second strategy consists in selecting a set of clients
with 30% of the samples belonging to the high-risk of failure class, 30% to the
medium-risk of failure class and the rest to the success class. The Fig. 7 repre-
sents the federated models accuracy on the test data. We note that models with
a guided strategy for selecting client (EU) samples for training perform better
than this with random selection for both fixed numbers of samples (80 and 100).
Since the accuracy measure does not distinguish between the number of correct
labels from different classes, we present, in Fig. 6, the confusion matrix for the
four experiments. The matrices present the cumulative measures over all weeks.
The main objective is to detect students at high and medium risk of failure in
order to alert teachers about them and take the right action. We find that with a
random selection strategy, there is a problem in classifying medium risk students
and most of the time they are classified as successful. This classification is due to
the fact that in the random sample, the medium-risk class is underrepresented
compared to the rest of the classes. Therefore, we tried to guide the model during
the learning phase by selecting samples that are balanced in terms of class rep-
resentation. As shown in Fig. 6, the medium risk class is better predicted under
the guided selection strategy. In addition, we obtained 100% correct predictions
for the high-failure risk.

Fig. 7. Impact of clients selection
strategy on accuracy

Fig. 8. Accuracy comparison: central-
ized model vs federated ones
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Impact of the Number of Client Samples on the Quality of the Pre-
dictions: As shown in the Table 1, we used four configurations (80, 100, 150,
186). The guided selection strategy, presented above, is used for this experiment.
As shown in Fig. 8, by varying the number of selected samples, the test accuracy
over the weeks also changes. Indeed, we find that selecting more samples does
not necessarily improve the accuracy of the model. For the performed exper-
iments, training the model with 80 samples performs better, in terms of test
accuracy, than training it with larger numbers of samples. Indeed, this may be a
consequence of the used selection strategy. During the first weeks, some classes
are poor in terms of the number of students that belong to them. Therefore, we
cannot always have the total number of samples defined by the fixed rate (e.g.
30% of the number of samples as medium-risk). However, with a smaller number
of samples, during the learning phase, we can reach the full proportions of the
different classes more quickly than by using a larger number of samples. The
rapidity is addressed in terms of the number of the week at which we begin to
have a complete representation of all classes of students in the selected samples
with respect to the predefined rate for each class. We believe it is important to
determine the appropriate threshold that should be used as the number of EU
samples to train the federated model.

Accuracy Comparison: Centralized Model vs Federated Model
As shown in the Fig. 8 and as expected, the centralized model performs better
than the federated models in terms of test accuracy. Each week, the centralized
model is trained on all available data, while the federated models are trained on
a subset of the data. However, the first thing to notice is that all the federated
models eventually converge to reach an accuracy very close or even equal to
that of the centralized model. In our context, the goal is to predict as early as
possible when students are at high or medium risk of failure in order to take
appropriate actions. Therefore, we need a federated model to achieve this goal.
With the first three configurations 80, 100, and 150 respectively, the federated
models have an accuracy that exceeds 85% as of the week 8 on. Thus, by selecting
the appropriate number of EU samples, applying a good selection strategy and
choosing the right parameters for training, the federated model can gradually
approach the performance of the centralized model.

5 Conclusion, Threats to Validity and Future Work

Nowadays, distance learning presents multiple limitations including data pri-
vacy risks and high infrastructure costs in terms of bandwidth and computing
resources to store big data. To overcome these challenges, we proposed to use an
AI-based approach at the edge to perform distributed analytics while keeping
the data stored where it is generated. Further, we presented a new scenario of
using Edge AI with FL to predict k12-learners’ failure. The experimental results
are promising and show that with appropriate parameter settings in FL, we can
still obtain good performance as the centralized approach.
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The current work presents some limitations that we tried to mitigate when
possible: i) As a proof of concept, one ML model (ANN) has been used. In
the short term, we intend to apply other ML models such as decision trees.
ii) The results presented are for the physics-chemistry course for the academic
year 2017–2018. We plan to expand our work and consider students performance
in different courses as well as across modules. iii) The results of the federated
models are determined through the simulation environment TFF. The models
need to be adapted for future use on IoT devices. Thus, a complexity study and
encapsulation is required for future embedded implementation.
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Abstract. Automated short answer scoring (SAS) is the task of auto-
matically assigning a score as output to a given input answer. In this
work, we tackle the challenging task of outputting the basis (i.e., jus-
tification cues) as an explanation for scoring given a defined rubric for
assigning a score. In previous studies, researchers explored the perfor-
mance of scoring via justification identification and constructed their
own datasets, but their studies focused solely on limited experiments.
On the basis of previous studies, we consider justification identification
as an explanation by feature attribution methods for explainable artificial
intelligence research. We conduct a comprehensive experiment consist-
ing of multiple explanation generation methods, supervised learning of
explanations, and evaluating on two axes, plausibility and faithfulness,
which are important for automatic SAS. Our results indicate that we can
improve the plausibility of gradient-based methods by supervised learn-
ing. However, methods with high plausibility and high faithfulness are
still different methods, so it is crucial to select an appropriate method
depending on which perspective of explainability is essential.

Keywords: Short answer scoring · Explainability · Feature attribution

1 Introduction

Automated short answer scoring (SAS) is the task of automatically assigning a
score as output to a given input answer. In domains such as education, automated
SAS has attracted considerable owing to its ability to reduce the workload for
teachers and ensure fair grading without human error [6,13,16].

In this work, we tackle the challenging task of outputting the basis as an
explanation for scoring given a predefined rubric for assigning a score. Figure 1
shows an example of a prompt from the ASAP-SAS dataset [2], which is a
commonly used SAS dataset. Here, the rubric has some key elements, and the
task is to score the answer by the number of key elements contained within
c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 231–242, 2022.
https://doi.org/10.1007/978-3-031-11644-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_19&domain=pdf
https://doi.org/10.1007/978-3-031-11644-5_19


232 T. Sato et al.

Fig. 1. Score prediction and justification identification in SAS. Each key element and
its corresponding justification cue are highlighted in the same color.

the answer. In such a case, one can consider explaining the score by showing
which parts of the student answer match the key elements. In the figure, “After
mRNA . . .” and “it goes into . . .”, highlighted by two different colors, are such
basis parts because they include the contents of the key elements described in
the rubric.

For outputting a basis of explanation for scoring in SAS, ideally a model
would identify and present a basis of parts for a given student’s answer in addi-
tion to predicted scores. Such an identification task is referred to as justification
identification in the literature [13], where basis parts of a student’s answer are
referred to as justification cues. By identifying the various cues for scoring, end
users (students and teachers) would feel more confident with the scoring results
and could use them as hints for review. For example, in Fig. 1, a SAS system
would ideally be able to automatically calculate the number of points for the stu-
dent’s answer and inform them the specific reasoning for their overall score (e.g.,
You were awarded 1 point because your answer included important elements (a)
and (b)). In addition, system administrators could utilize justification cues in
order to debug the system. In previous SAS research, however, how the current
technologies can be augmented with the ability to explain the scoring results
has rarely been explored, and the datasets commonly used for SAS research,
including ASAP-SAS [2], do not contain annotations of justification cues.

In this study, we first reformulated the task of justification identification
with the notion of feature attribution developed in the context of Explainable AI
(XAI). We then rigorously conducted comprehensive experiments to improve
SAS systems consisting of the following: i) several explanation generation meth-
ods, ii) supervised learning of explanations, and iii) evaluation of two axes, plau-
sibility and faithfulness. Our results indicate that we can improve the plausibility
of gradient-based methods by supervised learning. However, methods with high
plausibility and high faithfulness are still different methods, so it is crucial to
select an appropriate method depending on which perspective of explainability
is essential. The code for our experiments is publicly available at https://github.
com/cl-tohoku/Explainability of SAS.git.

https://github.com/cl-tohoku/Explainability_of_SAS.git
https://github.com/cl-tohoku/Explainability_of_SAS.git
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2 Related Work

Presenting the decision process of deep learning models in a form that humans
can interpret has recently attracted attention in various fields, including law,
medicine, and education [22], which is called explainability or interpretability.
Models with high explainability are actively explored in the context of XAI [22].

Explainability is often discussed in terms of two axes. One axis focuses on
how convincing the explanation for the prediction is to humans, which includes
human interpretability [11], persuasiveness [8], plausibility [9], and others. The
other axis focuses on to what extent do the explanations for the predictions reflect
the predictive process of the model, which includes fidelity [7], faithfulness [9], and
others. In this paper, we follow the definition of Jacovi et al. [9] and refer to the
former axis strictly as plausibility and the latter as faithfulness.

As in other subfields of natural language processing (NLP), SAS has sub-
stantially advanced with recent deep-learning-based technologies, e.g., [6,16,23,
etc.]. However, these previous studies mainly focused on scoring performance,
and explainability for SAS has rarely been addressed so far despite its potential
significance in educational contexts. To the best of our knowledge, one excep-
tion aimed at interpreting the process of predicting model scores in SAS is the
work of Mizumoto et al. [13]. They defined the task of justification identifica-
tion (Sect. 3) and constructed a dataset for evaluating the performance of that
task. However, their study also focused mainly on scoring performance, and only
limited experiments were conducted on justification identification only from the
plausibility perspective. In this study, we (i) recast justification identification as
a special case of feature attribution, (ii) newly explore a range of recent feature
attribution methods for this under-explored task, and (iii) empirically evaluate
the quality of the methods by faithfulness as well as plausibility.

Feature attribution is an approach for XAI, which assesses the importance
of each feature of input against the output and uses that value to explain the
prediction to help humans understand the model’s internal behavior. Feature
attribution has been studied mainly in the field of computer vision, and various
methods [18–20] have been proposed. In NLP, it is also common to use attention
weights to analyze which words in an input text are effective in prediction such as
text classification [24], which can also be seen as a method for feature attribution.
In this paper, we present the first study in which the behavior of these feature
attribution methods on SAS, is comprehensively investigated.

3 Justification Identification: Task Setting

SAS is to predict a score s ∈ {0, 1, ..., S} for a given answer x = (x1, x2, ..., xT )
to a prompt, where xt is the t-th word, and S is an allocation of score. We use
quadratic weighted kappa (QWK) [4] to evaluate the scoring performance.

Justification identification is the task of providing the basis (i.e., justifica-
tion cues) as an explanation for the score prediction. In Fig. 2, the model pre-
dicts a score of 2 points for the answer and presents “After mRNA leaves” as
justification cues. Formally, the task is to generate the justification cue label
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Fig. 2. Task setting of justification identification. The feature attributions are contin-
uous values, and the color depth represents the magnitude of the value. We generate
the justification cues shown in blue by discretizing these values at a certain threshold.

r = (r1, r2, ..., rT ), rt ∈ {0, 1} for the score prediction in the input answer x.
Here, when rt = 1, the word xt is the justification cue.

We evaluate justification cues in terms of plausibility and faithfulness [9].
In SAS, plausibility can be considered the dimension of evaluating whether the
generated justification cues are consistent with the rubric. We thus evaluate the
plausibility of generated justification cues on the basis of whether they match
the gold labels.

Faithfulness, on the other hand, refers to whether the generated justification
cues are consistent with the model’s behavior. There is no guarantee that the
model is actually predicting the score on the basis of the predicted justification
cues. Therefore, it is crucial to evaluate faithfulness when discussing explainabil-
ity. The details of these two metrics are discussed in Sect. 4.5.

As illustrated in Fig. 2, we realize justification identification by (i) conduct-
ing feature attribution and (ii) discretizing the results of the feature attribution
with a threshold determined by maximizing the agreement of justification cues
(Sect. 4.5) in the development data. We normalize the feature attribution gen-
erated from the model arbitrary and represent it as f = (f1, f2, ..., fT )(0 < ft <

1,
∑T

t=1 ft = 1). With fmax as its maximum value and h as its threshold value,
we set rt to 1 if fmax − ft < h, and 0 otherwise.

The task setting of justification identification in the context of SAS allows
us to assume special situations that have not been considered in previous XAI
research. In SAS, one can consider cases where the gold labels of explanations
(i.e., justification cues) are available for training and evaluating the model. One
reason is that, in the context of using SAS for education, the quality of justifi-
cation identification is as important as scoring accuracy, and the generation of
gold label justification data to improve justification can be well worth the cost.
Furthermore, human graders must be doing the work of identifying which parts
of a given student answer match the rubric when they grade the answer, and
the overhead for labeling the identified parts as justification cues in the pro-
cess of generating training data may well be not very significant. Therefore, in
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Fig. 3. Overview of RIKEN Dataset for Short Answer Assessment. The highlighted
parts in the student’s answer are justification cues and indicate parts of information
included in the rubric. The rubric consists of several items such as A, B, and C.

this study, we also explore the effectiveness of using gold justification cue labels
for training the feature attribution component jointly with the score prediction
model (see Sect. 4.4). Note that such supervised settings for feature attribution
have been rarely considered in the XAI literature.

4 Experimental Settings

In this study, we comprehensively experiment with several methods for gen-
erating justification cues and supervised learning methods for models, and we
investigate whether there is a method that is both plausible and faithful in SAS.
All experimental setting is publicly available at the GitHub site.

4.1 Dataset

Most SAS datasets [2,3,15] do not have justification cue labels. To the best of
our knowledge, RIKEN-SAA [1]1 is the only dataset that contains such labels.
We use this dataset in our experiments. In Fig. 3, we show an example of a
student’s answer taken from RIKEN-SAA along with its corresponding rubric.
This dataset consists of the following: the answer text for each prompt, the score
assigned by the grader, and the justification cues for assigning the score. Each
prompt has multiple items such as “A, B, C, ...”, and each answer is manu-
ally assessed for each item. Since each item is associated with an independent
rubric and is annotated independently, for our experiments, we train and evalu-
ate models independently for each item. Henceforth, we refer to the combination
of prompts and items as questions.

RIKEN-SAA includes 36 questions with about 2000 student answers each and
21 questions with 500 answers. Out of this original dataset, we selected 28 ques-
tions with 500 answers for our experiment considering the following two criteria.
1 https://www.nii.ac.jp/dsc/idr/rdata/RIKEN-SAA/. This study is the first to focus

on the task of justification identification with this dataset, while it has been used in
prior studies whose main interest is in SAS accuracy [6,13,23].

https://www.nii.ac.jp/dsc/idr/rdata/RIKEN-SAA/
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Fig. 4. Diagram of learning methods. (a) computes the cross-entropy loss between
the model’s final output and the gold score label sg. (b) computes the mean squared
error between the attention weights and the gold justification cues. (c) calculates the
mean squared error between the gradient norms and the gold justification cues. We use
Integrated Gradients for gradient-based feature attribution.

One was the quality of human annotations. The dataset provides annotations by
two annotators. We calculated the human-to-human agreement of each question
with the QWK for the given score labels and the f1 score for the justification cue
labels (see Sect. 4.5 for the definition of the f1 score), and we filtered out ques-
tions with QWK lower than 0.7 or f1 score lower than 0.85. The second criterion
was the ratio of non-zero scored answers. In this dataset, answers with a score
of zero are deemed to contain no evidence to give the score, and no annotation
of the evidence is given to them. Therefore, in this experiment, which focuses
on generating justification cues, we excluded questions with more than half of
the answers scored zero. The details of this data selection and sampling process
are publicly available at the GitHub experiment report site. For each question,
we divided the data into 200 instances for training, 100 for development, and
200 for evaluation. One may suspect that the training and development sets are
relatively small. However, note that SAS in a supervised setting is essentially a
low-resource problem because those who prepare the training data are usually
the educators themselves who use the model. It is crucially important to ensure
the model’s performance with such a small scale of training signals.

4.2 SAS Model

We used a standard classification model with word embeddings, one-layer biL-
STM, and one attention layer as shown in Fig. 4(a), following Riordan et al. [16].
The word embeddings were obtained by running word2vec [12] on Japanese
Wikipedia data following Mizumoto et al. [13]. The dimensionality of the word
embeddings was 100, and the hidden layer dimensionality was 300. We super-
vised the model’s final output with gold score labels using the loss function:
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Lscore = 1
N

∑N
n=1 CE(s(n)p , ŝ(n)), where CE is a cross-entropy error, N is the

number of data, sp is the predicted probability of scoring, and ŝ is the gold
score. We used RMSProp as the optimizer with a learning rate of 1.0 × 10−3,
a batch size of 32, and trained on 50 epochs. To perform early stopping, we
selected the checkpoints with the highest accuracy on the development data.

4.3 Feature Attribution

We used several common methods for feature attribution as described below:

Attention Weight. Considered in the attention layer as the importance of each
word to the prediction and use it as the feature attribution

Saliency Map. [19] Generated from the gradient of each input to the loss
Input X Gradient. [18] Multiplication of the Saliency Map by an input. It

is possible to generate a feature attribution that reflects the features of the
input

Integrated Gradients [20]. Generated by integrating gradients from the origin
to the input direction, which satisfies the axioms of Implementation Invari-
ance and Sensitivity, and is said to be faithful

Random (baseline). Feature attribution generated from a uniform distribution

Among these, the justification identification method used by Mizumoto et al. [13]
can be categorized as Attention Weight. In this study, in contrast, we also explore
gradient-based methods: the Saliency Map, Input X Gradient, and Integrated
Gradients. The gradients computed in these methods represent in which direction
and by how much the embedding of each word changes, the prediction probability
changes significantly. We used the norm of this gradient as a value of importance
to the corresponding input word.

4.4 Supervision of Justification Cues

Feature attribution is typically used to analyze which features are used by a
model to make a prediction, so for that purpose, it is inherently unsupervised.
In justification identification, on the other hand, the objective is to ensure the
quality of the justification cues, and therefore, one can naturally consider the
setting where the model is supervised with human-labeled justification cues.
Fortunately, the RIKEN-SAA dataset includes human-labeled gold justification
cues, so we tried using it.

There are at least two possible ways to train the model with gold justification
cues, as illustrated in Figs. 4 (b) and (c).

Attention Supervision. When considering using the justification cue labels
as supervisory signals, the first thing to consider is to learn the weights of
the attention layer. Since weights of the attention layer are normalized so
that the summation becomes 1, we normalize the justification cue labels by
the number of words in the justification cues, and we calculate their mean
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squared error as the loss. If r̂ is the gold justification cues, T is the sentence
length, and fa is the attention weight, the formula is as follows.

Lattn =
1
N

N∑

n=1

T∑

t=1

(

fa(n)
t − r̂

(n)
t∑
r̂(n)

)2

,

Gradient Norm Supervision. We also consider using justification cue labels
to supervise the gradient norm. A previous study [21] showed that gradient
supervision can improve the performance of sentiment analysis, natural lan-
guage inference, and image task, but there has been no research on gradient
norm supervision with explanation labels. It is thus intriguing whether one
can effectively supervise gradient norms for the sake of justification identifi-
cation analogously to the attention layer. In the experiment, we determine
the performances of the models obtained by minimizing the errors between
the feature attributions with Integrated Gradients and gold justification cues.
The newly incorporated loss was:

Ligrad =
1
N

N∑

n=1

T∑

t=1

(

f igrad(n)

t − r̂
(n)
t∑
r̂(n)

)2

,

where f igrad is the feature attribution by Integrated Gradients.

In this experiment, we compare four learning methods: 1, Lscore (unsup); 2,
Lscore+Lattn (attn); 3, Lscore+Ligrad (igrad); 4, Lscore+Lattn+Ligrad (attn&igrad)
as combinations of these loss functions.

4.5 Evaluation Metrics

In this experiment, we use QWK [4] as a measure of scoring accuracy. For
explainability, we use the agreement of the justification cues [13] as plausibility
evaluation and remove ratio [14,17] as faithfulness evaluation.2 For each ques-
tion, we trained the model with 10 different sets of seed values to produce 10
model instances and use the average result as the final result.

Agreement of Justification Cues (Plausibility). The agreement of the
justification cues [13] is a plausibility measure that uses the f1 score as a measure
of the degree of agreement between the gold and predicted justification cues. For
item B in Fig. 3, we assume that the gold justification cue is “language is also an
abstract symbol”, and the model’s output is “an abstract symbol, which blocks
our direct”. In this case, the true positive (TP) is 3 (an abstract symbol), the
false positive (FP) is 4 (which blocks our direct), and the false negative (FN)
is 3 (language is also). Therefore, the precision of this example is calculated as
TP/(TP + FP) = 0.43, the recall is TP/(TP + FN) = 0.5, and the f1 score is
2 × 0.43 × 0.5/(0.43 + 0.50) = 0.46.
2 Although we also evaluated faithfulness using two other metrics, sufficiency and

comprehensivenesss [5], we omit their results because they showed the same tendency.
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Table 1. Scoring accuracy (QWK ↑)

unsup attn igrad attn&igrad

0.766 0.801 0.803 0.814

Table 2. Results of explainability. AJC stands for agreement justification cues. Feature
att. stands for feature attribution. Faith. stands for faithfulness.

Feature att.\Model Plausibility (AJC ↑) Faith. (Remove ratio ↓)

unsup attn igrad attn&igrad unsup attn igrad attn&igrad

Attention Weight 0.467 0.810 0.548 0.805 0.238 0.232 0.165 0.157

Saliency Map 0.451 0.647 0.680 0.709 0.303 0.295 0.189 0.225

Input X Gradient 0.442 0.635 0.708 0.744 0.269 0.230 0.172 0.184

Integrated Gradients 0.443 0.551 0.771 0.772 0.202 0.169 0.144 0.139

Random 0.325 0.326 0.326 0.325 0.622 0.628 0.552 0.587

Remove Ratio (Faithfulness). Remove ratio is a faithfulness measure used
by Serrano et al. [17] and Mohankumar et al. [14]. It masks words in descending
order, starting with those with the highest feature attribution, and calculates
the percentage of masked words when flipping the predicted label. If the feature
attribution reflects the prediction process of the model, i.e., the words with the
highest feature attribution match the words that the model considers important
for a score prediction, then the prediction will change earlier because we can mask
from the truly important word. The lower the value, higher the faithfulness.

In this study, we add scores to the answer if there is a basis statement for
scoring in the answer. Therefore, masking words in a zero-score answer does not
change the score, and we exclude the zero-score answer from the evaluation.

5 Results and Analysis

Scoring Accuracy. Table 1 shows the QWK results. Similar to previous stud-
ies [6,13,23], QWK was improved by attention supervision. The QWK was also
improved by gradient norm supervision, and further improved by both attention
and gradient norm supervision, compared with learning with only one method.
Since we mainly focus on justification identification, we leave the interesting
topic of QWK improvement in the attn&igrad model for our future work.

Plausibility. The left column of Table 2 shows the results of the agreement of
justification cues. In the case of unsup, there is no significant difference in the
values for any of the methods, but for attn, igrad, and attn&igrad, the f1 score
was improved for all feature attributions except Random. A previous study has
shown that gradient-based methods are not plausible [5], but we found that
gradient norm supervision can also improve their plausibility. In addition, the
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Table 3. Example of model output for Y14 2-1 2 3 D, showing the justification cues
and remove ratio provided by the Attention Weight and Integrated Gradients in attn.
Highlighted text spans are justification cues (gold or predicted).

f1 score of Attention Weight in attn and Integrated Gradients in igrad were
significantly improved, which indicate that one can improve the plausibility by
aligning the feature attribution and learning methods. The highest f1 score was
obtained with the combination of attn and Attention Weight. Attention Weight
may be easier to learn than the norm of gradients because they are structured
to directly solve the problem of sequential labeling, which predicts the label of
each word. A more sophisticated analysis is a subject for future work.

Faithfulness. The right column of Table 2 shows the results for remove ratio.
Among others, Integrated Gradients was the most faithful. Prior studies have
shown that Attention Weight is sometimes inferior faithful to gradient-based
methods [10,14,17]. In our experiment, we observed a similar tendency; namely,
Attention Weight was inferior to the Integrated Gradients although, with a closer
look, it was more faithful than the Saliency Map and Input X Gradient.

The difference in the remove ratio between Integrated Gradients and Atten-
tion Weight for attn was much larger than the difference between the two in
the other settings. We analyzed the results of remove ratio in the attn model
in detail. Table 3 shows a typical example for which the Attention Weight and
Integrated Gradients behaved differently. The highlighted text is the gold or the
predicted justification cues. Attention Weight is highly consistent with the gold,
whereas the Integrated Gradients focus on words around the gold. Since the
remove ratio of Integrated Gradients is lower than that of Attention Weight, the
former faithfully reflects the model’s behavior. Namely, the model predicts the
score on the basis of surrounding words, not the gold justification cues that the
model should focus on.

In SAS, training data are normally scarce and similar answers are likely to
occur frequently, so extra information that is likely to co-occur with the state-
ments that satisfy the rubric may be highly correlated with the score. In such
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cases, the model may learn to predict the score on the basis of extra informa-
tion. We expect that Attention Weight supervision will suppress such pseudo-
correlations; however, there may be cases where pseudo-correlations continue to
exist as in the case shown in Fig. 3. In such cases, Attention Weight may be able
to present a justification cue that is highly consistent with the gold justification
cue through attention supervision, whereas the model may predict scores based
on the basis of areas that are different from the gold due to pseudo-correlation,
which causes a discrepancy in the behavior between the Attention Weight and
the model.

6 Conclusion

In this study, we tackled the task of justification identification for SAS by
the explaining by feature attribution approach that has emerged from the XAI
research. Moreover, we investigated whether a method that achieves both plau-
sibility and faithfulness in SAS exists. We found that Attention Weight is plau-
sible and Integrated Gradients is faithful. We also found that it is possible to
improve the plausibility of gradient-based methods by supervised learning. How-
ever, methods with high plausibility and high faithfulness are still different meth-
ods. The target audience in real applications is considered to be students and
administrators (e.g., teachers). If the explanation of the score prediction is used
to convince the student user of the scoring results or as a hint for review, the
consistency with the rubric (i.e., plausibility) is considered to be important. On
the other hand, if the explanation is used to allow the teacher to confirm the
expected behavior of the scoring model, they are likely to place importance on
faithfulness. Therefore, in SAS, it is crucial to choose the method of generating
explanation according to whether the user considers plausibility or faithfulness
more important.

In the field of education, it has not yet been explored as to how the presen-
tation of explanations for score prediction by the model affects student users’
learning. We plan to verify the system’s effectiveness by using human subjects.

References

1. Riken: RIKEN Dataset for Short Answer Assessment. Informatics Research Data
Repository (2020). https://doi.org/10.32130/rdata.3.1

2. Scoring short answer essays. ASAP short answer scoring competition system
description (2013). https://www.kaggle.com/c/asap-sas/

3. Basu, S., Jacobs, C., Vanderwende, L.: Powergrading: a clustering approach to
amplify human effort for short answer grading. In: TACL, pp. 391–402 (2013).
https://doi.org/10.1162/tacl a 00236

4. Cohen, J.: Weighted kappa: nominal scale agreement with provision for scaled
disagreement or partial credit. Psychol. Bull. 70, 213–220 (1968). https://doi.org/
10.1037/h0026256

5. DeYoung, J., et al.: ERASER: a benchmark to evaluate rationalized NLP models.
In: ACL, pp. 4443–4458 (2020). https://doi.org/10.18653/v1/2020.acl-main.408

https://doi.org/10.32130/rdata.3.1
https://www.kaggle.com/c/asap-sas/
https://doi.org/10.1162/tacl_a_00236
https://doi.org/10.1037/h0026256
https://doi.org/10.1037/h0026256
https://doi.org/10.18653/v1/2020.acl-main.408


242 T. Sato et al.

6. Funayama, H., et al.: Preventing critical scoring errors in short answer scoring with
confidence estimation. In: ACL, pp. 237–243 (2020). https://doi.org/10.18653/v1/
2020.acl-srw.32

7. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51,
1–42 (2018). https://doi.org/10.1145/3236009

8. Herman, B.: The promise and peril of human evaluation for model interpretability,
6 p. arXiv:1711.07414 (2019)

9. Jacovi, A., Goldberg, Y.: Towards faithfully interpretable NLP systems: how should
we define and evaluate faithfulness? In: ACL, pp. 4198–4205 (2020). https://doi.
org/10.18653/v1/2020.acl-main.386

10. Jain, S., Wallace, B.C.: Attention is not explanation. In: EMNLP-IJCNLP, pp.
3543–3556 (2019). https://doi.org/10.18653/v1/N19-1357

11. Lage, I., et al.: An evaluation of the human-interpretability of explanation, 24 p.
arXiv:1902.00006 (2019)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: NeurIPS, p. 9
(2013)

13. Mizumoto, T., et al.: Analytic score prediction and justification identification in
automated short answer scoring. In: ACL, pp. 316–325 (2019). https://doi.org/10.
18653/v1/W19-4433

14. Mohankumar, A.K., Nema, P., Narasimhan, S., Khapra, M.M., Srinivasan, B.V.,
Ravindran, B.: Towards transparent and explainable attention models. In: ACL,
pp. 4206–4216 (2020). https://doi.org/10.18653/v1/2020.acl-main.387

15. Mohler, M., Bunescu, R., Mihalcea, R.: Learning to grade short answer questions
using semantic similarity measures and dependency graph alignments. In: ACL,
pp. 752–762 (2011)

16. Riordan, B., Horbach, A., Cahill, A., Zesch, T., Lee, C.M.: Investigating neural
architectures for short answer scoring. In: BEA, pp. 159–168 (2017). https://doi.
org/10.18653/v1/W17-5017

17. Serrano, S., Smith, N.A.: Is attention interpretable? In: ACL, pp. 2931–2951 (2019).
https://doi.org/10.18653/v1/P19-1282

18. Shrikumar, A., Greenside, P., Shcherbina, A., Kundaje, A.: Not just a black
box: learning important features through propagating activation differences, 6 p.
arXiv:1605.01713 (2017)

19. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps, 8 p. arXiv:1312.6034
(2014)

20. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
ICML, p. 3319–3328 (2017)

21. Teney, D., Abbasnejad, E., van den Hengel, A.: Learning what makes a difference
from counterfactual examples and gradient supervision, 24 p. arXiv:2004.09034
(2020)

22. Tjoa, E., Guan, C.: A survey on Explainable Artificial Intelligence (XAI): toward
medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2021).
https://doi.org/10.1109/TNNLS.2020.3027314

23. Wang, T., Inoue, N., Ouchi, H., Mizumoto, T., Inui, K.: Inject rubrics into short
answer grading system. In: EMNLP-WS, pp. 175–182 (2019). https://doi.org/10.
18653/v1/D19-6119

24. Zhong, R., Shao, S., McKeown, K.R.: Fine-grained sentiment analysis with faithful
attention, 13 p. arXiv:1908.06870 (2019)

https://doi.org/10.18653/v1/2020.acl-srw.32
https://doi.org/10.18653/v1/2020.acl-srw.32
https://doi.org/10.1145/3236009
http://arxiv.org/abs/1711.07414
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/N19-1357
http://arxiv.org/abs/1902.00006
https://doi.org/10.18653/v1/W19-4433
https://doi.org/10.18653/v1/W19-4433
https://doi.org/10.18653/v1/2020.acl-main.387
https://doi.org/10.18653/v1/W17-5017
https://doi.org/10.18653/v1/W17-5017
https://doi.org/10.18653/v1/P19-1282
http://arxiv.org/abs/1605.01713
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/2004.09034
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.18653/v1/D19-6119
https://doi.org/10.18653/v1/D19-6119
http://arxiv.org/abs/1908.06870


Experts’ View on Challenges and Needs
for Fairness in Artificial Intelligence

for Education

Gianni Fenu , Roberta Galici(B) , and Mirko Marras

University of Cagliari, Cagliari, Italy
{fenu,roberta.galici}@unica.it, mirko.marras@acm.org

Abstract. In recent years, there has been a stimulating discussion on
how artificial intelligence (AI) can support the science and engineering of
intelligent educational applications. Many studies in the field are propos-
ing actionable data mining pipelines and machine-learning models driven
by learning-related data. The potential of these pipelines and models to
amplify unfairness for certain categories of students is however receiving
increasing attention. If AI applications are to have a positive impact on
education, it is crucial that their design considers fairness at every step.
Through anonymous surveys and interviews with experts (researchers
and practitioners) who have published their research at top-tier educa-
tional conferences in the last year, we conducted the first expert-driven
systematic investigation on the challenges and needs for addressing fair-
ness throughout the development of educational systems based on AI.
We identified common and diverging views about the challenges and the
needs faced by educational technologies experts in practice, that lead the
community to have a clear understanding on the main questions raising
doubts in this topic. Based on these findings, we highlighted directions
that will facilitate the ongoing research towards fairer AI for education.

Keywords: Education · Fairness · Data mining · Machine learning

1 Introduction

Educational systems that rely on artificial intelligence (AI) are increasingly influ-
encing the quality of the education we receive. Notable examples of AI-based
models integrated so far include early predictors of student success (e.g., [15]),
clustering techniques for learner modelling (e.g., [2]), intelligent tutoring and
scaffolding (e.g., [1]), agents for motivational diagnosis and feedback (e.g., [5]),
and models for recommending peers or learning material (e.g., [20]). With this
growth, the potential of AI to amplify unfairness in educational applications has
received growing attention in both academia and industry as well as the press.
Indeed, articles in mainstream media have reported systemic unfair behaviors of
some AI-enabled educational systems. For example, an automated college enrol-
ment system more likely to recommend enrolments from certain ethnic, gender,
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or age groups [7], or a machine-learning system for evaluating PhD applicants
in Computer Science that exacerbates current inequality in the field [17].

Concerted effort in the area of fairness in educational applications has mainly
focused on the design and operationalization of fairness definitions [19] and algo-
rithmic methods to assess and mitigate undesirable biases in relation to these def-
initions [9]. Other works have studied fairness in educational AI systems through
a social and psychological lens [6]. As the field matures, literature reviews are
collecting definitions, methods, and perspectives in a unified framework [10].
Specialized initiatives, such as workshops [3] and special issues [4], are also focus-
ing on biases and unfairness in educational AI. While some fair AI studies are
already being researched, they often represent isolated examples. If the resulting
applications are to have a positive impact on education, however, fairness-aware
practices should become common for any person while creating an educational
application that leverages AI. Being informed about the actual challenges and
needs for supporting the development of fairer AI for education is hence crucial.

Creating AI-based educational systems raises many unique challenges not
commonly faced with intelligent systems in other domains [16]. In the broader AI
field, several papers have dealt with fairness [8,11,13,14]. Despite this attention
to unfairness, to the best of our knowledge, only two prior studies have investi-
gated challenges and needs for supporting the creation of fairer AI by directly
interrogating experts [10,18]. Unlike those studies, focused on the public-sector
and commercial AI practitioners across a range of high-stakes contexts, our study
focuses on educational researchers and practitioners (referred for convenience as
experts) including AI in their workflow, who usually have experience in develop-
ing AI systems, but are relatively new to thinking about fairness. Considerations,
beliefs, practices, motivations, and priorities in integrating fairness may be less
clear within these contexts, applications, and cultures.

Our study in this paper investigates the challenges and needs faced by the
educational community, whose products are going to affect the education of
individuals, in integrating and monitoring for unfairness and taking appropriate
action. Through an anonymous survey of 136 educational researchers and prac-
titioners who have published their research at top-tier educational conferences
in 2021 (e.g., AIED, EDM, and L@S), we analyze teams’ existing opinions and
experience around the development of fair educational AI, as well as their chal-
lenges and needs for support. To deeper the key themes of our survey, we also
conducted semi-structured interviews with 29 of those researchers and practi-
tioners. To our knowledge, this is the first systematic investigation of experts’
challenges and needs around fairness in educational AI.

Through our investigation, we identify a range of real-world needs often not
stated in the literature so far, as well as several common areas. For example dif-
ferently from the broader AI field, large-scale data collection is not always consid-
ered as a solution, since biases are driven by complex reasons to be understood in
the local context. Such concerns are also extended to research teams’ own blind
spots, since teams often struggled to anticipate the sub-populations and forms
of unfairness they need to consider for specific kinds of applications. Moreover,
though fair educational AI has overwhelmingly focused on data collection issues,
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Fig. 1. We first conducted an anonymous survey (Step 1). To deeper the key themes
from the survey, we then conducted semi-structured, one-on-one interviews (Step 2).
We finally analyzed answers from both the surveys and the interviews (Step 3).

assessment and debiasing of unfairness are also crucial, e.g., by having contin-
uous fairness assessment at all stages of the pipeline. Because fairness can be
context and application dependent, domain-specific educational resources, met-
rics, processes, and tools are urgently needed, such as to open data and source
code for public scrutiny and create participatory processes for fairness checking.
Another identified area is the development of auditing processes and tools, to
make fairness issues emerge. Based on these findings, we highlight opportunities
to have a greater impact on the fair educational AI landscape.

2 Methodology

The goal of this study is to investigate the challenges and needs faced by the
educational community, whose products are going to affect the education of
individuals, in integrating and monitoring for unfairness and taking appropriate
action. To this end, we adopted a two-step mixed approach, depicted in Fig. 1.

2.1 Survey Study Implementation

In a first step, to get a broad sense of challenges and needs for addressing fairness
while developing educational AI, we conducted an anonymous online survey.

Participants Recruitment and Statistics. The survey participants were
recruited using a systematic process, to make sure that our study was not based
on opinions of an arbitrarily selected population. Specifically, we systematically
scanned the 2021’s proceedings of the top-tier educational conferences in a man-
ual process, namely AIED, EAAI, EC-TEL, EDM, ICALT, ITS, LAK, and L@S,
to identify the authors who had a paper accepted. We also considered the authors
of papers in the special issues about fair educational AI in IJAIED. We then
directly emailed the survey to those authors between Sep and Dec 2021, and
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(a) Survey (b) Interview

Fig. 2. Sample population statistics for our survey and interview process.

often invited them to pass the survey on to colleagues working on educational
AI, within their organization. In total, we contacted 2,175 experts, and 136 out
of them (6%) completed at least one section beyond demographics. A description
of the population who answered to the survey is provided in Fig. 2a.

Survey Execution. We structured the survey as a Google Form and developed
survey questions to investigate the prevalence and generality of emerging themes.
First, we asked a set of demographic questions to understand our respondents’
provenience and backgrounds, including their technology area(s) and role(s). In
a branching sequence of survey sections, respondents were then asked about their
opinions, challenges, and needs for support around fairness, with each section
pertaining to one stage of the educational AI development pipeline1. For each
of the latter questions, we provided open-ended response options that allowed
respondents to elaborate on their arguments. We finally asked them to leave their
email address in case there were willing to participate in a subsequent interview.

2.2 Interview Study Implementation

In a second step, to validate and deeper our findings from the previous survey
answers, we then conducted a series of semi-structured, one-to-one interviews.

Participants Recruitment and Statistics. In Jan 2022, we involved the
experts who answered the survey and gave their availability to participate in
a follow-up interview by providing their e-mail addresses in the last question
of the survey. In total, 29 out of 136 survey respondents (21%) were willing
to participate in this second step, across as many research teams. Whenever
possible, we tried to interview people in different roles on the same team to
hear (potentially) different perspectives. Each interview lasted 30 min and was
conducted remotely since involved people came from a diverse set of countries.
Key statistics about our sample sub-population are depicted in Fig. 2b.

Interview Execution. Each participant was first reminded of the purpose of
our research. Then, the interview focused on the participant awareness about
1 A pdf copy of the survey questions is available at https://bit.ly/FairAIEdSurvey.

https://bit.ly/FairAIEdSurvey
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the debate and research on demographic fairness in educational AI and the
most important challenges and open questions in the area in general (questions
7 and 8 of the survey). Each participant was then asked to better clarify the
educational AI applications they are working on and who the target users of
these applications are (question 8 of the survey). Interviewees were then asked
whether fairness is regularly considered in their workflow and what it means for
them to be fair in their applicative context (question 9 of the survey). Discussion
points were often prompted from the survey answers.

We then provide survey questions about fairness at each stage in their edu-
cational AI development pipeline, from collecting data to designing datasets to
assessing and potentially mitigating fairness issues (questions 10 to 13 of the sur-
vey). For each of these stages, interviewees were asked a broad opening question
in line with the one reported in the corresponding question of the survey and
follow-up questions based on the answers provided in the survey. This follow-up
led interviewees to reflect more deeply on their practices.

2.3 Survey and Interview Data Analysis

We integrate the answers collected from each survey question with the corre-
sponding interview counterpart. Interviews and surveys were identified with an
ID, and the same ID was used if both come from the same participant. To
synthesize findings using standard methodology from contextual design, we con-
ducted interpretation sessions and adopted affinity diagramming (e.g., see also
[12]). Specifically, we employed bottom-up affinity diagramming to iteratively
generate codes for various individual texts and then group these codes into suc-
cessively higher-level themes. The themes emerged from the data rather than
being imposed. Key themes are presented in the following section.

3 Results and Discussion

In the following, we discuss current challenges and needs around fairness, orga-
nized by top-level themes associated to the survey questions and the interview-
based deepening (the latter served as a confirmation and enrichment to the
survey responses), granularly framed according to the resulting affinity diagram.
These include needs and challenges on data collection and modelling (questions
9−10), unfairness detection and mitigation (question 11), fairness guarantees
provision (question 12), holistic fairness auditing (question 13), paired with sys-
temic aspects such as team composition, cross-organization collaborations, and
educational AI maturity (question 7). Within each top-level theme, we present
selected sub-themes. It should be noted that our study aims more to uncover
open questions than providing answers. The latter requires further discussion
and work of the research community as whole, also driven by our study.
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3.1 Challenges and Needs in Data Collection and Grouping (Q9–10)

Cultural Dependencies in Demographic Representation. The majority
of the participants recognizes that researchers, which are often not demographi-
cally representative of their societies, tend to involve people at their hand (their
students), which are often not representative either. For instance, in question 10
of the survey, a participant reported that “it is difficult to collect data enough
representative of different contexts, such as countries, universities, and society,
due to different culture, viewpoints and rules”. The same participant, during the
interview, further observed that “most research focuses on certain countries, and
is done in English, so findings are more representative of certain societies and
educational systems”. Overall, it was often pointed out that no dataset represents
the diversity of the population, leaving always some people underrepresented.

Biases are Driven by Reasons to be Understood in the Local Context.
Paired with the above point, differently from the broader AI field, several partic-
ipants do not think that large-scale data collection will really get at the nuances
of fairness in educational AI. For instance, in question 10 of the survey, a par-
ticipant highlighted that “unlike some AI applications where very broad groups
are relevant (e.g., face recognition), biases in education are driven by complex
reasons to be understood locally”. This clearly calls for localized data collection
paired with data sharing practices.

Hidden Relationships Between Demographics and Learning Variables.
Our participants found that it is generally difficult to identify issues that really
drive fairness. For example, during the interview, a participant reported that “in
some cases, ethnicity does not directly cause differences in how students interact
with educational software or the data coming out of it, but rather students’ life
experiences that are correlated with ethnicity” (e.g., feeling uncomfortable in class
because discrimination). In general, it was observed that different demographic
groups might have different ways of responding to psychological measures. A
participant envisioned during the interview that “educational AI models might
need to be demographically stratified”. Overall, challenges emerged on what the
demographic attributes really proxy for and how experts can measure that.

Giving Individuals Continuous Control of Their Data. A vast segment
of our participants acknowledges that individuals should always have complete
access and control over their data as well as new data created about them.
One participant, following up on what reported in the survey answer, suggested
that “access should be controlled in such a way that confidential information will
not be inadvertently shared beyond their control”. From our affinity diagram, it
seems clear the need of supporting tools to inform the users about which data
the system is using and for what. In this sense, another participant envisioned
in the survey that “in these tools, the user may turn on and off on which data
they think the system needs to use”. Overall, challenges and needs emerged on
letting individuals have control on which of their data is used in any educational
system.
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3.2 Challenges and Needs of Fairness-Aware Technical Pipelines
(Q11)

Continuous Fairness Assessment at all Stages of the Pipeline. Most
of our participants emphasized that fairness should be taken into account from
the beginning, and that all choices (data, optimization criteria, interventions)
should be viewed from a fairness point of view. For instance, in question 11 of the
survey, a participant envisioned that “aims and objectives of the data collection
have to be clearly defined and negotiated with the participants, through explicit
discussions”. Fairness is recognized as to be part of the design process from
multiple lenses, from developing a team which can reach a high level of expertise
in fairness until deploying the system. Overall, protocols and guidelines on how
to include fairness through the pipeline are therefore needed.

Understanding and Acknowledging Weaknesses of the System. In
designing educational AI systems, a segment of our participants recognizes as
important to understand where systems work and the cases where they may
suffer. In the survey, a participant suggested that “this begins by understanding
the scope and limitations of the data on which the systems are based, since it is
often infeasible to achieve full transparency or explainability in regard to these
systems”. The way of working could also enable to keep the models as they are
but inform users about the difference in accuracy between certain demographic
groups, for instance. Overall, there is a need to acknowledge these aspects con-
tinuously to reach a better understanding of the strengths and limitations of the
systems.

Reducing Frictions Between Model Effectiveness and Fairness. Our
participants consistently mention that the main challenge is how to balance the
accuracy of predictions with fairness. For example, a participant mentioned in
the survey that “we might get a good accuracy while directly using demographic
features (e.g., gender), but the value of those features might be that they encode
something else (e.g., prior experience)”. This leads for instance to observe that
models can achieve the same performance without using demographic features
(e.g., prior experience). Moreover, if a model performs really well for one group
and poorly for another, a participant found “debatable whether the benefit should
be withheld from the group it works well for”. There may be alternative practices
that still lead to fair uses, even if fairness is not incorporated into a model.

Creating Cross-Institutional Frameworks for Addressing Fairness.
Some respondents highlighted the need of creating a consortium of organizations
(e.g., universities and companies) from different countries and defining a unified
framework for data collection and fairness-aware model evaluation applicable in
all those universities. For instance, a participant in the interview said that “there
should be an increasing trust between government, institutions, researchers, and
practitioners to access sensitive data, building on top of privacy regulations for
de-identified data sharing in educational systems” (e.g., by accessing data at
institution level). However, some participants identified that leveraging data,
even when anonymized, to improve educational systems is still challenging.
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3.3 Challenges and Needs in Providing Fairness Guarantees (Q12)

Opening Data and Source Code for Public Scrutiny. In this line, a range
of participants highlighted that people who develop educational AI systems
should publish or release models and analyses for public scrutiny, especially when
there are concerns about their models being unfair. For instance, a participant
found important that “sharing data, source code, and pre-trained models in open
online repositories should be encouraged”. Overall, this practice clearly goes in
contrast to copyright, therefore creating guidelines and directives that regulate
this sharing process is a major requirement to advance from these perspective.

Fairness Should not be a Property of the Model Only. In response to
question 13 of the survey, several participants emphasized that a common prac-
tice is to try and offer as fair results as possible in AI models, but there might
still be biases when using these models as a final service to the user (i.e., the
way the model is deployed in the complex educational ecosystem). For instance,
a participant reported that “fairness should be therefore a property of the offered
service as well at the end”. Hence, there is a need, for a large segment, to envi-
sion guidelines and practices that embed fairness as a constraint or metric for
the underlying predictive model as well as a key indicator for the service.

Showing Explicit Evidence the System’s Potential Unfair Impacts. A
segment of the participants believes that institutions adopting educational AI
need data that supports a claim of the tool being fair. A participant believes
that “such aspect should not be explainable or transparent to students, since it
is probably the case that drawing students’ attention to demographics invokes
stereotype threat, which might be in contrast with other participants ideas”. For
another segment, students should have the right to know how a system works
and be informed on any shortcoming about fairness that the system might have.
“They should not feel that a system might guide them to take a decision because
some fairness guarantees of the system are not met by the system” is an exam-
ple reported by another participant. Another interesting aspect identified by our
participants is that the extent of transparency, accountability, and explainability
should depend on the level of impact the system has. For example, a participant
reported that “decisions on weather a student must repeat a course should prob-
ably offer more accountability than small recommendations on a platform”.

Creating Participatory Processes for Fairness Checking. A segment of
our participants identified that, ideally, there should be an independent third-
party entity that should be able to provide sample data to the educational AI
service and then assess whether such service is fair. During the interview, a
participant followed up on this point, envisioning that “all aspects should be
showcased to an ethical commission within the organization or that a learner
advocate should be allowed to conduct exploratory research into how the system
might have detrimental effects on later learner success” (e.g., showing the system
is fair by finding and correcting negative consequences). Who and how should
be involved is an open question for the community and is expected to be defined
by future advances.
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Regulations for Defining Responsibilities Around Fairness Issues. Sev-
eral participants found that, in fair educational AI systems, it is important to
define who is the guarantor of the system’s fairness and what are the conse-
quences for not living up to the guarantee. As an example, a participant often
compared this aspect to “service level agreements provided by cloud services,
where failing to live up to a guarantee might result in a financial penalty”. Sev-
eral of the participants emphasized that it should become mandatory to guar-
antee an overall fair treatment and to certify that the model is fair according to
certain variables.

3.4 Challenges and Needs of a More Holistic Fairness Auditing
(Q13)

Human-Centered Evaluation of Fairness. Most of the participants stated
that the evaluation should be human-centered and cover different levels of analy-
sis. A participant, while deepening question 13 of the survey during the interview,
“the evaluation should consider statistical metrics, expert audits regarding sys-
tem design and training data sets, and meetings with stakeholders representing
the most impacted groups”. From the responses, it emerged that this multi-level
evaluation gives the opportunity to make sure that the evaluation protocol is
properly adapted to the specific applicative case. To make the protocol more
efficient, some respondents also suggested that some parts of the evaluation pro-
tocol can be automated, but stakeholders must stay involved in any case.

Creation of Tools that Allow Stakeholders to Audit Models. Our partici-
pants highlighted making educational AI transparent to the end users is essential
and envision a need of letting stakeholders analyze system data for fairness and
outcomes, of course. A participant dug deeper into this aspect during the inter-
view, saying that “it would be necessary to have experts doing this, otherwise
other stakeholders will have to spend a lot of time and resources”. Overall, a
common view is that the student (or the instructor) should understand why
they are given a certain prediction so that they can reflect and react construc-
tively. Some of the respondents observed that it might be tough to deeply explain
AI-driven educational predictions to students, especially young students, though
they should always have some high-level understanding of what the system is
doing, also after some specific training on this task.

Contextualized and Application-Specific Properties to Inspect. The
majority of the participants raised doubts regarding the extent to which the
fairness metrics and protocols defined in the broader AI community can also
work for educational AI systems. For instance, a participant expected that “the
fairness spectrum for AI in the educational field should be investigated, and a
framework to be adapted to every context and application might be the outcome”.
Overall, tailored frameworks of processes and properties (also depending on the
local data privacy and protection laws) should be better aligned to the specificity
of the educational field, rather than being merely built upon those of other
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domains as black boxes. Indeed, education is recognized as a highly human-
centered rather than data-centric field, and tailored frameworks become almost
mandatory.

Long-Term Learning-Related Evaluation of Fairness. Our participants
generally emphasized that it exists an overly computational definition of fairness
in the broader AI field, that tends to evaluate the demographic differentials
instead of identifying the strengths and weaknesses of each individual and with
that help them to reach their full potential. Several participants identified that
the concept is more complex than a metric or a protocol. For instance, during
the interview, a participant emphasized that “all the time is spent on optimising
against one of these metrics, leading to unfair outcomes being declared fair just
due to the model performance on the metric”. Ideally, a common emerging view
was that a system would be evaluated not just on the immediate intended effect
(e..g, if an auto-generated hint helps students answer a question) but on broader
educational goals (e.g., the student do well in classes).

3.5 Challenges and Needs in Team Blind Spots and Practices (Q7)

Support in the Selection of the Demographic Groups to Consider.
Several participants think that the decision on which demographic attributes to
consider in an analysis is challenging. In line with this, while answering to ques-
tion 7 of the survey, a participant raised a doubt that “there might not be a need
to add gender data to certain problems as it should not be relevant or, on the
other hand, it should be included to show it is irrelevant”. Another participant
emphasized that “many studies do not consider social-economic characteristics
of the students which may also bias the resulting models”. In addition, interviews
strengthened the view on the lack of datasets that do not just include all demo-
graphics, but also fair observations. For example, datasets containing salaries for
people are probably still biased as salaries were decided by humans with their
own biases. However, it is hard to define how an actual unbiased dataset should
look like, and it is likely that all quantitative data have biases of some form or
another. Overall, there is a need for standards on the demographic groups to
consider.

Building Social and Multi-disciplinary Awareness in Teams. Several
respondents highlighted that educational AI models are designed by technical
people who often do not have the social science training to understand the socio-
cultural implications of their algorithm designs. This might lead to prefer compu-
tational expediency over considerations of social justice. In this regard, a partic-
ipant emphasized “the need for equity training and understanding for developers
and researchers”. Overall, our respondents call for inclusivity and diversity in
the teams in charge of developing educational AI. In current practices, several
participants identified that most of the AI models are constructed with a sin-
gle mindset from a specific field (generally Computer Science). Since data and
models are about and impact on people, it would be important to include other
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perspectives from social sciences to understand why and when the variables to
be collected are valid.

4 Conclusion and Future Directions

Though researchers and practitioners are already grappling with biases and
unfairness in educational AI systems, research on this topic is rarely guided by a
common understanding and view of the faced challenges and needs. In this work,
we conducted the first systematic investigation of experts teams’ challenges and
needs for support in developing fairer educational AI. Even when experts are
motivated to improve fairness in their educational applications, they often face
technical and organizational barriers. We highlight a few emerged aspects below:

– Future research should also support experts in collecting and curating high-
quality datasets, with an eye towards fairness in downstream AI models,
reducing cultural dependencies in demographic representation. Moreover,
large-scale data collection should be paired with an in-depth description of
the local contexts, since biases are driven by complex reasons to be under-
stood locally. Localized and causal data collection paired with data sharing
practices are needed, posing attention in giving individuals control of their
data.

– Though fair educational AI has mainly focused on data collection, assessment
and debiasing of unfairness is also an important area of work. Challenges and
needs in this area include having continuous fairness assessment at all stages
of the pipeline, understanding and acknowledging the potential weaknesses of
the system, reducing frictions between model effectiveness and fairness, and
creating cross-institutional frameworks for addressing fairness.

– Domain-specific educational resources, metrics, processes, and tools are
urgently needed. Challenges and needs in this perspective include, among
others, practices for opening data and source code for public scrutiny, includ-
ing fairness not only as a property of the AI model, showing explicit evidence
the system’s potential unfair impacts, creating participatory processes for
fairness checking, and defining responsibilities around fairness issues.

– The development of processes and tools for fairness-focused auditing is also
important, to surface fairness issues in complex, multi-component educa-
tional AI systems. Among others, challenges and needs include fostering
a more focused human-centered evaluation of fairness, contextualized and
application-specific tools for auditing, and long-term learning-related audit-
ing of fairness.

– Finally, another area with several challenges and needs concern the teams
working on educational AI. Among others, supporting the team in the selec-
tion of the demographic groups to consider and building multi-disciplinary
awareness in teams are two of the more relevant aspects to work on.

The rapidly growing area of fairness in educational AI presents many chal-
lenges and needs. The resulting systems are increasingly widespread, with proved
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potential to amplify social inequities, or even to create new ones. As research in
this area progresses, it is urgent that research agendas are aligned with the chal-
lenges and needs of those who affect and are affected by educational AI systems.
We view the directions outlined in this paper as critical opportunities for the
AI and the educational research communities to play more active, collaborative
roles in making real-world educational AI systems fair.
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Abstract. Along with the exponential increase of students enrolling
in MOOCs [26] arises the problem of a high student dropout rate.
Researchers worldwide are interested in predicting whether students will
drop out of MOOCs to prevent it. This study explores and improves
ways of handling notoriously challenging continuous variables datasets,
to predict dropout. Importantly, we propose a fair comparison methodol-
ogy : unlike prior studies and, for the first time, when comparing various
models, we use algorithms with the dataset they are intended for, thus
‘like for like.’ We use a time-series dataset with algorithms suited for
time-series, and a converted discrete-variables dataset, through feature
engineering, with algorithms known to handle discrete variables well.
Moreover, in terms of predictive ability, we examine the importance of
finding the optimal hyperparameters for our algorithms, in combina-
tion with the most effective pre-processing techniques for the data. We
show that these much lighter discrete models outperform the time-series
models, enabling faster training and testing. This result also holds over
fine-tuning of pre-processing and hyperparameter optimisation.

Keywords: Neural networks · Tree-based algorithms · Educational
data mining · Feature engineering · MOOCs

1 Introduction

With the rapid development of the Internet and in combination with the growing
training demands, the education industry has changed the way it operates. Mas-
sive Open Online Course (MOOC) platforms were introduced to the world, which
has attracted millions of users [26]. This led to a revolution of big data in learning,
with more resources and anonymised datasets for exploration. Over the years, an
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undeniable challenge in online learning became to find ways to reduce and predict
students’ dropout rates, which fall roughly at 77%–87%. Many studies have been
conducted to explore learning behavioural patterns, through statistical modelling
and machine learning, towards predicting students’ dropout [11,19]. Nonetheless,
the majority of the studies, such as [30,31], used the same dataset and variables
to implement predictive models, without taking into consideration the type of
variables each model uses for maximising its performance. For example, [30]
trained a time-series, Long Short-Term Memory (LSTM) model, using the same
dataset that was used to train other non-time series machine learning models,
including Logistic Regression, Random Forest, and Gradient Boosting Decision
Tree (GBDT). The results showed that time-series models, such as LSTM, out-
performed other machine learning models (i.e., Linear Regression and Decision
Tree), and achieved higher accuracy, precision and recall when compared using
data from their ‘natural’ environment (continuous/time-series variables). How-
ever, we argue that previous methods did not consider the functionality of the
algorithms and how they could perform best, according to their nature. Some
very preliminary previous research [10] has hinted that it may be a good practice
to use sequential time-series ‘as is’, or first convert the dataset into discrete-
variables, for obtaining enhanced metrics (precision, recall, f1-score, accuracy)
on predicting students’ dropout, when the models would be tuned, and the
datasets would be pre-processed. The current paper aims to determine if tradi-
tional fine-tuning and optimisation methods can change this, or if the conversion
into discrete variables is as robust as we assumed. We use the same application
of predicting ‘completers’ and ‘non-completers’ with the same dataset to analyse
this. We examine thus the following research question:

Can pre-processing, fine-tuning and hyperparameter optimisation change the
balance between using time-series ‘as is’, or converting them into discrete vari-
ables?

The main contributions of this study are thus to perform, for the first time,
a wide-scale analysis, showing, firstly, that discrete-feature methods outperform
sequential time-series methods, on both discrete and sequential datasets. Sec-
ondly, we show that this result is further consistent, when performing model
hyperparameter optimisations and optimal feature engineering. Our results, fur-
thermore, outperform all other studies using the same dataset [15,17,20,21,24]
in predicting dropouts. Moreover, as we compare several approaches, our work
also shows that methods of capturing uncertainty outperform the others. This
supports the more generic approach to converting the dataset, whenever possible,
into the appropriate formats (in our case, time-series into discrete), which helps
a different kind of predictive model than the default applied in previous stud-
ies, achieving faster training, testing, and predicting, as well as higher predictive
accuracy and in general better performance compared to using multi-layer neural
networks.
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2 Related Work

Learning Analytics (LA) is the process of analysing and reporting multiple learn-
ers’ data to understand and optimise their performance and the learning envi-
ronment. Many recent studies focused on classifying students into ‘completers’
(i.e. students who completed the course) and ‘non-completers’. Some of them
[2,19] used traditional machine learning algorithms (e.g. Decision Tree, Logistic
Regression, Random Forest), while others, such as [12,14], used more advanced
algorithms (e.g. Neural Networks).

A few recent studies also [30,31] utilised both traditional machine learning
algorithms and more advanced ones (Neural Networks). These studies [30,31]
used the same dataset to train both Neural Networks and machine learning mod-
els (time-series), which showed that Neural Networks outperformed the other
machine learning techniques.

However, Tensorflow1suggested that to train an LSTM, it is best to use a
time-series dataset, while [13] suggested using discrete variables to train a tree-
based algorithm (either categorical or continuous variables).

Moreover, some works [16,32] suggested that artificial Recurrent Neural Net-
works (RNN) with memory, such as Long-Short-Term-Memory (LSTM), are gen-
erally considered as superior models for time-series tasks, due to their nature -
the way they operate and handle data. On the other hand, [28] suggested that
traditional machine learning algorithms, such as Logistic Regression, Random
Forest and GBDT, produce better results with discrete-variable data. The only
study we could find that compared four benchmark models with their intended
datasets [10], lacked, however, a thorough examination of possible outcomes after
pre-processing and hyperparameter optimisation.

In our case, we convert the time-series data, through feature engineering, into
discrete variables, and train each model on the type of data it can process best.

Furthermore, some current works used a combination of different types of
data, when those were available, in order to obtain higher accuracy with the
LSTM model. For example, [22,23] examined a combination of time-series data
and other discrete data, which included features such as first quiz results, the
number of playbacks of a video. The primary key aspect of our methodology
is that we do not use any other data than video interactions, to fairly analyse
different formats of this data for different algorithms.

Several studies, such as [15,17,24], conducted student dropout prediction
(from MOOCs) on the same dataset that we use in this paper. Some of them
[20,21,24] did not perform any hyperparameter optimisation on their predictive
models, but they pre-processed their data; whilst others, such as [15], performed
a basic feature engineering and hyperparameters tuning. Specifically, [24] used
AME, a meta-embedding technique, through which they derived the optimal
embedding for each sequence of object embedding vectors, and a temporal clas-
sification, which modelled the temporal nature of the data over multiple days.
[20] filtered the logs, which contained unrelated events from users, rows with

1 https://www.tensorflow.org/tutorials/structured data/time series.

https://www.tensorflow.org/tutorials/structured_data/time_series
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missing values, and columns with no helpful information. [17] highlighted the
unbalanced nature of the dataset, and to achieve better classifier performance,
they applied the synthetic minority oversampling technique known as SMOTE
on the training set. However, generating synthetic examples may increase the
overlapping of classes and introduce additional noise, while the initial distri-
bution of the dataset is compromised, such that it no longer corresponds to
real-world data. Finally, [15] performed thorough hyperparameter tuning, while
the data pre-processing techniques used were not to explore or enhance the data,
but just to make the data compatible with their predictive model. As mentioned
in Sect. 1, we explore further the results of [10] with optimised hyperparameters,
and optimal pre-processing techniques.

Unlike prior work, this study shows, in a comprehensive way, that it is ben-
eficial to convert time-series data into discrete variables, when testing several
machine learning algorithms. Moreover, to ensure a fair comparison, we are using
the same data for several testing cases, and we explore in depth the algorithmic
performance, by hyperparameter optimising all the machine learning algorithms
used.

3 Method

3.1 Dataset and Data Preparation

The dataset used in this study is comprised of 300,000 interactions performed by
2,000 unique students that were registered on XuetangX2 (launched in October
2013, one of the largest MOOC platforms in the world). The dataset contains
two modules delivered in 2014 in a Self-Paced Mode (SPM), where a student
can have a more flexible schedule and study during the hours that suit them
the best. In order to make a fair, controlled comparison and strengthen our
claims, we trained all the models (with and without tuned hyperparameters, with
and without pre-processed data) with the time-series dataset and discrete vari-
able dataset. In particular, we converted the time-series dataset into a discrete-
variables dataset. In the time-series dataset, the input variables include the type
of actions and the time each action was performed for all the 300,000 interaction
entries. For constructing the discrete-variables dataset, we used the time-series
dataset and counted the number of unique actions for each student. The table
is populated by the ID, the Truth (pass or dropout) and the 14 unique types
of actions the students performed, namely, click courseware, click forum, click
info, click progress, click about, close courseware, create comment, load video,
create thread, pause video, play video, problem get, seek video, and stop video. In
total, there are 14 unique types of actions, so we engineered 14 features for 14
input variables for our predictive models. Considering the LSTM model’s pre-
processing in preparation of the dataset, the actions performed by each student
were sequentially grouped, according to the time they were performed. Thus,
the essence of the time-series was preserved while still considering the unique

2 http://moocdata.cn/data/user-activity.

http://moocdata.cn/data/user-activity
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actions performed. Afterwards, the actions were transformed into a sequence of
binary numbers (see Table 1), to retain the categorical (nominal, i.e. no intrinsic
ordering to the categories) nature of the actions.

3.2 Data Pre-processing/Features Engineering

Our feature engineering techniques aimed not to change the data distribution,
but only to feed the data into the models in the most efficient way (Table 2).

Table 1. Time-series dataset

ID Action Time Trutha

. . . . . . . . . . . .

561867 pause video 2015-10-25T10:52:06 0

561867 play video 2015-10-25T10:52:09 0

561867 pause video 2015-10-25T10:58:42 0

1368125 click about 2015-10-05T15:43:55 1

1368125 click info 2015-10-05T15:45:53 1

708122 pause video 2015-10-04T21:41:30 1

708122 play video 2015-10-04T21:24:40 1

. . . . . . . . . . . .
a Truth value is stating if the particular student passes
or withdraws the module. 1-states Pass, 0-states With-
drawn.

Table 2. Sample distribution per classification category

Dropout Continuing study

Sample number 76470 20059

Percentage of sample 79.22% 20.78%

For the tree-based algorithms, we adopted the Term Frequency-Inverted Doc-
ument Frequency (TF-IDF) technique to feed the data into our models. TF-IDF
is a statistical measure that estimates how important and relevant a word is
to a document. Here, we examined the importance of each action compared to
the total number of actions. Generally, an action’s importance increases with
the number of times an action appears in the current input, which, at the same
time, is counterbalanced by the frequency of that action in general.

LSTMs use sequences of numerical values, so we transformed the sequences of
actions performed by each student, which are identified by words, into numbers.
Specifically, we gathered all the student’s actions and ordered them according to
their timestamps. By doing so, we retained the time-series nature of the action
sequence. We then created a dictionary of the unique words from the actions and
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encoded them using One-Hot Encoding. One-Hot Encoding morphs the unique
numbers into sequences of 0s and 1s, which maintain the sequences’ categorical
nature for the LSTM.

3.3 Building the Models

We implemented an LSTM model and several tree-based machine learning mod-
els, including Decision Tree, Random Forest, and BART. In this section, we
introduce how these models were built.

LSTMs can process long sequences of data (in our case, sequences of
actions). In the current study, we used LSTMs to train on the temporal sequence
of actions performed by the students. For the discrete variables dataset training,
we considered that all the inputs were from a single timestamp, meaning that
all the actions had been executed at once (i.e., no temporal order) compared
to the continuous variables dataset training, where each action had a different
timestamp, adding a subtle continuous/temporal feature to the data.

A single standard LSTM unit is composed of a cell vector (ct) Eq. (3), a
hidden vector (ht) Eq. (5), an input gate (it) Eq. (1), an output gate (ot) Eq. (4)
and a forget gate (ft) Eq. (2). A cell remembers values over time intervals (t−1,
t); and the three gates regulate the flow of information, by computing a series
of functions for the cell vector and the hidden vector [18].

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)

ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2)

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (4)

ht = ottanh(ct) (5)

Decision Tree is a non-parametric, supervised machine learning model,
which learns simple decision rules inferred from the data variables. It can be
used for both classification and regression tasks. Specifically, we used the CART
model [6], which traverses the binary tree given a new input record, where the
tree is trained by a greedy algorithm on the training data, to pick splits in the
tree. The main reason of using CART is the algorithmic transparency provided,
as it being proven to be a trustworthy baseline in prior researches [29].

Random Forest (RF) [5] is a supervised machine learning method formed
on ensemble learning (the combination of different types of algorithms, or the
same algorithms applied many times, to create a more precise predictive model).
An RF receives the prediction from each sub-tree and chooses the solution that
is in majority, by voting. Forests and specifically RF according to [9], tend to
outperform the rest of the classification algorithms (based on a large-scale com-
parison of 179 classification algorithms emerging from 17 learning families over
121 datasets).
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BART is a Bayesian version of a tree ensemble model, where the estimation
is given by a sum of Bayesian CART trees. More information can be found in [7].
Bayesian methods are known to be better at modelling uncertainty [8], which
addresses part of our aim in comparing these methods.

For the tree-based models we performed hyperparameter optimisation
through Grid Search and Random Search techniques, as they are widely used
in the state of the art research [3]. Moreover, we tested the model with 10-Fold
Cross Validation, which is a widely used technique to ensure full usage of all
available data.

The hyperparameter optimisation for the LSTM was performed with the
help of an online open source application ‘Weights & Biases’3 [4]. The sweep
method used to tune the model was ‘Bayes’ [27]. The ‘Bayes’ method uses a
Gaussian Process (GP) Expected Improvement Markov Chain Monte Carlo (GP
EI MCMC) technique to calculate the posterior distribution from a prior, and
the ‘expected improvement’ of a parameter. A Gaussian Process distribution on
prior functions, is chosen to express assumptions about the function being opti-
mised [25,27]. The ‘expected improvement’ is the acquisition function (Eq. (6)),
used to construct a utility function from the model posterior for our Bayesian
optimisation, i.e. the main deciding factor for the MCMC [27]. If that parameter
improves the F1-score of training, as we have requested from the MCMC search
to monitor, the parameters are tuned, respectively.

aEI(x; {xn, yn} , θ) = σ(x; {xn, yn} , θ)(γ(x)Φ(γ(x)) + N(γ(x); 0, 1)) (6)

where:
aEI(x; {xn, yn} , θ) is the acquisition function that depends on the previous

observations, and the GP hyperparameters;
Φ(·) is the cumulative distribution function of the standard normal;
N(γ(x); 0, 1) is the prior distribution with noise (0, 1);
σ(x; {xn, yn} , θ) is the predictive variance function, and:

γ(x) =
f(xbest) − μ(x; {xn, yn} , θ)

σ(x; {xn, yn} , θ)
(7)

where:
μ(x; {xn, yn} , θ) is the predictive mean function;
xbest = argminxnf(xn) is the best current value.

Each training, with continuous or discrete variables, was performed 100 times.
We used uniform distributions, as we had no prior belief information for the
hyperparameters. The priors were either uniform or integer uniform, depending
on the parameter checked. After monitoring tuning, the parameters providing
the highest F1-score was chosen from 100 iterations. Then, to obtain the optimal
hyperparameters, we run the resulting optimal algorithm 10-fold, to obtain the
median ROC curve and the median testing results.

3 https://wandb.ai/site.

https://wandb.ai/site
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The Random Forest and Decision Tree models were implemented using the
scikit-learn version 1.0.1 in Python4. The BART model was implemented using
the BART package in R5. The LSTM model was implemented using Keras ver-
sion 2.2.56.

The overall purpose of our methodological setting was to:

– Compare the two datasets in their primitive forms, without any data pre-
processing or hyperparameter optimisation (sequential time-series and dis-
crete).

– Train and test the models using the two datasets applying hyperparameters
optimisation and feature engineering techniques (sequential time-series and
discrete).

– Compare and contrast all the above to find out if and when we should optimise
model parameters and apply data pre-processing methods.

To evaluate our predictive models’ performance, we utilised standard, com-
prehensive metrics: Precision, Recall, F-1 score and Accuracy. Moreover, we
produced a ROC curve (receiver operating characteristic curve) for each model,
i.e. the graph showing the performance of the classification models at all clas-
sification thresholds. This curve plots two parameters, the True Positive Rate
and the False Positive Rate. This allowed us to also explore the Area under the
ROC Curve (i.e., AUC) measure.

This way, we ensured a thorough, fair comparison of the algorithms under
study.

4 Results and Discussions

We present the results of our study in Table 3, comprising of three tree-based
models (Decision Tree, Random Forest, BART) and an LSTM model, for 4 test
cases (Q1: Discrete dataset without hyperparameter optimisation and feature
engineering, Q2: Discrete dataset with hyperparameter optimisation and feature
engineering, Q3: Continuous dataset without hyperparameter optimisation and
feature engineering, Q4: Continuous dataset with hyperparameter optimisation
and feature engineering).

Firstly, we observed that BART is the most robust model - it maintains
its high predictive accuracy for all 4 test cases (Table 3). Specifically, BART
outperforms all the other models - and did not overfit in any of the test cases,
achieving accuracies from 80% to 92% (see Table 3).

Secondly, for the LSTM for the 4 test cases, we observed overfitting (Table 3),
which was caused by training on a (relatively) moderate amount of data. Decision
Tree overfitted on the 3 out of 4 test cases (see Table 3), while hyperparameters
optimisation and feature engineering did not enhance the model performance

4 https://pypi.org/project/scikit-learn/.
5 https://cran.r-project.org/web/packages/BART/BART.pdf.
6 https://keras.io/api/layers/recurrent layers/lstm/.

https://pypi.org/project/scikit-learn/
https://cran.r-project.org/web/packages/BART/BART.pdf
https://keras.io/api/layers/recurrent_layers/lstm/
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as expected. Random Forest overfitted as well on 2 out of 4 test cases, which
indicates that it did not benefit from either feature engineering or data trans-
formation. For all 4 test cases, BART showed an impressive ability to determine
whether a student would pass or drop out, while hyperparameter optimisations
and feature engineering improved its performance.

Thirdly, we used the Area Under the Curve (AUC) (see Figs. 1, 2, 3 and
4) as a criterion to measure the models’ ability to discriminate the test cases.
The closer the ROC curve to the upper left corner, the more efficient the test
was. By taking into consideration the results (see Table 3) and comparing them
with the ROC curves, we validated the fact that BART is the most consistent
model, as it was not affected by neither the imbalanced nature of the data nor
the low level of hyperparameters optimisation and it has an improved ability to
discriminate the test values in comparison with the other four models (Decision
Tree, Random Forest, BART and LSTM).

Fourthly, we observed the improved performance of Decision Tree and Ran-
dom Forest models when they were trained on the dataset (discrete data)
they are suited for, as they overfitted when trained on the ‘unsuitable’ dataset
(sequential data). The LSTM model did not perform as well as the tree-based
models, and especially not as expected for the continuous variables. That is pos-
sibly because LSTMs are known to require a large amount of data in order to
be efficiently trained [1].

Table 3. Results: comparison of Decision Tree, Random Forest, BART on discrete and
continuous data, with/out hyperparameter optimisation (4 test cases)

DT RF BART LSTM

Precision Q1 0.64 0.77 0.87 0.40

Q2 0.74 0.80 0.88 0.81

Q3 0.60 0.67 0.81 0.41

Q4 0.74 0.72 0.87 0.52

Recall Q1 0.66 0.69 0.96 0.34

Q2 0.63 0.71 0.97 0.66

Q3 0.59 0.58 0.98 0.34

Q4 0.65 0.66 0.98 0.51

F1 Q1 0.65 0.71 0.91 0.29

Q2 0.66 0.75 0.92 0.68

Q3 0.59 0.60 0.89 0.29

Q4 0.68 0.68 0.92 0.50

Accuracy Q1 0.77 0.85 0.90 0.32

Q2 0.83 0.88 0.92 0.82

Q3 0.82 0.86 0.88 0.32

Q4 0.88 0.89 0.89 0.80
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Our results suggest that, whenever possible, it would be beneficial
to convert the time-series dataset into a discrete variables dataset
and apply Bayesian methods, such as BART, as it is highly likely to
produce better performance, especially when the time-series datasets
are not populated enough.

Moreover, our results highlight the necessity of always finding the best hyper-
parameters for the models based on the data they are trained on, and the most
efficient and effective data pre-processing techniques, as they can dramatically
improve the models’ performances and prevent overfitting. However, converting
time-series datasets into discrete datasets can often be time-consuming.

Fig. 1. Discrete data: no pre-
processing, no hyperparameter optimi-
sation (for all ROC curves above:
upper left - Decision Tree, upper right
- LSTM, bottom left - BART, bottom
right - Random Forest)

Fig. 2. Discrete data: hyperparameter
optimisation, feature engineering (for
all ROC curves above: upper left
- Decision Tree, upper right - LSTM,
bottom Left - BART, bottom right -
Random Forest)

Fig. 3. Continuous data: no pre-
processing, no hyperpar. optimisation
(for all ROC curves above: upper
left - Decision Tree, upper right -
LSTM, bottom left - BART, bottom
right - Random Forest)

Fig. 4. Continuous data: hyperparam-
eter optimisation, features engineering
(for all ROC curves above: upper
left - Decision Tree, upper right -
LSTM, bottom left - BART, bottom
right - Random Forest)
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5 Conclusions, Limitations and Future Work

In summary, this paper presents the results of a comparison study with 4
test cases, swapping continuous and discrete datasets, as well as training
with/without hyperparameter optimisation, on four different state-of-the-art
algorithms (Decision Tree, LSTM, BART, Random Forest).

Our results conclude that researchers should transform data into suitable
forms when feasible, and they should always try to identify the optimal data
pre-processing techniques, as this can improve model performance. We have
shown that this process assists different types of predictive models to obtain
higher performance and enhanced learning ability. Different from other studies,
we propose, for the first time, a fair comparison; for this, we trained our predic-
tive models not only based on the data type they are indicated for (time-series
data for LSTMs and discrete data for tree-based models) but also with all the
test cases, for obtaining unbiased results. It is also worth mentioning that we
have noted that BART is the only model which did not overfit in any of the 4
test cases, rendering it the ideal model for producing not only benchmarks but
also high quality results. The other 3 models (Decision Tree, Random Forest and
LSTM) were overfitted in some of the cases, indicating that we should be very
cautious when trying to improve the performance of our predictive models.

The main limitations of this study are those related to the data. We used only
one dataset, as being the largest available currently. However, more and larger
datasets would be useful for further comparisons, as LSTM models especially
tend to perform better when being trained on more data. Moreover, demo-
graphic or personal information of each student (unavailable in the dataset)
might provide the models with more meaningful connections to variables for the
classifications and thus allow better performance. It is also important to note
that, as some students might prefer to download videos and watch them locally,
not all the actions (i.e. interacting with a video player such as ‘play’ and ‘pause’)
could be fully captured through the online learning platforms.

For future work, we plan to add more predictive models for comparison,
including Bayesian and non-Bayesian models, to validate and strengthen our
conclusion on the Bayesian models being less overfit-prone. Moreover, to explore
further the capabilities of the LSTM we could consider the time intervals of the
actions.
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Abstract. Analyzing teachers’ discourse plays a fundamental role in
educational research and is a key component of Teaching Analytics. This
usually involves transcribing lessons from audio recordings. As the num-
ber of recordings grows, Automatic Speech Recognition (ASR) systems
gain popularity as a means for transcribing these recordings. However,
most ASR systems are trained over very specific domains which usually
involve read text and low environmental noise. This suggests common
ASR systems available on the market may underperform over classroom
recordings, as they present a unique type of environmental sound and
spontaneous discourse, as opposed to the usual training domains. To
address this challenge we present a system that automatically transcribes
classroom discourse in a robust way with regard to classroom noise, which
was trained over few annotated data. In particular, we used a state-of-
the-art ASR model based on wav2vec 2.0 and fine-tuned it over a 6-h
dataset of 4th to 8th grade Chilean lessons. We found that by leveraging
its transformer-based architecture and changing the fine-tuning domain
to classroom recordings, we can obtain a more accurate and robust tran-
scriber for this source of audio which outperforms other popular cloud-
based systems up to 35% and 59% in terms of Word and Character Error
Rates, respectively. This work contributes by using state-of-the-art ASR
techniques to develop a tool which is particularly adapted to classroom
environments, making it robust and more reliable with regard to their
environmental sound and the way teaching discourse is carried out.
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1 Introduction

The qualities and structures of teacher discourse have been proved to strongly
affect students’ learning [15,21]. Moreover, by analyzing them, one can obtain
insights about aspects of teaching that could be improved which are not measur-
able through standardized tests or surveys [24]. Thus, teacher discourse analysis
has become a critical part of teaching analytics and educational research in gen-
eral. Such analyses regularly involve transcribing classroom speech from audio
or video recordings in order to later detailedly analyze the textual information
present in the lesson. However, due to the time and economic costs that come
with manual transcription, it usually does not scale for educational research
needs [10,26].

Therefore, to address this impediment, many researchers have started using
Automatic Speech Recognition (ASR) technologies as part of their methods to
obtain transcriptions at a larger scale. For example, [15] used ASR systems to
develop a semi-automated method for analyzing teacher talk and used it to
analyze teacher talk features over 127 secondary English Language Arts lessons.
[17] used ASR to investigate automatic detection of teacher questions from audio
recordings collected in live classrooms with the goal of providing automated
feedback to teachers. [16,29], and [28] built systems for recognizing different
teaching activities from automatic transcriptions of classroom audio centered on
the teacher’s discourse. These examples show how ASR systems can become a
valuable tool for educational research and Teaching Analytics.

Nonetheless, these solutions are not exempt of concerns. First, most of these
ASR systems are well tuned over minimal noise environments and are robust
for transcribing voice assistant instructions. As a consequence, performance in
noisy environments, such as a classroom, is oftentimes degraded [12]. Further-
more, there is evidence that the performance of speech recognizers can vary
significantly depending on the audio domain [18]. Second, most times transcrip-
tion is done via paid cloud-based systems, which can be an impediment when
analyzing several classes over a long period of time for a large number of teach-
ers. In addition, this type of application requires Internet access, limiting the use
of systems in places with limited or no connectivity, which is common in rural
areas and developing countries. Third, cloud usage may raise several concerns
regarding recordings’ privacy. Indeed, in many countries a recording of a teacher
with his/her students can be considered confidential material, so storing and
processing this information in an external party generates a series of privacy
risks. Lastly, improvements in ASR performance over a specific domain, such as
classroom recordings, usually depend on the quantity of annotated (manually
transcribed) data which is hard to obtain in the educational field, particularly
for non-english speakers. These considerations give rise to our research question:

– How can we improve the performance of ASR systems over classroom talk
using limited data?

To answer this question, we proposed a methodology that uses transfer learn-
ing and minimal amounts of annotated data to develop a system which is robust
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to classroom environmental audio. In particular, we started by leveraging class-
room audio recordings and transcribing a set of selected samples to generate a
development dataset. Next, we fine-tuned a pretrained model based on wav2vec
2.0’s architecture [11,20] over the selected samples. Subsequently, we improved
the quality of the raw output transcripts using a spell-checking algorithm based
on Levenshtein distance. Later, we assessed our model in terms of Word and
Character Error Rates (WER and CER), two commonly used metrics for ASR
evaluation, and compared it against base wav2vec 2.0 and two usually employed
cloud-based systems. Finally, we posed a use-case scenario for our model consist-
ing in content-related keyword counting through the transcripts and compared
its performance in this task against the previously mentioned baselines.

We developed our model using a sample of 2121 ∼ 10 second segments and
4.6 h of audio from science and math lessons from several Chilean schools. In
addition, we assessed our model over 920 segments from the first two sets and
a third one containing Spanish language lessons. Results show that our model
significantly outperforms the proposed baselines, surpassing the threshold of 40%
WER and relatively reducing WER and CER up to 35% and 59%, respectively.

This way, our approach shows a method that leverages the advantages of
transfer learning for developing an ASR system that is able to outperform other
commonly used systems in this domain using limited annotated data. Thus, we
expect this to be a valuable tool for educational researchers who might be able to
improve their analyses by obtaining a more accurate transcription. Furthermore,
as far as we are concerned, this is the first application of wav2vec 2.0 over a
Spanish-speaking classroom environment, which could open the door for future
development of better systems in this topic.

We start by making a brief review of previous studies that have inspired our
research in Sect. 2. Next, Sect. 3 explains the procedures and details regarding
our dataset, the preprocessing steps, and system development. Afterwards, we
present the outcomes of model evaluation and benchmarking in Sect. 4. Finally,
in Sect. 5 we discuss our findings and the implications, limitations and new ques-
tions raised by our research.

2 Related Work

Speech technologies have been widely used in different educational settings. One
important area of their applications is in Intelligent Tutoring Systems, where
speech processing and understanding can be critical. Some of the use cases
explored include reading tutors [27], to teach and engage science [25,30] or to
teach language and cultural skills [23]. In most of these systems, the solution is
considered on a one-to-one human-computer interaction, typically conceived as
a desktop application, having a controlled domain and reduced noise.

Furthermore, there are many different attempts at using speech recognition
systems to analyze the content of teachers’ talk and dialogues in a classroom.
Blanchard et al. [13] compared the performance of 6 different speech recognition
systems on audio recorded from noisy classroom environments, concluding that,
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despite the degrading performance (44% WER at best using Google Speech to
Text), the obtained transcriptions from some cloud-based systems were a reason-
able representation of the spoken dialogues. Donnelly et al. [17] built a system,
based on both acoustic and linguistic features derived from automatic tran-
scripts, to recognize authentic questions from audio recorded during the lessons.
Moreover, within the different uses of ASR systems in classroom environments,
one of the most outstanding is the development of feedback systems for teach-
ers. For instance, Caballero et al. [14] designed a system that allows obtaining
conceptual networks that relate key concepts used by the teacher. Jensen et al.
[22] describe a system where the teacher must record classroom audio using a
Wireless cardioid microphone connected to a laptop in order to receive feedback
regarding eight key dimensions from teacher discourse.

Recently, wav2vec 2.0 [11], a pre-tranied model for speech recognition, has
become very popular. This model is composed of multiple convolutional layers
and self-attention layers. Convolutional layers reduce the dimensionality of the
raw speech signal generating more compressed representations, whereas the self-
attention layers build contextualized representations, capturing high level content.
A remarkable result of wav2vec 2.0 is the low WER of 8.6% that can be obtained
on noisy English speech using just 10 min of transcribed speech and 53K hours of
unlabeled speech. According to the authors, this opens opportunities for speech
recognition models in many more languages, dialects and domains. This has been
explored successfully in different recent works [31–33], achieving below 30% WER
in Mandarin, Japanese and German, and below 40% for Spanish and Arabic. As
far as we know, our work constitutes the first attempt to use of wav2vec 2.0 to
transcribe spanish-speaking recordings from classroom environments.

3 Methodology

3.1 Dataset

Data Collection. To answer our research question, we started by leveraging
audio recordings from four different pilot projects. The first set consists of sam-
ples of 40 lessons from 24 schools obtained from a Randomized Control Trial
carried out to measure the impact of using a technology guided platform for
computer-assisted math lessons in fourth grades from low-performing schools
in Chile. We refer to this dataset as MATH [8]. The second set consists of 9
recordings of first to fourth grade lessons carried out to measure computational
thinking in a biological phenomenon and computational modeling of locomotion
of bacteria [7]. The third set consists of a sample of 9 recordings from fourth to
eight grade lessons on computational modeling of coronavirus infection dynam-
ics and containment measures such as social distancing, face masks and mobility
[9]. Due to the similarities between the contents, the second and third sets were
merged into a new set which we called SCI. Finally, the fourth set contains 20
lessons from a project where first and second graders were taught to read and
write [6], thus, we named this set LAN. During the pilots, lessons were recorded
44.1 kHz using Rode SmartLav+ for MATH and Swivl SW3322-C1 for SCI and
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LAN. Microphones were pointed towards the teacher, therefore capturing mostly
their voice instead of their students’.

Data Preprocessing. After data collection, lesson recordings were passed
through a pre-trained neural Voice Activity Detection system [1] to obtain speech
boundaries. Next, segments of around 10 s long were randomly sampled from
every recording considering these boundaries to avoid cropping sentences in the
middle. This way, our initial dataset consisted of 1200, 1600, and 400 segments
from MATH, SCI, and LAN respectively, which added up to almost 9 h of audio.

Once the segments were selected, MATH and SCI sets were separated into
train, validation, and test folds with proportions 60/20/20, and merged on each
respective fold. This was considered as our development dataset. On the other
hand, segments from LAN were left as a whole secondary test set in order to
measure our model’s performance over lessons that were outside the training
domain. Moreover, this also allowed us to estimate the generalization capability
of our system to different subjects, educational levels, and teacher voices con-
sidering the different conditions of each pilot and that lessons from LAN were
taught from teachers who did not present lessons in the development set.

Afterward, the selected segments were manually transcribed by our team and
the dataset was cleaned by removing the segments which were mostly noise or
where the speech was unintelligible, leaving a total of 3041 segments and 6.6 h of
audio. Table 1 shows the distribution of the final dataset in terms of number of
segments and minutes of speech for every pilot. After the cleaning procedure, the
respective test folds of the remaining segments were automatically transcribed
using Google Speech and Microsoft Azure Cognitive Services API’s [3,4], two of
the most commonly used transcribers available in the market, to later compare
our system’s performance against these systems.

Table 1. Description of the datasets

Dataset # Samples Speech minutes

Train Dev Test Train Dev Test

MATH 660 218 214 110 36 37

SCI 934 309 314 97 32 32

LAN – – 392 – – 59

Finally, to prepare the datasets to train our model, we started by resampling
every segment to a 16 kHz ratio and converting it to mono. Next, a sequence
of steps was used to preprocess text in order to remove characters outside the
model’s vocabulary. Firstly, in MATH transcriptions we replaced mathematical
symbols with their corresponding words. Secondly, we removed all punctuation
marks and line end characters from the transcripts. Lastly, we converted all con-
secutive decimal characters to their number expressions in words. The previous
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steps were applied to the ground truth transcripts and to the ones obtanied by
both automated systems. Thus, we finished with a total vocabulary of 35 char-
acters, considering the accented vowels in Spanish and the blank space, which
corresponds to one used by our base model.

3.2 Model Development and Evaluation

Fine-Tuning. As the base model for our system, we used a large version of
wav2vec 2.0’s architecture which was pre-trained over the Spanish subset of
the common-voice dataset [20]. For an extended explanation of wav2vec 2.0’s
architecture the reader might refer to [11]. We chose this version as it presented
the best metrics on the paperswithcode leader-board for Spanish ASR models over
CommonVoice [2]. We fine-tuned this model over the training folds of MATH
and SCI, while evaluating over the validation sets of the same pilots using the
Trainer interface of the Hugging Face python library [5]. Neither the test folds
from MATH and SCI nor the samples from the LAN pilot were considered for
the development procedure. Moreover, teachers from LAN lessons were distinct
from the teachers in MATH and SCI pilots to better assess the generalization
capabilities of our system.

We tested different combinations of learning rate and weight decay to find
a suitable combination of hyper-parameters for the model’s architecture while
trying to minimize the Connectionist Temporal Classification (CTC) [19] loss
function over the validation dataset, obtaining an optima of 10−4 and 0.01 for the
learning rate and weight decay, respectively. The model was trained with different
hyper-parameter combinations for 15 epochs over batches of four samples and
evaluated every 50 steps. Additionally, an early stopping callback with patience
of 5 was used to save the best models once they started overfitting. In the end,
the model that yielded the best CTC loss over the validation fold was considered
for the rest of the development.

Spell-checking. When using neural-based transcribers, the transcription pro-
cess is usually done at the character level, disregarding if the final output is a
real word or not. Thus, the transcriptions from these systems are usually passed
through a spell-checking algorithm or a language model before returning the final
text. Considering this, we used a Python spell-checker library which bases on
the Levenshtein distance between two words to assign possible corrections from
a vocabulary to the words output by the neural-based transcriber before return-
ing the final text. The algorithm was applied using a list of the 100,000 most
common Spanish words as the vocabulary, which was developed and published
by the Spanish Language Royal Academy.

4 Results

4.1 Model Evaluation and Benchmarking

After the model training and post-processing of the transcripts, we assessed
model performances via Word and Character Error Rates (WER and CER,
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respectively). These metrics are based on the edit distance from the automated
transcript to the ground truth transcription and are considered standard assess-
ment measures for ASR tasks. We compared the results obtained by our model
against three different baselines: Base wav2vec 2.0 without fine-tuning, Google
Speech API, and Microsoft Azure Cognitive Services API over the three test
folds. Furthermore, for every test set we ran a t-test for the mean of the WER
difference from system to system to test for statistical significance regarding the
difference in performance. Table 2 shows the results in terms of WER and CER
for the four systems across the test folds from each pilot.

Table 2. Values of WER and CER for the different systems across different datasets.
(*<0.05, **<0.01, ***<0.001)

System WER CER

MATH SCI LAN MATH SCI LAN

Ours 38% 32% 38% 19% 14% 17%

Base wav2vec 2.0 45%∗∗∗ 49%∗∗∗ 43%∗∗∗ 21%∗∗∗ 27%∗∗∗ 20%∗∗

Google 43%∗ 48%∗∗∗ 46% 29%∗∗∗ 34%∗∗∗ 34%∗∗∗

Azure 40%∗∗ 33%∗ 38% 25%∗∗∗ 19%∗∗∗ 27%∗∗∗

Results show that our model outperforms the three baselines over classroom
environment domains, achieving below 40% WER and significant improvements
in 2 of the 3 datasets, getting a significant relative WER reduction up to 5%
and 33% respect with Azure and Google respectively. Moreover, we could also
achieve values below 20% CER across the three test folds. Additionally, CER
was relatively reduced between 15% and 58% with p-values below 0.01 in every
case, which also reinforces the significance of the results. Table 3 shows some
examples transcriptions obtained using the different systems.

4.2 A Use Case Scenario: Content-Related Keyword Counting

To test the impact of our model from an experimental standpoint, we decided
to repeat a previous experiment similar to using the different transcribers. First,
a content-related keyword list for the MATH set was made by the teachers who
carried the pilot. The list included a total of 108 words which were related to
fractions and decimal numbers, areas and perimeters, linear (in)equations, data
representation and interpretation, basic probabilities, angles and polygons, and
problem solving. Next, for every segment of the MATH test fold, we counted
the keywords that appeared in the ground truth transcription. Subsequently,
we repeated this process for the transcriptions obtained with the four systems.
Lastly, we compared the keywords found by the systems with the ones from the
ground truth in terms of precision and recall. Overall performance across the
whole keyword list is reported for every system in Table 4, while Fig. 1 shows the
precision and recall values for the 20 most frequent words across the dataset.
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Table 3. Examples of transcriptions obtained using different ASR systems.

Ground truth text Ours Google Azure

‘‘próxima instrucción

dice utiliza espacio

para los miles pero s

la mayorı́a no lee

completamente la

instrucción entonces

por eso le estamos

recordando que debe’’

‘‘ma instrucción dice

utiliza espacio para

los miles pero la

mayorı́a no le

completamente la

instrucción dos por

eso le estamos

recordando que deb’’

‘‘introducción de se

utiliza espacio para

los miles pero la

mayorı́a no le

completamente la

instrucción se puede

solo estamos

recordando quede’’

‘‘dice utiliza espacio

para los miles pero la

mayorı́a no lee

completamente la

instrucción entonces

por eso le estamos

recordando que debe’’

‘‘la segunda figura a

cuánto equivale cuatro

cuartos nuevamente

cierto que es

equivalente a un

entero levantando’’

‘‘la segunda figura a

cuánto equivale cuatro

cuarto nuevamente

cierto que es

equivalente a un

entero levantando’’

‘‘la segunda figura a

cuánto equivale

cuatro por cuarenta y

cuatro nuevamente

cierto que es

equivalente a un

entero levantando’’

‘‘la segunda figura a

cuánto equivale cuatro

cuartos nuevamente

siento que es

equivalente a un

entero levanta’’

‘‘no por qué porque

son iguales bien por

lo tanto está en lo

correcto la mamá de

patricia no por lo

tanto cómo se redacta

la’’

‘‘no porque por que

son iguales bien por

lo tanto esta es lo

correcto y lmaemás de

patricia no porlo

tanto cómo se reda’’

‘‘no porque porque

son iguales bien por

lo tanto está en lo

correcto la matriz ya

no tanto como se

redacta’’

‘‘no porque porque son

iguales bien por lo

tanto estás en lo

correcto la mamá de

patricia elio por lo

tanto cómo se redacta

hola’’

Table 4. Mean values of precision and recall across keywords for the four systems.

Model Precision Recall

Ours 0.88 0.85

Base wav2vec 2.0 0.73 0.72

Google 0.82 0.83

Azure 0.86 0.86

We found that in general, for the task of automatically recognizing content-
related keywords, our model has better precision than the other three systems,
as well as better recall than base wav2vec 2.0 and Google systems. Nevertheless,
when testing for statistical significance between the assessment metric values
across the MATH test fold samples, the results are significant just when we
compare against base wav2vec 2.0 (p-values < 0.001). Therefore, we can conclude
that for this task, our system has comparable results with respect to Azure and
Google systems.
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Fig. 1. Precision and recall values for the 20 most frequent words in the MATH test
fold obtained by the different systems.

5 Discussion

We presented a methodology that leverages the goods of transfer learning and few
annotated data to develop an ASR system which is robust with regard to class-
room sound and its talk. We also compared our model to three commonly used
machine transcribers across recordings from three pilots from different teachers,
educational levels and subjects, helping us to estimate the generalization capabil-
ity of our system more accurately. In addition, we also assessed the performance
of the developed system against the three baselines in a use-case scenario by
measuring the number of correctly identified content-related keywords across
the transcripts.

We found our model can outperform the other systems in classroom audio,
reducing significantly the relative error in the MATH and LAN test folds up to
35% and 59% WER and CER, respectively. In addition, results over LAN test
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fold indicate our model is also capable of transcribing lessons from different sub-
jects and educational levels without sacrificing performance, obtaining similar
results with respect to cloud-bases systems. Besides, results from the use-case
experiment also suggest this methodology may be useful as a first step for other
automated analyses such as the ones proposed in [14,17] and [16], considering
the better precision to identify keywords that our system has.

Nevertheless, our approach is not exempt of caveats. Despite the improve-
ment in performance metrics and number of transcribed words, words from our
regional dialect were still sometimes erroneously identified and mistranscribed,
rendering the sentences meaningless. Additionally, due to the particular prosodic
qualities of the dialect, two consecutive words were often transcribed without sep-
aration and vice-versa. Considering this, we believe a natural direction for future
research is to improve these aspects of transcriptions using more powerful post-
processing routines, such as N-gram and transformer language models for CTC
decoding. Another interesting direction which bases on the idea of “teaching” the
system the prosodic qualities of classroom discourse is to leverage non-annotated
lesson recordings and pre-training a transformer-based model, therefore adjust-
ing the latent acoustic representations to the particular features of this domain.
Lastly, considering the remarkable performance that transformer-based models
are achieving in low-resource languages, we expect this approach can be repro-
duced in other languages and dialects where limited data is a common constraint.

All in all, we believe our work sets forth two key contributions over previous
research. First of all, we show that the quality of ASR systems over classroom
audio can be significantly improved in limited data situations by fine-tuning
pre-trained models. This means that many educational researchers who rely on
automated transcripts for their analyses can have free access to better tran-
scribers in their local machine, removing the need for sharing possibly sensitive
data. Secondly, to our concern this is the first application of a transformer-based
ASR model for the Spanish language, and more remarkably, to a really strong
Latin-American dialect in classroom environments. Thus, considering the sev-
eral acoustic domains that these dialects generate and the difficulties implied in
collecting large quantities of data for many of them, we believe this gives insights
about the possibility of training dialect-specific systems to rapidly improve the
transcription performance over those domains. Therefore, we expect our method
to be useful for other educational researchers who want to improve ASR perfor-
mance subject to data constraints, and to anyone else interested in automatically
transcribing lesson recordings.
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J., Pérez-Sanagust́ın, M. (eds.) EC-TEL 2017. LNCS, vol. 10474, pp. 541–544.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66610-5 58

15. Dale, M.E., Godley, A.J., Capello, S.A., Donnelly, P.J., D’Mello, S.K., Kelly, S.P.:
Toward the automated analysis of teacher talk in secondary ELA classrooms.
Teach. Teach. Educ. 110, 103584 (2022)

16. Diosdado, D., Romero, A., Onaindia, E.: Recognition of teaching activities from
university lecture transcriptions. In: Alba, E., et al. (eds.) CAEPIA 2021. LNCS
(LNAI), vol. 12882, pp. 226–236. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85713-4 22

17. Donnelly, P.J., Blanchard, N., Olney, A.M., Kelly, S., Nystrand, M., D’Mello, S.K.:
Words matter: automatic detection of teacher questions in live classroom discourse
using linguistics, acoustics, and context. In: Proceedings of the Seventh Interna-
tional Learning Analytics & Knowledge Conference, pp. 218–227 (2017)

18. Georgila, K., Leuski, A., Yanov, V., Traum, D.: Evaluation of off-the-shelf speech
recognizers across diverse dialogue domains. In: Proceedings of the 12th Language
Resources and Evaluation Conference, pp. 6469–6476 (2020)

https://cloud.google.com/speech/
https://cloud.google.com/speech/
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://doi.org/10.1007/978-3-030-52538-5_15
https://doi.org/10.1007/978-3-030-52538-5_15
https://doi.org/10.1007/978-3-319-19773-9_3
https://doi.org/10.1007/978-3-319-66610-5_58
https://doi.org/10.1007/978-3-030-85713-4_22
https://doi.org/10.1007/978-3-030-85713-4_22


280 D. Schlotterbeck et al.

19. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376 (2006)

20. Grosman, J.: Xlsr wav2vec2 spanish by jonatas grosman (2021). https://
huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish

21. Helaakoski, J., Viiri, J.: 6. content and content structure of physics lessons and
students’ learning gains: Comparing finland, germany and switzerland. Quality of
Instruction in Physics: Comparing Finland, Switzerland and Germany, p. 93 (2014)

22. Jensen, E., et al.: Toward automated feedback on teacher discourse to enhance
teacher learning. In: Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, pp. 1–13 (2020)

23. Johnson, W.L., Valente, A.: Tactical language and culture training systems: using
AI to teach foreign languages and cultures. AI Mag. 30(2), 72–72 (2009)

24. Kelly, S., Olney, A.M., Donnelly, P., Nystrand, M., D’Mello, S.K.: Automatically
measuring question authenticity in real-world classrooms. Educ. Res. 47(7), 451–
464 (2018)

25. Litman, D., Silliman, S.: Itspoke: An intelligent tutoring spoken dialogue system.
In: Demonstration papers at HLT-NAACL 2004, pp. 5–8 (2004)

26. Liu, J., Cohen, J.: Measuring teaching practices at scale: a novel application of
text-as-data methods. Educ. Eval. Policy Anal. 43(4), 587–614 (2021)

27. Mostow, J., et al.: Evaluating tutors that listen: An overview of project listen
(2001)
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Abstract. The development and application of deep learning method-
ologies has grown within educational contexts in recent years. Perhaps
attributable, in part, to the large amount of data that is made avail-
able through the adoption of computer-based learning systems in class-
rooms and larger-scale MOOC platforms, many educational researchers
are leveraging a wide range of emerging deep learning approaches to
study learning and student behavior in various capacities. Variations of
recurrent neural networks, for example, have been used to not only pre-
dict learning outcomes but also to study sequential and temporal trends
in student data; it is commonly believed that they are able to learn high-
dimensional representations of learning and behavioral constructs over
time, such as the evolution of a students’ knowledge state while working
through assigned content. Recent works, however, have started to dis-
pute this belief, instead finding that it may be the model’s complexity
that leads to improved performance in many prediction tasks and that
these methods may not inherently learn these temporal representations
through model training. In this work, we explore these claims further in
the context of detectors of student affect as well as expanding on exist-
ing work that explored benchmarks in knowledge tracing. Specifically,
we observe how well trained models perform compared to deep learning
networks where training is applied only to the output layer. While the
highest results of prior works utilizing trained recurrent models are found
to be superior, the application of our untrained-versions perform compa-
rably well, outperforming even previous non-deep learning approaches.

Keywords: Deep learning · LSTM · Echo state network · Affect ·
Knowledge tracing

1 Introduction

The availability of large-scale education datasets, often comprised of large num-
bers of interactions between learners and educational technologies over time,
have coincided with an increase in applications of deep learning methodologies
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to study various aspects of student learning. The data collected from massive
open online courses (MOOCs), for example, researchers have been able to utilize
large, complex models to study student learning strategies as well as unproduc-
tive behavior such as attrition and dropout [6,21,26]. Even beyond MOOCs,
in K-12 classrooms, the adoption of educational technologies and learning plat-
forms such as Cognitive tutor [20] and ASSISTments [13], among many others,
have led to the recording and often public release of large datasets of anonymized
student interaction logs. The application of deep learning, collectively referring
to a growing variety of multi-layer neural network models, often require large
amounts of data to learn from, assuming, of course, that these models are in fact
well-structured to learn anything at all.

Due to the large number of learned parameters and often complex structure
of many deep learning approaches, many researchers and developers attribute
the success of these methods to their ability to learn rich high-dimensional rep-
resentations of input data. While it is possible to interpret and visualize what
is learned in some applications of deep learning, it is difficult to what is learned
within certain deep learning model structures including, for example, recurrent
neural networks (RNN) [25]; this also includes commonly applied variants of
RNN such as long short term memory (LSTM) [14] and gated recurrent unit
(GRU) [8] networks. These model structures are designed to learn dependencies
within time-series data, which is common in educational contexts.

Prior research that suggests, contrary to initial assumptions, that many
recurrent models are not learning rich representations of data. In fact, it was
found that by randomizing network weights and only training the output layer
(referred to in this paper as “untrained” models), such models performed nearly
as well as their trained counterparts [9,24], as will be discussed further in the
next section. This work seeks to build upon this prior research that has explored
this phenomenon in the context of knowledge tracing [9], to compare trained
and untrained recurrent models in another educational context, detecting stu-
dent affect, where deep learning recurrent models have similarly been applied
in recent years [3]. In addition, several related modeling approaches have been
specifically designed to utilized randomized, untrained components. This work
additionally explores the application of these approaches in educational contexts.
Specifically, this work will address the following research questions:

1. How does the application of untrained recurrent models compare to similar
trained models in detecting student affect?

2. Do the methods designed to utilize untrained components outperform other
approaches in detecting student affect?

3. Do trained and untrained recurrent models exhibit an overlapping set of latent
features within their hidden layers?

1.1 Representations Within Recurrent Networks

While the application of recurrent networks, or one of several common variants,
has increased in recent years, it is important to examine the basic structure
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Fig. 1. This example illustrates how a recurrent network can build sequence represen-
tations within its hidden layer by combining new inputs with previous network states.

of these networks in order to better understand how such models could learn
rich knowledge representations. Consider, for example, the simplified network
representation depicted in Fig. 1. Like most “deep” models, recurrent networks
are normally comprised of multiple layers of nodes representing values gener-
ated within the network structure. These values are calculated by multiplying
the node values of earlier layers by learned weights that are traditionally fully-
connected to all nodes in the subsequent layer. Unlike other network structures,
recurrent models are designed to be applied to time-series data, where the values
in the network’s input layer (bottom layer in the figure) are combined with the
previous hidden state (middle layer in the figure) for each time step. Intuitively,
it is assumed that the model may learn how to combine new information with
prior information within the series to make a more informed estimate for a given
task; the network structure may learn how long to keep information, when to
forget information, or certain conditions under which it should otherwise modify
its understanding of the given sequence. The changing values within the hidden
layer of the network contain and retain information from throughout the series.

How well these models are able to “understand” the given information, as
represented by the values within the recurrent hidden layer, is a matter of recent
speculation. It is precisely this question, as it applies to educational contexts,
that is to be explored further within this work.

2 Background

In view of the application of recurrent models in education, it is important to
better understand what applied models are learning from student data to under-
stand how they can best be used to study various aspects of learning. Among
the most well-known examples of using models to study learning, for example, is
knowledge tracing [7]. In early models of knowledge tracing, interpretability was
a primary goal; while later research has disputed how interpretable, or rather how
identifiable traditional knowledge tracing models are [2,10], the structure of the
models were built in alignment to learning theory. While the models themselves
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are trained by predicting short-term student performance across items within a
given knowledge component, the goal of these models was to build a representa-
tion of student knowledge and learning. With the development and high reported
performance of deep knowledge tracing (DKT) [19], questions were raised as to
whether the recurrent neural network at its core was learning a more complex
representation of student knowledge over time. Among a number of subsequent
works that explored how “deep” this method truly was, Yeung et al. [28] showed
that DKT’s representation of student knowledge contradicted traditional learn-
ing theory as well as common sense; the model seemed to believe that students
fluctuated frequently between states of knowledge and non-knowledge. While
the authors proposed a fix to this problem using a form of regularization during
model training, this work suggests that the model is able to perform well without
a strong grasp of how learning is likely to occur.

These works, however, are not the first to question whether recurrent mod-
els are able to learn rich representations within sequential and temporal data.
Wieting and Kiela [24] found that untrained recurrent models could perform
comparably well to trained versions in natural language processing tasks. It was
suggested that the applied models act as a type of sequence encoding, rather
than by embedding deeper contextual information; the models are able to learn
high-dimensional encodings of sequential data, but may be ignorant of the latent
constructs and other factors that explain the data. The findings by Wieting and
Kiela and subsequently Ding and Larson [9] who extended that work to further
explore deep knowledge tracing, raise questions as to how useful these models
are in educational contexts if they are not learning representations of deeper
constructs; it is important to emphasize that these works did incorporate model
training in the output layer of their compared models, so it is not the case that
no training is required, only that the deeper layers of the networks may not learn
composite features that align to latent factors in the data.

Prior work in applying recurrent models have explored how well such models
are able to learn effective features in the context of detecting student affect
and other learning behaviors [4]. In that work, the authors found that the use
of expert-engineered features, developed in alignment to learning theory, led to
higher predictive performance in a number of modeling tasks as compared to
allowing a machine learning model to learn from the raw data logs used by
the experts. The authors similarly identify an inherent difficulty within these
networks to learn from the data.

This does not mean, however, that these models cannot still be useful in
studying aspects of learning. Prior work has led to the development of sensor-free
models of student affect [3] developed from student interaction logs paired with
human-coded classroom observations [17,18]. Utilizing LSTM networks, these
models have been successfully applied to study student affect even without the
ability to interpret the learned representations within the model [5]; even if it
is the case that many recurrent models are unable to learn deep representations
of latent constructs, this does not mean that the estimates produced by these
models cannot be useful to study learning (c.f. “discovery with models” [22].
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3 Methodology1

Although there are many advantages in utilizing interpretable models to study
learning, there are several practical benefits made possible if recurrent models
are truly “ignorant” to deeper representations within data. As has been found in
the prior works described in the previous section (i.e. [9,24]), untrained variants
of recurrent models may perform comparably to similar trained models in sev-
eral applications. If this finding holds in other contexts, these models may have
increased potential for integration in a number of educational technologies and
settings by significantly reducing training times or potentially even the amount
of data needed to successfully fit such a model (needing to train only the output
layer would be equivalent, in most cases, to training a linear or logistic regression
model which traditionally requires fewer data samples to train).

In this work, we use student affect detection and knowledge tracing as two
example cases of comparison for trained and untrained recurrent models on
previously-published benchmark results ([4] and [27] for affect detection and
knowledge tracing, respectively). While Ding and Larson [9] did explore applica-
tions of untrained models in the context of knowledge tracing, this work further
expands upon this work by introducing two additional methods, Bag of Random
Embeddings [24] and Echo State Networks [15,24], within educational contexts.

3.1 Affect and Knowledge Tracing Data

In this paper, we observe applications of these trained and untrained recurrent
network models within two publicly-available datasets collected within ASSIST-
ments [13]. ASSISTments is a free web-based learning platform used by primarily
middle-school teachers and students for mathematics homework and classwork.
Among a number of other features, the learning system allows teachers to assign
traditional “complete all problems” assignments as well as mastery-based “skill
builder” assignments. While working through problems, the system allows stu-
dents to make multiple attempts to answer problems and offers supports in
the form of on-demand hints and scaffolding problems. To support educational
research, the system has also released a number of publicly-available datasets
such as those utilized within this paper.

The first dataset observed in this work was released in [4], which was derived
from several prior works focused on the development of sensor-free detectors of
student affect (e.g. detectors that utilize only interaction logs without additional
sensors such as video). ASSISTments data was used to develop affect detectors
using expert-engineered features based on both theory and an iterative devel-
opment process [18]. Additional works subsequently experimented with different
features within a number of rule- and regression-based modeling methods [23]
before recurrent deep learning methods were explored [3].

The dataset itself is comprised of student interaction logs paired with human-
coded classroom observations of four states of student affect: engaged concen-
tration, boredom, confusion and frustration. Following [4], the data exists in
1 The code utilized by this work is made publicly available:https://osf.io/ubr2v/.

https://osf.io/ubr2v/
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two forms, the first consisting of the 92 expert-engineered features used in prior
works, and second consisting of the raw action-level logs that were used to build
these features. While that work found that the use of expert-engineered fea-
tures led to superior model performance as compared to the raw features, we
explore both feature sets in this work utilizing untrained models to examine the
performance benefits of training these models.

The second dataset observed in this work has been previously used to exam-
ine methods of knowledge tracing [27]. As described in Sect. 2, knowledge tracing
is among the most widely studied problems in learner analytics, AI in educa-
tion, and educational data mining communities. The original knowledge tracing
(KT) model [7] and its bayesian implementation (BKT), attempt to model stu-
dent latent knowledge using student performance metrics. The ASSISTments
knowledge tracing dataset used in this work was made publicly available in [27]
(specifically, the dataset refered to as “09–10 (c)” in that paper), after fixing sev-
eral identified errors in the original version of that dataset used in Piech et al.’s
original deep knowledge tracing paper [19]. This dataset is comprised of 275,459
math problems across 146 knowledge components answered by 4,217 students.

3.2 Leveraging Untrained Networks

This work explores the application of several untrained model structures. These
model structures were applied across both the affect and knowledge tracing
datasets, predicting the affect labels (as a multi-dimensional categorical outcome,
as was done in prior works) and next problem correctness, respectively. As previ-
ously introduced, the terminology of “untrained” in the context of this work (in
alignment with prior works [9,24]), refers to a partially-trained model. In most
machine learning contexts, especially those observing deep learning approaches,
models are typically trained by randomizing the initial values of a set of weights
or coefficients that are then updated iteratively through an optimization pro-
cedure [16]. Considering deep learning models, this process is believed to help
the model learn sets of features in lower layers of the network, with the final
output layer (often functionally equivalent to a linear or logistic regression) then
learning how to map those features to a set of outcomes. An “untrained” method
effectively skips the optimization procedure, relying on the randomized weights
to produce a large number of un-tuned features; in this process, a single regres-
sion model can be trained using these un-tuned features to map them to observed
outcomes. This is an important distinction as this creates somewhat of a mis-
nomer in that these methods still rely on some degree of training, but do not
rely on training to “model” the data. These methods, as well as the application
procedure, is described in this section.

Bag of Random Embeddings. The bag of random embeddings was the sim-
plest untrained network. This method is used to simply project the time series
data to a higher dimensional space. To create a bag of random embeddings for a
time series of f features and t time-steps, the approach projects the time series
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into a n dimensional embedding by first creating a t by f matrix, referred to as
the time-series matrix, where each row in the matrix is the full set of features
from one time-step. Next, the approach generates an f by n matrix full of ran-
dom values, referred to as the projection matrix. The time-series matrix is then
multiplied by the projection matrix, resulting in a t by n matrix, referred to
as the embedding matrix. Finally, a pooling operation is applied across all the
time-steps in the embedding matrix, resulting in a final n dimensional vectorized
embedding of the initial time series.

Following the advice of [24], the random numbers of the projection matrix
were initialized between −1√

f
and 1√

f
. To find the best bag of random embeddings,

all combinations of an n of 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512, and both
max and mean pooling, for five random seeds each were used to project the
time-series data before using a 5-fold cross-validated logistic regression to classify
affect or predict next problem correctness, depending on the dataset. The average
performance of every fold of every random seed for each combination of hyper-
parameters was used to determine the best values.

Long Short-Term Memory Networks. The Long Short-Term Memory Net-
work (LSTM) [11,14] is a common recurrent network structure for modeling
time-series data. The LSTM network is a form of recurrent neural network that
in addition to utilizing information from its past state, is designed to learn
when to incorporate new information into its state and when to forget previous
information. In this context, the value of the LSTM network is often viewed as
being in its internal state structure which incorporates a type of memory that
is designed to capture long- and short-term dependencies within the series (thus
its name). Even without training, the state of the LSTM network, if complex
enough, can capture useful, predictive information from the time-series in cer-
tain contexts [24]. To determine if an untrained LSTM network would be capable
of predicting either affect or next problem correctness, an LSTM network was
created with all combinations of zero through four hidden layers (i.e. additional
fully connected layers on top of the LSTM layer), and 1, 2, 4, 8, 16, 32, 64, 128,
256, and 512 nodes per layer, including the output layer, for five random seeds.
Each network’s output layer was given to a 5-fold cross-validated logistic regres-
sion and used to classify affect or predict next problem correctness. The average
performance of every fold of every random seed for each combination of hyper-
parameters was used to determine the best combination of hyper-parameters.

Echo State Networks. Echo State networks are similar to recurrent networks
in that they have connections from forward nodes to their predecessors, but these
networks usually lack the formality of layers. Instead, an echo state network has
a reservoir of nodes that have many connections to many other nodes in the
reservoir. The input layer connects to any subset, or all of the nodes in the
reservoir, and the output layer receives the output from the reservoir nodes. The
weights in the reservoir are never trained, but the weights of the output layer are
[15]. The echo state network is designed to exploit the properties of a recurrent
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Table 1. Comparison of trained and untrained models applied to the affect dataset

Model Features Best model AUC Kappa

Untrained models

LSTM Network Raw n = 512, 0 added hidden 0.661 0.098

Bag of Random Emb. Raw n = 64, max pooling 0.631 0.066

Echo State Network Raw n = 512, 1 added hidden 0.673 0.121

LSTM Network Expert n = 512, 1 added hidden 0.701 0.152

Bag of Random Emb. Expert n = 64, mean pooling 0.741 0.128

Echo State Network Expert n = 512, 0 added hidden 0.694 0.127

Trained models

LSTM (Botelho et al., 2019) Raw 0.695 0.041

LSTM (Botelho et al., 2019) Expert 0.760 0.172

network’s state similarly to how the previous section uses the state of an LSTM
network. Within the untrained weights of the reservoir lies the state of the echo
state network. This state is designed to capture the latent information of the
time-series data presented to it and when the output layer is trained.

To determine if an echo state network would be capable of predicting either
affect or next problem correctness, the output of each of the random LSTM
networks from the previous section was combined with the intermediate output
from every node in the network, essentially converting the LSTM network to
an echo state network. The outputs from every node were again used to classify
affect or predict next problem correctness in a logistic regression, which functions
as the output layer of the echo state network. The average performance of every
fold of every random seed for each combination of hyper-parameters was used
to determine the best combination of hyper-parameters.

4 Results

The results of our applied untrained models are compared to the results gener-
ated from trained models as reported in prior works utilizing the same respective
datasets used here. For consistency, these results are compared using the same
metrics as have been used in comparison in prior works; in regard to the affect
data, the AUC measure is calculated using the multi-class categorical evaluation
method as used in previous works [12].

The results of the untrained models applied in this work in comparison to the
trained models described in [4] are reported in Table 1. The highest-performing of
each model type is compared to the reported results of the prior work across mea-
sures of AUC and Kappa (in alignment to that prior work). In this table, it can
be seen that the trained LSTM utilizing expert-engineered features exhibits the
highest model performance across both metrics. However, the untrained LSTM
and Bag of Random Embedding models each perform comparably close in regard
to AUC and Kappa; these even outperform the trained LSTM model utilizing
the raw dataset.
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Table 2. Comparison of trained and untrained knowledge tracing models.

Model Best model AUC

Untrained models

LSTM Network n = 512, 0 added hidden 0.706

Bag of Random Emb. n = 512, mean pooling 0.692

Echo State Network n = 512, 0 added hidden 0.725

LSTM (Ding & Larson, 2019) 0.730

Trained models

DKT (LSTM; Xiong et al., 2016) 0.750

BKT (Xiong et al., 2016) 0.630

Similarly, the results of the untrained models applied in this work in compari-
son to previous results are reported in Table 2. In this table, we also compare our
untrained model results to the untrained model applied in [9]. Here, the trained
DKT model does exhibit the highest AUC performance, but the untrained LSTM
as reported in [9] and Echo State Network applied in this study perform com-
parably well. What is perhaps particularly worth noting, is that all untrained
recurrent models outperformed the BKT model.

5 Exploring Latent Feature Overlap

We have seen over the previous set of analyses that the untrained models per-
form comparably well to their trained counterparts. This raises several questions
including what, if anything, is being learned within the hidden layer of these
trained recurrent models (i.e. is there an overlap of latent features utilized by
these models). In addressing our third research question, we conduct a final anal-
ysis to explore the latent features represented by trained and untrained models
in detecting student affect.

In this analysis, we compare an LSTM-based model architecture as presented
in [3] as a basis of comparison. We train this method using one LSTM layer
consisting of 200 nodes feeding to a dense output layer of 4 nodes corresponding
to the four affective states, similar to those previously described. We train this
model and then extract the hidden layer from the network. Similarly, we generate
five untrained counterparts using the same model architecture differing only in
the number of nodes used in the hidden layer (using 200, 400, 600, 800, and 1000).
We similarly extract the hidden layers of these models corresponding with each
sample of the affect detection dataset.

We conduct an exploratory factor analysis (EFA) to identify latent constructs
represented by each set of hidden features. EFA is a common dimensionality
reduction method that identifies latent factors, or features, that exist as the
linear combination of other features [1]. With this, we want to observe whether
the factors that emerge from the trained model overlap, or are meaningfully
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correlated, with the untrained model factors. If the trained model is not learning
effectively from the data, we would expect that there would be a large overlap
in factors when compared with the untrained models.

Table 3. Number of factors and overlap between untrained and trained models.

Model EFA factors N overlapping
factors (Rho>0.6)

Trained LSTM (200) 31 —

Untrained LSTM (200) 35 5

Untrained LSTM (400) 50 1

Untrained LSTM (600) 74 5

Untrained LSTM (800) 91 4

Untrained LSTM (1000) 103 5

From our EFA, reported in Table 3, 31 features emerge from our trained
model, with an increasing number of factors emerging from larger untrained
dimensions (the number of factors were determined based on the number of fac-
tors with an eigenvalue greater than 1, following common practice). Using these
features, we conducted a complete pair-wise comparison of untrained factors to
trained model factors and computed a Spearman (Rho) ranked correlation for
each pairing. We then simply counted the number of factor pairs that exhibited
a Rho value greater than 0.6 as a measure of pseudo-overlapping feature sets.
From the table, it can be seen that despite the increasing number of emerging
factors, the number of overlapping factors remained relatively constant. This
suggests that, while the untrained models constructed large feature sets, these
were mostly uncorrelated with the trained model features.

6 Discussion

While it is surprising that the untrained models perform comparably well to their
trained counterparts, the results of our analyses suggest that the trained models
are learning effectively from the data; particularly from the EFA, we argue that
the learned features are not simply random combinations of features due to the
notable lack of overlap with the factors emerging from the untrained models.
This lack of overlap is unexpected given the comparable model performance,
suggesting that there are a small number of highly-predictive factors present.

In both affective and knowledge tracing contexts, the untrained models per-
form remarkably well, even outperforming other benchmarks (e.g. the trained
LSTM using the raw data in Table 1 and the BKT model in Table 2). This work
represents a step toward better understanding how deep learning models learn
from given data. It is difficult to conclude that our findings will generalize to all
recurrent models and applications, but the analyses conducted in this work in
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conjunction with those presented in prior works [9,24] have found similar results
across multiple contexts. It is the goal that this work will lead to further work
to better understand knowledge representations within deep learning models to
either better utilize them in various contexts, or to improve them so that they
may exhibit higher utility for the study of learning.

Following the results reported in this paper, it is important to clarify and
emphasize the contribution and potential impact of our findings. First, as the
untrained models were found to be comparable to prior results across both appli-
cations observed in this paper, this finding aligns with prior research that sug-
gests that the trained recurrent models may not be learning deep representa-
tions. However, the lack of overlap between factors emerging from the trained
and untrained models suggests that the trained model is learning a distinctive
set of latent factors related to affect. This finding supports the use of such mod-
els to both detect affect, but also to better study the latent structures that
indicate affect and other learning constructs (i.e. these features are not simply
randomly generated or encoded features). With that said, the untrained models
may additionally provide utility. As the models perform well above chance and
other simple baselines, the estimates produced by these models may still highly
correlate with outcomes of interest and may be used to study learning.
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Abstract. Online course reviews have been an essential way in which
course providers could get insights into students’ perceptions about the
course quality, especially in the context of massive open online courses
(MOOCs), where it is hard for both parties to get further interaction.
Analyzing online course reviews is thus an inevitable part for course
providers towards the improvement of course quality and the structuring
of future courses. However, reading through the often-time thousands of
comments and extracting key ideas is not efficient and will potentially
incur non-coverage of some important ideas. In this work, we propose
a key idea extractor that is based on fine-grained aspect-level semantic
units from comments, powered by different variations of state-of-the-art
pre-trained language models (PLMs). Our approach differs from both
previous topic modeling and keyword extraction methods, which lies in:
First, we aim to not only eliminate the heavy reliance on human inter-
vention and statistical characteristics that traditional topic models like
LDA are based on, but also to overcome the coarse granularity of state-
of-the-art topic models like top2vec. Second, different from previous key-
word extraction methods, we do not extract keywords to summarize each
comment, which we argue is not necessarily helpful for human readers
to grasp key ideas at the course level. Instead, we cluster the ideas and
concerns that have been most expressed throughout the whole course,
without relying on the verbatimness of students’ wording. We show that
this method provides high and stable coverage of students’ ideas.

Keywords: MOOC · Key ideas extraction · Language models ·
Automated pipeline

1 Introduction

Identifying key ideas from course reviews is an essential way of obtaining insights
into students’ learning experience, especially in the context of massive open
online courses (MOOCs), where it is hard for students and instructors to have
further interaction [1,16].
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However, reading through the often-time thousands of comments and extract-
ing key ideas is not efficient and will potentially incur non-coverage of some
important ideas [12]. This can be due to both aspects of feedback being forgot-
ten throughout the reading due to readers’ limited working memory [3] or even
being ignored because of readers’ perceptions and confirmation bias [8,10,30].

In this paper, we propose an automated key idea extraction pipeline that can
be run with minimal human intervention and interpretation, with the purpose
of efficiently covering as many as the most expressed ideas in massive corpus of
students’ reviews in online courses. While it is not necessarily feasible for course
providers to sift through the often-time thousands of comments, it is advisable
that they should attend to certain important aspects of concerns that have been
most expressed in the comments [23]. We propose such an automated method,
facilitated by state-of-the-art NLP algorithms. Moreover, we conduct experi-
ments on the robustness of dimensionality reduction of text embeddings before
applying hierarchical clustering, providing empirical and theoretical insights into
the selection of this parameter and its impact on efficient coverage of ideas, for
future users of this method. We also introduce a weighted centroid to select rep-
resentative phrases for each cluster, and a flexible usage of a coefficient value to
attend to under-represented ideas in a cluster.

We argue that for the efficient coverage of the most important aspect-level
ideas expressed in massive corpus of online course comments, traditional keyword
extraction and topic modeling methods might not work well, which is because
the former only studies reducing the size of text instead of the number of doc-
uments [25,32], while the latter suffers from coarse granularity [14]. Facilitated
by the state-of-the-art, our research provides a fine-grained key idea extraction
approach to bridge this gap, while being wording-agnostic.

2 Related Work

Before static embedding methods such as word2vec [28] and contextualized lan-
guage models such as BERT [9] and RoBERTa [20] were introduced, tasks of
natural language processing (NLP) had been strongly relying on statistical char-
acteristics extracted from language. For example, in the field of topic modelling,
since Blei et al. [5] proposed Latent Dirichlet Allocation (LDA), this probabilis-
tic model had been a major algorithm in topic modeling, whose limitations lie in
both the unknown numbers of topic clusters that have to be decided by human
through exhaustive experiments, and its statistical discrimination over rare but
significant topic keywords - as topical words are not always frequently mentioned
at the level of each document. On the other hand, recent development and deeper
understanding in word embedding brings state-of-the-art topic modeling algo-
rithms like top2vec [2] and BERTopic [11] to the table, which yield better results
and require less human intervention than traditional topic models.

In the field of education, Miller [29] proposed leveraging BERT and k-
means for extractive text summarization of lectures. They claimed that many
approaches in the field used dated algorithms that produced sub-par results
and relied on manual tuning. This provided a good pipeline to address similar
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extractive summarization scenarios, but we argue that the text representation
that BERT itself produces, typically used in research by directly taking the [cls]
(classification) token of BERT, is sub-optimal [31], and while being de facto, k-
means is not necessarily a panacea for high-dimensional clustering. In this paper,
we thus replace them by Sentence Transformers [31] and HDBSCAN [7]. Masala
et al. [25] proposed extracting and clustering main ideas from student feedback
based on a pipeline of KeyBERT-based keyword extraction and K-means context
clustering. They first extracted top 10 keywords for each course, then clustered
different contexts that mentioned these words. To the best of our knowledge,
however, their keyword extraction component still relied on the verbatimness of
the wording. This limitation is also addressed in our approach, through clustering
directly on high-quality embeddings of fine-grained text.

We argue that for a course level analysis, starting from top-n verbatim
keywords is not always a good approach as 1-gram keywords extracted might
be mostly nouns which are over-general and hard to interpret on their own,
while 2-gram or over 2-gram keywords strongly rely on the verbatimness of
students’ phrasing. For example, “well-organized” and “well-structured” convey
close meanings that might otherwise be interpreted by course providers as one
aspect. Considering two semantically similar words separately might affect the
statistical significance of both of them, leading to both being ignored from top-n.
By contrast, both being selected in top-n might affect the diversity of aspects
included, as this prevents other important words from being selected. Therefore,
we propose directly applying clustering on the level of fine-grained text, by break-
ing down each comment into chunks of long phrases or short sentences, which we
argue is a good semantic unit that carries semantically interpretable meanings
(as opposed to fragmented keywords), while mostly staying in only one aspect
(as opposed to document level that covers different aspects which can twist the
text embeddings and therefore affect the effectiveness of the clustering).

In line with our intuition, Luo and Litman [23] proposed summarizing stu-
dents’ responses at phrase level, and introduced student coverage as an evaluation
of the method, based on the assumption that concepts mentioned by more stu-
dents should receive more attention from the instructor, which chimes in with
the purpose of our method. In this paper, we aim to realize these objectives
with state-of-the-art algorithms. Moreover, on top of covering concepts that are
semantically expressed the most, we also explore using outlier scores in a clus-
ter, to ‘listen’ to under-represented phrases, as will be described in Sect. 4.1. In
summary, we build upon the state of the art in text summarization and natu-
ral language processing to propose a novel pipeline, which also overcomes their
limitations, and takes into account readability, relevance, and coverage [21].

3 Method

3.1 Corpus

We used the Coursera Course Reviews dataset1, which comprises over 140k
reviews of 1,835 courses, along with their corresponding ratings. For experiments
1 https://www.kaggle.com/septa97/100k-courseras-course-reviews-dataset.

https://www.kaggle.com/septa97/100k-courseras-course-reviews-dataset
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and demonstration of our proposed method, we focus on the field of machine
learning and data science, which we filtered by the inclusion of either “machine”,
or both “data” and “science” in the course names, yielding 12 machine learning-
and data science-related courses after we removed “machine design” which is
irrelevant in this context. The filtering of data results in 9,980 unique comments
with 246,290 tokens.

3.2 Pre-processing

What distinguishes our approach from other topic modeling methods is that
we do not apply topic modeling at the entire document level, but instead at a
fine-grained level, which requires that we first break each document into long
phrases or short sentences. Although our method is mostly based on the state
of the arts, the pre-processing step is inspired by a traditional method, RAKE
[32], which observed that a document can be parsed into candidate keywords by
breaking them down at delimiters and certain stopwords. We further customized
our stopword list, removing as many useful words from the list as possible (e.g.,
opinionated ones like don’t, not, shouldn’t) to prevent them from being deleted
during parsing. However, we find that what really matters is that a document is
parsed into short sentences using delimiters. The stopwords that further break
each short sentence into long phrases are less important, as a word that does
not appear in a phrase will appear in the adjacent one anyway, preserving the
information to be encoded and processed in later clustering.

3.3 Pipeline

We adopt similar pipeline described in [2], while making a few important adjust-
ments to overcome its coarse granularity. First, as our method is based on fine-
grained aspect-level linguistic units after pre-processing, the default doc2vec [18]
would intuitively be insufficient to learn phrase embeddings that are semantically
meaningful [17]. We thus replace this encoding method by two latest Sentence
Transformers [31] models. Second, we find that the optimal number of embedding
dimensions to reduce to at phrase level, before applying hierarchical clustering,
is different from that on document level, and propose the method to empiri-
cally customize this hyperparameter through coverage. Lastly, we propose using
a local weighted centroid to select the most representative phrase, so that readers
can cover a big portion of the most important ideas through reading only a few
phrases representing the largest clusters. Our pipeline is shown in Fig. 1.

Originally introduced using BERT as a backbone, Sentence Transformers
(ST) have been shown to yield very effective representations of text when applied
to similarity comparison, clustering, and information retrieval tasks [31], as
opposed to previous approaches - taking [cls] token of BERT - which yielded sub-
optimal semantic representation. It was not until recently that new ST methods
that yielded significant performance boost based on newer Transformer models
have been released. In this work, we empirically evaluate two ST models: one
based on MPNet [33] that provides the best sentence embedding and semantic
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Fig. 1. Automated fine-grained key ideas extraction: pipeline and mechanism

search performance up to the date of this paper, all-mpnet-base-v22; and the
other being all-MiniLM-L6-v23, which is based on a distilled model MiniLM
[35]. The latter achieves comparable results while being 5 times faster than the
former. Thus we believe it is worth evaluating as an alternative for user cases
in student feedback reading that require faster encoding of text embedding and
output of following analysis results.

After encoding, the data further goes through dimensionality reduction and
clustering. For dimensionality reduction, we use UMAP [27], which preserves
better global structure of data [2] compared to t-SNE [24] as reflected in distances
between clusters. For clustering, we use HDBSCAN [7,26], a robust hierarchical
density-based clustering method which we use to replace the de facto k-means
used in prior research, whose limitations lie in assumptions of inclusion of all
instances and spherical shapes of clusters.

Equation (1) demonstrates the way we propose to find the centroid phrase CP
in a cluster that shares the highest cosine similarity with our defined weighted
centroid embedding CE as computed in Eq. (2).

2 https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
3 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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CP = arg max
k

(
CE · Ek

‖CE‖ ‖Ek‖ ), (1)

where,

CE =
∑K

1 [(1 − αOk)Ek]

K − α
∑K

1 Ok

, (2)

where K denotes the number of phrases in a cluster, k denotes the kth entry
in that cluster, while Ok and Ek respectively denote its corresponding outlier
score and embedding. We further introduce α as a flexible coefficient, to adjust
the influence of the outlier score to the computation of the weighted centroid,
where by default we set it to 1. However, we did find that α can be used flexibly,
to output representative phrases that are far away from the vanilla centroid
to obtain unique ideas, when it is set to a higher value. Although in [2], it is
suggested that at document level, a weighted centroid will not make much of a
difference to the vanilla centroid, we find that it does make a difference at the
fine-grained aspect level, especially when applied to lower dimensional data after
dimensionality reduction using UMAP.

4 Results and Discussions

4.1 Key Ideas Analysis

Results from our methods identified a range of important aspects that have
been expressed in reviews of our selected machine learning- and data science-
related courses (Table 1). We present the top-10 largest clusters from two results:
respectively running with dimensionality reduction to 5 and 10 dimensions. [2]
observed a best dimension reduction number of 5 for document level embedding
clustering, while under our high-granularity context, we observed that it provides
the best results when this hyperparameter is set to around 10, as will be further
demonstrated through in-depth coverage study and empirical interpretation in
Sect. 4.2. However, it is shown that our pipeline provides robust performance
and a great overlap of topics under these two settings. Notably, we observed
that the topics that are not overlapped in the top 10 clusters under these two
results can be further found in the rest of their top 15 clusters.

Based on results shown in Table 1, we could easily get an overall idea that
in machine learning- and data science-related courses, students express most
concerns about: 1) programming language used in the courses, 2) math back-
ground required and covered, 3) content structured in the courses such as videos,
quizzes and programming exercises, 4) the way and the degree to which instruc-
tors successfully convey the essence of the algorithms. These findings are in line
with previous research using different methodologies [6,15,19,22,36]. In courses
related to machine learning, students may encounter different kinds of difficul-
ties [19]. For example, students lacking solid mathematical background struggled
more with understanding math-related content in the course [15] and develop-
ing computational thinking [36]. Bolliger [6] suggested that an online course
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can be affected by various factors, such as instructor variables, technical issues,
and interactivity, which can be interpreted through combinations of our identi-
fied topics as well. For example, identified clusters about Andrew Ng’s way of
teaching explain instructor variables, technical issues could involve codes debug-
ging issues caused by difficulty of using programming languages like Octave, as
expressed in comments, while interactivity could be supported by quizzes and
exercises in this context. Lu et al. [22] found that flow experience significantly
contributed to MOOC satisfaction, which relies on the students’ not being dis-
tracted and frustrated during learning. In our case, we argue that ideas expressed
in the topics identified, such as difficulty in using programming languages and
following math intuition due to insufficient background knowledge, could account
for no or low flow experience.

However, to acquire deeper insights into opinions in clusters, readers could
further go into each cluster to see the well-represented and under-represented
phrases in each cluster, through the usage of outlier scores. We provide the
example of Octave to give a brief idea on how it works (see Table 2).

Table 1. Top-10 largest clusters by clustering on 5 and 10 dimensional embeddings,
represented by their weighted centroid phrases. Cluster labels in bold show clusters
that have been overlapped in the top-10 and thus double-validated by two outputs.

5-d Clustering 10-d Clustering

Top-n Weighted centroid Cluster label
(interpreted)

Weighted centroid Cluster label
(interpreted)

1 The essence and purpose
of the algorithms

Algorithm The guts of the algorithms Algorithm

2 The instructor uses Octave Octave best Coursera course I’ve
ever taken

Best
Coursera
course

3 Made simple [..]
understandable MATLAB

Matlab Be afraid of using Octave Octave

4 The best explanation of
principles and ideas
behind Machine Learning

Machine
Learning

Matlab hands-on exercises
permit a deeper
understanding of the
algorithms

Matlab

5 I enjoyed very much Enjoyed I enjoyed Enjoyed

6 Do not want to watch the
videos

Videos The exercises Exercises

7 Allows me to follow the
quizzes

Quizzes Very well constructed Course
structure

8 A statistics background [..] Math
background

A Complete online course Good
MOOC

9 Great MOOC Good
MOOC

Liked the way Andrew
taught us the concept

Way of
teaching

10 Great exercises Exercises Being proficient with
Linear Algebra

Math
background
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Table 2. Sampled elements in an exemplar on the most representative cluster about
Octave (the 3th largest cluster under 10-d clustering). The Example in bold is the
centroid phrase computed by a weighted centroid. We present both well-represented
and under-represented examples, showcased by outlier scores

Cluster examples Outlier score

More chances to practice algorithm prototyping in Octave 0.0

Do not like Octave somehow and prefer the Python approach coming 0.0

Octave [...] instead of more modern languages 0.0

Force the students to use Octave 0.0

Be afraid of using Octave 0.0

In OCTAVE instead of popular languages like R 0.24

But I consistently felt unprepared for applying it in Octave 0.26

Along with a great introduction to Octave 0.26

Awesome assignment submission tool via Octave 0.34

I enjoyed learning Octave and performing the weekly homework 0.40

4.2 Robustness of Dimensionality Reduction

Recent research has indicated that the similarity measures of contextual word
embeddings, as opposed to static word embeddings, have been dominated by a
small number of what is referred to as the “rogue” dimensions [34]. Furthermore,
the typically 768 or similar pre-defined dimensional space of BERT-facilitated
embedding methods makes density-based clustering inefficient. It is also not dif-
ficult to intuitively picture how hierarchical density-based clustering will tend to
only put phrases that are extremely close to one another into the same cluster,
due to the vast geographical space created by high dimensions. This tends to,
thereby, make the clusters no more than a collection of some almost semanti-
cally identical, or even worse, verbally identical phrases. Reducing dimensionality
before apply clustering, however, greatly compresses the semantic space, making
clusters that are otherwise separated in high dimensional space have to “accept”
one another and merge to a large cluster.

We speculate that on a high granularity level, the number of embedding
dimensions used in hierarchical clustering can be interpreted and utilized as a
strong indicator of reader’s tolerance towards semantic difference, and therefore
the acceptance of larger cluster with semantically diverse, yet aspect-wise similar
expressions. In general, a lower number of dimensions indicates higher tolerance,
and leads to more otherwise separated clusters merged into one.

The results are demonstrated in Fig. 2, where we compare a few representa-
tive dimension numbers through their corresponding sizes of the biggest clusters,
and average sizes of the top-10 clusters, which is extremely significant for mea-
sure of coverage of ideas. Coverage to more frequently expressed students’ ideas
through fewer first n clusters can lead to instructors’ getting important opin-
ion aspects from comments with higher efficiency. We empirically find that the
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Fig. 2. Reducing to different numbers of dimensions before applying hierarchical clus-
tering yields coverage of ideas through top-n clusters with different efficiency

coverage stays stable when dimension is reduced to around 5–20, yielding simi-
lar top-n cluster phrases and sizes, while 10 dimensions provide the best results
in our case, indicated by both cluster quality and coverage. We suggest future
studies to start from this range and find a customized value for their specific
courses.

4.3 A Glimpse of the Algorithm’s Wording-Agnostics

In this section, we briefly demonstrate the superiority of our algorithm in terms
of how agnostic it is towards different wordings to convey similar meanings that
are by their nature supposed to be clustered into one aspect.

Using the 7th largest cluster under 10-dimensional clustering as an example,
we randomly select 13 phrases out of the 71 phrases in that cluster (see Table 3).
It is clearly shown that wordings of reviews in this cluster are highly diverse,
while our approach facilitates to understand them as conveying close meanings,
albeit phrases in this cluster consist of no verbatim wordings.
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Table 3. Diverse wordings of reviews in a sample cluster, whose weighted centroid
phrase is computed as Very well constructed, while phrases in that cluster include
almost no verbatim forms of the same wording

Cluster examples Outlier score

Thoughtfully made 0.0

Very well put together 0.0

Carefully created 0.0

Very well constructed 0.0

Well constructed with good practicals 0.04

Really well crafted 0.27

Very well designed with a clear focus 0.43

Also well-built with a lot of warm-support and encouragement 0.52

Exceptionally well arranged 0.54

Very polished and it makes participating easy and smooth 0.54

Meticulously curated 0.56

Excellent selfcontained 0.57

Badly designed 0.58

5 Conclusion

In this work, we propose a novel pipeline for online course providers to receive
insights into students’ opinions, concerns and experience from online courses, and
thus be able to attend to the most important aspects of comments efficiently.
We empirically present the effectiveness of combining state-of-the-art embedding
encoders, dimensionality reduction, and clustering algorithm on the fine-grained
aspect level. We also present an empirical study on the robustness of embedding
dimension selection that could optimize runtime without losing much semantic
information of aspect-level linguistic units, and being more wording-agnostic for
higher efficiency of student coverage.

Structured on the state-of-the-art, our proposed method contributes to
achieving high coverage of important ideas, while being agnostic to students’
wordings. We plan to deploy this pipeline in real-life classes and create teaching
assistant-generated gold-standard summaries [23] for evaluation of algorithm-
generated idea coverage against human readers’ perceptions. Notably, our app-
roach aims to extract information from course reviews, while we highlight that
intrinsic biases in course evaluations do exist [4,13]. We encourage researchers
in this field to build upon our method to detect and mitigate biases in course
evaluations.

We also envision two possible directions of future work. First, we envision
fine-tuning Sentence Transformer models with domain-specific text datasets, to
make domain-specific aspects more positionally accurate in the semantic space,
for facilitating better evaluations of courses in highly specialized domains. While
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in our case, reviews related to machine learning and data science courses might
not be highly different from day-to-day writing, highly domain-specific ones like
medical courses might require language models’ deeper understanding about
the field, to extract accurate clusters. Second, we envision efforts in human-AI
interaction: if deploying our proposed method in industrial settings, we encour-
age to enable users (course providers, instructors, etc.) to accept, reject, and
merge clusters. Such data can then be recorded and used to learn a feature-
based activation layer [9,31] for the system to provide more personalized cluster
recommendations.
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Abstract. Cloze items are a foundational approach to assessing read-
ability. However, they require human data collection, thus making them
impractical in automated metrics. The present study revisits the idea of
assessing readability with cloze items and compares human cloze scores
and readability judgments with predictions made by T5, a popular deep
learning architecture, on three corpora. Across all corpora, T5 predic-
tions significantly correlated with human cloze scores and readability
judgments, and in predictive models, they could be used interchangeably
with average word length, a common readability predictor. For two cor-
pora, combining T5 and Flesch reading ease predictors improved model
fit for human cloze scores and readability judgments.

Keywords: Readability · Assessment · Cloze · Transformers

1 Introduction

Cloze items, also known as fill-in-the-blank items, are widely used in education
for assessment and some types of instruction (e.g. vocabulary instruction). How-
ever, cloze items also have a long history as a measure of readability, i.e. of text
difficulty [16]. The standard approach to assessing readability with cloze items
is called nth deletion, where every nth word in a text is deleted and replaced
with a blank of fixed size. The task of the reader is to use their knowledge and
context cues across the entire text to fill in the blanks.

It has long been known that a higher number of correct completions on nth
deletion cloze tests is a strong indicator of higher readability (low difficulty) and
aligns with well-known readability metrics like Flesch reading ease and Dale-
Chall readability, aptitude tests, and standard comprehension questions [2,4,
16,17]. Unlike comprehension test questions, which are difficult to create and
confound the measurement of text difficulty with question difficulty, cloze items
can be generated directly from text and have less measurement error.

Despite their effectiveness as a readability measure, cloze items are not a
practical in most cases because they require human-subjects data collection. For
this reason, practical readability metrics have been developed to have high cor-
relation to measures like cloze, but otherwise use easily calculated characteristics
of the text to determine a readability score. Common examples of such metrics
c© Springer Nature Switzerland AG 2022
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are Flesch reading ease [10], which uses average sentence length in words (ASL)
and average word length in syllables (AWL), Dale-Chall readability, which uses
the proportion of difficult words (defined by a word list) and ASL [5,7], and the
Lexile measure, which uses word frequency and ASL [15].

These metrics are quite simple but also quite effective at assessing readability
on a large scale - not because they are causally related to readability but rather
because they are so strongly correlated with factors that influence readability.
The seeming paradox that the simplest measures would be the best predictors of
readability was addressed by Bormuth, who described it as a trade-off between
face validity and predictive validity [3]: many linguistic variables correlate with
readability, so a metric with face validity would include many linguistic variables;
however, the measurement error associated with these variables means that a
metric with fewer variables has better predictive power when applied to unseen
texts. Thus, while there has been continued interest in creating better readability
metrics, especially in the modern era (see [6] for a review), these simple metrics
are a challenging baseline. For example, Martinc et al. found that their deep
neural language models were not able to outperform an ASL baseline (r = .906)
on the Newsela corpus in an unsupervised setting [12].

Modern deep learning methods, notably Transformers [19] offer a potential
alternative to traditional readability metrics. As described above, the traditional
approach is to use linguistic features to predict cloze item performance, which is
a ground-truth measure of readability. In contrast, Transformers can be used to
predict cloze difficulty directly because this is how they are trained in the first
place - to predict masked tokens in their input. Deep learning methods based
on masked language modeling have proven to be extremely effective in a variety
of natural language processing (NLP) tasks [8,13], so presumably, they would
function well for a task aligned with their pre-training objective. The idea of
using Transformers to directly measure cloze difficulty was first investigated by
Benzahra & Yvon, unfortunately without much success [1]. They used GPT-
2, an autoregressive Transformer, to predict cloze completions on two corpora
with experts-labeled grade levels and achieved overall correlations of .05 and .13,
respectively. However, we argue that GPT-2 is the wrong model to use for this
task because it is autoregressive and only allows leftward context to be used to
predict the next word or words. In contrast, the nth deletion cloze task allows
the use of both left and right context across the entire document. Therefore,
additional study of Transformers to directly predict cloze difficulty is warranted.

The present investigation examines the application of Transformers to mea-
suring both cloze difficulty and grade-level readability. Our primary research
question is whether Transformer cloze scores correspond with these measures and
standard readability metrics. The remainder of the paper is organized around
three different studies with different corpora. The first corpus, the Bormuth pas-
sages [4], allow direct comparison to cloze item difficulty calculated from human
subjects experiments, in addition to comparison to other relevant measures like
comprehension tests. The second two corpora, the OneStopEnglish corpus (OSE)
[18] and the Newsela corpus [20], allow comparison to expert-defined grade
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Fig. 1. A chunk representing one-half of a 250-word text submitted to T5. Each cloze
word has been replaced by a highlighted T5 sentinel token, which is ordered sequentially
using nth deletion, n = 5.

levels for each text. Across all corpora, additional comparisons will be made
to standard readability metrics like Flesch reading ease.

2 Approach

All of the following studies use a Transformer called T5 [13] to measure both
cloze difficulty and readability. T5 is a suitable model because it attends to both
left and right contexts and because it is trained on a denoising objective that
closely matches the cloze task. To match the method of Bormuth [4], only the
first 250 words of each text are subjected to nth deletion (n = 5). Five clozed
versions of each text are created by using different offsets for nth deletion, e.g.
starting at words 1, 2, 3, 4, and 5, after which subsequent words have been
deleted by a previous version. As a result, every word in the text is subjected
to cloze in exactly one offset version. During development, it was discovered
that the T5 model used1 produces degenerate responses to cloze items after the
27th item2. Therefore, each text was split into two chunks, each representing
125 words and 25 cloze items, given the n = 5 nth deletion strategy, and the
two chunks were submitted to T5 separately for each of the 5 offsets noted
above The need to break the text into chunks for T5 is a notable departure from
Bormuth’s method because it creates less context for T5 to complete the task
than what is afforded to humans, making the task more difficult. Otherwise, this
task is broadly consistent with T5’s unsupervised denoising training objective of
predicting the randomly deleted 15% of tokens vs. predicting nth-deleted tokens,
n = 5, or 20% of tokens. An example of a chunk input to T5 is shown in Fig. 1.

Several approaches to generating cloze predictions were explored during ini-
tial investigations, with the goal of generating multiple predictions for each
cloze item. Multiple predictions are desirable because they allow partial credit

1 https://huggingface.co/t5-large.
2 https://github.com/huggingface/transformers/issues/8842.

https://huggingface.co/t5-large
https://github.com/huggingface/transformers/issues/8842
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for lower-ranked predictions using metrics like reciprocal rank, where a cor-
rect prediction at rank N receives a score of 1/N . Multiple predictions are also
desirable because they potentially reflect a distribution of predictions across
human subjects, rather than a single prediction. Our investigations suggested
that greedy beam search had desirable properties of being highly repeatable but
the disadvantage of not producing much diversity when multiple predictions were
requested, regardless of the number of beams and diversity penalties applied.

Therefore, for the top prediction, we used greedy beam search with one beam,
and for the remaining predictions, we used sampling with both top-K [9] and
top-p [11] approaches. Because sampling is stochastic, the sampling results are
not highly repeatable, but because the cloze metrics are assessed per text, we
consider these as being repeated 250 times, once for each word in the text. To
avoid repetitions and multi-word predictions, which are impossible given the
task, duplicate predictions were removed from lower ranks, and predictions that
contained internal whitespace (as a separator between words) were excluded.

Two accuracy metrics were calculated for each cloze item using these predic-
tions. Correct at rank 1 was defined by an exact match between the top predic-
tion and the original word, normalized for case and leading/trailing whitespace.
Correct at any rank was defined by a similar exact match on a prediction of any
rank, weighted by reciprocal rank. In addition to the T5 cloze metrics, Flesch
and Dale-Chall readability metrics were calculated for each text3.

3 Study 1: Bormuth Passages

3.1 Data

The Bormuth passages were used in a major study of readability that incorpo-
rated cloze items (nth deletion; n = 5), reading rate, and pre/post comprehension
questions [4]. To create these passages, Bormuth ranked 330 passages used in
another study [3] by cloze difficulty, divided the difficulty range into 8 points, and
selected the 4 passages closest to those 8 points, such that no more than 4 came
from the same subject matter category and each text was at least 250 words
in length. Thus the 32 passages represent 8 difficulty levels spanning from first
grade to college. Each passage and corresponding measures were extracted from
the Appendix [4] and manually checked for errors; passages were additionally
submitted to Grammarly to catch any errors. Grammarly revealed that several
passages (3213, 5226, 6441, 7151, and 8552) contained spelling mistakes. In order
to prevent T5 from correctly predicting a word but not matching the original
misspelled form, all spelling errors were corrected. Additionally, passage 6545
had no corresponding entry in the data tables and passage 6535 listed in the
data tables had no corresponding text; these were assumed to refer to the same
passage. Finally, Lexile scores were calculated using the Lexile Text Analyzer4.
Because the Analyzer only allows 50 texts to be processed per month, Lexiles
were only computed for this dataset.
3 https://github.com/cdimascio/py-readability-metrics.
4 https://hub.lexile.com/analyzer.

https://github.com/cdimascio/py-readability-metrics
https://hub.lexile.com/analyzer
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Fig. 2. Density plot for correctness at
rank 1 and correctness at any rank.

Fig. 3. Scatterplot of T5 cloze correctness
and human correctness. Regression lines
show smoothed (blue) and linear (red)
fits. (Color figure online)

3.2 Results

The primary questions of interest in this study are whether the T5 cloze scores
correspond with the human cloze scores, as well as how these scores compar-
atively relate to other measures of readability. To address the first question,
we examined the differences between the correctness at rank 1 metric and
the correctness at any rank metric in order to determine which was the most
appropriate measure for the following analyses. As shown in Fig. 2, the cor-
rectness at rank 1 (M = 162.22, SD = 27.24) and correctness at any rank
(M = 175.33, SD = 25.97) are approximately equivalent in distribution, except
correctness at any rank is slightly more lenient and therefore right-shifted.
Because the difference seemed relatively negligible and correctness at rank 1
has better repeatability, we only report results for correctness at rank 1, which
we will refer to as T5 cloze scores.

The Spearman rank order correlation between the T5 cloze scores and human
cloze scores was significant, r(30) = .86, p < .001. A scatterplot between the two
scores is shown in Fig. 3. The relationship is approximately linear, with visible
separation of the eight difficulty levels along with visible overlap. Two ANOVA
analyses were conducted to examine the discriminability of human and T5 cloze
scores according to these levels. The human cloze score ANOVA was significant,
F (7, 24) = 93.19, p < .001. Pairwise tests using Tukey’s HSD revealed that
every difficulty level was significantly different from the other, p < .05, except
for levels 2 and 3, levels 4 and 5, and levels 7 and 8, i.e. there are effectively 5
levels of difficulty rather than 8 according to this measure. The T5 cloze score
ANOVA was also significant, F (7, 24) = 7.50, p < .001. Pairwise tests using
Tukey’s HSD revealed that level 1 was significantly different from levels 6, 7,
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Table 1. Rank order correlations between readability measures for Bormuth passages.

Cloze Pre Post Read ASL AWL

Pre .87

Post .95 .92

Reading .88 .84 .87

ASL –.88 –.72 –.80 –.69

AWL –.84 –.77 –.86 –.85 .67

T5 .86 .72 .72 .72 –.80 –.62

Note: All correlations significant, p < .001.

and 8; additionally levels 2, 3, 4, and 5 were significantly different from level 8,
all p < .05. These results indicate that although the correlation between T5 cloze
scores and human cloze scores is strong, the discriminability of T5 cloze scores
with respect to the assigned difficulty levels is less than that of the human cloze
scores. One possible reason for this is that the human cloze scores were based
on students from grades 3 to 12, so the scores for difficult passages were drawn
down by students from lower grades. In contrast, T5 is a single model with a
single ability level.

Correlations with additional readability measures are shown in Table 1. The
highest correlations were between the human measures in the upper left. The
T5 cloze scores and the classic readability components, average sentence length
in words (ASL) and average word length in syllables (AWL), have similar corre-
lations to each of the human components, with the exception of post-test score.
Since post-test score represents human performance after reading the text, a
low correlation might be expected, but it is notable that AWL and ASL have a
stronger correlation with post-test than pre-test, while T5 cloze scores have the
same correlation with both. Surprisingly, the T5 cloze scores are more strongly
correlated with ASL than AWL, suggesting that T5 is using linguistic infor-
mation at the sentence level more than at the word level as it makes cloze
predictions.

The results in Table 1 suggest that the T5 cloze scores could be combined
with ASL, AWL, or both to create a model in the style of classic readability
metrics like Flesch reading ease. To investigate this possibility and compare to
the standard Flesch model, four models were constructed using combinations of
these predictors. The models and their fits are reported in Table 2. The best-
fitting model used all predictors, giving it a .06 improvement in fit over the
Flesch reading ease model. However, this comparison is somewhat unfair as the
Flesch model has only two predictors. The remaining models are two predictor
contrasts to the Flesch model. The T5+ASL model has a fit .01 below the Flesch
model, and the T5+AWL has a fit .03 below the Flesch model. Altogether, these
models indicate that the T5 cloze scores potentially have some additive benefit
to ASL and AWL and can be used almost interchangeably for this task.
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Table 2. Linear models predicting human cloze scores for Bormuth passages.

Model Coefficients R2

T5 ASL AWL

All .62 −4.56 −95.31 .94

Flesch −6.09 −116.87 .88

T5+ASL .79 −6.58 .87

T5+AWL .95 −149.03 .85

Note: For all coefficients, p < .001.

4 Study 2: OneStopEnglish

4.1 Data

The OneStopEnglish corpus (OSE) is a balanced corpus consisting of 189 texts
topics, each in three versions of difficulty, for a total of 567 texts [18]. Texts
were collected from onestopenglish.com, a site for English language learners,
and consisted of news stories that had been simplified by teachers for news-
based lessons. The three levels of difficulty are thus aligned with pedagogical
goals in ESL. Each difficulty level has a reported Flesch-Kinkaid Grade Level,
6.4 for Beginner, 8.2 for Intermediate, and 9.5 for Advanced. Unlike the Bormuth
passages, OSE has no human-derived readability measures, so its primary utility
for readability research stems from its expert-labeled difficulty levels. OSE is a
popular corpus for readability research and was used in several studies mentioned
in Sect. 1 [1,12].

4.2 Results

The primary research question for this study is the alignment of T5 cloze scores
with expert difficulty and other measures of readability. To keep the results
comparable with the last study, difficulty in these results is reverse scaled as
ease. As in the previous study, we checked the distributions of the correct at
rank 1 and the correct at any rank metrics. The distributions were comparable
to Fig. 2 relative to each other, but the distributions of correct at rank 1 (M =
156.82, SD = 11.28) and correct at any rank (M = 171.32, SD = 10.51), were
markedly narrower than in the last study, likely reflecting the smaller range of
difficulty in OSE compared to the Bormuth passages. We again chose correct at
rank 1 as our T5 cloze score metric in the following analyses.

The rank-order correlation between the T5 cloze scores and the three levels
of ease was significant, r(565) = .19, p < .001, but notably smaller than in the
last study. We additionally calculated Kendall’s tau-b to compare to the previous
work that used Transformers to predict cloze scores on this corpus, Benzahra and
Yvon [1]. Our τb = .15 for OSE versus their τb = .05, a threefold improvement
but a modest score nonetheless.
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Table 3. Rank order correlations between
readability measures for the OneStopEnglish
corpus.

Ease ASL AWL

ASL –.58*

AWL –.37* .29*

T5 .19* .02 –.07

Note: * p < .001.

Table 4. Linear models predicting
reading ease for the OneStopEnglish
corpus.

Model Coefficients R2

T5 ASL AWL

All .01 −.09 −1.91 .41

Flesch −.09 −2.05 .38

T5+ASL .01 −.10 .37

T5+AWL .01 −3.19 .16

Note: For all coefficients, p < .001.

Rank-order correlations with readability measures shown in Table 3 provide
further insight into this low overall correlation between T5 cloze scores and levels
of ease. In contrast to the previous study, the T5 cloze scores are not significantly
correlated with either ASL or AWL. Additionally, the correlation between ASL
and AWL is less than half what it was in the previous study. The cause of these
changes in correlation is not clear, and possible explanations include the limited
range of ease, the different genres (news text vs. informational text), and the
mode of construction (artificially created vs. naturally occurring).

An ANOVA analysis was conducted to examine the discriminability of T5
cloze scores according to the levels of ease. The ANOVA was significant, F (2, 564)
= 14.47, p < .001. Pairwise tests using Tukey’s HSD revealed that Elemen-
tary texts (M = 160.29, SD = 9.59) were significantly easier than Interme-
diate texts (M = 154.58, SD = 11.35), p < .001, as well as Advanced texts
(M = 155.59, SD = 11.98), p < .001. Intermediate and Advanced texts were not
significantly different from each other, p = .643.

Although the correlations in Table 3 are lower than the previous study, each of
the metrics is significantly correlated with the level of ease. Therefore additional
regression models matching those in Table 2 were created, and the results are
presented in Table 4. The rank order of model fit matches the previous study.
The model containing all predictors had the best fit, followed by Flesch reading
ease. The T5+ASL model has a fit .01 below the Flesch model, and the T5+AWL
was markedly worse at .22 below the Flesch model. As before, models improve
with the T5 predictor, and the T5 predictor is almost interchangeable with AWL.
However, on OSE, the T5 predictor is not as interchangeable with ASL, as shown
by the poor fit of the final model.
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5 Study 3: Newsela

5.1 Data

The Newsela corpus5 was introduced by Xu and colleagues [20] as a resource for
text simplification research, but it has also been used for readability research
[12]. Like OSE, the Newsela corpus contains multiple versions of the same text
topic at different difficulty levels, and the text topics are drawn from the news.
However, Newsela is different from OSE in a number of ways. Newsela has a
greater number of versions for each text topic (typically 5) and spans a greater
range of difficulty, grade 2 to grade 12. However, the distribution of grade-level
text in the corpus is not balanced, and the number of texts at each grade level
ranges from 2 to 2096. Newsela is designed to match English language learning
needs of native, rather than ELL speakers. Finally, Newsela’s grade levels are
approximately aligned with Lexile, which increases its usefulness for readability
research. All 9565 English texts of Newsela were used, consisting of 1911 text
topics.

5.2 Results

The primary research question for this study is again the alignment of T5 cloze
scores with expert difficulty and other measures of readability, and whether
this alignment will be more consistent with the first or second study. To keep
the results comparable, grade level is reverse scaled as ease. Distributions of the
correct at rank 1 and the correct at any rank metrics were similar to the distribu-
tions in Sect. 4. The distribution of correct at rank 1 (M = 159.00, SD = 12.89)
and correct at any rank (M = 173.35, SD = 12.08), were comparably narrow as
the OSE distributions, suggesting that the narrowness of the distributions is not
attributable to a restricted range of difficulty. To stay consistent with the other
studies, correct at rank 1 was again chosen as our T5 cloze score metric in the
following analyses.

The rank-order correlation between the T5 cloze scores and the 11 levels
of ease was significant, r(9563) = .33, p < .001, was in between the corre-
lations found in the previous studies. An ANOVA conducted to examine the
discriminability of T5 cloze scores according to the levels of ease was significant,
F (10, 9554) = 126.91, p < .001. Pairwise tests using Tukey’s HSD revealed that
texts from grade 2 were significantly easier than texts from grades 5–10 and
12; texts from grade 3 were significantly easier than texts from grades 4–10 and
12; texts from grade 4 were significantly easier than texts from grades 5–10 and
12; texts from grade 5 were significantly easier than texts from grades 6–10 and
12; texts from grade 6 were significantly easier than texts from grades 8, 10,
and 12; texts from grade 7 were significantly easier than texts from grades 8,
10, and 12; texts from grade 8 were significantly easier than texts from grade
12; and texts from grade 9 were significantly easier than texts from grade 12,

5 https://newsela.com/data/.

https://newsela.com/data/


316 A. M. Olney

Table 5. Rank order correlations between
readability measures for the Newsela cor-
pus.

Ease ASL AWL

ASL –.95

AWL –.63 .62

T5 .33 –.29 –.16

Note: For all r, p < .001.

Table 6. Linear models predicting read-
ing ease for the Newsela corpus.

Model Coefficients R2

T5 ASL AWL

All .02 –.56 –1.50 .83

Flesch –.58 –1.49 .83

T5+ASL .02 –.58 .83

T5+AWL .05 –17.27 .40

Note: For all coefficients, p < .001.

all p < .05. Nonsignificant comparisons involving grades 10 and 11 are perhaps
best explained by the small number of texts assigned to these levels, 22 total.
Altogether, the ANOVA results indicate that T5 cloze scores afford a fair level
of discriminability for Newsela grade levels.

Correlations with readability measures are shown in Table 5. The strength
of the correlations again falls in between those of the previous studies. ASL
and AWL are correlated comparably to the first study, but ASL is much more
strongly correlated with ease than in the second study. Although the cause of
these differences in correlation remains uncertain, it seems that genre can be
ruled out as a cause, given that the corpora from the second and third studies
are news corpora. These correlations provide additional evidence for another
possible cause, which is the larger range of ease. A larger range of ease is a
common characteristic between the first study and the third study and so may
explain the similarities in correlation.

Regression models matching those used in the previous studies were created
and results are presented in Table 6. The fits of the models follow a different
pattern from the previous studies, with the first three models achieving the
same fit. For the first time, the T5+ASL model has a fit equivalent to Flesch,
providing additional evidence that T5 cloze scores are almost interchangeable
with AWL. As in study 2, the poor fit of the T5+AWL indicates that T5 is not
interchangeable with ASL.

6 Discussion

The focus of this work was to examine the use of T5 for predicting cloze item
difficulty, a standard for readability, along with its analogous grade-level read-
ability. A consistent pattern of results emerged across the three studies. In each
case, T5 cloze scores significantly correlated with the outcome measures of inter-
est, human cloze difficulty or expert-assigned grade level. Additionally, T5 cloze
scores typically improved prediction of the outcome measures of interest when
combined with the Flesch reading ease components of average sentence length
(ASL) and average word length (AWL). In all studies, T5 cloze scores could be
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substituted for AWL in linear models and provide a fit almost as good, or as
good, as Flesch reading ease.

However, there were some notable differences across the studies. The most
striking difference is that T5 cloze scores were much more strongly correlated
with human cloze scores (study 1) than with expert-assigned grade levels (studies
2 and 3). It seems unlikely that this difference can be explained by differences
in genre or patterns of correlation across the studies, since studies 1 and 3 have
similar patterns of correlation between the outcome measures, ASL, and AWL,
but studies 2 and 3 shared the same genre, news. Neither can the differences be
explained by the range of difficulties in the texts, since both studies 1 and 3 have
approximately the same range of grades. Rather, the results across the studies
suggest that T5 cloze scores are more aligned with human cloze scores than with
expert-assigned grade levels, which is somewhat surprising because human cloze
scores and expert-assigned grade levels themselves should be highly correlated
[3,4]. Clearly, further research on this question is needed, focusing on naturalistic
informational texts to replicate the strong findings found in study 1.

The question remains as to whether T5 cloze difficulty has the potential to
improve readability measures that have been in place for many decades. After
all, in our studies, T5 cloze scores at best replaced a component of Flesch read-
ing ease. The primary reason that T5 might be useful going forward is that it
encodes substantial knowledge about the world, and it makes cloze predictions
using that knowledge. For example, T5 has been used for closed book trivia
question answering without explicitly teaching it the knowledge involved [14].
This capability is analogous to a human reader bringing to bear background
knowledge in order to understand a text, and it is something that isn’t captured
by word- or sentence-length metrics. Exactly how to manifest this capability in
a readability model such that it consistently outperforms established metrics is
a matter for future research.
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Abstract. An important problem in an intelligent tutoring system
(ITS) is that of adaptive sequencing of learning activities in a person-
alised manner so as to improve learning gains. In this paper, we consider
intelligent tutoring in the learning by doing (LbD) setting, wherein the
concepts to be learned along with their inter-dependencies are available
as a curriculum graph, and a given concept is learned by performing
an activity related to that concept (such as solving/answering a prob-
lem/question). For this setting, recent works have proposed algorithms
based on multi-armed bandits (MAB), where activities are adaptively
sequenced using the student response to those activities as a direct feed-
back. In this paper, we propose CurriculumTutor, a novel technique that
combines a MAB algorithm and a change point detection algorithm for
the problem of adaptive activity sequencing. Our algorithm improves
upon prior MAB algorithms for the LbD setting by (i) providing bet-
ter learning gains, and (ii) reducing hyper-parameters thereby improv-
ing personalisation. We show that our tutoring algorithm significantly
outperforms prior approaches in the benchmark domain of two operand
addition up to a maximum of four digits.

Keywords: Adaptive sequencing · Multi-armed bandits ·
Change-point detection · Personalisation

1 Introduction

Personalised learning approaches tailored to address the individual needs, skills,
and interests of each student, have been found to cause a significant improvement
in learning gains for the students, apart from providing an engaging learning
experience. Intelligent Tutoring Systems (ITS) have been effective in delivering
personalised learning to students in an automatic manner. An ITS consists of
three important components namely: (i) domain model that captures the rela-
tions or dependencies between the various concepts to be learned, (ii) student
model that represents the student’s current knowledge level and how it changes
as the tutoring progresses and (iii) tutoring model that decides the sequence of
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learning activities presented to students. The tutoring model performs adaptive
sequencing of activities, wherein learning activities to be presented to students
are selected based on student competence levels estimated through their interac-
tions with the system. This leads to better personalisation of learning and hence
higher learning gains.

Clement et al. [4] proposed a tutoring algorithm called ZPDES that uses a
curriculum graph capturing the concept inter-dependencies as a domain model.
The key highlight of ZPDES is the use of ideas from multi-armed bandits to
perform adaptive assignment of learning activities based on student responses.
Later Brunskill et al. [10], used ZPDES to propose an adaptive sequence of
activities to advance students through a curriculum graph generated based on
an algorithmic representation of the concepts for the domain of two operand
addition upto a maximum of 4 digits.

Our Contribution: In this paper, we consider the learning by doing (LbD)
setting used in [10], wherein the concepts to be mastered are available in the form
of a curriculum graph and the students learn a concept by performing activities
related to the concept. Even though ZPDES is less reliant on the underlying
student learning model, it has its own set of hyper-parameters which adversely
affect personalisation. Our main contribution is a novel tutoring algorithm called
CurriculumTutor for the LbD setting. CurriculumTutor combines the ideas of
multi-armed bandits and change point detection. Here, the change point detector
separately tracks the mastery level of each activity and an upper confidence
based MAB algorithm manages the exploration vs exploitation tradeoff. We show
that our CurriculumTutor significantly outperforms ZPDES in the benchmark
domain of two operand addition up to a maximum of four digits, especially in
scenarios where the learner faces difficulty in learning a subset of concepts in the
curriculum graph.

2 Background

In this section, we first describe the learning by doing setting and then explain
how prior works have used ideas from multi-armed bandits in the tutoring model.

Learning by Doing (Fig. 1): A concept is a representational unit of educa-
tional content which is learned by performing an activity related to that concept
(such as solving/answering a problem/question). A concept/curriculum graph
has concepts as nodes and the edges represent dependency/prerequisite rela-
tions between concepts. Several methods have been proposed in the literature to
construct concept graphs from text corpus [6,13]. In this paper, we assume access
to a concept graph for the curriculum to be mastered. Zone of Proximal Devel-
opment (ZPD) is a set of concepts on the boundary of the student’s knowledge
(Fig. 1). It is based on an idea from classical psychology and education research
which states that learning is the fastest and most engaging when practicing on
material slightly beyond the current abilities of the student [3]. A Question bank
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Fig. 1. Multi-armed bandit framework for adaptive activity sequencing in an ITS

contains a collection of question answer pairs associated with each concept. It is
further assumed that all the questions associated with a concept are of the same
difficulty level.

Multi-armed bandit (MAB) problem consists of a fixed set of actions (arms),
and an unknown reward distribution associated with each arm. The system has
to select actions (arms) such that its long term cumulative reward is maxi-
mized. The key challenge in this problem is to balance exploiting the information
that has already been gained about the effectiveness of each action and explor-
ing actions where the estimates about their value are still relatively uncertain,
referred to as the exploration-exploitation tradeoff. Over time the system learns
which actions are more effective and can earn larger rewards.

MAB Applied to Tutoring Model: In the multi-armed bandit framework
for adaptive sequencing, the activities/topics in the ZPD form the arms and
rewards are computed based on student responses, as seen in Fig. 1. The system
maintains an estimate of the learning progress associated with each concept in
the ZPD, based on which it decides the next activity to be offered to the student.
In the process of maximizing cumulative rewards, the MAB framework would
pick activities from the concepts that the student tends to learn faster, thereby
generating a personalized activity sequence. This formulation is less reliant on
the underlying model of student learning and can therefore better adapt to
different individual learning behaviors.
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Algorithm 1. ZPDES
Initialization: For each activity a in ZPD in the not-learned state set wa = w0

Selecting the next activity: The weights (wa) of the activities in the ZPD are
normalized (w′

a) and an activity is sampled from the probability distribution pa

w′
a =

wa∑
a′∈ZPD wa′

, pa = w′
a(1 − γ) + γ

1

|ZPD| a ∈ ZPD

Reward for the chosen activity a′: r =
∑na′

k=na′ −d/2+1

Ca′,k

d/2
− ∑na′ −d/2

k=na′ −d

Ca′,k

d/2

na is the number of times activity a has been chosen

Updating weight of activity a′: wa′ ← βwa′ + ηr

3 Prior Work and Research Gaps

In this section, we discuss the ZPDES algorithm proposed by Clement et al.
[4] and then look at the research gaps in ZPDES, in particular about how the
hyper-parameters in ZPDES adversely affect personalization.

Zone of Proximal Development and Empirical Success (ZPDES) [4] (see Algo-
rithm 1) is based on the multi-armed bandits framework for adaptive activity
sequencing where pre-conditions between activities are provided in the form of
an expert defined curriculum graph. At each time-step, ZPDES selects the next
activity a′ based on the normalized weights of activities (w′

a) in the ZPD as well
as an exploration factor γ, 0 ≤ γ ≤ 1. The correctness of student response to
the activity a′ at the ith attempt, Ca′,i, is a binary random variable - it takes
a value of 1 for a correct response and 0 for incorrect response. The reward is
computed by taking the difference of the number of successes in the last d/2
samples with the d/2 previous samples, where d is the window-size. The reward
provides an empirical measure of how the success rate is increasing. The reward
becomes close to zero when either a concept has been mastered or the student
struggles to master it. A high positive reward indicates good learning progress,
whereas a negative reward implies stalled learning. These rewards are then used
to update the activity weights (wa′) based on the hyper-parameters η and β.
ZPDES doesn’t propose a method to determine if a concept has been mastered
or not.

Later Brunskill et al. [10] proposed a novel system that combines automatic
curriculum ordering [1] with ZPDES for automatically and adaptively advancing
a student through a curriculum. A ‘sliding windowed’ average was used in this
framework for inferring mastery, where a concept is determined to be mastered
when the accuracy over the past d attempts reaches above a specified threshold t.

Research Gap: The major drawback of ZPDES is the use of many hyper-
parameters such as d,w0, γ, β and η, which are critical for its deployment, and
eventual success. Using fixed values for these hyper-parameters would have an
adverse effect on personalisation since the same set of hyper-parameters may



CurriculumTutor: An Adaptive Algorithm for Mastering a Curriculum 323

not be effective for the entire population. On the contrary, tuning these hyper-
parameters for different individuals is an additional computational overhead and
a time consuming process.

4 Our Approach: Breaking Adaptive Activity Sequencing
into Sub-problems

Our algorithm CurriculumTutor addresses the research gap in the previous
section. We describe our approach in this section and present the algorithm
in the next section. The main reason for the presence of hyper-parameters in
ZPDES is that it tries to address together both the exploration vs exploitation
tradeoff as well as the non-stationarity of the student responses. On the contrary,
our approach is to decompose the adaptive activity sequencing problem into the
following two sub-problems namely (i) activity selection to take care of the
exploration vs exploitation tradeoff, and (ii) detection of mastery to take care
of the non-stationarity of the student responses. We now describe these in detail.

4.1 Activity Selection

The tutoring algorithm at each time step has to select an activity that offers
higher learning progress to the student. In the multi-armed bandit framework
for activity selection, the concepts in the ZPD form the arms while rewards are
computed based on student responses. We consider the case where the rewards
are binary, i.e., a reward of one is obtained if an activity related to the selected
concept is correctly performed and otherwise zero. The problem can now be
modelled as a Bernoulli multi-armed bandit, where a reward of 1 is obtained
with probability p that is dependent on the knowledge level of the associated
concept(arm).

4.2 Detection of Mastery

The tutoring algorithm has to infer whether a concept has been mastered based
on the sequence of student responses. Determining whether a concept has been
mastered helps to avoid over-practicing which leads to a drop in the learning
gains, and under-practicing that results in the concept not being learned.

Each concept is assumed to be associated with two states - learned and not-
learned. Let ri denote the correctness of the student response at the ith attempt.
When the concept has not been mastered, ri ∼ Pnot-learned, where

Pnot-learned(r = 1) = pguess Pnot-learned(r = 0) = 1 − pguess (1)

When the concept has been mastered ri ∼ Plearned, where

Plearned(r = 1) = 1 − pslip Pnot-learned(r = 0) = pslip (2)
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The reward distribution is now piecewise stationary i.e., remains constant for
a certain period, and shifts at some unknown time step referred to as a change-
point, that corresponds to the transition from the not-learned to learned state.
Detection of mastery of a concept can now be modelled as a change-point detec-
tion problem, which can be described as follows [12]: Given a sequence of obser-
vations {Xn}n≥1, the observed random variables X1,X2, ... have distribution
function p0 until a change occurs at an unknown point in time λ, λ ∈ {1, 2, ...},
after which the observations have another distribution p1, p0 �= p1. A sequen-
tial change-point detection procedure is identified with a stopping time τ for
an observed sequence {Xn}n≥1, i.e., the time of alarm τ at which it is declared
that a change has occurred, which is a random variable depending on the obser-
vations. The average detection delay (ADD) and false alarm rate (FAR) of a
detection procedure is defined as follows:

ADDλ(τ) = Eλ(τ − λ|τ ≥ λ) (3)

FAR(τ) =
1

E0(τ)
(4)

where E0(τ) denotes the expectation of the sequence {Xn}n≥1 when there is no
change, i.e., λ = ∞. A good detection procedure should have small values of
average detection delay with a low FAR.

5 Our Algorithm: CurriculumTutor

We now describe CurriculumTutor, a novel tutoring algorithm that combines a
Bernoulli multi-armed bandit algorithm with a change point detection technique
for adaptive activity sequencing to master a curriculum. The algorithm maintains
a zpd at each time step, based on which activities are presented to the student. A
concept is removed from the ZPD when it is determined to have been transitioned
into the learned state. The ZPD is then updated with concepts in the not-
learned state, all of whose prerequisites are in the learned state. This continues
until the student has mastered all the concepts in the curriculum graph. The
CurriculumTutor algorithm has been described in Algorithm 2.

CurriculumTutor uses the Kullback-Leibler Upper Confidence Bound (KL-
UCB) algorithm to perform activity selection, as it is shown to have better
performance bounds than UCB and its variants [8]. The change-point detection
algorithm used by CurriculumTutor is Cumulative Sum (CUSUM). Here the log-
likelihood ratio (LLR) is used to test the hypothesis that a change occurred at
the point λ and that there is no change at all (λ = ∞) which is defined as:

Zn,λ =
n∑

k=λ

log
p1(Xk|X1, ...,Xk−1)
p0(Xk|X1, ...,Xk−1)

, n ≥ λ (5)

Here, p0 and p1 are the pre-change and post-change probability density functions
respectively. The maximum LLR statistic Un = max1≤λ≤nZn,λ is compared with
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Algorithm 2. CurriculumTutor
1: Initialize zpd = Minimal elements of the partial ordering curriculum, P
2: Add arms corresponding to elements in zpd
3: t = 1
4: repeat
5: ct = Select-Activity(zpd)
6: Present an activity of type ct and observe correctness of response rt
7: Update estimates associated with ct based on rt
8: Detect-Mastery(ct)
9: t ← t + 1
10: until zpd is empty

11: procedure Select-activity(zpd)
12: return concept selected by KL-UCB
13: end procedure

14: procedure Detect-Mastery(c)
15: Update CUSUM estimate for c
16: if change-point detected for c then
17: Mark c as learned
18: Remove c from zpd
19: zpd ← zpd ∪ {q′ ∈ P | (c ≤ q′) ∧ (� p ∈ P such that p ≤ q′ ∧

p is not-learned)}
20: Add arms corresponding to new elements in zpd
21: end if
22: end procedure

a threshold h and a change is detected when the value of Un exceeds h. When
h > 0 and the observations are independent and identically distributed (i.i.d.),
Un can be replaced by the statistic Ũn which obeys the recursion:

Ũn = max

{
0, Ũn−1 + log

p1(Xn)
p0(Xn)

}
(6)

with the initial condition Ũ0 = 0. It has been proved [9] that in the i.i.d. case
CUSUM minimizes the worst case average detection delay among all the detec-
tion algorithms for which the FAR is fixed at a given level FAR. With pguess and
pslip defined by the user, the pre and post change distributions are as follows:

p0(k) = pguess
k(1 − pguess)(1−k) (7)

p1(k) = (1 − pslip)
k(pslip)(1−k) for k ∈ {0, 1} (8)

CurriculumTutor uses the Ũn statistic for change-point detection, as the correct-
ness of student responses are independent random variables given the state of
each concept.
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Fig. 2. Curriculum graph for two operand addition up to a maximum of 4 digits. We
test our algorithm in two scenarios, Scenario 1 : no struggle with any concept and
Scenario 2 : struggling with the concepts AAACD and AAAACD which are colored in
orange. (see the Results section for more details)

6 Experiment Setup

We will now describe the experimental setup to evaluate our algorithm in the
domain of two operand addition with simulated students. The curriculum graph
generation for the domain, and models for simulated students are described
below. While the curriculum graph is used by our algorithm, the simulated stu-
dents are used only to evaluate our algorithm, and not by the algorithm itself.

6.1 Generating the Curriculum Graph

The trace based framework proposed by Andersen et al. [1] was used to generate
a curriculum graph for the domain of two operand addition up to a maximum of
four digits. Four basic operations were identified to be required to solve an integer
addition problem: one digit addition without a carry (A), one-digit addition
with a carry (B), writing a carry (C), and bringing down a final carry (D). For
instance, problems can be decomposed into basic skills as shown in Table 1:

These traces can then be ordered by complexity based on the N-gram-based
partial ordering as follows: Let n be any positive integer. A trace T1 is said to
be at least as complex as trace T2 if every n-gram of trace T2 is also present in
trace T1. The curriculum graph generated with n=3 has been given in Fig. 2.

Table 1. Traces generated for addition problems

Problem 2+3 15+18 93+15 298+865

Trace A ACB AACD ACBCBCD
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6.2 Student Models for Simulation

Students were simulated using the following popular knowledge tracing models.
For each student model, separate knowledge components were defined corre-
sponding to addition of different lengths, presence of carry and overflow. Prereq-
uisites were imposed on knowledge components and each problem is associated
with exactly one knowledge component. All activities are assumed to be of the
same difficulty level.

Bayesian Knowledge Tracing (BKT). Here a student’s knowledge state is
modelled as a two-state Hidden Markov Model(HMM) [5], one per knowledge
component/skill, where the skill is either mastered by the student or not. Prereq-
uisites between knowledge components were enforced by varying the transition
probability between states p(T ), depending on whether the prerequisites were
learned or not.

Learning Factors Analysis (LFA). In LFA [2], the probability p of a stu-
dent performing correctly on an activity is modeled as a logistic function with
parameters: ni - number of times knowledge component i has been practiced,
α - student learning parameter, βi - coefficient of knowledge component i, γ -
difficulty level of the activity

ln(
p

1 − p
) =

α

|Pkc|
∑

i∈Pkc

niβi − γ (9)

where kc is the knowledge component associated with the activity and Pkc is
the set containing kc along with its prerequisite knowledge components

Performance Factor Analysis (PFA). In PFA [11], the probability p of a
student performing correctly on an activity is modeled as a logistic function
with parameters: si - number of times knowledge component i has been used
correctly, fi - number of times knowledge component i has been used incorrectly,
α - student learning parameter, βi - coefficient for the success count of knowledge
component i, ηi - coefficient for the failure count of knowledge component i, γ -
difficulty level of the activity

ln(
p

1 − p
) =

α

|Pkc|
∑

i∈Pkc

(siβi + fiηi) − γ (10)

Integrating Knowledge Tracing and Item Response Theory (KT-IRT).
KT-IRT [7] combines the BKT model with item response theory. Here the stu-
dent’s knowledge is represented as a HMM with binary states. The probability
of performing correctly on an activity based on knowledge component k at the
ith attempt is given by:
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pi =

{
pg( 1

1+e−(βknk+ck,0) ) when statei = not-learned

(1 − ps)( 1

1+e−(βknk+ck,1) ) when statei = learned
(11)

6.3 Parameters

Hyper-parameters for ZPDES: The best value of hyper-parameters such as
η, β, γ and w0 were found using grid search separately for each student model.

Change-Point Detection: For selecting the window size d and accuracy
threshold t for ZPDES, and the threshold h for CUSUM, the FAR was fixed
as 5e−05. To find the FAR of the sliding window based method, a markov chain
was constructed with the states corresponding to the number of ones to be
obtained to reach the accuracy threshold t. With zero set as the absorbing state,
the mean time to absorption for the chain was computed, which corresponds to
E0(τ). Similarly for CUSUM, a markov chain was constructed with the states
corresponding to the possible values taken by the statistic Ũn and states with
values greater than h were designated as the absorbing states. Again, the mean
time to absorption was calculated to compute the FAR.

For the sliding window, the window size was set as 8 and the accuracy thresh-
old as 0.7. Thus, out of the last 8 activities the student has to get at least 6 of
them correct in order to infer that the concept has been mastered. Similarly the
threshold h for CUSUM was set as ln(1/0.0004). For CUSUM pguess and pslip

for each concept were sampled from Beta(20, 40).

7 Results

In this section we present the experimental results that compare the performance
of three tutoring algorithms namely CurriculumTutor, ZPDES and Blocking (a
basic scheduling scheme where activities associated with the same concept are
presented to a student until the concept is mastered, uses a sliding window
to infer mastery). For these three algorithms, the following two scenarios were
simulated using the four different student models:

Scenario 1. Student not struggling with any of the concepts Here similar model
parameters (transition probabilities, learning coefficients, intercept values, etc.)
were used for knowledge components (KC) of similar complexity and the param-
eter values were made smaller with increasing complexity. For instance, the KC
parameters associated with two digit addition were lower as compared to those
associated with one-digit addition.

Scenario 2. Student struggling with a few concepts in the intermediate phase
This scenario was simulated by using a lower transition probability as well as
learning parameters for the student model for one of the KCs - three digit addition
without carry and overflow, as compared to Scenario 1. This causes the students
to struggle on the concepts AAACD and AAAACD in Fig. 2.
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(a) BKT (b) LFA (c) PFA (d) KT-IRT

(e) Scenario 1 - Student not struggling with any of the concepts

(f) BKT (g) LFA (h) PFA (i) KT-IRT

(j) Scenario 2 - Student struggling with a few concepts in the intermediate phase

Fig. 3. Simulation results

Learning gains were measured by computing the fraction of concepts in the
curriculum graph that was mastered by the student over a given number of ques-
tions. The average curves for 500 runs were plotted for each student model, as
seen in Fig. 3. It could be observed that for all the student models in both the
scenarios, the learning curves of CurriculumTutor lie above those of ZPDES and
Blocking, implying higher learning gains. In scenario 2, it could be observed that
the learning curves of both the bandit algorithms, ZPDES and CurriculumTutor,
are quite higher than that of Blocking (Fig. 3j). This is because while Blocking
continuously tries to present activities related to a concept that the student is
struggling with, the bandit algorithms performs exploration to find another con-
cept that gives better rewards and thus contributes to higher learning progress.
Thus CurriculumTutor performs better than ZPDES and Blocking in
both the scenarios, irrespective of the student models chosen.

Limitations of the Approach: CurriculumTutor requires a curriculum graph
that models the prerequisite relations between the concepts to be learned. When
the curriculum graph has a chain-like structure, the algorithm cannot perform
much better than Blocking as the scope for exploration becomes limited. Also
the algorithm requires the user to define pguess and pslip for each concept.
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8 Conclusion and Future Work

We have proposed CurriculumTutor, a novel multi-armed bandit and change-
point detection based algorithm for adaptive activity sequencing to master a cur-
riculum in the learning by doing setting. Simulation results show that Curricu-
lumTutor significantly outperforms prior approaches in the benchmark domain
of two operand addition up to a maximum of four digits. Future work on this
problem would include accounting for forgetting of a learned concept, consider-
ing partial credit scores and accommodating for activities with varying levels of
difficulty associated with a concept.
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Abstract. Oftentimes learners are unable to engage in effective self-regulated
learning (SRL) strategies while learning about complex topics. To combat this,
intelligent tutoring systems (ITSs) incorporate pedagogical agents to guide learn-
ers in understanding how to engage in several SRL strategies effectively and
efficiently throughout learning. To identify how ITSs can best support learn-
ers’ SRL strategy usage, data from 105 undergraduate students across several
North American public universities were collected as they learned with MetaTu-
tor, a hypermedia-based ITS about the human circulatory system. Participants
were randomly assigned to two conditions – a prompt and feedback condition in
which pedagogical agents prompted learners to engage in specific cognitive and
metacognitive SRL strategies and provided feedback to performance in addition
to learners’ self-initiated SRL strategy usage, and the control condition in which
learners were not prompted nor were provided feedback on their performance of
self-initiated SRL strategies. Results found that learners receiving external support
from pedagogical agents had greater learning gains and deployed a greater number
of both cognitive and metacognitive SRL strategies than learners who only self-
initiated strategies. While probabilities obtained from a Markov model did not
find differences between conditions in learners’ sequential transitions between
SRL strategies, metrics from auto-recurrence quantification analysis found that
learners receiving external support enacted less repetitive interactions of SRL
strategies throughout their entire time interacting with MetaTutor. Implications of
these results encourage the use of pedagogical agents in prompting more novel
SRL strategies to increase learning within ITSs.

Keywords: Self-regulated learning · Pedagogical agents · Intelligent tutoring
systems · Auto-recurrence quantification analysis

1 Self-regulation in Intelligent Tutoring Systems

Self-regulated learning (SRL) refers to learners’ ability tomonitor and regulate cognitive,
affective, metacognitive, motivational, and social processes continuously throughout
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their learning experiences [1]. SRL primarily encompasses cognitive and metacognitive
strategies that can be deployed by learners to efficiently and accurately identify and
integrate instructional content essential to learning outcomes into existing mental model
structures [1, 2]. However, learners typically demonstrate an inability to engage in and
deploy SRL strategies while learning about a complex topic [3]. This may be due to
several factors including learners’ constrained metacognitive knowledge [1, 4].

Many intelligent tutoring systems (ITSs) embed pedagogical agents to externally
support learners’ self-regulatory behaviors [5–8]. MetaTutor exemplifies a hypermedia-
based ITS which incorporates multiple pedagogical agents to identify when learners
are using SRL strategies and which strategies are used, didactically prompts learners
to engage in several types of cognitive and metacognitive SRL strategies, and provides
feedback evaluating the accuracy of executed strategies [9]. These virtual pedagogical
agents can act as teachers by providing an external scaffold that enhances the learning
experience [1, 5, 6, 10]. The goal of this study is to use MetaTutor to examine how
embedded pedagogical agents within an ITS support learners’ use and sequences of
SRL strategies in relation to overall learning gains. Specifically, this study examines
how pedagogical agent support is related to learning gains in the way in which learners
deploy their cognitive and metacognitive strategies while learning with MetaTutor.

1.1 Pedagogical Agents Within ITSs

Due to the complexity and context-specific nature of self-regulatory skills and abilities,
teachers may promote and foster regulatory development through modeling within the
classroom [8]. In the absence of physical teachers during learning with a virtual ITS,
pedagogical agents can serve as a source of external support through their human-like
interactions with learners [11, 12]. Pedagogical agents within ITSs use interactions, such
as dialogues, with the learners to enhance learning, increasing learners’ knowledge of
SRL strategies [5, 13, 14]. These agent-learner interactions are further promoted using
dialogue between the agent and learner in which the agent prompts learners to engage
in SRL strategies and provides feedback to validate or correct learners’ SRL strategy.

For example, MetaTutor, as previously mentioned, features pedagogical agents as
teachers acting to prompt learners’ use of self-regulatory strategies and support their
knowledge acquisition pertaining to the human circulatory system [15]. This interaction
allows for pedagogical agents to externally scaffold learners’ use of SRL strategies,
immediately supporting learners’ conceptual understanding, and eventually growing
learners’ knowledge of different SRL strategies.

1.2 MetaTutor: Relevant Works

Several studies have examined how learners engage in SRL with MetaTutor across
varying contexts of emotions [16–20], motivation [21, 22], and SRL strategy deployment
[23–25]. For this paper, we review three papers that examine patterns of how learners
deploy SRL strategies and their relationship with pedagogical agent support.

Taub and Azevedo [24] examined how learners’ prior knowledge on the human cir-
culatory system was related to how they deployed SRL strategies during learning with
MetaTutor. Results from this study found that learners with high prior knowledge had
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greater frequencies of strategy usage than learners with low prior knowledge. Similarly,
Wiedbusch et al. [25] examined how learners differed in their SRL strategy usage, but
specifically the role of pedagogical agent support. This study utilized principle compo-
nent analyses on learners’ log-file data as they learned with MetaTutor to examine how
learners’ differing in their pedagogical agent support utilized SRL strategies. Results
showed that strategy usage was driven by two phases of SRL - defining the task and goal
setting/planning - according toWinne [1]. Further,Wiedbusch and colleagues [25] found
that learners tended to deploy strategies that were more familiar (i.e., summarization)
than those that were not (i.e., judgments of learning).

Dever et al. [23] also examined how pedagogical agents supported learners’ SRL
strategy deployment, but focused on metacognitive monitoring strategies (e.g., content
evaluations). This study, using hierarchical clustering, found that learners who had a
greater frequency of engaging in content evaluations and feelings of knowing had greater
learning gains than learners who engaged more in monitoring goal progress.

1.3 Theoretical Framework

This study is grounded within Kramarski and Heaysman’s [26] model of teachers’ triple
SRL-SRT processes which describes the impact of teachers’ activation of students’ SRL
(i.e., student-focused self-regulated teaching (SRT)) on outcomes related to learning,
metacognition, and learners’ use of metacognitive strategies over time. According to this
model, the traditional dichotomy between teachers’ roles in SRL and SRT (e.g., [27])
was expanded into three processes: teachers’ regulation of their own learning (teacher-
focused SRL), teachers’ regulation of their teaching practices’ (teacher-focused SRT),
and teachers’ activation of student’ SRL (student-focused SRT). This model posits these
processes have an impact upon student outcomes including SRL and achievement [26].
We extend this model to include pedagogical agents acting as teachers and narrow our
focus to the impact of student-focused SRT processes on student outcomes by using a
series of pedagogical agents as a proxy for the teachers’ different roles during instruction.
The different pedagogical agents take on the role of teachers as they engage in student-
focused SRT by prompting learners to engage in SRL strategies and providing feedback
on their success.

1.4 Current Study

The primary goal of this current study was to use MetaTutor, a hypermedia-based ITS,
to examine how embedded pedagogical agents fulfill the role of a virtual teacher of
SRL. The secondary goal of this study was to add to current literature by: (1) identifying
how SRL strategy use differs between learners who receive external support and those
who do not; (2) examining how learners’ sequences and repetitive SRL strategy use is
related to pedagogical agent prompting; and (3) transforming current and new theoretical
grounding to personify pedagogical agents as teachers of SRL. We achieve these goals
by proposing three questions:

Research Question 1: How do learning gains differ between conditions? Based on
Kramarski and Heaysman’s [26] theoretical framework, we hypothesize that learners
who receive prompts from pedagogical agents to engage in SRL strategies as well as
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feedback on their accuracy will show greater learning gains than learners who only
self-initiate SRL strategy usage.

Research Question 2: How are the frequencies of SRL strategies different between
conditions? Based on prior literature [23, 25], we hypothesize that learners who are
prompted to engage in SRL strategy usage will demonstrate a greater frequency of
SRL strategies overall. However, we do hypothesize that learners receiving prompts to
engage in SRL strategies will have a lower frequency of self-initiated SRL strategies,
demonstrating an over-reliance on system aid [28, 29].

ResearchQuestion3:Howdoes pedagogical agent external-regulation relate to learn-
ers’ deployment of SRL strategies? According to Kramarski and Heaysman’s [26] theo-
retical framework, pedagogical agents may relate to how learners deploy SRL strategies
over time. As such, we hypothesize that learners differing in their pedagogical agent
support will vary in terms of which SRL strategies learners deploy and in what order
they are deployed.

2 Method

2.1 Participants

Undergraduate students from several large universities across North America were
recruited for a two-day laboratory study. Fromour current dataset of 105 students (M_age
= 20.5; SD_age= 3.31; 53% female), participants were randomly assigned to one of two
conditions, the Control Condition (N = 47) or the Prompt & Feedback (P&F) Condition
(N = 58). In the Control Condition, learners initiated SRL strategy interactions and were
not prompted by the system. In the P&F Condition, the system initiated SRL strategy
interactions by having pedagogical agents prompt learners to engage in SRL strategies.
The pedagogical agents used were diegetically appropriate to the type of strategy which
was prompted (see section Pedagogical Agents). After concluding the experimental pro-
tocol (detailed below in Procedure), participants were monetarily compensated ($10/h,
up to $40).

2.2 MetaTutor

General Architecture. MetaTutor is a hypermedia-based ITS with 47 pages of instruc-
tional content related to the human circulatory system (e.g., anatomy, function, compo-
sition; see Fig. 1). MetaTutor was designed to support SRL strategy use through several
features. A table of contents affords learners the opportunity to select the most appro-
priate pages relevant to their learning goals and subgoals. A progress bar and a timer
allow learners tomonitor progress toward learning goals. Text and diagrams afford learn-
ers the opportunity to acquire knowledge and coordinate information. An SRL palette
offers learners the opportunity to identify and select SRL strategies while exploring
instructional content. Finally, one of four pedagogical agents may interact with learners
depending on the triggered production rules, each supporting a specific component of
SRL.



336 D. A. Dever et al.

Fig. 1. Example MetaTutor interface (from left to right) with (1) timer (2) table of contents to
jump between content; (3) goal setting; (4) set subgoals and progress bar; (5) textual content; (6)
supporting biology diagram; (7) pedagogical agent; and (8) SRL palette.

Conditions. In the P&F Condition, the system detected and supported learners’ SRL
by prompting strategies during learning [9]. Production rules were triggered based on
specific actions or after a specified time period and could respond to prompt learners
to enact various cognitive strategies (i.e., prior knowledge activation, planning, summa-
rizing, note-taking) or metacognitive strategies (i.e., feelings of knowing, judgements
of learning, CEs, or progress monitoring). When these production rules are triggered,
pedagogical agents are used to prompt specific SRL strategies and provide learners with
feedback on their performance of that strategy. In the Control Condition, the pedagogical
agent appears static and non-interactive. Regardless of condition, participants are still
able to self-initiate SRL strategies without being prompted by agents.

Pedagogical Agents. Each pedagogical agent within MetaTutor is responsible for
diegetically appropriate cognitive and metacognitive SRL processes [31]. Gavin the
Guide supports learners’ navigation of the MetaTutor interface and learning environ-
ment. Pam the Planner supports learners’ planning (PLAN) and prior knowledge activa-
tion (PKA) strategies. Sam the Strategizer supports taking notes (TN) and summarizing
(SUMM) strategies. Finally, Mary the Monitor supports multiple strategies including
monitoring progress towards goals (MPTGs), content evaluations (CEs), judgments of
learning (JOLs), and feelings of knowing (FOKs). Operational definitions for each of
these SRL strategies has been provided below in Table 1 [25, 30].

2.3 Experimental Procedure

On Day 1, participants gave informed consent and completed a demographics question-
naire along with several self-report measures. Participants then completed a 30-item
multiple-choice pretest on instructional content covered within MetaTutor (e.g., human
circulatory system knowledge items). On Day 2, researchers briefed participants on
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Table 1. SRL strategies deployed in MetaTutor and brief operational definitions [25, 30].

Strategy type Strategy code Operational definitions

Cognitive PKA Recall of relevant prior knowledge prior to or during task
performance

PLAN Coordination and selection of operators for learners’ execution
of behaviors conditionally resulting in a state-transition from
the current state along a hierarchy of goal/subgoal states

SUMM Provision of brief statements about main concepts recently
read, inspected, or heard in the learning environment

TN Copying and/or extending of textual information from the
learning environment

Metacognitive CE Monitoring of content and its quality relative to goals/subgoals

FOK Awareness of familiarity with concepts and concurrent
inability to recall that information on demand

JOL Self-assessed self-efficacy with respect to learned concepts

MPTG Assessment of goal/subgoal attainment

the learning task, learning environment, and learning goals, before using MetaTutor
to engage in SRL over the course of a 60-min session. Instructional activities within
MetaTutor involved reading texts, inspecting diagrams, and completing quizzes. Regard-
less of condition, participants could indicate their deployment of SRL strategies using
the SRL palette within MetaTutor. After the learning phase, participants completed a
final set of questionnaires, a 30-item multiple-choice post-test on human circulatory
system knowledge, and were debriefed by investigators.

2.4 Apparatus

Multimodalmultichannel datawere collected using several apparati including self-report
questionnaires, log-files, eye-trackers, etc. For this study, only participants’ collected
log-file data were used. Specifically, log-file data of which SRL strategy was used, in
what order these strategies were used, and the initiator of the strategy (i.e., participant
vs. pedagogical agent) were used to identify how participants engaged in SRL strategy
use during their time learning with MetaTutor.

2.5 Coding and Scoring

Learning gainwas calculated using the differences in learners’ scores on the content pre-
and post-test about the human circulatory system while accounting for prior knowledge.
This was calculated usingMarx and Cumming’s [32] series of equations which assigned
a different calculation to each learner based on if their score increased after MetaTutor,
decreased, or was stagnant.

Sequences were identified using learners’ log files with a categorical representation
of strategies. For example, a learner could have a sequence of—CE, PKA, CE, TN.
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Because we used a categorical representation of time series data, the sequences of SRL
strategies were periodically broken by other behaviors such as moving to a different
content page. As such, sequences do not account for the time in between SRL strategies
used, nor for how long those strategies were used.

Novelty in Research Question 3 is identified through learners’ log-file sequences of
SRL strategies. Novelty refers to the use of a broad range of SRL strategies over time
whereas repetitive, or recurrent, behavior is identified by learners’ sequential repeated
use of the same SRL strategy. For example, a learner whose sequence of SRL strategies
is SUMM, TN, CE, JOL demonstrates novel SRL strategy usage. Conversely, a learner
whose sequence is SUMM, SUMM, TN demonstrates more repetitive behaviors.

3 Results

3.1 Research Question 1: How Do Learning Gains Differ Between Conditions?

An independent t-test was run to examine how learning gains differed between condition.
Learners who received the external prompts from pedagogical agents had significantly
greater learning gains (M = 0.39, SD = 0.16) than learners who only engaged in self-
initiated SRL (M = 0.10, SD = 0.19; t(91.4) = 8.50, p < .01).

3.2 Research Question 2: How Are the Frequencies of SRL Strategies Different
Between Conditions?

Given that learners who received external prompts from pedagogical agents to engage in
self-regulatory behaviors had greater learning gain, this research question examines how
learners between these two conditions differ in their strategy use. A one-way MANOVA
found a significant main effect where learners in the P&F Condition (M = 48.0, SD =
17.2) had significantly greater overall strategies than learners in the Control Condition
(M = 24.9, SD = 13.5; F(8, 97) = 60.8, p < .01). Using post-hoc analyses, there
are significant differences in learners’ CE, JOL, PKA, PLAN, and SUMM strategy
frequencies between conditions where, with the exception of PLAN, learners in the
P&F Condition had significantly greater frequencies than those in the Control Condition
(see Table 2).

Table 2. Descriptive statistics of significant overall SRL frequencies between condition.

Strategy Condition means (SDs) F-statistic

P&F Control

CE 7.31 (4.68) 0.38 (0.77) F(1, 104) = 100.5

JOL 6.81 (7.71) 2.09 (5.13) F(1, 104) = 13.1

PKA 2.44 (1.86) 0.38 (0.97) F(1, 104) = 47.3

PLAN 2.07 (2.13) 6.15 (3.51) F(1, 104) = 54.6

SUMM 9.88 (6.08) 0.23 (0.48) F(1, 104) = 117.5
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Another one-way MANOVA was used to identify how learners differing in their
assigned condition vary in the frequency of self-initiated SRL strategies. Results found
that there are significant overall differences between conditions in the frequency of self-
initiated strategy use where learners in the P&F Condition (M = 29.6, SD= 17.84) self-
initiated strategies a greater number of times than learners in the Control Condition (M
= 22.06, SD= 14.1; F(8, 97)= 6.31, p< .01). When examining post-hoc comparisons,
learners between conditions differed in their JOL, PLAN, and SUMM strategy usage
(see Table 3). From this, we infer that the prompting of pedagogical agents encouraged
the use and self-initiation of JOLs and SUMMs.

Table 3. Descriptive statistics of significant self-initiated SRL frequencies between condition.

Strategy Condition means (SDs) F-statistic

P&F Control

JOL 5.53 (8.15) 2.09 (5.13) F(1, 104) = 6.37

PLAN 1.14 (1.75) 3.28 (2.28) F(1, 104) = 22.8

SUMM 3.34 (5.51) 0.23 (0.48) F(1, 104) = 14.8

3.3 Research Question 3: How Does Pedagogical Agent External-Regulation
Relate to Learners’ Deployment of SRL Strategies?

Each use of an SRL strategy was recorded across participants. Using this sequencing,
each state of strategy usage was mapped to a unique state in a Markov chain. Probabil-
ities of state transitions were then calculated for each participant and for each possible
interaction. For example, if a participant had state transitions TN, TN, CE, this partic-
ipant had a probability of transitioning from TN to CE of 33.3%. For state transitions
that did not occur, the probability was 0. These values were then inputted into a one-way
MANOVA with participants from each condition being compared across all possible
state transitions where a significant difference between conditions was not found (F(64,
41) = 0.75, p > .05).

Because we know that learners receiving prompts have greater learning gains (RQ1)
and typically have greater frequencies of strategy usage (RQ2), the lack of significance
in learners’ sequential state transitions (RQ3) encourages a comprehensive approach to
understanding strategy use. We used auto-Recurrence Quantification Analysis (aRQA;
[33, 34]), a method to calculate the degree of repetitive behaviors, or recurrence, within
a learner’s time series. One of the metric outputs from this analysis, recurrence rate, is
the proportion of the frequency of observed recurrent behaviors in relation to the total
number of time series points. As such, this metric identifies the degree of novel behaviors
throughout a learner’s entire interaction with MetaTutor.

A t-test found a significant difference where learners in the P&FCondition displayed
greater novelty in deploying SRL strategies (M = 35.2, SD = 12.2) than learners in the
Control Condition (M = 60.9, SD = 14.3; t(90.3) = −9.82, p < .01). These results
suggest that learners who only self-initiate SRL strategies without any external aid from
pedagogical agents tend to reuse strategies rather than engage in novel behaviors.
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4 Discussion and Future Directions for SRL and ITSs

The goal of this study was to eliminate gaps in current literature on pedagogical agents in
ITSs by examining how agents promote learners’ use of SRL strategies. Learners who
received external support from pedagogical agents had greater overall learning gains
than learners who did not have support (RQ1). Kramarski and Heaysman’s [26] theory
supports AIEd design research on pedagogical agents acting as SRL teachers, which
our work empirically supports. We can imagine future pedagogical agents designed to
engage in self-learning via teacher-focused SRT to better engage in interactions with
learners to guide their use of SRL strategies (student-focused SRT).

For Research Question 2, results found that learners who had external regulation of
their SRL strategies engaged in CEs, JOLs, PKA, and SUMM more often than learners
who only self-initiated SRL strategies. However, these learners had greater frequencies
of PLAN strategies. When examining only self-initiated strategies between learners dif-
fering in their pedagogical agent support, we found that learners who received support
had greater JOLs and SUMMwhereas learners without support had greater PLAN strate-
gies. FromResearch Question 2 analyses, we find that pedagogical agents drive learners’
CE and PKA strategies. This result provides implications for the design of pedagogical
agents in that agents need to prompt greater metacognitive strategies. Additionally, this
result further provides evidence for pedagogical agents as teachers since they promote
the use of strategies required for learning with an ITS (see [35]).

For Research Question 3, we examined learners’ SRL strategy sequences. Sequential
transitions of learners’ SRL strategy states across all strategies did not significantly differ
between conditions; however, learners who were prompted to engage in SRL strategies
had a greater range of SRL strategy usage where their behaviors were significantly
more novel. For the design of pedagogical agents in ITSs, agents should prompt SRL
strategies that have not been used recently or interrupt learners who try to engage inmore
repetitious behaviors of SRL strategy usage. Our findings raise other important questions
for the field of AIEd such as–Is there an optimal transition between repetitive to novel
SRL strategy use that reflect the development of SRL competencies? Can individual
differences, learning activities, timing, sequencing, and accuracy of SRL behaviors, etc.
influence when and how pedagogical agents should intervene?

5 Conclusion

Learners who are externally-regulated by pedagogical agents within an ITS demonstrate
a greater use of SRL strategies across several different types of strategies, relating to
greater learning gains.However, learnerswho are not supportedwhile learning a complex
scientific concept within an ITS demonstrate more repetitive SRL strategy usage with
smaller learning gains. From these results, using a wide variety of SRL strategies, rather
than the repetitive use of a singular strategy, contributes to greater learning gains. This
is important within SRL literature as models should reflect that the constant use of
a range of SRL strategies benefits learning. Applied implications from these findings
include the increased use of pedagogical agents as virtual teachers to promote the use
of novel sequences of SRL strategies using a new model of SRL and SRL that infuses
and balances self-regulated learning with self-regulated teaching.
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Abstract. Advances in artificial intelligence (AI) have made it possible to gen-
erate courseware and formative practice questions from textbooks. Courseware
applies a learn by doing approach by integrating formative practice with text, a
method proven to increase learning gains for students. By using AI for automatic
question generation, the learn by doing method of courseware can be made avail-
able for nearly any textbook subject. As the generated questions are a primary
learning feature in this environment, it is necessary to ensure they function as
well for students as those written by humans. In this paper, we will use student
data from an AI-generated Psychology courseware used in an online course at
the University of Central Florida. The courseware has both generated questions
and human-authored questions, allowing for a unique comparison of question
engagement, difficulty, and persistence using student data from a natural learn-
ing context. The evaluation of quality metrics is critical in automatic question
generation research, yet on its own is not comprehensive of students’ experience.
Student perception is a meaningful qualitative metric, as student perceptions can
inform behavior and decisions. Therefore, student perceptions of the courseware
and questions were also solicited via survey. Combining question data analysis
with student perception feedback gives a more comprehensive evaluation of the
quality of AI-generated questions used in a natural learning context.

Keywords: Artificial intelligence · Automatic question generation ·
Automatically generated questions · Student perception · Courseware ·
Mixed-method

1 Introduction

Automatic question generation (AQG) is a process with tremendous potential for impact
in education as its application is both practical and varied. As outlined in a recent system-
atic review by Kurdi et al. [11], AQG has been developed for diverse subjects, learners,
and purposes. While the advances in AQG have been ever increasing, Kurdi et al., were
unable to identify a “gold standard” regarding the performance of automatically gen-
erated (AG) questions. This is in part due to the heterogeneity in the measurement of
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quality and the limited research on AG questions using student data from natural con-
texts. Of the 93 papers included in the systematic review, only one evaluated them in the
classroom and only 14 evaluated question difficulty. Expert evaluation ofAGquestions is
imperative during the development and validation phases of AQG, but the ultimate—and
necessary—test of these questions is how well they perform in natural learning contexts.

While some research on AQG focuses on high-stakes assessment items, a different
avenue for AQG is formative practice. Formative practice is a well-established method
of learning across domains and for learners of all ages, and while formative practice
can raise achievement for all students, it helps low-performing students most of all
[4]. In an evaluation of study techniques, practice testing (which includes no- or low-
stakes formative practice) and distributed practice received a high utility assessment
because they benefit learners of different ages and abilities and in varied educational
contexts [6]. More specifically, formative practice has been studied in a courseware
learning environment where it is delivered along with the text content. This learn by
doing approach was found to have about six times the effect size on learning than
reading alone [10]. Additionally, this learn by doing method was found to be causal to
learning in varying natural learning contexts [10, 12]. It is clear, then, that AQG could
expedite the availability of this method of combining formative practice with learning
content to more students.

In this paper, we analyze AG questions that were created as part of an artificial intel-
ligence (AI) process called SmartStart [5] that generates courseware from e-textbooks.
The SmartStart process uses machine learning (ML) and natural language processing
(NLP) to read the textbook, identify learning objectives, divide the content into short
lessons aligned to learning objectives, and generate practice questions for each lesson
[8]. This application reduces the high cost and long timeframe of developing courseware
and writing hundreds to thousands of formative questions. Yet, it is imperative to ensure
the AG questions in this generated courseware provide the same learning benefit to stu-
dents as their traditional human-authored (HA) counterparts. Analyzing AG questions
in relation to HA questions using student data can answer one of the most fundamental
questions regarding AQG: are these generated questions as good as those written by
subject matter experts? Kurdi et al. [11] identified that mixing AG and HA questions
to evaluate quality has been a focus of other AQG studies, though the evaluation was
done through expert review. Furthermore, [11] noted that standard quality metrics such
as difficulty or discrimination provide a statistical approach to evaluating performance
and quality of AQ questions. Previous research studied six SmartStart courses with over
750,000 student-question interactions with both AG and HA questions [13]. An anal-
ysis of engagement, difficulty, and persistence performance metrics revealed that AG
questions did not perform any differently than the HA questions in the course, but rather
found differences primarily by the cognitive process dimension of the question type
(recognition or recall). Similar trends were identified in an initial analysis of AG and
HA question discrimination [9].

These initial findings from the SmartStart courseware’s AG questions advances the
study of AQG both in the scale of natural student data used as well as the different per-
formance metrics studied, showcasing the benefits of the type and scale of data collected
via the courseware platform as well as the insights gained through learning analytics.
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Yet, this type of analysis is on data collected solely from student actions. It is also benefi-
cial to understand student perceptions of the AG questions, which cannot be interpreted
from platform data. Therefore, there is a need for research that combines a quantita-
tive analysis of question data with qualitative feedback data from those same students
who completed the questions. In this study, we evaluate AI-generated courseware for a
Psychology of Sex and Gender course at the University of Central Florida (UCF) by ana-
lyzing the performance metrics of AG and HA questions as well as student perceptions
of the courseware and questions.

2 Methods

ThePsychology of Sex andGender course is offered online every spring semester atUCF.
There were 122 students enrolled in the courseware during the spring 2021 semester.
According to student self-reporting, more than 80% of students were juniors or higher.
UCF has a large population of transfer and first-generation students, reflected in this
course with about 60% transfer students, and 30% first-generation college students. In
this course, 95% of students reported having taken online courses previously (unsur-
prising given the number of online courses at UCF in addition to the online shift from
COVID-19).

The Psychology of Sex and Gender textbook [3] was an ideal fit for the SmartStart
process as it is a specialized subject that does not have custom publisher courseware
or enhanced learning resources. The ML and NLP methods in SmartStart analyzed the
text to identify learning objectives and determine a new structure with shorter lessons.
The text was also the corpus for AQG, which works to identify important content that is
suitable for questions. Kurdi et al. [11] put forth anAQG categorization that includes two
parts: level(s) of understanding and procedure(s) of transformation. The AQG employed
here includes both syntactic and semantic levels of understanding, and the procedure
of transformation is primarily rule-based (for more details on the AQG process, see
[13]). Two types of questions were generated for this courseware: matching questions
that require students to drag terms to their correct location in a sentence (a recognition
cognitive process on Bloom’s hierarchy [1]), and fill-in-the-blank (FITB) questions that
require students to type in the correct term (a recall process type on Bloom’s). Both
recognition and recall questions have been long studied for their learning benefits [2].
In total, 607 AG FITB and AG matching questions were delivered in the Psychology of
Sex and Gender courseware.

In addition to the generated questions, 48 additional HA questions were added by
the instructor and instructional designer. The purpose of the additional questions was
to take advantage of additional features available in the courseware platform, such as
predictive learning estimates and adaptive activities. Multiple choice (MC) questions
from the textbook ancillary materials were used for this additional practice, including
some that were implemented as a two-option true/false question.

During the semester, the courseware platform collected clickstream data that were
used for analyzing the performance metrics of the questions. These data provide insights
into how students chose to engagewith different question types, howquestions compared
in difficulty, and how often students persisted until they reach the correct response. Given
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that there were a mix of AG and HA questions on lesson pages, question types could
be directly compared on each metric using a mixed effects logistic regression model. At
the end of the semester students were sent a survey that included student demographics,
characteristics, prior experience with online learning and resources, perception of the
courseware and the questions within, and overall course feedback. Students were incen-
tivized to take the survey with a small number of bonus points, but could request an
alternate activity (though none did). Student identities were not reported in the results
to add a level of anonymity to encourage honest responses. In total, 67 students (54.9%)
participated in the survey.

3 Results and Discussion

3.1 Performance Metrics

A data visualization called an engagement graph shows how students engaged with
the courseware by plotting the number of students who engaged with the courseware’s
content elements on each page. A perfect engagement graph would be a horizontal line
across the top, showing that every student read and did practice on every page. Some
attrition is always expected at both the beginning of the course (as some students may
drop the course) and over time as students begin to lose motivation to complete the
reading and homework.

Fig. 1. Engagement graph for psychology of sex and gender.

While not perfect, this engagement graph (Fig. 1) is very close, in part due to assign-
ing the formative practice for a percentage of the course grade [7]. Over 100 students
consistently read the content and did the practice on the pages. The dotted vertical lines
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indicate unit boundaries, and the small jumps in engagement show typical—though in
this case, minor—attrition within the unit. Figure 1 shows the red formative practice dots
nearly on top of the blue reading dots, indicating nearly all students who read a page
also did the practice. However, there are 5 to 7 students who only enter the courseware
to do the summative assessments (which also contributed to the grade) but did not read
or practice.

We can already tell that students had high engagement with the courseware, but
were there any differences in how they chose to answer the AG questions compared to
the HA questions? Following [13], an engagement data set was constructed as the set
of all opportunities students had to engage with the practice questions in the course.
Engagement opportunities were taken as all student-question pairs on course pages that
the student visited (very short page visits of under 5 s were excluded); an answered
question was recorded as an outcome of 1 and an unanswered question was recorded as
−0. The resulting data set of 66,939 student-question observations was then analyzed
using a mixed effects logistic regression model, which controls for question placement
in the course to account for naturally occurring attrition.

Table 1. Engagement results for AG and HA questions.

Fixed effects Mean Significance Estimate p

Intercept *** 4.96956 <2e−16

Course page *** 0.18641 1.25e−06

Unit page −0.01994 0.61734

Module page ** −0.11813 0.00158

Page question 0.03081 0.43492

AG FITB 98.1 – – –

AG matching 98.6 *** 0.40373 9.07e−08

HA MC 98.7 ** 0.44713 0.00373

Themean engagement for all question typeswas between 98.1% and 98.7%; students
did nearly all practice they encountered on the lesson pages they visited. The results of the
regressionmodel in Table 1 show amuch different pattern for the location covariates than
found in previous research, in which all the location variables tended to be significant
and negative [13]. These contrary findings for the location variables suggest that the
incentivized practice generated such high engagement that the model did not find any
consistent trends for the location covariates. In this course, student engagement was so
high that the question location in the courseware was not practically significant.

The comparison between question types revealed that both the AGmatching and HA
MCweremore likely to be answered than theAGFITB (the baseline for the question type
variable), which is consistent with previous findings. Both AG matching and HA MC
are recognition type questions with mean engagement within 0.1% of each other. Even
in a course where engagement was incentivized, recognition type questions have higher
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mean engagement and are more likely to be answered than recall questions. However,
when we consider that the mean engagement of the AG FITB was within 0.6% of the
recognition questions, it is clear that in this case the significance has little practical effect.

To evaluate the relative difficulty of questions, we narrow the data set to only the
questions students chose to answer, resulting in 65,859 student-question observations.
The samemixed effects model was used with this difficulty data set, using correctness of
the student’s first attempt as the outcome. The results in Table 2 show the AG matching
were the least difficult (89.3%), AG FITB a few points behind (86.3%), and HA MC
were the most difficult by almost 30 points (60.3%). The results of the model mirror the
differences in mean scores. (Location variable results are omitted for brevity, as they
continued not to be significant.) Students were more likely to get AG matching correct
than AG FITB, but less likely to get HA MC correct than AG FITB. However, when we
consider that most of the HA MC questions had a two-option true/false format, these
results may indicate that these HA MC questions were either difficult, or possibly that
a high proportion of students simply guessed. While previous research found students
were more likely to get recognition questions correct [13], these results show question
characteristics can create exceptions to these trends.

Table 2. Difficulty results for AG and HA questions.

Fixed effects Mean Significance Estimate p

AG FITB 86.3 – – –

AG matching 89.3 *** 0.58409 1.4e−10

HA MC 60.3 ** −1.53956 <2e−16

Both the AG and HA questions analyzed here were formative in nature, so students
received immediate feedback and could continue to answer as many times as they chose.
Persistence is the rate at which students who are incorrect on their first response continue
to answer a question until they get the correct response. Therefore, the persistence data
set is a subset of the difficulty data, including only those student responses that were
incorrect the first try (a total of 9,302 observations). The results of the regressionmodel in
Table 3 show students nearly always persisted on theAGmatching (99.6%), also showing
students were more likely to persist in this question type than AG FITB. Interestingly,
AG FITB and HAMC had the same mean persistence (97.1%) and were not statistically
different from one another. The HA MC had a lower mean difficulty score, yet students
persisted at the same rate as HA FITB. The most reasonable explanation is the cognitive
process dimension of the question types: it takes less effort to answer a recognition
question than a recall question—and even more so if the recognition type only has two
options to choose from. Themost important finding in persistence, however, is the overall
high rate. While engagement was required for points, we see no patterns that indicate
students simply answered carelessly to meet the requirement and moved on. Nearly all
students who were incorrect continued to try until they reached the correct answer.
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Table 3. Persistence results for AG and HA questions.

Fixed effects Mean Significance Estimate p

AG FITB 97.1 – – –

AG matching 99.6 *** 2.21753 1.96e−10

HA MC 97.1 −0.32718 0.2964

Significance codes: *** p < .001, ** p < .01, * p <.05

3.2 Student Perceptions

While evaluating question data provides a clear understanding of what students did, it is
unable to give insights into what students think. Student perception of AG questions in
natural learning contexts is a valuable addition to AQG research, as student beliefs can
influence student behavior. In this research, students were unaware of which questions
were generated through AI and which were authored by subject matter experts to avoid
preconceived bias. Due to self-selection, it is possible that students who completed the
survey (n = 67) were not representative of the class. To investigate this, we can use
the question, “How often did you do the practice questions located at the bottom of the
page?” to gauge the distribution of engagement. Students responded always (67%), most
of the time (18%), about half the time (3%), sometimes (9%), and never (3%). While
the Likert scale response categories for question engagement are qualitative rather than
quantitative and therefore prohibit a detailed statistical comparison of the engagement
data and survey response distributions, a qualitative comparison to the engagement graph
(Fig. 1) shows similarities. Most students did all (or nearly all) the practice, while a very
small percentage did little to none. This provides some confidence that this sample of
students is representative of the class, and that studentswere honest in their self-reporting.

Before soliciting feedback on the questions, students were asked about their previous
experience with adaptive/interactive platforms, as UCF uses a variety of platforms and
resources. About 84% of students reported having previously used an adaptive platform
such as Connect, LaunchPad, Reveal, Realizeit, ALEKS, etc. Of the students who had
used adaptive platforms, 26 students liked them a great deal, 23 liked them somewhat,
3 were neutral, 3 disliked them somewhat, and 1 disliked them a great deal. This base-
line indicates that while most students enjoy learning with digital platforms, a small
percentage do not. Students were then asked, “Compared to other adaptive courseware
you have used, was your experience with Acrobatiq this semester:” far above average
(34%), somewhat above average (39%), average (21%), somewhat below average (7%),
far below average (0%). This is positive feedback for AI-generated courseware; most
students preferred it or found it to be equivalent to other adaptive platforms they had
used.

Students were then asked a series of questions regarding the formative practice in
general. This began with the question, “If you answered the practice questions, how
helpful did you find them?” Students answered: extremely useful (32%), very useful
(37%), somewhat useful (20%), slightly useful (5%), not at all useful (3%). No dis-
tinction was made between the AG and HA questions, but given the high proportion of
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AG questions, this reveals that most students had positive reactions to them. To better
understand how students perceived the learning benefit, students were asked, “Do you
think that the Acrobatiq features helped you learn the material?” Students responded:
definitely yes (45%), probably yes (40%), might or might not (4%), probably not (4%),
definitely not (6%). Students were also asked, “Do you think that the practice questions
increased your test scores?” Students responded: yes (69%), maybe (24%), no (7%). We
see that the majority of students felt that the practice questions helped them learn the
material better as well as increased their test scores. A small number of students did not,
however, but we should note a similarly small number of students also disliked adap-
tive/interactive platforms in general and rarely or never answered the practice questions.
It is to be expected that not all students prefer this style of learning resource, but it is
encouraging that this group is proportionally very small. Further investigation of this
group’s preferences and rationale would be beneficial for future research.

Students were also prompted to provide elaboration for their thoughts on the practice
questions. “If you did not answer the practice questions often or at all, what were the
reasons you chose not to?” In total, 19 students responded, but 13 of those responseswere
to indicate this question was not applicable—they did answer them. The remaining 6
responses can be grouped into three categories: students didn’t realize the questions were
assigned or beneficial at the time, students had limited time and had to prioritize, and
students felt confident with the material and so bypassed them. No students responded
that they didn’t care for the questions or thought they were of poor quality; all responses
were related to student circumstances.

To know more about student preference for individual question types, students were
asked, “Were there any question types that you liked or dislikedmore than others?” Forty
students responded, with 21 answering no, they didn’t have a preference. Six students
reported liking thefill-in-the-blank the best (“I liked thefill in the blank questions because
it requires you to recall information”), four liked the matching (“the ones where they
gave you the options and you had to fill them in were my favourite”), and one liked the
true/false. One student replied that they liked “definition” questions, and three students
responded with additional course feedback. Four students responded that they disliked
the true/false questions—which were the HAMC questions. This was the only question
type students identified disliking and could suggest a relationship to the low mean score
for this question type.

Finally, studentswere asked if therewere any other types of study features theywould
like to have in the courseware. Of the 35 students who responded, 22 said no, with two
elaborating, “No, I thought the questions and quizzes were enough,” and “not really, I
liked the courseware a lot.” Videos, vocabulary, immediate feedback on quizzes, and
flashcards were all suggested by one student each and one answer was also not readable.
Two students requested note-taking and three requested a study guide (“A study guide for
the exams would be helpful”). Three students requested the ability to get more/random
questions (“Yes an option for new questions to keep practicing or more questions”). This
request for more formative practice is especially encouraging as it identifies the value
students place on practice as a study feature in general, and indicates that the generated
practice was perceived on par with other human-authored resources.
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4 Conclusion

Measurable performance metrics are key to evaluating the quality of AG questions and
advancing toward standards for AQG at large. Quality metrics such as difficulty and
cognitive level are standardmeasures that canbe evaluated through automatic scoring and
statistical procedures, yet these are less common in the AQG literature [11]. In this study,
we contribute to the research reporting question difficulty, but also include engagement
and persistence to provide a more thorough understanding of how students interact with
AG questions. Furthermore, using student data from natural learning contexts expands
the external validity of AG question performance.

While more research is needed in AQG that uses student data for evaluation of
performance metrics, it is notable that no research is mentioned that investigates stu-
dent perceptions of the AG questions as a learning feature [11]. Student perception
is particularly relevant to this courseware environment because the formative practice
questions are the primary learning method that engages the doer effect [12]. Should
students perceive the AG questions poorly, this could affect their use of them or how
seriously the students regard the value of their learning benefit. While the AG ques-
tion performance metrics do not show evidence of negative student perception (i.e., low
engagement, unusual difficulty patterns, low persistence), combining this with student
feedback creates a more comprehensive evaluation. Survey results showed that students
were generally experienced with adaptive/interactive platforms and—apart from a hand-
ful of students—generally like using them for learning. The comparative value students
found in the AI-generated courseware is notable, especially given the minimal time and
effort required from the instructor and designer to create it. Nearly all students thought
the practice questions were useful, helped them learn the material, and helped increase
their test scores. Research on the doer effect has repeatedly shown that doing formative
practice while reading is causal to learning [10, 12], but it is also beneficial for students
to believe that this learn by doing method is helping them. For students to have such
positive perceptions of questions generated through artificial intelligence is a significant
outcome for AG questions as well as the overall learning method they were intended
for. While there are many avenues of future research remaining for AG questions, these
results point to an optimistic future for the application of AQG in formative learning
contexts.
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Abstract. To score open ended responses, researchers often design a
scoring rubric. Rubrics can help produce more consistent ratings and
reduce bias. This project explores whether an automated short answer
grading model can learn information from a scoring rubric to produce
ratings closer to that of a human. We explore the impact of adding an
additional transformer encoder layer to a BERT model and training the
weights of this extra layer with only the scoring rubric text. Additionally,
we experiment with using Node2Vec sampling to capture the graph-like
ordinal structure in the rubric text to further pre-train the model. Results
show superior model performance when further pre-training with the
scoring rubric text. Specifically, questions that elicit a very simple rubric
structure show the most improvement from incorporating rubric text.
Using Node2Vec to capture the structure of the text had an inconclusive
impact.

Keywords: Automatic short answer grading · BERT · Node2Vec

1 Introduction

Automatic Short Answer Grading (ASAG) is an emerging field of research, as the
education community has started to embrace the use of machine learning to assist
both students and education professionals. ASAG refers to the machine scoring
of open-ended (OE) items that are shorter than essay length - often a sentence
or two. It has been shown that the use of open-ended questions helps facili-
tate learning by self-explanation [9], or information recall [5]. The “generation
effect” has been studied extensively and findings show that subjects who gener-
ate information are able to remember the information better than material they
have simply read [5]. Additionally, open-ended items may be adapted to assess
student knowledge and understandings across many content areas and have been
shown to enhance learning [1,19]. However, educators are often deterred from
the use of OE items because grading requires much more time than that for
multiple choice items [19]. The use of an automated system for grading short-
answer questions could decrease the amount of time teachers spend grading,
while allowing students to grow in their knowledge through self-explanation and
information recall. However, limitations do exist when considering the practical
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use of ASAG, including the resource-heavy need to label (grade) many student
responses, and that ASAG models do not seem to generalize well to questions
outside of those included in the training set [10].

Many assessments are created via collaboration between teachers,
researchers, and test developers where scoring rubrics for each item are carefully
designed. Rubrics can provide raters with both exemplar student answers as well
as competency descriptions corresponding to each grading category. Rubrics are
created to increase both reliability and validity of scores [32]. When a rubric
clearly and rigidly defines scoring criteria, inter and intra rating consistency can
be increased [31]. There are, however, grading scenarios in which rubrics are not
created such as contract grading where evaluation is solely based on completion
of a task [11], or intuitive grading where instructors rely on their experience to
grade [14].

In order to exploit the advantages of using scoring rubrics, we propose to
incorporate item-specific scoring rubrics into an ASAG model. We do so by fur-
ther training a model called BERT (Bidirectional Encoder Representations of
Transformers) using the scoring rubric text and structure. BERT is a type of
language model called a transformer, which has been pre-trained on the English
language and can be later trained for downstream tasks such as classification
[12]. BERT, as-is, encapsulates latent relationships in natural language from
the text on which it has been pre-trained. However, we want it to capture such
relationships in the scoring rubric text specifically. Before we train it on our clas-
sification task of grading, we continue the model’s pre-training with the scoring
rubrics. We hypothesize that this will improve the ASAG accuracy beyond that
of similar models not trained on rubrics. Additionally, we look at model perfor-
mance at the question level to examine if certain types of questions and their
corresponding rubrics exhibit varied results.

The original BERT model is a neural network consisting of 12 transformer
encoder layers with pre-trained weights. To provide the model with the rubric
text, we add one more (13th) transformer encoder layer to the model to train
with the masked language model (MLM) task, using the rubric text as input.
Thus, the model will also incorporate relationships in the text specific to the
rubric as it classifies student responses. Additionally, because the ordinality, of
the rubric is important - namely that its text would not mean much to a human
grader if they could not interpret that a level 3 score is ranked “higher” than
a level 2 score - we incorporate a sampling method called Node2Vec [17] for
creating a vector representation of the rubric text. If we conceptualize the rubric
as a graph network to capture the ordinality in the scoring levels, Node2Vec will
learn a latent representation of the structure of the rubric.

The novelty of this research is the modification of BERT to incorporate a
rubric for each item. The purpose is to increase an automated grading system’s
performance for practical use in terms of producing scores that match that of
human graders. Using BERT for downstream classification tasks is common for
applied machine learning research, as well as for ASAG-specific tasks. Modifica-
tion of BERT to incorporate a rubric has not yet been studied.
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We hypothesize that pre-training BERT on rubric text, termed “further pre-
training” will improve the model’s ability to match human ratings of the student
responses. However, we do anticipate that this effect may differ depending on
the type of questions and their corresponding rubrics.

2 Related Work

We believe that this work will contribute to the growing research for, and
improvement of, ASAG models. A systematic review of trends in ASAG [6]
illustrates an increasing interest in the field of automatic grading for education;
researchers have used a broad range of NLP methods.

Unsupervised methods have been explored such as concept mapping, seman-
tic similarity, and clustering to assign ratings [2,21,25]. In addition, many types
of supervised classification methods have been utilized for ASAG [4,20,24]. More
recent ASAG research exploits advances in deep learning methods [23,26] [27,30].
Further, much of the newest ASAG work makes use of state-of-the-art trans-
former based language models such as BERT, GPT and ELMo [7,15].

More specifically related to our project, researchers have started to focus on
using extra, question-relevant information within ASAG models. Sung et al. [28,
29] examined the effectiveness of pre-training BERT on relevant domain texts,
as a function of the size of training data and generalizability across domains.
Our research expands on that of Sung by investigating pre-training BERT but
on a much different corpus of text (rubrics) and accounting for the structure of
the text as well. Wang et al. [33] used an attention based method to extract key
phrases from student answers that are highly related to phrases and answers from
a scoring rubric. Condor et al. [10] experimented with concatenating different
pieces of information to student responses such as question text, or rubric text,
as input to a grading model. Chen and Li [8] make use of prior knowledge to
enrich features of student responses by incorporating question text information
within an extra forward propagation training step.

3 Background

3.1 BERT

BERT [12] was the first language model to successfully learn relationships within
sequences of words by pre-training with a bi-directional prediction task, masked
language modeling (MLM). It does so by randomly masking 15% of tokens, or
words, throughout the text during training and uses a self-attention mechanism
to predict the masked texts. Additionally, BERT learns representations between
sequences of sentences by its pre-training on a next sentence prediction (NSP)
task, where the model is given two sentences and predicts whether one sentence
should come directly after the other. The standard BERT model was pre-trained
on large amounts of natural language text from Wikipedia and BooksCorpus, and
can be fine-tuned for different tasks, such as classification, by adding only one
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additional layer to the existing neural network [12]. We use a compressed version
of the original BERT model called BERT-base, consisting of 12 encoder layers
and a total of 110 million parameters. With limited computational resources, the
base version is faster to train yet still retains much of the impressive performance
on standard benchmark tasks.

3.2 Node2Vec

Node2Vec is an approach for learning latent representations of vertices in a net-
work such that graph structures can be represented as a continuous vector space
[17]. By modeling random walks over the graph structure, Node2Vec creates
input sequences conceptually similar to that for a sequence of words, however
the sequences capture the structure of the graph.

The algorithm works as follows: firstly, a random walk generator takes in a
graph structure, and uniformly samples a node as the root of the walk. Then, the
walk uniformly samples from the direct neighbors of the last visited node, and
this process continues until a maximum length has been reached. This sequence
of nodes would represent one input sequence, and as many sequences can be
generated as specified. In addition to the number of walks and the length of
walks, two other parameters exist which specify how likely it is for the walk to
wander far from the starting node (breadth of the search), and how likely it is
to return to the start node (depth of the search).

4 Methods

In this section, we describe the data used for this project, outline the methods
used to alter the architecture of the BERT-base model, explain the Node2Vec
sampling approach for creating input sequences to further pre-train the extra
layer of the model, and detail the process of training the classifier.

4.1 The Data Sets

We used two data sets for this project, consisting of short responses to sci-
ence questions. The first data set we used was sourced from a 2019 field test of
an assessment [3] created at the Berkeley Evaluation and Assessment Research
(BEAR) center. The data consists of 5,550 student responses from 558 distinct
students to 31 different items. The mean number of responses per question is
179 with the minimum being 128 and the maximum being 313. Items all were
administered in four different test forms. We refer to this data set as ‘BEAR’.
Responses were rated from 0 (incorrect) to 4 (fully correct) by multiple subject-
matter experts at the BEAR center. The quality and consistency of ratings were
evaluated by an inter-rater reliability score, and when a high percentage of rating
mismatches between raters existed (more than 15%), incongruous ratings were
discussed until a consensus was reached by the raters.
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To exemplify the type of questions included, for one item labelled ‘Crude Oil’,
students are presented with two images relating to oil production - one being a
line graph and the other, a table of values. Respondents are to choose between the
graph or the table for which would be better to represent the historical patterns
of oil production on a poster for a class presentation. The correct answer for this
question is the graph, and students are expected to provide reasons why this is
the right choice. An example of a student response to the Crude Oil item rated
as a 4 (fully correct) is: “The graph easily displays patterns over time whereas
the table and equations require more analyzing.” In contrast, a student response
to the same question rated as a 0 (incorrect) is: “The table is more clear, the
information is seen in the table.”

We also show results with an open-source data set called the Automatic
Student Assessment Prize (ASAP) Short Answer Scoring (SAS) data. The data
was used in a 2012 Kaggle competition sponsored by the Hewlett Foundation,
and consists of almost 13,000 short answer responses to 10 science and English
questions. We used only the 5 science questions since the domain is the same
as the BEAR data set. The questions were scored from 0 (incorrect) to 3 (fully
correct), and each question includes a scoring rubric. We refer to this data set
as ASAP. An example of a question from the ASAP data set is: “Starting with
mRNA leaving the nucleus, list and describe four major steps involved in protein
synthesis. The rubric consists of a list of key elements of an exemplary response
such as “mRNA exits the nucleus via nuclear pore”, and specifies how many key
elements need to be included for the answer to be rated at a given level.

Standard pre-processing of both the data sets included removing null
responses, adding a period to the end of sentences, and concatenating a numeric
question identifier to the beginning of student responses. We split the data sets
into training, validation and testing sets with a 70/15/15% split.

4.2 Architecture Modification

To further pre-train the model on the scoring rubric text, we add a 13th encoder
transformer layer to the original BERT-base model. The weights of the 13th
layer are randomly initialized, and the weights of the other 12 encoder layers are
frozen during the additional pre-training. Thus, the original 12 layers maintain
the weights that capture latent relationships in general English language from
the model’s original pre-training, and the new weights of the 13th layer start as
essentially a blank slate. We then train the 13th layer with the MLM task using
our scoring rubric text as input. Standard neural network parameters were tuned
to minimize the MLM loss, in addition to considering the best configuration for
our computational limitations. Optimal parameters include a batch size of 8, a
learning rate of 4e−4, and 12 training epochs.

4.3 Sampling Methods

To produce input sequences that capture the ordinal structure of the scoring
rubric for pre-training the BERT model, we use the Node2Vec sampling method.
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We create a graph representation of the structure of the scoring rubric for each
question in the data set. An example of a scoring rubric is included in Fig. 3,
as well as an image of the graph representation of the scoring rubric. In order
to conceptualize the rubric as a graph, we make each level of the scoring rubric
a node in the graph, and undirected edges connect each level to both the level
below and above it. The description of each level as well as the example responses
are included as features of the level nodes. We use the python package, ‘networkx’
[18] to create the graph structure (Fig. 1).

Fig. 1. Example of a scoring rubric (left) and corresponding graph structure (right)

Parameters to be tuned for Node2Vec include the walk length, number of
walks, and the p and q parameters that indicate how far the random walk strays
from the original node, and how likely it is to return to the previous node.
The best set of parameters were chosen based on the performance with our
downstream classification task and consisted of a walk length of 10, number of
walks being 50, a p of 0.5 and a q of 2.

Included as features of each node of our scoring rubric graph is both the
description of the grading level as well as exemplary student responses. When
the random walk lands on a node, the method randomly samples one piece of
text from the node (rubric level). For example, if the algorithm starts on the
level 2 node, we grab either the level description text, or one of the exemplary
responses for the input sequence. If, during the random walk, we return to the
same node, the algorithm will similarly randomly choose one of the pieces of text.
The full input sequence for each walk is created by concatenating the text from
each “step” of the walk in the order they are sampled. The sampling process is
repeated for each question included in the data, as each question has a unique
corresponding scoring rubric. Resulting input sequences for each question are
combined to create all the input text. All of the input sequences are used to
pre-train the weights of the 13th encoder layer of our model.
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4.4 Fine-Tuning Experiments

To test our hypothesis that providing the BERT model with information about
the scoring rubric will increase the performance of the classifier for ASAG, we
performed four different experiments, with four separately trained models. We
choose the particular experiments to help us clarify the implication of our results
such that we can distinguish between whether the text itself or the latent graph
structure is helping the ASAG model.

Each model is fine-tuned for our multi-class classification task - i.e. we add
a classification head to the model after its encoder layers (regardless if it has
12 or 13 encoder layers) and train the classification head with the labeled data.
We performed a standard parameter search and achieved the best validation set
results with a batch size of 8, 4 training epochs, and a learning rate of 5e−4.

We include two standard evaluation metrics for both datasets (BEAR and
ASAP) in our results table: Cohen’s Kappa (CK) and weighted F1 score (F1).
The F1 score includes both precision and recall and accounts for class imbalance,
and CK reports the agreeability between two scores beyond random chance
- a more robust measure than accuracy. Additionally, we provide a majority
class classifier for the F1 score results as a baseline comparison. The CK results
have an ‘n/a’ for the majority class classifier because a majority class model is
the same as classification by random chance for multi-class classification, which
would always result in a CK metric of 0.

A 5x2 cross validation (CV) paired t-test was used to evaluate the statistical
significance of the difference in models. The 5x2 CV paired t-test is based on five
iterations of twofold cross-validation, and is presented in [13] as the recommended
approximate statistical test for whether one machine learning model outperforms
another because of it’s more acceptable type I error, and stronger statistical
power than other methods such as McNemar’s test, or a paired t-test based
on 10-fold CV. We used the CK metric for the 5x2 CV paired t-tests (with 5
degrees of freedom). For each of the ‘Rubric’ models, there is a corresponding
t-test comparing the CK metric for the BERT-base model with the given model.
The null hypothesis for each t-test states that the CK metric for the specified
model is no different than the CK metric for the BERT-base model.

5 Results

We present our results below, in Table 1, for the four models we wish to compare.
The first model, ‘BERT-base’, is a standard BERT-base classification model (no
extra 13th layer). This model serves as a baseline with which to compare our
modified architecture (‘Rubric’) models. The second model, ‘Node2Vec Rubric’,
incorporates the Node2Vec sampling method in the further pre-training of the
13th layer. This is the model we hypothesize will perform best because it cap-
tures both the text and structure of the scoring rubric in the added 13th layer.
The third model, ‘Top-level Rubric’, also has an added 13th encoder layer but
the extra layer is trained with only the top level of scoring rubric text (i.e.,
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explanations and examples of the most correct responses) and the text is ran-
domly sampled instead of using Node2Vec Sampling. In this experiment, we still
sample 10 pieces of text for each input sequence, and 50 sequences total for
each question for consistency in the amount of training data. Finally, the fourth
model, ‘Random Rubric’, we add the 13th encoder layer and train it with all
of the scoring rubric text, randomly sampled (no Node2Vec sampling). Thus we
can compare a regular BERT-base model to three other models that have been
altered in structure with a new 13th layer to examine: if just the rubric text itself
with no structure is helpful (Random Rubric), if only including exemplar level
descriptions and text is helpful (Top-level Rubric), or if providing the model a
signal about the structure of all the rubric text, along with the text itself is
helpful (Node2Vec Rubric) in terms of the performance of our ASAG model.

Table 1. Test set weighted F1 score and Cohen’s Kappa

BEAR F1 BEAR CK ASAP F1 ASAP CK

BERT-base 0.6742 0.6831 0.7755 0.8677

Graph Rubric 0.6946 0.7361 0.8001 0.8808

Top Rubric 0.6932 0.7170 0.7879 0.8739

Random Rubric 0.6815 0.6961 0.7972 0.8825

Majority class 0.2082 n/a 0.2737 n/a

Results of the 5x2 CV paired t-test are shown in Table 2. For a paired one-
tailed t-test, the critical values for an alpha, or probability of a type I error, of
0.05, 0.10 are 2.015 and 1.476 respectively. In Table 2, statistical significance at
the 0.05 level is represented with an appended *.

Table 2. 5x2 Cross Validation Paired one-tailed t-test (5 df)

BERT-base versus: BEAR t(5) BEAR p-val ASAP t(5) ASAP p-val

Graph Rubric 1.814 0.0647 3.098* 0.0135

Top Rubric 1.880 0.0594 3.191* 0.0121

Random Rubric 1.778 0.0678 4.110* 0.0046

From Table 1, we see that all of the models, including BERT-base, on both the
BEAR and ASAP data, perform much better than the majority class classifier.
Additionally, across both data sets and considering both metrics, the ‘BERT-
base’ model performs slightly worse than all the others. For the BEAR data, the
‘Node2Vec Rubric’ model performs best and the difference between this model
and the ‘BERT-base’ model is considerable, especially in terms of the CK metric.
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The ‘Top-level Rubric’ model still seems to be an improvement to the ‘BERT-
base’ model, and the ‘Random Rubric’ model shows only slight improvements
from the ‘BERT-base’ model. With the ASAP data, we see similar results when
comparing the ‘BERT-base’ model and the ‘Node2Vec Rubric’ model - we get at
least two percentage points improvement in terms of both F1 and CK metrics.
Additionally similar, we get improved performance, but to a lesser extent, with
the ‘Top-level Rubric’ model. However, one considerable difference is that we see
about the same performance improvement with the ‘Random Rubric’ model as
with the ‘Node2Vec Rubric’ model, when comparing against ‘BERT-base’.

In Table 2, We further validated our results with the 5x2 CV t-test for statis-
tical significance for whether each of the three models with an added 13th layer
model performs superior to the ‘BERT-base’ model in terms of the CK metric.
With the BEAR data, results are statistically significant at the 0.10 type I error
level, but not quite at the 0.05 level as shown by the p-values for each of the three
‘Rubric’ models. However, with the open-source ASAP data, all three models
show statistically significant improvement over ‘BERT-base’ at the 0.05 type I
error level.

Additionally, since the ASAP data showed more promising results for all
three ‘Rubric’ models in terms of statistical significance, we broke down the
results for this data set by question in order to see if our method is more useful
when autograding a particular type of question or with a certain rubric type.
We saw the biggest performance increase between the ‘BERT-base’ model and
the ‘Node2Vec Rubric’ model with one specific question that elicited a very
straightforward rubric. The question context presents an experimental proce-
dure, and asks students to describe what other pieces of information are needed
to replicate the experiment. The rubric is simply broken down into the number
of pieces of information that the student provides; to achieve the highest score, a
student must provide three additional pieces of information, and to achieve the
second highest score, two additional pieces of information. In contrast, the least
performance increase (actually, a slight performance decrease) was observed for
a question that had a much more open-ended nature and abstract rubric. The
question context presents an experimental design and corresponding results, and
asks students to describe two ways to improve the experimental design and/or
the validity of the results. Rubric guidance is vague, including statements such
as: “The response draws a valid conclusion supported by the student’s data but
fails to describe, or incorrectly describes, how the student could have improved
the experimental design and/or the validity of the results”.

6 Discussion and Conclusion

Most evident with the ASAP data set results, adding an extra 13th layer to
the model, further pre-trained with some version of the rubric text improves
the classification performance of the ASAG model notably (from the t-test, we
see a statistically significant improvement in performance, at a significance of
0.05, when comparing all three models to the BERT-base model with no 13th
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layer). Less evident, but also noteworthy, is the performance increase for all three
‘Rubric’ models with the BEAR data (from the CV t-test, we see a statistically
significant improvement in performance, at a significance of 0.10, when compar-
ing all three ‘Rubric’ models to the BERT-base model with no 13th layer). Thus,
we conclude that incorporating rubric text to BERT by further pre-training an
extra encoder layer adds value to the ASAG model.

However, we cannot conclude that using Node2Vec sampling to capture the
structure of the rubric text prior to further pre-training BERT adds value. We do
not see consistently lower p-values in the 5x2 CV t-test results for the ‘Node2Vec
Rubric’ model than the other ‘Rubric’ models (‘Top-level Rubric’ and ‘Random
Rubric’), nor do we observe a noticeable increase in performance for the results
in Table 1 when comparing the ‘Node2Vec Rubric’ model with the other ‘Rubric’
models. So, although it appears that allowing the BERT model to learn about
the text in a rubric is beneficial for the model’s performance, the structure of the
rubric seems not as important as we hypothesized. It may be the case that the
model benefits simply from ingesting the subject-specific jargon in the rubric,
versus the more general English text on which the other 12 encoder layers have
been pre-trained. Further, there are methods outside of Node2Vec that may
better capture the rubric structure and further research may attempt to include
other methods to represent structured text for language models.

Finally, after investigating the results broken down by question, we conclude
that our method of further pre-training a BERT model using rubric text may be
useful only for specific types of questions that elicit a very straightforward rubric
structure. Questions with rubrics that call for more abstract interpretation or
subjective judgment may not be a good application for our proposed method.
Further investigation on different short answer question types and rubric struc-
tures is necessary to further generalize this conclusion.

The outlook of automatic grading continues to improve with advances
in machine learning and natural language processing. Incorporating human-
created, domain related text such as a scoring rubric may be one way to ensure
that ASAG models reflect human judgment, even more than with supervised
classification (i.e. training the model to match human ratings), while still improv-
ing model performance. However, if it is the case that our methods are only
applicable to questions of a simplistic nature, future research may need to focus
on how we can automatically grade questions that elicit more complex responses.
For example, the knowledge integration perspective on science inquiry supports
that students can maintain multiple ideas, sometimes conflicting, about a par-
ticular topic [22]. Automatically identifying a student’s various, and potentially
contradicting, ideas within a response may be an important step in creating
quality autograders for more complex science questions [16].
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Abstract. Recent developments in combined human-computer tutoring systems
show promise in narrowing math achievement gaps among marginalized students.
We present an evaluation of the use of the Personalized Learning2, a hybrid tutor-
ing approach whereby human mentoring and AI tutoring are combined to per-
sonalize learning with respect to students’ motivational and cognitive needs. The
approach assumes achievement gaps emerge from differences in learning opportu-
nities and seeks to increase such opportunities for marginalized students through
after-school programs, such as theReady to Learn program. This program engaged
diverse middle school students from three schools in an urban district. We com-
pared achievement growth of 70 treatment students in this program with a control
group of 380 students from the same district selected by propensity matching to
have similar demographics and prior achievement. Based on standardized math
assessments (NWEA Measures of Academic Progress) given one year apart, we
found the gain of treatment students (6.8 points) was nearly double the gain of the
control group (3.6 points). Further supporting the inference that greater learning
was caused by the math-focused treatment and not by some selection bias, we
found no significant differences in reading achievement between treatment and
control participants. These results show promise that greater educational equity
can be achieved at reasonable costs through after-school programs that combine
the use of low-cost paraprofessional mentors and computer-based tutoring.

Keywords: Personalized learning · Cognitive tutoring · Design-based research

1 Introduction

The impact of combined human mentoring and AI-driven computer-based tutoring on
student performance is encouraging, with an expanding stream of research showing
promise in improving learning gains, especially in mathematics [8, 24]. AIED technolo-
gies involving human-computer teaming can lower the financial cost of personalized
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tutoring and increase student learning [3, 19, 24]. The humanmentors in these teams gen-
erally require less professional andon-the-job training than classroom teachers [8],which
keeps human resource costs low. However, these mentors need additional support in
providing personalized resources and skills development to assist with specific student’s
needs. The use of human-computer teaming, particularly in the wake of the COVID-19
pandemic, gives mentors access to individualized resources using AI-software based on
students’ existing math learning software and mentor input and feedback. We present
results (i.e., EdTech usage, math and reading learning gains and outcomes) from the
deployment of an after-school learning support system that integrates human mentors
and AI tutoring (e.g., [17, 23]), with the aim of substantially reducing income and racial
gaps in learning opportunities and outcomes. The Personalized Learning (PL2) approach
intends to maximize the synergies between the motivational capability of human men-
tors and the ability of computer-aided learning systems to provide low-cost personalized
learning in pursuit of more equitable educational outcomes.

1.1 Related Work

Narrowing the Opportunity Gap. Marginalized students lack the means to access
quality instructional services and experience lesser opportunities for learning [24] cre-
ating an opportunity gap. We define marginalized learners as, “students systematically
denied equitable access to the same opportunities theoretically available to all students
(p. 216)” often due to socioeconomic status, disability, or racial minoritization among
other factors [12]. Racial and economic learning gaps are preventing millions of Ameri-
can students from realizing their potential which perpetuates inequalities of income and
opportunity across generations [2]. Recently, the COVID-19 pandemic has exacerbated
these inequalities with lower student achievement at the start of the 2021–22 school year
(9 to 11 percentile points on standardized achievement assessments) than previous years
hitting marginalized groups the hardest—minority students experiencing high-poverty
[15]. Although achievement was lower across all groups, the achievement gap is present
now more than ever with higher achieving and non-marginalized students making gains
consistent with projected normative growth and marginalized, often under-achieving,
students lagging behind further exacerbating the learning gap [15]. While these are
recent and long-standing problems, researchers have struggled to identify effective solu-
tions. Recent research undertaken in the Chicago Public Schools in some of the city’s
highest-poverty neighborhoods, provides new grounds for hope [3, 7, 11]. Using a ran-
domized control trial consisting of 2,700 students of whom 95%were Black or Hispanic,
they demonstrate that just one year of intensive, personalized tutoring can narrow racial
achievement gaps in mathematics by as much as one third. These gains come at a sub-
stantial cost. With one tutor providing instruction to just two students per class period,
the cost exceeds the threshold of political feasibility in many districts, despite its proven
efficacy.

Offering Low-Cost Tutoring. Advances in computer-aided learning provide a method
of substantially lowering the cost of personalized tutoring, while maintaining the mag-
nitude of the learning gains. Research on AI-driven computer-based tutoring has shown
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computer tutors can substantially accelerate student learning, especially in mathemat-
ics. In one recent large-scale randomized control trial, this technology was shown to
double the rate of math learning [21]. Setren [25] showed that the use of another com-
mercially available tool (eSparks), has a positive effect on learning gains for all students
and can contribute to reducing inequality. Similarly, Muralidharan et al. [19] showed
that a personalized technology-aided after-school program was successful in generating
large learning gains among under-achieving students in a developing country. Despite
positive findings, many students do not partake in the practice opportunities provided.
We propose human mentoring to help motivate students to participate and to round out
their learning experiences.

Supporting the Whole Child. While computer tutors can often provide effective sup-
port for student thinking and learning, these systems do not provide human support for
social motivational development such as self-efficacy building [26], feelings of belong-
ing [31], growth mindset [32], and valuing utility of STEM [10]. Using the last as an
example, motivational support for students and parents to better appreciate the value of
STEM learning produced about 50% greater achievement and future course enrollment,
especially for low-performing and underserved students. Our proposed intervention sup-
ports the whole child similar to Guryan et al. [7] in attending to the social-motivational
needs and relationship building which is particularly important in middle school years.
Milner [18] posits that to foster excellence, a learning environment should center on
building and cultivating relationships with students. The synergy of human and com-
puters has been studied in a similar fashion with the use of trialogues (the interaction of
two agents with a human student) to address pedagogical goals and student’s emotional
state [6] and the use of tutorial dialogue agents to increase learning gains [14]. Simi-
larly, peer-to-peer interaction within intelligent tutoring systems to scaffold learning has
been researched via adaptive collaborative learning supports for both improving content
learning and collaboration [30].

2 The Personalized Learning2 Approach

Introduced in Schaldenbrand et al. [24], PL2 is a learning app that syncs with students’
existing math learning software and mentor input and feedback to improve students’
math achievement.1 This paper presents an evaluation of the general PL2 approach, as
both a learning app and tutoring method, to human-computer teaming for motivational
mentoring and content tutoring. By combining research-driven mentor training with
AI-powered software, the PL2 approach improves mentoring efficiency by connecting
mentors to personalized resources with the click of a button. This connection is achieved
by a web app used by mentors and mentor supervisors. The PL2 approach serves out-
of-school tutoring programs, which choose a computer-based math tutoring system for
students to use. The data from student interactions is passed to the PL2 web app to
power mentor decisions. Mentors make post-session reflections based on reports of
student effort and progress. Mentors work with students to set or modify intermediate

1 http://personalizedlearning2.org/.

http://personalizedlearning2.org/
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effort goals, much like the 10,000 step goals in physical fitness apps, such as doing 40
min of math practice a week. When students are missing effort or progress goals, the
PL2 app provides suggestions for resources that the mentor can use themselves or with
students to enhance student motivation, cognition, or metacognition.

PL2 has been integrated with several math EdTech systems [24]. The two used in the
evaluationwe report onwereMATHia andALEKS.MATHia (formerly Cognitive Tutor)
uses a cognitive model of student problem solving to implement the model tracing and
knowledge tracing algorithms for personalized tutoring [23]. It has been demonstrated
to improve student learning in large-scale randomized field trials (e.g., [21]). ALEKS
is an intelligent tutoring system based on knowledge space theory and it too has been
demonstrated to improve student learning [17].

Fig. 1. The Ready to Learn program 2-h in-person format commences with fellowship, followed
by rotations between AI and in-person tutoring (40 min. each), and ends with reflection and team
building. Students shown working with an in-person mentor and AI tutors.

2.1 Description of the Program

The Ready to Learn (RtL) program is offered by the Center for Urban Education at
the University of Pittsburgh (Pitt). The program is a combination tutoring-mentoring
initiative that connects students from Pitt and Carnegie Mellon University (CMU) with
middle school students in select urban public schools to provide mentoring and math
tutoring in an out-of-school context. The overarching goal of the RtL program is to pro-
vide students, especially students from disadvantaged contexts (i.e., living in poverty,
experiencing racial bias, being part of a marginalized group) with experiences to sup-
port their academic improvement in mathematics. Since 2019, CMU researchers have
partnered with Pitt’s Center for Urban Education to provide personalized math mentor-
ing. Small scale pilot versions of RtL in the spring and summer of 2019 paved the way
for full implementation in the 2019–2020 academic year and following summer. RtL
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combines small group lessons, individual mentoring with trained CMU and Pitt under-
graduate students, student engagement with adaptive AI-driven learning software, and
use of the Personalized Learning2 app to help mentors work together with technology to
customize the learning experience for each student. The in-person session format (see
Fig. 1) consisted of both a human personalized math lesson and personalized computer-
based tutoring provided by the MATHia intelligent tutoring system. Because of the
COVID pandemic, the program moved online in the summer of 2020. At the same time
for logistical reasons, the computer-based tutoring was changed to ALEKS. RtL builds
student math confidence and competence at no cost to students or to partnering schools.
In the evaluation we describe below we included students that participated in an RtL
program between the available assessments, that is, during the spring and summer of
2020.

By relying on undergraduate mentors and off-the-shelf math learning software and
keeping the price of subscriptions to the PL2 app at reasonable levels, future implemen-
tations may be able to deliver learning gains for a modest cost per additional student.
Our calculations suggest a mentor cost of $360 per student/year.2 With the addition of
an annual EdTech license cost per student (i.e., $27 Mathia, $179.95 for ALEKS) and
an annual PL2 student fee ($10), the cost of our intervention becomes $397–$550 per
student. Thus, a marginal cost of about $500 per student is attainable—a fraction of the
$3,500–$4,300 per student for other high-dosage tutoring programs [8].

3 Method

Participants in treatment and control groups included students mostly entering grades
6–7 at the 2019–2020 school year from three schools located in a medium-sized, urban,
Pennsylvania school district. Two of the three schools have a higher proportion of dis-
advantaged students compared to the district aligning with the goal of RtL of reach-
ing marginalized groups. The majority of students were in 6th (57%) and 7th grade
(33%) grade. Students’ demographics are summarized in Table 1. Among the treatment,
approximately 74% were Black with an approximately equal gender distribution (48%
female). Most of the participants were eligible for free or reduced lunch (71%) and 20%
were receiving an Individualized Education Program (IEP), which is a special education
service.

Students’ achievementwasmeasured by theNWEAMeasures ofAcademic Progress
(MAP) assessment which the district administered a few times per year assessing stu-
dents’ math and reading achievement. In our evaluation, MAP scores for fall and winter
of 2019–20 were used as pretest scores and MAP scores for fall and winter of 2020–21
were used as posttest scores. We used all four test scores to maximize the number of
students for which at least one pre and one post score was available (see missing data
discussion below). We note concerns that majority-based norming of standardized tests
can create cultural bias and may exaggerate achievement gaps [13]. At the same time,

2 Estimated mentor cost: $15/hr.*2 h./session*2 sessions/week*24 weeks/4 students per mentor
= $360 per student/year.
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we note efforts to reduce bias in standardized testing in general [22] and that the ques-
tions on this test are representative of important learning goals for students (e.g., using
rational numbers to solve real-world problems).

Table 1. Demographic group percent distribution (and number) demonstrates about 3/4 of
participants belong to marginalized groups (i.e., Black and low SES)

Group Demographic Treatment (n) Control

Gender Female 48% (34) 52% (199)

Race Black 74% (52) 81% (306)

White 20% (14) 11% (43)

Hispanic 3% (2) 5% (19)

Free/Reduced lunch Yes 71% (50) 79% (301)

IEP status IEP 20% (14) 17% (64)

Control Group Creation via Propensity Matching. Toward our goal to evaluate whether
extra learning opportunities provided by the PL2 approach enhanced student learning,
we created a matched control group of similar students who did not receive these oppor-
tunities. The district provided anonymized score and demographic data from a total
of 20,628 students across all grades for academic years 2019–20 and 2020–21. This
data provided scores and demographics for the 72 students that participated in the PL2

treatment. These treatment demographics and pre-test scores were used as input into a
rigorous propensity matching process to select a set of students as a control who were
as similar as possible in demographics, grade level, and pre-test scores. An optimal
full matching method [9, 27] was used to match each treatment student with multiple
matching control students. Initially, all demographic factorswere used tomatch students.
However, gender and socioeconomic status (determined by free and reduced lunch des-
ignation) were found to be non-significant factors to balance groups and were removed
frommatching criteria. In the final matching, 70 students out of 72 in the treatment group
were matched with 380 control students based on grade level, race, IEP (Individualized
Education Program) status, and pretest math scores. The two students dropped from the
treatment had a combination of these features for which there was no adequate match.
Grade level was defined as an exact matching factor and a clipper value was defined for
pretest math scores to ensure that matched units are close enough in terms of pretest
math scores. In addition to propensity score matching, manual matching using exact
matching of grade level, gender, race, socioeconomic status, IEP group, and math score
within a 3-point range was used. Manual matching replicated all significant differences
reported below with similar magnitudes.

Pandemic, Missing Data, and Imputation. Especially because of the pandemic, some
participants completed only one of the two pre or posttests, mostly in fall 2020. We
started with a total of 13,554 students in the district with at least one pretest and posttest
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test score. The test with the highest missing rate was fall 2020 (14.9% control, 15.3%
treatment). Missing data for all other tests ranged between 0% and 8.3%. Missing data
were imputed using a single deterministic imputation model based on linear regression
using the MICE package in R [29]. In this method, all demographic factors were entered
as predictors and plausible synthetic values were generated for incomplete test scores.
Incomplete math and reading scores were imputed separately. In addition to the single
imputation method, multiple imputation based on stochastic regression with random
error added to predicted values was tested. This method was tested with 20 samples. The
results of both single andmultiple imputation were identical with respect to all statistical
threshold judgements. Since multiple imputation produces different matched samples,
we present subsequent results using the single matched sample resulting from the single
imputation method.

4 Results

Math Learning Gains. Figure 2a summarizes pre-to-post learning gains for the treat-
ment group (rightmost bar) and a matched demographic control (leftmost bar) as well
as two other reference points, a national average gain and a non-matched grade level
control. On average, students in the treatment group grew 6.8 Rasch Interval Unit (RIT)
points from pre to posttest, compared to 3.6 points for students in the matched control.
NWEA MAP reports a typical one-year average growth as 5.5 RIT points [20].

Fig. 2. a) Math test score gain comparison. b) Mean pre and posttest results. Both (a) and (b)
illustrate the substantial gain for RtL participants compared to the matched control.

Further contextualizing this difference, we calculated the average growth in the same
period for a non-matched control group, which included all students in the same grade
without accounting for demographics. The non-matched control group showed a growth
of 4.5 points in the same period, higher than the matched control, suggesting that the RtL
program met its goal of working with disadvantaged students. In addition, the results
may indicate evidence of the “COVID slide” among the control group given that the 3.6-
point gain and grade level, “non-demographic” group gain of 4.5 points, are significantly
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lower than the average MAP expected annual growth. This aligns with the pandemic-
related lag in mean growth evidenced by Lewis et al. [16] with RIT scores ranging
approximately 2–3 points lower than pre-pandemic years dependent upon grade level
and test administration. Past performance data of the participating schools in comparison
with national growth gains are needed to confirm evidence of “COVID slide.” The most
striking finding was the substantial growth differences among RtL participants with
students performing significantly over the normative one year’s growth.

Figure 2b provides average pre and posttest results for the matched control and RtL
treatment. To assess whether the RtL treatment had a statistically greater pre-posttest
gain than the matched control, we performed a repeated measures regression analysis.
The model predicted MAP scores using group (experimental vs. control), test-time (pre
vs. post) and the interaction between the two variables. As can be seen in Table 2, all
students performed better in the posttest tests than the pretest tests, β = 3.60, t (448) =
8.30, p < .0001. Importantly, the interaction between type of test and group was also
statistically significant, β = 3.21, t (448)= 2.92, p= .0004. MAP scores for students in
the treatment group improved considerably more than for students in the control group
(effect size of d = 0.40). An analysis of density plots of pre and posttest performance
suggest the treatment raised student posttest performance across nearly the entire range
of student pretest performance levels.

Table 2. ANOVA of math score differences between treatment and control groups

Variable Estimate SE df t p

(Intercept) 211.16 0.79 520.30 267.17 0.000***

Treatment 3.82 2.00 520.30 1.90 0.057

TestTime = PostTest 3.60 0.43 448.00 8.30 0.000***

Treatment × TestTime 3.21 1.10 448.00 2.92 0.004**

*** p < 0.001, ** p < 0.01, * p < 0.05

Reading Learning Gains. To ensure the observed differences in math performance
among treatment and control participants were not driven by selection bias or an overall
“mentoring effect,” similar analysis was conducted using nonequivalent-groups design
comparing students’ reading test score gains [28]. Unlike what we saw for math MAPs
scores, on average students in both the control and treatment group showed similar
growth in reading over the span of a year (2.1 RIT score points for the control group and
2.7 RIT score points for the treatment group). As we saw before, this growth is below
the national average (4.5 RIT points).

Using statistical analyses similar to that used with math scores, we saw an overall
positive growth in reading scores frompre to posttest,β = 2.05, t (417)= 4.20, p< .0001,
but no overall effect of treatment, β = 1.43, t (492.02)= 0.67, p= .051, nor evidence of
an interaction between the treatment group and time of the test, β = 0.61, t (417)= 0.50,
p = .619. Overall, these findings suggest that there is no overall “mentoring effect”, or
improvement in student performance due to the noncognitive effects of mentoring (i.e.,
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social-motivational supports, relationship building) that extends beyond the targeted
math learning gains. In addition, the results support the exclusion of a selection effect
or the possibility that the RtL treatment students are generally better, more motivated
students. The differences between control and treatment groups on math MAPs scores
are likely due to the RtL treatment.

EdTech Usage and Outcomes. We investigated the role of the computer tutoring ele-
ment of the PL2 approach to combined human-computer mentorship by analyzing the
relationship between students’ EdTech usage during the program and their MAP scores.
We combined data from both EdTech sources and used a measure common to both: total
time in the program. Fifty-four students usedMATHia and 16 used ALEKS. On average,
students spent a median 102 min in the educational technology system during the RtL
program (M = 150.70, SD = 201.00). We used a multiple regression model predicting
student pre-post change, using pretest, EdTech usage (mins) and their interaction, as well
as the type of EdTech used and its interaction with EdTech usage as predictors. The type
of EdTech used did not have a significant relationship with score growth, β = 3.16, t
(64)= 0.72, p= .48, and did not vary depending on amount of EdTech usage, β = 0.20,
t (64) = −1.10, p = .28. Pretest scores also did not have a significant relationship with
score growth either, β = 0.03, t (64)=−0.32, p= .75. Importantly, there was a positive
relationship between minutes spent on EdTech and score growth„ β = 0.18, t (64) =
2.22, p = .03, indicating that spending more time on EdTech during the RtL program
was associated with higher learning growth. Moreover, the relationship between EdTech
usage and learning growth was moderated by pretest scores, β = −0.001, t (64) = −
2.10, p = .04.

5 Discussion and Conclusion

The combined human-computer personalized approach of PL2 is based on the follow-
ing hypotheses, which we posit as explanations for the demonstrated enhanced learning
gains of the RtL participants in this study. Many marginalized students are not given suf-
ficient learning opportunities [24]; thus, they do not get the deliberate practice they need
to achieve success [5]. Educational technologies can provide such deliberate practice,
which is one piece of PL2, but only if the technology is used. Thus, the second piece of
PL2 is the notion that human mentors provide needed social-motivational support that
help students engage in rigorous deliberate practice. Afterall, deliberate practice is moti-
vationally challenging [4]. PL2 helps human mentors not only personalize their math
content tutoring, but also personalize motivational support. It gives mentors strategies
for relationship building, which is foundational to student learning outcomes [18] and
helps them personalize whether a student’s effort could be enhanced by one or another
motivational intervention, including growth mindset [32], valuing utility value of STEM
[10], and self-efficacy building [26].

There is limited flexibility in schools to add extra learning opportunities and there
is good evidence that out-of-school learning opportunities are a major source of oppor-
tunity gaps. For example, evidence of “summer slide” indicates that racial achievement
gaps widen over the summer and implicate greater learning opportunities for privileged
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students than for marginalized students [1]. Recently, the “COVID slide” has exacer-
bated such opportunity gaps among marginalized students, particularly in math [15]. No
amount of improvement during the school day will address this opportunity gap.

Given our goal to increase student opportunities beyond those available schools, we
did not seek or create a control group that was matched for opportunities. Some students
in the matched control may have attended other out-of-school programs. To be sure,
out-of-school opportunities intended to support academic learning do not necessarily
do so. Our results demonstrate that our out-of-school activities, which mix human and
computer tutoring, do enhance student learning and quite substantially.

In addition, we hypothesize one of the reasons for the positive academic impact
evidenced from the PL2 approach comes from the intentionally designed culturally
relevant training and tutoring practices within the RtL program format. Guryan et al. [8]
reports similar success of “high impact” tutoring, however, occurring during the school
day taking away from instructional time for other content. In two randomized control
trials (RCTs), Guryan et al. [8] states increased math scores of 0.16 and 0.37 standard
deviations, respectively, with evidence of impacts existing over time. Our results indicate
a larger effect size (d= 0.40), however without the rigor that comes with RCTs. Guryan
et al. [8] reports a cost per participant per year of $3,500 to $4,300. Our research team’s
calculations suggest that marginal costs on the order of $500 per student appear feasible
within a few years, perhaps yielding stronger academic impact without sacrificing valued
school time.

While RCTs are the gold standard experimental researchmethod, they are not always
practical. Quasi-experimental methods are especially valuable early in a project lifecycle
to determine whether the costs of a full RCT are justified.We illustrate cost-effective use
of two quasi-experimental methods, propensity score matching [9, 27] and a nonequiv-
alent dependent variables (NEDV) design [28]. Propensity score matching removes
the costs of random assignment and can be straightforwardly employed when school
partners can provide student-level demographic data. Similarly, school partnership can
make employing the NEDV design simple when the school can provide two kinds of
test results: one test that is aligned with the content of your instructional intervention (a
math test in our case) and one test that is not (a reading test in our case).

While we presented evidence for the benefits of EdTech learning opportunities, we
were not able to similarly investigate the role of the mentor. We hope to explore whether
students learn more if they have mentors that provide more learning opportunities or
that use PL2 more often or more effectively. We are also interested in determining the
role mentor and mentee matching based on demographics and socioeconomics plays
in learning gains. Further research assessing the impact of the online Ready to Learn
(RtL) program will be analyzed to determine the impact of the PL2 system in a virtual
environment with hope of increasing scalability. A fully online version was developed
and implemented during the 2020–2021 school year with a RtL virtual session format
consisting of virtual personalized instruction in conjunction with student self-directed
use of ALEKS in a 4:1 student to mentor ratio.

Our results demonstrate progress in human-computer teaming inmentoring and tutor-
ing providing needed out-of-school learning opportunities and producing substantial and
significant learning. More generally, this work supports the idea that greater educational
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equity can be achieved at reasonable costs by supporting after-school programs with
technology that improves mentoring and student learning.
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Abstract. We investigated the feasibility of using eye gaze tomodel collaborative
problem solving (CPS) behaviors in 96 triads (N= 288)who used videoconferenc-
ing to remotely collaborate on an educational physics game. Trained human raters
coded spoken utterances based on a theoretically grounded framework consisting
of three CPS facets: constructing shared knowledge, negotiation/coordination,
and maintaining team function. We then trained random forest classifiers to iden-
tify each of the CPS facets using eye gaze features pertaining to each individual
(e.g., number of fixations) and/or shared across individuals (e.g., eye gaze dis-
tance between collaborators) in conjunction with information about the unfolding
task context. We found that the individual gaze features outperformed the shared
features, and together yielded between 6% to 8% improvements in classification
accuracy above task-context baseline models, using a cross-validation scheme
that generalized across teams. We discuss how our findings support CPS theories
and the development of real-time intervention systems that provide actionable
feedback to improve collaboration.

Keywords: Collaborative problem solving · Eye tracking ·Machine learning

1 Introduction

Collaborative problem solving (CPS) occurs when two or more people work together to
construct and execute a solution to a problem [1]. CPS is a crucial 21st century skill that
students need to develop in order to contribute to a successful workforce and to address
critical issues such as global pandemics, climate change, and childhood poverty [2].
At the same time, students need to adapt to new ways of collaborating through remote
working and learning [1, 3]. In particular, since the onset of the COVID-19 pandemic,
teachers have had to migrate their classrooms to online platforms (e.g., Zoom) where
students might work together in smaller groups of “breakout rooms” where a teacher
is not present to help students and instead, students must rely on available resources
and their own collaboration skills to succeed. Whereas many classrooms have since
returned to in-person learning, the workplace of the future may have been changed
forever with remote work and especially remote teamwork expected to be here to stay
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[4]. The pertinent question is whether students will have the requisite collaboration skills
to succeed in a workforce increasingly driven by remote teamwork.

Unfortunately, this may not be the case. A 2015 study conducted by the OECD
Programme for International Student Assessment (PISA) found significant deficiencies
in students’ CPS skills, with less than 10% of students exhibiting the highest level of
proficiency [1]. The learned ability to problem solve with others begins with students
practicing in the classroom, but it is not an easy task for teachers to measure and scaffold
students’ CPS skills, especially since themeasurement ofCPS itself is a nascent endeavor
[2]. Can technology help?We think indeed this is the case. One way that technology can
support student collaboration is via intelligent team tutoring systems (ITTSs) where the
computer tutor interacts with two or more learners working on a shared task with the
same or different roles [5]. Another is for the computer to play the role of a guide by
monitoring and encouraging particular conversation moves, called academic productive
talk, during collaborative discussions [6]. Rather than intervene in real-time, yet another
possibility is for the computer to monitor CPS as it unfolds and provide after-action
feedback on improving those skills.

A key component that underlies these technologies is the ability to measure CPS
skills, which may entail analyses of multimodal data characterizing collaborators’ inter-
actions [7]. As reviewed next, researchers have investigated a variety of modalities for
this task. The present work focuses on eye gaze as a novel (i.e., relatively unexplored)
modality to automatically measure collaboration skills. As we elaborate below, eye gaze
provides an index into social visual attention [8], as well as individuals’ cognitive states
[9], making it a particularly promising modality for modeling CPS, which entails both
social (collaboration) and cognitive (problem solving) processes.

1.1 Background and Related Work

Collaboration is a social endeavor, and verbal communication is one of the key products
of CPS [10]. Accordingly, researchers have successfully used linguistic information to
identify CPS skills such as negotiation [10, 11], information sharing [10, 11], and task
regulation [12]. Verbal communication has also been used to predict CPS outcomes such
as task performance [13] and learning gains [14].Whereas previous work used conversa-
tion gathered from typed chat transcripts [10] or human transcription of audio recordings
[14], recent studies have shown that transcripts generated via automatic speech recog-
nition (ASR) can also be used to model CPS skills [11, 15]. However, the accuracy of
such models is greatly reduced in real-world learning environments due to ASR errors
(e.g., as much as 20% compared to human transcripts [11]).

In addition to these modalities, gaze information is thought to be a strong comple-
mentary signal to speech because it can provide insights into social visual attention,
including mutual gaze (individuals look at each other), joint attention (individuals focus
on the same subject), and gaze aversion (an individual looks at their partner, who is
looking elsewhere) [16]. Accordingly, gaze has been used in some CPS studies, often
focusing on dyadic interaction (e.g., dual eye-tracking). For instance, Olsen et al. [17]
analyzed individual and combined gaze activity during dyadic CPS, and found that gaze



380 A. Abitino et al.

predicted learning gains. Other studies have used eye gaze data (often focusing on mea-
sures of social visual attention such as joint attention) to predict task performance [18],
learning gains [19], and CPS skills [20].

1.2 Current Work: Contributions and Novelty

We aim to contribute to recent work on modeling CPS behaviors and skills by investi-
gating the potential of eye gaze, a relatively unexplored modality, for this task. Our first
research question examined the accuracy of gaze-based machine learning models at pre-
dicting three CPS facets (constructing shared knowledge, negotiation/coordination, and
maintaining team function) from a validated CPS framework [21]. A second question
examined whether gaze features pertaining to the individual (e.g., number of fixations,
fixation dispersion) or shared across individuals (e.g., eye gaze distance between col-
laborators) were better predictors of CPS facets. Next, based upon work that suggests
it might be beneficial to differentiate signals coming from different teammates [22], we
also examined whether it is favorable to model gaze based upon a given teammate’s
fixed role (i.e., controller, observer) or dynamically based on the ongoing conversation
(i.e., speakers’ vs. listeners’ gaze). Finally, we examined which gaze features are most
predictive of the CPS facets by analyzing our models’ feature importances.

To our knowledge, the present study is the first attempt at a fully automated approach
to detect CPS behaviors using eye gaze in a manner that generalizes across teams.
Additionally, while some studies have examined eye gaze during dyadic CPS, we extend
this work by investigating the role of gaze in triadic collaboration, which raises pertinent
issues on incorporating gaze signals in multiparty (i.e., beyond dyads) CPS.

2 Method

2.1 Data Collection

The dataset was collected for a larger study on remote CPS [23]; only details pertinent
to the present study are discussed here.

Participants. Participants (N = 288, average age = 22, 56% female) were students
from two large public universities in the Western US (111 from School 1 and 177 from
School 2). Participants were assigned to 96 triads based on scheduling constraints and
were compensated with a $50 Amazon gift card (95.8%) or course credit (4.2%). To
participate, students had to meet three inclusion criteria: (1) they spoke English, (2) they
had no significant uncorrected vision impairments, and (3) they had no prior experience
with the physics game.

CPS Task and Procedure. Participants first completed at-home tasks consisting of a
Qualtrics survey to assess individual difference measures, followed by a tutorial to learn
how to play Physics Playground (see Fig. 1) [22]. Next, there was an in-lab session
where each participant was assigned to a computer-enabled workstation in separate
rooms (School 1) or partitioned with dividers (School 2), and fitted with webcams,
headsets, and Tobii 4C eye trackers (for which licenses to record data were purchased).
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All interactions occurred over Zoom (https://zoom.us) with video and screen sharing.
Gaze data was recorded at 90 Hz.

Teams of three were tasked with collaboratively playing Physics Playground (PP)
[24], an educational computer game for learningNewtonianphysics concepts (seeFig. 1).
The goal is to guide a ball to a red balloon separated by obstacles by drawing objects
on the screen (e.g., ramps, levers, pendulums, springboards, weights). Everything in the
game obeys the laws of physics. Teams participated in four 15-min blocks, where the
first three blocks involved the PP task, and the fourth block involved a task irrelevant
to this study; therefore, we only used data from the first three blocks. For each block, a
team member was randomly assigned to control the game environment, while the other
two teammates were able to communicate their ideas through audio and video. The
controller’s screen was shared with all teammates and each teammate was the controller
once during the three blocks. Participants could begin, restart, and exit levels at any time.
No hints or support mechanisms were provided, except a tutorial on game mechanics
which could be viewed at any time.

2.2 Human Coding of CPS Facets

Using the IBM Watson ASR, we obtained automated transcripts of each participant’s
utterances. These were then coded alongside videos of the CPS interaction (see Fig. 1)
using a validated CPS framework [21] consisting of three CPS facets: (1) construct-
ing shared knowledge, (2) negotiation/coordination, and (3) maintaining team func-
tion. These facets were coded from 14 verbal indicators, such as “shares specific solu-
tions” (constructing shared knowledge), “responds to others’ questions/ideas” (nego-
tiation/coordination), and “asks for suggestions” (maintaining team function). Three
trained raters coded a pseudorandom 90 s from the first, second, and third five minutes
of each block, resulting in 30% of the utterances coded. Coder agreement on the indi-
cators ranged from .88 to 1.00 (Gwet’s AC1 metric [25]) on ten 90-s video samples
consisting of 406 utterances. After achieving adequate reliability, videos were randomly
assigned to the three coders for independent coding. There could be multiple indicators
per utterance, but this rarely occurred (<3%). Therefore, consistent with previous work
[15], we created binary labels for each facet by assigning a 1 if any of the indicators
were present for the facet, else 0. We also included a fourth binary label, “no facet”,
when none of the indicators were present.

2.3 Data Processing and Feature Computing

Role- vs. Conversation-Based Identities. In the case of multiparty interactions, where
data frommultiple individuals are used for modeling, it is essential to assign meaningful
identities to each individual [22]. Accordingly, we experimented with two forms of
identification. For role-based identities, participants were identified as the controller and
observers, the latter subdivided into the more- vs. less-verbose observer for that block.
For conversation-based identities, participants were identified as the current speaker,
previous speaker, and other teammate.Whereas the role-based identities were consistent
within each block, the conversation-based identities varied across utterances.

https://zoom.us
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Gaze Features. The raw eye gaze data was first fixation filtered using PyGaze Analyser
[26]. Fixations were defined as points where gaze was maintained on a location (within
25 pixels) for at least 50 ms and trimmed at 1s [22] because gaze features were computed
based on the fixations in non-overlapping 1s windows (see Fig. 2).We focused on a small
set of eye gaze features that are ostensibly generalizable to other task environments as
an alternative to features specific to PP (i.e., AOI features). We explored two sets of
gaze features: individual and shared (see Fig. 1). The individual gaze features (n = 6
per individual) included partial gaze validity (proportion of samples in a given second
where at least one eye was successfully tracked), fixation dispersion (mean Euclidean
distance of each raw gaze point in a 1s window from the centroid), pupil size (diameter in
mm), mean saccade amplitude (mean pixel distance between two subsequent fixations),
fixation count, and mean fixation duration. The shared gaze features (n = 3 per team)
were the pairwise Euclidean distances between the centroids of each participant, with
low values indicating joint attention [27, 28], where the participants are fixated on similar
areas on the screen. All “individual” gaze features were z-scored within-participant to
account for individual differences.

Fig. 1. Visualizations of individual (left) and shared (right) gaze features from gaze scan paths.
The controller’s gaze is red, one observer’s gaze is green, and the other observer’s gaze is blue. The
colored circles represent fixations, and the circle size indicates the fixation duration. The black
circles represent the centroid of each participant’s gaze. (Color figure online)

Data Alignment. Because eye gaze features vary as a function of time (e.g., more
fixations for longer utterances), we first segmented utterances into 1s intervals, a time
window of sufficient length to accommodate the short utterance durations (median of
1.4s). We then aligned the 1s gaze feature vectors to the corresponding utterance and
averaged the features within each utterance’s time frame to produce one feature vector
per utterance (Fig. 2). Fixation counts were converted to fixation rates by summing
across each utterance and dividing by the utterance duration.
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First, utterance start/stop 
times were rounded to the 
nearest second. Then, raw
gaze coordinates (blue cir-
cles) were fixation filtered 
and aligned to the 1s inter-
vals. Features were computed 
per 1s interval and averaged 
across the intervals corre-
sponding to the utterance.

start time 
220.98s

221s

“yeah but I think it might have gotten stuck now”
stop time 
223.13s

Second 223: Gaze Features

average

Fixation Dispersion

222s 223s

Raw gaze
coordinates

PyGaze Analyser PyGaze Analyser

Second 222: Gaze Features

Fixation Dispersion

Utterance 1: Gaze Features

Fixation Dispersion

Utterance 1

Fig. 2. Example of gaze to utterance alignment for one gaze feature (fixation dispersion).

Task Context Features. Eye gaze patterns are constrained within a given task context,
hence, we computed a set of context features as a high-level representation of how
teams interacted on the CPS task [22]. We focused on high-level task context without
encoding task-specific information for generalizability. The main context features were
utterance duration (in seconds) and changes in the Physics Playground area of the screen,
computed using a validated motion tracking algorithm [29] to distinguish moments of
action and inaction during gameplay. Screen motion was computed on individual video
frames and averaged to the utterance-level like the gaze features (see Fig. 2). Additional
context features included speaker shift (whether the speaker changed from the previous
utterance), the block (warmup, block 1, or block 2) and the speaker’s role (controller,
more-verbose observer, or less-verbose observer), resulting in five context features. For
the conversation-based identities, we also included the previous speaker’s role and the
other teammate’s role (i.e., controller, more- or less-verbose observer), resulting in seven
context features. If the same teammate spoke consecutive utterances (12% of the time),
the previous speaker identity was assigned to the teammate who spoke immediately
before the current speaker.

Data Exclusion andMissing Value Imputation. Two teams’ transcripts were unavail-
able and an additional two teams’ data were excluded due to technical issues, resulting
in 23,277 utterances from 92 (out of 96) teams for use in the study. For each feature,
we calculated what percent of examples had a missing value for the given feature. On
average, feature values were missing for 7.66% (range = .00% to 18.83%) of cases,
which we replaced (post alignment) with their median values for the team. There were
four cases where gaze data was not available for an entire block, but we included them
for robustness; removing these blocks did not impact the results.

2.4 Machine Learning Models

We trained random forest classifiers (RFCs) because they support nonlinearity, interac-
tivity, and generalizability. We separately trained four RFCs for binary classification of
each CPS facet as well as the “no facet” cases. Separate models were trained because the
facets were not mutually exclusive, but their joint occurrence was too infrequent (2.9%)
to warrant multilabel learning. RFCs were implemented using Scikit Learn with 100
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estimators (there were no notable differences with 500 estimators) and the maximum
number of features was set to the square root of the total number of features. To account
for class imbalances, the class weights were ‘balanced’ by setting the weights to be
inversely proportional to the class frequency, which does not resample the classes, but
instead penalizes incorrect predictions on the minority class.

We implemented team-level, 10-fold cross validation to assess model accuracy,
where utterances from a team were either in the training or testing set but not both,
allowing us to assess how the model generalized to unseen teams. Performance (area
under the receiver operator characteristic (AUROC) curve) metrics were computed by
pooling the test set predictions from each fold. The cross-validation procedure was
repeated for 25 iterations, using a different random assignment of teams in each fold.

We fit separatemodels for context+ gaze and context-only to ascertain the additional
value of gaze features over the context baseline.We did not fit separate gaze-onlymodels
because they interact with the task context (as noted above). We also fit shuffled baseline
models by randomly shuffling the feature vectors within each team to break the temporal
dependency between gaze and CPS facets while retaining the same values.

3 Results

Table 1 lists themain results. Across the 25 iterations, the standard deviation of AUROCs
ranged from .001 to .003. Therefore, we determined the variance was small enough to
report the AUROC and 95% confidence interval from the iteration with the median
accuracy only. We used the roc.test function from the pROC package in R [30] to com-
pare correlated pairs of ROC curves using the bootstrap test with 2,000 iterations, and
report p-values using a false discovery rate (FDR) adjustment for four comparisons
(corresponding to the four classes).

Gaze Predicts the CPS Facets. We focus on the role-based models for the main anal-
yses (comparisons to conversation-based identification are presented next). Overall, the
shuffled role-based models yielded chance performance, as expected. We tested whether
there was added value to using gaze relative to context, finding that that all four context
+ gaze models performed better than the context-only models (all FDR-corrected ps <
.001; Table 1), although the improvement was modest (average improvement of 7.29%).
Importantly, the improvements were highest for negotiation/coordination and maintain-
ing team function (about 8%) compared to constructing shared knowledge (6%). This is
likely because the context-only model performed better for constructing shared knowl-
edge (AUROC= .72) than the other two facets (.56 and .63). This difference may be due
to the fact that constructing shared knowledge was generally characterized by longer
utterance durations (average of 3.5 s, 2.5 s, and 2.9 s for constructing shared knowledge,
negotiation/coordination, and maintaining team function, respectively), which is a fea-
ture in the models, or because it was more frequent, enabling better prediction due to
more training examples.
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Table 1. AUROC with 95% CIs for median performing role-based models across 25 iterations.

Facet (Base rate) Shuffled Context only Context + Gaze Percent improvement

Construct. Knowldg.
(25.45%)

.49 [.48, .50] .72 [.72, .73] .76 [.76, .77] 5.69%

Neg./Cord. (14.29%) .50 [.49, .51] .56 [.55, .57] .61 [.60, .62] 8.05%

Maintain. Team. Fn.
(10.22%)

.50 [.48, .51] .63 [.62, .64] .68 [.67, .70] 8.39%

No Facet (53.07%) .50 [.49, .51] .67 [.66, .68] .72 [.72, .73] 7.74%

Weighted average .66 .71 7.29%

Comparison of Different Feature Types and Representations. We explored whether
the individual gaze features were more predictive than the shared gaze features, finding
that this indeed was the case (ps < .006; Table 2), though the advantage was minor.
This may be because our shared features (which measure joint attention) were not as
comprehensive as the individual features in characterizing the collaboration activity. We
next investigated whether gaze was better characterized in a role- or conversation-based
fashion, finding no significant difference (all ps > .1; Table 2).

Table 2. Median AUROC with 95% CIs comparing individual versus shared features and role-
based versus conversation-based models. Context features are included in all models.

Facet Feature comparison Identity comparison

Individual Shared Role Conversation

Constuct. Knowldg. .77 [.76, .77] .76 [.75, .77] .76 [.76, .77] .76 [.76, .77]

Neg./Cord. .61 [.60, .62] .59 [.58, .60] .61 [.60, .62] .60 [.59, .61]

Maintain. Team. Fn. .69 [.68, .70] .67 [.66, .68] .68 [.67, .70] .69 [.68, .70]

No Facet .72 [.72, .73] .71 [.71, .72] .72 [.71, .73] .72 [.71, .73]

Weighted Average .71 .70 .71 .71

Feature Analysis. Weused Shapley Additive exPlanations (SHAP) [31] on themedian-
performing role-basedmodel for each facet to examine feature importances. SHAP bases
feature importance on how much and in what direction features influenced the outcome.
We first correlated SHAP scores across the three facets and found them to be correlated
(rs from .78 to .84) suggesting similar patterns of feature importances for all facets.
Beyond utterance duration, which had the highest SHAP scores, the controller’s fixation
duration was one of the three most important gaze features for constructing shared
knowledge and negotiation/coordination, while the fixation rate of the controller and
less-verbose observer was important for maintaining team function.
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Follow Up Experiments. We conducted additional experiments to assess if the follow-
ing modifications would improve performance. First, we no longer computed features
per second and instead computed features directly based on the fixations that occurred
during the utterance. Second, we computed features for the duration of silence after an
utterance, up to a maximum of 2s, to capture gaze patterns in response to the utterance.
Third, we included these three additional shared features: the convex hull area (in pixels)
of all participants’ fixation locations and the proportion of fixations that were in the PP
and partners’ view AOIs (see Fig. 1). However, none of these modifications improved
overall performance from the results reported.

4 Discussion

Main Findings. The main goal of the present study was to explore whether eye gaze
could predict collaborative problem solving (CPS) behaviors in triads. The results
demonstrated that there were generalizable patterns of gaze that were able to predict
our three CPS facets. However, our models were only moderately accurate, with gaze
information yielding an average of 7.29% improvement over a context-only baseline.

We further demonstrated that individual gaze features were better predictors of CPS
than were our shared gaze features (which measured joint attention), although there
were fewer of the latter type. In related CPS studies, shared gaze has been identified as
an indication of productive CPS because it demonstrates a “meeting of the minds”, in
which teammates must focus their attention on the same area to work towards the same
goal [20, 32]. Whereas joint attention has been demonstrated to reflect coordination
towards CPS goals, it has also been shown to obscure imbalances in team dynamics
which could be due to the “free rider” effect or a dominating partner [18]. A dominant
partner might frequently gesture to areas on the screen to direct teammates’ attention. If
partners passively follow along, Schneider et al. [18] found that collaboration outcomes
were negative, while if partners challenged and discussed different ideas, shared gaze
was more dispersed, but outcomes were more positive.

Furthermore, the improved performance of individual gaze features over shared
features suggests that modeling successful collaboration involves more than capturing
synchrony and shared attention between group members, and that individual features,
which can provide information about teammates’ cognitive states, are informative in
identifying CPS behaviors. The individual gaze features in our study are likely reflecting
how on task each individual is and whether they are processing task-relevant information
[33], since pupil size, saccade amplitude, fixation count, and fixation duration can index
cognitive load, and dispersion measures how focused the gaze is [17]. However, it is
evident that our shared features (the distance between centroids of each partner pair),
are missing additional context (e.g., leader–follower patterns), and performance might
improve with additional shared features that capture this information.

Finally, there was no difference between a role- and conversation-based model of
gaze, suggesting that little information was added by considering teammate identity.
Indeed, [22] found that individual signals weighted by assigned role or behavior did not
produce significantly different results, which is consistent with the present findings.
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Applications. There are several potential applications, such as intelligent computer
interfaces that can monitor and support CPS processes by providing personalized feed-
back to support CPS skill acquisition. For example, if the model predicts that a group
is not engaging in shared knowledge construction, the system could intervene (in real
time) and encourage teammates to build on each other’s ideas or review the constraints
of the task together. Similarly, if the system detects that a particular team member is
not engaging in negotiation with their teammates, this insight could be conveyed to that
individual as part of an after-task review, along with actionable suggestions to improve
their negotiation skills. Furthermore, our gaze-based models could be particularly valu-
able in noisy classroom environments, where accurate speech recognition is difficult
(see Introduction), and additional modalities might be needed to model CPS processes.
Eye gaze can also serve as a complementary signal when speech quality is too poor.

Limitations and FutureWork. Like any study, ours has limitations. First, our strategy
for feature aggregation (averaging values across the duration of an utterance) resulted in
the loss of fine-grained temporal and visuospatial information from the eye tracker,which
outputs high spatial/temporal resolution data at 90 Hz. Thus, future work should inves-
tigate whether predictive accuracy can be improved by operating on a more fine-grained
representation of gaze activity (i.e., time series). Next, our shared features representing
joint attention could benefit from additional information to characterize the nature of
shared gaze, so future work should include additional shared features that can control for
imbalanced team participation, such as the difference in a group’s "visual leadership”,
proposed by Schneider et al. [18], which measures the balance of leader–follower gaze
patterns. Another limitation is that we only considered a single modality (eye gaze), and
did not explore how gaze could be combined with other modalities that have been shown
to predict CPS facets (e.g., speech [15, 34], facial expressions [34]). In future work, we
plan to investigate multimodal approaches for incorporating gaze in models of CPS
facets. In particular, we hypothesize that gaze information may be a useful complement
to language-based models of CPS, as eye gaze and speech production are tightly coupled
[16]. Finally, we collected our data in a controlled lab setting to obtain relatively accurate
gaze tracking, but future research in more ecologically valid settings is warranted.

Conclusion. Remote collaborative problem solving is a critical 21st century skill that
is important across many domains, such as the classroom and remote work. Our results
suggest that how people move their eyes during remote collaboration is related to how
well they construct shared knowledge, negotiate, and maintain team function. In addi-
tion to its theoretical relevance, the ability to model CPS skills from gaze has exciting
implications for intelligent systems that aim to improve collaboration in small groups.
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Abstract. Formative assessments are an important component of
instruction and pedagogy, as they provide students and teachers with
insights on how students are progressing in their learning and problem-
solving tasks. Most formative assessments are now coded and graded
manually, impeding timely interventions that help students overcome dif-
ficulties. Automated evaluation of these assessments can facilitate more
effective and timely interventions by teachers, allowing them to dynam-
ically discern individual and class trends that they may otherwise miss.
State-of-the-art BERT-based models dominate the NLP landscape but
require large amounts of training data to attain sufficient classification
accuracy and robustness. Unfortunately, educational data sets are often
small and unbalanced, limiting any benefits that BERT-like approaches
might provide. In this paper, we examine methods for balancing and
augmenting training data consisting of students’ textual answers from
formative assessments, then analyze the impacts in order to improve the
accuracy of BERT-based automated evaluations. Our empirical studies
show that these techniques consistently outperform models trained on
unbalanced and unaugmented data.
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Formative assessments · Imbalanced data sets · Educational texts ·
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1 Introduction

The current generation of intelligent learning environments (ILEs) for K-12 stu-
dents focuses on inquiry, problem-based, game-based, and open-ended learning
[10,14,16, for example]. Working on open-ended tasks provides students with
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choices in how they develop and pursue their learning and problem-solving pro-
cesses [22]. Research on ILEs has demonstrated the challenges in framing adap-
tive support in the context of the specific difficulties that students face as they
work on their learning and problem-solving tasks, and develop productive learning
strategies [2,21]. Formative assessments have been employed in the learning sci-
ences and education research as interventions that (1) help students learn compo-
nents of knowledge they need to build and solve larger problem-solving and learn-
ing tasks [3] and (2) communicate conceptual understanding of the target domain
for self-reflection as well as teacher and environment pedagogical support that aids
students’ achievement in the context of their current learning [3]. Therefore, forma-
tive assessments can help students develop their conceptual understanding of the
domain, while supporting their self-assessment and self-regulated learning skills
[6,11].

However, formative assessments are often time-consuming to grade [12], lim-
iting the ability to leverage them for in-time pedagogical adjustments and feed-
back. Our long-term goal is to develop robust deep learning-based, natural lan-
guage processing (NLP) approaches to support rich, in-time formative feedback
to students’ responses to short answer questions. Formative assessments often go
beyond statement-of-fact conceptual knowledge applications, requiring students
to reason about causal relations between concepts, explain a scientific process or
phenomena, or construct an argument that justifies or negates a particular state-
ment. Simple text-processing methods like keyword matching and templates are
often insufficient to uncover the nuanced reasoning in students’ short answers to
formative assessment questions [13]. Advances in NLP allow us to dive deeper into
students’ knowledge and reasoning applications, and help students understand the
difficulties they facewith the instructionalmaterial they are being taught. In paral-
lel, they also support teachers in understanding and responding to student difficul-
ties soon after they occur, and before they move on to teach new content. However,
issues such as data insufficiency, data imbalance, and lack of variation in student
responses limit our ability to apply these advances in a robust and reliable way.

Our approach develops automated text assessments that shed light on stu-
dents’ conceptual knowledge. Educational data sets present several difficulties
in NLP because studies typically conducted in classroom environments generate
rich data, but the data collection is often limited to about a 100 students at
a time. In this paper, we address increasing the effectiveness of NLP evalua-
tion when there is limited and unbalanced training data, as is often the case in
educational contexts. We do this by augmenting the training data with gener-
ated sentences that share characteristics of the original data. In the rest of this
paper, we summarize related work, present our research questions and hypothe-
ses describing the educational context of the formative assessments, and conclude
with findings and future work.

2 Background and Research Questions

Transformer-based NLP architectures, such as BERT [8] and GPT-3 [4], are now
the industry standard for modeling many NLP tasks. They leverage language
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knowledge from massive corpora of unlabeled texts via unsupervised pretraining,
and they can be fine-tuned on a downstream task with only a fraction of the
training instances that would otherwise be required to train a neural network
from scratch. However, despite the prevalence of transformer models, many data
sets are still too small to effectively fine-tune a model out-of-the-box. There are
few areas where this is more apparent than with educational texts in general,
and educational assessments in particular.

These texts are also domain-specific, focusing on a wide variety of general
areas and specific examples within them. Domain-specific subject matter often
includes esoteric jargon that is not well-represented in the canonical corpora that
these large transformer models are pretrained on, and there can often be perfor-
mance degradation when these models are applied to texts whose vocabularies
differ considerably from their own [7]. In addition to the issue of educational
data sets being non-canonical semantically, they are often non-canonical syn-
tactically as well. Wikipedia, which is used to pre-train both BERT and GPT,
is written using proper language syntax. Conversely, many educational texts,
such as answers to formative and summative assessments written by children
or adolescents, use informal syntax and are written in a much more colloquial
manner. This type of text is often incompatible with pre-trained models derived
from canonical corpora, as model performance is affected by the quality of data
used for training. For example, middle school short answer questions typically
use a shallower vocabulary, and this has to be factored into the augmentation
techniques used. It is possible to further pre-train BERT with domain-specific
corpora, but this also requires large quantities of data. As such, the only prac-
tical approach is to select a base model and fine-tune it using labeled data to
improve the model’s performance.

One salient solution to mitigate the aforementioned issues is data augmen-
tation. Data sets once small, imbalanced, and sparsely populated can be made
robust by adding instances that are similar in both syntax and semantics. How-
ever, hand-crafting these instances can be extremely tedious, so automated
approaches are preferable. Data augmentation has been used in areas such as
image processing with great effectiveness, e.g., by translating or shifting the
images. However in NLP, data augmentation techniques are more complex. A
newly generated sentence must retain the same semantic intent as the original
sentence. Issues arise when augmented data stray away from the label they are
intended to augment. This has led some researchers to assess and label aug-
mented data using experts to ensure correct labeling.

One textual data augmentation technique adds noise in the form of sub-
stitution or deletion of words or characters [20]. Another approach uses “back
translation” where the data is translated into another language, then translated
back, producing alternate ways of saying the same thing [15]. Other forms of
data augmentation introduce noise by adding a random character in a word,
avoiding the first and last characters of the word. Some methods use random
synonym replacements in the form of hypernym (more general) and hyponym
(more specific) word replacements using WordNet. Hypernyms have been shown
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to outperform hyponyms because generalizing a sentence is more likely to pre-
serve the same meaning [9]. BERT uses a masking feature, where a word in
the sentence is masked with a special token, and the model tries to predict the
masked word. This can serve as another form of augmentation, where a model
can be further trained to generate more semantically similar sentences.

In this paper, we examine the benefits of textual data augmentation for
evaluating middle school formative assessments (short-answer questions), espe-
cially in cases of data scarcity and data imbalance. We compare four different
data augmentation techniques: (1) masking using BERT, (2) noise injection, (3)
hyponym/hypernym replacement, and (4) oversampling using the existing data.
The goal, as discussed, is to provide accurate, timely feedback to students and
their teachers. Accordingly, we formulate three research questions:

RQ 1: Does data augmentation improve the classification of student answers?
Furthermore, if augmentation is beneficial, is that primarily due to increasing
the amount of data, improving the balance between classes, or some combination
of both? Our first hypothesis (H1) is that both more balanced data and larger
amounts of data will improve classification accuracy.

RQ 2: How does the method used for generating new texts affect augmentation
performance? Our hypothesis H2 is that the masking technique will be most
effective due to its alignment with BERT. Our expectations for the other three
are mixed. In principle, WordNet should provide semantically related substitutes,
but its knowledge base is so broad that it may bring in words far outside the
learning context.

RQ 3: Do characteristics of the questions and answers affect the effectiveness
of data augmentation? For example, some questions may call for fact-based
answers. Others may call for descriptions of processes or for causal reasoning
that requires the answers to adopt a meaningful structure to produce a cor-
rect answer. H3 proposes that augmenting the data with wrong answers will
reduce performance because there are such a wide variety of wrong answers for
any question. H4 proposes that augmenting the data with sentences generated
from a very small set of examples will also hurt performance due to the limited
variability of the samples.

3 The SPICE Curriculum

The formative assessments analyzed in this paper are part of the SPICE (Sci-
ence Projects Integrating Computation and Engineering) curriculum [23]. This
is a three-week, NGSS-aligned unit that challenges students to redesign their
schoolyard using appropriate surface materials that meet design constraints and
minimize the amount of water runoff after heavy rainfall.

The curriculum (Fig. 1) includes a conceptual modeling unit, where students
construct conceptual models of the water runoff phenomenon; then translate it
to a computational model of water runoff; and then use the model to solve an
engineering design challenge problem, where students construct a playground
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Fig. 1. SPICE curriculum overview.

that adheres to specified constraints [17]. Formative assessments (identified in
red) are integrated throughout the curriculum to evaluate students’ conceptual
understanding in science, computing, and engineering. For this paper, we focus
on formative assessment F1 in the conceptual modeling phase.

We leverage evidence-centered design (ECD; [18]) as the overarching frame-
work for assessment development. This process supports our analysis of knowl-
edge construction and problem-solving skill development in the integrated sci-
ence, computing, and engineering curriculum by linking components of the cur-
riculum and assessments to evidence of students’ proficiency with the target
knowledge and skills [17]. For instance, students are presented with an incor-
rect conceptual model and are tasked with (1) identifying and correcting errors
and (2) describing positive information presented by the model. These tasks
can be linked to key science and engineering practices as described by NGSS
[19], including engaging in argument from evidence, and developing and using
models, and allow us to evaluate students’ science knowledge through its appli-
cation in model evaluation. In-time analysis of these assessments may allow us
to provide key evidence-based, formative feedback to better support students’
construction, debugging, and evaluation of their own conceptual models during
the curriculum.

4 Methods

Our exploratory analysis leverages student data collected from a classroom study
with 99 6th-grade students in the southeastern United States. The study, con-
ducted in Fall 2019, was led by two experienced science teachers with three
university researchers providing additional support in the classroom.

The data set for this study consists of student responses to three separate
questions that are based on a fictitious student-constructed visual model shown
in Fig. 2. Each question had 95 student responses.1 The concepts the students
must identify for each question are enumerated in Table 1.

1. What do you think the different sized arrows in Libby’s model could mean?
This question has one correct response: the size of the arrows indicates the
amount of water. There is only one concept, which evaluates students’ under-
standing of the model representation.

2. What are two things that you would change about Libby’s model to explain
where the water goes?

1 While there were 99 students in the study, not all students answered each question.
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Fig. 2. Libby’s model demonstrating where water goes after precipitation.

The focus of this question is on finding errors in the model, explaining the
errors, and providing the correct answer. It includes two concepts: the size
of the runoff and absorption arrows should sum to the size of the rainfall
arrow (conservation of matter), and the direction of the runoff arrow should
be pointing downhill. This question evaluates students’ knowledge of scientific
concepts rather than model representation.

3. What are two things that Libby’s model does a good job of explaining?
Extending the previous question, this question also targets students’ abil-
ity to observe and evaluate a science model. In this case, although Libby’s
model contained errors (previous question), the model (1) demonstrates rain-
fall either is absorbed or becomes runoff, (2) illustrates where water is com-
ing from, and (3) uses arrow size to indicate water amounts. Students are
tasked with listing two of these positive model elements and assesses stu-
dents’ knowledge of the scientific concepts as well as their understanding of
the model representation.

Table 1. Concepts present in each question.

Question Concept Description

1 C1 Arrow size indicates amount of water

2 C2a Size of runoff and absorption arrows should sum to size of rainfall arrow

2 C2b Direction of runoff arrow should be pointing downhill

3 C3a Model demonstrates rainfall either absorbed or becomes runoff

3 C3b Model illustrates where water is coming from

3 C3c Model uses arrow size to indicate water amount

Each of the six concepts described above (correct responses for each
assessment question) was modeled individually as a binary classification task.
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Responses were coded as correct if students identified the concept(s) associated
with a specific question, and coded as incorrect otherwise. Note that for ques-
tions where there were multiple concepts, the “incorrect” answers include both
wrong answers and right answers for other concepts. As previously mentioned,
such small educational data sets are often imbalanced. The percentage of the 95
answers for each concept that were labeled as correct is shown in the leftmost
data column of Table 2.

4.1 The BERT Model

We used BERT-base uncased to classify the student answers because it is widely
adopted and is considered state-of-the-art for many NLP tasks. The three sets of
student responses for the six different concepts were used for training, validating,
and testing the models. For each concept, a separate BERT model was fine-tuned
for classification on the training data by adding a single feed-forward layer. We
used the micro-F1 metric as the performance measurement.

In all experiments, the models were trained and evaluated 10 times, with
each training iteration using a different seed for the random number generator,
which partitions the training and testing instances. During training, the following
hyperparameters were used: learning rate 9e-5, batch 12, epochs 2, max sequence
128, train/test split 80/20. Devlin et al. [8] recommend learning rates of 2e-5 to
5e-5, and batch size of 16 or 32, but we chose different values due to data scarcity.

4.2 Baseline Evaluation

For each concept, we evaluated two different baseline models without augmen-
tation or balancing. The a priori model simply chose the majority classification
for each concept. For our unaugmented baseline, we applied BERT in the pro-
totypical way, without data augmentation.

4.3 Augmentation Approach

We chose four textual alteration methods for augmenting the data sets because
they are among the leading modern methods at both the word and character
level. This gave us a wider sample range to compare and contrast different aug-
mentation methods [1]. Techniques were chosen to minimize the risk of chang-
ing semantic intent. WordPiece-level masking is cited as the best augmentation
method for classification tasks by Chen et al. [5]. Therefore, our first approach
used masking to mask a word in the sentence, then used the BERT model to
generate a substitute for the masked word. The second method, noise injection,
randomly inserted, deleted or changed a character in the original sentence [9].
The hypo/hypernym method generated sentences by selecting a keyword in the
given sentence, and replacing it with both types of related word to generate new
candidate sentences [9]. Last, an oversampling method using multiple copies of
each instance in the data set was used for augmentation.
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The majority label quantity in Table 2 became the majority quantity of
reference for that particular data set. We first left the data unbalanced from 0x
to 1x, then augmented the minority class only by adding N = (Maj −Min)/5
sentences2 at a time until parity was reached. Next, we performed another test
by forcing the data to be balanced by removing majority label responses to
match the minority level, ensuring parity at each level of augmentation up to
1x. After the data reached 1x, all data sets thereafter were balanced and were
augmented in multiples of the majority quantity from 1x to 20x. Initial tests
with imbalanced data showed inconsistent results as more augmentation was
applied. Additionally, we found empirically that model performance decreased
when higher augmentation levels were used over 20x.

5 Results

The high-level view of our results is presented in Table 2. Each row corresponds
to a concept. The leftmost data column shows the percentage of the answers
for each concept that were originally marked as correct. The next two columns
present the baseline results. On the right are the maximum F1 scores for each
concept using one form of data augmentation, and indicating what augmentation
quantity level reached that maximum. The highest performance achieved for each
concept are shown in bold.

Table 2. Performance (micro-F1) of baseline vs all augmented models

Concept % Baseline Max Performance

Correct a priori Unaug. F1 Aug. Level

C1 89 0.940 0.735 0.936 0.6x

C2a 73 0.850 0.757 0.995 5x

C2b 33 0.670 0.000 0.958 5x

C3a 54 0.700 0.399 0.873 8x

C3b 23 0.770 0.000 0.979 3x

C3c 40 0.600 0.098 0.900 8x

Figure 3 illustrates how balanced and unbalanced data sets affect perfor-
mance during augmentation. As augmentation increases, the balanced approach
shows worse initial performance, however, as augmentation was applied, the
balanced approach had a more stable rise in performance. The “balanced” app-
roach (shown by the solid line) forced equality by increasing the minority label
as before, but this time, diminishing the majority label such that both had equal
representation in the data set.
2 Here, Maj and Min refer to the number of available sentences from the majority

and minority classes.
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Fig. 3. Model Performance for Balanced vs Unbalanced Data with Augmentation less
than 1x the reference majority class.

Figure 4 shows how the performance varied with different augmentation
types, masked (“mask”), noise injection (“noise”), hypo-hypernym (“hyp”),
and oversampling (“over”) and the amount of augmentation for each student
response. For each of the concepts, performance improved when augmentation
levels from 3x-8x were applied, but tended to fall off slightly with additional
augmentation.

6 Discussion

Recall RQ 1 which asked whether the performance could be improved with an
augmented data set. Table 2 shows that data augmentation does improve clas-
sification performance over the a priori baseline in five of the six concepts, and
improves on the unaugmented model baseline in every case. H1 states that the
effect of a balanced data set and larger amounts of data improve classification
accuracy. Our results show that balancing the data is vital, and augmentation
additionally improves performance. However, there is a limit to how much aug-
mentation can be applied before the model levels off and begins to degrade in
performance. Also, for questions with a high percentage of majority label quan-
tities (>90%), guessing the majority label outperforms any model used in our
testing. Therefore, H1 was almost completely confirmed. The only exception
was for concept 1, where the majority label represented over 90% of the given
responses.
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Fig. 4. Model Performance as a Function of Augmentation Level. The x-axis shows
the amount of augmentation applied from 0x to 20x.

RQ 2 addresses the four augmentation methods. H2 predicted that mask-
ing would be a clear winner in making the model perform better because of its
relation to BERT. Our results in Fig. 4 revealed that performance varies with
augmentation method as well as the characteristics of the questions and student
responses. No clear winner was evident but a combination of methods may pro-
duce better results (currently only an empirical observation). Although H2 was
not supported, stability of performance did vary among the different types of
augmentation, so more types of augmentation should be investigated.

RQ 3 speculated that the characteristics of the questions and answers affects
model performance. The concept characteristics in our study are that concepts
C1, C2a, and C3a are more fact-based answers. The remaining concepts required
causal reasoning by the student in order to provide a correct answer. Fact-based
concepts do not show a significantly different performance than those requiring
causal reasoning. This result means H3 was not supported.

Figure 3 shows increasing data balance best improves classification accuracy.
Once followed up by additional augmentation, significant model improvements
can be gained. Some interesting outcomes arose from studying this phenomenon.
The model performance improvements in our study varied based on initial data
set balance. Data sets that are already close to having an even balance (50%-
65%) start out performing in an acceptable range, then increase slightly with
applied augmentation to about 8x before falling off. For concepts that originally
have close to a two-thirds majority (C2a and C3b), model performance peaked
at around 8x.
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7 Conclusion

After creating augmented data sets from student responses using four different
techniques, then applying them to classify answers using balanced and unbal-
anced test sets, we found that balancing the data set is the most important fea-
ture in achieving improved performance prior to the application of data augmen-
tation. Empirical tests without balance show inconsistent results. However, once
balance and augmentation are applied, our experiments showed significant model
performance improvements for binary classification of responses. The highest
performance improvements occurred when using augmentation levels between
3x to 8x of the quantity of the majority label. Overall, our use of balanced
and augmented training sets have generated sufficiently accurate results to sup-
port automated grading of formative assessments. However, while promising, our
results are still preliminary, and further analysis needs to be conducted.

8 Future Work

Additional augmentation methods (and their combinations) need to be studied
to develop models that are more robust for different types of formative assess-
ment questions. After seeing initial ratios of data balance around two-thirds
boost performance the most, further investigation is needed. Finally, teachers
and education researchers may determine some questions require multiple levels
of grading. To grade such answers, we need to train multi-class classifiers or
construct hierarchical grading models.
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Abstract. Metacognitive monitoring and regulation are key dynamic
psychological processes in predicting learning, reasoning, and problem
solving across AIEd systems. They are impacted by one’s metacognitive
knowledge, skills, and experiences. Understanding the dynamical pro-
cesses underlying metacognition are critical to design intelligent adaptive
scaffolding. Metacognition may be assumed to function at hierarchical
levels of abstraction including a local level (i.e., isolated metacognitive
judgements) and global level (i.e., self-beliefs). However, metacognitive
research for complex learning has traditionally disregarded the concept of
a general metacognitive ability due to local level fluctuations in temporal
metacognitive accuracy. In our study, we shift our analyses to reflect a
global-level approach to study metacognitive judgment ability by mea-
suring both accuracy and bias across a series of metacognitive judgments.
Using hierarchical clustering on undergraduates’ (n = 58) metacognitive
judgments’ accuracy and bias while learning about nine human biologi-
cal systems with MetaTutor-IVH, a multimedia-based learning environ-
ment, we show that some learners show patterns of global-level metacog-
nitive ability. Specifically, we find that learners who tended to have low
metacognitive accuracy across all judgment types performed worse over-
all on learning outcomes. Examining the bias of these learners, we found
they tended to be under-confident across all judgment types. Our work
suggests that considering multiple metrics of local-level metacognitive
judgments’ accuracy and bias, can be aggregated to depict a global-level
metacognitive ability of learners that is correlated to learning outcomes.
We further discuss the impact of our findings for the design of adaptive
scaffolding of AIEd systems to foster metacognition.
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1 Metacognition

Metacognition is a key psychological process in predicting learning, reason-
ing, and problem solving across AIEd systems [1]. Metacognition is a learner’s
thinking about their cognition’s processes and one’s prior knowledge [2–5]. This
occurs across the entire dynamic timeline of cognitive events and includes the
(in)accurate monitoring (i.e., meta-level) and regulation (i.e., object-level) of
those events [6]. Of particular importance to AIEd research and design, is
whether or not metacognition is domain-specific or domain-general. Domain gen-
eral meta-cognition suggests that metacognitive skills and abilities learned under
one set of conditions or tasks could then be transferred across contexts [7].

Metacognition can be abstracted into two hierarchical levels- a local level
which includes confidence in isolated judgments and a global level which encom-
passes more stable self-beliefs about our abilities and skills [8]. Local level
metacognition occurs throughout the learning session [6] beginning with Ease-
of-Learning (EOL) judgements, or the preliminary evaluation of how difficult
learning will be made prior to instruction or content [9]. Within many labora-
tory studies, these judgments are often thought to be poor indicators of learning
outcomes [10–12]. However, they have been shown to help direct learner atten-
tion and effort allocation with varying degrees of accuracy [9]. Some research has
begun to emerge, however, that indicate by controlling for task elements such
as grading criterion, task type, and item presentation timing, EOLs could be
highly informative about learning outcomes [9].

After learning has occurred, learners can also reflect on their performance
and ability to accurately recall information using Retrospective Confidence Judg-
ments (RCJs; [14,15]. RCJs have been consistently shown to be better predictors
of learning outcomes than judgments made prior to (i.e., EOLs) or during learn-
ing [16–18]. While research on metacognitive judgements has been dominated by
cognitive, developmental, and educational psychologists, much of the work has
been applied to several learning technologies, including AIEd systems [1,13,19].

Traditionally, research has focused on the local level metacognitive moni-
toring by calculating a variety of metrics about metacognitive sensitivity (i.e.,
discriminating correct from incorrect) and bias (confidence irrespective of per-
formance) on EOLs [20,21], FOKs [22], and retrospective confidence judg-
ments [14,15]. The inconsistent individual differences in metacognitive sensi-
tivity, specifically absolute and relative accuracy, have been used as evidence
against a general metacognitive ability [23]. However, as other researchers have
pointed out, this could be due to differences in learning tasks and complex-
ity. Research that uses multiple tasks have proven inconclusive in their defense
of general versus specific metacognition [24–28]. The assumptions underlying
these metacognitive processes regarding their timing, nature, role, function, and
impact on learning, reasoning, and problem solving in complex tasks while using
AIED systems has not been explored.
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1.1 Metacognition in AIEd Systems

The relationship between traditional metacognitive research and AIEd systems
is one that is symbiotic in nature. Metacognitive research has contributed to
the design, development, and research of AIEd systems by informing features
and addressing assumptions of interventions. Examples of these systems include
the Help-Seeking Tutor, Betty’s Brain, Crystal Island, and SimStudent. Addi-
tionally, AIEd systems built with these theoretical and conceptual models of
metacognition then in turn inform our understanding of metacognition outside of
the laboratory and during complex learning. Azevedo and colleagues’ (2018) [29]
MetaTutor intelligent tutoring system, production rules (whose use and deploy-
ment are informed by Winne’s 2018 [5] information processing model) prompt
and then provide feedback to support learners as they study the human circula-
tory system. Research using MetaTutor has in turn led to research contributing
to our understanding of individual differences [30], internal and external condi-
tions [31], feedback mechanisms [32], etc. In general, evidence of metacognition
within AIEd systems tend to be collected through self-report measures embed-
ded within the environments (e.g., using pull-down menus, pedagogical agents),
and in some cases, the systems use those measures to infer metacognitive states
or processes to inform interventions or feature deployment [32]. Despite current
attempts at measuring metacognition with contemporary AIEd systems, our aim
is to build on this work and extend it by providing evidence of the complexity
of metacognitive judgements and discuss implications for the design of adaptive
scaffolding for future AIED systems.

1.2 Current Study

The argument against general metacognitive ability does not hold in the AIEd
field. Specifically, this argument has primarily been supported through labora-
tory based study in which certain assumptions must be made (i.e., no prior-
knowledge). Additionally, studies that use metacognitive theory, such as Nel-
son & Naren’s (1990)’s [6] framework do not attempt to capture a global-level
abstraction of metacognition either through aggregation of multiple local lev-
els or global components such as self-belief or concepts. This study addresses
these gaps by aggregating multiple local-level measurements of metacognition
(i.e., metacognitive confidence judgements) to create a global-level measure of
metacognition (i.e., metacognitive ability) as they relate to learning outcomes.
This study addresses the following research questions:

(1) Can metacognitive accuracy on multiple local-level instances (i.e., judge-
ments) be used to profile learners for a global-level abstraction (i.e., ability)? (2)
Can metacognitive bias on multiple local-level instances (i.e., judgments) be used
to profile learners for a global-level abstraction (i.e., ability)? And (3) Are there
differences in learning outcomes between learner profiles?

We hypothesize that both accuracy and bias can be used to profile learn-
ers who differ in learning outcomes. We expect that learners who show high
metacognitive accuracy across all judgments will outperform their peers.
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2 Methods

2.1 Participants and Materials

Following IRB approval, undergraduate students from a large North American
university were recruited for our study (N = 58; 63% female; ages 18–29, M
= 20.21, SD = 2.19). All participants were financially compensated for their
involvement ($10/hr, up to $30).

Questionnaires. Participants responded to a series of questionnaires (not used
in this current analysis), including a demographics questionnaire, the Achieve-
ment Emotions Questionnaire (AEQ [33]), the Emotion Regulation Question-
naire (ERQ [34]), the Perceived Affect Utility Scale (PAUSe [35]), and an 18-item
multiple-choice pretest on human physiological systems.

MetaTutor-IVH. MetaTutor-IVH (Intelligent Virtual Human) is a linearly-
structured multimedia-based learning environment with content pertaining to
nine human physiological systems (e.g., cardiovascular, musculoskeletal, ner-
vous, etc.). Embedded within the environment is a virtual pedagogical agent
designed to represent a peer learner that provides a non-verbal metacognitive
judgment on the relevance of the instructional content via a facial expression.
Developed with the assistance of a human biology expert, the instructional con-
tent consists of multimedia content slides each which present three text para-
graphs and a diagram illustrating the physiological concept described within
the text (Flesch-Kincaid text readability score: M = 10.5). The contextual rele-
vance of the instructional content to the target comprehension question is mod-
ified, providing learners with the opportunity to consult the IVH and associated
metacognitive judgment prompts to support their own metacognitive processing.
Previous work with this environment has examined the degree to which learners
attended to content [36].

Apparatuses. Multimodal data, not used in this analysis, were collected from
participants including eye movements, affect, electrodermal activity (EDA), and
log files of participants’ interactions within MetaTutor-IVH. See [36] for eye-
tracking and EDA apparatus specifics.

2.2 Experimental Design

Our study involved a 3 (content relevance) × 3 (agent congruency) × 2 (infer-
ential question type) within-subjects design (for a total of 18 trials). Content
relevance varied among three levels over the series of experimental trials: fully
relevant (text and diagram contained relevant information), text somewhat rel-
evant (text contained relevant information), and diagram somewhat relevant
(diagram contained relevant information). Regardless of the combination of inde-
pendent variables and the source of relevant information, instructional content
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always provided sufficient information to answer each target comprehension ques-
tion. Agent congruency varied among three levels during trials: neutral facial
expression (no change to baseline expression), congruent facial expression (agent
expresses joy regarding fully relevant content and confusion regarding somewhat
relevant content), and incongruent facial expression (agent expresses confusion
regarding fully relevant content and joy regarding somewhat relevant content).
Finally, the target comprehension questions focused on either human body func-
tions (e.g., “Please explain how cortisol travels in the body”) or human body
malfunctions (e.g., “Please explain what would happen if the thyroid hormone
were to diffuse freely from the thyroid all the time”).

2.3 Procedure

After being briefed and providing informed consent, participants were calibrated
to multimodal data collection apparatuses. Participants then filled out a demo-
graphic questionnaire, a series of questionnaires assessing emotions and moti-
vation, and a pretest on human physiological systems (see section Materials).
Following the pretest, participants completed eighteen trials in MetaTutor-IVH.
After the experimental trials, participants completed a second round of emotion
and motivation questionnaires, attended debriefing, and were compensated for
their participation.

Participants engage in a series of eighteen identically-structured trials which
are linear, counterbalanced, randomized, and self-paced. Beginning each trial,
participants are presented with an inferential comprehension question related to
the content domain, and asked to submit an EOL judgment (i.e., “How easy do
you think it will be to learn the information needed to answer this question?”),
responding on a discrete unit scale (0–100). Next, participants are presented with
multimedia instructional content within the default MetaTutor interface. After
thirty seconds, participants are prompted to perform a CE judgment (i.e., “Do
you feel the content (text/diagram) on this page is relevant to the question?”),
using a three-point Likert-style rating scale (i.e., “text/diagram is relevant”;
“text/diagram is somewhat relevant”; “text/diagram is not relevant”). Subse-
quently, the IVH expresses their judgment (i.e., joy, confusion, neutral) about
content relevance for ten seconds. When the participant is finished reading the
slide, they are presented with a multiple (four) choice question associated with
the learning objective for the trial. After submitting their answer, participants
are asked to perform an immediate RCJ (i.e., “How confident are you that the
answer you provided is correct?”). Following their immediate RCJ (RCJ1), par-
ticipants are asked to provide a justification for their answer (open response),
then are prompted to perform a delayed RCJ (RCJ2).

2.4 Coding and Scoring

Judgment sensitivity was calculated using the absolute accuracy index (AAI
[37]). It is important to emphasize that this score is the discrepancy between a
participant’s confidence and their performance. This means the smaller the AAI,
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the higher their metacognitive accuracy. Judgment bias was calculated using
the bias index [37]. These scores remove the squaring of the difference between
a participant’s confidence and performance so that direction of confidence may
be established. That is, when confidence is high but performance is low, a par-
ticipant is considered over-confident. When confidence is low but performance is
high, a participant is considered under-confident. The distance from zero (i.e.,
the magnitude of this discrepancy) is a measurement of error severity. Learn-
ing performance was calculated as the average number of the multiple choice
questions answered correctly throughout the learning session (i.e., out of 18 total
trials). We choose not to examine CEs for this analysis as there is currently no
validated method for examining bias for CEs, as CEs are not confidence judge-
ments. Specifically, CEs are about the relevancy of content to an overall goal
where as the other metacognitive judgements reflect confidence in one’s ability
and responses.

3 Results

3.1 RQ1: Can Metacognitive Accuracy on Multiple Local-Level
Instances (i.e., Judgements) Be Used to Profile Learners
for a Global-Level Abstraction (i.e., Ability)?

We use learners’ average EOL, RCJ1, and RCJ2 AAI across all trials as vari-
ables for hierarchical clustering both across judgment type and learners. General
descriptives are reported in Table 1. Using this method, we identified 3 clusters
of participants and 2 clusters of judgment type. Results are visualized using a
heatmap that have been sorted using the resulting clustering dendrograms (see
Fig. 1).

Table 1. AAI & bias general descriptives

Judgment type AAI Bias

Mean (SD) Min, Max Mean (SD) Min, Max

EOL 0.34 (0.08) [0.18, 0.52] −0.22 (0.20) [−0.52, 0.38]

RCJ1 0.42 (0.08) [0.25, 0.59] −0.41 (0.13) [−0.68, 0.00]

RCJ2 0.41 (0.09) [0.23, 0.63] −0.40 (013) [−0.66, 0.00]

Metacognitive judgments can be seen in two main clusters- (1) EOLs and
(2) RCJs. This is unsurprising as these judgements occur at two separate times
in the learning session (prior to and post learning respectively). Participants
have 3 emerging groups (more groups were not considered due to sample size
limitations). Cluster 1 (N = 24) is composed of participants who have consis-
tently higher accuracy in their metacognitive judgments across judgment types.
Cluster 2 (N = 19) have roughly average or mixed accuracy in their judgments.
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Cluster 3 (N = 15) are learners with low metacognitive accuracy across RCJs
and a split between high and low EOL accuracy.

These results suggest that learners can have identifiable patterns in their
accuracy across judgments that are made across the learning session. That is,
learners who tend to have high EOL judgment accuracy additionally have high
RCJ judgment accuracy. We have also identified a subset of learners who have
a shift in their accuracy from highly accurate prior to learning to less accurate
after learning (see top half of cluster 3).

Fig. 1. Heatmap of Metacognitive Judgment Accuracy - Each row represents a unique
participant and each column represents a metacognitive judgment. Each cell is shaded
on a spectrum from a small AAI (blue; high metacognitive accuracy) to a larger AAI
(red; low metacognitive accuracy). The green and white bar annotation along the right-
hand size shows high and low performance (See RQ3). (Color figure online)

3.2 RQ2: Can Metacognitive Bias on Multiple Local-Level
Instances (i.e., Judgements) Be Used to Profile Learners
for a Global-Level Abstraction (i.e., Ability)?

We use learner’s average EOL, RCJ1, and RCJ2 bias indices across all trials as
variables for hierarchical clustering both across judgment type and learners. Gen-
eral descriptives are reported in Table 1. Results are visualized using a heatmap
that have been sorted using the resulting clustering dendrograms (see Fig. 2)

Using this method, we are able to further examine the clusters identified in
RQ1 (see the annotation bar on the right hand side of the graph). Specifically,
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we see that for Cluster 3 (those with low metacognitive accuracy), the majority
of participants were under confident across all judgments. This under-confidence
was also greater (i.e., more saturation seen in the heatmap) post-learning. The
majority of participants in Cluster 1 (those with high metacognitive accuracy)
are split in their bias. One group of these participants start the learning sessions
over-confident, but their confidence reaches an appropriate level once learning
has concluded and they have attempted to answer the posed question and jus-
tify that answer. Another group of these participants become somewhat under-
confident for these later judgements, suggesting the aggregation method of aver-
aging across all judgements may be losing some of the nuanced temporal fluctu-
ations. That is, students that appear to have high metacognitive accuracy across
the task actually have both inaccurate over- and under-confident judgements.

Fig. 2. Heatmap of Metacognitive Judgment Bias - Each row represents a unique par-
ticipant and each column represents a metacognitive judgment. Each cell is shaded on
a spectrum from under-confident (blue) to over-confident (red). The green, pink and
purple bar annotation along the right-hand size shows the clusters from RQ1. (Color
figure online)

3.3 Are There Differences in Learning Outcomes Between Learner
Profiles?

Participants answered 39% (SD = 0.11) of the multiple choice questions correctly
on average (roughly 7/18 questions). Table 2 provides general descriptives about
learning performance by clusters identified in RQ1.
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A one-way ANOVA was performed to compare this learning outcome across
the identified clusters of participants. We found a statistically significant dif-
ference in learning performance between at least two of the clusters (F(2,55) =
9.355, p < 0.005). Post-hoc Tukey’s HSD Test for multiple comparisons found the
mean value of learning performance was significantly different between Cluster
1 (high metacognitive accurate participants) and Cluster 3 (low metacognitive
accurate participants) (p = 0.001, 95% CI = [−0.194, −0.042]). Additionally,
learning performance was significantly different between Cluster 2 (mixed accu-
racy participants) and Cluster 3 (low metacognitive accurate participants) (p <
0.005, 95% CI = [−0.210, −0.051]). There was no significant difference in learn-
ing performance between Cluster 1 (high metacognitive accurate participants)
and Cluster 2 (mixed accuracy participants) (p = 0.905). These results suggest
that participants in Cluster 3 (i.e., those with low metacognitive accuracy) had
worse learning outcomes than their peers.

Table 2. AAI general descriptives

Cluster N Mean (SD) Min, Max

1 (High metacognitive accuracy) 24 0.41 (0.11) [0.17, 0.56]

2 (Mixed metacognitive accuracy) 19 0.43 (0.07) [0.28, 0.56]

3 (Low metacognitive accuracy) 15 0.30 (0.09) [0.11, 0.44]

4 Discussion

Our study explored the benefit of aggregating multiple local-level measurements
of metacognition (i.e., metacognitive confidence judgements) to create a global-
level measure of metacognition (i.e., metacognitive ability) as they relate to
learning outcomes. We directly addressed several gaps in the way that metacog-
nition is currently measured and analyzed, specifically during complex learning.
We found that both metacognitive sensitivity (i.e., absolute accuracy) and bias
of multiple metacognitive judgments taken across the learning session could be
used to cluster participants. Our results suggest that there is some level of con-
sistency in regards to the metacognitive accuracy of multiple types of judgments
made throughout the learning session. That is, participants’ accuracy did not
fluctuate drastically based on when they provided the judgment (either prior
to or post learning). These results fully support our original hypothesis. We
also found learners who showed low metacognitive accuracy tended to be under-
confident for all of their judgments. Learners with high metacognitive accuracy
showed some over-confidence in their EOL judgments while some then moved to
a more appropriate level of confidence once learning had concluded in their RCJs
while a small subset of these learners became slightly underconfident. Finally,
we found that learners who showed low metacognitive accuracy across all judg-
ments under performed compared to their peers. However, learners who showed
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high metacognitive accuracy across all judgments did not outperform their peers.
These results somewhat support our original hypothesis that metacognitive abil-
ity would show differences in learning outcomes.

5 Conclusion and Future Directions

Our work has begun to explore how we may use multiple local-level metrics
of metacognitive sensitivity and bias and aggregate them into a global-level
measurement of learner profiles that supports the concept of general metacog-
nitive ability. While we did find significant learning outcome differences, our
work suggests that aggregation through averaging judgements may not be the
best approach. Specifically, we appear to lose temporal nuance using such a
method, that other more sophisticated statistical approaches could help reveal
(e.g., latent growth modeling, weighted modeling, etc.). Additionally, we have
only begun to consider this approach with similar confident-based judgments.
Future work should begin to address how other components of metacognition
(e.g., metacomprehension evaluations) could be introduced into this approach
and incorporated in AIEd systems. Similarly, we should also begin to consider
more online measures, such as eye-tracking, facial expressions, etc., to help infer
metacognitive states and judgment. Metacognitive research for complex learning
is of great importance to the AIEd community in that it can help inform the
development, design, and integration of new interventions and features. This type
of research can specifically help answer questions about when system-deployed
interventions and interruptions should occur to better support and foster stu-
dent learning. For example, if we see that a student is overconfident based on a
metacognitive ability profile from previous learning sessions, it might be more
prudent to provide more context and activate prior knowledge before jumping
straight into the new content. This would help students re-evaluate how easy or
difficult they might believe the new task to be, and therefore reevaluate where
and how much attention to allocate moving forward. The accurate identification
of (in)accurate metacognitive processes is imperative to help improve the quality
and type of scaffolding that are built into future AIEd systems that are both
individualized and adaptive.
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Abstract. This paper presents an overview of the last decade of research onArtifi-
cial Intelligence in Education by conducting keyword and social network analysis
on the time-evolving co-authorship networks in four major research conferences:
the International Conference on Artificial Intelligence in Education, the Interna-
tional Conference on Educational Data Mining, the International Conference on
Learning Analytics and Knowledge, and the ACM Conference on Learning at
Scale. Time-evolving co-authorship networks were used as a proxy for the collab-
oration dynamic in the field, while keyword analysis was conducted to supplement
the social network analysis in order to pinpoint foci of individuals and cliques.
Recent research foci and the level of openness of the four research communities
were examined to inform strategies on how to promote diverse ideas and further
collaborations within the field of AI in Education.
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1 Introduction

With the growing attention to Artificial Intelligence (AI) in recent years, the applica-
tion of AI technologies to education has grown considerably, developing from a niche
field to a major interdisciplinary area [7]. Propelled by the global COVID-19 pandemic
and remote learning, online and AI technologies (such as AI-powered content delivery
systems, learning management software, and adaptive testing platforms) have impacted
millions of students, teachers and schools and might continue in future years. Such sig-
nificant implications of AI in Education (AIEd) leave research communities with greater
responsibility than ever to examine its strengths, weaknesses, risks and opportunities.
There is also growing concern about AIEd in terms of ethics, data privacy, and pedagogy
[3]. As more EdTech companies (e.g., Cognii, Quizlet) claim that they are approaching
the implementation of AI systems at a large scale, the AIEd research community needs
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to not only recommend effective systems from a technical or cognitive perspective, but
also shed light on potential social, ethical, cultural or even political issues that might
come with the AI “hype” [3]. For example, how should students and parents deal with
data privacy and security concerns? How should school districts and teachers react to
biased algorithms and inequity in access? Who would control the content and pedagogy
in public educational system in which decisions are outsourced to private AIEd com-
panies? In order to foster meaningful discussions to address these emerging questions,
AIEd research communities need to create intellectual spaces that welcome and foster
new ideas.

Given such a context, this study conducts keyword analysis and social network
analysis on the time-evolving co-authorship networks on the four major research con-
ferences in the field – the International Conference on Artificial Intelligence in Edu-
cation (IAIED), the International Conference on Educational Data Mining (EDM), the
International Conference on Learning Analytics and Knowledge (LAK), and the ACM
Conference on Learning at Scale (L@S) – from 2013 to 2020 to examine recent research
foci and the level of openness of each research community. The analysis is conducted on
three levels. On the macro-level, we investigated the most frequently used keywords and
measures of connectedness and centralization over time in each of the four research com-
munities. On the meso-level, we explored the formation of different cliques within each
research community. In particular, we inspected the evolution of the largest connected
components in each research community over time. On the micro-level, we focused
on the demographics of the core authors in the field and their research topics. Overall,
this paper investigates the major topics and collaboration patterns over time within the
four major research communities to examine if they align with the societal needs and
concerns around AIEd, and to inform strategies to promote diverse ideas and further
collaborations in AIEd.

2 Related Work

Co-authorship networks have been acknowledged as an important indicator of the effec-
tiveness of a research field because they visualize the social aspect of academic research
that citation networks often overlook [5, 10]. In addition, longitudinal studies on co-
authorship networks have been used to examine collaboration patterns and trends that
evolve over time in a research community [1]. Building upon existing methods of social
network analysis of co-authorship networks, this paper combines keyword analysis [8]
and social network analysis to conduct a detailed inspection of current research trends
and investigate how those are carried out within and among different cliques. Keywords
of scholarly publications represent the authors’ opinion of their articles and are good
indicators of research trends [9]. Thus, we overlaid keyword analysis on top of our
co-authorship network in order to garner a more comprehensive view of the focus of
distinctive cliques and the collaboration dynamics within the four research communities.

There is an ongoing effort reviewing the research in the field of AIEd. Luckin et al.
[8] provided a comprehensive view of AIEd and described existing applications in edu-
cation in three categories: a) personal tutors, b) intelligent support for collaborative
learning, and c) intelligent virtual reality. Zawacki-Richter et al. [13] explored the land-
scape of AIEd research in higher education and identified four potential AI use cases,
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namely “profiling and prediction”, “intelligent tutoring systems”, “assessment and eval-
uation”, and “adaptive systems and personalisation”. Feng and Kirkley [7] assessed
disciplinary diversity in AIEd research collaboration at the individual, dyadic, and team
levels for research on AIEd, and reported that disciplinary diversity was reflected by
the diverse research experiences of individual researchers rather than diversity within
groups. Berendt et al. [3] examined the benefits and risks of Artificial Intelligence (AI)
in education in relation to fundamental human rights, and pointed out a need to bal-
ance the cost and reward as AI tools are developed, marketed, and deployed. This study
contributes to this ongoing conversation by comparing how different research foci and
collaboration dynamics were carried out within and among the major four research com-
munities in the field over time, and providing insights on how to promote diverse ideas
and further collaborations within the field. Worth noting, our discussion and findings are
also framed within a larger debate about surveillance capitalism and the monetization of
personal data [14], which could be made more deleterious if applied to schoolchildren
with the increasingly significant presence of “big-tech” companies implementing AIEd
solutions in public schools systems, especially in the developing world [11].

3 Methods

3.1 Data Collection and Analysis

Toexamine research foci and collaboration patterns in thefield ofAIEd,wefirst identified
the major conferences (i.e., IAIED, EDM, LAK, and L@S) related to AIEd in consul-
tation with expert researchers in the field. We then retrieved metadata of full conference
papers from these four conferences from 2013 to 2020 from Springer, Scopus, and the
ACM website. In total, there are 776 papers from IAIED, 560 papers from EDM, 719
papers from LAK, and 454 papers from L@S1. We specified the links of the web pages
of target papers, automatically accessed the website’s source code with requests and
selenium libraries in Python, stored the source code as text files, and extracted data from
the source with the BeautifulSoup library in Python. The dataset includes the following
fields: article title, author names and affiliations, publication year, keywords, abstract,
and references. Since the L@S community does not have a research journal, journal
publications were not included to allow fair comparison across the four communities. In
our data processing, we used the stemming (PorterStemmer) packages in NLTK library
to group keywords with similar meanings (e.g., Tutor and Tutoring). We also created a
unique identifier for each author in the dataset. Since some of the authors may use their
names with variations (e.g., abbreviating first names or removing middle names) when
publishing their papers, we wrote Python code to detect authors with slightly different
names in the dataset, double-checked those names manually, and unified different vari-
ations into one unique identifier for each author. In total, there are 1632 authors from
IAIED, 1377 authors from EDM, 1592 authors from LAK, and 1152 authors from L@S.

1 The IAIED conference was held bi-annually up to 2017 and annually later, so our dataset on
IAIED covers full conference papers in 2013, 2015, and 2017–2020. Additionally, the first
L@S conference was held in 2014, so there are no papers from L@S in 2013.
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Our data analysis was organized into three levels – the macro-level analysis dis-
playing the structural and topical comparison of the four research communities, the
meso-level analysis presenting the evolution of cliques within each research commu-
nity, and the micro-level analysis revealing the demographics and distinctive research
foci of core authors of the four research communities. Based on the collected dataset, we
examined the overall trends of topics of each community through the most frequently
used keywords, ascending keywords, and descending keywords over time. Additionally,
we built time-evolving co-authorship networks with a two-year sliding window and uti-
lized them as a proxy for the evolving collaboration patterns of the four communities.
Core members of each community were identified using degree centrality. Cliques were
detected using the modularity-optimization method offered in the R package, igraph,
which maximizes the proportion of edges within communities relative to the expected
proportion of such if all edges were placed randomly. Keywords produced by core mem-
bers and major cliques in the co-authorship network were further classified into distinct
conceptual groups to reveal different ideas and research foci of those major contributors.
We used both node-level metrics (e.g. degree centrality) and network-level metrics (e.g.
average degree) of social network analysis to reveal the co-authorship dynamics of the
four communities.

3.2 Network Metrics

For the undirected co-authorship networks in this study, each node represents one author.
Two nodes are connected to each other with an unweighted link if the two authors have
co-authored at least one paper. The degree centrality of a node was used to measure how
widely an author collaborates with other authors in paper publications, which equals the
number of edges that this node possesses.

To measure the network-level properties, four metrics were used in this paper –
the diameter, the average degree, the percentage of authors in the largest connected
component, and the degree centralization, which are defined as follows.

The diameter is the shortest distance between the two most distant nodes in the
network. The larger the diameter, the less connected the network is. It is defined below:

dia = max
{
minij

{
pij

}}
(1)

where pij is the number of edges between node i and node j.
The average degree is the average number of edges per node in the network. The

larger the average degree, the more connected the network is. It is defined below:

d .avg = 1

2n

∑n

i=1
di (2)

where n is the total number of nodes of the network, and di is the degree centrality of
node i.

The LCC, i.e. the largest connected component, is a maximal set of nodes such that
each pair of nodes is connected by a path. The larger the percentage of authors in the
LCC, the more centralized the network is. It is defined below:

LCC% = 1

n
|LCC| (3)
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where n is the total number of nodes on the network.
The degree centralization is the distribution of degree centrality among the nodes of

a network. The closer the degree centralization is to 1, the more centralized the network
is. The closer the degree centralization is to 0, the more equal distribution of degree
centrality among nodes. It is defined below:

d .cen =
∑n

i=1(max
{
dj

} − di)

(n− 1)(n− 2)
(4)

where n is the total number of nodes of the network, di is the degree centrality of node i,
max{di} is the highest degree centrality among all nodes of the network. The numerator is
the sum of the difference between the highest node-level degree centrality on the network
in question and the degree centrality of each node on this network. The denominator is
the largest value that the numerator can possibly achieve on a network with n nodes.

4 Findings

4.1 Macro-level Analysis: Frequently Used Keywords, Connectedness,
and Centralization

On the macro-level, an analysis of the most frequently used keywords provided us with
thefirst impressionof the four research communities aroundAIEd (seeTable 1).Learning
Analytics, Educational Data Mining,Machine Learning, Natural Language Processing,
Intelligent Tutoring Systems (ITSs), andMassive Open Online Courses (MOOCs) are the
top six keywords shared by all four research communities. Apart from the commonality,
the four research communities also possessed different high-frequency keywords that
distinguish itself from the other three (see Table 1).Affect andMetacognition highlighted
the IAIED’s focus on the cognitive aspect of learning while Higher Education and
Self-Regulated Learning demonstrated the LAK’s special attention to post-secondary
education and matured learners. The EDM’s distinctive keywords, Deep Learning and
Clustering, stressed the community’s emphasis on particular data mining techniques
while the L@S’s Online Learning, Online Education, and Distance Learning implied
its strong interest in online learning environments.

Furthermore, among a host of network metrics and statistics, we found that connect-
edness and centralization were two meaningful dimensions to compare the four com-
munities. The assumption that the oldest community, IAIED, whose first conference
was in 1989, would have a more connected co-authorship network than the youngest
community, L@S, whose first conference was in 2014, was validated via two social
network metrics of connectedness, i.e. the diameter of the network (the shortest distance
between the two most distant nodes in the network, dia(IAIED) = 13 < dia(L@S) =
16) and the average degree (the average number of edges’ per node in the network,
d.avg(IAIED) = 5.314 > d.avg(L@S) = 4.696). In addition to being more connected,
the IAIED community was also more centralized than the L@S community as reflected
by degree centralization (the distribution of degree centrality among the nodes of a net-
work, d.cen(IAIED) = 0.047 > d.cen(L@S) = 0.034) and the percentage of authors in
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the Largest Connected Components (the percentage of a maximal set of nodes such that
each pair of nodes is connected by a path over the total number of nodes, LCC%(IAIED)
= 54.3% > LCC%(L@S) = 32.1%).

Table 1. Ten most frequently used keywords of four AIEd research communities in 2013–2020.

IAIED EDM LAK L@S

Intelligent tutoring
system (113)

Massive open online
courses (46)

Learning analytics
(249)

Massive open online
courses (168)

Natural language
processing (36)

Educational data
mining (33)

Massive open online
courses (65)

Learning analytics (33)

Machine learning
(28)

Intelligent tutoring
system (28)

Higher education (32) Online learning (30)

Student model (26) Student model (27) Educational data
mining (25)

Online education (26)

Educational data
mining (23)

Learning analytics (26) Natural language
processing (24)

Education (23)

Collaborative
learning (20)

Knowledge tracing
(20)

Visualizations (24) Assessment (17)

Game-based
learning (19)

Machine learning (17) Data mining (22) Machine learning (16)

Affect (19) Deep learning (16) Intelligent tutoring
systems (18)

Distance learning
(13)

Learning analytics
(19)

Natural language
processing (13)

Machine learning (18) Intelligent tutoring
systems (13)

Metacognition
(19)

Clustering (11) Self-regulated
learning (16)

Knowledge tracing
(13)

Note. The frequency of the keywords is presented in parentheses. Bolded keywords are the
keywords unique to their community’s top ten keyword list

Table 2. Four network metrics of four AIEd-related research communities in 2013–2020.

Dimensions Network metrics IAIED EDM LAK L@S

– Year of 1st Conference 1989 2008 2011 2014

Connectedness Diameter (dia) 13 17 12 16

Average Degree (d.avg) 5.314 4.593 5.175 4.696

Centralization Percentage of Authors in the
Largest Connected Component
(LCC%)

0.543 0.466 0.563 0.321

Degree Centralization (d.cen) 0.047 0.032 0.042 0.034
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However, the LAK community is an exception. Although its first conference was
held later than the IAIED and the EDM in 2011, two out of its four metrics (i.e. dia and
LCC%) showed that the LAK community could be the most connected and the most
centralized community in some aspects among the four (see Table 2).

4.2 Meso-level Analysis: Development of Sub-groups Around Different Topics
Overtime

On the meso-level, we explored research topics of different co-authorship cliques and
their changes over time within the four research communities. Co-authorship cliques
were ranked by their sizes, and their research foci were identified by classifying their
frequently used keywords. We saw a similar pattern to that found in the macro-level
keyword analysis. The field is largely dominated by research around Intelligent Tutor-
ing Systems (ITSs), Massive Open Online Courses (MOOCs), Online Learning, and
Game-Based Learning but with a decreasing percentage over time.We visualized annual
changes of the LCCs of each research community to study the evolution of the field.
Due to the space limit, Table 3 only presents two LCC graphs from IAIED and LAK
at the beginning and the end of the time window studied as examples. Denoted by dif-
ferent colors of nodes, the LCCs highlighted the research topics that were central to the
research community in the corresponding year. One notable finding was that, despite the
increasing societal emphasis on ethics, equity, privacy, and social justice issues related
to AI in Education, we didn’t see related keywords shown in the LCCs or in the major
cliques in each community. Additionally, it’s worth noting that the evolution of the LCC
networks all started as a less connected chain-like network, then gradually grew more
branches of collaboration around the central authors. The LAK community stood out
once again by the well-connected mesh structure and ring structure of the LAK’s LCC,
which indicated vibrant endogenous growth of collaborations happening throughout the
LAK’s LCC apart from the increasing collaborations with the central authors.

To zoom in on research related to the increasing societal emphasis on ethics and
equity issues related to AIEd, we analyzed out how many papers included such related
keywords in each research community over time. The result is striking – only 19 papers
address ethical concerns related to AIEd in all four research communities in the eight
years.

Another unexpected finding from our analysis is the use of synonymous but dis-
tinct terminologies to describe the same concepts in different cliques. This phenomenon
may, arguably, hinder inter-group communication since multiple terminologies need
to be learned and used accordingly. Here is a typical example from the IAIED com-
munity: Adaptive Learning as a keyword is used by five co-authorship cliques, while
another ontologically similar keyword, Personalized Learning, is used by another six
co-authorship cliques. Although they are studying similar topics, there are no overlaps
or collaborations between these two sets of authors. Other examples are Student Model
versus Learner Model versus User Model, and Automated Writing Evaluation versus
Automated Writing Assessment versus Automatic Essay Assessment versus Automated
Essay Scoring. Even thoughmore experienced researchersmight be familiar with all syn-
onyms and easily navigate the terminology, newcomers or external audiencesmight have
issues understanding their differences. Take the example of Adaptive vs. Personalized
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Learning: the two terms might be seen as equivalent in some research communities, but
to an outside audience personalized learning carries a connotation of student-centered,
constructivist learning—which does not happen to adaptive learning. These differences
are consequential, and the language we use to describe different AIEd learning projects
have deep implications for the way policymakers perceive and implement them, as we
have shown in previous work [4].

Table 3. Largest Connected Components (LCCs) of IAIED and LAK in 2013–2014 and 2019–
2020, colored by sub-communities and their respective most frequently used keywords.

IAIED 2013-2014 IAIED 2019-2020

Subcomm. in red: ITSs
Subcomm. in dark blue: ITSs

Subcomm. in red: Game-Based Learning
Subcomm. in yellow: ITSs
Subcomm. in blue: Rapport
Subcomm. in purple: NLP

LAK 2013-2014 LAK 2019-2020

Subcomm. in violet: Learning Analytics
Subcomm. in dark green: Learning Analytics
Subcomm. in light green: Learning Analytics

Subcomm. in blue: MOOCs
Subcomm. in orange: Learning Analytics
Subcomm. in pink: Learning Analytics

4.3 Micro-level Analysis: Demographics and Research Foci of Core Authors
in Different Communities

On the micro-level, we looked into authors who were central in the co-authorship net-
works and had co-authored with more than 20 people in this community from 2013 to
2020 (i.e. degree centrality greater than 20). According to this definition, there were in
total 66 core authors from the four communities. More than 70% of them had doctoral
degrees in Computer Science or Electrical Engineering.
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Additionally, nine out of the 66 core authors served as the core for more than one
community (see Table 4 for the top 10 core authors). It was interesting to see that these
shared core authors intentionally chose publication venues to emphasize different aspects
of their work. Consistent with the general impression and the macro-level analysis in
this article, these authors included more analytical or technical terms as keywords, e.g.
Coh-Matrix, Bayesian Knowledge Tracing, A/B Testing, and Crowdsourcing, in their
EDM or L@S publications while more educational goals and learning constructs as
keywords in their IAIED or LAK publications, e.g. Computational Thinking, Hybrid
Human-System Intelligence, Self-Regulated Learning, and Engaged Concentration. A
specific example demonstrating such intentional choices could be seen in core authors
who studied Affect. They tended to publish papers on Affect Modeling in the IAIED
community, Affect Chrometrics in the EDM, Affect Detection in the LAK community.
None of the core authors had published papers on Affect in the L@S community yet.
This finding further affirmed the value of comparing the four communities together since
agents in these communities did recognize the idiosyncrasies of these communities and
acted accordingly.

Table 4. Top 10 authors ranked by their degree centrality in co-authorship networks.

No. IAIED D. EDM D. LAK D. L@S D.

1 R. Baker 89 R. Baker 99 D. Gasevic 146 D. Joyner 52

2 B. McLaren 47 T. Barnes 76 S. B. Shum 78 N. Heffernan 35

3 K. Koedinger 47 N. Heffernan 68 R. Baker 77 D. Seaton 33

4 J. Lester 43 A. Graesser 60 A. Pardo 72 J. Kim 30

5 V. Aleven 43 S. D’Mello 48 S. Dawson 62 J. Reich 28

6 A. Graesser 40 X. Hu 43 S. Joksimović 51 T. Starner 28

7 D. McNamara 40 C. Lynch 42 G. Siemens 50 J. J. Williams 27

8 T. Barnes 34 M. Chi 37 V. Kovanovic 47 A. Fox 24

9 B. Mott 33 K. Koedinger 36 X. Ochoa 45 D. Tingley 23

10 G. Biswas 33 K. E. Boyer 33 R. Ferguson 42 E. Brunskill 21

Note. The column name D. indicates degree centrality. Bolded authors are core authors in more
than one community

The LAKcommunitywas distinct from the other three communities again in terms of
its core authors in two aspects. On the one hand, while 90% of core authors of the IAIED
(22 out of 24), the EDM (18 out of 20), and the L@S (9 out 10) worked for institutions
in the United States, the percentage flipped for the LAK community with 80% (19 out of
24) of its core authors worked outside of the United States, including eleven in Australia,
two in China, one each in Japan, Belgium, Germany, Netherland, UK, and Canada. How
the LAK community managed to achieve high connectedness and centralization while
having such a diverse core author body is a question that deserves more investigation in
the future. On the other hand, the LAK’s core authors, though primarily had computer
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science backgrounds as their peers from the other three communities, studied Data
Ownerships, Ethics, Legal Rights, Privacy, and Surveillance as well.

Apart from degree centrality, we also listed below the top 10 authors in each research
community ranked by their betweenness centrality in co-authorship networks (see Table
5). Both centrality measures gave us a similar set of top-ranked authors, while the
betweenness metric highlighted authors who served as bridges to connect different parts
in the networks, which are worth noting from a collaboration dynamics perspective.

Table 5. Top 10 authors ranked by their betweenness centrality in co-authorship networks.

No. IAIED EDM LAK L@S

1 R. Baker R. Baker A. Pardo J. Reich

2 N. Heffernan C. Studer X. Ochoa R. Kizilcec

3 J. Beck T. Barnes S. B. Shum S. Halawa

4 Y. Wang A. Lan R. Baker J. Ruipérez-Valiente

5 V. Aleven X. Hu S. Dawson G. Davis

6 G. Biswas S. D’Mello S. Crossley D. Joyner

7 B. McLaren L. Paquette R. Ferguson E. Glassman

8 T. Barnes T. Yang C. Mills D. Seaton

9 V. Shute C. Lynch G. Siemens Y. Rosen

10 S. Bull C. Piech S. D’Mello J. Kim

Note. Bolded authors are top authors in more than one community

5 Discussion

By focusing on a recent dataset including conference full papers published in major
conferences (IAIED, EDM, LAK, and L@S) in the field of AIEd, this paper provides
insights on recent research foci and the level of openness of research communities within
AIEd, and formulates strategies on how to possibly promote diverse ideas and further
collaborations in the field.

Absence of Research on Ethics and Social Justice-Related Topics. Our analysis shows
that only a minuscule number of publications focus on ethical or social justice concerns
in all four conferences aroundAIEd. This is particularly striking given the overwhelming
exposure that such topics have had in the popular media and in academia [2, 14]. In other
words, there has been enough time for the AIEd communities to investigate these topics
and make them a significant part of the community’s research, but that has not yet taken
place. This might indicate that the communities still see themselves as more technical
and less engaged in issues of ethics, or that those issues do not warrant acceptance
of papers into the conferences. Even though our data does not allow us to know the
exact cause of such gap, we see this stance as problematic given the negative shift
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in the nature of the public discourse around AI in the larger society, the exploitation
and monetization of people’s data, and issues around algorithmic bias. In addition, in
education, there have been central discussions about the privacy of children’s data and
the intrinsic limitations of AI in classrooms [12]. To further investigate this issue and
take action, we recommend focusing on authors who did publish papers on ethics and
social justice in AIEd, analyzing their position within the co-authorship network, and
collecting new data about why their work was not taken more enthusiastically by the
community. It would also be significant to investigate if core (or other) authors are
involved in ethics-related work in other venues, and if they find obstacles in bringing
such work to AIEd communities. Finally, research communities have ways to promote
and incentivize research in new areas. The AIEd community could, thus, convene panels
on ethics at conferences, create special issues of journals, give awards, create special
conference tracks, or invite keynote speakers researching such issues.

Limited Global Participation. 90% of the core authors in the co-authorship networks
of the IAIED, the EDM, and the L@S work in US institutions, while the 80% of the
LAK core authors work outside of the US, but very few in the Global South. This is
a phenomenon that requires further exploration. But with the global impact of AIEd
technologies (especially after the COVID-19 pandemic), an international conversation
around the topic is very much needed. In particular, the implications of AIEd technolo-
gies need to be framed within a larger debate about the monetization of personal (and
children’s) data [14], which could be made more harmful if applied to public school sys-
tems, especially in the developing world [11]. These communities are, so far, worryingly
absent from academic discussions on the matter. In those countries, we could take action
to incentivize collaborative research and elevate local scholars, creating mechanisms to
bring them more to the center of the international community, thus empowering them in
their local contexts as well.

Looking into LAK’s Model. Our analysis on all three levels indicated LAK was doing a
relatively good job in fostering greater participation andmaintaining openness to diverse
ideas. More research could illuminate how LAK achieves such progress by interviewing
core authors and leaders of the community. In addition, the fact that LAK is more
international and more interdisciplinary might provide important clues. We recognize,
however, that not all conferences and communities should have the same goals, so the
“lessons” of LAK should be taken critically.

Synonymous Keywords and Inconsistent Nomenclature as Potential Barriers for Collab-
oration. The use of synonymous but distinct terminologies to describe the same concepts
in different cliques may hinder inter-group communication. However, two other plau-
sible hypotheses should also be considered. First, perhaps some cliques simply work
in different countries or institutions. Second, small cliques may not be crossing over
because they are fleeting members of the community and have fewer ties with authors
in general. However, over half of these authors have five or more co-author connections.
Still, this finding suggests little overlap amongst many researchers who study almost
identical phenomena, which could be caused by a lack of communication or of a defined
terminology within AIEd. It is also the case, as we have discussed, that some terms such
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as “personalized learning” have become part of the commercial branding of many com-
panies, making its more precise definition imperative for researchers. Finally, with the
growth of the field and its four conferences, it is to be expected that many groups would
generate their own terms and academic jargon, so an intentional effort to better define
keywords and their use within the whole AIEd community is also timely and needed.

6 Conclusion

The last few years solidified AIEd as one of the core areas in educational research,
as online, remote, hybrid, game-based, constructionist, and other types of technology-
enabled learning entered the educational mainstream--especially during the COVID-19
pandemic. Now, and in the near future, AIEd will impact millions of students, and it is
more important than ever to ascertain where the community is going, if we are balancing
technical development and ethical considerations, and if we are welcoming new ideas
and authors. This paper is a contribution to examining these topics, to build a more
inclusive, socially committed, and robust research community.
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Abstract. Formative assessments provide valuable data for teachers to
make instructional decisions and help students actively manage their
progress and learning. Multiple-choice questions (MCQ) and free-text
open-ended questions are typically employed as formative assessments.
While MCQs have the benefit of ease of grading and visualizing student
answers, they lack capabilities in revealing diverse student ideas and
reasoning beyond the options. On the other hand, open-ended tasks and
free-text submissions may elicit students’ perspectives more comprehen-
sively, though it requires laborious work for instructors to analyze such
responses. In this work, we explore the use of mixed-methods formative
assessments in a college-level CS class, in which we assign MCQs and
ask students to explain their answers. We propose a clustering pipeline
to categorize students’ free-text explanations leveraging the meta-data
the original MCQs provide. We find that using students’ choices in
MCQs to resolve co-reference in their explanations and adding students’
choices as features significantly improve clustering performance. More-
over, our work demonstrates that providing structures in the data col-
lection process improves the clustering of free-text responses without
making changes to the algorithm.

Keywords: Formative assessments · Self-explanations · Clustering
pipeline

1 Introduction

College classes witness high enrollment in recent years [13]. Especially in com-
puter science, students in introductory courses are from increasingly diverse
backgrounds [1]. This introduces difficulties for instructors to accurately and
efficiently predict students’ knowledge and monitor student progress to plan for
and adjust their instruction[14,22]. In-class formative assessments, in the for-
mat of multiple-choice questions (MCQ) or open-ended questions (OEQ), are
often employed by instructors to identify students’ strengths and weaknesses.
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As an example, during a lecture, an instructor may use MCQs to probe into
students’ understanding of concepts and visualize student options in real-time
[36]. In other cases, instructors may use OEQs and walk around the classroom
to sample students’ answers and prompt the class to discuss further [7].

Although MCQs have the benefit of ease of grading and help instructors
quickly visualize student answers, prior work has raised concerns on whether the
options experts designed could correctly and comprehensively reflect students’
understanding and misconceptions [19,21]. Some studies have shown that learn-
ers may be over-tested by MCQ because they can select the right answer even
when they are not able to complete the task [10]. Moreover, instructors could
gain little insights into the reasoning behind students’ choices [21]. On the other
hand, OEQs have the benefit of revealing students’ ideas and reasoning behind a
problem [21]. However, using OEQs as formative assessments lacks the immedi-
acy for instructors to identify students’ weaknesses and monitor their progress, as
analyzing a large amount of textual data is laborious [28,32]. To solve this prob-
lem, researchers have explored Natural Language Processing (NLP) methods
to detect the common misconceptions in students’ textual responses [26,29,33],
however, it remains a challenging task for several reasons. First, it is difficult
to parse the contextual information in students’ answers, e.g. domain-specific
terms and abbreviations, and incomplete sentences; Second, students’ answers
often have nuanced differences in the meaning they convey, but existing stud-
ies focus on detecting right answers from wrong rather than capture diverse
students’ perspectives. Third, although we have seen well-performed domain-
specific classification models in short-answer grading, the generalizability across
question topics and disciplines is unsatisfactory [29].

In this work, we explore the use of mixed-methods formative assessments
(mixFA) to identify students’ knowledge. Specifically, in a college-level user inter-
face development class with 373 students, we assigned MCQs and ask students
to explain their answers. We created a mixFA dataset with labels of students’
ideas as shown in their explanations. We propose a clustering pipeline to catego-
rize students’ free-text explanations leveraging the meta-data the original MCQs
provide. We see several benefits of using mixFA. First, mixFA elicits in-depth
student reasoning and diverse student ideas compared to using MCQs alone. Sec-
ond, the clustering pipeline can quickly and effectively cluster students’ free-text
explanations. We find using students’ choices in MCQs to resolve co-reference in
their explanations and adding students’ choices as features significantly improve
clustering performance.

We present a case study where providing structures in the data collection
process improves the clustering of free-text student responses without making
changes to the algorithm. We discuss the implications on collecting meta-data
and improving feature representation as our community makes improvements
on short answer clustering and classification problems. Through a qualitative
error analysis of the clustering outcome, we surface the need to give instructors
more control over the clustering setup, e.g., providing input for the algorithm
to improve and being able to explore and rectify clustering results. We discuss
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implications on building human-in-the-loop interfaces to invite instructor input
and allow for more versatile NLP-powered short answer clustering and classifica-
tion pipelines. We suggest that mixFA could support instructors in identifying
students’ knowledge and monitoring student progress in a way that achieves
quality and scale at the same time.

2 Related Work

In this section, we discuss relevant literature on how formative assessments can
be used in classrooms to help instructors with decision making and prior machine
learning-powered methods to identify students’ knowledge and ideas.

2.1 Formative Assessments in Supporting Teaching and Learning

Decades of research has shown the benefit of using formative assessments to facil-
itate student learning and help instructors identify students’ strengths and weak-
nesses to adjust their teaching [4,24]. In the process, it is critical for instructors
to analyze student responses and translate the insights to help with their instruc-
tional decision-making [16]. Commonly used formative assessments could take
the form of multiple-choice questions (MCQ) or open-ended questions (OEQ).
While MCQs have the benefit of ease of grading, they may not elicit students’
prior knowledge and ideas comprehensively [12]. On the other hand, while OEQs
are better positioned to capture diverse student ideas, they do not provide imme-
diacy for instructors to visualize student answers [4]. Research has shown that
integrating self-explanations into MCQs could improve students’ learning of com-
plex concepts and skills, and help students develop meta-cognitive skills [5]. In
our study, we explore the use of mixFA, combining MCQs with self-explanation
prompts. We investigate whether mixFA could elicit diverse student reasoning
and ideas beyond the options in MCQ and offer opportunities for automatically
clustering student ideas and reasoning. This can support downstream educa-
tional applications, including supporting automatic short answer grading [27],
crowdsourcing explanations for future students [34], and generating high quality
questions leveraging natural student mistakes [32,33].

2.2 Automatic Methods for Identifying Students’ Prior Knowledge
and Misconceptions

Prior work has explored machine learning techniques to detect students’ prior
knowledge in short-answer textual responses [8,17,26]. Michalenko et al. devel-
oped a probabilistic model to differentiate students’ correct and wrong answers
[17]. Other work proposed NLP models to cluster students’ short answers, with a
focus on programming tasks that provide more structured features than free text
[25,26]. More recent work applied pre-trained language models, such as BERT
on short answer grading [6,18,30]. They found that transformers improved the
accuracy of automatic grading results. We summarize the following limitations
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in prior work: 1) Most existing techniques in the space of classifying and cluster-
ing student free-text responses have a focus on detecting correct and incorrect
answers. However, in a formative assessment setting, instructors have the desire
to identify diverse student ideas and reasoning to plan for and adjust their
teaching [4,24]. 2) Although we have seen successes with recent short answer
grading techniques, the performance remains inconsistent across data sets [9].
Domain-specific models require substantial efforts on data annotation, whereas
domain-general models also require abundant data input [35]. Nuanced mean-
ings conveyed in students’ short answers are hard to be captured with existing
approaches [26]. In this work, through collecting the mixFA response dataset,
we investigate whether structured student responses allow for the development
of novel clustering pipelines to help instructors identify students’ knowledge and
misconceptions using mixFA.

3 MixFA Response Dataset

3.1 Data Collection

We explored the use of mixFA and collected a response dataset in a college-level
introductory Human-Computer Interaction course with 373 students at the Uni-
versity of Michigan. Through discussion with two of the course instructors, we
designed 7 Multiple-choice questions (MCQ) on topics including ideation, pro-
totyping, think-aloud protocols, and universal and accessible design principles.
Each MCQ offers 4–5 different options for students to choose from. The options
were designed based on both instructors’ predictions of students’ prior knowledge
and past students’ mistakes. The MCQs were used in mixFA, in which students
were also asked to explain their answers. The class was offered in the fall of 2021.
The study was IRB approved, and 373 students in the class consented to have
their data collected. At the end of the class, we collected 987 mixFA responses
(with student MCQ choices and explanations).

3.2 Data Preparation

Since our goal is to investigate whether mixFA can elicit student reasoning and
misconceptions behind their choices, we developed a coding scheme for each ques-
tion to annotate unique student ideas or misconceptions emerging from their
mixFA explanations. For each of the 7 questions, one author did the initial
coding of the mixFA explanations. In the first step, answers that did not con-
tain explanatory information (e.g., “refer to the slides”; “In lecture”; “Yes/No”)
were coded as “Non-informative”. There were 284 student responses labeled as
“non-informative” and excluded for further analysis. Two authors then did axial
coding based on the initial codes. In this process, we made sure all initial codes
with similar meanings were merged and determined whether a code is a correct
understanding or a misconception. We then developed a codebook for each ques-
tion which showed unique student ideas emerging from the mixFA explanations.
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Two authors used the codebook to code 10% of data for each question in the
mixFA dataset and achieved an average Cohen’s kappa [15] of 0.91. One author
then coded the whole mixFA dataset. Table 1 displays examples with initial and
final codes after merging.

Table 1. An example of merging similar initial codes to a final code.

Student explanations Initial code Final code

You want to get a lot
of ideas first and then
judge them

Get idea first and then
judge them later

Get ideas first (without
judgment) and then
evaluate/narrow them down
later

Evaluation of quality is
certainly more required
for the next step in the
process

Evaluation of the
quality in the next step

Get ideas first (without
judgment) and then
evaluate/narrow them down
later

Following the data annotation process, we built the mixFA response dataset
with each student explanation labeled with a code representing a unique idea.
The labels are used as the ground truth for our subsequent clustering and classi-
fication experiments. One thing to highlight here is that our ultimate goal is to
support instructors using mixFA to identify diverse students’ knowledge and mis-
conceptions. So we tried our best to retain the meaning in students’ explanations
and made nuanced distinctions between codes in our coding process. Some codes
may share common keywords but they demonstrate different specificity and lev-
els of understanding from the students. For example, “Block-based programming
is easier because dragging is easier than typing for people with motor disabilities”
and “Block-based programming is easier or more accessible” are treated as dif-
ferent codes, since the former one displays extra reasoning, and both codes are
misconceptions. The dataset includes 703 annotated free-text self-explanations
in response to 7 multiple-choice questions. The dataset and the coding manual
can be downloaded at this link1.

4 Methods: A Clustering Pipeline for Identifying
Students’ Knowledge

To help instructors identify diverse student ideas and reasoning from students’
self-explanations in mixFA, we develop a clustering pipeline. The novelty of
the clustering pipeline lies in applying meta-level data that mixFA responses
provide. Specifically, we use the original MCQ options to resolve the co-reference
in students’ explanations and use the MCQ answer as an additional feature.

1 https://github.com/UM-Lifelong-Learning-Lab/AIED2022-MixFA-dataset.

https://github.com/UM-Lifelong-Learning-Lab/AIED2022-MixFA-dataset
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4.1 Co-reference Resolution

One challenge presented in short answer grading is that incomplete sentences are
common [9]. Similarly, in our mixFA dataset, student explanations often rely on
contextual information in the question itself. For example, students may use
pronouns or abbreviations to refer to the entities in the original MCQ options.
Thus we applied co-reference resolution to contextualize students’ explanations.
Specifically, we used the NeuralCoref pipeline in SpaCy to resolve co-references
with the combined option and explanation as input [11]. We then split the out-
put to extract the resolved explanations. Here we present an example, before
co-reference resolution: “It is an iterative process.”, and after co-reference res-
olution: “The transition between lo-fi and high-fi prototyping is an iterative
process.” More examples are shown in Table 4.

4.2 Data Representation

We used sentence-BERT [23] to represent the textual data. Sentence-BERT is a
state-of-the-art method for sentence embeddings. It utilized siamese and triplet
network structures to derive semantically meaningful sentence embeddings. Prior
work showed that sentence-BERT performed well on short answer grading tasks
in an educational context [6,20], with better performance on clustering tasks than
alternative GloVe and BERT embeddings [23]. We also tried Word2Vec, GloVe,
BERT, sentence-BERT to represent student text answers and found sentence-
BERT to be the best by comparing the clustering resutls with manual labels.

We extracted students’ answers in the corresponding MCQ as an additional
feature since students’ MCQ answers represent their prior knowledge [21]. For
example, for Question 3 as shown in Table 3, students explain the transition
between low-fidelity and high-fidelity prototypes when they select option A while
focusing on the benefit of the low-fidelity prototype when they select option B. In
our dataset, students can have up to 14 different combinations of option selection
since some MCQs used were select all that apply questions. To construct the
feature space, we combined the feature column of students’ MCQ answers with
the vectorized explanation using sentence-BERT.

4.3 Clustering

We used the agglomerative clustering method with euclidean distance measure
and average linkage provided in Scikit-Learn to cluster students’ explanations
leveraging the feature representation presented above. Agglomerative clustering
is a bottom-up algorithm that treats each data point as a singleton cluster at the
outset and then successively agglomerates pairs of clusters until all clusters have
been merged into a single cluster that contains all data. We adopted this app-
roach since it resembles instructors’ natural process of discovering and merging
different student ideas. In this study, we examine whether providing structure
in the data collection process could improve the clustering of free-text student
responses. We set the number of clusters to be the same as the number of codes
extracted from the annotation process. We then evaluate the clustering outcome
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by comparing the results with our manual labels using Adjusted Mutual Infor-
mation Score [31] Adjusted mutual information score (AMI) is a commonly used
metric for comparing clustering outcomes and it corrects the effect of the agree-
ment solely due to chance between clustering algorithms [31]. We also use the
Silhouette Coefficient score to evaluate the density of the clusters [3].

5 Findings

In this section, we report the performance of the clustering pipeline with baseline
models. We also report findings on an in-depth error analysis of the clustering
outcome to suggest future pathways for more effective clustering of students’
free-text answers.

5.1 Experiment Results

We use the mixFA dataset, as shown in the public link (see footnote 1). We run
the clustering algorithm separately for each of the 7 questions. There are four
experimental setups with different feature representations: 1) Sentence-BERT
only; 2) Sentence-BERT applied after co-reference resolution (Resolved-SBERT);
3) Sentence-BERT plus MCQ options as a column feature (Option-SBERT); 4)
Sentence-BERT applied after co-reference resolution plus MCQ options as a
column feature (Resolved-Option-SBERT).

Meta-level Data from MCQ Improves the Clustering Outcome. Table 2
shows the AMI scores for the four experimental setups for each of the 7 ques-
tions. We applied Anova one-way analysis with Dunn’s posthoc pairwise test.
The column “p” shows the p-value of each model compared with the baseline
model in Dunn’s test. We see marginally significant improvement in Adjusted
Mutual Information score with Resolved-SBERT (Ave. AMI = 0.30, p< 0.1)
and significant improvement with Option-SBERT conditions (Ave. AMI = 0.34,
p< 0.05). Maximum improvement is obtained when using both resolved expla-
nations and the MCQ options as a column feature (Ave. AMI = 0.42, p <0.01).
This suggests that our proposed feature space with co-reference resolution and
MCQ options improves the data representation.

Table 2. Adjusted Mutual Information score (AMI) for the four experimental setups
with different feature representations. AMI score improved significantly in Resolved-
SBERT, Option-SBERT, and Resolved-Option-SBERT compared with the Baseline.

Model Questions Q1 Q2 Q3 Q4 Q5 Q6 Q7 Ave. p

Clusters 18 22 14 16 17 18 13

Baseline AMI 0.14 0.30 0.19 0.11 0.3 0.16 0.24 0.21

Resolved-SBERT AMI 0.23 0.40 0.32 0.19 0.37 0.27 0.39 0.30 0.08*

Option-SBERT AMI 0.18 0.41 0.36 0.21 0.33 0.30 0.51 0.34 0.04**

Resolved-Option-SBERT AMI 0.29 0.44 0.38 0.29 0.41 0.36 0.61 0.41 0.003***
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Tradeoff Between Capturing Nuanced Differences in Student Answers
and Achieving Better Clustering Outcomes. In the experiments, we set
the number of clusters to be the same as the number of manual labels shown in
our dataset (see footnote 1), which gives us a relatively large number of clus-
ters (average clusters = 17) under each question. Therefore, the lower distance-
thresholds for hierarchical clustering will increase the possibility that student
explanations with a certain degree of similarity are not merged, causing the
errors. We present evidence that reducing the number of clusters may increase
the AMI score and the Silhouette score. However, that will leave some unique
student ideas, and nuances between student explanations uncaptured. Figure 1
shows the average AMI score across 7 questions when changing the number of
clusters. We can see that for the Resolved-Option-BERT setup, the AMI score
is peaked when N (number of clusters) = 13. Figure 2 shows the average Silhou-
ette score across 7 questions when changing the number of clusters. A general
trend is that the silhouette score is higher when there are fewer clusters. This is
understandable because student answers may appear linguistically similar but
convey different meanings.

This set of experiments demonstrates that if our goal is to capture diverse
student ideas in a formative assessment scenario for instructors to understand
student’s knowledge and reasoning, especially the subtle differences in student
answers, optimizing for existing ML metrics (such as AMI or Silhouette score)
may not be sufficient.

Fig. 1. Average AMI changes with the
number of clusters. For the Resolved-
Option-BERT setup, AMI peaks when
N= 13, <the number of manual labels.

Fig. 2. The average Silhouette score
increases as the number of clus-
ters decreases. Resolved-Option-BERT
setup has the overall best performance.

5.2 Qualitative Assessment

We performed an in-depth qualitative assessment of the clustering outcome to
see how the new feature representation influenced the result and where the errors
came from. We summarize the drawbacks of the clustering pipeline and propose
future improvement ideas. We use Question 3 as an example, as shown in Table 3.
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Table 3. An example question in the mixFA dataset (Question 3). Students are pro-
vided with a text field following this question to explain their answers.

Which of the following is NOT correct about the relationship
between low-fidelity versus high-fidelity prototypes? Select all that
apply (Correct Answers: B, C)

A. It is always better to first do a low-fidelity prototype versus a high
fidelity prototype because we need to know the basics of user interaction

B. Lo-fi prototypes, if done well, could give us everything we need to
understand user interactions with the system

C. The transition between lo-fi and high-fi prototyping is a linear process

D. Lo-fi prototypes could provide us with valuable data and help us
evaluate high-level characteristics of the system that could inform us on
how to build a high-fi prototype

Benefits of the New Data Representation with Co-reference Resolu-
tion and MCQ Option Column Feature. The co-reference resolution step
successfully helps complete students’ sentences. Table 4 shows examples where
entities in students’ explanations are successfully replaced and enriched with co-
reference resolution. We found that adding the MCQ options as a column feature
had mixed effects on the clustering outcome. On the one hand, the option fea-
ture helps when student explanations are aligned with the original options, e.g.,
the second example shown in Table 4. However, when student explanations are
widely disparate, the option feature is distracting, e.g., the first example shown
in Table 4.

Error Analysis. One source of error we observed was that two labels were
clustered together. This was often due to the fact that student answers present
similar linguistic features, however, when we analyze them qualitatively, they
demonstrate subtle differences in student understanding. For example, students’
explanations “Low-fi are important for an initial part of the prototyping process”
and “Do Lo-fi at first helps gather data to build hi-fi” were grouped in one cluster
as they were similar to some extent. However, in our manual coding, we take
these as two different students’ perspectives, “It is helpful to first do lo-fi first.”
and “Do Lo-fi first could help with hi-fi.”, because the latter one is more specific
about the relationship between lo-fi and hi-fi. On the contrary, another type of
error is that students’ explanations in one label were distributed into two clusters
due to the length or quality of the explanations. For example, for the label “Lo-fi
can not represent everything”, students’ simple answers such as “Not everything”
were placed into one cluster, while other explanations with higher specificity such
as “Lo-fi prototypes intentionally exclude some of the details about how the app
works” were placed into a different cluster.
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Table 4. Example of successful Co-reference resolution. The subject in the student’s
explanation was correctly replaced with domain-specific keywords.

Options that students chose Explanations Resolved explanations

1 The transition between lo-fi
and high-fi prototyping is a
linear process

It is an iterative process The transition between lo-fi
and high-fi prototyping is an
iterative process

2 Lo-fi prototypes, if done well,
could give us everything we
need to understand user
interactions with the system

It wouldn’t give us
everything we need to know

Lo-fi prototypes wouldn’t
give us everything us need to
know

Another main source of error was that incorrect and correct explanations with
similar linguistic features were wrongly clustered together, e.g., students’ expla-
nation “It is always better to do low-fi first” and “It’s not necessarily true that
it’s always better to do low-fi first” were wrongly clustered together. Since it is
critical to recognize the polarity and sentiment in student answers, future work
could incorporate additional features to highlight such tendencies during data rep-
resentation. Besides, the linguistic distance between MCQ options, and the level
of student knowledge they represent could serve as additional features. For exam-
ple, some options are partially incorrect, whereas others are completely wrong. We
also observe cases where co-reference resolution doesn’t work well. This may hap-
pen when the option sentence has complex structures with multiple entities.

These errors point to design ideas for giving instructors more control in the
process and interaction with the clustering or classification algorithm. First, in the
mixFA dataset, the explanations for different questions possess varying properties,
e.g., to what extent student explanations target the options in the MCQ. We can
give instructors more control to decide what data representations to use, adjust the
number of clusters, and determine the threshold for clustering depending on the
nuanced level theywant to get at. Second, instructor input on keywords, synonyms,
and opposing arguments could help correct many of the errors we have seen in the
experiments. Lastly, when clustering outcomes are not ideal, instructors need to
have the freedom to freely explore and rectify the clustering result.

5.3 Validation of the New Feature Representation

We applied a supervised learning approach to examine how the new data rep-
resentation supports classification compared to existing approaches on short
answer grading. Specifically, with the feature representation of the Resolved-
Option-BERT setup, we trained logistic regression classifiers and evaluated the
classifiers through 10-fold cross-validation. The results are shown in Table 5. In
comparison to a recent study [6] which uses SBERT for student answer classi-
fication (SBERT accuracy, 0.621), our setup reaches a higher level of accuracy
(Resolved-option-SBERT, 0.661). This offers triangulation that the meta-level
data provided by mixFA improves the data representation in students’ free-text
explanations.
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Table 5. Accuracy of the classifiers built on the mixFA dataset with a 10-fold cross val-
idation. This offers triangulation that the meta-level data provided by mixFA improves
the data representation in students’ free-text explanations.

SBERT-baseline Resolved-SBERT Option-SBERT Resolved-Option-SBERT Condor, 2021 [6]

Accuracy 0.587 0.612 0.629 0.661 0.621

AMI 0.245 0.298 0.358 0.422 —

6 Discussion and Conclusion

In this work, we contribute the mixFA dataset which contains students’ answers
to MCQ questions and their free-text explanations. We then propose a clustering
pipeline that improves the vectorization of students’ free-text explanations using
the meta-level data the corresponding MCQs provide. Our findings show that
MCQ options could be used to resolve co-references in students’ free-text answers
and their MCQ choices provide additional context for clustering. We demon-
strate that the clustering pipeline with co-reference resolution and the choice
information significantly outperforms the baseline setup with sentence-BERT
only. We show a case study where providing structures in the data collection
process improves the clustering of free-text student responses without making
changes to the algorithm. Besides, our findings show the trade-offs between cap-
turing nuanced differences in students answers and optimizing for metrics such
as the AMI and the Sillhoutte scores. Future studies in the space need to devise
and use metrics that are aligned with instructional goals.

We present a qualitative error analysis which points to failure cases of the
proposed clustering pipeline. We discuss the design implications on building a
human-in-the-loop interface where instructors control the clustering setup and
provide input to improve the outcomes [2]. For example, instructors may exper-
iment with alternative data representations, choose when and how to use meta-
level data, provide keywords and synonyms, specify opposing arguments, and
rectify clustering mistakes.

In conclusion, our study shows that mixFA is a viable approach for eliciting
diverse and nuanced student ideas and reasoning, while at the same time instruc-
tors can use the clustering pipeline to quickly examine students’ knowledge.
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Abstract. One fundamental goal of education is to enable students
to act independently in the world by continuously adapting and learn-
ing. Certain learners are less sensitive to learning environments and can
always perform well, while others are more sensitive to variations in learn-
ing environments and may fail to learn. We refer to the former as high
performers and the latter as low performers. Previous research showed
that low performers benefit more from tutor-driven Intelligent Tutoring
Systems (ITSs), in which the tutor makes pedagogical decisions, while
the high ones often prefer to take control of their own learning by mak-
ing decisions by themselves. We propose a student-tutor mixed-initiative
(ST-MI) decision-making framework which balances allowing students
some control over their own learning while ensuring effective pedagog-
ical interventions. In an empirical study, ST-MI significantly improved
student learning gains than an Expert-designed, tutor-driven pedagogi-
cal policy on an ITS. Furthermore, our ST-MI framework was found to
offer low performers the same benefits as the Expert policy, while that
for high performers was significantly greater than the Expert policy.

Keywords: Critical decisions · Reinforcement learning · Student
choice

1 Introduction

One fundamental purpose of education is to enable students to act independently
in the world—to make good decisions and to adapt and continue to learn. On one
hand, students who are more actively involved in deciding what and how to learn
will benefit from the sense of control, such as becoming more engaged, motivated,
and persistent [4,6,9]. On the other hand, not all students are adept at making
decisions. Prior research has shown that low performing learners may not always
have the necessary metacognitive skills to make effective pedagogical decisions
[1,19]. As a result, most Intelligent Tutoring Systems (ITSs) are tutor-driven in
that the tutor decides what to do in the next step. For example, the tutor can
elicit the subsequent step from the student, either with prompting and support or
without. When a student enters a step, the ITS records its success or failure and
c© Springer Nature Switzerland AG 2022
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may give feedback (e.g., correct/incorrect markings) and/or hints. Alternatively,
the tutor can choose to tell them the next step directly, or provide a partially-
worked step [11]. Each of these decisions affects the student’s successive actions
and performance. Pedagogical policies are used for the agent (i.e., tutor) to decide
what action to take next among several alternatives.

In this work, we present a generalizable student-tutor mixed-initiative
(ST-MI) decision-making framework which balances allowing students some
control over their own learning while ensuring effective pedagogical interven-
tions. More specifically, our framework is supported by a general Critical Deep
Reinforcement Learning (Critical-DRL) approach, which uses Long-Short Term
Rewards (LSTRs) and Critical Deep Q-Network (Critical-DQN). In the ST-MI
framework, the tutor would take over decision-making only when students
fail to make the optimal choice at critical moments.

Fig. 1. Our ST-MI Decision-making Framework

Figure 1 illustrates
that our ST-MI frame-
work consists of two
loops with two agents:
a student agent (SA)
and a pedagogical agent
(PA). The SA inter-
acts with the environ-
ment in the inner loop
(dashed area in Fig. 1),
whereas the PA inter-
acts with the inner loop
in the outer loop. Here
the SA is the front-end decision-maker, and our PA is the back-end. If the SA
makes a sub-optimal choice on a critical decision, the PA will intervene by taking
an alternative choice and explain why it is better; Otherwise, the SA’s decision is
carried out. To identify critical decisions, we proposed and developed a Critical-
DRL approach using Long-Short Term Rewards and Critical Deep Q-Network
described in 3.1.

The effectiveness of the ST-MI framework is empirically compared against an
Expert-designed policy, referred to as the Expert policy, where the tutor makes
all pedagogical decisions. In this study, we focused on the decisions on whether
to present the next problem as a Worked Example (WE), a Problem Solving
(PS), or a faded worked example (FWE). In WE, students were given a detailed
example showing how the tutor solves a problem; in PS, by contrast, students
were tasked with solving the same problem on their own on the ITS; in FWEs,
the students and the tutor co-construct in that their solutions are intertwined.
Our results showed that the ST-MI students achieved significantly higher learn-
ing gains than the Expert peers. Further, we separated students based on their
incoming competencies, i.e., pretest scores, and examined the impact of the ST-
MI framework on the Aptitude-Treatment Interaction (ATI). For low incoming
competence students, in particular, prior research has shown that they are less
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likely to benefit from making pedagogical decisions on their own [30], our ST-MI
framework was found to offer the low performers the same benefits as the Expert
policy. While previous research has shown that high incoming competence stu-
dents are just as effective at learning as those who make their own decisions or
follow the Expert policy [30], our findings showed that the ST-MI framework
can significantly improve their learning over the Expert policy.

2 Related Work

Applying RL to ITSs: In ITSs, the student-agent interactions can be described
as sequential decision-making problems under uncertainty, which can be formu-
lated as problems of RL, a learning paradigm that depends on long-term rewards
without knowing the “correct” decisions at the immediate time-steps [24]. An
increasing number of prior research has explored the use of RL and Deep RL
(DRL) to ITSs (e.g. [7,10,20]) and specifically, it has showed that they can
be used to induce effective pedagogical policies for ITSs [10,27]. For example,
Shen et al. [22] utilized value iteration algorithm to induce a pedagogical policy
with the goal of enhancing students’ learning performance. Empirical evaluation
results suggested that the RL policy can improve certain learners’ performance
as compared to a random policy. Wang et al. [27] applied a variety of Deep RL
(DRL) approaches to induce pedagogical policies that aim to improve students’
normalized learning gain in an educational game. The simulation evaluation
revealed that the DRL policies were more effective than a linear model-based
RL policy. Recently, Zhou et al. [29] applied offline Hierarchical Reinforcement
Learning (HRL) to induce a pedagogical policy to improve students’ normal-
ized learning gain. In a classroom study, the HRL policy was significantly more
effective than the other two flat-RL baseline policies. In summary, prior studies
suggest that RL-induced pedagogical policies can enhance the effectiveness of
tutor-driven ITS where tutors are the ones making pedagogical choices. As far
as we know, none of the prior work has attempted to employ RL for an ST-MI-
like framework that would allow both students and tutors to make pedagogical
decisions, and none of them has examined the effectiveness of the ST-MI frame-
work on student learning.

Identifying Critical Decisions: The advances of computational neuroscience
allow researchers to treat the brain as a supercomputing machine to understand
the learning and decision-making process in animals and humans [15,18,23]. A
lot of studies have shown that RL-like signals and decision-making processes
exist in humans/animals and we humans use immediate reward and Q-value to
make decisions [12]. In RL, the Q-value is defined as the expected cumulative
reward for taking an action at a state and following the policy until the end of
the episode. Therefore, the difference in Q-values between two actions for a given
state reflects the magnitude of the difference in the final outcomes. Motivated by
research in human and animal behaviors, lots of RL work has applied Q-value
difference as a heuristic measurement for the importance of a state and decide



Student-Tutor Mixed-Initiative Decision-Making Supported by DRL 443

when to give advice in a simulated environment called the “Student-Teacher”
framework [5,25,32]. Their research question is when to provide an advice and
their results showed that the Q-value difference was an effective heuristic func-
tion to estimate the importance of a state.

Student Decisions: Much of prior research has shown that while students can
benefit from making their own decisions during learning [4,21], they are not
always good at making effective pedagogical decisions. For example, Mitrovic et
al. showed that even college students often make poor problem selections [13].
Aleven & Koedinger found that students often do not use hints effectively in
that they tended to wait too long before asking for hints [1]. Wood et al. found
that students with low prior knowledge exhibit ineffective help-seeking behaviors
than those with high prior knowledge [28].

WE, PS, and FWE: Many studies have examined the effectiveness of WE,
PS, and FWE, as well as their different combinations [16,17,26]. Renkl et al.
[17] compared WE-FWE-PS with WE-PS pairs and the results showed that
WE-FWE-PS condition significantly outperformed WE-PS condition on posttest
scores. Similarly, Najar et al. [16] compared adaptive WE/FWE/PS with WE-
PS pairs and found that the former is significantly more effective than the latter
on improving student learning. Overall, it is demonstrated that adaptively alter-
nating amongst WE, PS, and FWE is more effective than hand-coded expert
rules in terms of improving student learning. However, when students making
decisions among WE, PS, and FWE, there’s no significant difference with tutor
making decisions on students’ learning performance [30]. As far as we know,
no prior research has explored how to combine students’ decision-making with
RL-induced policy’s decision-making to facilitate learning.

3 Method

3.1 Long-Short Term Rewards

To determine whether a state is critical, Critical-DRL considers both short-term
reward (ShortTR) and long-term reward (LongTR) [8]. For the ShortTR, it
considers the immediate rewards over all possible actions to determine the crit-
icality of a state. A primary challenge, however, is that in most ITSs we only
have delayed rewards, and immediate rewards are often not available. Specifi-
cally, in ITSs, student’s learning performance is the most appropriate reward,
but it is typically not available until the entire learning trajectory has been com-
pleted. Due to the complex nature of learning, it is difficult to assess students’
knowledge level moment by moment, and more importantly, many instructional
interventions that boost short-term performance may not be effective over the
long term. To tackle this issue, we apply a Deep Neural Network-based approach
called InferNet, which infers the immediate rewards from delayed rewards. Prior
work showed that the InferNet-learned immediate rewards can be as effective as
real immediate rewards [2]. Here we employ the InferNet to infer the ShortTR
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for each state-action pair. Furthermore, to determine whether a state is critical
or not, we calculate two thresholds by applying the elbow method to the inferred
immediate rewards distribution: one is a positive reward threshold above which
the agent should pursue, and the other is a negative reward threshold below
which the agent should avoid. A state is critical if any action on it can lead to
an inferred immediate reward either higher than the positive threshold or lower
than the negative threshold.

For the LongTR, Q-value difference is used to measure the criticality of a
state. Q-values are the expected cumulative reward for an agent to take an action
a at state s and follow the policy to the end. In theory, if all the actions for a
given state have the same Q-value, which one should be taken doesn’t matter
because they all lead to the same reward. Conversely, if the Q-values of various
actions differ widely, taking the wrong action could result in a significant loss of
rewards. We define the LongTR of a state s, then, as the difference between its
minimum and maximum Q-values: LongTR(s) = maxa Q(s, a) − mina′ Q(s, a′).
In general, the higher the LongTR, the more important the state should be.

3.2 Critical Deep Q-Network

In order to determine LongTR, we developed a Critical-DRL approach using
Deep Q-Networks (DQN) because of its great success in handling complicated
tasks, such as robot control and video game playing [14]. DQN approximates the
Q-value function using deep neural networks following the Bellman equation. In
the original Bellman equation, the Q-values are calculated assuming that the
agent takes the optimal action in every state. In our ST-MI framework, however,
optimal actions are taken in critical states, and any action can be taken in non-
critical states. Thus, we used the modified Bellman equation as:

Q(s, a) =

{
r + γ ∗ max(Q(s′, a′)) s’ is critical
r + γ ∗ average(Q(s′, a′)) s’ is non-critical.

(1)

For a state s and an action a, Q(s, a) follows the original Bellman equation (top)
if the next state s′ is critical; otherwise we use the average Q-value over all the
available actions for s′ to update Q(s, a) (bottom). To induce the Critical-DQN
policy, we first apply the ShortTR threshold to identify a fixed set of critical
states. Then, during each iteration in training, our Critical-DQN algorithm first
calculates the Q-value difference Δ(Q) for all states in the training dataset. Then
the median of the Q-value differences is defined as a threshold. If the Δ(Q) of
a state is greater than the threshold, it is critical; otherwise, it is non-critical.
The critical states are the union of the two sets identified by the ShortTR and
the LongTR, respectively. After the critical states have been determined, the
algorithm follows Eq. 1 to update the Q-values. Then in the next iteration, the
updated Q-values are applied to determine a new median threshold to update
the critical states recursively. This process will repeat until convergence. Once
the Critical-DQN policy is induced, for any given state, we calculate its Q-value
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difference and compare it with the corresponding median threshold. If the Q-
value difference is larger than the threshold, the state is critical.

3.3 Hierarchical RL Policy Induction

Our ITS first makes the problem-level decisions (WE/PS/FWE) and if a FWE
is selected, step-level decisions (elicit/tell) will be made. With the two levels of
decisions, we extended the existing flat-RL algorithm to Hierarchical RL (HRL),
which aims to induce an optimal policy to make decisions at different levels.
Most HRL algorithms are based upon an extension of MDPs called Discrete
Semi-Markov Decision Processes (SMDPs). Different from MDPs, SMDPs have
an additional set of complex activities or options, each of which can invoke
other activities recursively, thus allowing the hierarchical policy to function [3].
The complex activities are distinct from the primitive actions in that a complex
activity may contain multiple primitive actions. In our applications, WE, PS, and
FWE are complex activities, while elicit and tell are primitive actions. For HRL,
learning occurs at multiple levels. A global learning generates a policy for the
complex level decisions and local learning generates a policy for the primitive
level decisions in each complex activity. More importantly, the goal of local
learning is not inducing the optimal policy for the overall task but the optimal
policy for the corresponding complex activity. Therefore, our HRL approach
learns a global problem-level policy to make decisions on WE/PS/FWE and
learns a local step-level policy for each problem to choose between elicit/tell.

4 Policy Induction

Training Corpus: Our training dataset contains a total of 1,307 students’
interaction logs collected over seven semesters’ classroom studies (2016 Fall to
2020 Spring). During the studies, all students used the same tutor, followed
the same general procedure, studied the same training materials, and worked
through the same training problems. The training corpus provides us with the
state representation, action, and reward information for policy induction. State:
We extracted 142 features that might impact student learning from the student-
system interaction logs. More specifically, these state features can be categorized
into the following five groups: Autonomy: the amount of work done by the stu-
dent; Temporal Situation: the time-related information about the work process;
Problem-Solving: information about the current problem-solving context; Per-
formance: information about the student’s performance during problem-solving;
Student Action: the statistical measurement of student’s behavior. Action: Our
tutor makes decisions at two levels of granularity: problem and step. In the
problem-level, there are three actions WE/PS/FWE. In the step-level, there are
two actions elicit/tell. Reward: There’s no immediate reward during tutoring,
and the delayed reward is the students’ Normalized Learning Gain (NLG), which
measures their learning gain irrespective of their incoming competence. NLG is
defined as posttest−pretest√

1−pretest
, where 1 is maximum score for both pre- and post-test.
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Two Policies: Our ST-MI follows the Critical-DRL model in that in non-
critical states, the student’s decision is always carried out, while in critical states,
if the student’s choice aligns with the ST-MI policy’s optimal action, the tutor
executes it; otherwise, the tutor executes the policy’s choice and explains it to
the student why it is better. Each type of pedagogical actions has multiple expla-
nation messages, and the tutor will select a message at random to display to
students. Because of space constraints, we only include one example message
per type of intervention in Table 1. The explanation is intended to smooth the
student-system interactions. In our prior work, we found that adding these expla-
nations to RL-induced policies does not improve their effectiveness while adding
them to a policy that is not effective does not harm it [31]. The Expert pol-
icy is designed by an instructor with more than 20 years of experience on the
subject. Based on our ITS and prior instructional experience, the Expert policy
consists of alternating between elicit and tell at step-level, which was shown to
be more effective than other baselines [30].

Table 1. Examples of Explanation Messages in Problem-Level

Student ST-MI Explanation messages

WE FWE “We are good on time. Let’s work together on this problem.”

WE/FWE PS “We are good on time. Try to solve this one yourself.”

PS FWE “To learn more efficiently, let’s solve this together.”

PS/FWE WE “You performed pretty well so far. Let me solve this problem.”

5 Experiment Setup

Participants: This study was given to students as a homework assignment in an
undergraduate Computer Science class in the Fall of 2020. Students were told to
complete the study in one week, and they will be graded based on demonstrated
effort rather than learning performance. 153 students were randomly assigned
into the two conditions: N = 65 for Expert and N = 88 for ST-MI. It is impor-
tant to note that the difference in size between the two conditions is due to the
fact that we prioritized having a sufficient number of participants in the ST-MI
condition to perform a meaningful analysis of the ATI effect. Due to prepara-
tion for final exams and the length of study, 117 students completed the study.
In addition, 12 students were excluded from our subsequent statistical analy-
sis due to the perfect performance in the pre-test. The final group sizes were
N = 47 for Expert and N = 58 for ST-MI. A Chi-square test on the relation-
ship between students’ condition and their completion rate found no significant
difference between the two conditions: χ2 (1) = 2.4335, p = 0.12.

Pyrenees Tutor: Our tutor is a web-based ITS to teach students probability
and covers 10 major principles, such as the Complement Theorem, Bayes’ Rule,
etc. It provides step-by-step instruction and immediate feedback. As with other
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systems, Pyrenees provides students with help via a sequence of increasingly
specific hints, which prompts them with what they should do next. The last hint
in the sequence, i.e., the bottom-out hint, tells the student exactly what to do.

Experiment Procedure & Grading: Both conditions went through the same
four phases: 1) textbook, 2) pre-test, 3) training on the ITS, and 4) post-test. The
only difference among them was how the pedagogical decisions were made. Dur-
ing textbook, all students read a general description of each principle, reviewed
some examples, and solved some training problems. The students then took a
pre-test which contained a total of 14 single- and multiple-principle problems.
Students were not given feedback on their answers, nor were they allowed to go
back to earlier questions (this was also true for the post-test). During train-
ing, both conditions received the same 12 problems in the same order. Each
domain principle was applied at least twice. Finally, all students took the 20-
problem post-test: 14 of the problems were isomorphic to the pre-test, and the
remainders were non-isomorphic multiple-principle problems. All of the tests
were graded in a double-blind manner by a single experienced grader. For com-
parison purposes, all test scores were normalized to the range of [0, 1].

6 Results

6.1 ST-MI vs. Expert

Pre-test Score: No significant difference was found between the Expert condi-
tion (M = 0.77, SD = 0.13) and the ST-MI condition (M = 0.73, SD = 0.22)
on the pre-test scores: t(103) = 1.18, p = 0.23, d = 0.23. It suggests that the
two conditions are balanced in terms of incoming competence.

Improvement Through Training: A repeated measures analysis using test
type (pre-test vs. isomorphic post-test) as a factor and test score as the depen-
dent measure showed a main effect for test type for both conditions in that
students scored significantly higher in the isomorphic post-test than in the pre-
test: F (1, 46) = 10.6, p = .0016, η = 0.319 for Expert and F (1, 57) = 13.64,
p = .0003, η = 0.315 for ST-MI respectively. In details, the isomorphic post-
test scores in the ST-MI condition is (M = 0.86, SD = 0.19) while the Expert
condition is (M = 0.85, SD = 0.11). It shows that both conditions learned
significantly from training on our tutor.

Learning Performance & Training Time: In comparing students’ learning
performance between the two conditions, we compared their isomorphic posttest
and full posttest scores, as well as their isomorphic and full NLGs. The goal of the
isomorphic posttest is to assess the learning gain and whether or not the tutor is
helpful, while the purpose of the full posttest is to determine whether the inter-
vention makes a difference in student learning. There was no significant difference
between the two conditions on either isomorphic posttest or posttest. For exam-
ple, the ST-MI students had higher post-test scores (M = 0.81, SD = 0.21) than
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Fig. 2. Isomorphic NLG Fig. 3. Full NLG

the Expert students (M = 0.78, SD = 0.15) but such difference is not signifi-
cant: t(103) = 0.83, p = 0.411, d = 0.16. Our most important interest, however,
is in student performance improvement from pre- to posttest, so we focus on
isomorphic NLG and NLG. NLGs of both types demonstrate how bene-
ficial our ITS actually are, as well as their role as reward functions
in our Critical DRL framework . The ST-MI condition scored significantly
higher than the Expert condition on both the isomorphic NLG: t(103) = 2.35,
p = 0.021, d = 0.46 and the full NLG: t(103) = 2.72, p = .008, d = 0.53. In
Fig. 2, the isomorphic NLG for the ST-MI condition is (M = 0.25, SD = 0.23)
and the Expert condition is (M = 0.11, SD = 0.36). Similarly, in Fig. 3, the
full NLG for the ST-MI condition is (M = 0.13, SD = 0.25) while the Expert
condition is (M = −0.06, SD = 0.47). Finally, on training time the ST-MI con-
dition spend less time (measured in minutes, M = 109.6, SD = 38.1) than the
Expert condition (M = 123.2, SD = 47.1) during the training on the tutor but
the difference is not significantly: t(103) = −1.63, p = 0.106, d = 0.32. In short,
our results indeed show that the ST-MI policy significantly improves students’
learning gains with less time cost than the Expert policy.

6.2 The Impact of ST-MI on ATI Effect

In order to measure ATI, we further divided students into High vs. Low groups
by a median split on their pretest scores, also known as incoming competence.
Thus, we had four groups based upon their pretest scores and policies: High-ST-
MI (n=28), Low-ST-MI (n=30), High-Expert (n=21), Low-Expert (n=26). No
significant difference was found among the two conditions on the distribution
of High vs. Low students: χ2 (1) = 0.0291, p = 0.86. Table 2 presents the com-
parison between the policies {ST-MI, Expert} and incoming competence {High,
Low} in terms of learning performance. As expected, in both conditions the high
group significantly outperformed their low peers in the pretest: t(45) = 6.07,
p < 0.001, d = 1.10 for Expert and t(56) = 9.03, p < 0.001, d = 1.10 for ST-MI.
Moreover, while no significant difference was found between the High-Expert and
High-ST-MI ones: t(47) = 0.33, p = 0.74, d = 1.10, the Low-Expert significantly
out-performed the Low-ST-MI ones: t(54) = 2.57, p = 0.012, d = 1.10.
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Table 2. Learning performance for four groups

Group Pre Iso Post Post Iso NLG NLG Time

Low-Expert 0.67 (0.08) 0.80 (0.11) 0.71 (0.15) 0.23 (0.20) 0.06 (0.27) 129.9 (52)

Low-ST-MI 0.58 (0.21) 0.78 (0.23) 0.70 (0.24) 0.31 (0.22) 0.18 (0.24) 108.6 (44)

High-Expert 0.90 (0.05) 0.91 (0.08) 0.86 (0.11) –0.02 (0.46) –0.21 (0.61) 114.8 (40)

High-ST-MI 0.88 (0.06) 0.96 (0.06) 0.92 (0.07) 0.19 (0.23) 0.07 (0.26) 111.8 (31)

Table 2 shows that the test score results are consistent with our hypothesis.
Despite their significantly lower pre-test scores, the Low-ST-MI students catch
up with their Low-Expert peers on the following four performance measures in
that no significant difference was found between them on Iso-Post, Post, Iso
NLG, and full NLG. According to [30], the low incoming competence students
are less likely to benefit from making pedagogical decisions on their own, but
our results showed that our ST-MI framework with ST-MI policy could make
them catch up to their peers in the Expert condition. As for the two High
groups, both scored high for the isomorphic and full posttests, and the High-ST-
MI group outperformed the High-Expert group on both the Iso NLG: t(47) =
2.59, p = 0.011, d = 0.41, and NLG: t(47) = 2.78, p = 0.007, d = 0.40. While
previous research has shown that high incoming students are just as effective at
learning as those who make their own decisions or follow the Expert policy [30],
our findings showed that despite having a high score in the Iso-post and Posttest
scores, the High-Expert group does not seem to benefit from the tutor, as their
average NLG is negative. In contrast, ST-MI policy can significantly enhance
the High performers’ learning gains when compared with Expert policy.

In summary, our findings confirm that ST-MI can benefit both High and Low
performers. More specifically, low performers who are more sensitive to learning
environments can parallel their Expert peers with our framework, while high
performers, who are less sensitive to learning environments and always perform
well, can further boost their learning gains with our ST-MI framework.

6.3 Log Analysis

Table 3. Problem-Level Critical Decisions in ST-MI

Decisions High Low T-test result

Critical decision 8.2 (1.8) 6.1 (2.9) t(56) = 3.36, p = 0.001∗,d = 0.88

Correct critical choice 3.4 (2.0) 2.5 (2.3) t(56) = 1.46, p = 0.150, d = 0.38

Intervention 4.9 (2.6) 3.5 (1.9) t(56) = 2.21, p = 0.031∗,d = 0.58

Next, we analyze the pedagogical decision behaviors between the High and Low
groups in the ST-MI condition. Table 3 shows the average number of different
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types of critical decisions students received in the problem-level. In Table 3, there
are three types of critical decisions: ‘Critical Decision’ means the decision state
is identified as critical by our ST-MI policy; ‘Correct Critical Choice’ means the
students select the optimal actions (same as our policy’s choice) in the critical
decision; ‘Intervention’ means the students select the sub-optimal actions (dif-
ferent from our policy’s choice) in the critical decision. By definition, correct
critical choices and intervention are exclusive and they are subsets of critical
decisions. First, the High students experienced significantly more critical deci-
sions than the Low students. Then, by facing more critical moments, not only
were the High students able to make more correct critical choices (not signif-
icant), but also they received more interventions (significant) to achieve their
goals. Additionally, there’s no significant difference between High vs. Low on all
three types of critical decisions in the step-level. In summary, the results showed
that the High students experienced more interventions than the Low group stu-
dents, and as a result, the intervention could help the High students experience
more critical optimal actions, which can lead to better learning performance.

7 Conclusion

In the classroom study, we evaluated the effectiveness of the ST-MI framework
by comparing the ST-MI policy with a baseline Expert policy. In the ST-MI
condition, students could control their own learning process by making decisions
on what type of questions they want, and in the meantime, the RL-induced
policy would intervene when they make sub-optimal choices in critical decisions
and give dedicated explanations. The results show that the students in the ST-
MI condition significantly outperform the students in the Expert condition in
terms of learning performance. Additionally, a log analysis suggests that the
students with high incoming competence received more interventions than the
students with low incoming competence. The reason is that the RL-induced
policy aims to maximize NLG, and the high students usually have lower NLG
due to little room to improve. As a result, the RL-induced policy would intervene
more on the high students to improve their NLG. Finally, we observe a trend that
giving students control over their learning could make the learning more efficient.
Overall, the empirical study demonstrates that our proposed ST-MI framework
could improve students’ learning without the trivial tutor-driven step decisions.
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Abstract. Second-language learners typically encounter difficulty in
learning how to use words properly. One reason for this is that words
that express multiple meanings - that is, polysemous words - vary from
language to language. For example, the word “figure” can mean either a
number, an image, or a person. However, this is not the case in all lan-
guages. Although the word “figure” is often used with both meanings,
some words have only rare usage cases. Thus, ideally, a second language
vocabulary learner would benefit from the following learning aids. For
words all meanings of which are frequently used, all of the senses of the
word should be presented with a high learning priority, whereas senses of
a word that are rarely used should be given a low priority. Furthermore,
learners should be able to visually understand the semantic proximity
of word senses. In this study, we propose an intelligent, interactive user
interface to support learning such word usages in second languages. The
proposed interface estimates the difficulty of the usage example of the
word by estimating its exceptionality. Our method measures semantic
closeness with contextualized word embeddings. The model also incor-
porates a deep anomaly detection model to measure the exceptionality of
each usage example. Using our interface, learners of English as a second
language (ESL) learners can learn about the semantic closeness between
word usage examples and the exceptionality of the examples.

Keywords: Second language learning · Interactive visualization ·
Word usage examples

1 Introduction

For the practical applications of language learning support systems, it would be
desirable to be able to not only recommend words to be learned, but also to
recommend which senses of a word should be learned. Since many words that
learners learn initially are frequent and polysemous, there is a crucial need for
a system to be able to discern which meanings of a word are already known to
a learner. However, previous assessment methods have not been able to extract
such fine-grained information from a quick vocabulary test.
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This paper proposes a polysemy-aware method for investigating the vocab-
ulary of a second language learner. In addition to estimating which word the
learner knows, our method can also estimate which meaning of a polysemous
word the language learner knows without imposing a heavy burden on learners.

Fig. 1. Overview of the proposed
model

Fig. 2. Example of a vocabulary test

Figure 1 presents an overview of our framework. Our input is the same as that
of previous vocabulary assessment methods: a half-hour vocabulary test for each
language learner. “Question” in Fig. 1 shows an example of a quick vocabulary
question. Given that a learner responded to the questions, our goal is to estimate
which meaning of the word “figure” the learner knows. As a source of the other
meanings of the word “figure”, we use no annotated data because a corpus of
meanings of words that are manually annotated is not always obtainable. We
use a large raw corpus and extract the occurrences of the word “figure” from the
large corpus. Given the occurrences of the word “figure” embedded in sentences,
our model first obtains the contextualized word embeddings via bidirectional
encoder representations from transformers (BERT) [6]. Pre-trained on a large
corpus written by native speakers, BERT captures semantic proximities among
various usages of a word. If a word has different meanings in different sentences,
BERT can capture these differences.

Our key idea is to employ a deep outlier detection model called DAGMM [18],
which can detect outliers of high-dimensional vectors in an unsupervised manner.
Given a set of contextualized word embeddings, DAGMM calculates the excep-
tionality of each occurrence of the word. Our model employs BERT and DAGMM
to identify semantic outliers in each meaning of a word. Our model automati-
cally determines the threshold that separates exceptional from non-exceptional
using vocabulary test results so that the number of non-exceptional occurrences
of a word fits to the test results. Hence, our model does not necessarily require a
test-taker response to exceptional occurrences to capture exceptionality, which is
one of the model’s strengths. Experimental results show that our model achieves
competitive accuracy in predicting the test-taker responses of vocabulary test
results.
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Our contributions are summarized as follows:

1. We propose a cost-efficient, polysemy-aware method for personalized assess-
ment of a language learner’s vocabulary.

2. Our method employs unsupervised anomaly detection models to capture the
typical meaning of a word in order to measure the typical usage of each word
without imposing a heavy testing burden on learners.

3. We built a dataset to evaluate this novel task. The experimental results show
competitive predictive accuracies, suggesting that our model can capture
learners’ semantic vocabulary knowledge without imposing a heavy testing
burden. We plan to make our dataset openly available on http://yoehara.
com/ or http://readability.jp/.

2 Related Work

Figure 2 shows an example of a question on a typical vocabulary test, taken
from the Vocabulary Size Test [3], which is widely used in applied linguistics as a
placement test. From the multiple choices in the test, learners are asked to choose
the option with the closest meaning to the underlined word in the sentence.
All options, including the incorrect answers, are grammatically correct when
used to replace the underlined word. The options are designed in this manner
to help prevent learners from guessing the correct option based on grammar. A
representative vocabulary test might comprise some 100 questions, each of which
tests whether a learner knows the meaning of a word embedded in a sentence.
Each question is designed to test a different word. Hence, no duplicate words are
included. Typically, learners take 30 to 40 min to finish answering all questions.
In Fig. 2, a question is asked on the word “figure” in the sense of a number.
Although the word “figure” has multiple alternative meanings, such as a person
or a picture, generally only a single meaning is measured on a given test, because
the number of questions that can reasonably be asked are limited.

If a language learner correctly answers a question like that in Fig. 2, does
the learner need to understand “figure” as a person as well? To measure this,
we used the semantic exceptionality of each occurrence of the word “figure”. If
the two senses are used with a similar frequency in the texts of a corpus, both
are non-exceptional, and the learner needs to understand both for reading such
texts. This is the case for “figure”. However, there are some cases in which one
meaning is exceptional in most corpora, for example, the use of “period” as a
direction of time compared to “period” in the sense of a menstrual cycle. In this
case, the latter is usually infrequent and exceptional in the texts of a corpus,
and the learner does not need to understand both for reading such texts. Thus,
what kind of texts the learner is expected to encounter is important: we used a
general corpus in this paper.

Language tutoring system studies typically focus on learning languages via
dialogues [1,10]. Learning words and their usages incidentally in reading, dia-
logue, conversations, and other natural activities is called incidental learning.

http://yoehara.com/
http://yoehara.com/
http://readability.jp/
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In applied linguistics, however, incidental learning has been shown to be ineffec-
tive in terms of increasing language learners’ vocabulary knowledge compared to
intentional learning, in which learners intentionally learn vocabulary knowledge
[13,15,16]. In this study, we have focused on supporting the intentional learning
of vocabulary knowledge. Among intentional learning strategies, spaced repeti-
tions have been extensively studied [5,17] in language learning. However, to the
best of our knowledge, we are the first to practically identify important word
usages for language learning via automatic deep anomaly detection models.

3 Deep Anomaly Detection and Proposed Method

DAGMM [18] is a recent method designed to perform deep anomaly detection.
It is a deepened version of the well-known Gaussian mixture model (GMM),
which is a clustering method that can also perform anomaly detection. After
compressing high-dimensional vectors and clustering them in a low-dimensional
representation based on the GMM, DAGMM can compute each vector’s energy
value that can be intuitively understood as the sum of distances from each cluster
center, and DAGMM detects points far from any cluster center as anomalies.

Regarding word sense disambiguation, a method of clustering contextualized
word embedding expressions and grouping them together by treating each cluster
as a word sense has been proposed [11]. As GMM is a widely-used method of
clustering, we considered the affinity and interpretability of existing studies on
word sense disambiguation. In contrast, as DAGMM has been rarely applied in
natural language processing (NLP) [14], to the best of our knowledge, it has
never been applied to the field of second-language learning.

In this section, we explain the DAGMM model. Then, we explain the pro-
posed neural network model, which contains a DAGMM model as a block.
DAGMM is a deep learning model that converts the input vector x into a low-
dimensional representation z using an autoencoder and reconstructs x from z.
Let the reconstructed vector be x′ = g(zc; θd) and the low-dimensional represen-
tation be zc = h(x; θe). Let zr = f(x,x′) be a function measuring the proximity
of the reconstructed vector to the original input; several such functions are avail-
able. DAGMM uses z = [zc,zr] as the final latent representation. z includes the
reconstruction error zr, which penalizes poor reconstruction in the latent space.

The clustering of latent representations is defined in terms of Eq. 1, following
the typical GMM notation, where K is the number of clusters, N is the number
of data, and MLN denotes the multilayer network. The mixture coefficients of
cluster k are given by Eq. 2. The mean and covariance matrices of a cluster k
are given by Eq. 3.

p = MLN(z; θm), γ̂ = softmax(p) (1)

φ̂k =
N∑

i=1

γ̂ik
N

, (2)
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μ̂k =
∑N

i=1 γ̂ikzi∑N
i=1 γ̂ik

, Σ̂k =
∑N

i=1 γ̂ik (zi − μ̂k) (zi − μ̂k)
�

∑N
i=1 γ̂ik

(3)

For a latent representation z of input x, the degree of anomaly is represented
by the value of the energy function of Eq. 4. The energy function of point z can
be interpreted intuitively as the sum of the distances between z and the center
of each cluster μ̂k in terms of the measured Σk. The threshold of detection for
anomalies depends on the data. For example, in [18], the points with the top
20% energy values were simply identified as anomalies.

E(z) = − log

⎛

⎜⎜⎝
K∑

k=1

φ̂k

exp
(
− 1

2 (z − μ̂k)
� Σ−1

k (z − μ̂k)
)

√∣∣∣2πΣ̂k

∣∣∣

⎞

⎟⎟⎠ (4)

We can train DAGMM by minimizing the following objective functions for
neural network parameters: θe, θd, and θm; here, L is a loss function for vector
reconstruction, P is a penalty term, and λ is a hyperparameter.

J(θe, θd, θm) =
1
N

N∑

i=1

L(xi,x
′
i) +

λ1

N

N∑

i=1

E(zi) + λ2P (Σ̂) (5)

3.1 Proposed Model

This section explains how the DAGMM model relates to vocabulary tests in the
proposed model. i is an index of the occurrences of the word. Here, we aim to
consider multiple words; let k be the index of the words to be considered. Let yjk
be the result of the vocabulary test; then, yjk is 1 if learner j correctly answered
a question on word k.

The Rasch model [2] is typically used to model vocabulary tests. Let σ denote
the logistic sigmoid function, i.e., σ(x) := 1

1+exp(−x) . Thus, the Rasch model can
be expressed as follows.

P (yjk = 1) = σ(aj − dk) (6)

In Eq. 6, we have two parameters tuned by training data yjk: aj and dk. aj

denotes the ability of learner j and dk denotes the difficulty of word k. Equation 6
can be seen as a special case of logistic regression.

The difficulty of word k, namely dk, is the key that links Eq. 6 to the DAGMM
model. Within the occurrences of word k, we can regard the count of non-
exceptional occurrences as the count of occurrences important to language learn-
ers. Because the logarithm of word counts has been shown to be to be a good
estimate of the word difficulty parameter dk [2], we modeled dk as follows.

dk = − log

(
Nk∑

i=1

I [E(zik) < t]

)
(7)
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Fig. 3. Non-exceptional usage of “period”.

Fig. 4. Exceptional use of “period”. The text corresponding to this green point is
displayed in the top-right corner.

In Eq. 7, t denotes the threshold parameter and zik is the latent DAGMM vector
of occurrence i of word k, while Nk denotes the number of raw occurrences of
word k. Here, I denotes the indicator function that takes 1 if its argument holds
true and 0 otherwise.

During training, all parameters are trained jointly, including, the DAGMM
parameters, aj , and threshold t, by using the Adam optimization algorithm [12].

Intuitive Explanation of Equations: Intuitively, words that frequently appear in
a given corpus may be considered easy to learn; Eq. 7 follows this intuition. Equa-
tion 7 counts the number of occurrences of a word k inside the − log function.
The larger the count, the lower dk, and the lower the difficulty of word k. How-
ever, simple word counting cannot distinguish exceptional from non-exceptional
word usage. Hence, we count only non-exceptional occurrences of word k. E(zik)
denotes the degree of exceptionality; it denotes how exceptional the i-th occur-
rence of word k compared to the other occurrences of word k. In Eq. 7, t is the
threshold that determines whether an occurrence is sufficiently non-exceptional
to count.



An Intelligent Interactive Support System for Word Usage Learning 459

4 Experimental Results

4.1 BERT Vectors

As a balanced corpus of English by native speakers of British English, we applied
BERT [6] to 100,000 sentences in the British national corpus (BNC) [4], and
retrieved contextualized word embedding vectors from the highest layer (the
layer closest to the output). As the BERT model, we utilized the bert-base-
uncased.1 The number of dimensions of the contextualized word embedding
vector was 768. For a given inputted word, all occurrences of the word and their
corresponding contextualized word embeddings were retrieved.

4.2 Experimental Setup and Interface

We used a PyTorch implementation of DAGMM made by a third party.2 We
used the same training hyperparameters as in the previous work in this imple-
mentation, except for the number of dimensions. In particular, the number of
clusters in DAGMM was set to 4. We discuss the word “period” as an example.
The latent expression z of the example by the DAGMM can be displayed in
three dimensions. Using the first two dimensions of z, we show examples of the
usage of the word “period” in Fig. 3 and Fig. 4.

The word “period” appeared 376 times in the 100,000 sentences. Each point
is a two-dimensional representation of the contextualized word vector of each
occurrence of “period” in two-dimensional coordinates, corresponding to each
occurrence. The color of each point is an energy value represented by Eq. 4. The
higher the value, the more exceptional; that is, higher the green values indicate
more exceptional usages. In contrast, the red area is considered a non-exceptional
example, which and can be interpreted intuitively as a heatmap.

The horizontal and vertical axes represent the first and second dimensions
of the latent-space representation of DAGMM z, respectively. The gray triangle
is the reference point, and the ten points arranged in order of proximity to this
point on the figure, along with the corresponding ten texts, are presented on the
right-hand side as examples. The actual calculated energy values are shown on
the left side of the example. The reference point can be moved by dragging the
mouse, and the students can see examples by moving the reference point near
the point of interest, namely z.

Existing unsupervised clustering technology for word usage in word senses
is not fully accurate. Hence, it is difficult to use this technology for educational
purposes because it may show learners incorrect clustering results. However,
word senses defined by linguists are typically quite sensitive to subtle differences.
For example, “period” in the “Jurassic period” and in “Picasso’s blue period”
are considered to have different senses in the WordNet dictionary [9]. This is
the case because the former indicates a geological period, which is defined as

1 https://github.com/huggingface/transformers.
2 https://github.com/danieltan07/dagmm.

https://github.com/huggingface/transformers
https://github.com/danieltan07/dagmm
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Table 1. Counts of non-outlier/Outlier occurrences.

Word Raw Freq. Non-outlier Freq. Outlier Freq.

time 2,863 2,753 110

see 1,359 1,288 71

period 376 368 8

poor 275 269 6

deficit 137 136 1

restore 53 52 1

olive 43 41 2

ubiquitous 13 13 0

retro 13 13 0

weep 8 8 0

a subdivision of a geological era. In this way, for language education, our goal
is to measure the exceptionality of the meanings rather than distinguish the
subtle differences between the meanings. In contrast, clustering errors between
such subtly different senses can be important in understanding the meaning of
a given word when it appears in texts.

The colors shown in Fig. 3 and Fig. 4 exactly measure importance in the context
of language education. The red points are non-exceptional points and are expected
to have high priority in language learning. In contrast, the green points indicate the
opposite; they are exceptional and are expected to have a low priority in language
learning. In Fig. 3, regardless of the cluster to which each point belongs, it may
be observed that the central points of the cluster are marked in red and the edge
points of the cluster, i.e., the outliers, are shown in green. In Fig. 3, each round dot
corresponds to an example of each use of “period” (each occurrence in the corpus).
The color of each point indicates the degree of anomaly (energy value), with green
being exceptional and red being non-exceptional. The gray triangle in the lower
right-hand corner represents the probe point around which the majority of red
dots are concentrated. The 10 occurrences nearest to the probe point are shown
on the right-hand side as text. The numbers in front of the text are the actual
energy values for each example. All text examples in this study were obtained from
BNC [4]. In Fig. 3, we illustrate an example in which the probe point is placed in
the center of the cluster. The examples of the widely known meaning of the word
“period” around the reference point are listed on the right. Thus, deep anomaly
detection can present words with a low anomaly degree as non-exceptional usages
of the word.

An example of exceptional usage marked in green is shown in Fig. 4. The exam-
ple sentence on the right side of Fig. 4 shows a use of the phrase “light or missed
period”, in which the word “period” has the meaning of “menstruation,” rather
than “a span of time”. We can see that the use of “period” to mean “menstrua-
tion” is judged as exceptional because it is shown in green. This implies that the
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use of the word in this meaning exhibited a low frequency in the corpus used for
pre-training, which was Wikipedia in our experiments. Notably, “period” in the
sense of menstruation is a noun, as is “period” in the sense of a span of time. There-
fore, capturing the exceptionality of “period” in the sense of menstruation using
other natural language processing technologies such as part-of-speech tagging is
considered to be difficult.

4.3 Experiments Using Vocabulary Test Results

To evaluate the proposed approach, we used a publicly available dataset contain-
ing the results of vocabulary tests taken by language learners [7]. In this dataset,
we used 23 words × 100 people, i.e., 2, 300 cases, to training the proposed model,
and 10 words × 100 people, i.e., 1, 000 cases, to perform testing.

Table 1 shows the counts of exceptional and non-exceptional occurrences
identified by our model for each word, where Raw Freq. is the number of raw
occurrences of each word. Non-Outlier Freq. is the number of occurrences
identified as non-exceptional, that is, those that met E(z) < t for each word.
Outlier Freq. is the number of occurrences that satisfy E(z) ≥ t for each word.
The sum of Non-Outlier Freq. and Outlier Freq. is the Raw Freq. For the
word “time,” it may be observed that approximately 3.8% of the occurrences of
the word were detected as exceptional usages (i.e., outliers). Table 1 shows that
no usages were identified as outliers when the value of Raw Freq. was small.
This result shows that we cannot distinguish exceptional from primary usages
of rarely-used words, which is in accordance with our intuition.

If the non-exceptional usages identified by our model are inaccurate, predict-
ing language learners’ vocabulary test results accurately using the frequency of
the identified non-exceptional usages is difficult. To evaluate this problem, we
simply compared two machine-learning classifiers constructed to predict learners’
vocabulary test results. One of the two used Non-Outlier Freq. as its feature,
and the other used Raw Freq. In Eq. 6, word difficulty dk is determined by
the frequency of word k; hence, we compared the accuracies in predicting each
learner’s performance on each word in the vocabulary test dataset by changing
the frequency value that determines dk to Non-Outlier Freq. and to Raw
Freq. Consequently, both classifiers achieved the same accuracy: 0.75.

The competitive accuracy of the proposed model in predicting each language
learner’s vocabulary knowledge implies that our model does not contradict the
vocabulary test result dataset. The number of non-exceptional occurrences was a
good predictor of vocabulary test results, as was the number of raw occurrences.
The competitive accuracy implies that our model was able to capture occur-
rences that the learners may or may not have known by using only a dataset
of language learners’ vocabulary test results. Being mostly unsupervised, our
model performed efficiently in terms of cost; in particular, because it operates
without costly manual annotations of word senses, our model is practical in that
it is applicable to realistic situations in which a heavy testing burden cannot be
imposed on language learners. These results show that the proposed model may
be considered promising for vocabulary tutoring systems, providing much more
visual information for learners’ second-language vocabulary.
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Fig. 5. A question for testing another sense of a word.

4.4 Evaluation Dataset

Fairly assessing multiple senses of a word is not straightforward. For example,
let us consider another multiple-choice question that tests a learner’s knowledge
of the word “figure” in the sense of a person like Fig. 2. If we ask a learner two
questions, they can easily guess that the word “figure” has two senses and answer
the question based on this guess. This affects their response patterns to the two
questions. For example, a distractor (i.e., incorrect option) of one question may
influence the response patterns of another question.

To avoid such problems, we developed a test to measure whether learners
were aware of other meanings of a word with as little influence as possible on
their answer patterns. To prevent the two questions from interfering with each
other, before the start of the typical vocabulary test, we conducted a special
preceding test to determine whether the students knew the other meanings of
the words in the vocabulary test.

Figure 5 shows the preceding test conducted before the typical vocabulary
test. While the learners were asked to choose the correct option, we designed
the preceding test as a fill-in-the-blank test to prevent the interference problem.
This enabled us to avoid revealing which option had multiple meanings in the
vocabulary test. The preceding test consisted of 13 questions, each of which was
checked by 2 native English speakers who were English teachers. The correct
answers to each question were sourced from the typical vocabulary test (VST).
The typical vocabulary test included 70 questions.3 In total, we asked 83 ques-
tions to 270 test-takers. The test-takers were crowdworkers contracted by the
Lancers crowdsourcing service; most participants were Japanese. To guarantee
that test-takers had learned English to some extent, we limited participants
to those who had taken the Test of English for International Communication
(TOEIC), a commercial test developed by the English Testing Service. Because
it costs approximately 70 USD to take this test, those who have done so at least
once are likely to have learned English to some degree.

4.5 Energy-Value-Based Difficulty

In Eq. 7, we obtained the polysemy-aware overall difficulty of a word k using
the frequency of word k’s usage examples whose energy value (i.e. the degree
of being a semantic outlier) is below a threshold t. Additionally, by directly
using the energy value in E(zik), can we obtain the difficulty of the i-th usage of

3 Although the original VST consists of 100 questions because most test-takers are
unlikely to know the answers to the difficult questions, we omitted 30 difficult ques-
tions to avoid the influence of the fatigue of test-takers.
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Table 2. Accuracy of predicting learners’ responses.

Test of typical meanings Test of exceptional meanings

Baseline (Size-based) 62.8% 44.4%

Baseline (LR) 63.1% 47.9%

Ours (Outlier-based) 63.7% (*) 48.5% (*)

word k, namely dik? To answer this research question, we conducted experiments
using a special dataset in which test-takers answered for both exceptional and
typical meanings of each word, as described in Sect. 4.4. This dataset contains 58
typical vocabulary questions and 12 pairs of exceptional and typical word usage
questions for 12 words. We used 235 test-taker learners’ responses to the 58
typical vocabulary questions and 12 pairs of exceptional/typical word questions
as the training and test data, respectively.

Table 2 shows the results of our method compared with previous methods.
Size-based is a vocabulary-size-based method widely used in the field of applied
linguistics [3]. This method first measured the vocabulary size of the learner and
assumed that the learner knows all the meanings of all the words for which
the frequency is ranked higher than the vocabulary size, and vice versa. LR is
a logistic-regression-based method. We used the COCA (https://www.english-
corpora.org/coca/) and BNC (http://www.natcorp.ox.ac.uk/) corpora for the
general corpus, as in [8] The LR can consider each learner’s ability by introducing
a one-hot feature vector representing the learner ID, as explained in [8]. Ours
is ours: we added the DAGMM energy value of the target word within the
question sentence as a feature for LR in addition to the corpora features. Note
that this experimental setting is quite challenging for the classifiers because,
both non-exceptional and exceptional usages are in the test data, the classifiers
must predict the responses for words that do not appear in the training data.

Table 2 shows that our method outperforms the previous methods in both
methods in terms of predicting the response of second language learners. This is
because our method can consider the semantic outlierness of word usage by using
the energy value of each word usage, whereas the others assume that exceptional
word usage has the same difficulty as typical word usage. “(*)” denotes that
the difference between Ours and Baseline (LR) was statistically significant
(Wilcoxon, p < 0.01).

5 Conclusion

In this study, to estimate the semantic knowledge of words of language learners,
we have proposed a novel method based on unsupervised deep anomaly detec-
tion. Our method was capable of distinguishing exceptional and non-exceptional
word usage cases with the same accuracy and recognizing non-exceptional and
exceptional cases in a qualitative evaluation. Our future work includes analyzing
word usages that are non-exceptional but not known by language learners.

https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
http://www.natcorp.ox.ac.uk/
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Abstract. Short answer scoring (SAS) is the task of grading short text
written by a learner. In recent years, deep-learning-based approaches
have substantially improved the performance of SAS models, but how
to guarantee high-quality predictions still remains a critical issue when
applying such models to the education field. Towards guaranteeing high-
quality predictions, we present the first study of exploring the use of
human-in-the-loop framework for minimizing the grading cost while guar-
anteeing the grading quality by allowing a SAS model to share the grad-
ing task with a human grader. Specifically, by introducing a confidence
estimation method for indicating the reliability of the model predictions,
one can guarantee the scoring quality by utilizing only predictions with
high reliability for the scoring results and casting predictions with low
reliability to human graders. In our experiments, we investigate the fea-
sibility of the proposed framework using multiple confidence estimation
methods and multiple SAS datasets. We find that our human-in-the-
loop framework allows automatic scoring models and human graders to
achieve the target scoring quality.

Keywords: Neural network · Natural language processing ·
Automated short answer scoring · Confidence estimation

1 Introduction

Short answer scoring (SAS) is a task used to evaluate a short text written as input
by a learner based on grading criteria for each question (henceforth, prompt).
Figure 1 gives examples of rubrics and student’s answers. Automatic SAS sys-
tems have attracted considerable attention owing to their abilities to provide fair
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Fig. 1. (a) Examples of rubrics and student’s answers of prompt 5 excerpted from kag-
gle Automated Student Assessment Prize Short Answer Scoring (ASAP-SAS) dataset,
and (b) example of a prompt, scoring rubric, and student’s answers excerpted from
RIKEN dataset [15], translated from Japanese to English. For space reasons, some
parts of the rubrics and answers are omitted.

and low-cost grading in large-scale examinations and to support learning in edu-
cational settings [13,14]. In recent years, deep -learning-based approaches have
improved the performance of automated scoring models [17]. However, the pos-
sibility of errors produced by an automatic grading system cannot be completely
eliminated, and such errors may interfere with the learner’s learning process [18].
Owing to a concern for such automatic scoring errors, current automatic grad-
ing systems are often used as references for human graders to detect grading
errors [1]. To further utilize automatic scoring systems in the education field, it
is critical to guarantee high-quality grading.

To tackle this challenge, we propose a human-in-the-loop automatic scoring
framework in which a human grader and an automatic scoring system share the
grading in order to minimize the grading cost while guaranteeing the grading
quality. In this framework, we attempt to guarantee the scoring quality using con-
fidence estimation methods by adopting only the highly reliable answers among
the automatic scoring results and cast the remaining answers to human graders
(see Fig. 2). Specifically, we perform the following two-step procedure: (1) esti-
mating the threshold of confidence scores to achieve the desired scoring quality in
the development set, and (2) filtering the test set using the determined threshold.
The achievement of the entire framework is evaluated in two aspects: the percent-
age of automatically scored answers and how close the scoring quality is to the
predetermined scoring quality. In the experiments, we simulated the feasibility of
the proposed framework using two types of dataset with a general scoring model
and several confidence estimation methods. The experimental result verifies the
feasibility of the framework.

The contributions of our study are as follows. (i) We are the first, to the
best of our knowledge, to provide a realistic framework for minimizing scoring
costs while aiming to ensure scoring quality in automated SAS. (ii) We validated
the feasibility of our framework through cross-lingual experiments with a gen-
eral scoring model and multiple confidence estimation methods. (iii) We gained
promising results showing that our framework enabled the control of the scoring
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quality while minimizing the human grading load, and the framework worked
well even for prompts for which the agreement between human graders is rela-
tively low. The code for our experiments and all experimental setting information
is publicly available.1

2 Previous Research

In recent years, SAS has attracted considerable attention owing to its ability to
provide a fair and low-cost scoring in large-scale exams [2]. A central challenge
in the use of SAS has focused primarily on improving the performance of scoring
models [20]. With the recent advancement of models using deep learning, the
performance of scoring models has also significantly improved [13,17]. Towards
realizing the practical use of SAS systems in the real world, several researchers
have explored outputting useful feedback for an input response [21], utilizing
rubrics for scoring [19], and investigating adversarial input in SAS [4], to name a
few. In addition, research on various languages has also been reported in recent
years, including Indonesian [7], Korean [9], and Japanese [15].

To the best of our knowledge, the only study in which the use of confidence
estimation in SAS was investigated by Funayama et al. [5]. They introduced
the concept of unacceptable critical scoring errors (CSEs). Subsequently, they
proposed a new task formulation and its evaluation for SAS, in which auto-
matic scoring is performed by filtering out unreliable predictions using confidence
scores to eliminate CSEs as much as possible.

In this study, we extend the work of Funayma et al. [5], and propose a
new framework for minimizing human scoring costs while controlling the overall
scoring quality of the combining human scoring and automated scoring. We also
conducted cross-lingual experiments using a Japanese SAS dataset, as well as the
ASAP dataset commonly used in the SAS field. The human-in-the-loop approach
in SAS was also used in a previous work to apply active learning to the task [8];
however, our study is unique in that we have attempted to minimize scoring
costs while focusing on ensuring overall scoring quality.

3 Short Answer Scoring: Preliminaries

3.1 Task Definition

Suppose X represents a set of all possible student’s answers of a given prompt,
and x ∈ X is an answer. The prompt has an integer score range from 0 to N ,
which is basically defined in rubrics. Namely, the score for each answer is selected
from one of the integer set S = {0, ..., N}. Therefore, we can define the SAS task
as assigning one of the scores s ∈ S for each given input x ∈ X . Moreover, to
construct an automatic SAS model means to construct a mapping function m
from every input of student answer x ∈ X to a score s ∈ S, that is, m : X → S.

1 https://github.com/hiro819/HITL framework for ASAS.

https://github.com/hiro819/HITL_framework_for_ASAS
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3.2 Scoring Model

A typical, recent approach to constructing a mapping function m is the use of
newly developed deep neural networks (DNNs). As discussed a priori, the set of
scores S consists of several consecutive integers {0, . . . , N}. We often consider
each discrete number as one class so that the SAS task can be treated as a simple
N + 1-class classification task. This means that each integer in S is considered
as a class label, not a consecutive integer. In this case, a SAS model is often
constructed as a probabilistic model. Suppose D is training data that consist
of a set of actually obtained student’s answers x and its corresponding human
annotated score s pairs, that is, D = ((xi, si))I

i=1, where I is the number of
training data. To train the model m, we try to minimize the empirical loss on
training data Lm(D) that consist of the sum of negative log-likelihood for each
training data calculated using model m. Therefore, we can write the training
process of the SAS model as the following minimization problem:

m = argmin
m′

{Lm′(D)} , Lm(D) = −
∑

(x,s)∈D
log (pm(s | x)) , (1)

where pm(s | x) represents the probability of class s given input x calculated
using model m. Once m is obtained, we can predict the score ŝ of any input
(student answer) by using trained model m. We often use the argmax function
for determining the most likely score ŝ given x as

ŝ = argmax
s

{pm(s | x)} . (2)

4 Proposed Framework

Guaranteeing a high-quality scoring framework is crucial, especially when apply-
ing it to the education field in actual use. To address this issue, we propose a
novel human-in-the-loop framework that can minimize the grading cost of human
graders while guaranteeing the overall grading quality at a certain level.

4.1 Scoring Framework Overview

The basic idea of our scoring framework is intuitive and straightforward. We first
score all the student answers by the method described in Sect. 3.2, and simul-
taneously estimate the confidence of the predicted scores. We then ask trained
human graders to reevaluate the student answers when their confidence scores
are below the predefined threshold. Figure 2(a) shows an overview of our scor-
ing framework. Our human-in-the-loop framework is based on the assumption
that automated SAS systems cannot achieve zero-error, while trained human
graders can achieve it. Therefore, the unreliable scores obtained are reevaluated
by human graders to realize high-quality scoring.
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Fig. 2. Overview of the proposed human-in-the-loop framework for SAS.

The goal of our framework is to minimize the cost of human graders while
maintaining erroneous scoring given by automated SAS systems to a minimum.
Thus, the critical components of our framework are the methods o estimating
the confidence of scoring and detemining the threshold of reasonable confidence
level in advance.

4.2 Utilizing Confidence Estimation for SAS

We define confidence C as a function that is determined using three factors:
model m, input student answer x, and score ŝ predicted from m, that is,
C(x, ŝ,m). Suppose we have � unique answers to grade (x1, ...,x�). Let P be
the set of all the student answers and its corresponding score pairs. Let Pr be a
subset of P , whose confidence is above the predefined threshold τ . Additionally,
P r is the complementary set of Pr. Namely,

P = {(xi, ŝi)}�
i=1, Pr = {(x, ŝ) ∈ P | C(x, ŝ,m) ≥ τ}, and P r = P\Pr. (3)

We treat Pr and P r as the reliable and unreliable scoring results, respectively. In
this study, we consider that the answers in P r need rescoring by trained human
graders. The set of pairs of the answers in P r and their corresponding regraded
score by human graders is denoted by Ph. Finally, we combine Pr and Ph as the
set of final scoring results, Pf . The relation can be written as Ph = Pf\Pr.

4.3 Threshold Estimation

It is difficult to determine the optimal confidence threshold τ in advance. To
find a reasonable one, we use the development set, a distinct dataset from the
training data used for obtaining the model m. Let P dev, P dev

r and P dev
f be P ,

Pr and Pf , respectively, based on the development data. For a given, acceptable
scoring error e, we find the confidence threshold τ such that the errors of scoring
results in the development set do not exceed e2.

τ = argmax
τ ′

{|P dev
r′ |} subject to Err(P dev

f ) ≤ e, (4)

where Err(P dev
f ) represents the sum of scoring errors occurring within P dev

f .

2 We assume that the acceptable scoring error is determined by test administrators.
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4.4 Evaluation

|P test
r |/|P test

f | is the ratio of automatically scored answers (i.e., automatic scor-
ing coverage), and Err(P test

f ) represents the grading error in the set of final
answer-grade pairs for the test set P test

f . In our experiments, we evaluate the
performance from both the grading error on the test set and the automatic
grading coverage ratio.

5 Experiments

In the experiments, we verify the feasibility of the proposed framework using
three confidence estimation methods as our test cases. We publish the code and
instance IDs used for training, development and test data.3

5.1 Base Scoring Model

We selected the BERT [3] based classifier as the base scoring model because this
is one of the most promising approaches for many tasks in text classification. We
can also expect to achieve near state-of-the-art performance in our experiments.

The model first converts the input student answer x into a feature represen-
tation Z ∈ R

dh×n using the BERT encoder enc(·), that is, Z = enc(x), where dh

is the vector dimension and n is the number of words (tokens) in x. The model
then calculates the probability pm(s | x) using the vector of CLS token h(CLS),
which is the first token in the BERT model, in Z with the following standard
Affine transformation and softmax operation:

pm(s | x) = os
�softmax

(
Wh(CLS) + b

)
, (5)

where W and b are the trainable model parameters of (N+1)×dh and (N+1)×1
matrices, respectively. os is the one-hot vector, where 1 is located at score s in the
dh-vector. Note that os is a kind of selector of a score in the vector representation
generated from the softmax function. Finally, we used the standard operation,
Eq. (2), to obtain the predicted score ŝ.

5.2 Confidence Estimation Methods

Posterior Probability. The most straightforward way to estimate the confi-
dence score in our classification model is to consider the prediction probability
(posterior) calculated Eq. (5):

Cprob(x, ŝ,m) = pm(ŝ | x). (6)

3 https://github.com/hiro819/HITL framework for ASAS.

https://github.com/hiro819/HITL_framework_for_ASAS
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Trust Score. Funayama et al. [5] used the trust score [10] to estimate confidence
in automatic scoring of written answers. Here, we also consider using the trust
score as one of the confidence estimation methods.

We calculate the trust score as follows. The first step is to input the train-
ing data {(x1, s1), ..., (xk, sk)} into the trained automatic scoring model m and
obtain a set of feature representations H = {h1, ...,hk} corresponding to each
training instance. In addition, the feature representations are kept as clusters
Hs = {hi ∈ H | si = s} for each score label s. We then obtain the feature
representation h and predicted score ŝ for an unseen input x from the test data.
The trust score Ctrust(x, ŝ,m) for the scoring result (x, ŝ) is calculated as

Ctrust(x, ŝ,m) =
dc(x,H)

dp(x,H) + dc(x,H)
, (7)

where dp(x,H) = minh′∈Hŝ
d(h,h′) and dc(x,H) = minh′∈(H\Hŝ) d(h,h′), and

d(h,h′) denotes the Euclidean distance from h to h′. Note that H can be
obtained by using m and x. To normalize the values in the range from 0 to
1, dc is newly added to the denominator. We note here that the normalization
does not change the original order without normalization.

Gaussian Process. Previous works have shown that the performance of regres-
sion models is superior to that of classification models in SAS since the regression
models treat the score as a consecutive integer, not a discrete category [11,17].

Gaussian Process Regression (GPR) [16] is a regression model that can esti-
mate a variance of the predicted score. We utilize this value as the confidence
of its prediction and use GPR as a representative of regression models that are
compatible with our framework. We use a publicly available GPR implementa-
tion [6] and train the GPR model on the feature representations output by the
trained encoder shown in Sect. 5.1.

5.3 Dataset

We conduct cross-lingual experiments using the Automated Student Assessment
Prize Short Answer Scoring (ASAP-SAS) dataset, which is commonly used in
the field of SAS, and the RIKEN dataset, which is the only publicly available
SAS dataset in Japanese.

ASAP-SAS Dataset. The ASAP-SAS dataset is introduced in kaggle’s ASAP-
SAS contest.4 It consists of 10 prompts and answers on academic topics such
as biology and science. The answers are graded by two scorers. The experiment
was conducted on the basis of the score given by the first scorer according to the
rules of kaggle’s ASAP contest. In our experiment, we used the official training
data and test data. We use 20% of the training data as development data.

4 https://www.kaggle.com/c/asap-sas.

https://www.kaggle.com/c/asap-sas
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RIKEN Dataset. We also used the publicly available Japanese SAS dataset5

provided in [15]. The RIKEN dataset consists of 17 prompts in total. Each
prompt has its own rubric, student answers, and corresponding scores. All con-
tents were collected from examinations conducted by a Japanese education com-
pany, Yoyogi Seminar. In this dataset, the scoring rubric of each prompt consists
of three or four elements (referred to as analytic criteria in [15]), and each answer
is manually assessed on the basis of each analytic criterion (i.e., analytic score).
For example, the scoring rubric shown in Fig. 1 is the analytic criterion excerpted
from Item C in prompt Y14 2-2 1 4 and gives an analytic score to each student
answer. Since each analytic score is given independently from each other, we
treat the prediction of each individual analytic score for a given input answer as
an independent task. For our experiment, we divided the data into 250 training
instances and 250 test instances. The training data were further divided into
five sets, four sets for training (200 instances), and one set for development (50
instances).

5.4 Setting

As described in Sect. 5.1, we used the pretrained BERT [3] as the encoder for the
automatic scoring model and use the vectors of CLS tokens as feature vectors
for predicting answers6,7. The root mean square error (RMSE) is adopted as the
function Err representing the scoring error. To stabilize the experimental results
using a small development set, we estimated the threshold value using 250 data
sets, which were integrated with five development datasets.

5.5 Results

Correlation Between Confidence Scores and Scoring Accuracy. First,
we investigate the relationship between confidence estimation and scoring qual-
ity. Figure 3 shows changes in RMSE for the top n% confident predictions in
the test set using the ASAP-SAS dataset and the RIKEN dataset. All methods
reduced the RMSE for the higher confident predictions, indicating that there is
a correlation between confidence and scoring quality. We also observed that the
scoring error is reduced more for the RIKEN dataset than for the ASAP-SAS
dataset.

Feasibility of our Proposed Framework. Next, we applied the proposed
framework to SAS data and confirmed its feasibility. Figure 4 shows the percent-
age of answers automatically scored (automatic scoring coverage [%]) and the
RMSE for the combined scoring result P test

f for human scoring and automatic

5 https://aip-nlu.gitlab.io/resources/sas-japanese.
6 We used pretrained BERTs from https://huggingface.co/bert-base-uncased for

English and https://github.com/cl-tohoku/bert-japanese for Japanese.
7 Quadratic weghted kappa (QWK) of our model is 0.722 for the ASAP-SAS dataset,

which is comparable to previous studies [12,17].

https://aip-nlu.gitlab.io/resources/sas-japanese
https://huggingface.co/bert-base-uncased
https://github.com/cl-tohoku/bert-japanese
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Fig. 3. Changes of RMSE when the prediction with the top n% confidence score is
adopted as automatic scoring result in the test set. Green markers represent posterior
(Post.), red ones the trust score (Trust.), and blue ones, the Gaussian process (GP).
The markers represent mean values.

Fig. 4. Scoring errors for the test data after applying our proposed framework using
ASAP-SAS and RIKEN datasets. The bars represent automatic scoring coverage [%],
and the markers and error bars represent RMSE for test set after applying our proposed
framework. Green, red, and blue marks represent the results of Post., Trust., and GP,
respectively. The error bars represents standard deviation of the RMSE. The dotted
line represents the acceptable scoring error e.

scoring when the acceptable scoring error was varied from 0.04, 0.08, 0.12, to
0.16 on RMSE.

From Fig. 4, we can see that we are successfully able to control scoring
errors around the acceptable scoring error in most settings for both datasets.
In terms of the ability to achieve the acceptable scoring error, there is no sig-
nificant difference in performance between the confidence estimation methods.
The standard deviation indicated by the error bars also shows that our pro-
posed framework performs well with the three confidence estimation methods.
For automatic scoring coverage, the posterior tends to be slightly dominant in
ASAP-SAS, whereas the trust score is slightly dominant in the RIKEN dataset.
The slightly higher performance of the trust score for the RIKEN dataset is
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consistent with Funayama et al. [5], which was the only study, to the best of our
knowledge, to utilize confidence in the SAS field.

5.6 Analysis

We assumed in Sect. 4 that professional human graders grade answers perfectly;
however, the scoring results between human graders do not perfectly match in
the actual dataset. A previous work [20] reported that prompts with higher inter
grader agreements between human raters (henceforth IGA) are more suitable for
automated scoring in real-life exams, suggesting that IGA can be an important
indicator for the actual operation in the application of automatic scoring models.
In this section, we analyze the relevance of the inter grader agreement between
two human graders for our framework.

Figure 5 shows the results of applying our proposed framework to two groups:
one is the group with higher IGAs than the average IGA (green) and the other
is the group with lower IGAs (gray). We use posterior for confidence estima-
tion.8 From the results, we observe a large gap of the automatic scoring coverage
between the higher IGA and the lower IGA groups, whereas the acceptable scor-
ing errors are generally achieved for both groups. This indicates that the objec-
tive of our framework, which is guaranteeing the grading quality, is achieved
regardless of the IGAs of the prompts. The drawback of a lower IGA is observed
in automatic scoring coverage in our framework; the coverage of the higher IGA
group is twofold that of the lower group in the strict setting e = 0.04 for both
datasets.

Moreover, we observed that the actual RMSE is smaller than the accept-
able scoring error for the prompts in the lower-IGA group, indicating that the
framework provides more ’cautious’ automatic scoring for this group. For the

Fig. 5. The automatic scoring coverage (bars) and RMSE for P test
f (markers and error

bars) when we apply our proposed framework to the two groups: prompts with higher
inter grader agreement and prompts with lower inter grader agreement.

8 Posterior is used because there is no significant difference in performance among
the three methods and the most widely used way to estimate confidence score is
posterior.
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noisy training data, an instance with a high prediction confidence tends to be
judged as incorrect even though the model predicts the correct score. As a result,
the scoring quality of the model for predictions with high confidence is under-
estimated compared with the true scoring quality of the model. Then, a strict
threshold is selected in the development set, which may lead to such ’cautious’
scoring. Indeed, in the actual situation, when estimating the threshold value in
the development set, a human grader is expected to reconfirm and correct the
ground truth score for a training instance that has a scoring error despite its high
confidence. Thus, a negative impact of such human scoring errors is expected to
be insignificant when using our framework that combines human grading and
the confidence of automatic scoring models.

6 Conclusion

In recent years, the accuracy of automatic grading systems has considerably
improved. Ensuring the scoring quality of SAS models is crucial challenge in the
promotion of further applications of SAS models in the education field. In this
paper, we presented a framework for ensuring the scoring quality of SAS systems
by allowing such systems to share the grading task with human graders. In our
experiments, we discovered that the desired scoring quality can be achieved by
using our proposed framework. Our framework is designed to control the overall
scoring quality (i.e., RMSE) and is therefore expected to work complementarily
with Funayama’s work [5], which aims to reduce the number of critical scoring
errors on individual answers.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP22H00524, JP19K12112, and JP21H04901.
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Abstract. Online learning platforms conduct exams to evaluate the
learners in a monotonous way, where the questions in the database may
be classified into Bloom’s Taxonomy as varying levels in complexity
from basic knowledge to advanced evaluation. The questions asked in
these exams to all learners are very much static. It becomes important
to ask new questions with different difficulty levels to each learner to
provide a personalized learning experience. In this paper, we propose a
multi-task method with an interactive attention mechanism, Qdiff, for
jointly predicting Bloom’s Taxonomy and difficulty levels of academic
questions. We model the interaction between the predicted bloom tax-
onomy representations and the input representations using an attention
mechanism to aid in difficulty prediction. The proposed learning method
would help learn representations that capture the relationship between
Bloom’s taxonomy and difficulty labels. The proposed multi-task method
learns a good input representation by leveraging the relationship between
the related tasks and can be used in similar settings where the tasks are
related. The results demonstrate that the proposed method performs bet-
ter than training only on difficulty prediction. However, Bloom’s labels
may not always be given for some datasets. Hence we soft label another
dataset with a model fine-tuned to predict Bloom’s labels to demonstrate
the applicability of our method to datasets with only difficulty labels.

Keywords: Question difficulty prediction · Transformers · Multi-task
learning

1 Introduction

The academic questions in online learning platforms help the learner evaluate
his understanding of concepts. However, serving a static set of questions to all
the users is not desirable as all the users do not have the same learning abilities.
Hence, there is a need to dynamically adapt to the user’s learning profile and
accordingly select a question. This would require accurate prediction of the dif-
ficulty level of each question so that the system or the academician can choose
appropriate questions for the exams. A system for labelling the new questions
c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 477–489, 2022.
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Table 1. Some samples from our QC-Science dataset.

Question text Difficulty Bloom’s taxonomy

The value of electron gain enthalpy of chlorine
is more than that of fluorine. Give reasons

Difficult Understanding

What are artificial sweetening agents? Easy Remembering

Explain the concept of rotation of Earth Medium Understanding

with appropriate difficulty levels would obviate the need for manual intervention.
When the questions are automatically labelled with difficulty levels, it helps in
designing adaptive tests where questions in tests are dynamically changed at
test time according to the performance in previous questions, tests, or as per the
users’ capability. For instance, a student who answers the questions in a certain
topic like ‘calculus’ correctly is presented with a question of increasing difficulty
as the test progresses. This strategy is adopted in online platforms that offer
practice for standardized tests like GRE1.

Given the advantages of automated difficulty prediction, we propose, QDiff,
a method for predicting the difficulty label of a question that is derived from
the difficulty levels denoted as ‘easy’, ‘medium’, or ‘difficult’. We collect a set
of academic questions in the Science domain from a leading e-learning plat-
form2. Bloom’s taxonomy provides a mechanism for describing the learning out-
comes. The different levels in Bloom’s taxonomy as observed in our dataset
are ‘remembering ’, ‘understanding’, ‘applying’, and ‘analyzing’ which form the
Bloom’s labels. The questions are tagged with an appropriate level in Bloom’s
taxonomy [5] and a difficulty level. Some samples from our dataset, named QC-
Science, are shown in Table 1. From the collected QC-Science data, we observe
that the difficulty level is related to the levels in Bloom’s taxonomy as shown in
Table 2. For instance, in Table 2 most of the questions tagged with the ‘remem-
bering’ level of Bloom’s taxonomy are categorized as being ‘easy’ questions. To
verify the strength of association between Bloom’s taxonomy and the difficulty
levels, we use the Cramer’s V test since it is best suited for a large sample size.

We compute the value V using the formula, V =

√
χ2

n(min(r − 1, c − 1))
where

χ2 is the chi-squared statistic, n is the total sample size, r is the number of rows
and c is the number of columns. We obtain a value of 0.51 for V , indicating
that there is a strong association between Bloom’s taxonomy and the difficulty
labels. Therefore, the Bloom’s taxonomy labels can serve as a strong indicator
for the difficulty labels and could help in the question difficulty prediction task.

As mentioned in the previous section, we observe a strong association between
Bloom’s taxonomy labels and difficulty labels. Hence, we propose an interactive
attention model to predict the difficulty level and Bloom’s taxonomy level jointly
for the questions collected for classes VI to XII in the K123 education system.

1 https://www.prepscholar.com/gre/blog/how-is-the-gre-scored/.
2 We don’t disclose the identity of the source due to the anonymity requirement.
3 Kinder-garden to grade-12.

https://www.prepscholar.com/gre/blog/how-is-the-gre-scored/
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Table 2. Distribution of samples across Bloom’s taxonomy levels and difficulty levels
(contingency table)

Bloom’s taxonomy

Analyzing Applying Remembering Understanding

Difficulty Easy 756 1488 7146 4505

Difficult 2089 2529 2518 7010

Medium 585 980 1712 2242

The Bloom’s taxonomy level prediction is considered as an auxiliary task, and
the attention weights are computed between the vector representations of the
predicted Bloom’s taxonomy labels and the input vector representation through
the interactive attention mechanism. We use the hard parameter sharing app-
roach [12] where the backbone is a Transformer-based [15] model (like BERT
[3]) with task specific output layers on top of the backbone network. The con-
ventional multi-task learning methods do not explicitly model the interactions
between the task labels and the input. Hence we propose the interactive atten-
tion mechanism to explicitly model the interaction between Bloom’s taxonomy
label and the input, which enables to model the relationship between the tasks
better. We observe that QDiff outperforms the existing baselines as measured
by the macro-averaged and weighted-average F1-scores.
Following are the core technical contributions of our work:

– We propose a multi-task learning and interactive attention based approach,
QDiff for difficulty prediction, where Bloom’s taxonomy predictions are used
to determine the input representations using an attention mechanism.

– We evaluate the proposed method on the QC-Science dataset. We also evalu-
ate the proposed method on another dataset QA-data [13] which consists of
only difficulty labels. We show that our method trained on QC-Science dataset
can be used to soft-label the QA-data dataset with Bloom’s taxonomy levels.
The experiments demonstrate that our method can be extrapolated to new
datasets with only difficulty labels.

Code and data are at https://github.com/VenkteshV/QDIFF AIED 2022.

2 Related Work

Question difficulty prediction is an intriguing NLP problem, but it has not been
explored to the extent it deserves. A few recent works in difficulty prediction
focus on evaluating the readability of the content [4,18]. Authors in [4] proposed
to combine classical features like Flesch readability score with non-classical fea-
tures derived automatically. In [18], the authors observed that combining a large
generic corpus with a small population specific corpus improves the performance
of difficulty prediction.

https://github.com/VenkteshV/QDIFF_AIED_2022
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Another application where the task of question difficulty prediction has been
discussed is automated question generation [6]. In the work [6], the authors
propose to estimate the difficulty measure as the semantic similarity between
the question and the answer options. Similarly, in the work [1], the authors
propose a similarity based theory for controlling the difficulty of the questions.

Prior work has also focused on estimating the difficulty of questions in
community question-answering (QA) platforms like StackOverflow [8,16]. Other
studies like [9,10] explore automated grading by estimating the difficulty of aca-
demic questions from the Science domain. In the work [9], the authors propose
to infer the difficulty of the questions by first mapping them to the concepts. In
the work [17], the authors propose fine-tuning the ELMo [11] model on 18,000
MCQ type questions from the medical domain for predicting the question diffi-
culty. More recently, in the work [2], the authors propose fine-tuning transformer
based language models like BERT for the task of difficulty estimation. However,
the discussed works do not exploit information from related tasks.

3 Methodology

In this section, we describe the proposed approach QDiff for the question dif-
ficulty prediction as the primary task and Bloom’s taxonomy prediction as the
secondary task. The input to QDiff is a corpus of questions, C = {q1, q2, ..., qn}
where each qi corresponds to a question along with a difficulty label and Bloom’s
taxonomy label (skill levels). Since most questions are short texts, we augment
the question with the answer as auxiliary information to obtain more semantic
information. Hence, we refer to the augmented question as a ‘question-answer’
pair in the remainder of the paper. We show that the performance of various
methods improves when using the question along with the answer rather than the
question text alone. We obtain contextualized representations for the inputs
using BERT [3] followed by task specific layers, Hdiff and Hbloom where each
tasks specific layer comprises of two linear layers with a non-linearity in between
the two layers.

3.1 Contextualized Input Representations - BERT

The academic questions also have polysemy terms that refer to different seman-
tics depending on the context of their occurrence in the input sentence. To tackle
the mentioned problem, we use BERT, a transformer-based masked language
model, for projecting the input text to the embedding space.

Self-attention is the core of Transformer [15] model, and BERT utilizes it to
obtain better representations. Self-attention encodes each word in the sentence
using Query, Key, and Value vectors to obtain attention scores, which deter-
mines how much attention to pay to each word when generating an embedding
for the current word. Mathematically, it is defined as:

Attention(Q,K, V ) =
Softmax(Q ∗ KT )√

dk
∗ V (1)



Auxiliary Task Guided Interactive Attention Model 481

Fig. 1. QDiff network architecture (middle).

where, dk is the dimension of query, key, and value vectors and is used to scale
the attention scores, and KT denotes the transpose of the Key vector.

3.2 Auxiliary Task Guided Interactive Attention Model

Based on the strength of association between Bloom’s labels and the difficulty
labels verified through Cramer’s V test (V = 0.51), we hypothesize that leverag-
ing Bloom’s taxonomy representations to compute input representations using an
attention mechanism would lead to better performance in difficulty prediction.
The proposed approach would help capture the relationship between the words in
the input question and Bloom’s taxonomy level, leading to better representations
for the task of difficulty prediction as Bloom’s taxonomy and difficulty levels are
related. Our method also jointly learns to predict both Bloom’s taxonomy and
the difficulty level, obviating the need for providing Bloom’s taxonomy labels at
inference time. Figure 1 shows the architecture of the proposed approach QDiff.

During training, as shown in Algorithm1, the question-answer pair is first
passed through a transformer based language model BERT, to obtain contextu-
alized word representations (Temb) and the pooled representation Tpooled (step
1). Then the representations are passed to the task specific output layer Hbloom
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Algorithm 1. Difficulty prediction
Input: Training set T ← docs {q1, ..qn}, difficulty levels (labels) ydiff and bloom’s

taxonomy labels ybloom, test set S
Output: Difficulty levels for the test set DT
1: Get input text embeddings , Temb, Tpooled ← BERT (T ), where Temb represents the

set of word embeddings
2: Obtain Bloom’s taxonomy level predictions,

Pbloom ← text decode(Hbloom(Tpooled)), where Pbloom is the text representation of
predicted Bloom’s label.

3: Obtain the embeddings of the predicted Bloom’s taxonomy,
bloom emb ← BERT (Pbloom)

4: Obtain average pooled representation of Pbloom,

bloom avg ←
n∑

i=1

bloom embi

n
where n is the number of subwords in Pbloom.

5: Compute attention weights,
αi ← softmax(fattn(T i

emb, bloom avg))

6: Obtain final text representations, Tr ←
n∑

i=1

αiT
i
emb

7: Obtain difficulty level predictions, Pdiff ← Hdiff(Tr)
8: Ldiff ← Cross entropy(Pdiff , ydiff)
9: Lbloom ← Cross entropy(Pbloom, ybloom)

10: L ← Lbloom + Ldiff

11: Fine-tune BERT layers and train the task specific layers to minimize L

to obtain Bloom’s taxonomy level predictions (step 2). The vector representa-
tions for Bloom’s taxonomy prediction are obtained using the same BERT
model (step 3). Then the representations of subwords in Pbloom are averaged to
obtain a fixed 768 dimensional vector representation (step 4). With the input
vector representations Temb, the attention mechanism generates the attention
vector αi using Bloom’s taxonomy representations bloom avg (step 5) by

αi =
exp(fattn(T i

emb, bloom avg))∑N
i exp(fattn(T i

emb, bloom avg))
(2)

fAttn = tanh(T i
emb.Wa.bloom avgT + ba) (3)

where, tanh is a non-linear activation, Wa and ba are the weight matrix and
bias, respectively.

Then the final input representations are obtained using the attention weights
αi (step 6). The difficulty predictions are then obtained by passing the final input
representation Tr through the task specific layer Hdiff (step 7). The BERT model
acts as the backbone as its parameters are shared between the tasks. The loss
function is a combination of the loss for difficulty prediction Ldiff and the loss
for Bloom’s taxonomy level prediction Lbloom (steps 8, 9 and 10). The BERT
layers are fine-tuned and the task specific layers are trained to minimize the
combined loss (step 11).
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During the inference phase, the contextualized representations are obtained
for the test set question-answer pairs as described above. Subsequently, the soft-
max probability distributions of the difficulty labels are obtained by passing the
contextualized representations through the Hdiff layer. Since the BERT layers
are shared between the tasks during training, the contextualized representa-
tions obtained at test time improve the performance on the task of difficulty
prediction. Since we use an interaction layer with attention where the interac-
tion between the input representations and Bloom’s taxonomy label representa-
tions are captured, we also call our method as IA BERT (Interactive Attention
BERT).

4 Experiments

In this section, we discuss the experimental setup and the datasets used.

4.1 Dataset

QC-Science: We compile the QC-Science dataset from a leading e-learning plat-
form. It contains 45766 question-answer pairs belonging to the science domain
tagged with Bloom’s taxonomy levels and the difficulty levels. We split the
dataset into 39129 samples for training, 2060 samples for validation, and 4577
samples for testing. Some samples are shown in Table 1. The average number of
words per question is 37.14, and per answer, it is 32.01.

QA-data: We demonstrate the performance of the proposed method on another
dataset [13]. The dataset is labeled only with difficulty labels. We soft-label the
dataset with Bloom’s taxonomy levels using the Bloom’s taxonomy prediction
model trained on the QC-Science dataset. We demonstrate that the proposed
model, when fine-tuned on a large enough dataset like QC-Science with labels
for both the tasks, can be extrapolated to datasets without Bloom’s taxonomy
labels. The dataset consists of 2768, 308 and 342 train, validation and test sam-
ples, respectively. The average number of words per question is 8.71, and per
answer, it is 3.96.

4.2 Baselines

We compare with baselines like LDA + SVM and TF-IDF + SVM [14], ELMo
fine-tuning [17]. We also propose a new baseline.

– TF-IDF + Bloom verb weights (BW): In this method the samples are first
grouped according to difficulty levels. Then, we extract the Bloom verbs from
each sentence using following POS tag patterns: ‘VB.*’, ‘WP’, ‘WRB’. Once
the Bloom verbs are extracted, we obtain Bloom verb weights as follows:

Bl W = freq(verb, label) ∗ no. of labels

nl
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where, freq(verb, label) indicates the number of times a verb appears in a
label, and nl indicates the number of labels that contain the verb. The above
operation assigns higher relevance to rare verbs. Then the TF-IDF vector
representation of each sentence is multiplied by the weights of the Bloom
verbs contained in the sentence. Then for each difficulty level, we obtain the
mean of the vector representations of the sentences (centroid). At inference
time, the difficulty label whose centroid vector representations is closest to
test sentence representation is obtained as output.

We also explore the following deep learning approaches.
– Bi-LSTM with attention and Bi-GRU with attention and concat pooling [7].
– BERT cascade: In this method, a BERT (base) model is first fine-tuned on

Bloom’s taxonomy level prediction followed by the task of difficulty predic-
tion.

We also conducted several ablation studies for the proposed architecture QDiff .
– Multi-Task BERT: In this method, the interaction layer in IA BERT is

removed, and the model is trained to jointly predict Bloom’s taxonomy and
difficulty labels.

– IA BERT (B/D) (bloom/difficulty label given): In this method,
Bloom’s taxonomy label is not predicted but rather assumed to be given
even at inference time. The model is trained on the objective of difficulty pre-
diction (loss Ldiff ) only. The Bloom’s taxonomy label is considered as given
when difficulty is predicted and difficulty label is considered as given when
the task is Bloom’s taxonomy label prediction.

– IA BERT (PB) (pre-trained Bloom model): In this method first, a
BERT model is fine-tuned for predicting Bloom’s taxonomy labels alone,
given the input. Then the model’s weights are frozen and are used along with
another BERT model, which is fine-tuned to predict the difficulty labels.

The interaction layer is the same as in IA BERT for the last two methods men-
tioned above. The HuggingFace library (https://huggingface.co/) was used to
train the models. All the BERT models were fine-tuned for 20 epochs with the
ADAM optimizer, with learning rate (lr) of 2e−5 [3]. The LSTM and GRU based
models are trained using ADAM optimizer and with lr of 0.003.

5 Results and Discussion

The performance comparison of various methods is shown in Table 3. We use
macro-average and weighted-average Precision, Recall, and F1-scores as metrics
for evaluation. From Table 3, we can observe that most of the deep learning
based methods outperform classical ML based methods like TF-IDF + SVM
and LDA + SVM. However, we observe that TF-IDF + SVM method outper-
forms the ELMo baseline [17] on the QC-Science dataset. It is also evident that
the transformer based methods significantly outperform the ‘TF-IDF + Bloom
verbs’ baseline. This demonstrates that the contextualized vector representations
obtained have more representational power than carefully hand-crafted features
for the task of difficulty prediction.

https://huggingface.co/
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5.1 Results Analysis

We provide a detailed analysis of results in this section.

Table 3. Performance comparison for the difficulty prediction and Bloom’s taxonomy
prediction tasks. † indicates significance at 0.05 level (over Multi-task BERT). D1 -
QC-Science, D2 - QA-data

Method Difficulty prediction Bloom’s level prediction

Macro Weighted Macro Weighted

P R F1 P R F1 P R F1 P R F1

D1 LDA+SVM [14] 0.319 0.354 0.336 0.406 0.492 0.445 0.279 0.266 0.267 0.320 0.360 0.338

TF-IDF + SVM [14] 0.471 0.415 0.440 0.510 0.532 0.520 0.421 0.341 0.377 0.413 0.410 0.411

ELMo [17] 0.466 0.403 0.432 0.495 0.503 0.499 0.407 0.367 0.386 0.429 0.429 0.429

TF-IDF + BW 0.426 0.437 0.431 0.486 0.429 0.456 0.330 0.346 0.338 0.364 0.344 0.342

Simple rule baseline 0.359 0.402 0.379 0.454 0.542 0.494 0.138 0.239 0.175 0.199 0.344 0.252

Bi-LSTM with attention 0.491 0.407 0.445 0.518 0.529 0.523 0.487 0.419 0.450 0.497 0.481 0.489

Bi-GRU with attention 0.438 0.369 0.400 0.476 0.499 0.488 0.505 0.359 0.420 0.503 0.441 0.470

BERT (base) [2] 0.499 0.450 0.473 0.530 0.550 0.539 0.484 0.459 0.471 0.494 0.502 0.498

BERT cascade 0.494 0.454 0.473 0.530 0.550 0.539 0.470 0.441 0.455 0.486 0.486 0.486

Multi-task BERT (ours) 0.518 0.441 0.476 0.538 0.556 0.547 0.490 0.439 0.463 0.497 0.499 0.498

IA BERT (QDiff) (ours) 0.544 0.447 0.491† 0.556 0.564 0.560† 0.497 0.447 0.471 0.502 0.506 0.504†
D2 LDA+SVM [14] 0.356 0.359 0.357 0.370 0.409 0.388 0.232 0.205 0.218 0.580 0.655 0.615

TF-IDF + SVM [14] 0.518 0.487 0.502 0.517 0.518 0.517 0.514 0.319 0.394 0.796 0.795 0.796

ELMo [17] 0.635 0.623 0.629 0.654 0.658 0.656 0.450 0.386 0.415 0.779 0.784 0.781

TF-IDF + BW 0.580 0.573 0.576 0.608 0.581 0.594 0.312 0.338 0.324 0.705 0.646 0.674

Simple rule baseline 0.236 0.341 0.279 0.233 0.392 0.292 0.131 0.200 0.158 0.429 0.655 0.518

Bi-LSTM with attention 0.628 0.605 0.616 0.644 0.655 0.650 0.430 0.357 0.390 0.765 0.766 0.766

Bi-GRU with attention 0.524 0.534 0.529 0.563 0.591 0.577 0.402 0.295 0.340 0.753 0.722 0.737

BERT (base) [2] 0.640 0.638 0.639 0.661 0.660 0.661 0.455 0.404 0.428 0.814 0.822 0.818

BERT cascade 0.662 0.666 0.664 0.683 0.681 0.682 0.437 0.401 0.418 0.816 0.827 0.821

Multi-task BERT (ours) 0.664 0.644 0.654 0.681 0.687 0.684 0.389 0.365 0.377 0.799 0.804 0.802

IA BERT (QDiff) (ours) 0.684 0.682 0.683† 0.702 0.708 0.705† 0.494 0.420 0.454† 0.841 0.830 0.836†

Is the Simple Rule-Based Baseline Enough?

We implement a simple rule-based baseline (Table 3) where the question or
answer content is not considered and the difficulty label is predicted based on
co-occurrence with the corresponding bloom’s label alone. We form a dictionary
recording the co-occurrence counts of the bloom’s labels and difficulty labels
in the training samples as shown in Table 2. For each test sample, we look up
into the dictionary the entries for the corresponding bloom’s taxonomy label of
the test sample. Then the difficulty label with maximum co-occurrence count is
chosen. We observe that this baseline performs poorly when compared to even
other ML baselines from Table 3. This baseline performance demonstrates the
need for learning based methods to analyze the given content.

Is the Proposed Approach Better than Baselines?

We observe that QDiff (IA BERT), which jointly learns to predict Bloom’s tax-
onomy level and the difficulty level, outperforms all the deep learning (DL) and
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Table 4. Ablation studies for QDiff (IA BERT). D1 - QC-Science, D2 - QA-data

Method Difficulty prediction Bloom’s level prediction

Macro Weighted Macro Weighted

P R F1 P R F1 P R F1 P R F1

D1 IA BERT (QDiff) 0.544 0.447 0.491 0.556 0.564 0.560 0.497 0.447 0.471 0.502 0.506 0.504

IA BERT (B/D) 0.523 0.486 0.503 0.554 0.569 0.561 0.476 0.473 0.475 0.499 0.506 0.503

IA BERT (PB) 0.491 0.487 0.489 0.535 0.530 0.533 0.482 0.463 0.472 0.496 0.501 0.498

D2 IA BERT (QDiff) 0.684 0.682 0.683 0.702 0.708 0.705 0.494 0.420 0.454 0.841 0.830 0.836

IA BERT (B/D) 0.682 0.688 0.685 0.702 0.696 0.699 0.458 0.429 0.443 0.837 0.842 0.839

IA BERT (PB) 0.642 0.641 0.641 0.667 0.652 0.659 0.449 0.424 0.436 0.825 0.825 0.825

machine learning (ML) based baselines on both the datasets. It also performs
better than BERT (base) [2] on the ask of difficulty prediction by advancing
weighted F1-score from 0.539 to 0.560 (+3.89%). It also outperforms Multi-
task BERT by 2.37% (weighted F1-score) which can be considered as abla-
tion of the proposed method without the interactive attention mechanism. This
demonstrates that in addition to jointly learning to predict labels for both the
tasks, the interactive attention mechanism yields better representations leading
to improved performance. We also observe that on the QA-data dataset QDiff
(IA BERT) outperforms other methods as measured by macro and weighted F1
scores. For Bloom’s label prediction, we observe that the IA BERT (QDiff) leads
to good results (from Table 3) as Bloom’s labels are jointly learned and used as
signal in attention mechanism. In addition, we also perform an experiment where
we use the jointly predicted difficulty labels as signal in the interactive attention
mechanism in IA BERT for Bloom’s label prediction task. We observe that the
macro F1-score increases to 0.479 from 0.471 for QC-Science and also increases
the weighted F1-score on QA-data to 0.852 from 0.836. This demonstrates that
both tasks can benefit from each other through the interactive attention mech-
anism in addition to joint learning. We do not tabulate this result as our focus
is difficulty prediction and mention it here for completion.

Are the Results Statistically Significant?

We perform statistical significance test (t-test) on obtained outputs. We observe
that the results obtained using QDiff (IA BERT) are significant with p-value =
0.000154 (weighted-F1) and p-value = 0.011893 (macro-F1) for difficulty predic-
tion on QC-Science dataset. We also observe that results are statistically signif-
icant on QA-data with p-value = 0.003813 (weighted-F1) and p-value = 0.02248
(macro-F1) for difficulty prediction.

Does Augmenting Question with Answer Lead to Better
Performance?

From Table 3, it is evident that augmenting the question with the answer provides
better performance when compared to using the question text alone. When we
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evaluated on the QC-Science dataset using the question text alone, we observed a
drop in performance. For instance, QDiff only yielded a macro-F1 score of 0.455
when using question text alone. The baselines also show a decline in performance,
demonstrating that the answer helps provide some context.

What if Bloom’s Taxonomy Labels Are Randomly Labeled for
QA-Data?

We also perform an ablation study on the QA-data dataset by randomly label-
ing the dataset with Bloom’s levels instead of the proposed soft labeling method.
We observe that this lowers the performance on the task of difficulty prediction.
For instance, QDiff yields a macro F1 score of 0.656 and a weighted F1 score
of 0.674 on the difficulty prediction task using the random Bloom’s labels. This
ablation study supports the significance of the proposed soft labeling method
and the interactive attention mechanism as random labels lead to erroneous
predictions of difficulty labels.

How Does the Ablations of IA BERT QDiff Perform?

We also perform several ablations studies by varying the components of the pro-
posed method. The results are as shown in Table 4. We observe that using a
pre-trained model for Bloom’s taxonomy prediction performs poorly as it is not
jointly trained on the two related tasks resulting in the error from Bloom’s label
prediction model propagating to difficulty prediction task through the inter-
active attention mechanism. Additionally, we observe that directly feeding the
Bloom’s taxonomy label for the task of difficulty prediction provides gain in per-
formance in certain scenarios as demonstrated by the second ablation in Table 4
for datasets D1 and D2. However, this setting is not possible in real-time scenar-
ios as during inference, the incoming content would not be labeled with Bloom’s
taxonomy labels. We also observe that the performance of the original IA BERT
(QDiff) method is very close the mentioned ablation study. This demonstrates
that the error propagation from Bloom’s label prediction is mitigated in our
approach.

6 Conclusion

In this paper, we proposed a novel method for predicting the difficulty level of
the questions. The proposed method, QDiff , leverages an interactive attention
mechanism to model the relation between bloom’s taxonomy labels and the
input text. We observe that QDiff and the proposed ensemble construction
approach outperforms existing methods. The results also confirm the hypothesis
that modeling the interaction between the input and the task labels through an
attention mechanism performs better than implicit interactions captured using
only multi-task learning. Though question difficulty estimation is subjective,
we observe that modeling the interaction between related tasks improves the
performance.
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Abstract. This study develops a set of indicators for the quantitative
evaluation of drawing work in the study of drawing. In basic drawing
classes, students are taught to simplify the strokes that they use. To
simplify a stroke means to use only straight lines and simple curves. In
this study, we focus on the shapes of individual strokes in drawing work.
We have been conducting a remote drawing learning support system
at a Japanese art school since 2012. At this school, a digital drawing
instruction using a digital pen is offered for 3 months at the beginning of
each school year. Through drawing with a digital pen, each stroke that
the learner applies is recorded together with the relevant temporal and
geometrical information. In this paper, we describe the abstract stroke
information collected and classify it using a self-organizing feature map,
a machine learning method.

Keywords: Art education · Drawing · Stroke · Machine learning ·
Quality · Growth indicators

1 Introduction

Since the mid-2000s, a rapid increase has been seen in the publication of aca-
demic papers related to the digitization of art education. In these papers, both
theoretical proposals and practice-based discussions have been reported. These
have included a framework to support art education, an approach to mining
art course grades, the presentation of examples of specified motifs by GAN, the
emotional analysis of art-works, the automatic evaluation of students’ artworks
based on GLCM and color moments, and the automatic evaluation of ink paint-
ing artworks by MVPD-CNN [1–7]. However, most of these studies were focused
on completed works. By contrast, we have explored learning support methods
for the process of constructing artworks. We have focused on professional art
education for students seeking to enter an art university.
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Drawing is a fundamental technique in professional art education, and it is
generally considered to be the first skill that students should learn [8,9]. Partic-
ularly, in the early stages of learning drawing, learners are instructed to increase
their number of strokes and draw motifs using simple lines. Quantitative evalua-
tion using the number of strokes was achieved using a previous study by Sakimoto
et al. [10]. In this study, we focus on the shape of the strokes and explore the
possibility of supporting drawing learning by evaluating the quality of the shape
of the stroke.

In this paper, we report the results of stroke shape classification using a self-
organizing map (SOM), an unsupervised learning method. The classification
features of the map created by the learner’s strokes are compared between what
the learner and the instructor produce, and the possibility of classification as a
growth indicator is discussed.

2 Research Goal

This study is conducted to develop growth indicators based on the stroke shapes
used in drawing. To achieve this goal, we adopt a machine learning method
to process the drawing data (strokes) that are stored in the drawing learning
support system.

This basic study was conducted to verify the applicability of the machine
learning method. We classified the stroke data of three learners and one instruc-
tor. We com-pared the classification results among multiple drawings of the same
learner, among multiple learners, and between learners and instructors. These
results present the possibility that classification by stroke shape can be used as
an indicator to confirm the development of students’ drawing.

3 Method

3.1 Drawing Learning Support System and Drawing Process Data

It is difficult to recognize one’s own habits and weaknesses when learning to draw
by oneself. For this reason, students who hope to pursue art professionally often
study at art school. However, in one-to-many classes, it is difficult for instructors
to grasp all the drawings of each student. In response, Nagai et al. developed
a remote drawing learning support system for art learners [1,10,11]. Figure 1
shows the interfaces of this system. Using the system, learners can obtain advice
and evaluation from their instructors without being constrained by time or place.
In this system, a digital pen is a writing tool for learning drawing [12]. Using a
digital pen, the system records the geometric information of all the lines (strokes)
that the learner uses in the process of drawing.

In this study, process data from drawing stored in the drawing learning sup-
port system are analyzed. These data were generated in a digital drawing class
at a Japanese art school from 2012 to 2022. In a digital drawing class, students
draw on a specified motif with a digital pen within a specified time. The spec-
ified time is 20 min, and the specified motifs are a paper box in the first half
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Fig. 1. Overview of Nagai’s remote drawing learning system [1,10,11].

Fig. 2. Paper box drawing with digital pen in the digital drawing class.
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of the class (three lessons) and a paper bag in the second half (three lessons).
Figure 2 shows the classroom scene. Learners in this figure engaged in the paper
box drawing with digital pens. We analyze each stroke applied in this drawing
work.

3.2 Machine Learning Method for Stroke Classification

In this study, we classify strokes using convolutional NN. The input data consist
of two patterns: the stroke image and the feature vector of the stroke. The line
types identified by the rule base are used as teacher data in training. However,
the system is unable to classify the strokes correctly in either case. All such
strokes are classified as complex lines. This may be due to the inclusion relation
of the stroke images. For example, a point is included in a straight line, a curve,
and a complex line. This suggests that machine learning based on images and
features has limitations. We there-fore attempted to classify strokes based on
abstract data that maintain the shape information of the strokes.

An SOM is a neural network proposed by T. Kohonen [13]. It is a topology-
preserving map that performs unsupervised learning. The basic function of an
SOM is to map a high-dimensional data set in a low-dimensional space while
preserving the topological structure of the data distribution. For mapping to a
two-dimensional (2D) space, the data distribution is visualized as a topographic
map. This map is used for data mining. The procedure of map generation using
an SOM is shown below.

1. An initial map of a specified size is generated. A vector with the same number
of elements as the input data is assigned to each unit in the map. The initial
value of the vectors for each unit in the map is given randomly.

2. The data are input to the SOM.
3. One unit with the closest vector in Euclidean distance to the input data is

selected.
4. The input data are reflected to the vectors of the unit selected in step 3 and

to multiple units in the neighborhood of the selected unit at a certain learning
rate.

5. Repeat steps 2–4 for the specified number of times, decreasing the learning
rate and the range of the neighborhood.

6. A learned map is generated.

The unit selected in step 3 is called the best match unit (BMU). An SOM is
used in this study for the following reason.

– Where data with similar geometrical features are output at units near to each
other, it can identify the coherence of the strokes.

– The results are less complicated, even when the number of data is large and
there are a lot of similar data because similar elements are aggregated in the
nearby units.

– The algorithm is intuitive and simple, which makes it suitable for verifying
its applicability.
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Fig. 3. Before (left) and after (right) our completion calculation. In this figure, the
number of coordinates complemented is smaller than the number of coordinates origi-
nally complemented to enable visibility.

In this study, we map the 2D coordinate data of a stroke to a 2D SOM.
Following that, we assign the set of strokes contained in each drawing in the
generated map. Then, we observe the classification of the strokes in the drawings.

4 Data Mining of the Strokes in Drawing

4.1 Formation of Input Data for SOM

To analyze the stroke data using SOM, it is necessary to reshape these data into
a unified format. The formation method adopted in this study has four steps:
rotation, completion, translation and scaling, and binarization.

Rotation. The digital pen paper has an origin. Coordinate data based on the
origin are recorded in the digital pen. In the digital drawing class, the orientation
of the paper is decided by the learner, so the coordinates of the strokes stored
in the learning support system may be different for each drawing. Therefore,
the orientation of the stroke coordinates was unified so that the motif faces
downward toward the origin of the special paper. In this process, we used affine
transformation.

Completion. Each stroke in a drawing is represented by a set of geometric
coordinates. To input them into the SOM, the number of coordinates of each
stroke should be unified. Using the distribution of the number of coordinates of
the strokes recorded in the drawing learning support system, we set the number
of vectors to be input to the SOM as 1.5 times its IQR. In this case, we set
the number of vectors to 943. Drawings with strokes having more coordinates
than this value were excluded from the analysis. We set the coordinate data
such that the total number of strokes for all is 943. The interpolation was done
linearly, accounting for the distance between each coordinate of the stroke. In
other words, more interpolated coordinates were assigned to the more distant
coordinates, so that the distance between the coordinates after completion would
be equal. Figure 3 shows an image of coordinate completion.
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Fig. 4. A3 size paper template. Red edges are used for translation. Blue edges are used
for scaling. (Color figure online)

Translation and Scaling. In this study, we consider strokes of the same shape
but with different orientations and sizes to be nevertheless the same shape. For
this purpose, the translation, scaling, and rotation of the data are necessary. For
this, we adopt data translation and scaling. The procedure is shown as follows:

– The bounding box of the stroke is computed.
– The bounding box is translated so that it touches both red sides of the canvas

in the orientation shown in Fig. 4.
– The bounding box is scaled so that it touches one of the blue edges in Fig. 4.

The ratio of the height and width of the bounding box to the canvas is found,
and the larger ratio is used as the scaling factor.

Binarization. To make the SOM classification more effective, we binarize the
stroke data while maintaining the shape information of the stroke. The procedure
runs as follows:

– The paper area is divided into 3 mm squares and makes a paper matrix of 99
× 140.

– A 99 × 140 quadratic zero matrix (paper matrix) is generated.
– The coordinate data of the stroke are divided by 3 to obtain the quotient.

The correspondence between these values and the paper matrix is found.

In the paper matrix, the value of the element corresponding to the stroke
coordinate is replaced with 1. The width of the paper is set to 3 mm because,
in interviews with the instructor, it was judged that strokes smaller than 3 mm
square could be regarded as points in the drawing. Figure 5 presents an example
of the stroke data before and after binarization.

4.2 Input for SOM

The input data to the SOM is a one-dimensional (1D) vector. Therefore, we
transform the 99 × 140 2D matrix generated by the binarization into a 1D
vector of length 13,860. We set the SOM to learn strokes as a 100 × 100 2D
map. We assign a vector of length 13,860 to each unit of the initial SOM map.
The initial values of the vector elements are randomly assigned binary values (0
and 1).
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Fig. 5. Before (left) and after (right) our binarization calculation. In this figure, at the
visualization after binarization (right), the 0s in the matrix are displayed in black and
the 1s are in white.

As a basic analysis of stroke classification by SOM, three learners (called
Subject A, Subject B, and Subject C) and one instructor are selected for the
study. These three learners were selected because they were judged by the draw-
ing instructor to have shown a high degree of growth in the digital drawing class.
We analyze three drawings made by each learner for each motif of the paper box
and paper bag. The first drawing of the paper box is the initial learning datum,
and the third drawing of the paper bag is the final learning datum. As Subject C
has only two drawings of the paper bag, only the paper box data are used in
that case. The data for the instructor are one drawing for each motif. Figure 6
shows all drawings performed using this analysis.

Figure 7 shows an overview of the stroke analysis in an SOM. To generate
a learned map, we input all stroke data of the three drawings of each motif for
each learner. This process is repeated for each learner and each motif. Then, for
each learned map, the stroke data of the learner were used to generate that map,
and the unlearned instructor was input on a per drawing, and the BMU of each
stroke was recorded.

4.3 Results

Trained SOM. Figure 8 shows the results of visualizing the vectors of the units
of the trained SOM. These are the vectors assigned to the 24 units (from [50, 48]
to [53, 53]) in the 100 × 100 map, where the origin is [0, 0]. Clearly, the shape of
the strokes used in the drawing is learned in the vectors assigned to each unit.
We can also see that vectors with similar shapes are located in nearby units in
the 2D map. In all the learned SOMs generated in this study, the stroke shape
was examined in all regions. We confirmed that the similar vectors are clustered
in a 2D neighborhood.
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Fig. 6. Drawings by three subjects and an instructor using this analysis.

Data Mining. We analyze the BMUs obtained by inputting the strokes of each
drawing into a trained SOM. We define the percentage of BMUs in each drawing
as the variation rate (VR) of the strokes used in that drawing. The lower the VR,
the more strokes of a similar shape are used. The numerator of the VR is the
number of BMU types (excluding duplicated BMUs), and the denominator is the
total number of strokes in the drawing. Figure 9 shows some of the VRs obtained
in this analysis. These VRs are calculated by the BMUs inputted of each drawing
shown on the horizontal axis in the paper box SOM trained by three drawings
of each subject. For example, the points with the legend of “Subject A” are
taken from the trained SOM with all the strokes in Subject A’s three paper
box drawings. At most eight drawings are inputted to each subject’s trained
SOM. They are three paper box drawings created by each subject, one paper
box drawing created by an instructor, three paper bag drawings created by each
subject, and one paper bag drawing created by an instructor (see Fig. 6). The
box 1 of Subject A shown in Fig. 9 indicates that all the strokes of the first
drawing of the paper box are input to this trained map, and the VR is 85%.
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Fig. 7. An overview of SOM training and stroke mining in this study.

Fig. 8. Examples of visualizing the vectors of the trained SOM units. The 0s in the
vector in each unit are displayed in black, and the 1s are in white.

Table 1 shows the VRs obtained from the paper bag trained. This table shows
the VRs calculated from three learners’ drawings for each row unit. The Sub-
ject A row shows the result of training all of the strokes in Subject A’s three
paper bag drawings.

4.4 Considerations

Figure 9 shows that the VRs in the third paper box drawings were decreased
more than the first time for all subjects. The motif changed to a paper box after
the paper bag was learned. For Subject A and Subject B, the VR for paper bag
drawing was lower than that for paper box drawing. The reason for the less
pronounced decrease in VR values for the paper bag drawings, as seen in Fig. 9
and Table 1, may be that the skill in drawing had progressed, and the shape of
the strokes used in each drawing is within a narrower range than that of the
paper box.
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Fig. 9. VRs of each subject’s drawings and an instructor’s drawings.

Table 1. VRs for paper bag motif.

Trained SOM
Inputted data

bag 1 bag 2 bag 3 Instructor

Sublect A 77% 80% 85% 36%

Sublect B 75% 88% 72% 33%

Sublect C - - - -

The VR of the instructor was calculated by inputting the instructor’s strokes
of the paper box and the paper bag into each learner’s paper box trained SOM
(see Fig. 9). The instructor’s VRs are lower than those of the learners. This
suggests that the stroke shapes used by the instructor in drawing are more
similar in shape than those used by the learners.

We also compared the BMU of the learner strokes (learner BMU) with the
BMU of the instructor’s strokes (instructor BMU) in the learner’s trained SOM.
The maximum number of coordinates for the instructor’s strokes was 183. Among
the learners’ strokes that were assigned to only a learner’s BMU, we identified
stroke shapes with stroke coordinate numbers greater than 183. Figure 10 shows
four examples of these stroke shapes. In the context of learning drawing, a simple
line is a straight line or a smooth curve. The examples in Fig. 10 are generally
not simple lines. From interviews with drawing instructors, it was found that
the strokes in Fig. 10 are inappropriate shapes for drawing learning and should
not be repeated as learners develop.

Meanwhile, some of the learner strokes that were assigned only to learner
BMUs were judged to be simple lines. These strokes were considered to have the
same BMUs as other learners’ strokes and as the instructor’s strokes when they
were rotated. In this basic analysis, we did not apply any rotation to the stroke
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Fig. 10. Examples of stroke shapes assigned to only a learner BMU, and with stroke
coordinate numbers greater than 183. These examples are included in the first drawing
of Subject A.

data. In the future, we will add rotation to the formatting process to make it
clearer to identify the target strokes for instruction, as shown in Fig. 10.

We summarize our findings in this analysis as follows.

– VR decreases as learning progresses for drawings in the early stages of learn-
ing.

– For trained SOMs that have learned the learner’s drawing style, the instruc-
tor’s VR is lower than the learner’s VR.

– Learner strokes assigned only to learner BMUs tend not to be simple lines.

These findings indicate the following two points as possible indicators for
drawing growth in stroke analysis by SOM.

– Decreasing VR.
– Decreased number of strokes allocated only to the learner’s BMU.

5 Conclusion

This study aims to develop a concrete index for quantitative evaluation of the
results of drawing learning. In this paper, we first identified the characteristics
of strokes in drawing work and described the preprocessing for machine learning
with SOM. Next, the characteristics of machine learning based on the SOM
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method are described, and the results of its application to stroke classification
are shown. We showed the results of classifying the strokes of learners and an
instructor and discussed its potential as a growth indicator.

On the basis of the considerations described in this paper, we seek to improve
our mining method. Following this, we will merge the method into an auto
assessment function in a remote drawing learning support system.
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Abstract. Experienced readers intuitively mark text passages contain-
ing central concepts as learning-relevant when reading actively. Although
this intuitive process of marking important information is sometimes
imperfect, it fosters comprehension. It would be beneficial to approxi-
mate this intuition by automatically detecting potential learning-relevant
content. It is a building block for various upstream tasks such as auto-
matic self-assessment or intelligent author assistance. This work argues
that learners often apply heuristics based on different sentence types to
determine the learning-relevant contents in texts. We show that such
heuristics can be approximated using neural sentence classifiers and
implement two neural sentence classifiers detecting causal and definitory
sentences. We evaluate the classifiers’ ability to detect learning-relevant
information in an empirical study (N = 37). Furthermore, a system per-
formance evaluation compares the proposed classifiers with unsupervised
summarization systems. We find evidence for a small but reliable associa-
tion between the chosen automatically detectable sentence types (defini-
tion/causal) and the learners’ perception of content relevance. Addition-
ally, the classifiers outperform most other relevant content selection tech-
niques in our experiments. Interestingly, other simple heuristics based on
sentence position or length also exhibit strong performance.

Keywords: Content selection · Information extraction · Natural
language processing · Education

1 Introduction

Reading is an essential activity in education. While reading, learners construct
mental models which depend on various factors such as the readers’ attention,
prior knowledge, the text coherence or the text difficulty [2,8]. However, model
construction is imperfect, and readers sometimes miss crucial points or mis-
understand fundamental ideas. Thus, supporting these construction processes
may be achieved by educational assistance systems. They may detect the texts’
essential segments to scaffold the reading comprehension accordingly.
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However, what learners perceive as learning-relevant is an intuitive and mul-
tifaceted concept challenging to define. Hence, this work explores texts’ charac-
teristics for the detection of learning-relevant information. The objective is not to
perfectly capture learners’ intuition of what is relevant, but to determine if text
characteristics, particularly definition and causal sentences, provide a reasonable
approximation of the intuition. We pose the following research question:

RQ To what extent are automatically detected definitions and causal sentences
perceived as learning-relevant?

The underlying assumption behind the research question is that if the respec-
tive sentence types are important for learning, learners should also recognize
them as relevant. We investigate the research question with an empirical reading
comprehension study with N = 37 German-speaking learners. We furthermore
conduct a system evaluation of the proposed detection algorithms.

2 Related Work

There is a considerable amount of research applying unsupervised machine learn-
ing algorithms for learning-relevant content selection (e.g. [3,14]). Most of this
work assumes that text summarization algorithms transfer well to the problem
of learning-relevant content selection. However, this assumption does not hold in
general, and position and length heuristics sometimes outperform all other algo-
rithms [3]. Besides, supervised approaches extracting relevant content from texts
exist. The models aim to either extract keyphrases [1] or whole sentences [6,9,15].
These approaches use different machine learning techniques to learn what con-
stitutes learning-relevant information and apply a wide range of different algo-
rithms (e.g. [1,6]). Finally, some works focus on detecting definitions or causal
sentences to solve their upstream tasks. Steuer et al. [13] detect definitions in
texts to generate questions about their contents. Additionally, Stasaski et al. [12]
apply causal sentences selection to generate valuable questions about texts.

3 Definition and Causal Sentence Extraction Models

This work focuses on the direct evaluation of the content selection task in an
educational scenario with actual learners. We investigate the research question
stated in the introduction with an empirical study comprising German learners.
Consequently, we collect German corpora to train the respective sentence clas-
sification tasks. The collected corpus contains 5641 definitions and 1460 causal
sentences from textbooks. We train a BERT-based classifier [5] for both sentence
types. We model the classification task as a binary task with two separately
trained BERT classifiers for definitions and causal sentences. The amount of
negative labels sampled from the corpus equals the positive label count. Each
model trains for five epochs using Hugging Face’s default BERT configuration
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and the bert-base-german-cased snapshot. We do not perform any hyperparam-
eter tuning and select the last model checkpoint after five epochs for the study.
The models’ performance is evaluated using a 70% train and 30% test split. The
final performance of the trained classifiers on the test set is F1macro = 0.8 for
definitions and F1macro = 0.78 for causal sentences with precision and recall
values identical to the F1 score.

4 Experiments

We address the research question by conducting an empirical study (N = 37) in
which readers select text sentences they deem important. We run experiments
from a learner and system perspective on this data. From the learners’ perspec-
tive, we seek evidence of whether automatically detected definitions and causal
sentences are perceived differently than other sentences. We test the hypothesis:

H1 There is an association between the type of a sentence (definition/causal)
and its selection probability.

Moreover, the system perspective seeks to find out if the selection criteria
perform strong enough to build a competitive, learning-relevant sentence selec-
tion system. It is guided by the question:

E1Which extraction algorithms perform best for learning-relevant sentence
extraction?

For the data collection a study design similar to Dee-Lucas and Larkin [4]
is adapted (N = 37). Participants read five short science texts between 30 and
50 lines. The texts concern introductory concepts in biology, physics, and psy-
chology. The chosen concepts are purposefully selected such that the sample
readership will most likely have limited prior knowledge. We sample our reader-
ship via voluntary sampling, mainly from the local university. The mean age of
participants is M = 26.8, SD = 9.64 with 23 female and 14 male participants.

While reading, participants selected six sentences they perceived the most
learning-relevant for imaginary exam preparation. Every participant selected
and rated 30 sentences from 182 sentences in every response. The full dataset
thus comprises 182 ∗ 37 = 6734 selection decisions.

4.1 Learners’ Perspective: Characteristics of Selected Sentences

We test the given hypotheses with a logistical regression model (significance
level α = 0.05). The model operates on the sentence level with the dependent
variable sentence selection probability and four independent variables. The first
two binary variables describe the classifiers’ selection decision (Sdef and Scause).
The third variable Spos is computed by dividing the sentences index by the text’s
sentence count. It is included due to its observed relationship with the perceived
sentence importance [3]. The fourth variable Slen divides the sentence length
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by the maximum sentence length of the text. It is an intuitive heuristic: the
longer a sentence, the more information is comprised. The fitted model approx-
imates the data with pseudo − R2 = 0.09. It is significantly better than the
null model (LL − Null = −3014.1 LLR − p = 0.0). All coefficients are signifi-
cant. The average marginal effects are Sdef = 0.06, Scause = 0.02, Spos = −0.19
and Slen = 0.28. Thus, the significant model indicates a relationship between
the independent variables and the participants’ selection. However, the model
approximates the data only moderately (pseudo − R2 = 0.09). For comparison,
a regularly used heuristic states an pseudo−R2 > 0.2 as excellent model fit [10].
Yet, a moderate approximation is expected as we rely solely on text character-
istics. Thus, the given four-variable model will not thoroughly explain learners’
decision processes. Nevertheless, it shows a reliable association between the inde-
pendent variables and perceived learning relevancy. Furthermore, all independent
variables’ coefficients are significant, providing evidence of the usefulness of defi-
nition and causal classification for learning-relevant content selection. Note, that
the other indepedent variables are also significant and have higher marginal effect
sizes.

4.2 Systems’ Perspective: Algorithm Comparison

A gold standard dataset is necessary to compare the different systems’ perfor-
mances. Thus, we transform the collected dataset labelling sentence in the fourth
quartile (eight or more selections) as relevant and sentences in the first quar-
tile (zero or one selection) irrelevant. The transformed corpus consists of 101
data points, with 51 learning-relevant and 50 irrelevant data points. We report
precision, recall, and macro F1 score and compare seven algorithms.

The first comparison algorithm is SumBasic [11]. We apply German word
stemming and stop word removal, and for every text, the algorithm extracts
N = 10 sentences. Second, the LexRank algorithm [7] with TF-IDF matrices
initialized from the 10kGNAD1 dataset is used. It selects N = {10, 20} sen-
tences. Moreover, a sentence length heuristic selecting sentences longer than
p = {30, 40, 50} percent of the longest sentence in the text is applied. Further-
more, a position-based heuristic selecting all sentences in a given text’s initial
p = {20, 25, 30} percent is applied. The best-performing length and position
heuristics are combined by selecting a sentence classified by at least one heuris-
tic. Finally, the definition and causal classifier from the previous experiments
are used. They are also combined using a sentence if it is classified at least once.

Results. The evaluation results can be seen in Table 1. According to F1
scores, the best algorithms are the combined classifiers and combined heuris-
tics (F1 = 0.77). Although the combined heuristics perform well, it is unknown
which length and position parameters should be chosen under real-world con-
ditions. The best standalone heuristics perform decently, and a length heuristic

1 https://tblock.github.io/10kGNAD/.

https://tblock.github.io/10kGNAD/
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Table 1. Classification results on the gold standard dataset.

Classifier Precision Recall F1 # Pred.

Cause 0.65 0.55 0.60 43

Definition 0.79 0.67 0.72 43

Def-cause-combined 0.69 0.86 0.77 64

Sumbasic [10] 0.48 0.27 0.35 29

Lexrank [10] 0.74 0.45 0.56 31

Lexrank [20] 0.60 0.71 0.65 60

Position [20%] 0.88 0.45 0.60 26

Position [25%] 0.84 0.53 0.65 32

Position [30%] 0.78 0.57 0.66 37

Length [30%] 0.65 0.90 0.75 71

Length [40%] 0.76 0.73 0.74 49

Length [50%] 0.87 0.53 0.66 31

Length-pos-combined 0.64 0.96 0.77 68

is the best standalone approach. Among the classifiers, the definition classi-
fier performs best slightly worse than some length heuristics. SumBasic scores
F1 = 0.35 and the best LexRank result scores F1 = 0.65. Yet, this ranking is
not showing the complete picture. We have to consider the operation character-
istics of upstream systems. Tasks such as automatic question generation must
not necessarily recall all learning-relevant content before being useful. However,
if they identify many irrelevant sentences as relevant, users will probably lose
trust. Thus, we believe that classification precision is more critical than recall
for most upstream tasks. Hence, if the F1 score is similar, we theorize it is sen-
sible to prefer precision-oriented systems. In contrast to all other highly ranked
systems, the definition classifier has a high precision (p = 0.79) and reasonable
recall. We hence assume it to be a solid approach for many upstream tasks.

5 Conclusion

The conducted experiments show that neural sentence classification can be help-
ful in predicting learning-relevant sentences. The learner-centric view shows that
both classifications were weakly but reliably associated with increased perceived
learning relevancy. Therefore, the sentence type seems to influence what is per-
ceived as important in texts. From the system-centric view, combining both
classification heuristics or the length and position heuristics performs best. How-
ever, the best parameters for the length and position heuristics in a real-world
scenario are unknown. Thus, We interpret the system-centric results as evidence
that the proposed classifiers approximate some of the learners’ intuition of learn-
ing relevancy. In summary, there is no single algorithm that clearly identifies
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learning-relevant information. This is not surprising because learning relevance
is a complex, multifaceted concept. However, the proposed approaches, while
not perfect, have a reliable association with learning relevancy and outperform
unsupervised systems on the given dataset.
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Abstract. In 2019, New York State Education Department announced
54.6% of all students in grades 3 to 8 not meeting the standard of read-
ing proficiency. Motivated by the need for a more efficient intervention
model, we propose a recommender system to leverage the technology in
machine learning to recommend suitable reading materials for effective
intervention. The recommendation is based on the student’s prior reading
comprehension assessments and also assessments of other students at the
same grade level using collaborative filtering. No other prior academic or
demographic information of students is available. Two main challenges
are lack of explicit ratings of reading passages by students and the small
data size. Both are addressed in this paper. BERT is applied to determine
the textual evidence of a question, and linguistic properties are extracted
to generate a continuous rating for a question answered by a student to
reflect the skill level of the student. The difficulty level of a passage
is determined by the associated multiple-choice questions. The system
is trained with a collection of fourth grade New York English Language
Arts assessments. The training dataset is augmented with synthetic data
using SMOTE for better generalizability. Our system achieves 75.7% in
accuracy and 59.23% in F1-score.

Keywords: Reading comprehension · Intervention program ·
Recommender system · Collaborative filtering

1 Introduction

In New York State, USA, students in grades 3 to 8 take the State English
Language Arts (ELA) test each spring. An ELA test contains multiple-choice
questions and open-ended questions based on short passages in the test. To do
well, students should be able to read the text closely for textual evidence and to
make logical inferences from it. In 2019, New York State Education Department
reported that 54.6% of all students in grades 3 to 8 do not meet the standard
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of proficiency [2]. To drive the changes in students who are at some level of risk
for not meeting academic expectation, schools arrange academic intervention
service for all students who are well below or partially proficient, based on the
ELA score. However, a single performance score is not instrumental in explaining
the lack of specific language knowledge and skills typically demonstrated at that
grade level.

Our work is motivated by the need for a more effective Response-to-
Intervention model that continuously assess the need for changes in instruction
and goals, driven by students’ progress data [6]. We develop a machine learning
(ML) system for recommending instruction materials for reading comprehen-
sion, based on the prior reading assessments of an individual student and also of
students in the same grade level. A recommender system for e-learning comes in
various formats, depending on the data availability. A common approach is to
make recommendations of courses or predictions of student performance based
on known student and course characteristics [7–9]. Such problem can be easily
formulated as a classification or regression problem. Thai-Nghe et al. [10] pro-
posed a recommender system for math assessment based on matrix factorization
where student factors and some of the problem factors are known. Our work is
most similar to [10], but performs recommendation of reading passages based on
the predicted ratings of associated multiple-choice questions by a given student,
without any prior information regarding either the student or the assessment
material.

There are two main challenges to be addressed. First, the multiple-choice
questions have only dichotomous ratings (correctly or incorrectly answered) from
students. Second, the performance of a recommender system is limited by the
prior data for training, but our dataset is relatively small, comparing to the
growing dataset of millions of records for a commercial recommender system.
We explore linguistic properties of reading passages to address the first challenge
and employ data augmentation for the second challenge.

2 Dataset

The dataset consists of two parts. The first part is the set of six fourth grade
New York State mock ELA examinations from year 2005 to 2010. Only multiple-
choice questions are considered. In each examination there are five passages,
each having five to six associated questions, for a total of 28 questions. Question
and choice statements are typically short. The second part is the set of student
assessments, involving a total of 378 randomly-selected fourth grade students
with various levels of reading proficiency from 17 reading intervention classes.
Every participant was assigned an identification number and participated in
most three mock examinations. Each student answered from 4 to 84 questions
in total. No other background information, such as prior academic performance
or demographic data, was collected to protect the privacy of the participants.
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3 Methodology

A recommender system can be understood as a ML problem trained with a set
of 3-tuples: {[user ID, product ID, rating]}. Our input is a tuple of [student
ID, question ID, student answer]. As shown in Fig. 1, the weights of features
associated with the j-th student and with the i-th question should be estimated
jointly by the recommender system, and the rating of a new student-question
pair can be predicted using the estimated features. The fitness level of a reading
passage can be computed as the average of the predicted ratings of associated
multiple-choice questions by a given student. The system makes recommendation
by choosing passages with the rating in the range [0 − ε, 0]—a difficulty level
slightly surpassing the recent strength of a student—to promote learning.

Fig. 1. General concept of a recommender system demonstrated for e-learning. Student
features and question features are estimated from known ratings, and a new rating is
predicted as a combination of the estimated features.

To generate the ratings for student-question pairs, neither the nominal answer
choices nor the dichotomous scoring outcome of 0/1 is appropriate for a recom-
mendation system. It is necessary to convert the student’s answer choice of a
question to a continuous rating, reflecting the skill level of a student for answer-
ing a given question. Data augmentation is applied to the dataset to increase
the data variation for better generalizability of the model. Collaborative filter-
ing is adopted as the filtering technique of the recommendation system, which
simultaneously computes the student features and the question features using
all available ratings in the training pool.

3.1 Rating Transformation

To transform the rating from either nominal or dichotomous to continuous for
better discrimination, we explore ML techniques in natural language processing
to connect the questions to the passage with the textual evidence, and to extract
linguistic properties of the questions. A rating computed from the linguistic
properties of a question should reflect the underlying language skills needed to
correctly answer the given question.
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To locate the textual evidence of a question in the passage, Bidirectional
Encoder Representation from Transformer (BERT) [5] is applied to identify
connection between a question and a sentence in the passage. The pre-trained
version used in this study is BERT-base-uncased, which is further fine-tuned
with OneStopQA dataset [3] for reading comprehension with multiple-choice
questions.

Combining with the textual evidence, linguistic features are identified for
each answer choice of a question, because linguistic properties have been shown
to be important indicators for readability of a passage. We explore the Suit for
Automatic Linguistic Analysis Tools (SALAT) [1] for the social sciences. There
is a total of 3908 features generated for each answer choice (combined with the
textual evidence) of a question. Values of a feature are normalized to Z-scores
using the mean and standard deviation of the feature.

To generate the rating of a student-question pair, the 3908-tuple feature vector
of the student’s answer choice is converted into a scalar value using the magnitude
of the vector, which is normalized to a Z-score again and scaled to the range of
[0, 1], using a sigmoid function for linear scaling mainly in the clustered sections
closer to 0. Let df be the magnitude of the feature vector f in Z-score, the sigmoid
score s(df ) ∈ [0, 1] is computed as s(df ) = 1

1+exp(c∗(−df ))
, where c = 2.5 deter-

mined empirically. The final rating r = s(df ) is set for a correct answer choice and
r = s(df ) − 1 for an incorrect answer choice, so all correct answers have ratings
greater than 0 and all incorrect answers have ratings less than 0. r ∈ [−1, 1] with
1 representing exceptional and –1 for well below proficient.

3.2 Data Augmentation

Data augmentation is common in ML to increase the amount of data to deal with
the problem of class imbalance or to improve generalizability of the model. To
add synthetic data that are slightly modified of existing data, we adopt SMOTE
(Synthetic Minority Oversampling Technique) [4] to generate additional samples
for each student. Given a question that a student completed, the feature vector
f is computed as the average of the feature vectors of the 4 answer choices.
Based on the cosine similarity, its K (=3) nearest neighbors of the same student
are located, and one neighbor f ′ is randomly decided to determine the direction
of perturbation. The new feature f̄ is f perturbed with a random portion η
between [0,1] of the difference between f and f ′: f̄ = f + η(f ′ − f). f̄ is marked
as correctly or incorrectly answered question the same as f , and is converted to
the rating following the same steps described in Sect. 3.1.

3.3 Collaborative Filtering

Collaborative filtering implemented using matrix factorization aims to estimate
two types of feature vectors: x(i) ∈ �n representing i-th question and θ(j) ∈ �n

representing j-th student, where n = 10 set empirically. There are nm questions
and nu students. x(i) is constrained by ratings of all students who answered
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question i and θ(j) is constrained by ratings of all questions that student j
answered. When both [x(1), . . . , x(nm)] and [θ(1), . . . , θ(nu)] are unknown, they
can be estimated jointly by minimizing the following cost function:

J
(
x(1), .., x(nm), θ(1), .., θ(nu)

)
=

1
2

∑
(i,j):r(i,j)=1

((
θ(j)

)T

x(i) − y(i,j)

)2

+
λ

2

nm∑
i=1

n∑
k=1

(
x
(i)
k

)2

+
λ

2

nu∑
j=1

n∑
k=1

(
θ
(j)
k

)2

,

(1)

where y(i,j) is the rating for student j and question i, and r(i, j) = 1 indicates
valid rating for student j and question i. The last two terms in Eq. 1 are for
regularization to avoid overfitting. The minimization process is initialized with
random values for all vectors and alternates the estimations of [x(1), . . . , x(nm)]
and [θ(1), . . . , θ(nu)] by fixing another vector until the process converges.

To predict whether student j will correctly answer question i, the rating r is
estimated as r = (θ(j))Tx(i). To map r back to the answer choices, ratings of the
choices are computed and the choice with the rating closest to r is the predicted
choice of student j if given question i.

4 Experiments and Results

There is a total of 27731 answered records with 67.5% correctly answered. Data
augmentation was applied to add another 35773 records for training—168 ques-
tions per student in total. Leave-one-out validation was performed on only the
original dataset of 27731 records. As a limitation of our current study, we were
able to only validate the performance prediction of a student on a question, not
the effectiveness of the recommendation for Response-to-Intervention.

We assessed the performance of the system with accuracy and F1-score. Since
incorrectly answered records are considered the minority for the classification
problem, they are considered the positive class, whereas the correctly answered
records are the negative class. A prediction is considered correct if the stu-
dent scored or not scored the question and system predicts the same outcome,
regardless of the answer choice picked. The F1-score provides better insight to
a problem with imbalance classes since it ignores the correct predictions of the
majority class (i.e. true negatives) by considering only the precision and recall of
the minority class. Our system achieves an F1-score of 55.93% and accuracy of
72.83% without data augmentation, and 59.23% and 75.7% with data augmenta-
tion. We also compared our system with content-based filtering as the engine of
the recommender system [11]—the rating given by a student for a new question
is computed from the ratings of K (=3) nearest questions answered by the same
student. Collaborative filtering outperforms content-based filtering by 2.45% in
accuracy and 6.34% in F1-score. It shows the importance of automatic deter-
mination of feature representation of questions from the data using all ratings
available by the cohort.
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If the process of rating transformation is completely removed and the continu-
ous rating is replaced with 0/1 rating, i.e. 1 for a correctly answered question and
0 for an incorrectly answered question, the F1-score degrades substantially from
55.93% to 27.78%. The use of BERT for evidence identification only improves the
F1-score by 1.59%. An explanation for the very minor improvement from BERT
is lack of discrimination of strong evidence supporting a question; on average,
close to 54% of a passage is considered as the evidence for an answer choice of
a question, but most statements are irrelevant. As a result, 3908-tuple feature
vectors for 4 answer choices of a question can be very close in the feature space
and the transformed ratings are less dispersed.

5 Conclusions and Discussion

The proposed system supports intervention for reading comprehension by rec-
ommending reading passages of difficulty level slightly surpassing the recent
strength of a student to promote learning. Our proposed rating transformation
scheme doubles the F1-score by converting the binary score to a continuous value
using linguistic properties of a question with its supporting evidence from the
reading passage. Data augmentation further boosts the performance by 3.3%.
Our model can be easily generalized for other formats of reading comprehension,
such as short-answer questions, if linguistic properties can be reliably computed
from the associated question(s) with the supporting textual evidence identified.
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Abstract. Having students write reflections has been shown to help
teachers improve their instruction and students improve their learning
outcomes. With the aid of Natural Language Processing (NLP), real-
time educational applications that can assess and provide feedback on
reflection quality can be deployed. In this work, we first evaluate vari-
ous NLP approaches for developing a reflection quality prediction model,
aiming to find a configuration that balances model simplicity and gen-
eralizability across courses. Second, using the model that best balances
runtime performance and predictive accuracy, we evaluate the impact of
using this model to trigger real-time feedback regarding reflection qual-
ity in a mobile application currently being deployed in multiple courses
across universities. Analysis of students’ long-term (semester-level) and
short-term (reflection writing level) changes in reflection quality across
multiple classes demonstrate the utility of the deployed model in encour-
aging students to submit reflections with higher quality.

Keywords: Reflections · NLP · Quality prediction · Feedback

1 Introduction

Enabling students to write free-text responses to reflection prompts has been
shown to improve learning gain and teaching quality [10]. Prior computational
work has largely focused on reflection quality assessment [3,7,9,12,13], but has
typically considered data from only single course domains and evaluated models
for accuracy without regard to runtime performance. Moreover, while reflection
quality modeling has been used to understand learning outcomes, its potential
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for adaptive reflection scaffolding largely remains an area for future research [2]
or only studied in the lab [5]. Expanding on this prior literature, we perform
research in two stages to provide students with real-time reflection quality assess-
ment and feedback. In the first stage, we design new quality prediction models
using recent transformer-based NLP techniques, and investigate model perfor-
mance along two dimensions: 1) accuracy within and across conditions common
to classroom use cases (e.g., differing courses), and 2) run-time (e.g., to determine
which models can be integrated into a real-time application). In the second
stage, we incorporate the best model into the CourseMIRROR mobile app, with
the goal of providing students with real-time feedback. An in-the-wild evaluation
of the technology deployment across multiple college classes demonstrates how
providing feedback improves the quality of submitted reflections.

2 First Stage: Reflection Quality Prediction

Data for Model Development. We use the publicly available CourseMIR-
ROR (CM) corpus1 [5,9] which contains student reflections collected from 4
undergraduate classes (Chemistry (Chm), Statistics (ST), and Material Science
(MSG1, MSG2)) at the end of each lecture. Each reflection was scored for qual-
ity in terms of specificity by trained raters on a 4 point scale, according to the
guidelines in [9]. Table 1 summarizes the reflection distributions in the corpus.

Model Design. Following prior work, we implement a feature extractor mod-
ule to encode reflections, followed by a prediction module to predict the reflec-
tion quality. While early models used handcrafted predictive features [7,9,12],
recent research used neural network (NN) encoders to automatically extract
features [3,6,13]. We similarly use a NN to extract all features, but unlike
prior work, we use recent BERT-based transformer encoders as they have
achieved better performance on many downstream tasks compared to earlier
NN encoders (e.g., word2vec, GloVe, etc.) [1]. We integrate and compare two
sentence encoders within our model. DistilBERT [11] is a distilled version of
the BERT transformer-based encoder [4]. RoBERTa [8] is an optimized ver-
sion of the original BERT, where model hyperparameters were tuned to achieve
better performance compared to BERT. We predict quality using classifica-
tion (following CourseMIRROR [5,9]) and report results using support vector
machines (SVM).

Model and Data Configurations. We experimented with three different con-
figurations of RoBERTa to observe the impact of model encoder size: RoBERTa
(base, and large), and DistilRoBERTa. The encoder parameters are kept fixed
during model training. For evaluation, we use leave-one-out to split the data,
where reflections in each testing fold come from a held-out course not used dur-
ing model training. This corresponds to the use case for the second stage of our
1 https://engineering.purdue.edu/coursemirror/download/reflections-quality-data/.

https://engineering.purdue.edu/coursemirror/download/reflections-quality-data/
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research, where the model trained at the conclusion of stage one will be used to
predict the quality of reflections from new courses in stage two.

Evaluation Results. With respect to predictive performance, Table 1 shows
that while all transformer models perform very closely, the best QWK (Quadratic
Weighted Kappa) score is achieved by DistilBERT. As predicted, all four BERT-
based transformer encoders outperform a baseline model using a GloVe NN
encoder (which was used to encode reflections in [6]). With respect to runtime,
Table 1 shows that RoBERTa large takes on average 6 times and 3 times the
time to embed compared to DistilBERT and DistilRoBERTa, respectively. We
decided to choose the DistilBERT model for our real-time deployment as it is
slightly faster than DistilRoBERTa and achieves best predictive performance.

Table 1. CourseMIRROR (CM) corpus reflections distribution and model performance
(QWK) and runtime (in seconds) results (best in bold).

CM data distribution Model QWK Reflection embedding time

Courses Scores Max Avg Min

ST 1769 1 1354 GloVe (Baseline) 0.66 NA

MSG1 395 2 2035 RoBERTa base 0.77 0.24 0.13 0.11

Chm 1034 3 2377 RoBERTa large 0.78 0.9 0.35 0.26

MSG2 3626 4 1058 DistilBERT 0.79 0.13 0.06 0.05

Total = 6824 DistilRoBERTa 0.77 0.16 0.10 0.09

3 Second Stage: Improving Reflection Quality

Fig. 1. Real-time quality feedback as a reflection is being written.

We now turn to presenting real-time feedback to students while writing reflec-
tions in a mobile application. First, we hosted the DistilBERT model from Sect. 2
on a server and provided an API to communicate with the hosted quality pre-
diction model. Second, we integrated communication into the CourseMIRROR
mobile application that students used to write and submit reflections, to enable
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CourseMIRROR to provide a real-time indicator of the predicted reflection qual-
ity while students are actively writing before submission. Figure 1 shows the
interface of the reflection submission mobile application. To avoid flooding the
server with requests, we decided not to call the API for each student’s change
within the typing session as we didn’t expect the quality score to change with
every character change. Instead, we performed API calls whenever the number
of words became odd, e.g., number of words is 1, 3, 5, 3, 5, 7, etc.

Table 2. Data used for feedback evaluation: across semester analysis and within session
analysis. ARPL refers to average number of reflections per lecture.

Across semester analysis Within session analysis

Course # Lecs. # Students ARPL Course # Lecs. # Students ARPL

+ Feedback PHYS1 32 143 72 CS1 26 33 14.19

PHYS2 18 123 47 CS2 28 30 12.14

PHYS3 9 92 17 CS3 26 46 12.34

ENGR1 20 90 53 IS1 16 54 20.9

No feedback ENGR2 26 124 64 CS4 27 19 4.5

Avg # logs per reflection 9.06

Table 3. Percentage of students with last lecture’s reflection score less than first lec-
ture’s reflection score and vice versa (left), and average reflection quality score for
submitted reflections for the first and last lecture of the semester (right).

Last < First Last >= First First Lec mean Last Lec mean

Avg. of with feedback 27.5% 72.5% 2.89 2.85

No feedback ENGR2 65% 35% 3.2 2.5

3.1 Experiment 1: Does Real-Time Quality feedback result
in Better Reflections Through a Semester, Compared to No
Feedback?

Reflection Data. We collected the reflections summarized in Table 2 (left)
using the mobile application in 5 different college-level courses across two uni-
versities. Reflections from four courses were collected after integrating the real-
time feedback algorithm during the Spring 2021 semester. Reflections from the
remaining course were used as a control group,2 as they were collected before the
feedback algorithm was integrated into the mobile application. We performed
human annotation of reflection quality for data from all courses and
carried out the analysis using these human scores. Three annotators
evaluated the reflections based on the annotation guidelines [9].

2 We didn’t randomly assign students to feedback and control groups, as the data
collection happened in two different semesters.
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Evaluation Results. Table 3 compares average reflection quality change for
the courses with real-time quality feedback versus the course without. At the
reflection level, the last two columns show the average score of submitted reflec-
tions for the first and last lecture of the semester.3 For the average of the four
courses with feedback, score of the first and last lectures are very close, with a
0.04 difference. For the course with no feedback, the scores show a 0.7 degra-
dation, which is around a seventeen times larger difference than the feedback
course difference. At the student level, the first two columns show the percent-
age of students where their last lecture’s reflection score was less than their first
lecture’s score and vice-versa. With feedback, the percentage of students sub-
mitting equal or higher-quality reflections for the last lecture is greater (bolded)
than those who submit lower-quality reflections. When no feedback is presented,
the majority of students (bolded) tend to submit lower-quality reflections at the
semester’s end. In sum, our results support feedback utility.

Table 4. Score improvement within sessions.

Final score vs first score Score change direction

(Endpoint category) (Trend category)

Improved Constant Decreased Increasing Constant Other

Avg of 5 courses 54.1% 39.9% 5.9% 35.6% 39.9% 24.4%

3.2 Experiment 2: Do Students Keep Writing a Reflection Until It
Is of High Quality, Each Time They Submit a Reflection?

Reflection Data. For Experiment 2, we logged the changes in reflection quality
provided by the deployed model while students were typing the reflections. This
can help us observe if the feedback provided helped students improve their sub-
mission quality within a writing session. We used data from 5 different college
level courses that used the application after within session logging was incorpo-
rated into the application. Logs were collected from typing sessions and
contained scores for each partial reflection . Table 2 (right) summarizes
data size and the average number of logged scores.

Evaluation Results. We first categorize each series of logs using one of three
trend categories, based on the pattern when considering all logged scores for a
given reflection. Increasing series are monotonically increasing, constant series
have constant value, while other series are neither monotonically increasing nor
constant. We also categorize each series using one of three endpoint categories,
based on comparing only the starting and ending values. Improved series have
a final value higher than the starting value, constant series have a final value
3 We performed additional experiments comparing the mean of the first/last quarters

of lectures instead of the first/last lecture only, and we observed similar findings.
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equal to the starting value, while decreased series have a final value less than
the starting value. Table 4 shows the distribution of these categories for average
of all courses using the application after within-session API logging was imple-
mented (Table 2). For trends (right columns), on average, more than 75% of
series are either improving or constant, with around 35% improving. This shows
that students often keep improving their reflections until they submit, support-
ing the utility of real-time feedback. Similarly, comparing the last score to the
first score in the series (left columns) shows that in most cases (54%), students
end the writing session with higher quality reflections than what they started
with. Only around 6% of series end with lower quality reflections than what they
started with, suggesting that even when a score drops during a writing session
(the “other” trend category), most students recover or improve the quality by
the end of the session. In sum, our results again support feedback utility.

4 Summary

Our first stage experiments in model development focused on balancing accuracy
and efficiency when predicting reflection quality. Our results suggested Distil-
BERT as the most promising model for deployment in a real-time application.
Our second stage experiments showed that using the model to provide real-
time quality feedback did indeed help students submit higher-quality reflections
within a reflection writing session and over the semester. For future work, we
plan to tackle a few limitations of our current research. First, the feedback gen-
erated consists of a color corresponding to an ordinal value and a static message.
We would like to explore generating dynamic messages tailored to the reflection
content. Additionally, we plan to investigate the utility of generating more per-
sonalized feedback that integrates multiple dimensions in addition to specificity.
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Abstract. Teachers often conduct surveys in their classes to gain
insights into topics of interest. When analyzing surveys with open-ended
responses, a teacher traditionally has to read the responses one by one,
which is a labor-intensive and time-consuming process. We present a
novel end-to-end context-aware framework that extracts, aggregates, and
abbreviates embedded semantic patterns in open-response survey data.
Our framework uses a pre-trained natural language model to encode
the textual data into semantic vectors. The encoded vectors then get
clustered either into an optimally tuned number of groups or into a
set of groups with pre-specified titles. We provide context-aware word-
clouds that demonstrate the semantically prominent keywords within
each group. Honoring user privacy, we have successfully built the on-
device implementation of our framework suitable for real-time analysis
on mobile devices and have tested it on a synthetic dataset. Our frame-
work reduces the costs at-scale by automating the process of extracting
the most insightful information pieces from survey data.

Keywords: Surveys · Context-aware · Clustering · Natural language
model

1 Introduction

Formative assessment refers to a set of activities undertaken by teachers to gather
information about the learning progress of students. Surveys are a commonly
used formative assessment method in classrooms. Formative assessment using
surveys usually includes four steps, namely (i) creation (ii) collection (iii) analy-
sis, and (iv) action. Teachers often use four types of questions in surveys, namely
(i) multiple-choice (ii) rating scale (iii) likert scale, and (iv) open-response. In the
analysis step, analyzing the responses to open-response questions is not straight-
forward since they can include a wide range of topics and concepts. For analyzing
the open-responses teachers commonly go through the responses one by one and
find out the key themes. This analysis approach is extremely time-consuming,
inefficient, challenging, and often biased. There have been efforts to automate

c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 526–532, 2022.
https://doi.org/10.1007/978-3-031-11644-5_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_44&domain=pdf
https://doi.org/10.1007/978-3-031-11644-5_44


Open-Response Surveys Context-Aware Clustering 527

survey analysis to save time and cost and be able to use the outcome of such anal-
ysis to increase user satisfaction and improve services. A common approach for
analyzing open-ended survey responses is the use of topic modeling [9]. The main
challenge behind using topic modeling techniques is that they do not account for
contextual information and merely rely on the word-level frequencies. Moreover,
they require careful pre-processing steps, are vulnerable to not generalizing well
on unseen samples, need extensive hyperparameter tuning, and cannot capture
implicit semantics such as sarcasm, anger, metaphors, and figurative languages
[1]. In order to overcome such shortcomings, in this work, we present an end-to-
end framework for context-aware analysis of open-response survey data.

2 Methodology

In this work, we use pre-trained natural language models in order to extract the
contextual semantic patterns in a collection of open-responses. Pre-trained neu-
ral models are commonly used to capture the semantics at the word as well as
sentence levels in a wide range of tasks such as text generation, building dialogue
systems, text classification, hate speech detection, sentiment analysis, named
entity recognition, question answering, and text summarization. There are two
main categories of such models for capturing the semantics, namely (i) word-
level models and (ii) sentence-level models. Pre-trained word-level models such
as Word2Vec [4] and GloVe [5] are used to encode words into so-called embed-
ding vectors. One major limitation of word-level embedding vectors obtained by
Word2Vec and GloVe is that they do not capture the context of the words in
sentences. Context-aware word-level embeddings such as ELMo [6] and BERT
[2] on the other hand attempt to address that shortcoming by accounting for
the context of a word within a sentence. Recently, pre-trained language mod-
els have been used for capturing the contexts beyond word-level in order to
encode sentences into embedding vectors. In this work, we use the Sentence-
BERT (SBERT) [7] model provided by HuggingFace [8] to get the embedding
vectors of words as well as sentences.

2.1 Context-Aware Clustering

In the clustering task, the inputs are the raw open-responses gathered from the
surveys. Using the SBERT pre-trained language model we first tokenize and
then extract the embedding vectors for each input sample. The SBERT model
maps sentences and paragraphs to a 384 dimensional dense vector space. Once
the embedding vectors are created we use the k-means algorithm to cluster the
input samples. In the k-means algorithm, the number of clusters k is unknown
and needs to be tuned for and provided as an input. We use the silhouette score
to find the best number of clusters k∗. For doing that we calculate the silhouette
score values for multiple number of clusters between 2 and an upper bound of
kmax and choose k∗ as the number of clusters where the silhouette score obtains
its maximum value as k∗ = arg maxk SS(k) for k ∈ [2, kmax], where SS(k) is the
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silhouette score for a given clustering configuration with k number of clusters.
Finally, we annotate each cluster with the prominent keywords of its samples, and
we generate wordclouds for each cluster separately as well as a unified wordcloud
for all the clusters together.

2.2 Context-Aware Cluster Assignment

Fig. 1. Overview of the cluster assignment approach.

In the clustering assignment approach, we have two groups of inputs, namely,
the raw open-responses (S) and the labels of the clusters (L). Using the SBERT
pre-trained language model we tokenize and extract the embedding vectors ES

and EL, respectively for each group of inputs. Next, we calculate the assign-
ment matrix A with its elements being the pairwise cosine similarity between
the sentence embeddings and the cluster label embeddings as A = aij =
Sim(ESi

, ELj
) for ∀i ∈ {1, . . . , m}, for ∀j ∈ {1, . . . , l} , where m and l are the

number of input open-responses and input cluster labels, respectively. Sim( ) rep-
resents the cosine similarity function. In this work, the length of the embedding
vectors generated by the SBERT models is V = 384. Once we build the assign-
ment matrix A, the corresponding assigned label ci for sentence i can be found as
ci = arg maxj aij for ∀j ∈ {1, . . . , l} and ∀i ∈ {1, . . . , m}, where each sentence
is assigned the label with the highest cosine similarity in the embedding space.
Figure 1 illustrates the steps involved in the cluster assignment approach for cal-
culating the assignment matrix A and finding the assigned labels. It is worth noting
that since the cluster labels are provided as an input in the cluster assignment app-
roach, different from clustering in Sect. 2.1, we do not annotate the clusters. The
input titles are considered as the labels of the clusters.

2.3 Context-Aware Insights

Fig. 2. Overview of the cluster annotation (labeling) approach.
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Cluster Annotation: In the clustering task, the output of the clustering func-
tion is a set of grouped open-responses. Assuming that the cluster Ci has NCi

number of sentences, we tokenize all the sentences and pre-process (e.g., remov-
ing the stop-words, lemmatization and/or stemming) the tokens. We then gather
the set of tokens Ti corresponding to cluster Ci. Next, using the SBERT pre-
trained language model we extract the embedding vectors for the set of sentences
(ECi

) and tokens (ETi
). Afterward, we calculate the average of sentence embed-

dings as ĒCi
, which is the centroid of a cluster in the embedding space. Next,

for each cluster Ci, we calculate the weight value wt of each token as the cosine
similarity between ĒCi

and the token embedding vector et. We then sort the
tokens in each cluster with respect to wt values in descending order. Finally, we
use the top 5 prominent tokens (i.e., with the largest wt values) for annotating
each cluster. Figure 2 illustrates an overview of the described cluster annotation
approach.

Wordcloud Generation: Wordcloud as a visual representation of text data is
commonly used to depict keywords where the sizes of the words represent their
frequency or importance level. In this work, we present an approach for creat-
ing context-aware wordclouds. We consider (i) cluster-level wordclouds for each
cluster, and (ii) unified wordcloud for all the input open-responses. The cluster-
level wordclouds include the top prominent tokens with their sizes account-
ing for weight values. The unified wordcloud shows the prominent keywords
across all clusters. To create the unified wordcloud, we use the words in the
cluster-level wordclouds together with their corresponding weight values w. We
then scale w with a density coefficient ρ that accounts for the relative number
of samples in each cluster. The density coefficient for cluster Ci is defined as
ρi = NCi

/m where i ∈ {1, . . . , k}, where NCi
is the number of samples in clus-

ter Ci, m is the total number of input open-responses, and k is the number of
clusters. Accordingly, the scaled weight values of the prominent tokens (w∗) for
the cluster Ci become w∗

t
(i)
j

= ρiwt
(i)
j

for ∀j ∈ {1, . . . , 5} and ∀i ∈ {1, . . . , k},

where k is the number of clusters. The scaled weight values (w∗) not only take
into account the importance of each keyword at the cluster level (i.e., through
w), but also account for the relative importance of each cluster depending on
how many samples a cluster entails (i.e., through ρ).

3 Dataset

As the dataset for this work, the authors of this manuscript have manually
written a plausible set of responses to an open-response survey question for a
chemistry class. In this survey, the teacher asks about one topic that each student
would like to be reviewed before their upcoming exam.
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4 Results and Discussion

4.1 Context-Aware Clustering

Upon our investigation, k∗ = 6 as the number of clusters achieved the maximum
silhouette score of SS = 0.299. Accordingly, in context-aware clustering, we
consider the number of clusters to be six. Table 1 shows the list of clustered
responses. In Table 1, we see that the responses that have fallen under each
group discuss identical topics. For instance, cluster C1 entails responses that
mostly talk about atomic interactions, whereas cluster C6 is mostly related to
different forms of unit conversion.

Figure 3(a) illustrates the UMAP [3] projection of the sentence embeddings
where the color represents different clusters. We can see that through the UMAP
projection in the embeddings space the clusters get properly segregated and form
six distinct groups. Next, we annotate each cluster by following the steps pre-
sented earlier. Upon calculating the importance values of all the tokens in each
cluster (WTi

), we found that the top five tokens for clusters C1 to C6 respec-
tively are: {ionic, bonding, covalent, bond, atom}, {proton, neutron, electron,
atomic, atom}, {enthalpy, entropy, thermodynamic, explain, difference}, {acid,
chemical, chemistry, reaction, compound}, {periodic, chemical, table, reaction,
element}, {unit, kilogram, conversion, meter, convert}. Figure 3(b) shows the
wordclouds for the prominent tokens of each cluster where the size of words rep-
resents the importance values of tokens WTi

. In Fig. 3(b) the middle wordcloud

Table 1. List of clustered responses distributed across the six clusters C1 to C6.

Cluster ID Clustered Responses

C1

About the differences between ionic bonding & covalent bonding.

About the ionic bonding and its properties when reacting with other substances.

About the way atoms join together through ionic and covalent bonding.

I have a hard time understanding how in ionic bonding, atoms transfer electrons to each other?

could you please explain why Ionic bonds form between a metal and a nonmetal mostly?

please clarify about the covalent and ionic bonding and how they are different and similar.

C2

About the differences between proton and neutron.

About the similarities between protons and neutrons with electrons.

it would be great if you could explain more about the atomic structure and neutron, proton, electron.

please explain more about the composition of atoms such as electron, neutron and proton.

please explain what are the common properties of protons and neutrons.

C3

About the differences between entropy and enthalpy, and also their similarities.

Could you please explain how entropy can get transformed in to enthalpy and vice versa.

Explain the entropy and enthalpy concepts that we learned in the beginning of semester.

Why entropy and enthalpy are important and how they are used in thermodynamic.

C4

About acids & bases that we learned in the last lecture.

About the difference between bases and acids in their chemical formula.

About the use cases of both acids and bases in industry.

Please elaborate on the reactions of acids and bases with inert compounds.

Please explain the applications of acids in chemistry.

C5

About how we can use periodic table to identify reactions.

About the total number of elements in the periodic table that we studied.

Regarding the periodic table and the order of chemical elements in each column.

C6

about how distance unit in foot can get converted to distance unit in meter.

about the unit conversion in SI system and how that differs with UK system.

please explain about units and how unit conversion works.

please explain how we can transform pounds unit to kilograms.

please explain unit conversion again with a few more examples.
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shows the unified wordcloud where the size of the words represents the scaled
weight values of the prominent tokens w∗. The unified wordcloud enables a quick
understanding of the prominent tokens across all the clusters by accounting for
their relative importance within each cluster as well as the number of samples
that each cluster entails.

Cluster #1

Cluster #2

Cluster #3

Cluster #4

Cluster #5

Cluster #6

Unified Word Cloud

(b)

Fig. 3. (a) UMAP representation of sentence embeddings. (b) Wordclouds of the promi-
nent tokens of the clusters.

4.2 Context-Aware Cluster Assignment

Table 2 presents the list of a plausible set of input titles for the response cate-
gories of an open-response survey question for a chemistry class that the authors
of this manuscript have manually written. The main difference between the clus-
ter assignment task in this section and the clustering task in the previous section
is that here the teacher has a set of bucket titles in mind where he/she wants
to group the responses with respect to. Here, in addition to the input responses
we also extract the embeddings of the input titles in Table 2 using the pre-
trained language model. Upon building the assignment matrix A we assign to
each input response the title with the highest cosine similarity in the embed-
ding space. Figure 4 shows the average (in red) as well as the standard deviation
(in blue) values of the assignment matrix A for each cluster label (title). Even
though in Fig. 4 we show the average values of the assignment matrix (A) for
each input cluster label, the assignment happens at the input response and input
title level where we assign to each input response the title with the highest cosine
similarity in the embedding space.

Table 2. List of input titles for the open-response survey question.

ID Input Titles

#1 The chapter on molecular ionic and covalent bonds

#2 The chapter on atomic subparticles such as proton, electron, neutron

#3 The chapter on thermodynamic concepts such as enthalpy and entropy

#4 The chapter on acid and base reactions

#5 The chapter on periodic table layout

#6 The chapter on converting different units
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Fig. 4. The average (in red) as well as the standard deviation (in blue) values of the
assignment matrix (A) for each input cluster label (title) in Table 2. (Color figure
online)

5 Conclusion and Future Work

In this work, we presented a novel end-to-end context-aware framework to
extract, aggregate, and annotate embedded semantic patterns in open-response
survey data. As a future direction, we intend to investigate extending our pro-
posed framework to non-English languages using multi-language pre-trained
models.

References

1. Buenano-Fernandez, D., Gonzalez, M., Gil, D., Lujan-Mora, S.: Text mining of open-
ended questions in self-assessment of university teachers: an LDA topic modeling
approach. IEEE Access 8, 35318–35330 (2020)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding (2019)

3. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction (2018)

4. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: 1st International Conference on Learning Represen-
tations, ICLR 2013 - Workshop Track Proceedings, pp. 1–12 (2013)

5. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: EMNLP (2014)

6. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: NAACL HLT, pp. 2227–
2237 (2018)

7. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese
BERT-networks. In: EMNLP-IJCNLP, pp. 3982–3992 (2019)

8. Reimers, N., Gurevych, I.: Sentence Transformers Trained on the MiniLM Para-
phrase Corpus (2019)

9. Vayansky, I., Kumar, S.A.: A review of topic modeling methods. Inf. Syst. 94,
101582 (2020)



Towards Aligning Slides and Video
Snippets: Mitigating Sequence

and Content Mismatches

Ziyuan Liu(B) and Hady W. Lauw(B)

School of Computing and Information Systems, Singapore Management University,
Singapore, Singapore

{ziyuan.liu.2018,hadywlauw}@smu.edu.sg

Abstract. Slides are important form of teaching materials used in var-
ious courses at academic institutions. Due to their compactness, slides
on their own may not stand as complete reference materials. To aid stu-
dents’ understanding, it would be useful to supplement slides with other
materials such as online videos. Given a deck of slides and a related video,
we seek to align each slide in the deck to a relevant video snippet, if any.
While this problem could be formulated as aligning two time series (each
involving a sequence of text contents), we anticipate challenges in gener-
ating matches arising from differences in content coverage and sequence
of content between slide deck-video pairs. To mitigate these challenges,
we propose a two-stage algorithm that builds on time series alignment to
filter out irrelevant content and to align out-of-sequence slide deck and
video pairs. We experiment with real-world datasets from openly avail-
able lectures, which have been manually annotated with start and end
times of each slide in the videos to facilitate the evaluation of matches.

Keywords: Slide to video alignment · Dynamic time warping ·
Sequence mismatch · Content mismatch

1 Introduction

Many instructors use slides as teaching aid, and often make these available to
students as reference material. The compact and terse nature may render slides,
on their own, inadequate for the latter function of reference materials. Students
may need to rely on additional outside materials, such as videos that can be
found in course webpages, massive open online courses, or video sites.

Some works attempt to augment academic or educational materials with
additional content [3,8]. Adamson et al. [1] set out a means of automatically
generating questions to support instruction and learning, while others seek to
support teaching by generating answers to questions [2,13].

We envision a system where a student who is reviewing a deck of slides can
be pointed to a snippet of a video that is relevant to the slide currently being
viewed. Given a video relevant to a deck of lecture slides, we seek to align each
c© Springer Nature Switzerland AG 2022
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slide to a snippet within the video. This also involves detecting when there is
no snippet within the video relevant to the slide. The technical challenge here
concerns aligning two collections of different modalities, e.g., slides and videos.
Our approach treats both slides and videos as time series of text contents.

As the first contribution in this paper, we propose Sequentialign (see
Sect. 2), a methodology for aligning a slide deck and a video that mitigates
sequence mismatch and content mismatch. As a second contribution, we build
an annotated dataset of aligning slides to video snippets from pairings of edu-
cational slides and videos from computer science topics such as artificial intelli-
gence, operating systems, and systems programming. As a third contribution, we
empirically validate the approach (see Sect. 3) on the afore-mentioned annotated
data against comparable baselines.

2 Methodology: Sequentialign

Data. Our data consists of slide deck-video pairs, each consisting of a slide deck
and a related video. Within each pair, at least one slide in the deck matches one
snippet in the video. We work with the textual contents of the slides and the
videos (i.e., transcripts). Each slide deck s consists of a number of slides, given by
a sequence of vectors s = {s1, s2, s3...sm}, each representing the textual context
of a single slide. These vectors could be based on bag-of-words representation
such as tf-idf or word embeddings [9]. In turn, each video v is divided into
video snippets of a specified equal duration,1 given by a sequence of vectors v =
{v1,v2,v3...vn} each representing the transcribed content of a single snippet.

Problem. For each slide deck-video pair, our task is to find a set of matches
(an alignment) between slides and video snippets, such as (si → [vj1, vj2...vjn]),
where [vj1, vj2...vjn] is a set of video snippets matched to si. Each slide may be
assigned to 0 or more snippets. Each snippet can be assigned to 0 or 1 slide.

Dynamic Time Warping. We can view a deck of slides as a time series
whereby each slide is a time point. Similarly, each snippet is a time point within
a video time series. Among techniques for measuring the similarity between two
time series [10], Dynamic Time Warping (DTW) is known as a robust way to
measure similarity between two time series that vary in speed [6]. It also produces
an alignment of time points between the two respective time series. Without los-
ing generality, we build our proposed algorithm using DTW as a building block.
However, DTW has a couple of constraints that render it unsuitable for direct
use. The monotonicity property requires that indices of successive matches on
either sequence should be monotonically increasing, thereby forcing false matches
when the two time series are out of sequence. The continuity property requires
matched indices on each sequence to increase one at a time, thereby continuing
1 In our experiments, each basic unit of video snippet is of 30-s duration. The last

snippet in a video may be shorter.
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false matches over periods of irrelevant snippets. To counter these, we propose
Sequentialign that addresses the sequence and content mismatches.

2.1 Mitigating Sequence Mismatch

Consider a slide deck-video pair which cover a similar set of topics. If sequence
were not informative, we may consider matching using a distance measure alone.
A naive means of doing this would be to divide the slides or the videos into blocks,
and perform minimum weight bipartite matching [4]. Between each of the blocks,
we calculate a distance and find a matching that minimizes the total distance.

While the overall sequence of a slide deck and video might be different, there
may be common local subsequences in which the flow of topics follow a similar,
logical order. It may be useful to use DTW as a distance measure locally, while
relying on bipartite matching globally. This forms the basis for the alignment
subroutine of Sequentialign. Our alignment subroutine divides both the slides
and the video snippets into a number of blocks set in a 2-dimensional grid (given
by the grid factor, g), each containing an equal number of slides or snippets, as
the case may be. For every cell in the grid, each representing a possible match
between a slide block and a video snippet block, we run DTW locally, giving each
cell a warping distance. The Hungarian algorithm [7] is used to find a minimum-
weight bipartite matching between the 2 axes on the grid, to identify a set of
cells representing one-to-one matches with the lowest total distance measure.

While the initial grids enforce equal-sized blocks, to model more natural
alignment that may involve different-sized blocks, after the alignment subroutine
obtains the matches given by the bipartite matching, it runs the DTW algorithm
again on adjacent slide blocks in the matches, and the warping path returned
is used to adjust the boundaries between their matched video snippet blocks,
while leaving the slide block boundaries unchanged. The intuition is that this
process will break through the rigidity of the uniform length of blocks, and allow
snippets on the cell boundaries to be assigned to the correct slides, while the
bipartite matching between slide blocks and video blocks makes it possible for
common subsequences to be matched together out-of-sequence between a slide
deck-video pair, even as the monotonicity constraint of DTW is respected locally.

What remains is the determination of the value of g, which we consider a
hyperparameter. Our approach is to search from 1 to two-thirds of number of
slides, and pick the value of g which yields the minimum distance measure.

2.2 Mitigating Content Mismatch

To mitigate the content mismatch, we identify irrelevant slides and video snip-
pets and remove them before alignment. For one naive approach to identify
an irrelevant slide, we can consider its minimum distance to any snippet and
impose a maximum threshold. For another, we can let each video identify its
closest slide, and remove any slide not picked by any video. Analogously, we can
attempt to identify an irrelevant video snippet. Both look at each slide (resp.
snippet) independently of any other slide in the deck (resp. snippet in the video).
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We postulate that to identify whether a slide is relevant, we need to consider
the neighbouring slides, and whether as a group of slides they may match a
sequence of video snippets as well. To allow the consideration of multiple target
window sizes, we introduce the concept of relevance score. For video snippets,
the primary component of this score is the number of best-match windows it is
part of. For slides, the primary component of this score is the number of video
snippets it is matched to across all queries. The raw scores are adjusted for
the distance between each query and its best-match window, and the distance
between each video snippet and query slide pair within best-match windows.

Drawing from [12], our subsequence search subroutine uses DTW as a subrou-
tine. For each slide, it constructs a ‘query’ by taking the slide itself and a number
of subsequent slides, given by the length of the query, r. DTW is run between
the query and target windows of video snippets of length q, with starting index
incremented by 1 for each successive window. For each query, we match the first
slide in the query with the sequence of snippets starting with the first snippet of
the best-match window, and the snippet immediately before that identified by
the path as the starting point of the second slide in the query in the window. If
the first snippet matched to second slide is the same as that of the first, we do
not match the first slide with any snippet, and return an empty set.

To filter out irrelevant content, we run the subsequence search subroutine
multiple times, using varying window sizes for the target windows of video snip-
pets. For each query q, we take note of the best match window, the video snip-
pets matched to each slide in the query [v1, v2...vn], the total distance (cost)
between the query and best match window, and the cosine distances (distance)
between each slide and the video snippets it is matched to. Having calculated
relevance scores for all slides and video segments, we set a percentile threshold
for determining relevance, and remove slides and video segments with a relevance
score below the relevance score value at the percentile threshold. For instance, if
the 25th percentile of slide relevance scores is 75.5, slides with relevance scores
below 75.5 are labelled as irrelevant and removed. We name filtering subrou-
tines (and the Sequentialign implementation it is used in) according to the
percentile threshold of relevance scores used to identify irrelevant slides. For
example, Sequentialign-33 combines the filtering subroutine with 33rd per-
centile threshold with the alignment algorithm described in the previous section.
The use of percentile threshold, instead of absolute threshold, is to guard against
different levels of text similarities across domains.

3 Experiments

Our objective is to evaluate efficacy of various methods at producing alignments
between video and slides on real-world datasets.

Datasets. We annotate 6 datasets containing slide-deck video pairs from pub-
licly available lectures, as summarized in Table 1, covering subjects such as Arti-
ficial Intelligence, Operating Systems, and Systems Programming in C/C++.
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Each slide is labelled with start and end times corresponding to the video por-
tion which in the opinion of the annotator best matches the slide content. The
datasets have content and sequence mismatch between slide decks and videos.

Baselines. We compare our Sequentialign algorithm with these baselines:

Table 1. Summary of datasets

Video course Slides course Pairs Slide count Video duration (s)

Mean Median Mean Median

BerkeleyStanford-AI Berkeley CS188 Stanford CS221 8 39.5 36.5 4735.8 4863.0

StanfordBerkeley-AI Stanford CS221 Berkeley CS188 8 42.3 42.0 4149.6 4140.0

BerkeleyVirginia-OS Berkeley CS162 UVirginia CS4414 8 90.5 87.0 5203.3 5233.5

VirginiaBerkeley-OS UVirginia CS4414 Berkeley CS162 8 66.1 61.0 4551.9 4489.0

CMUCornell-C CMU 15213 Cornell CS4414 5 44.8 49.0 3305.6 2980.0

CornellCMU-C Cornell CS4414 CMU 15213 5 56.4 56.0 4295.0 4613.0

Table 2. Performance on various slide deck-video pairs from different sources

Artificial intelligence Operating systems Systems programming in C

BerkeleyStanford StanfordBerkeley BerkeleyVirginia VirginiaBerkeley CMUCornell CornellCMU

Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU Acc IoU

Random 0.004 0.001 0.005 0.003 0.006 0.004 0.017 0.004 0.001 0.002 0.004 0.001

DTW 0.027 0.011 0.051 0.022 0.010 0.007 0.048 0.011 0.087 0.040 0.137 0.061

HMM+IBM1 0.003 0.001 0.017 0.007 0.010 0.007 0.012 0.002 0.030 0.016 0.008 0.003

Sequentialign-25 0.109 0.126 0.189 0.172 0.234 0.168 0.236 0.167 0.125 0.211 0.179 0.198

Sequentialign-33 0.211 0.190 0.253 0.224 0.305 0.230 0.300 0.230 0.160 0.260 0.241 0.276

Sequentialign-50 0.407 0.314 0.389 0.343 0.444 0.365 0.406 0.365 0.414 0.331 0.366 0.405

HMM+IBM1. The closest related work in terms of task is the HMM+IBM1 [11].
We align video snippets with slides using a window of jump probabilities [−2,
2]. It mainly targets sequence alignment without targeting content mismatch.

Dynamic Time Warping (DTW). To evaluate the performance without the mit-
igation of the sequence and content mismatch provided by Sequentialign over
the base alignment algorithm, we compare to the vanilla DTW.

Random. We split the video snippets into as many segments as there are slides,
and assign each segment randomly to a slide.

Metrics. We use the following metrics that are commonly associated with mul-
timedia retrieval or alignment:

Accuracy (Acc). Accuracy is the number of seconds in the video with true pos-
itive and true negative alignment outcomes, over the duration of the video in
seconds. True positive is defined as seconds correctly aligned to the right slide.
True negative is defined as seconds which are irrelevant to any slide and correctly
identified. We average accuracy across all slide deck-video pairs.
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Intersection over Union (IoU). Following [5], for each slide, we measure the
intersecting duration between the predicted and the ground truth video spans
and divide this by the union. For true negative hits, the IoU value is taken to
be 1. We then average this IoU over the slides in a deck, and over the decks.

Empirical Results. In Sect. 2.2, we describe dealing with content mismatch
by filtering out irrelevant content that involves specifying a percentile thresh-
old, yielding the various Sequentialign variants (at 25th, 33rd, and 50th
percentiles). The results are shown in Table 2. The Sequentialign variants
tend to outperform over the baselines across all the datasets here. DTW
and HMM+IBM1 perform rather poorly due to the considerable content and
sequence mismatch in these datasets. The performance of Sequentialign
steadily improves as we remove more irrelevant content.

4 Conclusion

In conclusion, we have proposed a framework for the generation of matches
between slide deck-video pairs. To mitigate the content mismatch and sequence
mismatch problems which can cause an unmodified DTW algorithm to be less
suitable for the task of generating matches, we propose a 2-step solution, by first
identifying probable irrelevant slides using a subsequence search approach, and
then focusing on finding good matches despite the sequence mismatch problem,
using the alignment subroutine. Experiments on slides and videos from real
courses show promise. We identify several directions for future work. In our
experiments, we produce alignments for slide decks with a single video. We could
run Sequentialign across several videos to find more matches for a given slide.
Being more aggressive with content filtering may achieve higher quality matches
with smaller quantity from each video but higher quantity across videos.
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Abstract. Identifying the various cognitive processes that learners engage while
solving an ill-structured problem online learning environment will help provide
improved learning experiences and outcomes. This work aims to build a stu-
dent model and analyze student behaviors in our technology-enhanced learning
environment named Fathom used for teaching-learning of ill-structures problem-
solving skills in the context of solving software design. Students’ interactions
on the system, captured in log files represent their performance in applying the
skills towards understanding the problem as a whole and formulating it into sub-
problems, generating alternative designs, and selecting the optimal solution. We
discuss methods for analyzing student behaviors and linking them to student per-
formance. The approach used is a hidden Markov model methodology that builds
students’ behavior models from data collected in the log files.

Keywords: Ill-structured problem · Technology-enhanced learning
environment · Student model · Hidden-Markov model · Software-design
problem-solving skills

1 Introduction

Ill-structured problems are complex because they have vaguely defined or unclear goals
and unstated constraints; they possess multiple solutions and solution paths and involve
multiple criteria for evaluating solutions [9]. Software design is a complex and ill-
structured activity in which a software designer has to deal with issues such as under-
standing the unknown problem domain, eliciting requirements from multiple stake-
holders’ viewpoints, identifying alternative solutions, and making decisions based on
selection criteria [1].

Novices find design daunting and face somedifficulties like – the inability to structure
a problem, fixation while creating a solution, and evaluation of the solution. Research
[1, 11, 12] shows that experts are able to deal with these issues by implicitly applying
cognitive skills such as drawing diagrams to simulate scenarios that aid in eliciting
requirements and constraintswhichmaynot be directly stated initially.Hence, in addition
to content knowledge, students need to be explicitly trained to effectively use these
practices while solving software design problems.
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We have designed and developed a technology-enhanced learning environment
named Fathom [3], for the teaching-learning of ill-structured problem-solving skills
in the context of solving software design problems. The targeted software design skills
were: the ability to visualize the problemas awhole before formulating sub-problems and
the ability to generate alternative design options before selecting one solution based on
evaluation criteria. The learning activities are designedwith both cognitive andmetacog-
nitive scaffolds to aid learners in not just solving the problem but to monitor and improve
their skills. The cognitive scaffolds include: prompts, hints, case-study, study mate-
rial, drawing tools to aid visualization, workspace to record learners’ responses, and
metacognitive scaffolds include: system-evaluated feedback.

We conducted research studies with undergraduate engineering students (N = 50)
to evaluate the effectiveness of the Fathom in learning these skills. The methodology
used is a pretest-intervention-posttest research design. The scores show significant gain
from pretest to posttest in quality of problem formulation (p= 0.05, effect size= 0.66),
solution quality (p = 0.00, effect size = 1.23) and justification (p = 0.01, effect size =
1.24).

However, the scoreswere not helping in providing insights into the interaction behav-
ior of the high and low-performing students. To investigate the relationship between
learning performance and the use of strategies by low and high performers, it became
important to examine how these activities came together as larger behavior patterns and
strategies. The aim of this paper is to discuss the process of building a student model for
high and low-performing groups of learners using HMM and analyze their interaction
behavior.

2 Related Work in Learner Modeling

A major area of educational data mining research [4, 5, 7, 8] is done to analyze MOOC
and learning management system log data to identify patterns of learning behavior that
can provide insights into educational practice. Research in educational data mining [2,
6] is done towards building student models and analyzing student behaviors in various
interactive learning environments to predict student learning behaviors. For instance,
hidden Markov models (HMM) were used to model school students’ behavior based
on the trace data generated from Betty’s brain system which used the pedagogy of
learning by teaching [2]. In a later study, Jeong et al. (2010) applied the same HMM
approach to study the learning behavior of adult professionals in an asynchronous online
learning environment. In particular, their exploratory study was aimed at identifying the
main phases of the students’ learning process in the examined course, and investigating
the differences between high and low-performing students in terms of their transitions
through the identified phases of the course.

We propose to use HMM similar to the work proposed by Jeong (2008) to investi-
gate how engineering students interact with learning environments designed for com-
plex problem solving and analyze student behaviors to get insights into how the learn-
ing environment facilitates learning of complex problem solving among high and low
performers.
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3 Methodology for Obtaining Behavior Model

To achieve our objective of modeling student behavior from log data, we chose a prob-
abilistic model that could mathematically and diagrammatically describe the chain of
activities followed by the students. Our approach involves four steps which are explained
in greater detail in this section.

3.1 Log Data Collection and Processing

The log data was collected from Fathom in the form of triplet <learner_id, timestamp
clicked_button>. The sample log data collected is as shown in Fig. 1.

Fig. 1. Raw log data collected in Fathom

The log data in its raw form is very difficult to comprehend and needs to be processed
beforewecanperformanyoperations on it. The logfiles consist of all the activities carried
out by the students in the form of button clicks, edits made in the drawing tools and the
text fields, access to hints, examples, etc.

We have removed the repetitive sequences that occur as a result of clicking the same
button multiple times. This helps to reduce the length of the sequences and at the same
time focus more on the transitions between states. The other dataset we worked on
was the score sheet of post-test to identify low and high scorers. The students scoring
low (score < 2) in quality of problem formulation and solution were categorized as
low scorers and others were categorized as high scorers. Out of 50 students, 5 students
did not complete the posttest, hence we considered only 45 students, out of which 13
students were categorized as low scorers and 32 as high scorers. The log sequences were
then assigned to each student and two separate input dataset was created as input for the
hidden Markov model.

3.2 Parsing the Log Files

In this study, we derive learners’ behavior patterns by analyzing the sequence of their
interactions with the system. To simplify the interpretation task we mapped learners’
actions in each activity into one aggregate activity. For example, all the edits made in the
understand_problem activity, like drawing the diagrams and saving in the first attempt
as UP, accessing resources (hints, notes, examples, etc.) as RA, and then redoing after
saving the responses as REDO, etc. All student activities were expressed as the six
activities summarized in Table 1.
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Table 1. Student activities and related actions

Activity Student actions

UP Saving the diagram drawn in the understand_problem activity

FG Saving the formulated goals in the formulate_problem activity

GS Saving the solutions generated in the generate_solutions activity

EV Saving the evaluation of solutions

RA Accessing resources in the form of hints, examples, notes, etc.

REDO Modifying the responses in multiple attempts

Examples of the resultant sequences of a student is shown in Fig. 2.

“115A1086”: ["UP", "FG", "UP", "FG", "UP", "FG", "FG", "GS", "REDO", "EV", 
"GS", "FG", "RA", "GS", "REDO", "EV", "REDO", "EV", "UP", "FG", "GS"], 

Fig. 2. Parsed data of a student

3.3 Constructing the HMMs

The first step in interpreting this behavior data was to build hidden Markov models from
the sequence of observable events. A hidden Markov model is characterized by three
sets of parameters: initial probability vectorπ, state transition probability matrix, A, and
output probability matrix, B [10].

The difficult part of themodeling process is to determine the optimal set of parameters
and the size of the model (number of states) that maximizes the likelihood of the input
sequences. Jeong (2010) compared two common iterative convergence optimization
schemes, the Baum-Welch and the segmental K-Means algorithms to achieve the optimal
model parameters, which include (π, A, B) and the number of states in the model. The
results showed that the optimal number of states is six using both Baum-Welch and the
segmental K-Means algorithms. We used the Viterbi algorithm for sequential decoding
and calculating transition probabilities between states.

The parsed activity sequences of two groups-low and high performers were used to
derive two sets of hidden Markov models as shown in Fig. 3 and Fig. 4.

Each model is made up of a set of states, the activity patterns (the output probability)
associated with each state, and the transition probabilities between states. The transition
probability associated with a link between two states indicates the likelihood of the
student transitioning from the current state to the indicated state.We investigate further by
interpreting these models in terms of the cognitive and metacognitive learning behaviors
of the students.

4 Analysis of HMM Patterns

The analysis of transition shows certain patterns in both low and high performers. The
likelihood percentage of high scorers transitioning to REDO state in each activity is
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Fig. 3. HMM model of low performers (Color figure online)

Fig. 4. HMM model of high performers (Color figure online)

more compared to low scorers, as seen in green color lines in Fig. 3 and 4. The high
scorers’ transitions from UP to REDO state with 25% likelihood compared to 15% in
low scorers. This shows that high scorers were more responsive to the feedback given
by the system and went back to the same activity to improve their responses.

The likelihood percentage of low scorers transitioning to RA state is higher than
high scorers, shown in red color lines in Figs. 3 and 4. For example, the low scorers
transitioned from UP to RA state with 46% likelihood compared to 32% in high scorers.
The low scorers were accessing resources like hints, videos, and learning material more
often which indicates that they had difficulty in comprehending the activity.

We find that the students in the low scorer group tend to stay mainly in the cognitive
task of doing activities in UP, FG, GS, CR, and EV states, while the high scorer students
tend to transition to the higher-level states such as REDO state. High scorers tend to
transition between doing and redoing the task, and occasionally referring to the help
provided by the system, and thus exhibit metacognitive behavior. While low scorers
tend to be in a cognitive state of doing the activity and are less likely to monitor and
reflect on their skills. The resource usage rate is high and REDO is low in low scores
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which indicate that low scorers have difficulty doing or comprehending the activities
compared to high scorers.

Overall analysis shows that high scorers show more metacognitive behaviors while
low scorers exhibitmore help-seeking behaviors. This analysis is useful to predict student
behaviors based on their interaction patterns in the learning environment and provide
timely help to low performers.

5 Conclusion

In this paper, we discussed the process of creating student models representing learning
patterns of high and low performers in learning ill-structured problem-solving skills in
the technology-enhanced learning environment, named Fathom. The model was built
using the hidden Markov model (HMM) using the log data generated in Fathom. The
analysis shows that high scorers exhibit metacognitive behaviors in terms of the ability
to do the activity, and monitor and reflect on their skills. While, low scorers tend to
rely more on the resources given in the system and exhibit more help-seeking behavior,
which implies that they have difficulty comprehending and doing the activity.
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Abstract. Metacognitive skills have been commonly associated with
preparation for future learning in deductive domains. Many researchers
have regarded strategy- and time-awareness as two metacognitive skills
that address how and when to use a problem-solving strategy, respec-
tively. It was shown that students who are both strategy- and time-
aware (StrT ime) outperformed their nonStrT ime peers across deduc-
tive domains. In this work, students were trained on a logic tutor that
supports a default forward-chaining (FC) and a backward-chaining (BC)
strategy. We investigated the impact of mixing BC with FC on teaching
strategy- and time-awareness for nonStrT ime students. During the logic
instruction, the experimental students (Exp) were provided with two BC
worked examples and some problems in BC to practice how and when
to use BC. Meanwhile, their control (Ctrl) and StrT ime peers received
no such intervention. Six weeks later, all students went through a prob-
ability tutor that only supports BC to evaluate whether the acquired
metacognitive skills are transferred from logic. Our results show that on
both tutors, Exp outperformed Ctrl and caught up with StrT ime.

Keywords: Strategy awareness · Time awareness · Metacognitive skill
instruction · Preparation for future learning · Backward chaining

1 Introduction

One fundamental goal of education is being prepared for future learning [6]
by transferring acquired skills and problem-solving strategies across different
domains. Despite the difficulty of achieving such transfer [6], prior research has
shown it can be facilitated by obtaining metacognitive skills [1–3,8]. It has been
believed that metacognitive skills are essential for academic achievements [5],
and teaching such skills impacts learning outcomes [8] and strategy use [13].
Much prior research has categorized knowing how and when to use a problem-
solving strategy as two metacognitive skills [15], referred to as strategy- and
time-awareness, respectively. Our prior work found that students who were
both strategy- and time-aware—referred to as StrT ime—outperformed their
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nonStrT ime peers across deductive domains [1,2]. In the current work, we pro-
vide interventions for the latter students to catch up with their StrT ime peers.
Deductive domains such as logic, physics and probability usually require mul-
tiple problem-solving strategies. Two common strategies in these domains are
forward-chaining (FC) and backward-chaining (BC). Early studies showed that
experts often use a mixture of FC and BC to execute their strategies [12]. This
work investigates the impact of mixing FC and BC on teaching strategy- and
time-awareness for nonStrT ime students.

Our study involved two intelligent tutoring systems (ITSs): logic and prob-
ability. Students were first assigned to a logic tutor that supports FC and BC,
with FC being the default, then to a probability tutor six weeks later that only
supports BC. During the logic instruction, nonStrT ime students were split into
experimental (Exp) and control (Ctrl) conditions. For Exp, the tutor provided
two worked examples solved in BC and presented some problems in BC to prac-
tice how and when to use BC. Ctrl received no such intervention as each problem
was presented in FC by default with the ability to switch to BC. Our goal is
to inspect whether our intervention would make Exp catch up with the golden
standard —StrT ime students— who already have the two metacognitive skills
and thus need no intervention. All students went through the same probabil-
ity tutor to evaluate whether the acquired metacognitive skills are transferred
from logic. Our results show that Exp outperformed Ctrl and caught up with
StrT ime on both tutors.

1.1 Metacognitive Skill Instruction

Metacognitive skills regulate one’s awareness and control of their cognition [7].
Many studies have demonstrated the significance of metacognitive skills instruc-
tion on academic performance [5], learning outcomes [2,3,8] and regulating strat-
egy use [13]. Schraw and Gutierrez [13] argued that metacognitive skill instruc-
tion involves feeling what is known and not known about a task. They stated
that such instruction should further compare strategies according to their feasi-
bility and familiarity from the learner’s perspective. Chi and VanLehn [8] found
that teaching students principle-emphasis skills closed the gap between high and
low learners, not only in the domain where they were taught (probability) but
also in a second domain where they were not taught (physics).

Strategy- and time-awareness have been considered metacognitive skills as
they respectively address how and when to use a problem-solving strategy [5,15].
Researchers have emphasized the role of strategy awareness in preparation for
future learning [2,4] and the impact of time awareness on planning skills and
academic performance [5,9]. Belenky and Nokes [4] showed that students who
had a higher aim to master presented materials and strategies outperformed
their peers on a transfer task. Fazio et al. [9] revealed that students who knew
when to use each strategy to pick the largest fraction magnitude had higher
mathematical proficiency than their peers. de Boer et al. [5] showed that students
who knew when and why to use a given strategy exhibit long-term metacognitive
knowledge that improves their academic performance. de Boer et al. emphasized
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that knowing when and why has the same importance as knowing how when it
comes to strategy choice in multi-strategy domains.

1.2 Forward- and Backward-Chaining

FC and BC are two standard problem-solving strategies in deductive domains. In
FC, the reasoning proceeds from the given propositions toward the target goal,
whereas BC is goal-driven in that it works backward from a goal state to a given
state. Substantial work has investigated the impact of FC and BC strategies in
two research categories: empirical studies and post-hoc observations.

Prior empirical studies have shown the significance of FC over BC in learning
physics [10] and weightlifting movements [11]. Moore and Quintero [11] compared
FC and BC in teaching the clean and snatch movements to novice weight lifters.
The participants showed mastery performance with the FC training but showed
substantially fewer improvements in performance accuracy via the BC training.
All participants mastered the movements when some BC lifts were changed
to FC. Conversely, some studies reported no significant difference between the
two strategies [14]. Slocum and Tiger [14] assessed the children’s FC and BC
strategy preferences on various learning tasks. They found that children were
equally efficient on both strategies and had similar mixed strategy preferences.

Early research has observed the impact of mixing FC and BC strategies [12].
Priest and Lindsay [12] compared how experts and novices solve physics prob-
lems. Although both groups used a mixture of FC and BC, only the experts knew
how and when to use each strategy and significantly produced more complete
plans and stages than their novice peers. In brief, while no consensus has been
reached on whether FC or BC is most effective in problem-solving, prior work
has observed that the mixture of FC and BC yields the highest performance
accuracy as learners know how and when to use each strategy.

2 Methods

Participants. They are Computer Science undergraduates at North Carolina
State University. Students were assigned each tutor as a class assignment and
told that completion is required for full credit. Similar to our prior work, we
utilize the random forest classifier (RFC) that, based on pre-test performance,
predicts the metacognitive label (StrT ime or otherwise) before training on logic
and was previously shown to be 96% accurate [2]. Specifically, StrT ime students
frequently follow the desired behavior of switching early (within the first 30
actions) to BC, while their peers either frequently switch late (after the first 30
actions) or stick to the default FC [1–3]. A total of 121 students finished both
tutors and were classified by the RFC into 26 StrT ime and 95 otherwise. The
latter students were randomly assigned to Experimental (Exp: N = 49) and
Control (Ctrl: N = 46) conditions. The RFC was 97% accurate in classifying
students who received no intervention—Ctrl and StrT ime.
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Fig. 1. Logic tutor

Logic Tutor and Our Intervention. The logic tutor teaches propositional
logic proofs by applying inference rules such as Modus Ponens. A student can
solve any problem by either a FC or BC strategy. Students derive a conclusion at
the bottom from givens at the top in FC (Fig. 1a), while they derive a contradic-
tion from givens and the negation of the conclusion in BC (Fig. 1b). A problem is
presented by default in FC with the ability to switch to BC by clicking a button.
The tutor consists of two pre-test, 20 training and six post-test problems. The
post-test is much harder than the pre-test, and the first two post-test problems
are isomorphic to the two pre-test problems. The pre- and post-test scores are
calculated by averaging the pre- and post-test problem scores, where a problem
score is a function of time, accuracy, and solution length. The training consists
of five ordered levels in an incremental degree of difficulty, and each level consists
of four problems. We modified the training section to mix BC with FC (Fig. 1c).
Specifically, two worked examples (WE) on BC were implemented, where the
tutor provided a step-by-step solution, and six problems were presented in BC
by default. The two WEs and the six problems are expected to teach students
how and when to use BC. Note that the colored problems in Fig. 1c were selected
based on the historical strategy switches in our data [1].

Probability Tutor. It teaches how to solve probability problems using ten
principles, such as the Complement Theorem. The tutor consists of a textbook,
pre-test, training, and post-test. The textbook introduces the domain principles,
while training consists of 12 problems, each of which can only be solved by BC as
it requires deriving an answer by writing and solving equations until the target is
ultimately reduced to the givens. In pre- and post-test, students solve 14 and 20
open-ended problems graded by experienced graders in a double-blind manner
using a partial-credit rubric. The pre- and post-test scores are the average grades
in their respective sections, where grades are based only on accuracy. Like the
logic tutor, the post-test is much harder than the pre-test, and each pre-test
problem has a corresponding isomorphic post-test problem.
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Procedure. Students were assigned to the logic tutor and went through the
pre-test, training and post-test. Before training on logic, the RFC predicted the
metacognitive label for each student, as described in the Participants section.
During training, Exp received the modified tutor shown in Fig. 1c, while Ctrl
and StrT ime received the original tutor, where all problems are presented in
FC by default. Six weeks later, students were trained on the probability tutor.

3 Results

Table 1. Comparing groups across tutors

Experimental (Exp)
(N = 49)

Control (Ctrl)
(N = 46)

StrT ime
(N = 26)

Logic tutor

Pre 61.7 (18) 58.7 (20) 62.1 (20)

Iso-Post 81 (11) 70.4 (14) 81.3 (10)

Iso-NLG 0.27 (.12) 0.09 (.31) 0.29 (.16)

Post 77.4 (11) 66.7 (14) 79 (9)

NLG 0.24 (.15) 0.06 (.37) 0.25 (.18)

Probability tutor

Pre 74.8 (14) 74.2 (16) 75.8 (15)

Iso-Post 90.4 (10) 65.3 (16) 90.6 (8)

Iso-NLG 0.29 (.19) −0.02 (.27) 0.26 (.17)

Post 89.5 (15) 62.5 (18) 88.8 (7)

NLG 0.26 (.21) −0.08 (.3) 0.24 (.15)

Table 1 compares the groups’ performance across the two tutors showing the
mean and standard deviation of pre- and post-test scores, isomorphic scores, and
the learning outcome in terms of the normalized learning gain (NLG) defined as
(NLG = Post−Pre√

100−Pre
), where 100 is the maximum test score. We refer to pre-test,

post-test and NLG scores as Pre, Post and NLG, respectively. On both tutors,
a one-way ANOVA found no significant difference on Pre between the groups.

To measure the improvement on isomorphic problems, repeated measures
ANOVA tests were conducted using {Pre, Iso-Post} as factor. Results showed
that Exp and StrT ime learned significantly with p < 0.0001 on both tutors,
while Ctrl did not perform significantly higher on Iso-Post than Pre on both
tutors. These findings verify the RFC’s accuracy, as StrT ime learned signifi-
cantly on both tutors, while Ctrl did not, despite both receiving no intervention.

A comprehensive comparison between the three groups was essential to eval-
uate our intervention. On the logic tutor, A one-way ANCOVA using Pre as
covariate and group as factor found a significant effect on Post: F (2, 117) =
14.5, p < .0001, η2 = .18. Subsequent post-hoc analyses with Bonferroni cor-
rection (α = .05/3) revealed that Exp and StrT ime significantly outperformed
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Ctrl: t(93) = 3.8, p < .001 and t(70) = 3.9, p < .001, respectively. Similar
patterns were observed on NLG using ANOVA and the post-hoc comparisons.

On the probability tutor, a one-way ANCOVA using Pre as covariate and
group as factor showed a significant effect on Post: F (2, 117) = 48.1, p <
.0001, η2 = .35. Follow-up pairwise comparisons with Bonferroni adjustment
showed that Exp and StrT ime significantly surpassed Ctrl: t(93) = 6.1, p <
.0001 and t(70) = 5.9, p < .0001, respectively. Similar results were found on
NLG using ANOVA and the post-hoc comparisons.

4 Conclusion

We showed that mixing BC with FC on the logic tutor improved the experimental
students’ learning outcomes, as Exp significantly outperformed Ctrl on logic and
on a probability tutor that only supports BC. Additionally, Exp caught up with
StrT ime on both tutors suggesting that Exp students are prepared for future
learning [6] as they acquired BC mastery skills on logic and transferred them to
probability, where they received no intervention. There is at least one caveat in
our study. The probability tutor supported only one strategy. A more convincing
testbed would be having the tutors support both strategies. The future work
involves implementing FC on the probability tutor.
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Abstract. This study investigated the impact of conversational agent formality
on summary writing and self-efficacy in a conversation-based intelligent tutoring
system. Conversational agents guided learners to learn summarization strategies
in one of three conditions: a formal language, an informal language, and a mixed
language condition. Results showed no significant difference in summary writing
gains between groups, but learners in the informal language group achieved higher
self-efficacy gains than learners in the formal language group when controlling for
demographic attributes, years of English learning, prior perception of summary
writing, and prior reading and summarywriting proficiency. Results also indicated
a negative association between self-efficacy gains and summarywriting gains with
amarginal significance. Implications are discussed for the design of conversational
agents in the ITS.

Keywords: Conversational agent · Summary writing · Self-efficacy

1 Introduction

Research on agent language in the intelligent tutoring system (ITS) investigates which
language style elicits learning more than another, conversational language or formal
language. Two primary designs of agent language are prevalent: personalized [11] and
multi-level language principles [5]. The personalization principle adopts personal pro-
nouns to differentiate conversational language from formal language. The former is
represented by first- and second-person pronouns (e.g., I, your) whereas the latter is rep-
resented by third-person pronouns and impersonal articles (e.g., he, their). Personalized
language directly addresses learners and creates a social partnership between the learner
and instructor to motivate learners to learn [11]. The positive effect of personalized lan-
guage on learning was consistently found among 14 out of 17 experimental tests [11]
and from ameta-study across varied science topics [3], particularly for students with low
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prior knowledge or low achievement and with short lessons up to 35 min. Other studies
found positive personalization effects either on retention [10, 12] or transfer tests [13],
but not on both. These inconsistent findings are likely due to different learning environ-
ments (research lab vs. MOOC), learners (college students vs. high school students),
instructional languages (German vs. Chinese), etc.

The multi-level principle utilized multiple levels of language and discourse features
such as word, syntax, referential cohesion, deep cohesion, and genre to distinguish con-
versational language fromformal language [5, 7–9].This principle defines conversational
language as spontaneous, less organized, and more disjointed language, dependent on
the contexts and common ground shared by the speaker and the listener, either in a spo-
ken or written format. Formal language is defined as pre-planned, well-organized, and
coherent language, used for academic communication with comparatively low reliance.
Conversational language is more informal and easier to process with more concrete
words and simple sentence structures, but fewer connectives and overlapping words and
ideas in a narrative style. Empirical evidence in AutoTutor ARC (Adult Reading Com-
prehension) found no significant effect of agent language on summary writing, learners’
use of language, or engagement [7–9]. Specifically, learners improved performance on
summary writing, but this difference was not affected by agent language style [9].

Previous studies found a positive correlation between self-efficacy and academic
success in reading and writing [14]. In ITS, social-oriented agents that spoke in encour-
aging language improved learners’ self-efficacy [1]. Formal agents (task-oriented style),
however, elicited greater self-efficacy among low-competency older users [2]. AutoTu-
tor ARC models learners’ cognitive states, designs a low-competence peer agent, and
provides negative feedback to the peer agent if the human learner gives an incorrect
answer [6–9]. The present study proposes that informal agents could build learners’
self-confidence and are expected to yield greater improvements in self-efficacy than for-
mal agents. This study aims to answer two research questions: (1) Does agent language
affect learners’ self-efficacy and summary writing performance? and (2) Is learners’
self-efficacy associated with their summary writing performance?

2 Method

Conversations of the tutor agent, Cristina, and the peer agent, Jordan, were designed
following the expectation and misconception-tailored (EMT) dialogue mechanism and
a five-step tutoring frame: main question → answers → short feedback → multiple
dialogue moves to reach the expectation → wrap-up [4]. To boost the learner’s self-
confidence, Jordan was designed with lower performance than the learner and received
negative feedback if both learner and Jordan gave incorrect answers [6]. Human dis-
course experts generated agents’ formal and informal conversations at the levels of word
(e.g., clarification vs. show), syntax (e.g., subordinate clauses vs. simple subject-verb),
referential cohesion (e.g., repeating content words vs. pronouns), deep cohesion (e.g.,
additionally vs. non-connectives), and genre (e.g., third vs. first- and second-person pro-
nouns) [9] (see Table 1). Three conditions were formed: (1) a formal condition where
both Cristina and Jordan spoke formally, (2) an informal condition where both agents
spoke informally, and (3) a mixed language condition where Cristina spoke formally
and Jordan spoke informally.
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Table 1. Excerpts of formal and informal discourse.

Formal Informal

Summarizing the consequences requires more
general and important information rather than
specific information. Muscle and energy can
be categorized into consequences related to
physical health

We should find more general and important
information. This answer talks about physical
health

The participants were 177 adult learners recruited from Amazon Mechanical Turk
(AMT) with $30 compensation for a three-hour intervention (51.1% male; Age: M =
33.55, SD = 8.69; 82.6% English language learners) [7–9]. Participants were randomly
assigned into one of three conditions and took a pre-survey/pretest, an intervention, and
a post-survey/posttest. Pre-survey includes personal information (age, gender, educa-
tion, country of birth, English learner, years of English learning, and years in a foreign
country), perception of summary writing, perception of self-efficacy, and a pretest for
reading comprehension and summary writing.

Prior reading comprehension on pretest was measured by ten-item three passages
from a Test of Adult Basic Education (words:M = 241.67, SD = 102.53; FKGL:M =
7.79, SD = 2.22). Perception of summary writing in pre-survey was measured by six
questions with 1–6 Likert scale from Never to Always. We measured summarization
self-efficacy with the same 11 items [Bandura, 1997] on both pretest and posttest, with
1–6 Likert scale from Strongly Disagree to Strongly Agree. The questions involved
the perception of capabilities for signal words, comprehension, and summary writing.
Cronbach’s alpha tests showedhigh reliability of questionnaire items,α = .935 for pretest
self-efficacy items, α = .926 for posttest self-efficacy items, α = .832 for reading. All
items were reliable and kept in the analyses.

During a one-hour summarization intervention, agents interactively presented amini-
lecture on the function of signal words in comparison (e.g., similarly) and causation
(e.g., because) texts with a text map to facilitate a better understanding of information
in texts. Agents used four informational texts to evaluate whether participants could
identify topic sentences, main ideas, and important and minor information through five
MC questions. Participants wrote a summary for the text, evaluated their own summary,
and then evaluated a peer’s summary. Participants received personalized feedback and
scaffolding only on MC and peer-rating questions.

On pretest and posttest, participants wrote a summary for each text they read with the
requirement to state the main ideas with a topic sentence and specify important support-
ing information. They were required to use their own words and apply the appropriate
signal words to explicitly express their ideas. Four English native speakers were trained
to grade summaries and demonstrated satisfactory interrater reliabilities (Cronbach α =
.82) according to four-element criteria, each with 0–2 points: the presence of the topic
sentence, inclusion of the important supporting information and exclusion of unimpor-
tant information, the presence of signal words of the text structures, and grammar and
mechanics.
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3 Results and Discussion

To answer the first part of the first question, aOne-wayANCOVAwas conducted to deter-
mine a statistically significant difference in self-efficacy gains (posttest self-efficacy –
pretest self-efficacy) between formal, mixed, and informal language that agents spoke
when controlling for gender, country of birth, years of English learning, prior reading
proficiency, prior summarization perception, and prior summary writing proficiency.
Results revealed a significant model, F(8, 168) = 8.42, p < .001, R2 = .286 (see Table
2). Participants in the informal condition achieved significantly higher self-efficacy gains
in the informal condition than those in the formal condition with a small effect size: t(168)
= 2.44, p= .047, Cohen’s d = 0.37. This indicated that conversational language elicited
higher self-efficacy than formal language, which is consistent with the previous findings
that social-oriented agents improved learners’ self-efficacy [1]. Conversational language
is considered a social cue that primes a sense of social partnership between the com-
puter agent and human learner and accordingly motivates the learner to make greater
endeavors to understand the instruction and improve learning performance. Moreover,
agents’ conversational language is affiliated with an everyday oral conversation with the
familiar words, sentences, and texts that learners easily understand [7–9]. This might
cause participants to perceive that they are able to successfully complete summarization
tasks. A sense of socialization and ease of information processing likely make learners

Table 2. ANCOVA for self-efficacy gains (*** p < .001, ** p < .01, * p < .05, † p < .10).

Source df SS MS F β SE t M (SD)

Intercept 1.95 0.50 3.92***

Condition (base =
Formal)

2 3.86 1.93 3.74* 0.25 (0.74)

Informal 0.33 0.14 2.44* 0.57 (0.94)

Mixed 0.09 0.14 0.66 0.26 (0.77)

Female (base =
male)

1 4.84 4.84 9.38** –0.21 0.11 –1.87†

India (base = other) 1 1.62 1.62 3.15† 0.21 0.13 1.59

Years of English
learning

1 4.37 4.37 8.47** –0.01 0.01 –2.20* 17.79

Prior reading
comprehension

1 3.47 3.47 6.72* –1.15 0.31 –3.71*** 0.75

Prior summarization
perception

1 14.71 14.71 28.54*** –0.27 0.05 –5.16*** 4.22

Prior summary
writing

1 1.88 1.89 3.66† 0.16 0.08 1.91† 4.11

Residuals 168 86.61 0.52
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perceive that they have learned about the summarization strategy from the agents and
would write a better summary than before the intervention.

To answer the second part of the first question, a One-way ANCOVA test was per-
formed to determine the difference in summary writing gains (posttest summary writ-
ing – pretest summary writing) between the formal, mixed, and informal conditions.
Results did not show a significant difference. A trend, however, was found that informal
agents elicited more learning gains than formal agents, which elicited more gains than
mixed agents. These differences, however, were not statistically significant: F(2, 164)
= 0.175, p = .840, Informal: M = 0.24, SD = 0.67; Formal: M = 0.22, SD = 0.69;
Mixed: M = 0.17, SD = 0.67. These findings are inconsistent with previous findings
that conversational language promotes learning outcomes [3, 11]. The inconsistency is
likely due to the long duration of the intervention, the more challenging subject matter,
and the different measures of agent language.

To answer the second question, a simple regression was performed with summary
writing gains as a dependent variable and self-efficacy gains as an independent variable.
Results showed a marginal significant relationship: F (1, 175) = 3.01, p = .085, R2 =
.017, β = –0.11, SE = 0.06. Adding the agent language condition and covariates did not
improve the model performance. This means that the more self-efficacy gains learners
had, the fewer summary writing gains they achieved. This finding is inconsistent with
previous findings that self-efficacy had a positive correlation with reading and writing
learning outcomes [14]. To identify what caused inconsistent findings, we examined the
prior self-efficacy perception and found that 29% (N = 51) of learners had self-efficacy
perception scores with more than 5, 50% (N = 88) 4, 20% (N = 36) 3, and only 1% (N
= 2) less than 3. These findings imply that for learners with a high prior self-efficacy (M
= 4.70, SD = 0.82), it is not easy to improve their self-efficacy for challenging learning
tasks. Another explanation is that participants might conceive that they understand the
agents’ lecture, and therefore they believe they would be capable of writing a better-
quality summary after the intervention, so their self-efficacy gains increased. However,
their perception of self-efficacy might go beyond their actual capability when the tasks
are extremely challenging.

4 Implications and Future Work

These findings provide implications for building conversation-based ITS by designing a
conversational language for computer agents to increase learners’ self-efficacy. Multiple
levels of language and discourse components could be considered. For instance, using the
first- and second-person pronouns increases social relationships. Adopting the narrative,
everyday oral language creates an easy, familiar conversational atmosphere. Explicitly
delivering ideas and concepts enhances information processing. Another implication is
that agents need to provide immediate, real-time feedback and scaffolding on learning
performance so that learners could have a more accurate perception of their capabilities
for the learning tasks, especially for more challenging tasks. The lack of instant feedback
on learners’ performance of the task is likely to have learners perceive that they have
mastered the skills and knowledge and they are capable of successfully completing the
task.
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Limitations of this study include the short-term intervention of one-hour training and
learners recruited from AMT. Future studies will design multiple sessions through an
instructional duration of around 20–35min and provide a long-term intervention in tradi-
tional classroom settings. It would be interesting to conduct posttests and delayed effects
tests and investigate whether a long-term intervention yields a conversational effect for
summary writing in real classes. Another limitation is the self-reported efficacy. Future
studies could add other self-efficacy instruments besides self-reported scales. The present
study used the pre-designed feedback for the MC questions and peer rating questions
but did not provide feedback on written summaries and self-rating summary. In the
future, semi-automatically generated feedback would be adopted along with automated
feedback on the quality of written summaries and self-rating summaries.

Acknowledgments. This work was funded by the Institute of Education Sciences (Grant No.
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Abstract. Feedback, indisputably, has been widely recognized as one
of the most important forms of communication between teachers and
students and a significant lever to enhance learning experience and suc-
cess. However, there is consistent evidence showing that higher education
institutions struggle to deliver consistent, timely, and constructive feed-
back to students. This study aimed to investigate whether, and to what
extent, feedback inconsistency manifested itself in terms of politeness
displayed to students of different demographic attributes (i.e., gender
and first-language background). To this end, a large-scale dataset con-
sisting of longitudinal feedback given to 3,249 higher-education students
in 35 courses were collected and analyzed by applying multi-level regres-
sion modeling. We demonstrated that there were significant differences
between low-performing and high-performing students as well as between
English-as-second-language and English-as-first-language students. How-
ever, the majority of variance measured in the politeness of feedback
was explained by course-level and assessment-level characteristics, while
student-level characteristics accounted for less than 1% variance.

Keywords: Automatic feedback analysis · Feedback inconsistency ·
Politeness · Hierarchical regression modeling

1 Introduction

It is widely acknowledged that quality feedback can be a significant lever to
enhance learning experience and success [3,4,11]. Given the important role
played by feedback, an increasing application of automatic approaches for assess-
ing feedback quality has been developed, e.g., contrasting the effectiveness of
immediate and delayed feedback [12], characterizing factors that are important
to students’ perception of feedback quality and effectiveness [8], and classifying
feedback texts according to certain feedback-provision principles [5,6]. Notice-
ably, these automatic approaches have seldom been used to explore whether
there exists any inconsistency in the feedback given to students of different demo-
graphic attributes, though researchers have pointed out that higher education
c© Springer Nature Switzerland AG 2022
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institutions often struggle to deliver consistent and constructive feedback that
speaks to the needs of students in a large cohort [2,13].

Therefore, we argued that it is necessary to investigate feedback consistency
by comparing feedback given to students of different protective attributes in
higher education institutions. In particular, we were interested in measuring feed-
back consistency from the perspective of politeness, which has been documented
to be of particular importance in various teaching and learning practices in the
literature. In addition, we considered two types of protective attributes in this
study, i.e., gender (female vs. male) and first-language backgrounds (English-as-
first-language vs. English-as-second-language), both of which have been demon-
strated to be related to students’ attainment gap in various educational settings.
Formally, this study was guided by the following Research Question: Does and
if so, to what extent teacher feedback for students differ by students’ gender and
first-language backgrounds?

Through extensive analyses, we contributed to the research on automatic
feedback analysis with the following main findings: (i) multi-level regression mod-
eling is effective in examining feedback inconsistency existing between student
groups of different demographic attributes; (ii) the politeness of feedback was
largely dependent on a student’s performance in an assessment task; and (iii)
there was no significant difference observed between female and male students,
while English-as-first-language students tended to receive less polite feedback
from instructors than their English-as-second-language counterparts.

2 Method

2.1 Dataset

The feedback data used in this study were retrieved from courses in the subject of
Information Technology in a semester from July to October 2020 at a university
in Australia. We cleaned the dataset by filtering out courses with less than 20
students, and removing students with missing data and those preferring not to
reveal their gender or first-language background. As a result, 35 courses were
kept, which including a total of 3,249 students, and the number of students
enrolled in a course ranged from 21 to 455. These students made a total of 9,526
submissions to the assignments, i.e., the data used in this work contained both
marks and feedback given to 9,526 assignment submissions.

2.2 Measuring Feedback Politeness

This study adopted a state-of-the-art tool [9] to measure feedback politeness,
which was proposed to couple a bi-directional LSTM with a convolutional layer
to capture not only the long-distance relationship in input text but also the
linguistic features that are important for describing the text politeness.

With the tool, we calculated all the politeness scores of the feedback used in
our study, whose distribution is depicted in Fig. 1 (a). Most of the feedback was
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rather direct, i.e., over 88% of them were with politeness score less than 0.08.
To better work with skewed data for predictive modeling, as suggested in [1], we
applied logarithm transformation to the politeness scores before serving them
as inputs to the multi-level regression models. The distribution of the politeness
scores after logarithm transformation is given in Fig. 1 (b).

Fig. 1. Distribution of politeness scores.

Fig. 2. A three-level data structure with assignments at level-1, students at level-2 and
courses at level-3.

2.3 Measuring Feedback Inconsistency

We adopted multi-level regression models to investigate whether there existed
any feedback inconsistency. All data analyses were performed with the aid of the
MLWiN 3.05 software [10], as detailed below.

Firstly, before measuring feedback inconsistency, we verified the hierarchical
structure in our dataset. We first constructed a linear regression model by fit-
ting it on the longitudinal assessment data, which was then compared to the
2-level and 3-level models where the second-level variable was the students and
the third-level was the courses in which the students enrolled. The nested 3-
level model is depicted in Fig. 2. Secondly, we included the mark of an assign-
ment into the 3-level model described above. Finally, we incorporated students’
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demographic attributes (i.e., gender and first-language background) to explore
whether, and to what extent, instructors’ politeness displayed in their written
feedback were dependent on students’ demographic attributes. To summarize,
we constructed the following models for analyses and comparison:

– Model-A was solely built on students’ longitudinal assessment order without
considering their assessment performance or demographic attributes;

– Model-B was built by using the assignment marks as first-level predictors;
– Model-C was built by using students’ gender as second-level predictors;
– Model-D was built by using students’ first-language backgrounds as second-

level predictors;

In particular, to examine whether the assessment performance of students
of different demographic attributes had an impact on feedback politeness,
interactions between students’ assessment performance, and their demographic
attributes were tested in Model-C and Model-D. Similarly, interactions between
students’ demographic attributes and time (i.e., the longitudinal order of the
assignments) were also tested in these two models to investigate whether stu-
dents’ demographic attributes had any time-dependent impact on feedback
politeness (Table 1).

Table 1. Examination of hierarchical structures.

Regression S.E. 2-level S.E. 3-level S.E.

VPC

Level 3 28.31%

Level 2 20.33% 0.93%

Level 1 79.67% 70.76%

Intercept *** −4.97 0.05 *** −4.98 0.04 *** −4.73 0.17

Slope *** 0.20 0.02 *** 0.21 0.02 *** 0.21 0.02

Deviance 37610.36 37313.73 35481.09

X2 change *** 296.63 *** 1832.64

*** p < 0.001

3 Results

Based on the variance change (X2 change), we can easily conclude that the
3-level model fitted the data the best, which provides strong evidence for the
hierarchical nature of the data and, more importantly, the examination of the
effect of students’ demographic attributes on feedback politeness should be based
on this 3-level regression model.

Based on Table 2, we can make several interesting observations. Firstly, by
scrutinizing Model-A, which only considered the longitudinal assessment data
as input for regression modeling, we found that feedback politeness tended
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to increase throughout the running of a course (Slope = 0.22, p < 0.001).
Furthermore, the results of Model-B demonstrated that the politeness level
of feedback was positively correlated with a student’s assessment performance
(Mark = 1.98, p < 0.001). That is, the higher mark an assignment submission
earned, the more polite feedback it received. This implies that there existed a sig-
nificant gap between high-performing and low-performing students with respect
to the politeness of feedback they received. When scrutinizing the results of
Model-C, we did not observe any significant results. Also, there were no signif-
icant interactions between students’ genders and their assessment performance
throughout a course. Given the nature of the courses in our dataset, i.e., which
were all related to the studies of Information Technology and often with an
over-representation of male students, this showed some positive evidence that
instructors’ feedback politeness favored neither male nor female students. How-
ever, in Model-D, there were significant differences between students of different
first-language backgrounds. Generally, English-as-second-language students were
more likely to receive polite feedback than their English-as-first-language coun-
terparts (English − second = 0.86, p < 0.001). This was probably because that
instructors might have considered the potential impact of language barriers on
performance and thus tried to support English-as-second-language students with
more polite and encouraging feedback.

Table 2. Coefficients for the main effects of assignment marks (Model-B) and stu-
dents’ demographic attributes and their interaction with assignment marks over time
(Model-C and Model-D).

Model-A S.E. Model-B S.E. Model-C S.E. Model-D S.E.

Intercept *** −4.74 0.17 *** −6.33 0.19 −2.54 7.39 *** −7.02 0.26

Slope *** 0.22 0.02 *** 0.26 0.02 −0.19 0.80 *** 0.37 0.04

Mark *** 1.98 0.10 −2.03 9.52 *** 2.53 0.20

Male −3.79 7.39

Female −3.81 7.39

Mark * Male 4.05 9.52

Mark * Female 3.85 9.52

Time * Male 0.43 0.80

Time * Female 0.51 0.80

English-second *** 0.86 0.22

Mark * English-second ** −0.71 0.23

Time * English-second ** −0.14 0.05

Deviance 35465.91 35074.40 35045.55 35016.24

X2 change *** 391.51 *** 28.85 *** 29.32
∗∗∗ p < 0.001; ∗∗ p < 0.01
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However, to our surprise, English-as-second-language students with good
assessment performance tended to receive less polite feedback from instructors
(Mark∗English−second = −0.71, p < 0.01). On the other hand, throughout the
running of a course, English-as-second-language students were likely to receive
less and less polite feedback (Time ∗English− second = −0.14, p < 0.01). This
showed that feedback inconsistency manifested itself not only among students of
different first-language backgrounds but also among students of the same first-
language background but with different assessment performances or at different
times.

4 Conclusion

Overall, our observations suggest that inconsistency in feedback politeness
occurs across student groups of different assessment performance, different first-
language backgrounds, and different periods in the running of a course. More
efforts are still required to understand the effectiveness of feedback in different
politeness level and consistency issues on learning for different groups of stu-
dents. For more in-depth insights, future research endeavors may be invested to
measure feedback inconsistency from other perspectives, e.g., the presence of the
four aspects of feedback proposed in [7], include different subjects, and explore
how NLP techniques can be applied to assist instructors in avoiding feedback
inconsistency in their feedback-writing practices.
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An analysis of the use of good feedback practices in online learning courses. In:
ICALT, vol. 2161, pp. 153–157. IEEE (2019)

7. Hattie, J., Timperley, H.: The power of feedback. Rev. Educ. Res. 77(1), 81–112
(2007)

8. Lizzio, A., Wilson, K.: Feedback on assessment: students’ perceptions of quality
and effectiveness. Assess. Eval. High. Educ. 33, 263–275 (2008)

9. Niu, T., Bansal, M.: Polite dialogue generation without parallel data. Trans. Assoc.
Comput. Linguist. 6, 373–389 (2018)



566 W. Dai et al.

10. Rasbash, J., et al.: A User’s Guide to MLwiN, vol. 286. Institute of Education,
London (2000)

11. Ryan, T., Henderson, M., Ryan, K., Kennedy, G.: Identifying the components of
effective learner-centred feedback information. Teach. High. Educ., 1–18 (2021)

12. Smits, M.H., Boon, J., Sluijsmans, D.M., Van Gog, T.: Content and timing of
feedback in a web-based learning environment: effects on learning as a function of
prior knowledge. Interact. Learn. Environ. 16(2), 183–193 (2008)

13. Yang, M., Carless, D., Salter, D., Lam, J.: Giving and receiving feedback: a Hong
Kong perspective (2010)



Reducing Bias in a Misinformation
Classification Task with Value-Adaptive

Instruction

Nicholas Diana1(B) and John Stamper2

1 Colgate University, Hamilton, USA
ndiana@colgate.edu

2 Carnegie Mellon University, Pittsburgh, USA
jstamper@cmu.edu

http://www.nickdiana.com, http://www.dev.stamper.org

Abstract. Instructional technology that supports the development of
media literacy skills has garnered increased attention in the wake of
recent misinformation campaigns. While critical, this work often ignores
the role of myside bias in the acceptance and propagation of misinfor-
mation. Here we present results from an alternative approach that uses
natural language processing to model the dynamic relationship between
the user and the content they are consuming. This model powers a debi-
asing intervention in the context of a “fake news detection” task. Infor-
mation about the user- and content-values was used to predict when
the user may be prone to myside bias. The intervention resulted in sig-
nificantly better performance on the misinformation classification task.
These results support the development of content-general and embed-
ded debiasing systems that could encourage informal learning and bias
reduction in real-world contexts.

Keywords: Misinformation · Myside bias · Confirmation bias ·
Personalization · Media literacy · Civic technology · Civics education

1 Introduction

Modern digital media has novel features that set it apart from traditional media,
including a lack of editorial oversight, the democratization of media sources,
and the rapid propagation of stories (particularly stories that are emotionally
charged). Many of these features provide an infrastructure that allows misin-
formation to flourish in ways that would be difficult in a pre-digital age [13].
In response to these new and pressing challenges, media literacy education has
increasingly emphasized misinformation classification (i.e., the ability to accu-
rately identify misinformation) as a critical civic skill. Recent successful misinfor-
mation campaigns illustrate both the public’s susceptibility to believing so-called
“fake news” [13] as well as the dire consequences that result from a failure to
teach and exercise this fundamental media literacy skill.
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While there has been an increased interest in the development of instruc-
tional tools designed to improve misinformation classification [9,11], few solu-
tions account for the impact of bias. In this paper we present a contrasting
approach that aims to model the dynamic relationship between the user and the
content they are consuming. We used this model to predict when the user may
be most susceptible to bias, and to provide adaptive recommendations in those
moments.

We hypothesized that an intervention that leverages the Alignment between
user and content values will reduce the impact of myside bias on ratings of plau-
sibility. We expect that user ratings after seeing the value-adaptive intervention
will be more accurate, and that, generally, the intervention will encourage any
change in ratings to be a change in the right direction (i.e., towards the correct
answer). This work may inform the development of tools for reducing bias when
evaluating the veracity of information in real-world contexts.

Background. The specific skill isolated in the current experiment is one’s abil-
ity to accurately estimate the plausibility of events, specifically in the realm
of United States politics. These estimations are based on what we know about
various political actors and how we believe they might behave. As such, these
estimations can be honed with experience, by comparing what we believed was
plausible with what was actually true. In the real world, a number of potential
factors may play a role in determining plausibility. We attempt to control for
these factors to isolate impact of bias, specifically Myside Bias, or one’s tendency
to evaluate claims or evidence more favorably if the claim or evidence supports
one’s own beliefs or worldview [15]. We expect myside bias to cause users to over-
estimate the plausibility of headlines that support their own beliefs, ultimately
impacting the user’s accuracy on the misinformation classification task.

We estimated user values using Moral Foundations Theory [7], which argues
that moral judgements are driven by the importance we ascribe to a small set of
moral foundations. These moral foundations have been empirically shown to be
highly predictive of both general voting behavior [4] as well as specific political
beliefs [10]. The output of the Moral Foundations Questionnaire (MFQ) is a
vector of five scores, representing the degree to which the student values each of
the five foundations when making moral judgments.

2 Method

Based on a power analysis, eighty-three (83) participants were recruited using
the participant recruitment platform Prolific. Participants were required to be
18 years of age or older, U.S. citizens, and not have participated in any of our
research group’s prior studies. The estimated completion time was 28 min, and
participants were paid $3.15 ($6.75/hour) for participating. Participants who
failed reading-checks (n = 2) were excluded from analyses. The remaining 81
participants (36 female, 42 male, and 3 “Other/Prefer not to say”) ranged in
age from 18–68 years old (M = 34.44). These participants were drawn from a
politically diverse population as evidenced by their scores on the MFQ.
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Fig. 1. A screenshot of the online interface including the value-adaptive intervention.
The model-driven components of the adaptive intervention are displayed in bolded blue
text. User performance improved significantly after seeing the intervention (p < .05).
(Color figure online)

The entirety of the experiment was conducted through an online web inter-
face. After viewing the consent form, participants were directed to a set of
instructions that described the main task of the experiment (misinformation
classification). Following the instructions, participants were given a pre-study
survey that included the MFQ [8]. Participants were then directed to the misin-
formation classification task: a series of 52 news headlines taken from or based
on Politifact headlines in the FakeNewsNet news misinformation dataset [12].
Headlines had two relevant features: authenticity (authentic or fabricated) and
veracity (real or fake). Authentic Real and Authentic Fake headlines were actual
news headlines classified as either “real” or “fake” (respectively) by Politifact.
Fabricated Real and Fabricated Fake headlines were exact copies of authentic
headlines, except that the subject of the headline was changed to a subject from
the opposing side of the political spectrum. For example, the authentic fake
headline “BREAKING: Federal Judge Grants Permission To Subpoena Trump”
would be changed to the fabricated fake headline “BREAKING: Federal Judge
Grants Permission To Subpoena Obama”.

For each item, users provided an initial rating of plausibility, then were
shown additional (non-correctness) feedback (i.e., the debiasing intervention),
and finally were asked to provide a second rating of plausibility in light of this
information. After providing a second rating, users were given correctness feed-
back. In this way, the task closely resembles the Judge Advisor System [14] often
employed in decision-making research. Following the classification task, partic-
ipants were asked to complete a short post-study questionnaire that included
questions about demographic information.
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Alignment is a metric designed to estimate the extent to which the user’s
values (as measured by the MFQ) align with the values present in the text of
the headline the user is reading. In this experiment, alignment was computed
using Distributed Dictionary Representations (DDR) [6] an NLP method. This
method allows for the modeling of abstract psychological constructs, such as the
foundations in Moral Foundations Theory. The output of this process is a vector
of five scores, representing the degree to which the text was semantically similar
to each of the five foundations (see [2] for a more complete discussion of this
process). Alignment is computed simply by computing the cosine similarity of
the result of the user’s Moral Foundations Questionnaire (a vector of five values,
one per foundation) and the result of the DDR analysis (a similar vector of five
values, one per foundation). Previous work has shown that alignment is a reliable
predictor of bias on argument evaluation tasks [3].

After providing an initial rating, users were given model-driven feedback
about their predicted susceptibility to bias. If above a threshold (50%), then the
user was shown additional model-driven information including estimations of the
headline’s predominate value, political affiliation, valence, and the relationship
to a user’s values. Figure 1 shows a screenshot of the intervention. The blue
text in the figure indicate the model-generated and/or user-adaptive feedback
components. The generation of each of the elements of the intervention is detailed
below.

The intervention consisted of two stages. First, a logistic regression model was
used to predict the likelihood of a correct answer given alignment, the number
of prior opportunities, and item-level effects (i.e., average difficulty). The beta
values used in this model were derived from the results of a pilot study. This
information is conveyed to users in the form of text reading “Bias Danger: [Level],
where [Level] is low (>75% likelihood), moderate (50–75%) or high (<50%).

If the likelihood of a correct response was less than 75%, the user was shown
an elaborated intervention that included information from two additional pre-
dictive models. Predictions about the text’s valence, subject, and most relevant
foundation were generated through the use of a SimCSE (Simple Contrastive
Learning of Sentence Embeddings) model trained on the Stanford Natural Lan-
guage Inference Corpus [5]. This model assessed the similarity of headline text to
a set of archetypal sentences based on the topics explored in the Moral Founda-
tions Vignettes [1]. The SimCSE model chose the archetypal sentence that most
closely matched each news headline (e.g., the (fake) news headline “BREAK-
ING: Federal Judge Grants Permission To Subpoena Obama” was most similar
to the negative archetypal sentence “A Democrat breaks the law.”).

Users were also given a prediction about their likelihood to over- or under-
estimate plausibility due to bias. This second likelihood prediction was derived
from a second logistic regression model that predicts the likelihood of overesti-
mation (coded as 1) or underestimation (coded as 0) given the user’s alignment
score and the number of previous opportunities. Again, the beta values used in
this model were derived from the results of a pilot study. Additionally, a qualifier
of either “slightly” or “greatly” was given to the prediction based on the likeli-
hood score (either between 25% and 75% or outside of that range, respectively).
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3 Results and Discussion

We hypothesized that user ratings after seeing the debiasing intervention would
be more accurate than their initial ratings. A paired samples t-test was used
to compare the outcomes of first and second attempts. There was a slight but
significant improvement in outcomes between first (M = .69, SD = .45) and
second attempts (M = .71, SD = .45) t(80) = −2.56, p = .01). Changes in
ratings from one class to another were relatively rare. To get a more nuanced
measure of the impact of the intervention, the direction of movement between
the initial and second rating was also analyzed. That is, we assessed whether or
not the intervention encouraged movement toward the correct answer – even if
the user ultimately provided an incorrect class. We found that, of the instances
in which a user changed their score between the first and second ratings, users
were significantly more likely to “move” their ratings in the correct direction
(X2(2, 2616) = 119.87, p < .001) after seeing the intervention. Users were also
asked to provide feedback about the quality and effectiveness of the AI assistance.
Most users found the AI assistant’s feedback to be helpful and mostly accurate.

These results provide additional evidence for the importance of user-content
alignment in misinformation classification. Users more accurately classified
misinformation after seeing the value-adaptive feedback, and the intervention
encouraged movement towards the correct response. Taken together, these
results suggest that the intervention resulted in both incremental and mean-
ingful changes in user responses, a finding mirrored in the qualitative user feed-
back. This work has implications for the development of future media literacy
instructional technologies, suggesting that accurate models of user learning in
this require the consideration of bias. Future work will aim to provide similar
value-adaptive debiasing interventions in real-world contexts. Integrating this
just-in-time intervention into real-world settings where users encounter misin-
formation will shed light on the impact of this intervention in the presence of
the numerous other factors that may play a role in a user’s determination of
plausibility.

The nature of the intervention’s presentation in this study was limited by
the fact that it leveraged item-level information (based off of previous experi-
ments) in the initial outcome-based prediction stage. Including this item-level
information provides greater accuracy, as it likely captures important baseline
plausibility information. While alignment is included in this outcome prediction
model, the practical result of this prediction is that users are seeing the elabo-
rated intervention on items that are, on average, more difficult to classify. This
is perhaps unavoidable as the specific context of an individual headline (i.e.,
the actors and their behavior) may always be the primary factor in determining
plausibility. Nevertheless, to isolate the impact of bias, the second, bias-based
prediction stage did not leverage any item-level information.

4 Conclusion

Identifying misinformation is a key media literacy skill, and one that may depend
on the interaction between the user and the content they are consuming. We
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found that a value-adaptive debiasing intervention improved performance on a
misinformation classification task. These results provide evidence for the impor-
tance of the dynamic relationship between user- and content-values, particularly
in the media literacy domain.
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Abstract. To interpret the deep learning based knowledge tracing mod-
els (DLKT), we introduce a generic method with four-step procedure.
The proposed method and procedure are generally applicable to the
DLKT models with diverse inner structures. The experiment results val-
idate them on three existing knowledge tracing models, where the indi-
vidual contributions of the input question-answer pairs to the models’
decision are properly calculated. By leverage the calculated interpreting
results, we explore the key information hidden in the DLKT models.

Keywords: Knowledge tracing · Explainable artificial intelligence ·
Deep learning

1 Introduction

Knowledge tracing (KT) aims to estimate learners’ dynamic knowledge state
and predict their future performance. Researchers have successfully adopted the
Markov process, logistic regression, and deep learning techniques to build KT
models. Deep learning based knowledge tracing (DLKT) models are the most
recent ones and have been implemented in intelligent tutoring systems [4]. How-
ever, the existing DLKT models operate as a black box and lack transparency,
which painfully hinders their practical usage. Recently, the post-hoc technique in
explainable artificial intelligence (xAI) has been used to interpret DLKT mod-
els [3]. However, the previous work is primarily the model-specific method, and
it is still lack of the interpreting method that can be applied to different DLKT
models with diverse inner structure.

In this work, we introduce a widely applicable method to interpret DLKT
models. Specifically, we employ a generic method and propose a four-step proce-
dure to interpret three existing DLKT models, including DKT [7], DKVMN [9]
and SAKT [6]. The experiment results show that the method is generally appli-
cable to all the models, as it could properly compute the input contributions
to the model’s final prediction regardless of its inner structure. By leverage the
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interpreting results, we find the skill effect and recency effect in these DLKT
models, i.e., the DLKT models prefer using the recent input records on the same
skill to make their predictions.

2 Related Work

Recently, deep learning techniques have been introduced into the KT domain.
As the first DLKT model, deep knowledge tracing (DKT) model [7] adopts an
recurrent neural networks (RNN) to model learners’ knowledge state on multi-
ple skills. Subsequently, the Dynamic key-value memory network (DKVMN) [9]
and self-attentive model for knowledge tracing (SAKT) [6] has been designed,
which are based on memory-augmented neural networks (MANN) and attention
network, respectively.

Similar to other deep learning models, it is also difficult for human to under-
stand DLKT model’s untransparent prediction process. The interpretability issue
in xAI domain can be generally classified into ante-hoc interpretability and post-
hoc interpretability. In the KT domains, researchers start to investigate using the
post-hoc method, such as layer-wise relevance propagation (LRP) [1] to interpret
the DLKT model, but the solution is model-specific and hard to be generalized
to other DLKT models. We thus introduce a new post-hoc method, called Deep
SHAP [5], into KT domain and explore an interpreting solution that is applicable
to different DLKT models.

3 Interpreting Method

3.1 Deep SHAP

Deep SHAP decomposes the prediction of a deep learning model to the sum of
feature contributions through backpropagation. Specifically, Deep SHAP com-
pares a sample to be interpreted with another sample, namely reference sample,
and assumes that their output difference is caused by their difference in the input
features. By backpropagating the prediction difference, Deep SHAP obtains the
reference-specific contribution of each feature to the prediction. With multiple
reference samples, Deep SHAP computes the mean value of these reference-
specific feature contributions and obtains final feature contributions.

Specifically, given a deep learning model f , a sample x to be interpreted, and
a reference sample r used to compare. We define Δxi as the difference in feature
i, namely Δxi = xi − ri. The quantity Δy is defined as the difference in the
output value, that is Δy = f(x) − f(r). As Eq. 1 shows, Deep SHAP attributes
Δy to feature contributions, where CΔxiΔy represents an amount in Δy caused
by Δxi:

Δy =
n∑

i=1

CΔxiΔy. (1)
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To calculate CΔxiΔy, Deep SHAP defines multipliers. Given a network, the value
difference in the input neuron x is Δxi, and the value difference in the target
neuron t is Δt. Multiplier mΔxiΔt is defined as dividing the finite contributions
of Δxi to Δt by the finite changes Δxi, namely mΔxiΔt = CΔxiΔt

Δxi
. In a complex

multi-layer network, computing multipliers of an input neuron adopts the chain
rule that is equivalent to the chain rule of partial derivative. Suppose a neural
network has three layers, where the input layer has n neurons symbolized as xi,
the hidden layer also has n neurons symbolized as tj , and the output layer only
has a neuron symbolized as y. For every two neighbouring layers, we can easily
obtain their multipliers mΔxiΔtj and mΔtjΔy as shown in Eqs. 2 and 3:

mΔtjΔy =
CΔtjΔy

Δtj
(2)

mΔxiΔtj =
CΔxiΔtj

Δxi
. (3)

As Eq. 4 shows, the chain rule is adopted to calculate mΔxiΔy:

mΔxiΔy =
n∑

j=1

mΔxiΔtjmΔtjΔy. (4)

The details can be found in [8]. The feature contribution of Δxi to the output
difference Δy can be approximately obtained by using mΔxiΔy multiplying Δxi:

CΔxiΔy ≈ mΔxiΔyΔxi. (5)

To obtain reasonable interpreting results, Deep SHAP selects multiple reference
samples and the mean of these reference-specific feature contributions is the final
feature contributions:

CΔxiΔy ≈ 1
m

m∑

k=1

mΔxiΔy

(
xi − rki

)
, (6)

where m is the number of reference samples and rk is the k-th reference sample.

3.2 Interpreting DLKT Models

We adopt Deep SHAP to interpret the predictions of DLKT models. Figure 1
gives a toy example to illustrate the four-step interpreting procedure. Firstly, as
Fig. 1(a) shows, given a sample x to be interpreted, we select reference samples
(i.e., sequences in the training dataset whose last questions are on the same skill
as sample x) and make predictions on the last questions. Secondly, as Fig. 1(b)
shows, we compute the prediction difference between each reference sample and
sample x. Thirdly, We backpropagate the prediction difference from the output
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Fig. 1. The four-step interpreting procedure on a DLKT model

layer to the input layer and compute the reference-specific feature contributions
between each reference sample and the sample being interpreted, as shown in
Fig. 1(c). Finally, to obtain the contribution of each question-answer pair in
sample x to the DLKT model’s prediction (i.e., the QA relevance), we perform an
average operation on its reference-specific contributions, as Fig. 1(d) shows. The
four-step interpreting procedure above is applicable to different DLKT models,
regardless of their inner structure.

4 Multi-model Validation

4.1 DLKT Model Building

We build DKT, DKVMN and SAKT models on ASSISTment2009 [2] dataset.
Specifically, we choose the skill builder dataset, eliminate repeated sequences
and questions without skill labels. We set the maximum length between 10 and
200. The preprocessed dataset contains 320,488 interactions from 3,091 learners
on 110 skills. 80% data is randomly selected for training and the remaining ones
are used for testing. The training setting is similar to [3]. The built LSTM-based
DKT model, whose hidden dimensionality is set to 64, achieves 0.74 in AUC
and 0.72 in ACC. The built MANN-based DKVMN, whose state dimensionality
and memory size are set to 64 and 110, achieves 0.76 in AUC and 0.74 in ACC.
The built attention-based SAKT, whose hidden dimensionality is set to 64 with
4 heads, achieves 0.75 in AUC and 0.72 in ACC.
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Fig. 2. Pair deletion results for the correctly predicted sequences

4.2 Interpreting Result Validation

We split the test data into 48,670 sequences with a length of 15. The first 14
question-answer pairs serve as inputs to predict learners’ performance on the
15th question. We thus obtain correctly and falsely predicted sequences. Then
we select sequences with a length of 15 from the training dataset as reference
samples, whose last question predicts the same skill as the test sequence. By
Deep SHAP, we obtain the QA relevance of question-answer pairs in each test
sequence. To examine the calculated QA relevance, we perform the deletion
experiments and see the accuracy changes as the QA relevance value should
reflect the amount of contributions to the DLKT model’s prediction. For pos-
itive and negative predictions, we delete question-answer pairs in the descend-
ing and ascending order of their QA relevance, respectively. Figure 2 shows
that among the correctly-predicted sequences of three DLKT models, delet-
ing question-answer pairs based on QA relevance causes a significant drop in
model accuracy compared to random deletions (represented by “ R”). It par-
tially validates the interpreting method and procedure, as the calculated QA
relevances reflect contributions of the question-answers pairs to the predictions
of the DLKT models.

5 Hidden Information Explore

5.1 Skill Effect

With the interpreting results, we explore what is the role of skill in DLKT
models. Specifically, we define the skill of the 15th question in each correctly
predicted test sequence as the Target Skill. The question-answer pairs on the
target skill are defined as Target Skill Group (TSG) and those on other skills
are defined as Other Skill Group (OSG). We select the sequences with at least
one question-answer pair on the target skill and other skills. We then compute
and compare the mean of absolute QA relevance of TSG and OSG in three
DLKT models. Table 1 shows that for all the DLKT models, the mean absolute
QA relevance in TSG is significantly larger than that in OSG in both positive
and negative prediction groups. The question-answer pairs on the target skill
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Table 1. T-test between TSG and OSG in Three DLKT Models

Model Group N Mean S.D t

DKT Positive prediction TSG 17351 0.010 0.006 72.116***

OSG 17351 0.007 0.004

Negative prediction TSG 4779 0.014 0.009 43.949***

OSG 4779 0.008 0.004

DKVMN Positive prediction TSG 18065 0.022 0.017 125.400***

OSG 18065 0.007 0.004

Negative prediction TSG 4260 0.026 0.020 64.468***

OSG 4260 0.007 0.004

SAKT Positive prediction TSG 18538 0.011 0.010 79.809***

OSG 18538 0.006 0.004

Negative prediction TSG 3606 0.0170 0.016 36.665***

OSG 3606 0.007 0.004

***p < 0.001

contribute more to the DLKT model’s final prediction than the pairs on other
skills. In other words, the DLKT models rely more on the learner’s previous
performance on the target skill to make decisions. We name it as skill effect.

5.2 Recency Effect

We further explore whether the position in the sequence of question-answer
pairs affects the DLKT models’ prediction. We split all the correctly predicted
sequences into two parts, whose first half and second half both contain questions
on the target skill. The first half of each sequence is simply named as Far Group
(FG) and the second half is named as Close Group (CG). For pairs on the target
skill, we compute and compare their mean absolute QA relevance in FG and CG
in three DLKT models. Table 2 shows that in the three DLKT models, the mean
absolute QA relevance in CG is significantly larger than that in FG in both
positive prediction and negative prediction groups. The question-answer pairs
closer to the prediction contribute more to the DLKT model’s final prediction. In
other words, the DLKT models tend to rely on the learner’s recent performance
to make decisions. We name it as recency effect.
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Table 2. T-test between CG and FG in Three DLKT Models

Model Group N Mean S.D t

DKT Positive prediction FG 11565 0.007 0.003 −107.824***

CG 11565 0.010 0.004

Negative prediction FG 4096 0.007 0.004 −79.147***

CG 4096 0.012 0.006

DKVMN Positive prediction FG 11777 0.006 0.003 −194.531***

CG 11777 0.016 0.007

Negative prediction FG 3906 0.007 0.003 −124.906***

CG 3906 0.019 0.007

SAKT Positive prediction FG 12380 0.005 0.003 −106.52***

CG 12380 0.008 0.004

Negative prediction FG 3136 0.007 0.004 −42.089***

CG 3136 0.011 0.006

***p < 0.001

6 Conclusion

In this work, we employ a generic interpreting method and propose a four-step
procedure to interpret the DLKT models. The experiment results on all the three
DLKT models validate the interpreting method. With the interpreting results,
we discover the skill effect and recency effect from DLKT models. This study
could serve as a solid basis to systematically interpret all the DLKT models.
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Abstract. This paper presents the design and evaluation of an auto-
mated writing evaluation system that integrates natural language pro-
cessing (NLP) and user interface design to support students in an impor-
tant writing skill, namely, self-monitored revising. Results from a class-
room deployment suggest that NLP can accurately analyze where and
what kind of revisions students make across paper drafts, that students
engage in self-monitored revising, and that the interfaces for visualizing
the NLP results are perceived by students to be useful.

Keywords: Writing · Revision · Natural language processing

1 Motivation

Automated writing evaluation (AWE) systems driven by natural language pro-
cessing (NLP) are designed to provide formative feedback for students to revise,
and ideally improve, their essays. However, although students do attempt to
revise their essays in response to AWE feedback, student revisions often do not
yield substantive essay improvements [12,15]. We envision that an enhanced
automated writing evaluation system that analyzes and provides feedback on
students’ revision attempts can support the development of this critical skill.
This paper presents the design and classroom evaluation of ArgRewrite, an
AWE system that integrates NLP and user interface design to support students
in self-monitored revising. The NLP backend automatically extracts all revised
sentences between two paper drafts, then classifies whether the purpose of each
revision was to make a surface (meaning-preserving) versus content (meaning-
altering) change. The frontend uses visual interface components to convey the
backend’s revision analysis. A classroom deployment suggests that NLP provides
accurate feedback and that students meaningfully revise.

Compared to prior research, while some AWE systems may detect revisions,
they tend to provide feedback on a single essay draft [7,11,13] rather than on
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revisions between drafts. Revision as a skill is the target of feedback in our work.
and more generally has been identified as an area for AWE research [3,13,14].

Most AWE systems provide feedback on task and performance rather than
on process [13,14,16]. While recent work has analyzed keystroke logs [5], we
analyze process at the level of sentences. Also, while most AWE systems provide
actionable feedback messages [17], ArgRewrite instead visualizes NLP results
to help students self-monitor their revisions, motivated by research on strategy
instruction [4], self-regulation [10], and self-monitoring [16].

NLP-based writing revision analysis has focused on classifying a revision’s
purpose [9,19], assessing its quality [2], or understanding temporal patterns [14].
Our revision extractor and purpose classifier integrates binary purpose schemas,
sentence alignment algorithms, and predictive NLP features from this litera-
ture [19]. An alternative approach not requiring revision extraction computes
linguistic properties for essay drafts separately, then identifies changes [13].

Prior versions of ArgRewrite were either fully automated demonstration sys-
tems not evaluated with users [18] or Wizard of Oz semi-automated prototypes
evaluated in lab contexts [1]. Generally, automated NLP revision analysis has not
been used to trigger feedback in a target AWE system [13,14]. The ArgRewrite
version described below is fully-automated and deployed in a college class.

2 ArgRewrite: System and Classroom Deployment

The ArgRewrite backend uses NLP algorithms developed in our prior work [19]
to perform revision extraction and purpose classification. Given the raw text of
two essay drafts, an algorithm aligns sentences across drafts based on similarity
and global context; remaining added or deleted sentences are aligned to null.
The pairs of non-identical aligned sentences are extracted as the essay revisions.
Finally, a classifier predicts whether the purpose of each revision is to change the
meaning of the essay or not [6], using the labels content or surface, respectively.
The classifier was learned using a random forest algorithm due to the small size
of the training corpus; four linguistic feature groups encoded each revision [19].

The frontend ArgRewrite interfaces were previously evaluated with posi-
tive outcomes in a wizarded lab study [1]. The present interfaces were slightly
redesigned to better guide students in autonomously using ArgRewrite over the
web in a class deployment. Students were first taken to the Overview Inter-
face (Fig. 1a), which visualized the NLP results using a revision distribution pie
chart (left) and a revision map (right). Next, students were taken to the Review
Interface (Fig. 1b), which used color coding to convey the purpose labeling for
each revised sentence (left). When a student clicked on a sentence revision, a
details window showed the character-level differences between the original and
revised sentence (top). By clicking the next button, students were taken to the
Revision Interface (similar to the Review Interface but with an additional essay
tab with no highlights) to further revise their essay. They were then returned to
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Fig. 1. ArgRewrite interfaces

Table 1. ArgRewrite users providing IRB consent (column 1) and their revising sum-
mary (column 2). Revisions by students who created draft3 and beyond (column 3).
NLP revision purpose classifier performance (column 4).

Users who User subset who revise Total revisions Classifier

upload 2 drafts (# additional drafts) (avg. per student) (F1)

Assignment 1 7 4 (2.3) 26 (8.6) 91.1%

Assignment 2 16 7 (2.7) 291 (41.6) 94.7%

Assignment 3 14 5 (1) 38 (7.6) 90.4%

the Overview Interface to start a new cycle of revision (with the re-revised draft
automatically uploaded as the latest draft), or to download their final essay.

We deployed ArgRewrite in a fall 2019 undergraduate cognitive psychology
class that required three writing assignments involving two paper drafts. For
each assignment, students 1) wrote draft1 of a paper in response to a prompt,
2) used a peer-review system to provide rubric-guided feedback on the papers
of three other students, 3) wrote draft2 of their own paper after receiving peer
feedback, and 4) engaged in a final round of peer review. Students were given
the option to use ArgRewrite between steps 3 and 4, by submitting draft1 and
draft2 of their papers to ArgRewrite, potentially creating further drafts based on
the system’s feedback, then downloading the final revised draft from ArgRewrite
and using it (rather than draft2) for the second phase of peer review.

Although the use of ArgRewrite was completely voluntary, the instructor
encouraged it in different ways across assignments: providing a demo in class for
Assignment 1, then emailing low-performing students and offering extra credit
for Assignment 2. Of the 157 students in the class, 31 used the system at least
once. However, only 24 of these students gave IRB consent to use their data for
the evaluation below. Of these, 2 students used the system to revise 1 assign-
ment, 19 revised two assignments and only 3 used the system to revise all three
assignments. Columns 1 and 2 of Table 1 show the user distribution per assign-
ment.
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3 Evaluation and Analysis

Table 2. Revision distributions, using NLP predictions and post-hoc manual annota-
tions. Arrows compare the distributions of AWE versus peer feedback.a

NLP Manual

Draft 1 to 2 Draft 2 to final Draft 1 to 2 Draft 2 to final

(peer feedback) (AWE feedback) (Peer feedback) (AWE feedback)

Surface Content Surface Content Surface Content Surface Content

A1 53 (32%) 113 (68%) 14 (54%↑) 12 (46%↓) 43 (27%) 119 (73%) 14 (56%↑) 11 (44%↓)

A2 166 (42%) 231 (58%) 89 (31%↓) 202 (70%↑) 148 (38%) 244 (62%) 94 (33%↓) 191 (67%↑)

A3 139 (51%) 134 (49%) 30 (79%↑) 8 (21%↓) 124 (47%) 138 (53%) 29 (76%↑) 9 (24%↓)
a Alignment errors in AWE cause the number of revisions to differ slightly.

NLP Revision Purpose Classifier. NLP performance was analyzed by com-
paring the classifier’s purpose predictions to gold-standard labels that were man-
ually annotated after the assignments were submitted. Each annotation was done
by one of three experts familiar with the coding scheme (kappa > .7 in the lab
study [1]). The last column of Table 1 shows that for all assignments, macro F1
in binary revision purpose prediction was greater than 90%. This was impressive
as the classifier was developed by training on essays responding to two topics
from high school English class assignments, but tested on essays responding to
three topics from college psychology class assignments.

Student Revision Behavior. Table 1 shows that some students using ArgR-
write engaged in further revision (column 2) beyond peer review (column 1),
and often engaged in multiple cycles of revision (column 2 in the parenthesis),
e.g., writing 4th and even 5th drafts. Table 1 (column 3) also shows the total
number of revisions made by the students who performed self-monitored revis-
ing after draft 2. In Table 2, the arrows show that for Assignment 2, the AWE
system prompted more content revisions than peer feedback and a high per-
cent of content revisions as compared to surface revisions. Content revisions are
generally considered more important in revising and more difficult for students
[6]. Possible reasons for the lower percentage of ArgRewrite content revisions in
Assignments 1 and 3 could be the students’ acclimation to the system during
Assignment 1, the direct recruitment with extra credit for Assignment 2, and
the low number of students for Assignments 1 and 3. Due to the high accuracy of
the NLP classifier, the same inferences (represented by the arrows) can be drawn
whether revisions purposes are predicted by NLP or are manually annotated.

Perceived Usability of ArgRewrite. 14 students who used the system for at
least assignments 2 and 3 completed a survey at the end of the course. The survey
(shown in Table 3) included educational technology usability items (1–7) [8] and
items customized for ArgRewrite (8–14). The ‘Class’ column shows that students
responded positively to 13/14 items (i.e., mean Likert values > 3, on a scale from
1–5). The highest score (item 13) indicates that students’ perception of classifier
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Table 3. Mean scores (1 = strongly disagree; 5 = strongly agree), comparing class
deployment (n=14) to lab study (n=22). ** p < .01; * p <.05, + p < .1

Survey Item Class Lab

1 System allows me to have a better understanding of my revision efforts 3.29 3.95*

2 I find the system easy to use 3.43 4.18*

3 My interaction with the system is clear and understandable 3.29 4.14**

4 The system helps me to recognize the weakness of my essay 2.71 3.32

5 System encourages me to make more revisions (quantity) 3.36 3.86

6 System encourages me to make more meaningful revisions (quality) 3.29 3.86

7 Overall the system is helpful to my writing 3.29 3.73

8 I found the “Overview of Your Revisions” page to be useful 3.43 4.14*

9 I found it useful to highlight my revision purposes in different colors 3.71 4.27+

10 I found the revision map visualization useful 3.21 4.09*

11 I found the small window of revision details to be useful 3.43 4.64**

12 I found it helpful to know whether my revision was a “surface” or “content” level change 3.57 4.05

13 My revisions were usually labeled correctly by the system 3.86 4.00

14 I trust the feedback that the system gave me 3.64 3.59

performance reflected the objective results in Table 1. The fact that items 9 and
12 had higher scores than item 10 suggests that feedback on revision purposes
was more useful than feedback on revision location. The lowest score (item 4)
focused on the essay rather than on the revisions. When focusing specifically
on the revisions (e.g., items 1, 5, 6) and the writing process (item 7), the item
responses were all positive. We also compared the students in the current study
to 22 participants who responded to the same items in our wizarded lab study [1].
The mean ‘Class’ versus ‘Lab’ scores were compared using non-paired t-tests,
with the results shown in the last two columns of Table 3. This analysis is quasi-
experimental since there was no random assignment of survey respondents to the
class versus lab conditions. Table 3 shows that for all but the last survey item,
the average score in the classroom study was lower than in lab study. Perhaps the
class participants are a more critical audience because their actual assignment
grade was at stake. Finally, the relative pattern of response values across survey
items demonstrated a moderate positive relationship across the class and lab
responses (Pearson correlation R=.46, p < .1).

4 Conclusion and Future Directions

This paper described the ArgRewrite system for supporting self-monitored revis-
ing. NLP extracts revised sentences between paper drafts and classifies revision
purposes, while visualizations convey the NLP results.

A classroom deployment suggests that NLP accurately analyzes revisions
and that students engage in self-monitored revising and find the visualizations
useful. Future plans include predicting fine-grained purposes using transformers,
assessing a revision’s quality and alignment with feedback, incorporating system
guidance and tutoring, and evaluating via a controlled experiment rather than
an ‘in the wild’ study.
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Abstract. Several studies have shown a positive relationship between measures
of gaze behaviours and the quality of student group collaboration over the past
decade. Gaze behaviours, however, are frequently employed to investigate i) stu-
dents’ online interactions and ii) calculated as cumulative measures of collabora-
tion, rarely providing insights into the actual process of collaborative learning in
real-world settings. To address these two limitations, we explored the sequences
of students’ gaze behaviours as a process and its relationship to collaborative
learning in a face-to-face environment. Twenty-five collaborative learning session
videos were included from five groups in a 10-week post-graduate module. Four
types of gaze behaviours (i.e., gazing at peers, their laptops, tutors, and undefined
objects) were used to label student gaze behaviours and the resulting sequences
were analyzedusing theOptimalMatching (OM)algorithmandWard’sClustering.
Two distinct types of gaze patterns with different levels of shared understanding
and collaboration satisfaction were identified, i) peer-interaction focused (PIF),
which prioritise social interaction dimensions of collaboration and ii) resource-
interaction focused (RIF) which prioritise resource management and task execu-
tion. The implications of the findings for automated detection of students’ gaze
behaviours with computer vision and adaptive support are discussed.

Keywords: Learning analytics · Face-to-face collaborative learning · Gaze
behaviours · Process mining · Computer vision

1 Introduction

In recent years, multiple data sources and analytics techniques have been applied to
extract insights from collaborative learning settings. However, the majority of exist-
ing research focuses on log data of student interactions in digital settings, followed by
questionnaires and verbal documentation which are then analysed with descriptive and
inferential statistics [1]. As presented in a recent systematic review on social learning,
the dominant analytical approach researchers use is social network analysis, followed
by inferential statistics and the dominant data source used is students’ online traces [2]

© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 588–593, 2022.
https://doi.org/10.1007/978-3-031-11644-5_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_53&domain=pdf
https://doi.org/10.1007/978-3-031-11644-5_53


What Does Shared Understanding in Students’ Face-to-Face Collaborative Learning 589

while almost completely ignoring what is happening outside of the digital space. Nev-
ertheless, the overreliance on digital traces from a single platform arguably provides
insufficient information, overlooks learning as an ecosystem [1], and undervalues many
real-world social context complexities that are crucial for social learning [2]. Investiga-
tion of students’ real-world nonverbal behaviours from video data and computer vision
techniques is an understudied area for AIED. Here, we investigated the sequences of
students’ gaze behaviours from a real-world face-to-face collaborative learning activity
from videos and analysed their relationship to perceived shared understanding.

2 Background Research on Gaze Behaviours in Collaboration

Gaze behaviours are considered to be a crucial element for the building of shared under-
standing in collaborative learning. Learners use gaze to streamline speech, co-present,
and disambiguate and direct others’ attention. In eye-tracking research, gaze behaviours
have been shown to have good potential for understanding and predicting the quality of
collaboration through different measures such as joint visual attention (JVA) [3], gaze
overlap [4], and attention similarity [5]. However, these features, which measure the
cumulative frequency of whether learners are looking at the same object, can hardly be
used to represent the complex process of disambiguating and directing attention [6]. As
Fan and colleagues [7] argued, the establishment of “shared attention” in social contexts
through gaze, consists of a sequence of gaze behaviours from involved agents rather
than being a single act. It usually requires initial mutual attention in time, referring to
the point of attention, following the reference, and shared attention. Considerations of
gaze behaviours as a process might provide better insights into students’ collaborative
learning but are rarely considered in educational research studies.

Most existing gaze behaviour investigations in collaborative learning research come
from eye-tracking studies. However, existing studies on gaze behaviours in collaborative
learning are limited due to various inherent challenges. Firstly, limited by equipment and
technology, most of the studies looked at collaboration in digital learning environments
[8]. Previous work has used eye trackers [9] or markers in the real world [10] to capture
learners’ attentive region. These studies illustrated the close relationship between learn-
ers’ visual attention and their collaborative learning outcomes. However, they focused
more on the visual attention in the collaborative working space rather than the atten-
tion among peers, which also has been considered an important gaze behaviour during
collaborative learning [11]. Secondly, nearly all published studies were conducted in
a laboratory context rather than investigating natural real-world learning environments
[10]. The effectiveness of the identified proxies has not been studied in an ecological
setting which may have more interference and may be longer in duration than in studied
experimental conditions.

Yet, understanding gaze communication dynamics in face-to-face collaborative
learning settings and interpreting students’ gaze behaviours from video data with com-
puter vision are understudied. In this paper, we present a novel representation of gaze
communication dynamics specific to real-world collaborative learning environments,
which has significant implications for developing novel computer vision algorithms and
AIED tools to provide timely and useful interventions and feedback.
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3 Methodology

3.1 Context of Study, Data Collection, and Pre-processing

The data was collected from a 10-week postgraduate module. Students were assigned
into groups of 4 or 5 students with interdisciplinary backgrounds, mixed-gender and
varied first languages. Within each week, students were requested to attend a 1-h face-
to-face session to discuss and complete aweekly task collaboratively onMiro (miro.com)
which they accessed through their laptops/tablets.

During the sessions, students were seated as a group around a T-shaped table, facing
a camera. Twenty-three sessions, lasting from about 33 min to about 67 min, have been
used as the final dataset in this study. The first frames of each second from a particular
session were extracted to generate a new video for the labelling of gaze behaviours in
the analysis. After each session, students were asked to fill in a post-survey with 5-points
Likert scale questions about their shared understanding. Ethics approval was received
from the institution and individual consents were given by students before the start of
the study.

3.2 Coding the Gaze Behaviours

We categorized the learners’ gaze behaviours into four main categories: looking at a
student (S), looking at a laptop (L), looking at a tutor (T), and looking at other objects
(O). To be more specific, code S refers to the gaze behaviours of a student looking at
another student in the same group. The learners in the group were labelled from 1 to
n, where n is the number of students within the group. By using the code S1 to Sn, the
actual learner who has been gazing at can be identified. Code L represents situations
when the learner was looking at the laptop on the desk. L1 is used when the learner was
looking at his/her own laptop while L2 is used when looking at another member’s laptop.
Code T refers to a situation when the learner was looking at the tutor who appeared in
the video. Code O is used when the learner was looking at other objects which have not
been defined above. For example, learners who were looking at their own gestures while
speaking, or looking at food/cups on the table would be coded as O.

Computer Vision Annotation Tool (CVAT) (cvat.org) tool was used for video anno-
tation. The coding scheme was implemented by two researchers. A sample video of
1000 frames was coded by both to achieve the consensus of coding with high reliability
(Cohen’s Kappa = 0.98).

3.3 Feature Engineering from Labelled Gaze Behaviours and Analysis

The shaping of shared understanding does not happen in a single gaze moment and
requires to be analysed as a process. Here, we engineered a process feature named
Shared Attention (SA) as a proxy to measure whether learners shared gaze attention in
a specific time period. Ten-frame windows (representing ten seconds in original videos)
were used to generate the process-based feature. In a specific window, the students who
have been gazed at by over half of the students and the students who gazed at them
were marked as “1”, which means they might participate in building shared attention. To
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increase the accuracy of the processing, the overlapping window method was used. The
window size was chosen as ten frames and the window was moved two frames further
for each time. The output SA sequence for the whole group is consist of the ratio of
shaping shared gaze attention for each frame in this session.

The OptimalMatching Algorithm (OMA) was applied to explore the gaze behaviour
sequences.Basedon the distancematrix obtained fromOMA, further cluster analysiswas
applied. Before implementing OMA, numerical values in SA sequences were converted
into codes. The numerical value “0” in the original SA sequenceswas labelled as “passive
(P)” since learners showed no shaping shared gaze attention when this ratio is 0. On the
contrary, the value “1”was coded as “active (A)”. The values between 0 and 1were coded
as “Semi-active (S)”. Since students had to follow the same set of activities regardless
of their sessions and the length of activities varied, to avoid value loss, the first thirty
minutes of each sequence were used. In total, 23 sequences with 1800 frames were
included in the analysis.

A 23× 23matrix was the output of OMA at the session-level. Each cell in the matrix
represented the “distance” between the following sequences. Then, Ward’s Clustering
was applied to hierarchically cluster the sequences with similar patterns across sessions.
The agglomerative coefficient, which reflects the tightness of clustering, was 0.59.

4 Results and Discussion

Figure 1(a) shows the clusters of gaze behaviour sequences in sessions. According to
this tree graph, we divided 23 input sessions into two types.

Fig. 1. (a) A hierarchical tree represents the result from Ward’s clustering in which T represents
a task number and G represents a group number. (b) A relative frequency of codes (1 = Passive,
2 = Semi-active, 3 = Active) in each cluster (Type 1 and Type 2).

The first type contains the top 12 sessions and the second type contains the bottom
11 sessions on the tree. Figure 1(b) shows the frequency of 3 codes in these two types.
The green, purple and orange bars represent “Passive”, “Semi-active”, and “Active”
shared gaze periods respectively. According to Fig. 1(b), these two types have a similar
frequency of “semi-active” states. Meanwhile, type 1 presents more frequency of being
“active” than type 2. The “active” status in type 1 appearedmore frequently whichmeans
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a longer period of active state was achieved compared to type 2. It can also be inferred
that the shared gaze attention lasted longer in type 1 sessions. In other words, students
from type 1 exhibited patterns of longer shared gaze periods. On the contrary, students
from type 2 tended to focus more on completing the task on theirMiro boards and gazing
at their laptops. Type 1 sequences of gaze behaviours might be better associated with
interactive and socio-emotional dimensions [12] of collaborative learning. These gaze
sequences are more likely to occur when students are interacting with peers, actively
listening to others, encouraging participation and inclusion of peers etc. On the other
hand, Type 2 gaze behaviours may be better associated with the behavioural and regula-
tive dimensions [13]. These gaze sequences are more likely to occur while students are
doing resource management, taking actions on their laptops and during task execution
phases. Therefore, we named type 1 sequences as the peer interaction focused (PIF) type
and type 2 as the resource interaction focused (RIF) type. It is worth noting that, the
types of tasks and groups did not show significantly different distribution between PIF
and RIF patterns (Fig. 1(a)). This illustrates the potential of these sequences to be task
and group size-independent features.

The PIF type (m= 3.54, SD= 0.41) and the RIF type (m= 3.54, SD= 0.31) did not
show statistically significant difference in terms of their perceived shared understanding
(SU). It means that a higher frequency of shared gaze attention with peers may not
always lead students to perceive a better shared understanding in collaboration. Rather,
groups that lack shared understanding might spend long periods of PIF sequences of
gaze behaviours, trying to establish a shared understanding. Meanwhile, the shared
understanding values of the PIF type are distributed wider than in the RIF type. Previous
research illustrated that JVA (measured as overlapping gaze areas) had a significantly
positive relationship with shared understanding in collaboration [6]. However, this result
may mainly reflect that students who already have established a shared understanding
are more likely to overlap in their gaze areas in collaborative learning tasks. On the other
hand, if students are initially trying to build such shared understanding this might require
extended periods of peer-interaction focused sequences of gaze behaviours.

5 Conclusion

In this paper, we identified two distinct types of gaze behaviour patterns of students
from twenty-three face-to-face collaborative learning sessions. Peer-interaction focused
(PIF) patterns, which prioritise social interaction dimensions of collaboration, might
lead to a more shared understanding and higher satisfaction for students compared to
resource-interaction focused (RIF) patterns, which prioritise resource management and
task execution. This work has significant implications for developing novel computer
vision algorithms and hence designing fully automatic behavioural analytics tools to
provide intervention and feedback in real-world learning environments.
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Abstract. Traditionally, systems supporting blended learning focus
only on one portion of the course by tracing students’ interaction with
learning content at home. In this paper, we argue that in-class activity
can be also instrumental in eliciting the true state of students’ knowl-
edge and can lead to more accurate models of their performance. Quiz-
itor is an online platform that delivers both the at-home and the in-class
assessment. We show that a combination of the two streams of data that
Quizitor collects from students can help build more accurate models of
students’ mastery that help predict their course performance better than
models separately trained on either of these two types of activity.

Keywords: Self-assessment · Blended learning · Student modelling ·
Adaptive learning support · Voting tool

1 Introduction

Effective learning support in a large blended course can be challenging, espe-
cially, when a course population is diverse. An adaptive system aiming to facil-
itate such support should be able to accurately predict student performance in
the course as the first step in administering effective adaptive interventions [1].
Intelligent tutoring systems [2] and adaptive educational hypermedia systems [3]
have proven their effectiveness in various subjects and learning contexts. Unfor-
tunately, such systems primarily focus only on one portion of the course by
tracing students’ interaction with learning content at home. Such a focus on the
at-home part of the blended learning is understandable, as in most models of
blended learning, the online component assumes individual, self-regulated work;
which means, students may struggle with planning their learning, engaging in
learning activities, reflecting on potential mistakes, etc. In fact, effective reg-
ulation of independent studying becomes the biggest challenge for students in
blended learning scenarios [4].

Somewhat counter-intuitively, there have not been many effective attempts
to propose working solutions for a unified support of the both components of
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blended learning: in-class and at-home. Most of the existing literature focused
on theoretical frameworks and architectures [5,6]. This paper is trying to make a
more practical step in this direction by describing and evaluating an assessment
tool that can be used both in class and at home and demonstrating the potential
value of blending the two respective data streams.

A combination of in-class and at-home assessment coupled with adaptive sup-
port has a potential to significantly improve learning experiences in a blended
course. In-class assessment and at-home self-assessment have different purposes,
but they both can provide valuable information about student progress and
opportunities for targeted interactions. The in-class assessment keeps students
engaged and can serve as initial input on their conceptual understanding. The
at-home self-assessment helps students practice acquired skills at individual pace
and receive adaptive guidance. Combining these two streams of data in a single
system could directly benefit students by enabling their reflection on the cur-
rent progress and building a stronger link between knowledge and skills thus
facilitating deeper understanding of the subject.

This paper presents Quizitor - a system that supports two modes of assess-
ment in a blended course. It can be used by a teacher during a lecture for a pop-up
synchronised assessment of the entire class, and by a student at home for indi-
vidual self-paced assessment. We have evaluated Quizitor in an undergraduate
programming course. An analysis of the collected data shows that a model inte-
grating student activity from both at-home and in-class assessment can predict
students’ performance better than models trained on individual streams of activ-
ity. This effect persists when the data are aggregated on the level of the course
as well as when we narrow down to topic-based models of student performance.
Hence, by tracking students’ attempts across the both modes and integrating
the both streams of data, Quizitor has a potential to maintain a more accurate
model of student performance in a blended course and a more holistic adaptive
support of blended learning.

2 Quizitor

Quizitor is a hybrid quiz platform that can be used for both in-class and at-home
assessments. The main components of its interface are depicted in Fig. 1.

The in-class assessment mode facilitates synchronous assessment where stu-
dents take a quiz in a class with their teacher. The aims of such assessment can
include: taking a short break from a lecture routine, asking students to recall
the learning material that has been recently taught, helping students reflect on
their understanding of the material, and giving the teacher information on how
well students understand the material. A teacher controls when an in-class quiz
(and every question within it) starts and finishes. The top-left screen on Fig. 1
shows the teacher interface of an in-class quiz. On this screen, the teacher can
see the current question, monitor the time spent on it, the number of submitted
answers, and the number of students currently participating in the quiz. Stu-
dents can see the current question on their devices as well (top-left screen on
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Fig. 1. User interfaces of Quizitor.

Fig. 1). They can submit an answer to the question once it is started, but will
not move to the next question until the teacher decides to start it for the entire
class. Once a teacher stops a question, the summary of its results is presented
to the class on both the teacher’s screen (middle-left), and individual students’
screens (middle-right). The summary shows a distribution of different answers
and indicates which answer is correct. After a brief discussion, the teacher can
move to the next question.

The at-home mode is designed as a typical tool for individual self-assessment.
The primary aims of Quizitor in this mode are to help students practice, reflect,
identify knowledge gaps and prepare for exams. In contrast with the in-class
questions, the at-home questions can be more complex, as students are not under
time pressure when answering them. They can choose the day, time, and location
where they want to take the quiz. For each question, students can submit as
many attempts as they want. The feedback indicates only the correctness of the
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attempt and invites a student to repeat the question if the attempt was not
correct.

3 Evaluation

The main hypothesis of this study is that models of student mastery taking into
account the two streams of data coming from students’ in-class and at-home
assessment activity would be able to predict student course performance better
than the models taking into account only individual streams of data.

3.1 Data Collection

The data were collected in the undergraduate course on Web technology taught
in Utrecht University from February until March 2021. The overall number of
students was 198. To participate in the study, students had to sign a consent
form. We excluded from the analysis students who did not use the tool actively
enough (attempted 75% of at-home questions) and those who did not pass the
midterm exam. The resulting number of subjects in this study was 61. The use
of Quizitor started during the third lecture and continued for six lectures until
the midterm. The topics included basics of HTML, CSS, DOM, and Javascript.

3.2 Models of Students’ Mastery

To estimate students’ mastery based on their activity with Quizitor, we applied
Elo Rating System (ERS), which is a relatively easy yet accurate method for
modelling an ability. It has been recently gaining popularity in the educational
data mining and student modelling community [7]. It can dynamically assess stu-
dents’ ability in a certain field based on the results of their continuous assessment.
While assessing student ability, ERS also keeps adjusting the difficulty of ques-
tions that students answer. Essentially, ERS constantly balances the “strength”
(=ability) of a student vs. the “strength” (=difficulty) of a question.

Two sets of student models have been built: the in-class (IC) models and the
at-home (AH) models. The combined IC model is trained based on all students’
in-class attempts. The combined AH model represents students’ mastery as a
result of their overall at-home self-assessment. Individual topical AH and IC
models have been trained only based on the data from AH and IC quizzes per-
taining to corresponding topics. In order to compute more accurate students’ Elo
scores, first we have estimated the Elo scores of all questions, i.e., their levels of
difficulty. First, we split all students into two groups of 80% and 20%. The ques-
tion difficulty is estimated by calculating their Elo ratings based on the answers
from 80% of students. Then, the obtained question model is used to estimate
the Elo scores of the remaining 20% of students. Then, another group of 20%
of students is selected and the processes restarts. After five iterations, mastery
of all students have been modeled. We have repeated this process separately to
compute the IC and AH models.
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3.3 Results

Simple linear regression models have been used to predict students’ midterm
performance based on their mastery estimates. There are four pairs of models
(AH and IC) for course topics and one more pair of combined models, hence
the simple regression has been computed ten times. After that five multiple
regression models have been computed to verify the main hypothesis. Significant
positive regression coefficients have been found for almost all models (except
for IC model for the topic DOM). Table 1 provides the summary of all fifteen
regression models. It is easy to see, that the main hypothesis is confirmed. Bigger
portions of the variability in the predicted variables are explained by the joint
models. Both for the overall case and for each individual topic. The results are
consistent across all four target topics and the overall case. This means that both
modes of students’ work with Quizitor can provide mutually enriching sources
of data. An effective “blend” of these data can inform an adaptive tool truly
supporting blended learning. The adjusted R2 of the combined models are also
much higher compared to individual models indicating absence of overfitting.

Table 1. Result from regression model

Source Model R2 R2-adj p-value

Overall IC 0.117 0.102 0.007

AH 0.114 0.099 0.008

IC-AH 0.21 0.182 0.001

HTML IC 0.1 0.089 0.003

AH 0.047 0.036 0.042

IC-AH 0.136 0.115 0.002

CSS IC 0.152 0.13 <0.001

AH 0.113 0.09 0.03

IC-AH 0.237 0.198 0.005

DOM IC 0.073 0.051 0.079

AH 0.142 0.11 0.044

IC-AH 0.218 0.157 0.041

JS IC 0.257 0.231 0.004

AH 0.154 0.123 <0.001

IC-AH 0.357 0.309 0.003

4 Discussion and Conclusion

In this paper, we have presented Quizitor - an assessment tool that can deliver
both in-class and at-home quizzes. Quizitor has been built as the first step in
an attempt to organise truly blended adaptive support in a blended course.
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While Quizitor at the moment does not have any adaptive capabilities, its initial
evaluation has demonstrated that a combination of data coming from the both
face-to-face and online components of a blended course can help achieve a more
accurate estimation of student ability than models limited to only one of these
components.

There are several directions for future research. First, based on the result,
there is an evidence that the two streams of data coming from the in-class and
at-home activities have an effect on students’ grade. We plan to conduct another
experiment with different approaches of student modelling where the in-class and
at-home activities are merged as an integrated representation of student ability.
Second, we plan to add into Quizitor an adaptive functionality that will support
students in working with the question material based on their current levels of
knowledge. Such an adaptive support can happen not only during students’ at-
home activity, but also during their in-class question answering in the form of
personalised feedback. This can be done at first on the level of coarse-grained
topics. The topic-based analysis described in this paper can be viewed as the
first step in this direction.
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Abstract. The increased adoption of digital game-based learning (DGBL)
requires having a deeper understanding of learners’ interaction within the games.
Although games log data analysis can generate meaningful insights, there is a
lack of efficient methods for looking both into learning as a dynamic process and
how the game- and domain-specific aspects relate to contextual or demographic
differences. In this paper, employing student modelling methods associated with
BayesianKnowledgeTracing (BKT),we analysed data logs fromNavigo, a collec-
tion of language games designed to support primary school children in developing
their reading skills. Our results offer empirical evidence on how contextual dif-
ferences can be evaluated from game log data. We conclude the paper with a
discussion of design and pedagogical implications of the results presented.

Keywords: Game-based learning · Gender differences · BKT

1 Introduction

There is a growing interest in digital educational games as an emerging pedagogy often
referred to as digital game-based learning (DGBL). While data from DGBL environ-
ments have been used for automating sequencing and feedback (e.g., in adaptive systems)
[1], to address research questions around how well games were aligned to educational
objectives [2], research has also demonstrated the potential of using such data to derive
design implications [3]. For example, [4] presents an approach relying on learning curves
analysis to evaluate how the skills targeted within the game fit student performance data.
Similarly, [5] explore different design variations to optimize challenge.

Concerningmethodology, previous research onAIED (Artificial Intelligence in Edu-
cation) algorithms showed the significant value of Bayesian methods (such as Bayesian
Knowledge Tracing and variations) in terms of their effectiveness in predicting if a
student has learned a specific skill by using students’ logged data [6]. However, the
models built for tracing students’ performance might show different results for students
with different demographics and individual characteristics. For instance, recently, [7]
explored the equitability of knowledge tracing in relation to ‘slow’ or ‘fast’ learners.
Here, we are particularly interested in applying BKT to understand the variations in
student performance and engagement within different game mechanics and between
different gender groups of students. The identification of potential gender differences
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in student behaviours in DGBL environments requires a robust, practical, and reliable
methodology for looking into the interaction of gender with DGBL performance and in-
game behaviours for specific games. In this paper, we present an approach to analysing
such differences in the context of a language learning DGBL environment with the help
of pyBKT, an accessible implementation of BKT. Identification of gender bias is the first
step towards its potential mitigation, and it may have important design implications in
relation to specific games that tend to appeal to one gender.

2 Methodology

2.1 The Context, Data and Participants

To examine gender disparities in game-based reading development, we leveraged player
demographics and data logs from Navigo, a collection of adaptive educational games, as
part of the iRead project [8]. The iRead database comprised data collected from digital
learning products in four European languages (English, Greek, Spanish and German).
This study used a subset of data from the English language domain model, generated by
127 students playing Navigo games in ten UK primary schools. The students in our data
subset belonged to three different year groups as follows: 26 students from year 1 (13
female, 13 male, age range: five to six years old), 28 students from year 2 (15 female, 13
male, age range: six to seven years old) and 73 students from year 3 (37 female, 36 male,
age range: seven to eight years old). As a selection criterion, the records were selected
where students’ contextual information (e.g., school, class, year group, and gender) was
complete. There were around equal proportion of female (n = 65, ~ 51%) and male
students (n = 62, ~ 49%).

The included data were collected across five Navigo games, targeting two linguistic
levels: Phonology and Word Recognition. Each linguistic level was further categorized
into language categories: (1) Consonant Clusters, (2) Grapheme Phoneme Correspon-
dence (GPC), (3) Syllabification from the Phonology linguistic level, and (4) Frequency
and (5) Irregular GPCs from Word Recognition. Within each category, were different
language features, the most granular unit of language. Each language feature could be
exercised through different types of games, designed to promote one of three increas-
ingly challenging linguistic skills: accuracy, blending, and automaticity [8]. Each of these
linguistic skills required a unique approach to learning (e.g., multiple-choice questions,
mix-and-match questions), consequently leading to distinct game mechanics (e.g., puz-
zle game, hit-the-target game) seen in the selected five games. Playing one round of any
given Navigo game might involve several questions, generating multiple game events
(e.g., start/end, correct/incorrect) (for more details see [8]).

While playing, the students covered a total of 5,027 questions across the five Nav-
igo games. These students generated 3,760 unique game log entries that were further
decomposable to questions, content, and game-event tables. Moreover, each game log
recorded general information about the game activity, which was defined by the specific
game identifier (game name, id), the targeted language feature (feature id), and the type
of linguistic skill trained by the game mechanic, including information such as the spe-
cific question text and answer options. It also included information about the student’s
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performance, e.g., duration, correct/incorrect responses, and whether any in-game feed-
back was received. Male students were relatively more active, generating more game
log entries (2,159 games covering 2,885 questions, 57.4% game log entries) vs (1,601
games covering 2,142 questions, 42.6% game log entries) for female students.

2.2 Data Analysis

TheBayesianKnowledgeTracing (BKT) algorithm functions as aHiddenMarkovModel
(HMM) in its traditional form and assumes a student’s knowledge (often referred to as
the “mastery level” in prior literature) as a binary variable showing whether or not
a student has mastered a skill. The knowledge here implies a latent variable that is
updated every time a student answers a problem in a learning environment, questioning
their understanding of a specific skill. BKT uses four key skill-specific parameters:
p(L0) or p-init, also known as p(know), is the probability that the student understands
the skill beforehand. p(T) or p-transit, also known as p(will learn), learning probability
or learn rate, is the probability that the student will demonstrate skill mastery on the
next opportunity. p(S) or p-slip, is the probability that the student will make will answer
incorrectly despite having mastered the skill. p(G) or p-guess, is the probability that the
student correctly applies an unknown skill (a lucky guess aka guessing probability).

A recent BKT variant, pyBKT [6] is a probabilistic framework where the parameters
are trained (learned or estimated) using the data from students’ interactions with the
learning system. The framework uses the Expectation-Maximization (EM) algorithm to
achieve convergence in parameter estimation. While several useful class abstractions
are possible in pyBKT (for example, creating, fitting, predicting, cross-validating, and
evaluating BKT models), this study used parameter fitting class abstraction. In the pre-
processing stage, we converted the input columns from games data using the default
column mapping setting. For each linguistic category, the learners started with lowest
level for a particular feature (e.g., competence level = 0) and their learn rate (i.e., p-
transit) was operationalized as a proxy of students’ performance. We estimated guessing
and slipping probabilities in five categories (referred to as skills in BKT literature) played
across three game mechanics (multiple-choice, target, and puzzle). For implementation
details see https://github.com/Samanzehra/iRead.

3 Results and Discussion

3.1 Learn Rate

An estimated learn rate was derived for each student. We found that, overall, female
learn rate (Mean = 0.26, SD = 0.30) was higher than male students (Mean = 0.20, SD
= 0.28). Figure 1(a–c) illustrates the differences in mean learn rate in the linguistic level
Phonology when three categories from Phonology were learned across different games
(GPC, Clusters, and Syllabification). Figure 1(d–e) shows the differences in learn rate
between both genders in the linguistic level Word Recognition.

Regardless of the categories, students’ learn rate remained higher in the games
designed to exercise reading accuracy, such as those employing puzzle (e.g., Hearo-
glyphs) or multiple-choice (e.g., Perilous Paths) learning strategies. The learn rate was

https://github.com/Samanzehra/iRead
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relatively lower in the dynamic games where a student was supposed to hit a target while
moving (e.g., Raft Rapid Fire), which were designed to exercise automaticity in lan-
guage skills. One small exception was the seldomly played category of Syllabification,
a particularly challenging language category usually taught in class in advanced years
groups, where the learn rate remained consistently low.

Fig. 1. Gender differences in learn rate in the Phonology (a–c) and Word Recognition (d–e)
linguistic levels.

3.2 Guess and Slip Rate

While learn rates were calculated for individual students, a slightly different approach
was required for guessing and slipping probabilities because these probabilities may be
influenced more by the type of game and its mechanics. Therefore, we evaluated guess
rates and slip rates for each of the five games individually and then compared them
across various categories. Figure 2(a) to (e) illustrate the guess and slip rate in different
games; each figure reports the result for one language category.

GPC was the most played language category (Fig. 2(a)), and no statistically sig-
nificant gender gap was identified in the guess and slip rates. Overall, in this category,
guessing probability remained higher than 0.5 except for the multiple-choice game Per-
ilous Paths (where we noted p(G) = 0.43 for females, 0.48 for males). The slipping
probability was also the highest for GPC in this game (p(S) = 0.33 for females, 0.38
for males). One potential reason could be that this game was the most played game by
students, as it was designed for practicing skills, and in each round of Perilous Paths,
students were supposed to cross three rope bridges (each bridge representing one ques-
tion) to complete the game but perhaps due to rushing to cross the path the students
made incorrect choices despite knowing the corresponding skill.

The high slipping rate remained consistent in Perilous Paths. However, the exact
opposite trend was noticed in the puzzle game Hearoglygh, where, regardless of gender,
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students made the most guesses (p(G) = 0.77), and slipping probability remained the
lowest (p(S) = 0.17). To aid focus in this puzzle game, the students were supposed to
click the on-screen button to ‘hear’ the hidden word. Therefore, one potential reason for
this contrast could be the unavailability or decreased volume of the game sounds that,
particularly in classroom environments, may have been problematic. Overall, the high
learn rate for the GPC category (except for the hit-the-target game; Raft Rapid Fire) may
have been a result of the increased likelihood of guessing. The results indicate that just
under half of the correct answers may have resulted from a guess without actual mastery
of the language feature.

Fig. 2. Gender differences in guess and slip rate in the Phonology (a–c) and Word Recognition
(d–e) linguistic levels.

Comparing the learning behaviour when students were learning Clusters (Fig. 2(b)),
we found identical patterns, i.e., the lowest slipping probability in the puzzle game
(Hearoglygh) and the highest slippingprobability in themultiple-choice gameofPerilous
Pathswhich was played most for learning new skills and practice previously learnt skills
(p(S) = 0.12 for females and 0.09 for males). Also identical to the GPC category, male
students made most guesses in the Hearoglyphs puzzle game (p(G) = 0.85), closely
followed by the target game Raft Rapid Fire (p(G) = 0.76) when practicing Cluster-
related language features. Next, the Syllabification category was played across three
multiple-choice games. Unlike the rest of the two skills from the Phonology linguistic
level (GPC and Clusters), students made more slips than guesses, eventually resulting
in a relatively low learn rate (see Fig. 1(a–c)). One potential reason could be that this
category was designed to be played by relatively older students from year 3 onwards.
Those students may already have some knowledge of this skill and therefore made
relatively fewer guesses especially while learning in the practice game Perilous Paths.
However, they still slipped more (for example, p(s) = 0.89 for female students, the
highest slipping rate in the Phonology linguistic level).
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From the Word Recognition level, the category Frequency was played most and
across four distinct games.Consistent with the above discussed findings, students guess-
ing probability remained highest in the puzzle game (Hearoglyphs). While the overall
learn rate remained high for female students (Figs. 1 and 2), male students made rela-
tivelymore attempts to guess the correct answers inmost games.Yet, the only statistically
significant difference between male and female students was in the learn rates in the
games under theClusters category (H(1)= 3.844, p< 0.05). Further research is required
to investigate why; it could be that, compared to other categories, “Clusters” is the least
frequently explicitly taught category in English schools. This result further provides
leverage for the hypothesis that the implicit learning opportunities afforded by different
game mechanics may be benefitting male students more than female students (c.f. [7]).

4 Conclusion and Future Work

Likemost other educational games,Navigowas designed with difficulty levels and game
mechanics that do not necessarily favour a specific player gender on purpose. However,
such differences might indeed emerge in practice [e.g., 3]. The parameter estimation
methodology used in this study is a promising start in answering these and similar
empirical questions in dynamic learning environments in general andDGBL inparticular.
The findings from this study generate data-driven insights and raise further research
questions that could have been difficult to derive otherwise (e.g., through classroom
observations, painstaking video analyses or other qualitative methods).

Funding. Funded from the Strategic Investment Board of the IOE, UCL’s Faculty of Education
and Society. For data collection and game development funding see http://iread-project.eu.
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Abstract. Massive Open Online Courses (MOOCs) have dramatically
changed how people access education. Though substantial research works
have been carried out to improve students’ learning experiences, very
little attention was directed to the characterization and identification
of quality MOOCs for students to undertake (e.g., those with a large
enrolment of students), which, we argue, is vital to empower students
to make use of MOOCs to reskill and upskill. To fill the gap, this study
aimed to investigate the extent to which ML models can be used to
automatically identify the popularity of a MOOC before or upon its
publication. Specifically, we collected data about more than 50K courses
from Udemy, based on which we engineered a total of 21 features as input
to four widely-used ML models for MOOC popularity prediction, namely
Linear Regression, Random Forests, XGBoost, and Multi-Layer Percep-
tron Neural Network. Through extensive evaluations, we demonstrated
that (i) XGBoost gave the best performance in predicting MOOC pop-
ularity; (ii) features like the number of captions and enrolment fee were
strongly correlated with MOOC popularity; (iii) the prediction results
were mostly inferior to those reported on predicting the popularity of
social media posts and news articles, and thus more research effort is
needed to boost the prediction performance.

Keywords: MOOCs · Course popularity · Gradient tree boosting

1 Introduction

Since their inception, Massive Open Online Courses (MOOCs) have been
designed to educate the world. In MOOCs, an unlimited number of participants
can simultaneously access learning materials anytime and anywhere as long as
they can connect to the Web [3]. To improve learners’ learning experiences in
MOOCs, a substantial amount of research has been conducted on modeling
students’ learning behaviors [6,7]. However, relatively few have attempted to
investigate how to proactively direct students to quality courses that align with
their interests before they begin their learning. To bridge this gap, researchers
have started constructing personalized recommender systems to match students
to courses based on their learning interests. Though certain advancements have

c© Springer Nature Switzerland AG 2022
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been made, these course recommender systems are often require the input of rich
historical data from students. However, in reality, a significant fraction of stu-
dents might not have sufficient historical data to empower course recommender
systems. As shown in later analyses based on Udemy (Fig. 1(b) in Sect. 3), over
97% students wrote less than five reviews to share their learning experiences in
MOOC learning.

Inspired by the research on web content popularity prediction [9,10], we pro-
posed that an alternative approach to matching students to quality courses is
to first identify popular MOOCs and then recommend these MOOCs to stu-
dents. As a pilot study, we investigated the predictability of course popularity
before publication by applying machine learning methods on its inherent char-
acteristics, where we defined two types of popularity measures, i.e., the average
monthly number of students enrolled in a MOOC and the average monthly num-
ber of student-authored reviews received by a MOOC. Specifically, we collected
a large-scale dataset consisting of over 51, 826 MOOCs from Udemy, and engi-
neered a total of 21 features to empower four ML models to predict MOOC
popularity, i.e., Linear Regression, Random Forests, XGBoost, and Multi-Layer
Perceptron Neural Network. To our knowledge, our study is the first research
which focused on predicting MOOC popularity. Experimental results showed
that (i) among the selected ML models, XGBoost performed the best in pre-
dicting MOOC popularity; (ii) the popularity of a MOOC was associated with
factors such as the number of captions offered in the MOOC, its enrolment fee,
and its content description; (iii) the prediction of enrolment-based popularity
was more challenging than that of review-based popularity and further research
efforts are needed to boost the prediction performance.

2 Method

2.1 Dataset

The dataset was collected in late September 2021 via the APIs provided by
Udemy1, which enabled us to retrieve information about MOOCs, the number of
students enrolled in MOOCs and the ratings/reviews authored by the students.
As we aimed to predict the popularity of MOOC based on its inherent charac-
teristics (e.g., those with meaningful content description and carefully-designed
learning materials and activities), we excluded courses that: (i) were taught in
languages other than English; (ii) were particularly designed for standardized
tests (e.g., GRE and GMAT) and with only questions or simulation tests as the
main learning materials; and (iii) lacked important textual information to char-
acterize the learning content (e.g., learning objectives and course description).
Also, considering the natural time effect on a MOOC’s popularity, we decided
to only include the courses published between 2017/01/01 and 2021/03/01 for
evaluation. After removal, there were 51, 826 MOOCs left.

1 https://www.udemy.com/developers/affiliate/models/course/.

https://www.udemy.com/developers/affiliate/models/course/
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In line with [2,5,8], we tackled MOOC popularity prediction as a regres-
sion problem. In particular, we defined two types of popularity measures, i.e.,
the average monthly number of students enrolled in a MOOC and the aver-
age monthly number of student-authored reviews received by a MOOC, both of
which were calculated by averaging the total number of students/reviews over
the number of months between the time when a MOOC was published and
the time the dataset was collected. We chose to average the number of stu-
dents/reviews to account for the natural time effect on accumulating a MOOC’s
student enrolment and course reviews.

2.2 MOOC Popularity Prediction

Feature Engineering. We engineered three categories of features, i.e., (i)
content-related features, which include information about course title & headline,
learning objectives, prerequisites, description, and target audience of a MOOC;
(ii) structure-related features, which include information about the composition
of a MOOC, namely the duration of all lectures, and the number of video lec-
ture, articles, assessment tests, practice tests, questions, coding exercises and
additional resources contained in a MOOC; and (iii) metadata-related features
including the subject category of a MOOC, enrolment fee, number of captions
and instructors, instructional level, published year/month and published date.
There are three data types: numerical, categorical, and textual. For categorical
features, we used one hot encoding to represent them. For textual features, we
applied BERT [4] on them to generate their vector-based embeddings. In partic-
ular, we concatenated Title and Headline as input to BERT as they were closely
related to each other. After pre-processing, all features were concatenated and
used as input for the four selected ML models, before which we applied Princi-
ple Component Analysis [11] on the concatenated text embeddings with 0.95%
variance explained to reduce the dimensions.
Machine Learning Models. In line with previous studies on content popular-
ity prediction [2,5,8], we selected four well-established ML models for the predic-
tion of MOOC popularity prediction: Linear Regression, Random Forests,
XGBoost and Multi-Layer Perceptron Neural Network.

2.3 Study Setup

As suggested in [1,5], we applied logarithm transformation to the two popu-
larity measures to deal with their highly skewed distributions in the data. All
selected techniques were implemented using the scikit-learn package in Python.
We used Bert-as-a-service2 to generate the embedding representations for all
textual features. We randomly split the data in the ratio of 8:2 as the training
and testing set for model construction. When training a model, we used 5-fold
cross validation and grid search to perform parameter tuning. The performance
of each model was measured by two widely-used metrics for web content pop-
ularity prediction, i.e., Root Mean Squared Error (RMSE), and Coefficient of
2 https://github.com/hanxiao/bert-as-service.

https://github.com/hanxiao/bert-as-service
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Determination (R2). We report model performance on the testing set. All of
the data, code, and parameter settings used in this study can be accessed via
https://github.com/dscodepad/mooc-popularity for replication.

3 Results

The Necessity of Identifying Popular MOOCs. We plot (i) the total num-
ber of courses available on Udemy and (ii) the number of students who wrote at
least one course review at different timestamps between 2017/01/01–2021/09/30
(i.e., the date we finished data collection) in Fig. 1, from which we can observe
that though the number of MOOCs and students have greatly increased over
the past 5 years, the majority of students wrote less than 5 reviews (97% until
2021/09/30). Such infrequent interaction data might imply that a substantial
amount of students did not generate enough data to empower recommender
systems, thus called for the need of identifying popular courses.
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Fig. 1. The number of courses (a) and students (b) at different timestamps.

Results on MOOC Popularity Prediction. Table 1 presents the results of
the four selected ML models. For both popularity measures, XGBoost gave the
best performance while Linear Regression was the worst. When delving into the
results reported in R2 score for predicting # Avg. Monthly Reviews, XGBoost
demonstrated 28.02%, 17.47% and 4.96% of improvement over Linear Regres-
sion, Random Forest, and MLP, respectively. We can make similar observations
on the results reported on # Avg. Monthly Enrolments, though the performance
of MLP was very close to that of XGBoost. The results reported on review-based
popularity measure are much better than those reported on enrolment-based
popularity measure, suggesting that it may be more challenging to identify pop-
ular courses measured in terms of # enrolments versus # reviews. Noteworthy,
the results reported on review-based popularity measure in our study was com-
parable to those reported in some relevant studies. For instance, [1] reported a
best R2 score of 0.43 on predicting new articles’ popularity by using a Linear
Regression model, while the R2 score achieved in our study was in the range
of [0.34, 0.43]. However, our results were relatively inferior comparing to those

https://github.com/dscodepad/mooc-popularity
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reported in predicting popularity of posts and videos in social media platforms,
e.g., [5] reported a best R2 score of 0.8678 and a best RMSE value of 0.5978
obtained by Gradient Boost Regressor. This might be explained by the use of
different features to empower ML models as other studies often used various
kind of social interaction information.

Table 1. Results on MOOC popularity prediction. The best results are in bold.

Models # Avg. monthly reviews # Avg. monthly enrolments

RMSE R2 RMSE R2

Linear Regression 2.0617 0.3419 2.8731 0.2851

Random Forests 2.0129 0.3726 2.8313 0.3058

XGBoost 1.9057 0.4377 2.7235 0.3576

MLP 1.9404 0.4170 2.7258 0.3566

We also conducted an ablation test based on XGBoost to examine the impor-
tance of each feature in predicting MOOC popularity, which was measured by
removing the feature from the input and then calculated the performance change
caused due to the removal of the feature. The results are given in Table 2. Firstly,

Table 2. Feature importance analysis on predicting MOOC popularity. Features
positively contributed to the prediction performance are marked with *. The top-3
decreased performance results are in bold.

Feature category Feature input # Avg. monthly reviews # Avg. monthly enrolments

RMSE R2 RMSE R2

All feature 1.9057 0.4377 2.7235 0.3576

Content w/o Title & Headline * 1.9114 (−0.18%) * 0.4343 (−0.78%) * 2.7397 (−0.59%) ∗0.35(−2.13%)

w/o Content description ∗1.9266(−0.65%) ∗0.4253(−2.83%) * 2.7352 (−0.43%) * 0.3521 (−1.54%)

w/o Target audience * 1.9080 (−0.07%) * 0.4363 (−0.32%) * 2.725 (−0.06%) * 0.3569 (−0.2%)

w/o Prerequisites 1.9018 (0.12%) 0.4400 (0.53%) * 2.7306 (−0.26%) * 0.3543 (−0.92%)

w/o Objectives * 1.9060 (−0.01%) * 0.4375 (−0.05%) 2.7201 (0.12%) 0.3592 (0.45%)

Structure w/o # Lectures * 1.9131 (−0.23%) * 0.4333 (−1.01%) * 2.7291 (−0.21%) * 0.355 (−0.73%)

w/o Lecture duration * 1.9074 (−0.05%) * 0.4367 (−0.23%) * 2.7266 (−0.11%) * 0.3562 (−0.39%)

w/o # Articles * 1.9143 (−0.27%) * 0.4326 (−1.17%) * 2.733 (−0.35%) * 0.3532 (−1.23%)

w/o # Assessment tests 1.9044 (0.04%) 0.4385 (0.18%) 2.7192 (0.16%) 0.3597 (0.59%)

w/o # Practice tests 1.9036 (0.11%) 0.4398 (0.48%) 2.7194 (0.15%) 0.3596 (0.56%)

w/o # Coding exercises 1.9047 (0.03%) 0.4383 (0.14%) 2.7232 (0.01%) 0.3578 (0.06%)

w/o # Questions * 1.9080 (−0.07%) * 0.4363 (−0.32%) 2.7207 (−0.1%) 0.3592 (0.45%)

w/o # Additional resources * 1.9084 (−0.08%) * 0.4361 (−0.37%) 2.7228 (0.03%) 0.3580 (0.11%)

Metadata w/o Subject category 1.9029 (0.08%) 0.4393 (0.37%) * 2.7269 (−0.12%) * 0.356 (−0.45%)

w/o # Instructors 1.9120 (−0.19%) 0.4340 (−0.85%) ∗2.7442(−0.76%) ∗0.3479(−2.71%)

w/o Enrolment fee ∗1.9408(−1.10%) ∗0.4168(−4.77%) * 2.7349 (−0.42%) * 0.3523 (−1.48%)

w/o # Captions ∗1.9445(−1.22%) ∗0.4145(−5.30%) ∗2.742(−0.68%) ∗0.3489(−2.43%)

w/o Published date * 1.9066 (−0.03%) * 0.4372 (−0.11%) * 2.7316 (−0.3%) * 0.3538 (−1.06%)

w/o Published year 1.9028 (0.09%) 0.4394 (0.39%) 2.7235 (0.0%) 0.3576 (0.0%)

w/o Published month 1.9047 (0.03%) 0.4383 (0.14%) 2.7233 (0.01%) 0.3577 (0.03%)

w/o Instructional level 1.9027 (0.09%) 0.4394 (0.39%) 2.7226 (0.03%) 0.3581 (0.14%)

All features marked * 1.9057 0.4377 2.7185 0.3600
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many features did not contribute to the popularity prediction of MOOCs, such
as # Assessment tests, Published year and Instructional level. Secondly, there
were common features that were useful for predicting both types of popular-
ity measures, such as Content description, Target Audience, # Lectures, Lecture
duration, # Captions, and Enrolment fee. In particular, the performance drop
occurred after removing # Captions are significant for both popularity measures.
Enrolment fee also played an important role here. For enrolment-based popu-
larity, the largest performance drop was found on the removal of # Instructors
with the R2 decreasing 2.71%. Overall, among the three categories of features,
content-related features generally tended to be effective. By only taking features
that contributed to the prediction performance into account, XGBoost achieved
a similar or slightly better performance compared to that of using all available
features.

4 Discussion and Conclusion

In this study, we investigated the feasibility of applying ML models to predict
the popularity of a MOOC based on its inherent characteristics. We can see that
# Captions and Enrolment fee were essential in predicting MOOC popularity
based on reviews. This implied that it is beneficial to offer lecture captions in
various languages. MOOC platforms may consider assist course instructors to
produce captions of different languages. Besides, for Enrolment fee the Pearson
correlation coefficients with the number of reviews and the number of enrollments
in a MOOC were 0.1549 and 0.2125, showing that a higher enrolment fee does
not necessarily degrade the popularity of a course. Lastly, it should be noted that
MOOCs essentially can be regarded as a special type of web content. Given the
much longer longevity of MOOCs compared to tweets and news articles (e.g., at
least a few years), it would be worth incorporating additional information and
engineer more complex features in the early stage after publication for popularity
prediction in the future.
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Abstract. Habit is an important concept attracting researchers’ attention in many
fields. In the past, habit was commonly measured by tools such as questionnaires
and diaries which involve subjects’ self-reported behaviors. However, attempts to
extract and support good learning habits with actual learners’ data are still limited.
Therefore, in this study, we aim to identify students’ reading habits using learning
analytics, which enables fine description of learners’ behaviors with accumulated
amounts of log data. We define students’ reading logs based on a psychological
framework inwhich habit is defined as a repetitive behavior responding to a certain
context. The learning context in this study is the promotion of extensive reading in
English implemented in a Japanese public junior high school and supported by a
digital learning environment.We extract 175 students’ daily reading logs recorded
from May 31, 2020 to April 9, 2021 (314 days) to examine whether periodicity
occurs in the data so as to identify the students who newly form an English reading
habit as a result of the promotion as well as their behavior patterns in the process.

Keywords: Learning analytics · Reading habits · Habit measurement ·
Extensive reading · Self-directed learning

1 Background and Motivation

Habit is defined in psychology as a repetitive behavior which responds to a certain
context [1]. In the past, habit was commonly measured by tools such as questionnaires
and diaries. That is, researchers examined whether and how subjects formed a habit via
their self-reported behaviors [2, 3]. The technique of learning analytics, on the other
hand, enables fine description of learners’ behaviors with accumulated amounts of log
data [4]. Thus, we argue that this technique can inform us of learners’ learning habits
with more fidelity. Even though issues on learning habits are not new in the field of
learning analytics, it is innovative to conceptualize this idea in the context and examine
learners’ possession and formation of learning habits with this technique. Many past
studies focused on the activation and facilitation of learning habits. Tools addressing
these objectives were designed accordingly [5, 6]. However, the claims on the effects
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need more verification, in which the measurement of habits play an important role. That
is, to evaluate these various designs, it is essential to understand what is attributed to
existing habits and what are newly-developed habits. The identification can also imply
clusters with different behavior patterns, to which different designs can be adapted.
Thus, we explore the applicability of learning analytics to identify learners’ habits in
an extensive reading (ER) context, where the learning habits are interpreted as reading
habits in this study.

To conceptualize habits in the context of learning analytics, we refer to the framework
proposed by [1]. In the framework, habits connect with contexts. A behavior is habitual
when it occurs repetitively in a specific context. The initiation of the behavior may serve
as a result of the attempt on a certain goal. However, as time goes on, the behavior can
still occur automatically responding to the context even if the goal is no longer pursued.
Thus, [1] argued that habits and goals affect each other on this premise. In this study, we
fit home ER activities in the framework considering practical issues which ER educators
in many schools are constrained by. In an ER program, students are expected to self-
select reading materials, read at their own pace, and have sufficient time to read, which
requires students to have their own goals in case of losing their way before they form
good reading habits. However, it’s difficult for teachers to know about students’ habits
in such activities as are often implemented out of class [7]. Therefore, to support both
teachers and students to achieve the expected outcomes in the ER program, we aim to
answer the following research questions: (1) How can reading habits of extensive reading
be measured using the technique of learning analytics? (2) What are the observed habits
of extensive reading at home for Japanese junior high school students?

2 Research Study: Extracting Self-directed Reading Habits

2.1 Self-directed Extensive Reading Activity with BookRoll and GOAL

The learning context in this study is the promotion of extensive reading in English
implemented in a Japanese public junior high school. Figure 1 describes the reading
activity with BookRoll and GOAL. Students are provided with more than 500 digital
picture books to read in BookRoll, an ebook-based learning platform [8] and supported
by GOAL system, a self-directed activity support environment [9]. The system aims to
facilitate students’ self-directed learning involving a cycle of setting goals,making plans,
analyzing andmonitoring behaviors and reflecting on processes. Through practicing this

Fig. 1. Self-directed extensive reading activity with BookRoll and GOAL
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cycle, students are expected to develop habits of English reading. Thus, the students
can plan their reading schedule along with the target set by themselves in the GOAL
system (e.g., reading for 20 min per day) and carry out their plan by reading the picture
books in the BookRoll system, which can be accessed by digital devices such as tablets,
computers, etc.

The GOAL system automatically synchronizes learners’ BookRoll reading activity
logs that are stored in the Learning Record Store (LRS). GOAL’s activity aggregator
calculates various indicators at different time scales: for instance, daily reading time
spent in extensive reading, total e-books read in a period [7]. Thus, the total minutes for
which a student reads per day are recorded by aggregating the time from when he or
she opened and then closed a book. Details of plans made in GOAL, such as numbers,
frequency, and period, are also tracked. With such log data, we aim to identify the
students who form an English reading habit and the behavior patterns of that habit.

2.2 Operationalizing Model for Self-directed Reading Habits

Table 1 summarizes the concepts and the measurement of how we consider habits in the
field of learning analytics.

Table 1. Concepts and measurement of reading habits in this study

Concepts Description Measurement

Making plans Makes plans via the GOAL system The numbers of the plans

Reading repeatedly Accesses the BookRoll system
more than 1 day during the period
between the ongoing plan and its
subsequent plan

The sum of the reading time in
each plan period

The length of the plan period

Reading
in contiguity with
context

Accesses the BookRoll system
periodically during the period
between the ongoing plan and its
subsequent plan

The frequency of significant sine
or cosine waves in an ongoing
plan period

Probability to
read periodically
in plan period

The ratio of the plan periods in
which one reads periodically to the
total reading plans he or she makes

The ratio of significant sine or
cosine waves to the total numbers
of plan periods

Efficiency
in achieving
the target

The ratio of the days on which the
targets are achieved to the days on
which one accesses the BookRoll
system during the plan

The ratio of the numbers of
target-achieved days to the total
days in a plan period

Based on [1]’s framework, we fit our studied context of learning analytics in the
framework. The conceptualization is illustrated in Fig. 2. In our studied context, the
students have goals to respond to after making plans. Their reading logs are recorded if
they repeat the response, and periodicity occurs in the data when they read in contiguity
with the BookRoll system. Then, they are identified to have the potential for acquiring
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reading habits. The formation of the habits can be verified if periodicity can still be
identified in the subsequent logs of the students’ reading data. This means that their
response to the reading behaviors is cued in the e-book environment. During the period
in which different plans are made, the habits extracted from the students’ behaviors
may be inconsistent since the students may be exploring their own ways to develop
a habit of reading which are different in each plan period. Therefore, we verify these
students’ habit formation in terms of the probability that they read periodically in the plan
periods. The students’ efficiency in achieving their targets is also considered important
and informative. The above approach considers a chance that a habit might form as long
as periodicity is identified, though the outcome efficiency may be low. For example, if
one sets 20 min reading per day in the plan period and ends up reading only 15 min
on alternate days, such a case can be considered as having a habit but not efficient to
achieve the target. In this study we identify the students’ efficiency in achieving their
target as the factor which profiles the students.

Fig. 2. Conceptualizing reading habit extraction based on [1]

To measure the concepts illustrated in Fig. 2, we define them based on the attributes
of the log data (see Measurement in Table 1).

2.3 Findings from Japanese Junior High School Dataset

We extract 175 Japanese junior high school students’ daily reading logs recorded from
May 31, 2020 to Apr. 9, 2021 (314 days), in which the students made approximately
5 plans on average (M = 5.33, SD = 2.86) in the GOAL system. In terms of data
processing, the students’ reading logs on weekdays are limited to those from 6 p.m. to 8
a.m. the next day, while those on weekends are not limited to a specific time slot since
the aim of this study is to extract the students’ reading habits outside their school hours.

Figure 3 illustrates the procedure of the data analysis in this study. In the first round
of omission, 167 students are identified to further examine whether periodicity occurs
in their reading logs. We use the frequency with the maximum of the spectrum in the
power spectrum, which indicates the power distribution of a time-series over frequency,
to identify the potential periodicity of the students. In terms of these frequencies, we
calculate the sine and cosine waves of the log data in the respective plan periods of
each student so that the frequencies can be tested statistically with harmonic regression,
where the time series are regressed on waves with a certain frequency. 104 students
are identified as potential habit holders in this step with the statistically significant
frequencies. In terms of these frequencies, we calculate each students’ probability to
read periodically in the plan period and identify 48 habit holders based on the median
split of the data set (median= 0.32). Then, we consider the average ratio of the numbers
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of target-achieved days to the total days in a plan period as a student’s overall efficiency in
achieving targets. Based on the median split of efficiency (median = 0.15), participants
were divided into high-efficiency habit holders (n = 24, M = 0.31) and low-efficiency
habit holders (n = 24, M = 0.07).

Fig. 3. Procedure of reading habits extraction using learning analytics

Table 2 exemplifies the learning logs of the studentswho are identified to have formed
reading habits with high and low efficiency respectively. Take student 1262 (sID= 1262)
for example. During the period of the first plan (pID = 1), the target was set as reading
for 10 min per day, and the actual reading time on 2020-06-22 was recorded as 32.4
min in total. In this period, he or she was identified to read every other day (Frequency
= 2.0). Considering all the plans made, the probability of his or her periodic reading
behaviors is 0.63, while the average rate to achieve the set target is 0.19. Since both of
the values are higher than the median splits of the respective data sets, student 1262 was
grouped as a high-efficiency habit holder.

Table 2. Example learning logs of students with different efficiency

sID pID Date Reading
time

Target Frequency Probability Efficiency Group

1262 1 2020-06-22 32.4 10 2.0 0.63 0.19 High

351 1 2020-06-22 0.0 5 15.0 0.33 0.05 Low

3 Discussion

In this study, we aim to identify students’ reading habits using learning analytics. We
refer to a psychological framework as the theoretical basis and conceptualize students’
habits in the context of promoting extensive reading. Supported by a digital learning
environment, the learning logs capture the student’s actions which can be interpreted
as behaviors responding to the context. We define the concepts based on the logs and
measure them using the logs to derive criteria which filter the students who are verified
to form reading habits in the promotion (see Table 1). In the past, habit was com-
monly measured by tools such as questionnaires and diaries which involve subjects’
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self-reported behaviors. However, attempts to extract and support good learning habits
with actual learners’ data are still limited. In this study, we demonstrate the operational-
ized definition of habits in the learning context and use previous log data to examine
the conceptualization. With 175 students’ reading logs in 314 days, we extracted 48
students’ reading habits during extensive reading in English. We consider the students’
efficiency in achieving learning goals as the factor which profiles different groups of stu-
dents. With these profiles, future works can further explore different behavior patterns
and design adaptive support for different students. In addition, the behavior patterns of
those who are considered as having no habit learning are not discussed in this study.
However, the students with no reading habits can be identified by the proposed technique
in this study, and better instructional and technological support can be provided based
on the behavior patterns. Finally, the proposed technique of extracting students’ reading
habits needs further validation. Therefore, comparison between other parallel methods
should be done in the future.
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JPNP20006, SPIRITS 2020 of Kyoto University.
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Abstract. Performance prediction models have been proposed countless
times due to the benefits that they can provide to educational stakehold-
ers. While many factors have been taken into account when predicting
student performance, teachers’ assessment or observation reports have
not been commonly used. A teacher’s assessment is a fundamental part
of the educational process and has a direct impact on students’ success.
In this study, we analyze the topics, and psychological features in teach-
ers’ daily written reports and apply them to the student performance
prediction model. Experimental results show the capability of this app-
roach in contributing to the accuracy of performance prediction models.

Keywords: Teacher reports · Topic modelling · Sentiment analysis ·
Performance prediction · Text mining · Machine learning

1 Introduction

“What if educators had the ability to predict their students’ performance ahead
of time” This question has been proposed countless times which is unsurprising
given the numerous benefits that performance prediction models can deliver.
With accurate predictions, educators would be able to easily monitor their stu-
dents’ progress and verify whether they are on track to meet their learning objec-
tives. Having the ability to detect students that may need further help enables
teachers to take preventive measures. Resources and instruction can then be
allocated more efficiently. Not only would prediction models benefit both teach-
ers and students, but they would also have a positive impact on the educational
institution as a whole, since students’ success is often incorporated in metrics
for evaluating effectiveness. An accurate prediction model can therefore benefit
all educational stakeholders.

In prior work, many different types of factors have been taken into account. A
factor that has not been commonly employed in performance prediction models,
however, is teachers’ observation reports. Teachers’ assessment of their students
is an integral part of the educational process and can be defined as “an essentially
interactive process, in which the teacher can find out if what has been taught
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has been learned, and if not, to do something about it” [7]. However, assessment
routines can be highly affected by teachers’ own mindsets along with their beliefs
about the malleability of their students’ abilities. A teacher that has a fixed
mindset, views intelligence as static and believes that there is very little that
can be done to change it [5]. Self-theory research has shown that such belief
could have a negative effect on students’ success [8]. On the other hand, teachers
with a growth mindset could help their students understand that with hard work
and persistence, their own intelligence can increase. With such a correlation
between teachers’ mindsets and students’ success in mind, we take advantage of
daily teacher observation reports and investigate whether they can contribute to
performance prediction models.

Using a subset of our data, Fateen and Mine [3] directly estimated per-
formance based on individual reports. Fateen et al. [4] further presented an
improved student-based model where each instance represents a student instead.
Inspired by Fateen et al.’s improved model, we propose an approach where we
construct an interpretable student-based vector that summarizes and highlights
the sentiments in different extracted topics to predict student performance.

We aim to address two main research questions: RQ1: Can we extract an
interpretable input vector that summarizes teachers’ reports and use it for stu-
dent performance prediction? RQ2: How early can we predict students’ perfor-
mance using our model? To address these questions, we conduct three experi-
ments on different subsets of the data where we investigate how early we can
predict performance, and verify the effectiveness of the model across two different
periods.

To conclude, (1) we present a topic modeling approach with sentiment anal-
ysis to represent teachers’ reports, (2) we show that by using our approach we
can outperform the accuracy of a prediction model that only relies on previous
grades. Finally, we compare our results with previous study results [4] that used
the teachers’ comments as inputs to identify students that have a tendency to
receive lower or higher grades.

2 Data Description

The teacher reports used in the experiments were provided by a cram school for
middle school students in Japan. The teachers closely observe their students and
provide feedback written for their parents about the students’ progress from the
teacher’s viewpoint. The reports include information about what was studied
during class, evaluation scores, and the teachers’ written comments. Overall,
the nature of the comments is encouraging and supportive while occasionally
highlighting any potential concerns. We conduct three experiments, EXP1 to
EXP3 with different subsets of the teachers’ reports. The number of reports and
students attending in each subset is shown in Table 1.

Students that attend the cram school are enrolled in different regular schools.
The results of their regularly taken exams at school were also provided. We
considered these regular test scores the features that would normally be used for
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prediction. The students that had their regular score provided were only a subset.
In all experiments, we compared the performance of using the regular score as
the only feature and adding the regular score to the vector extracted from the
teachers’ comments. The number of students with regular scores provided along
with their corresponding number of reports is displayed in Table 1.

Table 1. Dataset information in each experiment

Date range of reports Simulation exam Complete dataset Regular score Regular score provided

Students Reports Grade Year Students Reports

EXP1 5/2020–5/2021 9/2021 321 24,477 8 2020 175 18,566

EXP2 5/2020–9/2020 9/2020 441 19,653 9 2020 377 17,545

EXP3 5/2021–9/2021 9/2021 433 19,866 9 2021 279 13,988

Since the actual performance in the entrance exam was unattainable. The
provided results of the simulation exams that the students had taken before the
actual entrance exam were utilized. These exams were taken twice, in September
2020 and September 2021. The simulation scores for the students were recorded
for each subject and provided as a total score.

2.1 Feature Selection

In the experimental settings, we adopt three feature sets for comparison. The
first set, FS1 consists of the vector extracted from the teachers’ comments. The
method is explained in Sect. 3. FS2 contains the students’ regular scores. We
investigate using the vector from the teachers’ comments with the regular scores
to verify whether adding teachers’ reports contributes to the accuracy of the
prediction model. FS3 therefore is a concatenation of FS1 and FS2.

3 Methodology

3.1 Seed-Guided Topic Extraction

In a report, a teacher highlights different aspects to summarize the students’
development such as their in-class progress or homework efforts. Five topics
of discussion were pre-defined: (1) Understanding, (2) Classwork, (3) Tests, (4)
Concentration, and (5) Homework. Using TopicRank, the most used key-phrases
by the teachers were identified. To finalize the topic representations, the most
representative key-phrases for the topics were chosen based on the cosine similar-
ity of their BERT embeddings [2] to the topic name embeddings. Since a report
may discuss several topics, the reports were divided into sentences as a pre-
processing step. After transforming the sentences and topic phrases into BERT
embeddings, each sentence was assigned to the topic with the highest cosine
similarity. The most prevalent topics assigned were ‘Understanding’ and ‘Class-
work,’ with 47.3% and 47% allocated to each, respectively with the remaining
6% split between the rest of the topics. We may deduce from these figures that
the most often addressed themes in the instructors’ comments are the teachers’
perspectives on their students’ understanding and summarizing daily progress.
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3.2 BERT Sentiment Analysis

To obtain a sentiment score for the comments sentences, we deployed a pretrained
BERT model on sentiment analysis [1]. The model generates a polarity label and
a confidence score. The distribution of the scores exhibited a high negative skew
where positive scores accounted for an average of 96%. Since the input vector is
student-based [4], the topic sentiment for each student was estimated by taking
the average of the scores corresponding to each topic. Taking the median, we
found that ‘Test’ and ‘Classwork’ topics had the highest scores, 0.95 and 0.93,
while the ‘Understanding’ and ‘Homework’ topics had lower average scores, 0.87
and 0.82, respectively. Therefore, we assume that the teachers tend to be more
supportive when discussing tests and classwork while occasionally expressing
negative feelings about the students’ understanding and homework performance.
Lastly, we conducted a bivariate correlation analysis of the average sentiment
score in each topic with the simulation score and found that the ‘Understanding’
topic held the greatest correlation value with a maximum of 0.35.

3.3 Linguistic and Psychological Analysis

The nature of the comments is generally encouraging and supportive, result-
ing in a significant skew in sentiment score distribution. Hence, we extracted
linguistic and psychological features using the LIWC software [6]. LIWC calcu-
lates the percentage of usage of words that belong to more than 70 categories
and generates an output measure for each. For each student, an average of each
output category was then computed. Next, a bivariate correlation analysis was
conducted on each of the LIWC categories with the students’ final scores. From
89 variables, we selected 21 which had a significant correlation in the 3 exper-
iments. The final vector for FS1, includes the average count in each of the 21
variables along with the average sentiment in the five topics. After constructing
the vector for the feature sets, we employ a Gradient Boosting machine to predict
the students’ scores. Figure 1 shows a flowchart of the methodology described.

Fig. 1. Flowchart of the described methodology
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3.4 Evaluation Metrics

We evaluate our experiments via two metrics: Mean Absolute Error (MAE) and
Percentage by Tick Accuracy (PTA). A tick is the difference between two suc-
cessive grades. We employ PTA0 and PTA1, which mean the model successfully
predicted the grade or predicted it 1 tick away from the true grade, respectively.

4 Experiments

All experiments were evaluated using 10-fold cross-validation. The average MAE
and PTA of the ten folds were computed and results of the three experiments
are shown in Table 2. To compare our approach with the Students Model [4], we
constructed input vectors with a similar method. For FS1, a bag-of-words (BoW)
vector was constructed to represent all teachers’ comments for each student. FS2

consisted of the regular score and FS3 as defined.

Table 2. Average MAE and PTA in EXP1–EXP3 using the extracted feature vec-
tor and BoW vector. Bold values indicate best MAE and PTA0 results using either
approach, underlined values indicate best overall results

EXP1 EXP2 EXP3

MAE PTA0 PTA1 MAE PTA0 PTA1 MAE PTA0 PTA1

Feature vector FS1 66.29 0.36 0.45 56.65 0.56 0.30 65.82 0.40 0.40

FS2 42.39 0.55 0.37 38.61 0.63 0.29 36.22 0.60 0.35

FS3 40.07 0.61 0.33 36.03 0.68 0.26 37.97 0.59 0.35

BoW FS1 39.68 0.71 0.29 65.5 0.45 0.36 70.57 0.27 0.50

FS2 42.39 0.55 0.37 38.61 0.63 0.29 36.22 0.60 0.35

FS3 39.07 0.61 0.31 36.14 0.67 0.27 35.28 0.59 0.35

To answer RQ1, FS1, EXP2 and EXP3 were constructed to evaluate the
effectiveness of the input vector in predicting performance across two different
periods. Due to the strong correlation the regular score had with the final simula-
tion score, FS2 outperformed FS1 in all experiments. However, by adding FS1 to
FS2, or FS3 by definition, we can see that PTA0 shows an average increase of 2%
in EXP2 and EXP3 over FS2 and 3.33% in EXP1, EXP2, and EXP3. As a result,
we can suggest that such observational features extracted can in fact contribute
to a performance prediction model. To address RQ2, we ran EXP1, where we
used a subset of the reports with a date range ending five months before the
exam. The MAE for EXP2 and EXP3 in the three feature sets are lower than
the results shown by EXP1. This is expected, given the period of time between
the reports and the actual exam where there is potential for a student to dras-
tically change their performance. Therefore, there could be a trade-off between
low MAE and early performance prediction. To compare with the baseline, we
can see in Table 2 that in EXP1, BoW gained a higher performance in MAE and
PTA0, outperforming FS2. On the contrary, the features FS1 extracted were able
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to compete with BoW in both EXP2 and EXP3. We conclude that FS1 provides
in-depth comprehension of the reports while giving a competitive capacity for
performance prediction. The features extracted reduce time and size complexity
compared to other embeddings.

5 Conclusion

In this study, we attempted to extract sentiments and psychological features from
teacher observation reports and use those as features for a performance predic-
tion model. We held three subsets of the reports and ran experiments to verify the
effectiveness of the model. The features extracted gave an in-depth understand-
ing of the teacher comments while showing a correlation with the final student
performance. Results showed that this approach can compete with approaches
previously used. However, since teachers’ ideas about their students’ performance
are limited, we suggest combining such features with student-related data such
as previous scores to gain a prediction model with exceeding accuracy.
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Abstract. Computerized adaptive testing (CAT) presents a tradeoff
problem involving increasing measurement accuracy vs. decreasing item
exposure in an item pool. To address this difficulty, we propose two-
stage uniform adaptive testing. In the first stage, the proposed method
partitions an item pool into numerous uniform item groups using a state-
of-the-art uniform test assembly technique based on the Random Integer
Programming Maximum Clique Problem. Then the method selects the
optimum item from a uniform item group. In the second stage, when
the standard error of an examinee’s ability estimate becomes less than a
certain value, it switches to selecting and to presenting an optimum item
from the whole item pool. Results of numerical experiments underscore
the effectiveness of the proposed method.

Keywords: Computerized adaptive testing · Integer programming ·
Item response theory · Maximum clique algorithm · Uniform adaptive
testing

1 Introduction

Computerized adaptive testing (CAT) selects and presents the optimal item
which maximizes the test information (Fisher information measure) at the cur-
rent estimated ability based on item response theory (IRT) from an item pool.
However, in conventional CATs, the same items tend to be presented to exami-
nees who have similar abilities. This tendency leads to bias of the item exposure
frequency in an item pool.

To resolve this difficulty, various methods have been proposed (e.g. [1–3]).
Recent studies by Songmuang and Ueno [4] and by Ishii and several collaborators
[5–7] have explored several techniques using AI technologies to generate numer-
ous uniform test forms from an item pool. Regarding the uniform test forms,
each form consists of a different set of items, but the forms have equivalent
measurement accuracy (i.e. equivalent test information based on item response
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theory). Ueno and Miyazawa [8] proposed uniform adaptive testing (UAT) using
the Maximum Clique Problem (MCP) described by Ishii et al. [6] to divide an
item pool into several equivalent groups of items (uniform item groups) and
then select the optimum item from a uniform item group. They demonstrated
that the UAT reduced test length, item exposure, and bias of measurement
accuracies among examinees although they did not evaluate the measurement
accuracy directly. However, the UAT must degrade the measurement accuracy
of examinees’ abilities because decreasing the test length necessarily increases
the measurement error.

To resolve that shortcoming, we propose two-stage uniform adaptive testing.
In the first stage, the proposed method partitions an item pool into numerous
uniform item groups using the Random Integer Programming Maximum Clique
Problem (RIPMCP) presented by Ishii and Ueno [9], which is known to generate
the greatest number of uniform tests. Then the method selects the optimum item
from a uniform item group. In the second stage, when the examinee’s ability
estimate error becomes less than a certain value, designated as Switching Stage
Criterion (SSC), in the uniform item group, the proposed method switches to
the selection and presentation of the optimum item from the whole item pool
until the update difference of the examinee’s ability estimate becomes less than
a constant value. Numerical experiments demonstrate that the proposed method
reduces item exposure without increasing the measurement error.

2 Computerized Adaptive Testing Based on Item
Response Theory

In CAT, an examinee’s ability parameter is estimated based on Item Response
Theory (IRT) ([10]) to select the optimum item with the highest information.
In the two-parameter logistic model (2PLM), the most popular IRT model, the
probability of a correct answer to item i by examinee j with ability θ ∈ (−∞,∞)
is assumed as

p(ui = 1|θ) =
1

1 + exp[−1.7ai(θ − bi)]
. (1)

Therein, ui is 1 when an examinee answers item i correctly; it is 0 otherwise.
Furthermore, ai ∈ [0,∞) and bi ∈ (∞,∞) respectively denote the discrimination
parameter of item i and the difficulty parameter of item i. The asymptotic
variance of estimated ability based on the item response theory was shown by
[10] to approach the inverse of Fisher information. Accordingly, item response
theory usually employs Fisher information as an index representing the accuracy.
In 2PLM, the Fisher information is defined when item i provides an examinee’s
ability θ using the following equations.

Ii(θ) =
[ ∂
∂θp(ui = 1|θ)]2

p(ui = 1|θ)[1 − p(ui = 1|θ)] (2)

The results imply that the examinee’s ability can be discriminated using an
item with high Fisher information Ii(θ). Accordingly, that ability estimation can
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be expected to be implemented by selecting items with the highest amount of
Fisher information given an examinee’s ability estimate θ̂. The test information
function IT (θ) of a test form T is defined as IT (θ) =

∑
i∈T Ii(θ). The asymptotic

error of ability estimate θ̂, SE(θ̂), can be obtained as the inverse of square root
of the test information function at a given ability estimate θ̂ as SE(θ) = 1√

IT (θ)
.

In conventional CAT, adaptive items are selected from an item pool using
the following procedures.

1. An examinee’s ability is initialized to θ̂ = 0.
2. An item maximizing Fisher information for a given ability is selected from

the item pool. It is then presented to the examinee.
3. The examinee’s ability estimate is updated from the correct and incorrect

response data to the item.
4. Procedures 2 and 3 are subsequently repeated until the update difference of

the examinee’s ability estimate decreases to a constant value of ε or less.

Consequently, CAT can reduce the number of items examined, but it does not
reduce the test accuracy in comparison to that of the same fixed test.

3 Two-Stage Uniform Adaptive Testing

In a conventional CAT, it is highly likely that the same set of items will be
presented to examinees exhibiting similar abilities. Therefore, conventional CAT
cannot be used practically in situations where the same examinee can take a
test multiple times. Furthermore, because the ability variable follows a standard
normal distribution, items with higher information around θ = 0 tend to be
exposed frequently. Therefore, bias of the item exposure frequency occurs in
an item pool. To resolve the shortcoming, various constrained CATs with item
exposure control have been proposed (e.g. [1–3]). Earlier methods have mitigated
the bias of item exposure frequency in an item pool. Unfortunately, they also
entailed the important difficulty of increased measurement error for examinees.
In fact, a tradeoff exists between minimizing item exposure and maximizing
the measurement accuracy. Nevertheless, earlier methods did not resolve the
tradeoff. For that reason, we propose a new CAT framework that can resolve
the tradeoff: two-stage uniform adaptive testing.

3.1 First Stage Procedure

In the first stage, the proposed method partitions an item pool into numer-
ous uniform item groups similarly to UAT, a method presented by Ueno and
Miyazawa [8]. Although UAT employs MCP, which was introduced by Ishii et al.
[6], the number of generated uniform item groups remains limited because of its
heavy space complexity. In addition, MCP tends to engender a bias of item
exposure frequency because it does not consider the bias.
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A state-of-the-art uniform test assembly method, Random Integer Program-
ming Maximum Clique Problem (RIPMCP), has been demonstrated by Ishii
and Ueno [9] to generate the greatest number of uniform tests. Although the
shadow-test method [3] maximizes the test information using integer programing,
it increases the difference of measurement accuracies between the first assembled
shadow test and the last one. In contrast, the proposed method maximizes the
number of uniform item groups with the test constraints, so as not to increase
the bias of measurement accuracy for the groups. In the first stage, the proposed
method partitions an item pool into numerous uniform item groups using the
RIPMCP. The method then selects the optimum item from a uniform item group
as described below.

1. An arbitrary uniform item group is selected from a set of unused groups.
2. The optimal item maximizing Fischer information is selected from the group

and is presented to an examinee in Procedure 1.
3. The examinee’s ability estimate is updated from the examinee’s response.
4. Procedures 2 and 3 are repeated until the asymptotic error of ability estimate

SE(θ̂) reaches a constant value of ε or less.

If a set of unused groups is empty in Procedure 1, then the algorithm resets it
as a universal set of uniform item groups. The number of groups is optimized by
comparing the respective performances of several numbers of groups. Item selec-
tion from a uniform item group accelerates convergence of the ability estimate
to the neighborhood of the true ability value because the item difficulties in each
group are distributed sparsely and uniformly over all the examinees’ abilities.

3.2 Second Stage Procedure

The first stage rapidly provided a roughly approximated ability estimate of an
examinee. The second stage reaches a more accurate ability estimate of the
examinee. More specifically, when the examinee’s ability estimate error becomes
less than the determined value, designated as Switching Stage Criterion (SSC),
in the first stage, it switches to the second stage, which selects and presents the
optimum item from the whole item pool. The second stage is conducted until the
update difference of the examinee’s ability estimate becomes less than a constant
value or less, just as traditional CATs do. The SSC is optimized by changing the
value to compare performance. For this study, we use the Fischer information
measure as an item selection criterion that becomes accurate for the second
stage because it is an asymptotic approximation. Therefore, the second stage
is expected to approach the true ability value efficiently and rapidly without
greatly increasing the item exposure.

4 Numerical Evaluation

This section presents a comparison of the performances of the proposed method
(designated as Proposal) to those of other computerized adaptive testing meth-
ods (conventional adaptive testing in 2 (designated as CAT), Kingsbury and
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Zara [1] CAT (designated as KZ), van der Linden’s IP-based CAT [3] (designated
as IP), Linden and Choi’s item-eligibility probability method [2] (designated as
Prob) and the method described by Ueno and Miyazawa [8] (designated as UAT).
Additionally, we evaluate the performances of the UAT employing RIPMCP to
generate uniform item groups designated as UAT-RIPMCP. Furthermore, we
employ OC = 5 for proposal, UAT, and UAT-RIPMCP.

Table 1. Experiment results obtained using an actual item pool

Test

length

Method No.

item-groups

Avg. exposure

item

Measurement

error (RMSE)

No. non-presented

items

30 CAT – 227.27 (227.99) 0.24 846

KZ(20) 48 131.58 (140.35) 0.29 750

IP – 80.86 (33.28) 0.33 607

Prob. – 95.85 (40.83) 0.34 665

UAT(20) 215 20.94 (12.05) 0.50 23

UAT-

RIPMCP(20)

342 20.47 (8.91) 0.54 1

Proposal(20,

0.225)

342 80.21 (163.75) 0.24 (0.69) 604

50 CAT – 243.90 (233.59) 0.20 773

KZ(25) 39 165.56 (198.94) 0.23 676

IP – 83.61 (31.66) 0.29 380

Prob. – 104.60 (39.98) 0.27 500

UAT(20) 215 20.94 (12.06) 0.48 23

UAT-

RIPMCP(20)

342 20.47 (8.91) 0.52 1

Proposal(20,

0.075)

342 69.83 (151.16) 0.20 (0.57) 284

An experiment was conducted using the item pool of real data, with 978
items, and a test constraint. Table 1 presents the results. In Table 1, the values
in parentheses for KZ, UAT, and UAT-RIPMCP denote the group sizes. Those
for Proposal represent the uniform item group sizes and SSC values. “Avg. expo-
sure item” expresses the average exposure count of an item (the standard error
of numbers of exposure items in parentheses), and “No. non-presented items”
represents the number of items that have not been presented. The average test
lengths (the standard error in parentheses) in the first stage for the total test
lengths 30 and 50 are, respectively, 3.83 (1.11) and 9.65 (2.30). Those in the
second stage for the total test lengths 30 and 50 are the remaining test lengths,
respectively, 26.17 and 40.35. The average test lengths for the total test lengths
30 and 50 show large differences when compared to those in the simulation exper-
iments because of their large difference of the optimum SSC values. Otherwise,
the table lays out results that are almost identical to those obtained from the
simulation experiment. The RMSEs in the first stage for the total test lengths 30
and 50 are, respectively, 0.69 and 0.57 and those in the second stage for the total
test lengths 30 and 50 are, respectively, 0.24 and 0.20. In fact, results indicate
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that the proposed method reduces item exposure without increasing the mea-
surement error. The results demonstrate that only the proposed method resolves
the tradeoff problem between increasing measurement accuracy and decreasing
item exposure.

5 Conclusion

The discussion and results presented herein have demonstrated that CAT entails
tradeoff difficulties between increasing measurement accuracy and decreasing
item exposure in an item pool. To address this difficulty, we proposed two-
stage uniform adaptive testing. Experiments were conducted to compare the
performance of the proposed method with that demonstrated by conventional
methods. Results of those experiments demonstrated that, among all methods,
only the proposed method resolved the tradeoff. We expect to apply the proposed
uniform adaptive testing method to adaptive learning systems [11,12] and Deep
IRT [13,14] in future studies.
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Abstract. Student disengagement prediction in online learning environ-
ments is beneficial in various ways, especially to help provide timely cues
to make some feedback or stimuli to the students. In this work, we pro-
pose a neural network-based model to predict students’ disengagement,
as well as other behavioral cues, which might be relevant to students’
performance, using facial image sequences. For training and evaluating
our model, we collected samples from multiple participants and anno-
tated them with temporal segments of disengagement and other relevant
behavioral cues with our multiple in-house annotators. We present pre-
diction results of all behavior cues along with baseline comparison.

Keywords: E-learning · Facial behavior analysis · Student
disengagement

1 Introduction

Under the current COVID-19 situation, online learning draws great attention.
A matter of concern is its feasibility to provide the same quality of care as
attending a physical classroom. It may be more difficult to watch video feeds
from all students to check their status than to cast a glance to each student in
a physical classroom due to missing eye contact, limited screen sizes, etc.

This difficulty has escalated the necessity of automatically analyzing stu-
dents’ (dis)engagement. Vision-based approaches can be promising as cameras
are almost ubiquitous, as well as they are not invasive and less intrusive. Various
vision-based modalities have been considered for engagement analysis, such as
facial, body gesture, and motion features [1,7,11,12].

The first in-depth work in vision-based engagement prediction utilized facial
features based on box filters to assess engagement intensity [16]. Action units
(AUs), which encodes the movement of facial muscles and provides rich infor-
mation on facial expressions, can be extracted from facial images [14] and have
been used for engagement prediction [2,3]. Another work additionally takes facial
expressions into account for modeling engagement via students’ learning gain
[13]. Facial features can also be combined with biometrics, such as heart rate
[10].
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With the proliferation of deep neural networks (DNNs), the importance of
datasets has been ever increasing. DAiSEE [6] and EmotiW [7] are such datasets
that have been used for engagement analysis. Deep convolutional neural net-
works along with hand-crafted features and recurrent neural networks have been
utilized for spatio-temporal feature learning for engagement analysis [4,8,17].

Most of these methods directly model students’ engagement status; how-
ever, the engagement status of a student may depend on various factors (e.g .,
tiredness, course content, external stimuli) and the cue from the student may
vary, which makes the engagement analysis extremely challenging. We hypoth-
esize that experienced teachers (unconsciously) use multiple signals from a stu-
dent, such as eye movement, facial expression, body motion, etc. and make their
guesses as a whole. This assumption may decompose the problem of disengage-
ment detection into a series of relevant lower-level detection tasks, which may
be easier than directly modeling disengagement itself.

In this paper, we propose to detect students’ disengagement together with
facial and body behaviors cues, applying a multi-task learning approach to train
a model to simultaneously detect disengagement and relevant behavioral cues.
For this, we build a video dataset and frame-level labels on disengagement and
relevant cues, including strange eye movement, presence of facial expression, etc.
Our model is a modified version of the SlowFast network [5] for its capability of
learning local and global temporal features. We train our model with our dataset
in an end-to-end supervised learning. The detection task is cast to frame-level
classification, which can be helpful for real-time applications.

2 Dataset

Table 1. Statistics of annotated segments
after cleaning

Duration (s)

Cue # seg. Min Max Avg

DE 2,497 0.53 684.63 15.26

SE 5,168 0.20 558.37 3.96

FE 2,415 0.20 88.97 4.47

YA 387 0.50 15.13 5.41

OC 1,583 0.20 299.27 15.37

BM 5,669 0.20 81.20 4.68

SC 3,247 0.20 1.45 0.75

We created a dedicated dataset for
our problem setup using a pseudo
learning task. Our learning task con-
sists of reading and recall test ses-
sions. During the reading session, a
participant is required to read text in
Japanese (1,600–1,800 words), while
in the recall test, they are asked if
certain words are present in the text
or not. For doing this, we obtained
approval from our IRB and 26 par-
ticipants with informed consent are
recruited.

We use the videos captured in the
reading session to predict disengage-
ment. The number of recorded videos is 1,560 in total. Due to some technical
difficulties, a few of them should be discarded, which ends up in 1,264 videos
with 5.7M frames in total. More information about the task to create videos for
this purpose can be found in [15].
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2.1 Labels

To help prediction of disengagement, we designed a set of seven behavioral cues
such as disengagement (DE), strange eye movements (SE), presence of some kind
of facial expression (FE), yawning (YA), face occlusion (OC), body movements
(BM), and when participant needs to press keyboard key to change screen (SC).

All these behavioral cues can be relevant to disengagement. For example, fre-
quent yawning can be a sign of boredom; frequently showing some facial expres-
sions and strange eye movements may be a sign of discomfort.

Each video is annotated by at least three of our in-house annotators (A1,
A2, A3, and A4). Annotators were provided with same set of instructions. They
were asked to make temporal segments that contain one of seven behavioral cues
by identifying start and end times of each occurrence of the cue. A video can
have multiple occurrences of a certain behavioral cue.

We explored the annotator agreement for each cue and found that different
cues have different agreement levels, falling into one of the following categories:

– Subjective cues include DE, FE, and SE which are highly ambiguous and
subjective where disagreement may be induced by different opinions of anno-
tators and may not necessarily imply just annotation noises.

– Objective cues include YA, BM, and OC of which definition is rather obvi-
ous and can be consistently recognized by all annotators.

– Impulsive cue includes only SC. Its definition is clear but the annotators
can easily miss some of them because it lasts only for short time.

We investigated individual annotators and aggregated A1, A2, and A4’s (left
A3 because of low annotators agreement) annotations for subjective cues where
overlapping labels for same cue merged together. For objective cues, we kept
labels by all four annotators and assigned ground-truth label based on majority
of agreement (when 2/4 or 2/3 agreed). For SC, we chose majority agreement,
however, we kept all A4’s labels as A4 was extremely exhaustive to spot this
cue. The total number of temporal segments in each label along with duration
statistics are presented in Table 1.

3 Methodology

Our task is to detect behavioral cues. We reformulate this detection task into
frame-level multi-label classification, where a sliding window-based approach is
employed to model the temporal dependency. Formally, for the k-th frame vk,
we aggregate surrounding n frames centered at k, forming a set Vk = {vj |
j = k − n/2, . . . , k + n/2} of frames. Our model g takes Vk as input and make
predictions pk = g(Vk) ∈ R

|Ω|, where Ω = {DE,SE,FE,YA,OC,BM,SC} is the
set of our behavioral cues. Our ground-truth label tk ∈ R

|Ω|, associated with
the k-th frame, is based on our temporal segment labels, i.e., if the k-th frame
is included in one of temporal segments of behavioral cue l ∈ Ω, tkl is set to 1,
and 0 otherwise.
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Fig. 1. Our network architecture based on SlowFast [5]. Here h × w × n + 1 × 3 is
dimension (height, width, temporal, channel) of input, (t′, c′) and (t, c) are (temporal,
channel) dimension of slow and fast pathway feature output.

We use a modified version of SlowFast network [5] as its architecture suits
our task because some cues (e.g ., screen change) consist in rapid motion, while
some others (e.g ., strange eye movement, like frequent blinks) involve both rapid
motions with longer temporal dependency. We make two following changes to
adapt it for our task.

Input Strategy. We reduce the number of input frames for the slow pathway
and resample them as complete set of frames may bring noise when treated
equally. For the fast pathway, original input is kept with a different resampling
rate. For our 30 FPS videos, the resampling rate for the slow and fast pathways
are 7.5 FPS and 15 FPS. Value of n′ and n in Fig. 1 are 16 and 64 respectively.

Temporally-Weighted Average Pooling. Contribution of surrounding
frames can be different for different cues. For example, screen change comes with
a quick motion while body movement may last longer. Such long-range tempo-
ral dependency is modeled in the fast pathway; however, the required length of
temporal dependency and contributions of different frames are not obvious, espe-
cially for the subjective cues. We, therefore, replace 3D global average pooling
(GAP) in the fast pathway with 2D global average pooling (for spatial dimen-
sions) and a trainable temporally-weighted pooling (TWP) layer. We initialize
weights as Gaussian window and make it trainable to adapt to the nature of
specific cue.

We also change hyper-parameter β of SlowFast network to 1/2 to handle the
ratio of number of channels in slow and fast pathways. Further, both features
from slow and fast pathways are concatenated and seven binary classifiers are
used to predict previously described cues. To handle the data imbalance problem,
we use focal loss [9]. The final loss is computed by combining all seven losses.

4 Experiments

Pre-processing. We cropped the face region in every frame of videos using
MTCNN [18] or manually and resized to 256 × 256.
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Training. We employed the 8-fold cross-validation scheme for training and eval-
uation. Each fold contains videos of 3–4 participants. We randomly sampled one
frame from each ground-truth temporal segment to make Vk’s (if a segment
is longer than 7 s, we divided it into equal-length segments until each segment
becomes shorter than 7 s). This frame sampling process was done for every epoch,
which can work as data augmentation. The total number of samples extracted
in this way was roughly 55K, which were split into training and validation sets,
according to the participant-based folds. As a result, roughly 90% of samples
were used for training and the rest for validation in each fold. We also used a
random spatial crop from face regions for training as augmentation.

Table 2. Average results of precision, recall, f1-
score, AUC-PR, and AUC-ROC over the 8-folds.

Pre. Rec. F1. PR. ROC.

DE 0.4521 0.6121 0.4955 0.5463 0.8062

SE 0.4914 0.6714 0.5220 0.6056 0.8847

FE 0.4849 0.3895 0.4093 0.3972 0.8791

YA 0.7221 0.6136 0.6274 0.7081 0.9748

OC 0.6557 0.8804 0.7027 0.8202 0.9712

BM 0.7435 0.6177 0.6667 0.7474 0.9480

SC 0.7295 0.5726 0.6317 0.7013 0.9832

Evaluation. For evaluation,
every fifth frame of a video
in the test set was used as a
center frame of Vk. With this,
roughly 70k to 150k samples
were in the test set of each
fold.

Results and Discussion.
The average performance over
8-folds in terms of precision,
recall, f1-score, AUC-PR, and
AUC-ROC is presented in
Table 2. The difficulty of sub-
jective cues is evident through the results which is compatible with their def-
inition. We observe that a very small number of samples of a particular cue
in a specific test set is the reason for destabilized performance sometimes for
precision, recall, f1-score, and AUC-PR as they focus on positive class. Another
possible reason for the performance degradation is the ambiguity in temporal
segment boundaries; for our frame-level evaluation, frames on the boundary of
a temporal segment are inherently error-prone.

Fig. 2. AUC-PR comparison with baseline.

We also compare our model with
some baselines over a certain fold
that shows an average performance
on our model. Our modified SlowFast
(Ours) is compared with SlowFast
(SF), 3D-ResNet, and 2D-ResNet.
Figure 2 summarizes the AUC-PR
scores. Comparison between ours
and SF vs. others shows the sig-
nificance of two-stream structures.
Also, the comparison between ours
and SF highlights the advantages of
our modifications. 2D-ResNet shows
great performance drops for behavioral cues for which temporal information can
be desirable, such as disengagement, change of screen, and body move. In con-
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trast, temporal information may not be necessary for some cues like yawning
and occlusion, which is consistent with our intuition.

5 Conclusion and Future Scope

In this work, we propose to predict disengagement along with multiple facial
and body behavior cues. We collected participants’ videos and assigned frame-
level labels with in-house annotators. We employ the SlowFast network and
make some modifications to learn spatio-temporal cues from videos. We show the
importance of our modifications by baseline comparison. In future, we will focus
more on the mutual relationships among behavioral cues and disengagement
prediction in detail.
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Abstract. With the increasing limitation on healthcare resources, lack of real or
standardized patients’ willingness to participate in medical education and a high
medical litigation environment, the traditional learning of “see one” and “do one”
is no longer acceptable. Virtual Reality training is becoming commonly used to
address this issue. However, some main challenges such as the lack of a dynamic
comprehensive conversation and poor language understanding prevents virtual
reality from being adopted into mainstream education. In this study, a medical
Natural Language Processing (NLP) pipeline is developed. The proposed pipeline
displays a total accuracy of 95.6%, with significant improvements compared to
the original baseline by an increase of 15% accuracy. The resultant NLP model is
subsequently implemented into a medical clinical training virtual simulation.

Keywords: Natural Language Processing · Spoken language understanding ·
Medical education · Virtual reality · Virtual patient

1 Introduction

Previous research describing the use of technology aims to compensate for students’ lack
of experience with patients have been reported [1]. The use of chatbots, a text-based
intent recognition program, can “impart” knowledge, but does not provide the skills
required for a realistic patient-doctor conversation necessary for qualitative medical
training. Other researchers have reported preliminary success in non-medical programs
using Bidirectional Encoder Representations from Transformers (BERT) [2] mediated
natural language processing (NLP) platforms to create conversations. However, this
has not been tested in clinical conversations heavily depending on specific medical
terminologies. Furthermore, large datasets tend to be biased towards intentions which
have more training examples. Augmentation of the dataset can be resource intensive.
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Therefore, in this research study, we propose and show that the use of a Dual Intent
and Entity Transformer (DIET) NLP model [3] alongside a deep learning sentence
augmentation model is able to achieve higher accuracy intention classification in the
medical context. The use of synthetic augmentation of sentences serves to increase the
amount of training data as well as to ensure a more homogenous dataset, achieving better
overall accuracy for a high number of intents.

2 Literature Review

Assistive chatbot technology has seen an increase in uptake over recent years, accel-
erated by the COVID-19 pandemic. One such use of the assistive chatbot is to deploy
chatbots in medical professional training [1]. Medical institutions globally have begun
exploring ways to utilize chatbot technology to enhance their current curriculum for
training doctors by simulating patients, revising and standardizing examinations. Chat-
bot technology has also seenmuch use in training other forms of healthcare professionals
such as nurses in terms of patient management [4].

However, chatbot technology remains limited in terms of integration into medical
curriculums due to the lack of dynamic conversational capabilities and realism to depict
the environment and patient. Since most chatbot systems are founded on rule-based
programming, the flow of the conversation and the responses given by the chatbots are
linear in nature. This prevents users from being able to feel fully engaged.

Previous work done by Rojowiec et al. showed that the use of Bidirectional Encoder
Representations from Transformers (BERT) based models achieved a maximum accu-
racy of 71.35% on their dataset when tested for intention recognition of the doctor during
doctor-patient clinical interviews [5]. It is noted that their collected data shows a high
imbalance in the dataset, with a majority of the intent classes having fewer than 20
sample sentences per intent while some intent classes reach above 30.

3 Experimental Methodology

3.1 Dataset Collection

In this study, a medical language corpus is collected from 35 clinical students in their
fifth year at the NUS Yong Loo Lin School of Medicine. The medical language corpus
consists of questions datasets belonging to questions asked by the doctor and answers
given by the patients. In this case, the students are asked to roleplay as doctor and patient
pairs. For this study, the disease focused on is an orthopedic disease, spondylolisthesis.
To ensure consistency in the medical language corpus, the students are tasked to roleplay
as an elderly Chinese female suffering from the disease.

To perform sentence-level intention classification, a total of 212 intention labels were
collected and sorted with varying number of sentences per label from the roleplay via
voice recording. Transcription was used to convert the audio to text data (Table 1).
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Table 1. Representation of medical auditory data used to train and test the proposed Natural
Language Processing model.

Intention label Example sentence 1 Example sentence 2

Back Pain Location Could you show me exactly where
your back pain is?

Can you point to me where the
backache is?

… … …

Drug Allergy Do you have an allergy to any drugs? Are you allergic to any
medication?

4 Sentence-Level Speech Intention Classifier for Orthopedic
Clinical Training

4.1 Sentence-to-Sentence Paraphrasing Generator

During the training stage of the NLP model, additional sentences are generated using
a pre-trained text-to-text model with Pre-training with Extracted Gap-sentences for
Abstractive SUmmarization Sequence-to-sequence models (PEGASUS) [6]. A trans-
former encoder-decoder mode is trained using self-supervised objective Gap Sentences
Generation (GSG) for the purpose of generating unique sentences given a single sentence
input. The original intention-to-sample ratio spread is shown in Fig. 1 (A).

By performing sentence augmentation on the original dataset, we are able to obtain
a homogenous spread of sentences across all intention classes as shown in Fig. 1 (B).
Thus, this reduces the amount of overfitting that the NLP model will have on certain
classes. This enables the model to generalize better across all of the identified intent
labels, leading to better overall performance of the model.

Fig. 1. (A) The original samples per intent distribution. (B) The distribution after performing
paraphrasing augmentation. (C) The distribution after normalizing intents to a fixed number of
samples. (D) Medical student interaction with virtual patient.
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Additionally, it is a well-known issue that audio speech to text services may produce
a non-trivial number of incoherent sentences. Thus, the pre-trained paraphraser model
can also be used on the input sentences to correct for these mistakes.

The use of the paraphraser model can be seen to be useful in generating new example
data using the original sentences as seen in Fig. 1 (B) and (C). However, a key limitation
behind the paraphraser is its inability to generate a high number of unique examples given
a single sentence example.Therefore, the paraphraser has an arbitrary upper limit in terms
of the amount of data it can generate depending on the original input sentence. Figure 1
(C) shows the new data spread without homogenizing. Therefore, the paraphraser is
unable to produce a perfectly evenly distributed augmented dataset since this would
require producing a high number of augmented sentences to match the intent with the
highest number of sample sentences, which is not possible.

4.2 Real-Time Speech Intention Classification

To perform sentence-level intention classification, the open-source DIET NLP model
by RASA is implemented. The paraphraser model is used to generate synthetic training
data in the medical training context for the DIET NLP model. Subsequently, the DIET
NLP is optimized and trained using a combination of permutations involving both the
original and generated datasets.

To perform real-time speech intention classification, the audio collected during the
testing phase is converted to text using the Azure Speech to Text (Microsoft) service.
Transcription error can still occur when converting audio to text. Thus, to reduce the
inaccuracy of the trained NLP model, the paraphraser model as described in Sect. 4.1
is applied to the transcribed text which resolves the grammatical and semantic errors in
the sentence while retaining as much of the original meaning as possible.

5 Virtual Reality Clinical Simulation

A virtual reality program for purpose of training a doctor in the clinical setting was
created using Unity software as shown in Fig. 1 (D). The training simulation aims to
mimic a real-life clinical scenario based on a patientwho is suffering from an orthopaedic
disease, whereby the trainee doctor is tasked to perform differential diagnosis and give
a management plan.

The previously trained DIET NLP model gives the conversational capability to the
patient avatar. As the DIET NLP model is trained with conversational stories, the appro-
priate response by the virtual patient is given as output after receiving the speech to text
input from the user. If the confidence level of the model given is below that of 50%,
the model is tasked to give a null fallback as the output indicating that the model is not
certain of the answer. Otherwise, the NLP result which consists of the recognized intent
is then collected and checked against a predefined list of actionable intents. The correct
patient utterance and animation clip is then selected from a library of recorded audio
and animation clips to be played.
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6 Results and Discussion

6.1 Overall Accuracy and Ablation Studies

To study the effects of the augmentation as well as the effects of having a more evenly
distributed training dataset, an ablation study was carried out.

Including the augmented sentences into the training data yielded a slight increase in
the overall F1-score by 0.012. This strongly suggests that the resulting model did not
improve significantly due to the inclusion of the paraphrased sentences into the training
dataset. The slight improvement can be attributed to the model having a more evenly
distributed dataset and a larger training dataset, encouraging the trained model towards
a more generalized optimization.

By applying the paraphraser to only the test sentences, the improvement from the
original baseline can be seen to be a significant increase of 0.119 in the F1-score. This
is likely due to the paraphraser’s model ability to convert the test sentence into a more
common form that has a higher probability of having been seen by the model during the
training phase, and thus result in higher accuracy (Table 2).

Table 2. Ablation studies result of the proposed spoken language understanding framework.

Model Precision Recall F1-score

Rasa original 0.789 0.844 0.806

+ Paraphrased training 0.801 0.854 0.818

+ Paraphrased test 0.917 0.943 0.925

+ Both 0.950 0.967 0.956

+ Both (Normalised) 0.917 0.943 0.925

However, the usefulness of the augmented training data becomes apparent when
combining both the training with paraphrased sentences alongside converting the test
text input into a paraphrased sentence. This resulted in the highest increase in the model
performance with an overall increase in 0.15 in the F1-score to achieve a total score of
0.956. This highly suggests that performing augmentation on both the training and test
datasets allow for the mapping of the datasets towards a common domain.

Normalisation of the model did not result in any more increase in performance of
the model. However, this is likely to be due to the size of the training dataset having
been more than halved due to the forceful removal of sentences to ensure an evenly
distributed data. Thus, the difference in the F1-scores suggest that the effect of having
a sufficiently large training dataset is more significant as compared to having a more
evenly distributed training data.

Therefore, to create themost optimal NLPmodel for understandingmedical-focused
intentions we propose the use of a customized paraphraser model that serves to both
augment the dataset and to convert the incoming input into a more generalized domain
format that is better understanding by the trained model and to reduce sentence errors.
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6.2 Virtual Reality User Study

To assess the effectiveness of the NLP conversational model for orthopedic clinical
training, a total of 23 undergraduate medical students were tasked to interact with the
virtual patient. Minimal prompts were given to the students besides an introduction of
how to operate the headset and interact with the virtual patient. After going through the
entire clinical scenario, the students are then tasked to complete a survey to give their
thoughts and opinions on the virtual patient simulator. A copy of the survey and the
questions can be found below. The students were asked to rate their experience on a
Likert scale from 1 to 5.

19 out of 23 (82.7%) of the students reported a good to excellent overall experience
in the clinical training program to fulfil their learning objectives. Sub-group analysis
showed that 69.6% of the students found the clinical interaction with the virtual patient
to be similar to their experiences with real-life patient interactions. Furthermore, 86.9%
of the student users found the graphics of the program to be realistic. 78% of the student
users expressed that the clinical simulation would aid them in the clinical studies.

Overall, the preliminary studies with the undergraduate students strongly indicate a
favorable response towards the use of the virtual reality program to enhance theirmedical
clinical training. In addition, the use of the virtual patient simulation can be done at their
own leisure, thus aiding in reinforcing the topics learnt and improving memory retention
in the students.

7 Conclusion

In conclusion, the study has demonstrated the practical usefulness is the use of a para-
phraser sentence augmentation model for the purpose of homogenizing the original
training dataset and to convert transcribed audio into a more recognizable form by the
model. This offers a significant improvement compared to the baseline, allowing for
smoother conversation in a virtual clinical training scenario.

In this study, the trained model captured a total of 212 intents. The importance
of training NLP models to recognize a large number of intentions is vital for progress
towards building comprehensive interactable virtual agents. Through this study, we have
highlighted the feasibility in using the DIET NLP model to perform highly accurate
intent recognition on many unique intents. Additionally, the training and testing pipeline
proposed by the study has shown that the use of sentence augmentation techniques can
greatly improve the model’s ability to generalize across testing labels.
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Abstract. This study focuses onmodeling perspective taking behavior during col-
laborative explanation activities and the process of searching for relevant knowl-
edge for constructive interaction. A laboratory experiment was conducted where
dyads learned about concepts and engaged in a reasoning task using concept maps
through discussions. We collected leaners conversational data and gaze using two
eye trackers to examine perspective taking behavior. The results showed that lean-
ers who considered others’ diverse perspective expeditiously reflected upon their
own knowledge and used the relevant knowledge for explaining the phenomenon
to their partners. To further model the process of the perspective taking behavior
and knowledge retrieval that occurred in the experiment, we developed a model
using the cognitive architecture, Adaptive Control of Thought Rational (ACT-R).
We further explained the mechanisms by implementing a model where perspec-
tive taking increases the opportunity to search and reconsidering the use common
knowledge owing to the discrepancy triggered by diverse perspectives. This paper
contributes tomodel-based research and provides knowledge on capturing the rela-
tionships of perspective taking and relevant knowledge retrieval in collaborative
learning.

Keywords: Collaborative learning · Concept map · Computer model · ACT-R

1 Introduction

Studies on collaborative learning in the field of cognitive and learning science have
shown that self-explanation activities are effective in triggering metacognition [2], and
facilitate a deeper understanding of the learning materials [5], and facilitate abstract
understanding of concepts. Past studies have shown that perspective-taking plays an
important role in collaborative learning and problem-solving [6]. However, different
types of cognitive bias have also been found; an example type is egocentric bias, which
primarily entails the application of only accessible knowledge. Perspective-taking failure
during a collaborative explanation activity leads to the formation of misunderstandings
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and misconceptions about the knowledge. Thus, it is important to focus on how learn-
ers use relevant knowledge to develop a mutual understanding that will allow them to
collaboratively develop knowledge.

How relevant knowledge is retrieved by dyads during explanation is another impor-
tant topic of investigation. Explanation activities can be described as activities wherein
one will perceive the knowledge of others and interpret one’s own knowledge to make
sense of the explained content [2]. From a cognitive processing perspective, memory
retrieval-based knowledge searches may not always be successful, and may result in
the retrieval of inadequate knowledge that leads to knowledge-sharing inconsisten-
cies. Moreover, misconceptions may lead to more confusion and irrelevant memory
and knowledge retrieval [3]. The failure to understand the perspective of their peer
creates a discrepancy that may lead to a misunderstanding. Additionally, the memory
retrieval process may be contaminated by noise, which can also be considered to be a
source of discrepancy [1]. These points have not yet been comprehensively investigated
in previous studies on collaborative learning.

This study was designed to investigate and model the process of relevant knowledge
retrieval and perspective-taking behavior during constructive interactions in collabo-
rative learning settings. To achieve these goals, we have focused on investigating dyad
explanation activitieswherein learnersmake inferences about a phenomenonby applying
scientific concepts and concept maps.We collected conversational data from the learners
and tracked their gazes using two eye trackers in order to investigate perspective-taking
behavior. We apply results obtained from eye-tracking and protocol analysis to construct
an ACT-R-based model of knowledge processing [1]. Our hypotheses were as follows:

H1: Learners who can take a different perspective from another person will reflect upon
their own knowledge and apply relevant knowledge in a discussion with their partner.
H2: Learners who can take the perspectives of others and apply relevant knowledge
during the explanation activity will collaboratively generate relevant knowledge in the
concept map.

2 Experimental Method

2.1 Participants

Sixty university students majoring in psychology participated in a laboratory-based
experiment in exchange for course credit. Hereafter, we will refer to these participants
as learners.

2.2 Task and Procedure

The experiment was conducted in a remote environment that allowed them to communi-
cate with each other using the Cmap software [4], a concept-mapping tool. The learners’
goal in this experiment was to theoretically explain a particular case event using psycho-
logical theories. To enable data aggregation, the experiment included the following three
phases: (1) the individual text learning phase, (2) the individual concept map generating



Modeling Perspective Taking and Knowledge Use in Collaborative Explanation 649

phase, and (3) the collaborative reasoning phase wherein they collaborated to give a
shared interpretation of their concept maps. The individual learning phase consisted of
the following two sub-phases: (a) memorization of the theoretical concept of the attribu-
tion theory, and (b) memorization of the case story. In the individual learning phase, they
were required to apply the attribution theory to a problem case story involving a student
who participated in a school counseling program and to describe why the student has
anxiety about the new academic year.

In the individual concept map generating phase, they were required to apply the
theoretical knowledge to generate a concept map that explains the episode. Regarding
the concept map, they were instructed to apply several different types of links to connect
the nodes and describe the attribution process. A way to effectively apply the theory
to explain the case is to input the text label for the nodes in the map using the words
from the case study, and to use the text label for the links to connect the nodes. In the
collaborative reasoning phase, learners worked in pairs by discussing the same task that
they worked on in the individual concept map generating phase.

Partner’s 
individual 
concept map

Learner’s 
individual 
concept map

Collaboratively 
developed concept 
map

Node with no-box refers to the links statement from the 
psychological theory(learning text)

Node in-box refers to the events in the presented story material(episode text)

Fig. 1. Example of the screen viewed by a learner in the collaborative learning phase.

The right-hand side shows two windows of the previously generated individual con-
cept maps. The left-hand side shows the shared concept map that was developed by
collaborating during this phase. In the collaborative learning phase, the learners col-
laborated by providing oral explanations; particularly, they were instructed to explain
the other’s thoughts and develop another concept map. As can be seen in Fig. 1, the
participants were able to see each other’s concept maps (depicted on the right-hand side)
that were developed during the individual learning phase as they worked on the common
concept map (left-hand side).

2.3 Measures

We applied the following three dependent variables: (1) the gaze behavior, (2) the knowl-
edge applied during explanations, and (3) the relevant knowledge used to generate the
concept map. To obtain the data for (1), we employed two eye trackers (Tobii X2–30)
to analyze where the learners were looking during the task. The screen was divided into
three parts (i.e., Area 1: other, Area 2: self, and Area 3: shared area), and the number of
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fixations per area was counted. To quantify the extent to which each learner focused on
their own knowledge to construct the shared concept map, we calculated the frequency
of gaze fixations on Areas 1 and 2 during the explanation activities. This was achieved
by using the following equation:

b = n1 − n2
n1 + n2

, (1)

where n1 is the number of fixations on Area 2 (i.e., their partner’s concept map), and n2
is the number of fixations on Area 1 (i.e., their own concept map). A b value that is close
to 0 implies that the learner spent roughly the same amount of time looking at the two
areas.

For (2), we collected the learners’ conversational data during the explanation activ-
ity. In accordance with the attribution theory, we conducted a morphological analysis
and collected the nouns that were concise with the nouns that were used in the learning
text, which was the learning material for the theoretical text. We calculated the number
of times that the same nouns appeared in the learning text for each individuals’ utter-
ances and determined the corresponding proportion to all nouns used. Regarding (3),
the proportional information on how the nouns appeared in the links of the concept map
was used to calculate the extent to which relevant knowledge was applied to generate
the shared concept map.

3 Experimental Results

We investigated the relationships between the relevant knowledge retrieval (i.e., the
retrieval of knowledge obtained from the learning text) during conversation and the fre-
quency of perspective-taking, as determined by analyzing the eye-tracking data. Figure 2
illustrates the relationship between the retrieval rate during the explanation (text) and the
b index, which represents the degree of perspective-taking frequency, and thus indicates
the extent to which relevant knowledge was applied to generate the shared concept map.
The high/low data points in Fig. 2 were determined by dividing the values based on the
output of the median of the relevant concept map (CM) links.

To investigate our two hypotheses, we conducted multiple regression analysis. The
regression coefficient R2 was 0.269, and the ANOVA F-value was 10.496, indicating
statistical significance (p= 0.000). The experimental results support our two hypotheses
and show that learners tend to apply relevant knowledge, which leads to the successful
development of relevant concept maps. The data collected from the experiment indicate
that learnersmay also fail to retrieve knowledge, but the reason for this cannot be inferred
from the data. Thus,we developed amodel that allowed us to fill in this gap of knowledge;
we especially focused on the mechanisms of memory retrieval. We hypothesized that
the frequency at which one considers the different perspective of the other, as reflected
in the concept map (i.e., a low b value), is directly related to the frequency at which one
tends to search for relevant knowledge that can be applied for explanation.
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Fig. 2. Correlation between gaze behavior and knowledge retrieval (i.e., from the learning text)
based on link generation.

4 ACT-R-Based Computer Simulation

In this model, we used two types of declarative knowledge, which are hereafter referred
to as chunks. Specifically, these chunks are as follows: (1) the episode chunk, i.e., knowl-
edge of the cause and result that was included in the episode text and have been described
as nodes in the CM, and (2) the learning chunk, i.e., knowledge about the links that con-
nect the two nodes that can be retrieved form the learning text. The model perceives the
concept map of the self/other presented on the monitor. During each search loop, the
model acquires the knowledge and adds a new chunk into their memory. Then, the model
determines whether the new knowledge acquired from their partner matches any of their
own. If the model detects a difference that indicates a discrepancy between the learners
in the experiment, it begins to search for shared knowledge from the learning text. Then,
the model searches for relevant knowledge chunks in the retrieval buffer by determin-
ing whether there are any matches with the knowledge chunks in the imaginal buffer.
The model acquires new chunks by performing multiple observations of the self/other
concept maps. This, in turn, provides more options for the initial knowledge search, and
thus increases the likelihood of finding relevant knowledge. Note that noise and failure
were taken into account in the ACT-R-based retrieval process, and that we implemented
this by adjusting the parameters of the activation levels. We used the activation rate
for memory retrieval to model the retrieval of learning text-related memories. Utility
parameters in ACT-R were used as the reference to decide which knowledge chunks
would be applied in the search.

We simulated two types of models based on the b index results obtained from the
experimental data. One model (equitable gaze model), searched for both self/other con-
cept maps (low b) and another model (single gaze model) observed only either self or
other’s concept map (high b). The retrieval rate results for the two models are shown in
Fig. 3.

The results shown in the figure indicate that, when the model applies information
from both the “self” and “other” concept maps, it will achieve a higher rate of relevant
knowledge retrieval. Conversely, if the focus is maintained on either one of the concept
maps, the retrieval rate will be lower. These results support our hypothesis.
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Fig. 3. Retrieval rate results for the two models.

5 Conclusion

Weinvestigated andmodeled the process of relevant knowledge retrieval andperspective-
taking behavior during constructive interactions within the framework of a collabora-
tive concept-mapping task. We collected the learners’ conversational data, as well as
used two eye trackers to collect their gaze data, to investigate their perspective-taking
behaviors. The results revealed that learners who take the other’s different perspective
tend to reflect upon their own knowledge and more actively engage in discussions with
their partner that entail the use of the relevant knowledge. Furthermore, such learners
were also found to collaboratively generate a shared concept map that comprehensively
reflects their relevant knowledge. To further investigate how knowledge retrieval rapidly
occurred during perspective-taking, we developed an ACT-R-based model. This model
was demonstrated to provide deeper insight into the mechanisms by which perspective-
taking increases the opportunity to search for and reconsider the use of knowledge. Thus,
the simulated results provide useful information on how reflective cognitive process may
occur during collaborative learning activities.
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Abstract. Facilitating students to become better self-regulated learners is a grand
challenge in intelligent tutoring systems (ITS) research. Help-seeking (HS) and
self-assessment (SA) are important in self-regulated learning. The literature has
shown that students tend to havemaladaptiveHSbehavior, e.g., overuse hints or not
use hints when appropriate. Furthermore, student SAs of domain knowledge have
been shown to be inaccurate a priori and persistently overconfident. Together these
beckon the question of whether students are aware of howmuch help they need. To
investigate this, 115 students in two introductory college statistics courses com-
pleted the Mindful Attention Awareness Scale (MAAS) questionnaire and com-
pleted a homework assignment in an ITS. Students with above-average MAAS
scores used fewer hints, more accurately estimated the number of hints they would
request on the subsequent similar question, and more accurately recalled the num-
ber of hints used on the previous question. However, differences in MAAS scores
did not influence the number of errors made, nor the recall or prediction of errors.
We contribute to the literature by showing how MAAS scores relate to HS and
SA in ITS.

Keywords: Mindful Attention Awareness Scale (MAAS) · Help seeking ·
Self-assessment · Self-regulated learning · Intelligent tutoring system (ITS)

1 Introduction

In self-regulated learning (SRL), it is crucial for students to proficiently evaluate and
improve their learning practices, including self-assessment (SA) and help-seeking (HS)
[1]. [2] showed that increasing students’ awareness of their mathematics learning
behaviors positively affected their SRL behaviors. Hence, in this study, we establish
a measurable relationship between awareness, self-assessment, and help-seeking.

SA refers to students’ ability to accurately evaluate their knowledge while learning
[3]. Accurate SA has been shown to correlate with productive help-seeking behaviors
[4]. For students’ SA to be accurate, students should be aware of the relative strengths
and weaknesses of their knowledge, in relation to a target task [5]. However, students
often overestimate their abilities [3]. Students who lack sufficient domain knowledge
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are especially likely to make inaccurate SAs even when the solutions are presented to
them [5]. However, the literature has shown that improving SA can be tutored using ITS
[6]. Similarly, help-seeking may influence learning with ITS because many ITS provide
on-demand, principle-based help messages [7]. The literature shows that students can
have maladaptive help-seeking behavior. Improvements in help-seeking behavior can be
tutored using an ITS [8, 9], but this does not always lead to better learning outcomes
such as differences between pretest and post-test scores [10, 11].

If students are poor at self-assessing and can have maladaptive help-seeking behav-
ior, the question beckons of whether students are aware of how much help they need.
The Mindful Attention Awareness Scale (MAAS) is a widely used assessment for mea-
suring self-regulation constructs [12] and has been repeatedly validated including on
tasks requiring high working memory capacity [13]. The MAAS is a 15-item (1–6
Likert scale) questionnaire, where a higher average score represents greater mindful-
ness. Higher MAAS scores have been shown to be related to mathematics performance,
including predicting higher exam scores in college samples [14]. To our knowledge, the
MAAS has not been used to investigate student mathematics performance in ITS such
as predicting the number of hints requested, errors made, learning gains, etc.

In this study, college students in two statistics courses complete the MAAS ques-
tionnaire and a homework assignment in an ITS which also routinely asked students to
recall howmany errors they made and hints used on the previous question, and to predict
the number of errors they would make, and hints used on a subsequent similar question.
We hypothesize that students with higher MAAS scores will better recall and predict the
number of errors made and hints used, but not make fewer errors or use fewer hints. This
is in line with past research which on one hand indicates that increased awareness may
lead to changes in learning behaviors which in turn may lead to differences in learning
outcomes, but on the other hand has not provided any evidence suggesting awareness is
related to mathematics aptitude. Thus, our research questions are:

1. Do MAAS scores correlate with the average number of errors made or hints used?
2. Do higher MAAS scores lead to better recall of errors made or hints used on the

previous question?
3. Do higher MAAS scores lead to better predictions of errors made or hints used on a

subsequent similar question?

2 Methodology

2.1 Procedure

A set of 25 questions on normal random variables (NRV) was assigned as homework
immediately after discussing that topic in class. The homework used a novel ITS cre-
ated using Cognitive Tutor Authoring Tools (CTAT) integrated into the course through
TutorShop [15]. Students were free to work at their own pace and were not required
to complete the assignments in one sitting before the due date. Additionally, students
completed the MAAS questionnaire using an online survey tool outside of class within
a week of completing the ITS assignment.
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2.2 Design

The NRV problem set used five question types, each having five isomorphic questions.
An identical fixed sequence of questions was used that was grouped by isomorphism.

Solving a question required a student to enter a numerical value into several “input”
boxes. Each input box had multiple “levels” of on-demand, principle-based help avail-
able, and the last “bottom-out” hint provided the solution to that input box. Immediate
correctness feedback was always given after entering a value, and an input box became
“locked” after a student entered the correct solution for that box.

Immediately after completing a NRV question, students were asked four questions,
one each to recall the number of hints and errors used on the previous question, and one
each to predict the number of errors and hints on the subsequent question.

Fig. 1. Examples of 2 of the 5 NRV question types

3 Results

For analysis, we used the ‘Stat 1222-004 S21 Chap 5 HW’ and ‘Stat 1220-010 S21
Chap 5 HW’ datasets accessed via DataShop [16], and the MAAS questionnaire results.
A total of 115 students enrolled in two courses participated in this study. Of those, 23
were removed for not completing the homework assignment, and 2 were removed for
not completing the MAAS questionnaire. Prior research on the MAAS showed that in
a large U.S. adult sample, the average MAAS score was 4.22 (S.D. = 0.63) [12]. In
line with other studies involving MAAS [12], we restricted our analysis to students with
a MAAS score within two standard deviations of this mean and removed 16 students
who did not fall in this interval. After these exclusion criteria, 74 students remained for
analysis. Of these 74 students, 20 had an above-average MAAS score, and 54 had a
below-average MAAS score, with an overall sample mean of 3.90 (S.E. = 0.55).

3.1 MAAS and Proficiency

To address our initial research question, we calculate the average number of hints and the
average number of errors by each student. The Pearson correlation coefficient between
MAAS and average hints (r = 0.149, p = 0.160), and MAAS and average errors (r =
−0.004, p = 0.971) were not statistically significant. After visual inspection of each
scatterplot, we have no reason to believe a nonlinear correlation exists either.
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Fig. 2. Student’s average MAAS score and average number of hints (top left) and errors (top
right). Average hints per question (bottom left), and average errors per question (bottom right).

After bifurcating our sample into below average and above averageMAAS scores (µ
∧

= 4.22) [12] (Fig. 2, top row, dotted line), several characteristics emerge. Students with
below average MAAS scores on average use more hints and have more variation in the
number of hints they use (M= 2.74, SD= 4.72) than their above-average MAAS score
peers (M = 1.24, SD = 1.97) (Fig. 2, top left). The differences in means (Welch’s t-test
statistic = −2.08, Welch-Satterthwaite df. = 70.97, p = 0.041) and variances (F53,19
= 5.82, p < 0.001) are both significant. Students with below average MAAS scores
on average made a similar number of errors (M = 1.18, SD = 0.93) as students with
above-average MAAS scores (M= 1.39, SD= 0.70) (Fig. 2, top right). The differences
in means (t(72)= 0.91, p= 0.37) is not significant but the difference in variances (F53,19
= 1.73, p= 0.095) approaches significance. While the number of hints used by students
in both groups follow similar trends, their quantities diverge (Fig. 2, bottom left). There
was not a similar divergence in the number of errors made (Fig. 2, bottom right).

3.2 MAAS and Recall

To address our second research question, we calculate the average absolute difference
between the number of hints the student recalled requesting on the previous question and
the actual number requested, and the average absolute difference between the number of
errors the student recalled making on the previous question and the actual number made.
After similarly bifurcating, students with above-average MAAS scores on average had
more accurate recall of the number of hints used (M = 0.79, SD = 1.79) than students
with below-average MAAS scores (M = 2.21, SD = 4.19). The differences in means
(Welch’s t-test statistic = −2.03, Welch-Satterthwaite df. = 70.40, p = 0.046) and
variances (F53,19 = 5.48, p< 0.001) are statistically significant. However, students with
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above-averageMAAS scores on average did not havemore accurate recall on the number
of errors made (M= 0.92, SD= 0.70) than students with below-average MAAS scores
(M = 0.84, SD = 0.79). That is, the differences in means (t (72) = 0.44, p = 0.66) and
variances (F53,19 = 1.25, p= 0.30) are not significant. Additionally, while the accuracy
in recalling the number of hints used by students in both groups follows similar trends,
their quantities diverge. However, there was no significant difference in the recall of the
number of errors made between the two groups.

3.3 MAAS and Prediction

To address our third research question, we calculate the average absolute difference
between the number of hints the student predicted they would request on the subsequent
similar question and the actual number requested, and the average absolute difference
between the number of errors the student predicted they would make on the subsequent
similar question and the actual number made. After similarly bifurcating, students with
above-averageMAAS scores on average had more accurate predictions of the number of
hints they would use (M = 1.10, SD = 1.86) than students with below-average MAAS
scores (M= 2.56, SD= 4.39). The differences inmeans (Welch’s t-test statistic=−2.03,
Welch-Satterthwaite df.= 70.60, p= 0.048) and variances (F53,19= 5.58, p< 0.001) are
both significant. However, students with above-averageMAAS scores on average did not
have more accurate predictions of the number of errors they would make (M= 1.41, SD
=0.64) than their below-averageMAASscore peers (M=1.34, SD=1.13). Specifically,
the differences inmeans (Welch’s t-test statistic= 0.34,Welch-Satterthwaite df.= 59.32,
p = 0.74) and was not significant, but the difference in variances (F53,19 = 3.07, p =
0.004) was significant. Also, while the accuracy in predicting the number of hints used
by students in both groups follows similar trends, their quantities diverge. There was no
discernible difference in the predictions of the number of errors made.

4 Discussion

We take these results to support our hypothesis that students with higher MAAS scores
on average better recall and predict the number of hints used, and not make fewer errors.
However, these results do not support our hypothesis that students with higher MAAS
scores on average better recall and predict the number of errors made, and do not request
fewer hints. Succinctly, our results show that MAAS does better in predicting certain
help-seeking behaviors than predicting accurate self-assessment.

5 Contributions, Limitations, and Future Research

We made important contributions, including exploring the relationship between MAAS
scores and SA and HS in an ITS with detailed problem steps. Our results show that an
ITS which supports awareness can contribute to better HS, and hence better SRL.

Wealso recognize that our studyhas limitations. For example, the quantitativemetrics
evaluated in this studyminimally operationalizedSA,HS, and awareness.However, these
concepts have qualitative components which were not assessed herein.
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Also, completing homework questions that are used to assess measures of SRL, and
in close temporal proximity administer a questionnaire to assess awareness may lead to
biased results. However, given the nature of the questions in the assignment and those
on the MAAS questionnaire, we do not believe this significantly influenced our results.

Additionally, students with better mathematics abilities may make fewer errors and
use fewer hints, particularly on the later longer, and potentially more challenging ques-
tions, which in turn may be easier to recall. Future research should account for such
things by implementing an experimental design that includes a pretest and posttest.

Furthermore, the design of the tutor may have an impact on the results. For example,
questions addressing SA and HS were given after the interface page was refreshed
rendering the mathematics problem of inquiry invisible. Also, the fixed sequence of
questions, coupled with the fact that a student’s assignment completion time’s proximity
to the due date was not accounted for, may influence trends in the number of hints used
on questions near the end of the assignment. While we do not believe this influenced
our results, future research may be conducted to systematically investigate this.

Lastly, even though our sample mean was not significantly different than the esti-
mated population mean in [12], our above-average MAAS score sample was larger
than our below-average MAAS score sample. Furthermore, some students in our below-
average MAAS sample had high numbers of average hints, and even though we are
concerned about awareness, the impact of gaming should be taken into consideration.
Future iterations of this study should also havemore study participants, particularly from
more than one instructor, to see if these sampling characteristics persist.
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Abstract. In principle, educators can use writing to scaffold students’
understanding of increasingly complex science ideas. In practice, forma-
tive assessment of students’ science writing is very labor intensive. We
present PyrEval+CR, an automated tool for formative assessment of
middle school students’ science essays. It identifies each idea in a stu-
dent’s science essay, and its importance in the curriculum.

Keywords: Science explanation · Natural language processing

1 Introduction

Secondary school science teachers face multiple demands in scaffolding students’
learning of science ideas and science practices. Written explanation of science
ideas is an important science practice, as well as a mechanism to assess stu-
dents’ understanding. However, formative assessment of writing is time consum-
ing for teachers. This paper presents a natural language processing application
for formative assessment of middle school students’ physics essays on energy. It
identifies the ideas they express, and the relative importance of these ideas.

Here we first briefly describe current automated support to scaffold science
writing. Then we present PyrEval+CR, which extends PyrEval [3], an efficient
tool originally developed to assess the content of summaries of the main ideas of
source texts.1 PyrEval+CR has a lightweight, modular design that can be easily
adapted to new assignments or writing characteristics. It identifies propositions
(statements) expressed in writing, and provides both quantitative and qualita-
tive outputs to support feedback to students and teachers. Section 4 explains
how we treat assessment as an optimization problem to match student proposi-
tions to propositions in a computable rubric (CR). To evaluate its performance
before testing it in the classroom, we constructed a dataset mined from histori-
cal essays written by middle school students who used a similar curriculum. An
experiment testing many configurations of PyrEval+CR on this data resulted in
many settings that correlate well with a highly reliable manual assessment.
1 PyrEval+CR is available at https://github.com/psunlpgroup/PyrEvalv2.
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2 Automated Tools for Scaffolding Science Writing Skills

Previous work points to the potential for automated feedback on student science
writing through identification of specific concepts and rubric components. Good
agreement between human and automated output has been found in biology
explanations from different institutions [6], on middle school explanations of
why sugar dissolves in water [7], and on rubric elements for high school biology
essays in Hebrew [1]. Below, we present high agreement of our tool with manual
rubric scores for the modified middle school essays mentioned above.

Integration of formative assessment tools during science instruction is less
well-studied. Teachers who used automated guidance in the WISE environment
to help students revise science explanations found that teachers pursued a variety
of guidance strategies [10]. A later case study of one teacher’s use of automat-
ically generated guidance found the teacher used multiple strategies, and stu-
dents who revised made more substantial revisions [4]. We have begun a study
to apply PyrEval+CR in nearly three dozen middle school classrooms to explore
how teachers and students will utilize feedback in classroom settings.

3 PyrEval+CR Overview

PyrEval derives an assessment standard called a pyramid from several reference
summaries written by experts. All propositions from the reference summaries
are ranked for importance by the number of reference summaries each occurs in.
PyrEval+CR relies on a computable rubric with the same form as a pyramid, but
derived from a manual rubric. Here we describe the pre-processing that converts
an essay to embeddings, and the computable rubric.

The first pre-processing step uses a special-purpose decomposition parser
(DP) to decompose complex sentences. DP output consists of alternative ways
to decompose the same sentence. For example, a complex sentence of two clauses
will have at least two alternatives, one with two clauses, and the original (unde-
composed) sentence. Decomposition supports more options for the optimization
approach to align student propositions to the CR, as we later illustrate.

The DP uses context-free-grammar parses to extract all tensed verb phrases
in a sentence, and dependency parses to identify the subjects of the main verbs.
This ensures propositionally complete output clauses. A small set of rules handles
traversal of the parses for different syntactic structures [3]. To adapt to middle
school writing, we tested subsets of DP rules. We also added a parameter to
constrain the minimum length in words of output clauses (MinSegLength).

The second preprocessing step converts DP output clauses to embeddings.
Matching a student clause to a CU relies on the average pairwise cosine similar-
ity (APCS) of the student’s embedding to sets of CU embeddings. In our earlier
work, we found WTMF [5] to give superior similarity results over other embed-
ding methods, but we had not controlled for all factors [3]. Given the widespread
use of GloVe [8], we decided to conduct a rigorous comparison between WTMF
and GloVe on a standard benchmark, the SemEval semantic textual similarity
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Table 1. Pearson correlations with human scores of WTMF and GloVe+SIF on three
STS benchmarks. Vocabulary size (V) and total words (S) appear in parentheses.

Test data WTMF (V=81.8K; S=4M) Gigaword Sub. (V=67.1K; S=18.9M)

WTMF GloVe + SIF WTMF GloVe + SIF

Sent Win Sent Win Sent Win Sent Win

STS12 0.7258 0.6851 0.6859 0.6812 0.6400 0.6482 0.6256 0.6256

STS13 0.7405 0.6901 0.6426 0.6311 0.5909 0.6224 0.6214 0.6214

STS14 0.7187 0.7012 0.6299 0.6149 0.6835 0.6835 0.6223 0.6223

(STS) tasks (cf. [2]). For STS, humans rated pairs of sentences on a 6-point scale
of semantic similarity. System predictions are compared to human ratings using
Pearson correlation. We used three years of STS tasks.

WTMF applies weighted matrix factorization to a word-by-sentence matrix
of tf.idf scores to compute word embeddings [5]. Using matrix reconstruction,
phrase embeddings for unseen sentences can be constructed from the word
embeddings. GloVe applies log-bilinear regression to co-occurrence data from
a small moving context window over a training corpus [8]. We created GloVe
phrase embeddings using a high-performing weighted average of a phrase’s word
embeddings (SIF) [2]. We trained WTMF and GloVe on a high-quality corpus
created by the WTMF developers, and on an extract of the Gigaword news cor-
pus, ensuring both methods used the same vocabulary list for a given corpus.
The WTMF corpus combines a high proportion of definitional sentences with a
small heterogeneous corpus (the Brown corpus). We sampled increasing amounts
of Gigaword, but were unable to achieve matched vocabulary sizes. At nearly
five times the size of the WTMF corpus, our Gigaword subset has only 82% of
the WTMF corpus vocabulary (see table header in Table 1).

Table 1 shows that WTMF outperforms GloVe+SIF on the benchmark
semantic similarity tasks, controlling for the same vocabulary list, corpus, con-
text span, and vector dimensionality (100D). WTMF performs best with the
WTMF corpus, using sentence contexts. GloVe results are more consistent across
conditions. Due to these results, we use WTMF embeddings from the WTMF
corpus.

The original PyrEval creates a set of content units (CUs), called a pyramid,
extracted from four to five reference summaries written by experts. Each CU
corresponds roughly to a set of paraphrases of the same idea. The number of
reference summaries that express the same idea provides an importance weight
on the idea. For PyrEval+CR we aimed for an assessment that would more
closely resemble the application of an analytic rubric. As described elsewhere [9],
we created a very reliable analytic rubric to assess essays that explain students’
roller coaster designs with reference to energy concepts (e.g., potential vs. kinetic
energy). Here, we describe how we created our computable rubric (CR).

For the CR, we mined phrases corresponding to rubric elements from middle
school essays. Figure 1 illustrates a weight 4 CU for a rubric element that defines
kinetic energy. In the CR, CU weights range from 5 for important ideas to



Automated Support to Scaffold Students’ Written Explanations in Science 663

e1 Kinetic energy is the energy of an object in motion
e2 The energy of an object due to its motion is called kinetic energy
e3 An object that is moving has kinetic energy
e4 Kinetic energy is the energy of a moving object

Fig. 1. A weight 4 (w4) CU. The CR has 62 CUs: 3 w5, 4 w4, 13 w3, 16 w2, 26 w1.

1 for weak ideas. The weighted CUs in a PyrEval pyramid have a power law
distribution, so we ensure that a CR also does (see Fig. 1 caption). All phrases i
in a CU are converted to embeddings, represented schematically in column one
of Fig. 1, as are all decomposed clauses from a student essay.

4 Assessment of Ideas as an Optimization Problem

An independent set for an undirected graph G = (V,E) is defined as a subset
U ⊂ V such that no pair of vertices in U has an edge connecting them in E. A
maximal independent set (MIS) is an independent set where no additional vertex
from V can be added to U without violating the independent set constraint. The
MIS problem is a well-documented NP-complete problem.

PyrEval+CR aims for the optimal way to match student sentences to the
CR. Each essay sentence can have several decompositions, and each extracted
clause can be more or less similar to each CU. Only one decomposition of a
sentence can be used, and each CU can be matched at most once, to penalize
repetition. Thus, our assessment task is equivalent to the MIS problem.

WMIN is a greedy weighted MIS algorithm that iteratively adds vertices
with the next highest weights to the MIS. At each iteration, all neighbors of
a recently added vertex are pruned from the graph. The process repeats until
no remaining vertices can be selected. We extended WMIN to operate on a
hypergraph (WMINH). Each hypernode corresponds to one way to decompose a
sentence, and its internal nodes are the extracted clauses and their candidate CU
matches. Pruning includes removing other occurrences of a matched CU from
the rest of the graph, and recalculating node weights, which use CU weights.

Figure 2 illustrates two sentences in italics, S1 and S2, two of the several
decompositions of S1, and the corresponding hypergraph. Hypergraph nodes are
labeled by the sentence and decomposition (e.g., S1.2 vs. S1.3), and internal
nodes by the clause indices (e.g., S1.2.1, S1.2.2). CU4 (weight 4) from Fig. 2 is
shown inside the internal node for S1.2.2. Assume that CU5 (weight 2) is a vague
statement about kinetic energy and also a potential match for two propositions:
clauses S1.3.2 or S.2.1.1. The other internal nodes have anonymous weight 1 CUs
(CUX, CUY).

The hypergraph has two edge types. The solid edge between S1.2 and S1.3
constrains selection of at most one decomposition of S1. The dashed edge between
internal nodes S1.3.2 and S2.1.1 constrains selection of only one match to CU5.
S1.2.2 is a good match to CU4: both state the relation between motion and
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Fig. 2. Illustration of WMINH hypergraph nodes and edges.

kinetic energy. The weight of a hypernode is higher if the CU weights are higher,
so WMINH selects S1.2 over S1.3, S1.3 is pruned, and CU5 only matches S2.1.1.

WMINH output for an essay is a log showing the decomposition that was
selected for each sentence, and its matched CUs. The essay score is a normalized
sum of the weights of the matched CUs.

WMINH has parameters to control the greediness of node selection: k for the
length of the ranked list of CUs matching each internal node, a sorting metric (s)
for ranking this list, and a weighting metric (w) for weighting each hypernode.
For both s and w, we tested APCS (see above), the standard deviation of APCS,
and the product of APCS and the CU weight (Product).

We tested PyrEval+CR on a curated set of historical essays from a similar
curriculum, modified to eliminate sentences that mention ideas not in our current
rubric. A set of 76 was subdivided into Set A (N = 10) for mining phrases for the
CR, Set B (N = 46) as a validation set for parameter tuning, and Set C (N = 20)
for testing. Application of a manual rubric to all 76 is discussed in [9]. We
measured performance as the Pearson correlation of the PyrEval+CR score with
the manually assigned score. We also reviewed the quality of matches between
student’s essays and CUs.

We performed grid search on Set B for different subsets of DP rules, different
values of MinSegLen (see above), and the three WMINH parameters (k, s and
w). The DP configurations were all rules (All), all but VP conjunction (-VP) and
no decomposition (None). Table 2 reports results for three parameter settings on

Table 2. Example parameter configurations for WMINH .

PyrEval configuration Set B Set C

-VP, MinSegLen = 5, k = 4, s= StDev, w = APCS 0.69 0.84

All, MinSegLen = 3, k = 4, s= StDev, w = Product 0.70 0.83

-VP, MinSegLen = 5, k = 2, s= StDev, w = APCS 0.72 0.85
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Sets B and C. DP-VP performed best, but DP-All often worked well. Smaller
values of k (k = 2, 4) yielded best results, corresponding to a more greedy app-
roach that considers fewer CUs per node. Both APCS and Product worked well
for w. The standard deviation of APCS usually worked best for s.

The quality of the matches between a randomly selected subset of clauses
from set C and CUs was rated by one of the co-authors as poor, moderate, or
good. About 93% of the matches were split evenly between moderate and good.

5 Conclusion

PyrEval+CR is intended to support formative assessment for middle school sci-
ence writing. On a semi-synthetic dataset, the scores correlate very well with
a manual rubric. PyrEval+CR produces log output to show which clauses in a
student essay match CUs from the computable rubric, along with the relative
importance of the CU. Our next steps continue our collaboration with middle
school teachers to study how to use PyrEval+CR in a classroom setting.

Acknowledgements. NSF DRK12 2010351 and 2010483 funded this work.
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Abstract. Students often lack intrinsic motivation to engage with edu-
cational activities. While gamification has the potential to mitigate that
issue, it does not always work, possibly due to poor gamification design.
Researchers have developed strategies to improve gamification designs
through personalization. However, most of those are based on theoretical
understanding of game elements and their impact on students, instead of
considering real interaction data. Thus, we developed an approach to per-
sonalize gamification designs upon data from real students’ experiences
with a learning environment. We followed the CRISP-DM methodology
to develop personalization strategies by analyzing self-reports from 221
Brazilian students who used one out of our five gamification designs.
Then, we regressed from such data to obtain recommendations of which
design is the most suitable to achieve a desired motivation level, leading
to our interactive recommender system: GARFIELD. Its recommenda-
tions showed a moderate performance compared to the ground truth,
demonstrating our approach’s potential. To the best of our knowledge,
GARFIELD is the first model to guide practitioners and instructors on
how to personalize gamification based on empirical data.

Keywords: Tailored gamification · Data-driven · Education ·
e-Learning

1 Introduction

Intrinsic motivation (IM) is a strong predictor of learning gains [6]. In this regard,
gamification is one method with strong potential to improve motivational learn-
ing outcomes [8]. However, gamification’s effect might vary from person to per-
son, leading to adverse effects (e.g., demotivation) for some people [6]. Research
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shows that if gamified designs are not tailored to users and contexts, they are
likely to not achieve their full potential, which encourages studies on how to
tailor gamification [2].

Most often, gamification is tailored through personalization: designers or the
system itself change the gamified design according to predefined information [11],
such as changing the game elements according to the learning task. However,
personalization demands a user/task model, such as those developed in [11] and
[7]. In common, those and similar models are based on potential experiences:
they were built from data captured through surveys or after seeing mock-ups
[2]. Thereby, they are limited because potential experiences might not reflect
real experiences [4]. For instance, [9] developed a model based on both learners’
profiles and motivation before using the gamification, but with no information
of learners’ real experiences (e.g., after actually using gamification). Hence, to
the best of our knowledge, there is no data-driven model, based on users’ real
(instead of potential) experiences, for personalizing gamification designs.

To address that gap, this paper presents GARFIELD - Gamification Auto-
matic Recommender for Interactive Education and Learning Domains, a recom-
mender system for personalizing gamification built upon data from real experi-
ences. Our goal was to indicate the most suitable gamification design according
to students’ intrinsic motivation due to its positive relationship with learning [6].
For this, we followed a two-step reverse engineering approach: we collected self-
reports of users’ intrinsic motivations from actually using a gamification design,
then, regressed from such data (N = 221) to obtain recommendations of which
design is the most suitable to achieve a desired motivation level given the user’s
information. To the best of our knowledge, GARFIELD is the first model that
guides practitioners and instructors on how to personalize gamification based
on empirical data from real usage. Therefore, this paper contributes by creating
and providing a motivation-based model for personalizing gamification, inform-
ing educators on how to personalize their gamified practices and researchers by
performing a first step towards developing experience-driven models for design-
ing gamification.

2 Method: CRISP-DM

Because we had an apriori goal, we followed the CRISP-DM reference model,
which is suggested for goal-oriented projects [14]1.

CRISP-DM’s first phase is business understanding. In this phase, we first
defined the project’s goal: creating a model based on students’ intrinsic moti-
vation captured after real system usage to allow the personalization of gamified
educational systems. Additionally, we defined two requirements: i) the model
must consider user characteristics and ii) the model must be interactive. The
former is based on research showing users characteristics affect their experiences
with gamified systems [6,11]. The latter aims to facilitate practical usage.

1 For transparency, this link details our dataset and all analysis: osf.io/nt97s.

http://osf.io/nt97s
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The second phase is data understanding. Openly sharing data extends a
paper’s contribution because it enables cheaper, optimized exploratory analyses
[13] and is especially valuable for educational contexts wherein data collection
is expensive. Accordingly, we opted to work with a dataset collected and made
available by [5]. This dataset has data from students enrolled in STEM under-
graduate courses of three Brazilian northwestern universities (ethical commit-
tee approval: 42598620. 0.0000.5464). Students self-reported their motivations
to complete in-lecture assessments after using one of the following gamified
designs: i) points, acknowledgments, and competition (PBL)2, ii) acknowledg-
ments, objectives, and progression (AOP), iii) acknowledgments, objectives and
social pressure (AOS), iv) acknowledgments, competition, and time pressure
(ACT), and v) competition, chance, and time pressure (CCT). We analyzed
those designs by convenience because we used data shared by a previous study,
which aimed to tailor gamification to user characteristics and learning activity
type [5].

When available, each game element functions as follows. Students received
points after completing a mission. After finishing each mission, they were
acknowledged with a badge depending on their performances (e.g., getting all
items right). Students could compete with each other based on a leaderboard
that ranked them based on the points they made during the week. Within the
leaderboard, a clock provoked time pressure by highlighting the time available
to climb the leaderboard before the week’s end. Additionally, a progress bar
indicated student’s progression within missions, a notification aimed to provoke
social pressure by warning that peers just completed a mission, and a skill tree
represented short-term objectives (i.e., completing 10 missions).

The third phase is data preparation. First, we ran attribute selection,
choosing columns related to students’ characteristics, intrinsic motivation, sta-
tus, and the game elements they interacted with. Next, we proceeded to data
cleansing, removing answers from students with less than 18 years (N = 1) due to
ethical aspects and participants that provided their motivations without using
the system (N = 4). Then, we conducted data transformations by: i) transform-
ing the intrinsic motivation variable (captured through a seven-point Likert-scale
using the respective subscale of the Situational Motivation Scale (SIMS) [1]) to
range between zero and six to facilitate regression coefficients’ interpretation;
and ii) removing observations (N = 8) from levels representing less than 5% of
the dataset, unless grouping them with another level was feasible, to avoid over-
fitting. Additionally, we constructed new attributes for highly skewed continuous
variables by categorizing: i) weekly playing time into whether the student plays
an average of at least one hour per day or more than that; and ii) age, into those
below Brazilian undergraduate STEM students average (i.e., <21) and those
at or above it. Lastly, we analyzed the game elements column, our dependent
variable, and found a single observation of the ACT design; we removed it, lead-

2 We consider Badges and Leaderboards implementations of Acknowledgments and
Competition, respectively [10], but use PBL to maintain the standard nomenclature.
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ing to the prepared dataset featuring 221 observations (see our supplementary
materials for details: osf.io/nt97s).

Phase four is modeling. Here, we used Multinomial Logistic Regression [3]
through the nnet R package with the maximum number of iterations set to 1000
to ensure the algorithm’s convergence. This form of machine learning enables
working with nominal dependent variables, such as gamification designs, based
on the null hypothesis significance testing framework. Hence, allowing us to
evaluate coefficients’ contributions to the model based on their significance. This
technique works similarly to standard Logistic Regression, but comparing the
dependent variable’s reference value to all others. In our analysis, we defined the
PBL design as the reference value because PBL is the most used gamification
design in educational contexts [8]. As independent variables, we started with
all of those of the prepared dataset. Additionally, because recommendations
should consider how students’ intrinsic motivation from using a gamification
design change depending on their characteristics, our model assumes intrinsic
motivation interacts with all other variables.

Phase five evaluates modeling alternatives to determine the best option.
Here, we used recursive feature elimination with p-values as the elimination
criteria because we followed the standard of working within the null hypothesis
significance testing framework. As this project has an exploratory nature, we
considered a 90% confidence level, following similar research (e.g., [6]). After
selecting the final model, we evaluated it based on its predictions according
to Cohen’s Kappa and F-measure, calculated using R packages vcd and caret,
respectively, because those metrics are reliable for multi-class problems wherein
data is unbalanced.

3 Evaluation Results and Deployment

After running the Multinomial Logistic Regression, we found significant inter-
actions between all user’s characteristics and intrinsic motivation. Hence, we
removed no features and defined the initial model as the final one. In evaluating
the model, we found the Cohen’s Kappa for the agreement between its predic-
tions and the ground truth is 0.43. This value is significantly different from zero
(p< 0.001), with its 95% confidence interval ranging from 0.34 to 0.52, revealing a
moderate agreement [12]. To further understand the model’s predictions, Table 1
shows the confusion matrix along with the F-measure of each category, demon-
strating the model performed the best for designs AOP and CCT. Differently,
its performance for designs PBL and AOS were slightly worse. Additionally, the
confusion matrix reveals the model’s misclassifications (e.g., wrongly predicting
AOS design should be PBL and AOP 13 and 18 times, respectively). Therefore,
phase five shows the model recommends gamified designs with moderate perfor-
mance, despite variations from one design to another. Thus, demonstrating its
potential as well as room for improvement.

In terms of deployment, we developed GARFIELD, our interactive recom-
mender system (access it here: osf.io/nt97s). Its interface receives user input and

http://osf.io/nt97s
http://osf.io/nt97s
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Table 1. Confusion Matrix of the models predictions against the ground truth.

PBL AOP AOS CCT Balanced Accuracy F-measure

PBL 40 11 13 04 0.68 0.57

AOP 17 54 18 01 0.75 0.67

AOS 14 06 24 02 0.65 0.48

CCT 02 01 00 14 0.83 0.74

passes it to our model. Then, our model predicts the probability of recommend-
ing each possible design and presents it as a barplot. Accordingly, practitioners
can use it to get recommendations for personalizing their gamified designs in a
simple, interactive way. Thus, attending to our project’s second requirement.

4 Discussion

Overall, our goal was to facilitate the personalization of gamification with a
model that recommends a gamified design given an expected intrinsic motiva-
tion level. Additionally, we aimed that such recommendations considered user
characteristics and could be used interactively. Ultimately, our recommender
system - GARFIELD - achieves these goals, allowing educators to use it in
an interactive, web-based way to receive design recommendations based on the
aforementioned input. Thus, this research expands the literature by i) creat-
ing personalization guidelines from feedback collected after real experiences, in
contrast to prior research that developed personalization guidelines based on
potential experiences (e.g., [7,9] and ii) providing concrete, interactive recom-
mender system unlike the conceptual tools related work has contributed (e.g.,
[2]).

As implications for future research, our contribution is twofold. First, the
lack of data-driven strategies likely poses a challenge for researchers interested
in developing similar approaches. In developing our approach, we demonstrate
how one can create personalization strategies step-by-step through the CRISP-
DM reference model, contributing with a concrete example that can be followed
to implement data-driven personalization guidelines. Second, we understand that
modeling users efficiently is challenging, especially for tasks that depend on peo-
ple’s subjective experiences (e.g., intrinsic motivation). In this paper, we created
a model using 221 observations with inputs of self-reported intrinsic motivation
and demographic characteristics (e.g., age, gender, and gaming preferences). Yet,
our model yielded a moderate predictive power (Cohen’s Kappa = 0.43). Thus,
our results inform future research that while such information contributes to
understanding which gamification design to use, we likely need additional infor-
mation to personalize gamification more accurately.

In summary, with our results practitioners have technological support to
help them personalize their gamified practices. This can be achieved using



GARFIELD: A Recommender System to Personalize Gamified Learning 671

GARFIELD, an interactive, ready-to-use recommender system to get design sug-
gestions. Additionally, with this paper, researchers have a concrete guide on how
to use CRISP-DM for creating data-driven personalization strategies based on
real (instead of potential) experiences. Note, however, that our recommender’s
predictions are limited to moderate predictive power. We understand that limits
its practical usage as it is. Nevertheless, to our best knowledge, GARFIELD is
the first tool to provide gamification design recommendations based on real expe-
riences. Thus, we believe it provides practitioners with a reliable starting point
and paves the way for researchers to expand and improve it in future research.
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Abstract. It might be highly effective if students could transition dynamically
between individual and collaborative learning activities, but how could teachers
manage such complex classroom scenarios? Although recent work in AIED has
focused on teacher tools, little is known about how to orchestrate dynamic transi-
tions between individual and collaborative learning. We created a novel technol-
ogy ecosystem that supports these dynamic transitions. The ecosystem integrates
a novel teacher orchestration tool that provides monitoring support and pairing
suggestions with two AI-based tutoring systems that support individual and col-
laborative learning, respectively. We tested the feasibility of this ecosystem in a
classroom study with 5 teachers and 199 students over 22 class sessions.We found
that the teachers were able to manage the dynamic transitions and valued them.
The study contributes a new technology ecosystem for dynamically transitioning
between individual and collaborative learning, plus insight into the orchestration
functionality that makes these transitions feasible.

Keywords: Classroom orchestration · Dynamic transitions · Differentiated
learning · Collaborative learning

1 Introduction

Combining individual and collaborative activities is very common in educational prac-
tice (e.g., Think-Pair-Share [4]). Such combinations can be more effective than learning
solely in one mode [6]. An exciting vision for the smart classroom of the future is to
dynamically combine collaborative and individual learning [1]. In dynamic transitions,
students switch between collaborative and individual learning when the need arises (e.g.,
when a student is no longer progressing productively in one mode of learning). Such
transitions are not pre-planned, but can happen opportunistically in order to address
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students’ in-the-moment needs. Dynamic transitions hold potential to be maximally
responsive to the fact that students learn at their own pace and may achieve more per-
sonalized learning for students than pre-planned transitions [7]. For example, teachers
may team up students to work together if one of them is struggling and can use a partner’s
help. However, orchestrating dynamic transitions in classrooms is a major challenge for
teachers [7], as it involves not only understanding students’ in-the-moment needs, but
also managing the transitions in real time while attending to the ongoing class activities.

Prior research has produced many tools that support teachers in orchestrating com-
plex learning scenarios (e.g., [2]). These tools have, however, typically been designed
with the assumption that a class of students progresses through instructional activities in
a relatively synchronizedmanner [5]. Furthermore, existing orchestration tools generally
focus on enhancing teacher awareness by providing teachers with real-time analytics
[5]. Few provide intelligent support for teachers’ in-the-moment, dynamic decision-
making [8], with some exceptions (e.g., [9]). Providing intelligent support to teachers
when orchestrating highly-differentiated, self-paced classrooms remains a challenging
research problem [7], with little prior work in this area. Our own prior study explored
the potential of supporting dynamic transitions between individual and collaborative
learning in the classroom [1]. We found a need for sharing control over these transitions
between students, teachers and AI systems. The study was a technology probe “Wizard
of Oz” study, where a researcher mimicked part of the orchestration functionality. In the
current study, we test a fully functioning system, without a wizard.

Specifically, we created a technology ecosystem (Fig. 1) that supports teachers in
orchestrating students’ dynamic transitions between individual and collaborative learn-
ing, both supported by intelligent tutoring software (ITS). We conducted an exploratory
classroom study with 5 teachers and 199 middle-school students to gain insight into
the feasibility of dynamically transitioning between individual and collaborative learn-
ing. The work extends prior work in orchestration technologies with AI support by
implementing an orchestration tool that allows teachers to manage dynamic transitions
between individual and collaborative learning and demonstrating that the combination of
awareness support and AI-based pairing suggestions can feasibly support these dynamic
transitions.

Fig. 1. Technology ecosystem for supporting dynamic transitions, including individual tutor (a),
collaborative tutor (b) and the orchestration tool (c)
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2 Technology Ecosystem for Dynamic Transitions

The technology ecosystem consists of two tutoring software which respectively support
students’ individual and collaborative learning, and a teacher-facing orchestration tool.

2.1 Support for Students’ Individual and Collaborative Learning

A standard ITS, Lynnette (Fig. 1, a), offers support for individual learning of basic
equation solving. Lynnette provides step-by-step guidance, in the form of adaptive hints,
correctness feedback, and error specific messages, and has been proven to improve
students’ equation-solving skills in several classroom studies (e.g., [3]).

The Adaptive Peer Tutoring Assistant, APTA (Fig. 1, b), extends Lynnette’s func-
tionality to support collaborative learning, specifically, reciprocal tutoring. When using
APTA, two students respectively take the role of “solver” and “tutor”. The “solver”
solves the math problem and can seek help from their partner. The “tutor” helps the
“solver” through step by step evaluation and feedback via chat window. APTA supports
the student in the “tutor” role with both math advice and advice on how to tutor. Class-
room studies with an earlier version of APTA demonstrated that adaptive support (in the
form of system-generated chat messages) can improve the quality of help peer tutors
give and improve their domain learning, compared to the parallel non-adaptive condition
[10]. APTA is a reimplementation of the earlier version and covers the same equation
solving skills as in Lynnette.

2.2 Orchestration Tool for Dynamic Transitions (Pair-Up)

Orchestration of the dynamic transitions is through a tool (Pair-Up) that synergistically
leverages strengths of teachers and AI (Fig. 2). The design of the tool is informed by
previous user research on teacher preferences [12], log data simulation [11], and co-
design sessions with teachers [13]. Pair-Up has two key features: real-time analytics of
students’ learning status, and the option of AI-suggested pairing partners for teachers
to decide. It helps teachers make judgments about which students might benefit from
transitioning from one mode of learning (individual or collaborative) to the other and (in
the case of transitioning from individual to collaborative learning), who might be good
partners to team up and what they should work on collaboratively. The teacher has the
final say over all pairing decisions.

Real-Time Analytics of Students Learning Status. Our previous user research found
that teachers would like to be able to view student progress in an easily glanceable
way, when orchestrating the dynamic transitions [13]. Pair-Up indicates students’ recent
learning behaviors such as idling, misusing the software, making lots of errors, making
many attempts, and doing well through icons attached to individual student cards [3].
Additionally, in both individual and collaborative modes, teachers can see the number
of math problems that student(s) completed in a progress bar in the student(s) card.
To further assist in monitoring, teachers can sort students alphabetically, based on the
number of math problems solved (least to most or most to least), or based on the learning
status indicators.
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Fig. 2. The teacher-facing orchestration tool Pair-Up: (a) cards of students working individually,
including system-suggested “solvers” (teal) and “tutor” (purple); (b) panel where the teacher can
evaluate a potential match between two students by comparing their skill before deciding whether
to team them up; in this panel the teacher also selects the math content for collaboration; (c)
collaborating students pairs. (Color figure online)

AI-Suggested Pairing Partners for Teachers to Decide. Previous user research found
that teachers prefer to have the AI system suggest potential candidates to pair up. How-
ever, they very strongly prefer to have the final decision over all dynamic transitions [12].
They also like to be able to select an appropriate pairing algorithm (for making sugges-
tions) based on the learning goals [13]. Based on surveying of 54 math teachers [12],
teachers most commonly used two pairing strategies in collaborative activities: random
pairing (so students work with new partners) and pairing students with different knowl-
edge levels, so that students who are wheel-spinning or making slow progress [11] can
work with a partner who is further along learning the particular skills at issue. Accord-
ingly, the tool has two pairing policies: random pair, and pair by different knowledge.
In the random pair policy, Pair-Up suggests random students in the class as solvers and
tutors. In the pair by different knowledge policy, Pair-Up suggests students who are mak-
ing slow progress on some of the knowledge components to be solvers. Once the teacher
selects a solver, Pair-Up then suggests three “tutors” who are ahead of the “solvers” in
the knowledge components they are struggling with.

Teachers have full agency over choosing which policy to use, as well as whether to
follow system pairing suggestions or override suggestions and pair students based on
their judgment. If they activate the system suggestions function, Pair-Up will suggest
students take on the role of “solver” or a “tutor”, by highlighting them in teal and purple
outline,. The teacher however will make the final pairing decision. In addition, teachers
can pair students without tool suggestions. Teachers can pair students to work collabora-
tively, and select an assignment (which contains three equation solving problems) they
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see as fit for the pair (e.g., an assignment focused on skills that the “solver” is struggling
with). Based on students’ progress, teachers can also choose when to unpair to stop the
collaboration.

3 Feasibility Testing in Classroom

We conducted an in-person classroom study in a suburban public school near Pittsburgh,
with five middle school math teachers and 199 students participants from 11 classes.
One teacher teaches special education with 7 students who have an Individual Education
Program (IEP). Each class participated for 2 sessions, each lasting 33–37 min. After a
short video tutorial, students startedwith individual equation solving. The teachers paired
up students as they wished. When students were done with the collaborative assignment
or when they were unpaired by the teacher, they switched back to individual work.

We analyzed log data to study students’ dynamic transitions. During the 22 class
sessions, 210 collaboration episodes (defined as two students teamed up to work col-
laboratively on one assignment) happened, with on average of 18 episodes in each class
over the duration of the study. The teachers generally were able to use the orchestration
tool autonomously. Similarly, the students were able to work with tutoring softwares.
Two teachers in the study teamed up all students at the same time, and three paired
students up at different times as they saw fit. All participating teachers stated that they
see pedagogical value in dynamic transitions. However, the special education teacher
expressed that transitioning between learning activities may be challenging for her stu-
dents. Still, all five teachers reported being likely to use such a technology ecosystem in
their regular classrooms.

4 Conclusion

In this study, we introduced a new technology ecosystem to support dynamic transitions
between individual and collaborative learning, which has not been tried before in the
AIED literature, to our knowledge.We tested the feasibility of the ecosystem in 11 class-
rooms. The substantial number of collaboration episodes (on average 18 per class) is one
piece of evidence of feasibility, showing that all teachers were able to use the orchestra-
tion tool to initiate dynamic transitions between individual and collaborative learning.
All participating teachers reported being likely to use the technology ecosystem in their
daily practice. Thus, the study provides insight into what orchestration tool functional-
ity makes it feasible for teachers to manage dynamic transitions between individual and
collaborative learning: a combination of (1) support for monitoring students’ real-time
learning progress in both individual and collaborative learning modes; (2) AI-generated
pairing suggestions regarding whom to team up, with (3) full control by the teacher over
pairing and unpairing decisions, Future work will further analyze students’ learning
process in dynamic transitions, and further improve the tools as our understanding of
how to support teachers continually evolve. The ecosystem will support further research
into the value of dynamic transitions, including how they affect students’ learning out-
comes, compared to for example pre-planned transitions. This exploratory study brings
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us closer to the vision of the smart classroom of the future, where the students transition
dynamically between different learning modes, at moments that such transitions may be
most helpful.
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Abstract. Job interviews are usually high-stakes social situations where
professional and behavioral skills are required for a satisfactory outcome.
In order to increase the chances of recruitment technological approaches
have emerged to generate meaningful feedback for job candidates. We
extended an interactive virtual job interview training system with a Gen-
erative Adversarial Network (GAN)-based approach that first detects
behavioral weaknesses and subsequently generates personalized feedback.
To evaluate the usefulness of the generated feedback, we conducted a
mixed-methods pilot study using mock-ups from the job interview train-
ing system. The overall study results indicate that the GAN-based gener-
ated behavioral feedback is helpful. Moreover, participants assessed that
the feedback would improve their job interview performance.

Keywords: Job interview training · Generative adversarial networks ·
Counterfactual explanations · Engagement

1 Introduction

In stressful situations, such as job interviews, many people tend to show nervous
and uncontrolled behaviours. This circumstance most often affects their perfor-
mance in a negative way. Especially in job interviews, the goal is to convince
a recruiter of ones fit in a company by actively engaging in the conversation.
Recruiters hereby consciously or unconsciously evaluate the candidate’s social
cues. The amount of positive engagement a candidate shows towards the inter-
viewer may play a central role in deciding whether the candidate is suitable.
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Delroy et al. [7] found that active integration behaviors such as engagement,
laughing, and humor led to better performance ratings and, therefore, to a higher
chance of recruitment. In recent years, technology-based job interview training
systems have been developed to improve the performance of candidates (e.g.
[1,4,11]).

This paper presents a feedback extension to an existing job interview training
environment that uses a socially interactive agent as a recruiter and an engage-
ment recognition component to enable the virtual agent to react and adapt to
the user’s behavior, and emotions [2]. This training aims to help improve social
skills that are pertinent to job interviews. The new feedback extension employs
an eXplainable AI (XAI) method based on counterfactual reasoning for gener-
ating verbal feedback about observed social behavior.

Fig. 1. Job interview training system with GAN-generated recommendations.

The introduced feedback extension is based on a deep learning classifier pre-
dicting the user engagement in job interview situations that uses multimodal
feature (e.g., gaze, body posture, or gestures) representations of the trainee as
input. We exploit the concept of counterfactual explanations to show what the
user would need to change to appear more engaged. Therefore, a GAN-driven
counterfactual explanation model is trained that transforms those feature repre-
sentations to corresponding counterfactual explanations, i.e., the feature repre-
sentations are changed so that the user would have appeared engaged. The expla-
nation generation compares the counterfactual feature vectors with the original
feature vectors to derive textual recommendations automatically. Finally, they
are presented to the trainee by a socially interactive agent in the role of a job
interview coach. Figure 1 shows a schematic overview of our approach.

2 Recommendation Generation

The next sections offer an overview of the different components we implemented
to generate behavioral recommendations that point out how the user should have
behaved to appear more engaged.

Feature Extraction. In order to train a model for engagement recognition and
recommendation generation, we modeled a high-level engagement feature set.
The feature set consists of 18 metrics mapping facial behavior, body language
and conversation dynamics.
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Engagement Model. Based on the introduced feature set we trained a simple
feedforward neural network with two dense layers for the recognition of low and
high engagement on the NoXi database [3]. We decided on the NoXi corpus since
it contains multi-modal multi-person interaction data and its transferability to
social coaching scenarios. Moreover, the setup of the corpus allowed for both
engaging as well as non-engaging interactions. The 10.5 h of data has been ran-
domly split into training and test sets, so that no sample of the same participant
is present in the training and the test set. The corresponding classifier achieved
an accuracy of 70.5%.

Counterfactual Features. In a next step, to be able to give recommendations
on how the user should have behaved to appear more engaged, we apply a coun-
terfactual explanation generation algorithm, i.e., we aim to modify the input
feature vectors that were classified as low engaged in a way that the classifier
would change it’s decision to high engaged. As described in Sect. 1, the recom-
mendations that we aim for can be seen as counterfactual explanations for the
engagement model presented in Sect. 2. To generate these counterfactual feature
vectors, we used an adversarial learning approach. In prior work, Mertes et al.
[5] presented their GANterfactual architecture, which is an adversarial approach
to transforming original samples to counterfactual samples that are classified in
a different way by a specific decision system to be explained. For our system,
we built a network architecture adapted from the GANterfactual framework,
which was originally implemented for generating counterfactual explanations in
the image domain. The use of the GANterfactual framework has multiple bene-
fits for the recommendation quality: Firstly, the cycle-consistency loss that is an
integral part of the underlying adversarial architecture forces that the learned
transformation is minimal, i.e., only relevant features are changed. In the context
of recommendation generation, this implies that the generated behavioral rec-
ommendations are highly personalized. Secondly, the adversarial loss component
that is part of every GAN architecture leads to highly realistic results. Thus, rec-
ommendations are not drawn from highly exaggerated or oversimplified feature
vectors. Thirdly, the counterfactual loss introduced by Mertes et al. enforces that
the counterfactual explanations (in our case, the behavioral recommendations),
are valid. For technical details of our modifications to the original GANterfactual
framework, please refer to our implementation.1 For the GAN-training, we relied
on the NOXI dataset, which we also used for training the engagement classifier.
Thus, the adversarial framework learns to convert feature vectors that show low
engagement to feature vectors that show high engagement.

Textual Recommendations. After generating the counterfactual feature vec-
tors we compare them to the original feature vectors that represent the shown
nonverbal behavior. Depending on the demanded detail of feedback we return
the features that had undergone the greatest value transformation and convert
them into textual feedback. For this purpose, we discretize the features based

1 Our implementation is available at https://github.com/hcmlab/FeatureFactual.

https://github.com/hcmlab/FeatureFactual
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on a defined textual template. For example, the feature representing the overall
activity of the head gets translated into “try to keep your attention on your
interlocutor” or “try to use more nonverbal feedback” depending on the present
feature value. The generated feedback is provided verbally to the user by the
virtual coach inside the job interview training environment.

3 Evaluation

Pilot Study. The present pilot study’s goal was to get preliminary insights
about the assessment of a possible job interview training applying GAN driven
recommendations. We gathered data from 12 volunteering student participants
(7 female, 5 male). Participants’ age was between 21 and 29 years (M = 23.83,
SD = 2.66). The participants were presented with videos of our job interview
training system applied to a multi-modal job interview role-play dataset [10].
Participants were asked to imagine that they were the trainees using the train-
ing to practice a job interview. Next, participants filled in questionnaires about
Demographics (age, sex), Usefulness (MeCUE [6]), Transfer motivation (four
items adapted from [9]) and Feedback Quality (“I felt the feedback was accu-
rate.”, “I would have given similar feedback.”, “I feel like the feedback is help-
ful.”, “I don’t think the computer can give me accurate feedback.”). Then, a
semi-structured interview was held, which covered five areas: 1) general impres-
sion, 2) other possible use-cases, 3) suggestions for improvement, 4) intention
for further use, and 5) added value.

In the three questionnaires, the following descriptive data was found: Useful-
ness (M = 4.72, SD = 1.17); Transfer motivation (M = 4.92, SD = .94); Feedback
Quality (M = 4.60, SD = 1.26). The answers gathered in the semi-structured
interview were analyzed and categorized for each of the five areas separately.
Regarding the General impression, the majority of participants mentioned that
the recommendations were useful (6)/feasible or comprehensible (2). As other
possible use-cases participants named training to improve communication skills
in general (8) and for more specific groups, like patients with anxiety disorders or
people with social phobias. Participants mentioned seven times that they would
like to have more specific recommendations, e.g. “The agent could say something
like: Nonverbal feedback is nodding, for example.”. Intention for further use was
indicated by 9 participants. The added value of the training was for most of the
participants that the recommendations are given directly on a specific behavior
shown in a specific situation during the job interview.

Recommendation Generation. In order to verify the validity of our app-
roach, we examined whether the counterfactuals generated by the GAN are
modifying the features that the incorporated engagement classifier identified as
important for the classification of low and high engagement. For this evaluation,
we used five sessions of the multi-modal job interview role-play dataset [10] that
have also been used in the pilot study and extracted the importance scores of
every feature in regard to the model’s classification with LIME [8]. We calcu-
lated the pearson correlation between the absolute value change of how much
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each feature has been modified by the counterfactual transformation and the
importance score of every feature, see Table 1. High correlation scores indicate
that the counterfactual feature transformation is in line with the corresponding
importance of the feature. Seven features showed a strong positive correlation
(GZ DR, AM CR, HD TH, DIST RW, YROT LE, SDX HD, SDXROT HD), six
features had a moderate positive correlation (HD AC, YROT RE, XROT RE,
TN HD, CONT MOV, EN HA) and two features presented with a low positive
correlation (DIST LW, XROT LE). Moreover, FO RW had a strong negative
correlation, VAL F showed a moderate negative correlation and FO LW had a
weak negative correlation. Moreover, we conducted a computational evaluation
to investigate how well the generated counterfactual features change the decision
of the engagement classifier. We found that 96.49% of the generated counterfac-
tual feature vectors led to a different decision of the engagement model as the
original input features.

Table 1. Pearson correlation between the absolute change of the feature values and
the LIME classification relevance scores for every feature. The features are from left
to right: Valence Face, Gaze behavior, Head activity, Arms crossed, Head touch, X
distance of left/right wrist and hip, Y rotation left/right elbow, Y distance of left/right
wrist and hip, X rotation left/right elbow, Standard deviation head movement in X axis,
Standard deviation Head X rotation, Turn hold, Continuous movement, Gesticulation.

Feature VAL
F

GZ
DR

HD
AC

AM
CR

HD
TH

DST
LW

DST
RW

YR
LE

YR
RE

FO
LW

FO
LW

XR
LE

XR
RE

SDX
H

SDXR
H

TN
HO

CNT
MV

EN
HA

r −0.59 0.98 0.63 0.80 0.93 0.22 0.74 0.77 0.62 −0.04 −0.77 0.29 0.64 0.74 0.87 0.43 0.48 0.35

4 Discussion and Conclusion

We introduce a novel approach for generating textual nonverbal behavior recom-
mendations in job interview training environments. In a pilot study, we presented
the approach to participants. The results indicate that such training could be
helpful to prepare for job interviews successfully. The recommendations given
by the system were found to be helpful and comprehensible, and transferable
to other use cases. Moreover, most participants noted that the proposed app-
roach adds additional value to the training by giving recommendations directly
on a specific behavior in a specific situation. Part of the underlying training sys-
tem automatically extracts situations that could be improved and displays them
alongside the recommendation presented by the virtual coach. Moreover, we
examined the validity of our GAN-driven recommendation generation approach
by calculating the Pearson correlation coefficient between the absolute changes
of the feature values after counterfactual transformation and the importance of
the features the classifier attributed to them regarding the classification result.
We showed that most of the features (15 out of 18 features) had a moderate to
strong correlation, which emphasizes the validity of the proposed approach. Only
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the two features corresponding to the relative position and movement of the left
wrist and the feature representing the flexion of the left elbow presented a weak
correlation. Further, we also investigated how well the generated counterfactual
features can change the decision of the engagement classifier. Overall, 96.49%
of the counterfactual feature vectors led to a different decision of the engage-
ment classifier as the original input features. This indicates that our GAN-driven
approach enables to generate recommendations that, when being adopted, are
consistently leading to a perception of high engagement. The computational eval-
uation, as well as the user study, indicate that the generated recommendations
are valid and helpful in the context of job interview coaching scenarios.
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Abstract. Prior works have led to the development and application of
automated assessment methods that leverage machine learning and nat-
ural language processing. The performance of these methods have often
been reported as being positive, but other prior works have identified
aspects on which they may be improved. Particularly in the context
of mathematics, the presence of non-linguistic characters and expres-
sions have been identified to contribute to observed model error. In this
paper, we build upon this prior work by observing a developed auto-
mated assessment model for open-response questions in mathematics.
We develop a new approach which we call the “Math Term Frequency”
(MTF) model to address this issue caused by the presence of non-
linguistic terms and ensemble it with the previously-developed assess-
ment model. We observe that the inclusion of this approach notably
improves model performance, and present an example of practice of how
error analyses can be leveraged to address model limitations.

Keywords: Math-terms · Open-ended responses · Automated
assessment · Machine learning · Natural language processing ·
Mathematics

1 Introduction

Advancements in artificial intelligence and machine learning research have led
to greater integration of prediction models into educational contexts through
computer-based learning systems. These systems are being used in educational
settings to support teachers and students in a variety of ways. Most prominent of
the supports offered by most learning systems is that of automated assessment.

When assessing open-ended problems, however, the correctness of student
responses can be subjective, where teachers commonly assess students based on
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an explicit or implicit rubric that identifies key points that must be included
in a student response to sufficiently demonstrate comprehension. Current auto-
matic assessment methods commonly apply natural language processing (NLP)
to build a high-dimensional representation of student responses that is then
combined with various machine learning approaches (e.g. [2,3,8,11]).

In consideration of the challenges in assessing open-ended problems, mathe-
matics based domains make developing automated assessment models even more
difficult, as most traditional NLP techniques were not designed for such a con-
text, with a few recent exceptions [4,7,9]. Recent work has identified that the
existence of non-linguistic terms is positively correlated with model prediction
error in models that have outperformed existing benchmarks in this context [1].

This work presents a simple, targeted method to resolve this problem. We call
this proposed method the “Math Term Frequency” (MTF) model and demon-
strate how it can be combined with previously-developed assessment models
to improve performance. Specifically, this work addresses the following research
questions: 1) How does accounting for non-linguistic terms through our MTF
model affect the performance of auto-assessment methods on existing bench-
marks? and 2) Does our MTF method reduce the correlation between non-
linguistics terms and model prediction error?

2 Dataset

To explore and examine the methods proposed in this work, we observe two
datasets consisting of student answers to mathematics open-response questions.
These datasets were collected from ASSISTments [6] and contains 150,477 stu-
dent responses from 27,199 students for 2,076 open-ended math problems scored
by 970 unique teachers (where each response was scored by a single teacher);
this dataset is the same used to establish benchmark results [4] and is used
to directly compare performance against models presented in prior work [1,4].
Teachers scored responses based on a 5-point integer scale ranging from 0 to 4,
with a 4 indicating a very strong and a 0 indicating a very weak response. The
second dataset used in this paper was similarly used in prior work to conduct
an error analysis to identify factors that correlate with prediction error [1]. This
dataset is comprised of student open responses collected in a pilot study of the
QUICK-Comments tool and contains 30,371 scored student responses from 1,628
students for 915 unique open-response questions assessed by 12 teachers.

3 The SBERT-MTF Model

The methods presented in this work target the specific problem of non-linguistic
terms contributing to prediction error. The previously-developed SBERT-
Canberra model outperformed previous decision-tree- and deep-learning-based
approaches [4] by leveraging pre-trained Sentence-BERT embeddings. The chal-
lenge, however, is that only a finite number of words (and sentences, by exten-
sion) can be recognized by these methods. When observing non-lingustic terms
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such as numbers and expressions, many such terms may not be represented
within the embeddings (e.g. representing “the answer is 4.3333” with the same
embedding as, for example, “the answer is 2.987” if neither of the numbers are
recognized). Instead, we propose the “Math Term Frequency” (MTF) method
which takes a much simpler approach, drawing inspiration from assessment meth-
ods applied for close-ended problems. The goal of this method is to supplement
the previously-developed SBERT-Canberra model through ensembling, resulting
in what we are calling the “SBERT-MTF” model.

The MTF method works by first parsing student answers to identify non-
linguistic terms. The function1 splits each student answer by spaces, removes
alphabet-only terms (accounting for punctuation), removing spaces around math
operators, and rounding off large decimals. Once the non-linguistic terms have
been identified, the MTF method involves identifying the most frequently-
occurring terms for each possible integer score as a means of learning a kind of
rubric. There will likely be some terms that are common throughout all scored
answers, but there are likely to be some terms that demonstrate comprehension;
similarly, students exhibiting common misconceptions may arrive at a similar set
of incorrect answers. With this in mind, we select the five most-frequent terms
from the list of parsed non-linguistic terms for each problem. With these, for a
new response for which we want to generate a score, we calculate a set of 5 indica-
tor values representing whether the response contains each of the most-frequent
terms. These features are used in a multinomial logistic regression (following
previous works) that is trained separately for each problem.

The score predictions from the MTF model are then ensembled with the
SBERT-Canberra predictions using another logistic regression model, referred to
as the SBERT-MTF model; to clarify, this ensemble regression model observes
ten features corresponding to the probability estimates produced for each of
the five possible scores for each of the two observed models. The goal of this is
to combine the semantic representation captured by the SBERT method, while
taking advantage of the non-linguistic term matching from the MTF method.

3.1 SBERT-MTF Model Performance

As to directly compare the existing method to the prior works, we use similar
evaluation method and dataset used in [1,4]. This evaluation method utilizes a
2-parameter IRT model to compare model estimates [10]. The model predictions
are used as covariates within the IRT model allowing for the comparison of
scoring methods that controls for variables of general student ability and problem
difficulty; the number of words in the response is also added as a covariate in this
evaluation model in an attempt to further compare models on their ability to
interpret student answers rather than be based on other more superficial response
features. This evaluation method allows for a fair comparison that accounts for
factors that likely impact score that are external to the observed text of the

1 All code used in this work is available at https://github.com/ASSISTments/SBERT-
MTF.

https://github.com/ASSISTments/SBERT-MTF
https://github.com/ASSISTments/SBERT-MTF
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student response. For comparison to previous works, we evaluate our method
using three metrics: AUC (see [5]), Root Mean Squared Error (RMSE; calculated
using model estimates as a continuous-valued integer scale), and Cohen’s Kappa.

The IRT model performance of the Math terms frequency model as compared
to the performance of the prior models for scoring open-ended responses is pre-
sented in Table 1. The results suggests that the proposed SBERT-MTF model
outperforms the previous highest-performing model across evaluation metrics.

Table 1. IRT model performance compared to the models developed in prior works
related to auto-scoring of student open responses in mathematics.

Model AUC RMSE Kappa

Baseline IRT 0.827 0.709 0.370

IRT + SBERT-Canberra 0.856 0.577 0.476

IRT + SBERT-MTF 0.871 0.524 0.508

3.2 Error Analysis of SBERT-MTF

The proposed MTF method was designed to address a very targeted problem
exhibited by the previously-developed SBERT-Canberra model. We therefore
conduct a similar error analysis to observe whether this method impacts the
observed positive correlation between the presence of non-linguistic terms and
model error. For this analysis, we use the second dataset as described in Sect. 2
for a direct comparison with the previous work. While the modeling task treats
scoring as a categorization task, we convert the model predictions to a ordinal-
scale integer value (i.e. 0–4). We calculate model prediction error as the absolute
value of the teacher-provided score minus the predicted score. In this way, posi-
tive values correspond with higher error and values close to 0 represent low error
(high performance) and conduct a linear regression observing absolute error as
the dependent and answer-level features as independent variables.

We compare three models within this analysis to identify how two modeling
decisions presented in this work correspond with observed changes in feature
coefficients. The first model observed is that of the SBERT-Canberra model
reported in [1] as a baseline for comparison. The second model uses the same
SBERT-Canberra method, but trains a logistic regression per problem with the
model predictions as covariates (e.g. similar to the ensembled method described
earlier, without MTF); the intuition here is that problem-specific adjustments
may itself help to account for error in the model. Finally, we observe the ensem-
bled SBERT-MTF model for impacts beyond these other two methods.

The results of the error analysis is presented in Table 2. The results indicate
that the linear model for both Logistic SBERT and SBERT-MTF explains 34.8%
of the variance of the outcome as given by r-squared; this alone suggests that
there is a large portion of variance in the error unexplained by the observed fea-
tures. Among the observed features, similar to the results from [1], nearly all were
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Table 2. The resulting model coefficients for the uni-level linear regression model of
absolute error for SBERT Canberra, Logistic SBERT and MTF model.

SBERT-Canberra Logistic SBERT SBERT-MTF

B Std. error B Std. error B Std. error

Intercept 0.581*** 0.017 0.738*** 0.017 0.776*** 0.070

Answer length −0.008*** 0.001 −0.008*** 0.001 −0.009*** 0.001

Avg. word length −0.014*** 0.003 −0.013*** 0.003 −0.014*** 0.003

Numbers count <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Operators count −0.006*** 0.001 0.001 0.001 0.004** 0.001

Equation percent 0.443*** 0.018 −0.062*** 0.019 −0.128*** 0.019

Presence of images 2.248*** 0.021 2.058*** 0.022 2.018*** 0.022

*p< 0.05 **p< 0.01 ***p< 0.001

statistically reliable in predicting the model error. However, it is arguable that
from the relatively small scale of most coefficients, two of the features exhibit
more meaningful impacts in comparison to the others: the presence of mathe-
matical expression and presence of images in the student answers. However, with
the introduction of a logistic regression model that follows the SBERT-Canberra
method, the coefficient value of presence of mathematical terms has changed; it
would appear that accounting for problem-level adjustments alone removes much
of the impact of non-linguistic terms in the dataset. Most notably, however, is
that the addition of our MTF method exhibits an even stronger negative corre-
lation between the presence of non-linguistic terms and model error; what once
was a weakness now appears to be a potential strength of the model.

4 Discussion and Future Work

The results of all of the presented analyses illustrate MTF (specifically, SBERT-
MTF) as a promising method to mitigate model error attributed to the presence
of non-linguistic terms. The MTF method represents an intentionally-simple
approach to address a targeted weakness observed in previously-developed mod-
els and seemingly led to positive impacts.

With that, there are still several areas in which these models could be
improved, in addition to improving the accuracy of the parsing function. Most
notably, is the remaining correlation between the presence of images and model
error. While this is not surprising, as the models do nothing to account for
images, this remains an unhandled case that cannot be ignored. As it is also
the case that some students include mixtures of natural language, non-linguistic
terms, and images all in the same answer, developing methods to handle such
cases fairly is important for future work.

Similarly, the error analysis suggests that there is a large amount of vari-
ance in model error left unexplained. Previous work [1] identified problem- and
teacher-level factors that seemingly account for much of this unexplained error,
but this does not provide clear guidance as to how to account for these external
factors fairly within an automatic assessment model.
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Abstract. Automated scoring of open-ended student responses has the
potential to significantly reduce human grader effort. Recent advances in
automated scoring leverage textual representations from pre-trained lan-
guage models like BERT. Existing approaches train a separate model for
each item/question, suitable for scenarios like essay scoring where items
can be different from one another. However, these approaches have two
limitations: 1) they fail to leverage item linkage for scenarios such as
reading comprehension where multiple items may share a reading pas-
sage; 2) they are not scalable since storing one model per item is difficult
with large language models. We report our (grand prize-winning) solution
to the National Assessment of Education Progress (NAEP) automated
scoring challenge for reading comprehension. Our approach, in-context
BERT fine-tuning, produces a single shared scoring model for all items
with a carefully designed input structure to provide contextual infor-
mation on each item. Our experiments demonstrate the effectiveness of
our approach which outperforms existing methods. We also perform a
qualitative analysis and discuss the limitations of our approach. (Full ver-
sion of the paper can be found at: https://arxiv.org/abs/2205.09864 Our
implementation can be found at: https://github.com/ni9elf/automated-
scoring)

Keywords: Automated scoring · BERT · Reading comprehension

1 Introduction

Automated scoring (AS) refers to the problem of using algorithms to auto-
matically score student responses to open-ended items. AS approaches have
the potential to significantly reduce human grading effort and scale well to an
increasing student population. AS has been studied in many different contexts,
including automated essay scoring (AES) [1] for essays, and automatic short
answer grading (ASAG) for humanities, social sciences [13], and math [3].
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Existing approaches for AS use feature engineering, i.e., developing features
that summarize the length, syntax [2], cohesion [6], relevance to the item [11],
and semantics of student responses combined with machine learning-based clas-
sifiers [2,9] to predict the score. These approaches have excellent interpretability
but require human expertise in feature development. Recent approaches leverage
advances in deep learning to produce better textual representations of student
responses, alleviating the need to rely on human-engineered features. Examples
include combining neural networks with handcrafted features for score predic-
tion [14] and especially approaches that fine-tune neural language models (LMs)
such as BERT [5] and GPT-2 [12] on the downstream AS task [7,8]. These
approaches have performed well on publicly available datasets like the auto-
mated student assessment prize (ASAP) for essay scoring [1].

However, existing AS approaches are limited in many ways, including a sig-
nificant one which we address in this paper: They train a separate AS model for
each item. This approach is acceptable in contexts such as AES since the items
(essay prompts) are likely not highly related to each other. However, in other
contexts such as reading comprehension, multiple items may share the same
background passage; Training a separate model for each item fails to leverage
this shared background information. More importantly, this approach results in
a separate model for each item; For large LM-based models that have millions
of parameters, this approach creates a significant model storage problem.

Contributions. First, we present our (grand prize-winning) solution to the
NAEP AS challenge1 for reading comprehension items. We develop a novel AS
approach based on meta-learning ideas via in-context fine-tuning of LMs. A
carefully designed input format using in-context examples provides context on
each item to leverage linkage across items. Second, our experiments demonstrate
the effectiveness of our AS approach which outperforms existing LM-based AS
approaches and significantly outperforms other non-LM-based baselines. Third,
we perform a qualitative analysis to identify common scoring error types and
discuss limitations of our approach with insights for future work.

2 Methodology

2.1 Problem Formulation and Dataset

The NAEP AS challenge features 20 reading comprehension items from grades
4 and 8. Each item, indexed by i, has 1) a long reading passage Pi of around
657 words, 2) a short question Qi of around 27 words, 3) a scoring rubric, and
4) a large training dataset of around 18, 000 human scored student responses
Dtrain

i = {(xj , yj)}. The average response length is 19 and 37 words for grades
4 and 8, respectively. The goal is to predict human scores for responses in the
test dataset Dtest

i = {(xtarget
j )} for all tasks i. A key observation is that pairs of

1 Ran by the US Dept. of Education: https://github.com/NAEP-AS-Challenge/info.
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items (l,m), one from grade 4 (l) and one from grade 8 (m), often share passages
(Pl = Pm) and questions (Ql = Qm). This linkage across items motivates our
approach of leveraging shared semantics by not treating items independently.

2.2 Our Approach: Meta-trained BERT with In-context Tuning

Fig. 1. Meta-trained BERT via in-context tuning. Best viewed in color. (Color figure
online)

Meta-trained BERT with In-context Tuning. We use a pre-trained BERT
model [5] as the base LM (we also tried GPT-2 [12] which gave similar perfor-
mance). The key idea of our approach, in-context learning of a shared AS model
across all items, uses a carefully-designed input structure to provide context to
the shared model and associate it with each specific item. For this, following
recent approaches for meta-training-based in-context learning [4,10], we add in-
context examples which are (response, score) pairs from the training set, to the
input. Intuitively, these examples provide further context about each item and
enable the AS model to focus on learning to associate responses to scores given
the passage and the question, thus enabling knowledge sharing across items.

We build the model input as shown in Fig. 1 by concatenating the target
student response xtarget

j to be scored, passage Pi, question Qi, and K (response,
score) examples Ei ⊆ Dtrain

i . We add separator tokens [SEP] to help the model
differentiate between input segments. We convert the numeric scores yj in the
examples Ei to meaningful words as: {1 : poor, 2 : fair, 3 : good, 4 : excellent}.
We add semantically meaningful task instructions to each input component.

Since each item i has a different score range yj ∈ [smin = {1}, smax =
{2, 3, 4}], we add valid score classes for xtarget

j as explicit options in the input
to make the model aware of valid output scores. We mask out invalid scores
for each response before computing the softmax to ensure that training loss is
backpropagated over valid scores only, enabling us to meta-train a single shared
model for all items.
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We train our AS model on the union of training datasets for all items⋃20
i=1 Dtrain

i . Let θ represent the parameters to be learned, i.e., BERT param-
eters fine-tuned and classification layer parameters learned from scratch. The
in-context learning objective Li for an item is the negative log-likelihood loss:

Li(θ) =
∑

(xtarget
j ,ytarget

j )∈Dtrain
i

[− log pθ(y
target
j |xtarget

j , Pi, Qi, Ei)],

while the objective across all 20 items is: L(θ) =
∑20

i=1 Li(θ). In contrast, existing
approaches result in a separate set of model parameter θi for each item, which
increases the parameters and storage space by 20×.

3 Experimental Evaluation

3.1 Metrics and Baselines

We use quadratic weighted Kappa (QWK) as the accuracy metric. We com-
pare our approach, meta-trained BERT with in-context tuning, with existing
approaches for AES and several variants of our approach for an ablation study.
Human provides an upper bound given by inter-rater agreement. Feature Engi-
neering uses handcrafted features [14] with random forests. Stacked LSTM uses
a stack of two LSTMs. Clusering + Classification uses cluster indicators of
responses with random forests. BERT (response) fine-tunes 20 independent
BERT models, one for each item, using only responses as input. BERT (pas-
sage+question+response) adds passage and question text. BERT in-context adds
in-context examples. BERT multi-task uses multi-task learning to fine-tune a
single shared model with 20 separate classification layers, one for each item.

3.2 Implementation Details

We spell check since 1) the rubric ignore spelling errors, and 2) to transform
student responses to be similar to what BERT sees in pre-training. Spell check
improves performance by 0.5%. We perform a five-fold cross-validation for each
item. We use a pre-trained BERT [5] model with default parameters as our base
LM. For our meta-trained BERT model with in-context tuning, for each training
response, we randomly sample up to 25 in-context examples per score class from
the training dataset of the corresponding item. At testing we use 8 different sets
of randomly sampled examples and average the predicted scores.
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3.3 Results and Analysis

Table 1. Results averaged across items. Model performance in Quadratic Weighted
Kappa (higher is better). Bold indicates best result except human performance.

Approach Avg. QWK p-value

Human 0.878 –

Feature Engineering + Random Forest 0.443 –

Stacked LSTM 0.657 –

Clustering + Classification 0.709 –

BERT (response) 0.828 –

BERT (passage+question+response) 0.828 0.414

BERT in-context 0.833 0.001

BERT multi-task 0.833 1.6 × 10−4

Meta-trained BERT in-context 0.841 9.6 × 10−5

We report the average QWK for all approaches in Table 1. LM-based approaches
outperform non-LM-based approaches by a significant margin. Our approach
meta-trained BERT in-context performs best. We perform paired t-tests using
BERT (response) as the baseline. We observe that learning a single shared
model across items achieves statistically significant improvement over learning
one model per item. This observation validates our intuition that leveraging
shared information across items improves accuracy. Surprisingly, adding passage
and question text as input does not lead to improved performance suggesting
that our model has not mastered reading comprehension. Our approach performs
better than BERT (response), more on shared items across grades 4 and 8 and
less on non shared items as seen in Table 2. This observation suggests that our
approach may struggle to generalize to new items.

Table 2. Results averaged over shared vs. non-shared items from grade 4 and 8.

Approach Non-shared G4 Shared G4 Non-shared G8 Shared G8

BERT (response) 0.825 0.842 0.763 0.840

Meta-trained BERT in-context 0.826 0.856 0.771 0.853

Qualitative Error Analysis. We randomly sample 100 responses that our
approach scores incorrectly. We identify 5 error types shown in Table 3 with
made-up examples that reflect our observation: 1) spelling and grammar errors
(that remain after the spell check), 2) human error, 3) infrequent (our app-
roach struggles on correct responses that occur rarely), 4) imitation (incorrect
responses with content/structure that mimic correct responses), and 5) character
coreference (referring to a different character).
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Table 3. Illustration of responses that our approach tends to score incorrectly.

Error type Example student response Prediction Actual

Spelling/grammar “mearchant are a good man because . . . ” 2 3

Human error “Long ago a poor country boy left . . . ” 1 3

Infrequent “merchant is described as brave as . . . ” 2 4

Imitation “The merchant is dishonest because . . . ” 3 1

Coreference “merchant, not innkeeper, is greedy . . . ” 4 1

4 Conclusions and Future Work

In this paper, we presented our (grand prize-winning) solution to the NAEP AS
challenge, an in-context BERT tuning model meta-trained on all items that lever-
ages item linkage and shared semantics for reading comprehension items. There
are several avenues for future work. First, adding passage and question text as
input does not improve performance indicating that our model has not mastered
reading comprehension, which suggests that future work should leverage passage
information and score responses in context of the passage for better generaliza-
tion to new items. Second, spell checking student responses improves accuracy,
which suggests that future work should pre-train LMs on student-generated text.
Third, our model does not offer any explanation on score predictions, which sug-
gests that future work should improve the interpretability of automated scoring
methods via e.g., incorporating scoring rubrics or visualizing the model.
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Abstract. Artificial Intelligence in higher education opens new possi-
bilities for improving the lecturing process, such as enriching didactic
materials, helping in assessing students’ works or even providing direc-
tions to the teachers on how to enhance the lectures.

This research explores how an academic lecture can be assessed auto-
matically by quantitative features. First, we prepare a set of qualita-
tive features based on teaching practices and then annotate the dataset
of academic lecture videos. We then show how these features could be
detected automatically using machine learning and computer vision tech-
niques. Our results show the potential usefulness of our work.

Keywords: Didactic features · Qualitative analysis · Video
recognition · Deep learning

1 Introduction

Digital lecturing proliferation during the pandemic drew public attention to the
higher education situation and its possible improvements [3]. Numerous newly
created programs aim to enhance education quality using the advantage of artifi-
cial intelligence and deep learning methods [2]. Adopting artificial intelligence in
higher education is still a significant challenge. We follow this research path, and
the principal aim of this research is to improve the academic lecturing process.
When the majority of newly proposed solutions focus on the learners, their per-
formance [1], or learning sources [5], this research concentrates on the teachers.

Our research explores how an academic lecture can be assessed automatically
by quantitative features. We define the features following teaching practices and
their crucial aspects. The features also regard such techniques as a slide presen-
tation and other visualizations, organizational information, and teacher inter-
actions with the public. The main goal of designing these features is to give
objective feedback to the lecturers to improve their didactic behaviours or the
c© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 698–703, 2022.
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content of their lecture materials. On the other hand, we designed the features
to be feasible to detect automatically using artificial intelligence methods, espe-
cially computer vision or machine learning. After designing features, we gather
a dataset of video lecture recordings and annotate it to obtain these features.
Then we tested how we need to preprocess and prepare deep learning models to
detect these features, e.g. via computer vision, audio or text processing. Our gen-
eral goal is to build a solution that can automatically help teachers get feedback
about their lecture assessment and suggest ways to improve, offering particular
features that can be easily indicated during the lectures.

Thus, the main contributions of this research are: (1) preparing a set of didac-
tic features feasible to annotate and detect automatically, (2) collecting a dataset
of lecture video recordings annotated with these features, and (3) designing a
set of deep learning models that were trained to determine the presence of the
selected didactic feature in our dataset.

2 Proposed Approach

For our experiments, we choose the most frequent features that can be detected
across two modalities. Experiment I concerns features from an audio stream or
its transcription, and Experiment II – features describing slide content or visual
characteristics of the teachers’ behaviours (see Table 1).

At first, we selected and analyzed teaching practices thoroughly, following the
approach in [6,7]. Based on these sources, we defined a set of valuable didactic
features from the teaching point of view and feasible for automatic detection in
lecture videos. Table 1 presents the designed features that are related to the main
categories of Singapore Teaching Practices taxonomy [7], e.g., “activating prior
knowledge,” “arousing interest,” and “deciding on teaching aids and learning
resources.” Once the features were defined, we chose to annotate a dataset that
contains 128 lectures recorded in English (on average, one lecture lasts 1.5 h).

2.1 Experiment I: Detection of Audio-Based Features

This experiment is dedicated to the selected audio behavioural features depend-
ing on uttered words or sounds in the lecture room. Most open datasets for video
annotations, especially behavioural feature recognition, are fine-grained and con-
tain short diversified behaviours. On the contrary, our end goal is to detect the
features that last a considerable time slot during a lecture. Thus, we can use very
coarse-grained portions of videos (within a range of a few seconds) to process,
optimize hyperparameters and train models faster. We used the Azure automatic
speech recognition (ASR) service to provide data for building text models. After
linking our annotations with the transcription from Azure, we split the dataset
into a train, dev, and test sets; these sets contain video samples in which samples
from the same lecture and annotations made by the person are within only one
of these sets.
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Table 1. Features and number of their occurrences in our dataset, and experiments
for their automatic detection

Feature Occurrences Experiment

Asking questions (AQ) 4926 I & I-Q

Giving questions to students (GQ) 3616 I & I-Q

Organization: giving class outline (O) 1211 I

Test session (S) 854 I

Active teacher stands by slides and explains them (AT) 835 I

Summing up (SU) 72 I

Students’ laughter 315 I (AUDIO only)

Use of intonation to emphasise important issues 200 I (AUDIO only)

Teacher is moving across a podium 1379 II

Films or animations in slides 583 II

Images in slides 2793 II

Test session 854 II

Charts in slides 3356 II

Showing websites (on a slide presentation) 307 II

Writing on a whiteboard 3059 II

Writing on slides 6738 II

Eye contact with students 9943 II

We trained our models on two tasks: “Questions only” and “Full task.” In
the “Questions only” task, we tried to predict whether a given sample depicts
a question (i.e. AQ or GQ). In the “Full task,” the task is to predict all eight
features for audio models and six features/classes for text models without those
based on non-verbal audio aspects (see Experiment I in Table 1). We employed
M5 and Wav2Letter audio networks to accomplish the feature detection on the
audio stream [4]. For the text-based approach, we used BERT-based models.1

Our feature detection tasks were defined as classification tasks for downstream
tasks. Contextual bandits algorithms, which we also used to perform the classi-
fication task, was from the Vowpal Wabbit framework.2 To tokenize the data for
TF-IDF, each word and punctuation mark was treated as a token. We extracted
the top 10,000 most common words and bigrams, as an input to a classification
feed-forward network.

The text-based models significantly outperform audio-based networks, which
struggled to get any predictions correctly. The poor performance of audio-based
detection is mainly because of no open pre-trained networks and a very long
training time (about 48 h compared to text-based networks trained within min-
utes). The text-based networks achieve much better results despite the propa-
gation of automatic speech recognition (ASR) transcription errors (see Table 2).
Vowpal Wabbit has the best results on the questions-only task from all text-
based networks. recognition task.
1 https://huggingface.co/bert-base-uncased,roberta-base.
2 https://vowpalwabbit.org/.

https://huggingface.co/
https://vowpalwabbit.org/
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Table 2. Results for the text-based features detection in Experiment I. Note: Acc –
Accuracy, Prec – Precision, Rec - recall, the results for selected features is reported in
F1 score. Note: for feature labels refer to Table 1

“Questions only” (AQ & GQ) “Full task”

Model Acc Prec Rec F1 AQ GQ O S AT SU

BERT 0.831 0.332 0.453 0.383 0.29 0.27 0.03 0.08 0.31 0.02

VowpalWabbit 0.757 0.481 0.387 0.429 0.32 0.27 0.17 0.37 0.52 0.02

RoBERTa 0.116 0.116 1.00 0.207 0.28 0.25 0.20 0.20 0.45 0.06

TF-IDF 0.884 0.461 0.100 0.164 0.08 0.09 0.05 0.21 0.63 0.0

The difference between accuracy of feature detection roughly corresponds to
the number of occurrences in our dataset (see Fig. 1). Figure 2 presents F1 scores

Fig. 1. Correlation between cumulative duration of a behaviour and top achieved F1
score. Note: for feature labels refer to Table 1

when training is performed on BERT using only a subset of available data; here,
we compared the results of our dataset with a similarly prepared TED talks
dataset (in which transcription is very precise made by humans). These figures
suggest that results can be significantly improved by increasing the size of our
datasets and the consistency of annotations.

2.2 Experiment II: Multi-task Learning for Visual Features

This experiment approaches differentiating visual features, which appear pri-
marily in the view of the lecturer and presentation screen (see Experiment II
in Table 1). This experiment explores the possibility of learning distinctions
between visual features with one deep learning model which can share char-
acteristics between different features and thus be more efficient.

Here, the prepared dataset consists of selected frames from videos. Every
frame was selected from the middle of every occurrence of the feature (an event
recorded in our dataset). It creates a dataset of less correlated events, captur-
ing exactly one observation per recorded event. We have roughly 25,764 events
relevant to visual data.
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Fig. 2. F1 score achieved on “Questions only” task using BERT on a subset of available
data in our datasets and similarly prepared dataset from TED talks

In our model architecture, each video frame is embedded by a feature extrac-
tor (e.g. AlexNet, ResNet), and then the deep view representations go into the
siamese encoder – a neural network that extracts relevant features for our prob-
lem. In the end, the view representations are combined with max-pooling and
are passed into a classifier, which returns class scores for the nine classes, each
responsible for detecting one feature.

The tested models performance appears to be much better than random
overall (we have nine features to detect). Training with imbalanced loss the
AlexNet with the third representation layer as a feature extractor achieves above
70% accuracy for the test (see Fig. 3).

Fig. 3. Results of one of our best networks. From the left to the right: network learning
curve, balanced accuracies, precision and recall on the test set for each class/feature
given in the same order as in Table 1

Another vital thing our analysis shows is that classes/features might fight.
First, the distribution of network prediction trained on balanced loss appears to
be more uniform. Those networks do not favour the most frequent classes and
guess much more often than a less frequent feature is visible in the video lecture.
Generally, the networks commonly confuse features relying on similar data and
often co-occurring, e.g. “images in slides” and “charts in slides”, or “movement
across a podium” and “teacher’s eye contact”.

3 Conclusions

Our contribution in this work was defining features that can give tips to assess
qualitatively didactic aspects of lectures. Then we collected and annotated a
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dataset that allowed training and testing of deep learning networks for automatic
detection and recognition of these features. Our results showed the usefulness
of our work. We delivered an approach to preparing and preprocessing the data
of video recording. Also, we showed the main directions for deep learning meth-
ods. Especially we bypassed audio processing and modelling because it needed
extensive computing performance, much more than text processing.

Given our results that are not yet acceptable for professional use but as a
proof-of-concept, it is still possible that this approach can work if supplied with
better pre-trained feature extractors and trained on a more extensive dataset.
The dataset should be more diversified to achieve stable results. Furthermore,
our results showed an urge for more effort to get proper annotations, such as:
defining extended annotation protocol, employing more annotators, and training
them to be more consistent.

Acknowledgements. The research was funded by the Centre for Priority Research
Area Artificial Intelligence and Robotics of Warsaw University of Technology
within the Excellence Initiative: Research University (IDUB) programme (grant no
1820/27/Z01/POB2/2021) and by the RENOIR project under the EU program Hori-
zon 2020 under project contract no 691152. We want to thank Sylwia Sysko-Romanczuk
for her ideas and help in the structuralization of this research.

References

1. Alamri, R., Alharbi, B.: Explainable student performance prediction models: a sys-
tematic review. IEEE Access 9, 33132–33143 (2021)

2. Cheng, X., Sun, J., Zarifis, A.: Artificial intelligence and deep learning in educational
technology research and practice. Br. J. Edu. Technol. 51(5), 1653–1656 (2020)

3. Crawford, J., et al.: COVID-19: 20 countries’ higher education intra-period digital
pedagogy responses. J. Appl. Learn. Teach. 3(1), 9–28 (2020)

4. Dai, W., Dai, C., Qu, S., Li, J., Das, S.: Very deep convolutional neural networks for
raw waveforms. In: IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 421–425. IEEE (2017)

5. Gari, A.D., Mylonas, K., Nikolopoulou, V., Mrvoljak, I.: Educational and learning
resources in a Greek student sample: QELC factor structure and methodological
considerations. Psychol. Test Assess. Model. 63(2), 205–226 (2021)

6. Piburn, M., Sawada, D.: Reformed teaching observation protocol (RTOP) reference
manual. Technical report, Arizona Collaborative for Excellence in the Preparation
of Teachers (ERIC ED447205) (2000)

7. Singapore Ministry of Education: The Singapore Teaching Practice (STP) (2018)



Predicting Second Language Learners’
Actual Knowledge Using Self-perceived

Knowledge

Yo Ehara(B)

Tokyo Gakugei University, Koganei, Tokyo 1848501, Japan

ehara@u-gakugei.ac.jp

Abstract. Self-perceived knowledge refers to the knowledge that learn-
ers believe they possess. To measure actual knowledge, developing a valid
test for subjects is typically necessary. Self-perceived knowledge is con-
siderably easier to measure than actual knowledge because it can be
obtained by simply asking the participants if they possess the knowl-
edge. Hence, if the actual knowledge of a subject can be predicted with
high accuracy from their self-perceived knowledge, the burden of formu-
lating test questions and building a dataset can be reduced. In this study,
we created a reliable dataset for predicting actual knowledge from self-
perceived knowledge in the field of second-language vocabulary learning;
this dataset, to the best of our knowledge, is the first of its type. Herein,
we provide detailed item response theory (IRT)–based analyses for our
datasets as well as simple IRT-based methods for predicting the responses
of learners to actual knowledge. We also demonstrate a deep transfer
learning–based approach that slightly outperforms the IRT-based app-
roach in terms of predictive accuracy.

Keywords: Self-perceived knowledge · Item response theory ·
Transformer models · Vocabulary testing

1 Introduction

Learning a second language requires acquiring many words. To determine words
that a learner knows, two primary approaches have been previously proposed.
The first method is to simply present words to the learner and ask them directly,
“Do you know these words?”, which is called self-report testing [9,10]. If the
learner answers that they know the word, the word is said to be a part of their
“self-perceived knowledge” because the learner believes that they know the word.

The second is to accurately measure a learner’s knowledge of a word by asking
them to answer multiple-choice questions, as in Table 1 [2,8]. The words that
learners correctly answer to vocabulary questions, such as those in Table 1, are
the words that they likely know. However, multiple-choice questions are quite
burdensome for testers to create and participants to answer, especially when

c© Springer Nature Switzerland AG 2022
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Table 1. Example of a multiple-choice test question. A test-taker is asked to select
the option with the closest meaning to that of the underlined word in the sentence.

It was a difficult period.

a) question b) time c) thing to do d) book

many words need to be asked. For example, an excellent second-language learner
knows more than 10,000 words [6,7], and asking learners to answer 10,000-word
questions is excessively labor-intensive and unrealistic.

To reduce the required effort, we can consider another approach that involves
self-report testing. The results of self-report testing can be used to predict the
outcomes of multiple-choice questions with high accuracy using machine learn-
ing, which reduces the required effort. Is this approach more plausible? How accu-
rate is the prediction? Can accuracy be improved using recent neural machine
learning techniques? To measure prediction accuracy, we require a dataset that
contains the results of both self-report and multiple-choice testing on the same
word set for the same learner set. To the best of our knowledge, such a dataset
does not currently exist, and this study provides the first dataset with desirable
properties to answer these challenging research questions. Moreover, this study
proposes detailed analysis and prediction methodologies for this dataset.

Dataset: We used the vocabulary size test (VST) [7] to build our dataset1. The
VST comprises 100 questions, each asking about a word sampled from 20,000
words. As its name suggests, the VST was designed to measure the vocabulary
size of language learners. To calculate the vocabulary size of a learner using the
VST, the number of correctly answered questions is multiplied by 20. There are
two versions of the VST: A and B. We used A throughout this paper.

In [4], a publicly available dataset for vocabulary testing was created and
published, wherein learners were asked to take a vocabulary test. For comparison,
we used a similar setting. To create our dataset, we used the Lancers (https://
lancers.co.jp/) crowdsourcing service as [4] did. As Lancers is native to Japan,
most of the participants were native Japanese speakers. However, not all of
them are English learners. Hence, if workers are randomly recruited, those who
do not learn English may take the test. To exclude such workers, we explicitly
specified that only learners who had previously taken the Test of English for
International Communication (TOEIC) (https://www.ets.org/toeic), which is
conducted by the English Testing Service, could complete the test. A Japanese
learner is typically required to pay approximately 70 USD to take the TOEIC
test. Therefore, if the learner has previously taken the TOEIC, they are likely
motivated to measure their English ability, even at the given cost. For version
A of the VST, we obtained 191 participants (i.e., test-takers).

As the VST comprises 100 words sampled from 20,000 words, each question
is ordered by the frequency of the word that the question asks. Hence, most

1 The dataset will be released at http://yoehara.com/ or http://readability.jp/.

https://lancers.co.jp/
https://lancers.co.jp/
https://www.ets.org/toeic
http://yoehara.com/
http://readability.jp/
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learners were unable to correctly answer the final questions of the test. These
questions were not the target of this study because without testing, the learner
was unlikely to know them. Moreover, if the learners become tired, they may start
randomly answering the questions. Hence, we adjusted the number of questions
to 65 by removing the 35 most difficult ones.

The test-takers were first presented with a list of 65 words, which was a
self-report test, and then asked to answer whether they knew the words. In the
next test, the test-takers were asked to answer 65 vocabulary questions for the
65 words in the multiple-choice format of the VST, as in Table 1. Note that the
test-takers were not allowed to return to the first self-report testing part after
moving to the multiple-choice question. Hence, each word had two questions,
self-report and multiple choice, both of which are responded by each test-taker.
Thus, each word has two difficulty parameters in item response theory (IRT).

2 Experiments

IRT Experiments: IRT is a widely used probabilistic model that analyzes vocbu-
lary tests and estimates learner ability and item difficulty [1]. The 2PL model
was used to obtain the parameters. We used Pyirt (https://github.com/17zuoye/
pyirt) to obtain the difficulty and discrimination parameters. The difficulty
parameters for the self-report and multiple-choice questions are indicated on
the horizontal and vertical axes, respectively, and plotted at the same scale and
range on the two axes, as shown in Fig. 1. Each point represents a single word.

The dotted diagonal line was constructed from the lower left to the upper
right of Fig. 1. Both the horizontal and vertical axes of Fig. 1 show the values
of the difficulty parameters, where a higher value indicates that the item is
judged to be more difficult. Therefore, the point to the upper right of the diago-
nal line indicates that the difficulties of the multiple-choice questions was lower
than those of the self-report questions. This result appears counterintuitive as
multiple-choice questions are typically more difficult. However, multiple-choice
questions can sometimes be correctly answered by randomly selecting the answer.
Hence, difficult self-report questions can be sometimes correctly answered by
chance. This presumably causes the lower estimated difficulties in multiple-choice
questions in Fig. 1. The results of the Wilcoxon test demonstrated that the col-
umn of values on the vertical axis was statistically significantly smaller than that
on the horizontal axis (p < 0.01).

To investigate whether the vertical axis questions were more difficult than
the horizontal axis questions, we conducted the following experiment, which is
illustrated in Fig. 2. First, the 191 test-takers for version A were divided into
100 and 91 test-takers. The parameters of the actual knowledge questions were
estimated only from the responses of the former 100 subjects, while those of
the perceived knowledge questions were estimated from the responses of all 91
subjects. Note that we did not use the latter data of 91 subjects × 65 questions,
or 5,915 responses in total. The predictive accuracy of the responses of the dashed
area in Fig. 2 was used for evaluation.

https://github.com/17zuoye/pyirt
https://github.com/17zuoye/pyirt
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Fig. 1. Plot of the difficulties of
the self-report questions vs. those of
the multiple-choice questions (vertical
axis). Each point represents a word.

Fig. 2. Experiment setting. The filled
area is the training data, used to esti-
mate parameters. The accuracy of the
dashed test-data area was used for eval-
uation.

Fig. 3. Example of converting a vocabulary test result dataset into BERT inputs.

Two main methods were applied when using IRT to predict the left-bottom
dashed area in Fig. 2. IRT can calculate the ability value θj for each learner and
the difficulty parameter di for each question. Note that each word has multiple-
choice and self-report questions, and hence, two difficulty parameters. By chang-
ing which difficulty parameter to use for predictions, we compared the following
two settings. The first method uses the multiple-choice question difficulty esti-
mated from the responses of only 100 learners in Fig. 2. The second method uses
the self-report question difficulty estimated from all responses.

According to the experimental results, the first method obtained 0.724,
whereas the second method obtained 0.697 for predicting the accuracy of the
dashed area. The difference between these results was statistically significant
according to the Wilcoxon test (p < 0.01). This result indicates that, to predict
responses to multiple-choice questions, we should rely on the item parameters
estimated from the responses of other test-takers rather than the self-report
parameters estimated from the responses of all test-takers.

BERT-Based Methods: To predict the dashed areas in Fig. 2, we also want to
use deep transfer learning methods such as bidirectional encoder representations
from transformers (BERT) [3] because they reportedly achieved high predictive
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Table 2. Summary of the accuracy of each method in predicting if each of the 91
learners in Fig. 2 correctly/incorrectly answered the multiple-choice questions using
the filled areas in Fig. 2 as the training data. The bold is statistically significantly
better than the underlined, as denoted by (**) (p < 0.01). “Abl.” denotes “ability
parameter”, and “difficl.” denotes “difficulty parameter”.

Method Accuracy

IRT (Abl. - Self-report difficl. estimated from 191 learners) 0.675

IRT (Abl. - Multiple-choice diffcl. estimated from 100 learners) 0.724

BERT (bert-base-uncased) fine-tuned with test-taker tokens 0.718

BERT (bert-base-cased) fine-tuned with test-taker tokens 0.693

BERT (bert-large-uncased) fine-tuned with test-taker tokens 0.722

BERT (bert-large-cased) fine-tuned with test-taker tokens 0.729 (**)

performances. However, while BERT can take only a natural language sequence
as input, in our task setting, the predictions for different learners must consider
learners’ traits such as abilities. To this end, we converted our dataset into the
sequence classification task, which BERT can handle, by introducing two types
of special tokens as depicted in Fig. 3: [USRn] and [SQ].

[USRn], where n in replaced by the test-taker ID, represents each test-taker
or learner (user). Placed at the beginning of the sequence, this token specifies
that the classifier should predict the response of the test-taker specified by this
token. The example in Fig. 3 implies that we want to predict the response of
USR3 for the sequence “It is a difficult period.” In this case, because USR3
answered the multiple-choice question incorrectly, the label for the multiple-
choice question was 0. The option that USR3 selected incorrectly, namely “ques-
tion” in the example of Fig. 3, was ignored in the sequence. This was intentionally
done for a fairly accurate comparison, as the IRT-based methods also did not
consider which incorrect option, or distractor, the test-taker selected. There are
as many test-taker tokens as the number of test-takers involved.

The sequence classifiers also need to be able to handle a self-report testing.
For this purpose, we used the special token [SQ], which denotes a self-report
question. Placing this token immediately after the [USRn] token would let the
classifier know that this was a self-report vocabulary question, such that only
the token following [SQ] would be considered. As this test-taker answered “yes”
for the word period in the self-report test, the label is 1 in Fig. 3.

We implemented our method using BertForSequenceClassification
function in the transfomers library (https://github.com/huggingface/
transformers), which is a standard library that implements BERT [3] and
other transformer-based transfer learning models. We used bert-base/large-
uncased/cased, downloadable from the transformers library, for our pre-
trained models. The special tokens were added using the add tokens func-
tion. Following conversion, we simply used BertForSequenceClassification
for fine-tuning to build the sequence classifiers. The Adam optimizer [5] was

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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used to fine-tuning. The learning rate was set to 10−5. The number of epochs
was set to nine for all models.

The accuracy of this BERT-based method was slightly but statistically sig-
nificantly superior to that of the IRT-based method with an accuracy of 0.729
(Wilcoxon test, p < 0.01) at the 9th epoch. This result indicates that although
the task appeared to not be considerably dependent on the context of the vocabu-
lary questions, its accuracy can still be improved by considering the contexts. The
final results are summarized in Table 2. We can observe that BERT (bert-large-
cased) with test-taker tokens achieved the best statistically significant accuracy
in our experiments. The lower accuracy values of bert-base-cased/uncased
show that the size of the pre-trained models is important for achieving high
prediction accuracy.

3 Conclusions

In this study, we developed a dataset to compare multiple-choice and self-report
questions for predicting costly actual test results. Experimental results demon-
strated that the best IRT-based method achieved an accuracy slightly but sta-
tistically significantly lower than that of the BERT-based method. This result
suggests that, by considering the semantic contexts of the words in vocabulary
questions, the accuracy can be improved although their lengths are typically
short. Our future work includes additional analysis to investigate how the short
contexts contribute to achieving high predictive performances.
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Abstract. As a cognitive and affective state, interest promotes engagement, facil-
itates self-regulated learning, and is positively associated with learning outcomes.
Research has shown that interest interacts with prior knowledge, but few studies
have investigated these issues in the context of adaptive game-based learning envi-
ronments. Using three subscales from the User Engagement Scale, we examine
data from middle school students (N = 77) who interacted with Crystal Island in
their regular science class to explore the relationship between interest, knowledge,
and learning. We found that interest is significantly related to performance (both
knowledge assessment and game completion), suggesting that students with high
interest are likely to perform better academically, but also be more engaged in the
in-game objectives. These findings have implications both for designers who seek
to identify students with lower interest and for those who hope to create adaptive
supports.

Keywords: Interest · Science learning · Learning technology

1 Introduction

Interest is a construct with both cognitive and affective components [1] that has been
repeatedly found to influence learning [2]. It is known to affect student attention and
self-regulation [3], and it has been found to motivate student engagement with science
content and practices [4].

However, more careful attention to the types of interest is needed, as these may be
critical for fosternig equitable learning outcomes [5]. For example, Hidi & Renninger
[4] describe a four-phase model of interest development that distinguishes between trig-
gered situational interest, maintained situational interest (sustained over time), emerging
individual interest, and well-developed individual interest (which endures regardless of
context). Students who have not developed individual interest likely need more extrin-
sic rewards and stimulation to trigger situational interest [6]. Thus, understanding how

© Springer Nature Switzerland AG 2022
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interest emerges—and how it relates to student learning behaviors within an online
system—could lead to improved learning designs and more effective adaptive systems.

This paper investigates students’ situational interest and engagement in a game-based
learning environment for middle school science. We combine survey measures of these
constructs with student knowledge assessments and interaction logs to explore potential
relationships, showing how interest is related to knowledge and engagement.

1.1 Related Literature

Interest and curiosity are both constructs that facilitate learning [7]. Both have factors
related to cognition, affect, and the desire to close a knowledge gap [6]. Though not
universally recognized as separate constructs (see [7]), interest measures tend to address
content-related factors. Similarly, curiosity may reflect an immediate knowledge deficit
(aligning with situational interest) as opposed to a long-term propensity to re-engage
with the topic at hand (individual interest). Hidi & Reninger’s four-phase model of
interest development [7] describes two phases of situational interest and two phases of
individual interest. As learners progress from Phase 1 to 4, they become increasingly
motivated to re-engage with the topic without needing external support.

In science learning, interest is associated with intrinsically motivated engagement
[4], and behavioral engagement with science in non-academic contexts [8]. Interested
students are also more likely to engage in self-regulated learning, showing increased
attention and better goal-setting abilities [3].

Dimensions of Interest. Studies grounded in different theoretical frameworks opera-
tionalize interest in different ways, leading to measures that do not always align. In
general, however, researchers tend to agree that interest is driven both by cognitive and
affective processes [1]. That is, even in the early stages of situational interest, students
experience curiosity, or the desire to close an information gap. While this experience
may sometimes be frustrating, by the time students have achieved a well-developed
individual interest (i.e., [4]’s fourth phase), we might expect students to regulate their
emotions well enough to maintain a flow-like state. Not surprisingly, this development
coincides with increased knowledge. Zhang et al.’s study [9] of middle school science
found prior knowledge slows the decline in interest and facilitates the growth of interest
in more knowledgeable students. Additionally, prior knowledge interacts with interest
predicting the level of conceptual change [10]. In other words, core components of indi-
vidual interest are increasing curiosity (the desire to close knowledge gaps) and sustained
affective engagement. Subject knowledge accumulates as students grow from situational
interest into a more sustained form of interest. Yet, prior knowledge likely drives the
kinds of questions a student is capable of asking and therefore is a necessary ingredient
(and not just a biproduct) in the later stages of interest.

Interest in Game-Based Learning. Previous work has sought to make connections
between the research on interest and the research on student engagement [11]. In partic-
ular, researchers have considered how game-like elements trigger students’ situational
interest [12]. Such investigations can lead to adapting learning technologies to promote
and sustain student science interest [13], which can be accomplished by personalizing
questions [14] and feedback [15].
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1.2 Current Study

This study investigates interest using data from an inquiry-based learning game for
middle school microbiology, Crystal Island [11]. The analyses use three scales of the
User Engagement Survey [16] to operationalize the cognitive and affective engagement
aspects of student interest. Specifically, we examine the relationship between these scales
and student performance measures (both external knowledge assessments and game
completion). The findings are relevant for the design of learning technologies that can
adapt to student interest.

2 Methods

Research was conducted using Crystal Island, a game-based learning environment
for middle school microbiology that supplements classroom instruction by combin-
ing inquiry-based learning and direct instruction. The first-person, single-player game
places students in a research camp on a remote island where a mysterious infectious
disease has caused widespread illness [11]. Students play the role of a medical detective
tasked with identifying the disease and its transmission source. Students must navi-
gate the island, gather information, form hypotheses, conduct tests, and synthesize their
findings to solve the mystery. As they do, they interact with non-player characters and
virtual objects, including posters, research articles, and books that impart knowledge
about microbiology and specific information about the mysterious disease.

2.1 Data Collection

Gameplay took place in a middle school science class in the southeastern US, as previ-
ously reported in [17], who sought to detect and prevent dialogue breakdown with an
non-player characher. Interaction data was collected as 92 students used the game over
three days or until they completed the game. An identical pretest and posttest on micro-
biology were given at the start and end of the study. To account for prior knowledge we
computed normalized learning gain using the method described in [18]. Students with
incomplete surveys were excluded, resulting in 77 students analyzed.

2.2 Survey Measures of Interest and Engagement

Three survey scales (collected immediately after students use the program) were used as
a proxy for the related constructs of interest and engagement. These were drawn from the
original version of the User Engagement Scale (UES; [19]) and a revised version (UESz,
re-validated specifically in a video-game environment; [16]).We focus on the three scales
(Table 1). The Novelty (NO) scale measures students’ interest and curiosity in the game,
while the others measure students’ engagement. In fact, Focused Attention (FAz) is
strongly correlated with the Flow State Scale [20], modeled after Csikszentmihalyi’s
original conception of flow [16]. There is a one-item overlap between the FAz and
the Felt Involvement (FI) scale, which had initially been characterized as capturing the
enjoyment and interest of the gameplay experience. In summary, NO appears to capture
a basic measure of situational interest, FAz captures flow-like engagement, and FI might
be described as the enjoyment at the intersection of those two constructs.
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Table 1. UES and UESz subscales used to operationalize student interest and engagement

Scale name/Construct Items

Novelty (NO): used to operationalize
situational interest/curiosity

I continued to play the game out of curiosity

The content of the game incited my curiosity

I felt interested in the game

Felt Involvement (FI): used as secondary
measure of flow/engagement

I was really drawn into the game*

I felt involved in the game

The gaming experience was fun

Focused Attention (FAz): used to
operationalize flow/engagement

I lost myself in this gaming experience

I was so involved in the game that I lost track of
time

I blocked out things around me when I was
playing the game

When I was playing the game, I lost track of
the world around me

The time I spent playing the game just slipped
away

I was absorbed in the game

During the gaming experience I let myself go

I was really drawn into the game*

3 Results

We first examine the Spearman correlations between interest survey scales and external
knowledge assessments (pretest, posttest and normalized learning gain) and then use
t-tests to compare these scales to game completion. Table 2 shows 10 significant posi-
tive correlations among the knowledge assessments and the survey scales. Specifically,
pretest is associated with all three survey scales, and posttest is associated with NO and
FI. Learning gain was not significantly correlated with any of the survey scales and is
only related to the posttest (but not the pretest).

We next considered a knowledge measure internal to the game, namely complet-
ing the game by solving the mystery. Game completion provides a holistic measure
of students’ in-game achievement while also demonstrating the extent to which their
behavioral engagement aligned with the goals of the learning task. To solve the mystery,
students must both acquire relevant science knowledge while also engaging in a series
of experiments and scientific reasoning processes to derive a conclusion. As the measure
was binary, Welch two sample t-test was conducted to examine any difference between
each of the interest measures. Cohen’s d was used to test the effect size [21]. Results
show that students who solved the mystery (N= 42) reported higher values for all three
interest scales (FAz: t(74.72) = −2.47, p = .016, d = −0.55; NO: t(74.68) = −2.21, p
= .030, d = −0.50; and FI: t(75.00) = −2.59, p = .012, d = −0.58).
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Table 2. Correlations between Knowledge Assessments and Survey Measures

Variable Mean SD 1 2 3 4 5

1. PreTest 6.55 2.74

2. PostTest 6.79 3.12 .73**

3. Learning Gain 0.03 0.37 .005 .64**

4. Focused Attention (FAz) 24.35 7.36 .26* .16 −.03

5. Novelty (NO) 10.34 3.01 .23* .23* .11 .77**

6. Felt Involvement (FI) 10.51 3.05 .28* .29** .12 .83** .89**

Note. SD = standard deviation; * = p < .05; ** = p < .01

4 Discussion and Conclusions

Understanding the relationship between interest and behavior can help developers create
additional game features to promote situational interest and tackle cognitive and behav-
ioral disengagement. Our results suggest that future development of learning games
should consider measuring interest explicitly and comparing that to real-time student
patterns and feedback so that adaptive technologies canmatch game challenge to interest,
scaffolding the latter.

Specifically, we find that interest and engagement measures are positively correlated
with a student’s science content knowledge. This result is in accordance with prior work
showing a symbiotic relationship between interest and content knowledge. In this study,
students with higher knowledge of microbiology showed higher interest in the game.
While correlation cannot imply causality, this finding contributes to ongoing debates
surrounding knowledge and interest’s reciprocal development. Likwise, students with
high interest were more likely to solve the mystery and thus complete the game. Game
completion speaks both to student knowledge and also to their broader engagement,
since post-test measures show improvement even among students who did not complete
the game. This finding implies that those with higher interest, in addition to learning
more, were more motivated/engaged to complete the objectives of the game.

Future work should consider ways in which surveys of constructs like interest align
with student behaviors in other adaptive learning systems. For example, this study used
retrospective UES scales to measure student interest and engagement, but measures
designed to capture situational interest in situ or to capture interest more broadly (e.g.,
IMI, [22]) might produce different results. Future work should also explore new ways
to connect to students’ existing prior knowledge and interests. That is, this study asked
specifically about the interest students have in the game they were presented with (in
line with a substantial body of literature on interest and engagement), but did not ask
about students’ interests outside the game, a method supported by a growing body of
research on the relationship between interest and prior knowledge.

As we continue to develop AI-based learning technologies, we should consider ways
to adapt and respond to student assets (e.g., engagement or interest), rather than deficits
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(such as disengagement). Responding directly to student interest and prior knowledge
appears to be a critical step in that process.
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Abstract. Massive Open Online Course (MOOC) platforms have been growing
exponentially, offering worldwide low-cost educational content. Recent literature
onMOOC learner analytics has been carried out around predicting either students’
dropout, academic performance or students’ characteristics and demographics.
However, predicting MOOCs certification is significantly underrepresented in lit-
erature, despite the very low level of course purchasing (less than 1% of the
total number of enrolled students on a given online course opt to purchase its
certificate) and its financial implications for providers. Additionally, the current
predictive models choose conventional learning algorithms, randomly, failing to
finetune them to enhance their accuracy. Thus, this paper proposes, for the first
time, deploying automated machine learning (AutoML) for predicting the paid
certification in MOOCs. Moreover, it uses a temporal approach, with prediction
based on first-week data only, and, separately, on the first half of the course activ-
ities. Using 23 runs from 5 courses on FutureLearn, our results show that the
AutoML technique achieves promising results. We conclude that the dynamic-
ity of AutoML in terms of automatically finetuning the hyperparameters allows
to identify the best classifiers and parameters for paid certification in MOOC
prediction.

Keywords: MOOCs · Certification prediction · AutoML · Auto-sklearn

1 Introduction

Online courses have been revolutionising and reforming education for decades. More
recently, massive open online courses (MOOCs) were explicitly introduced, to democra-
tise access to education and reach a massively unlimited number of potential learners
from around the world. The first official emergence of MOOCs was with the launch of
Stanford’s Coursera in 2011 [1, 2], although the following year was coined as “the year
of the MOOCs” when many of today’s successful platforms, such as FutureLearn, edX,
Udemy and Coursera went live [3, 4], offering scalable world-wide online courses to
the public [5, 6].

© Springer Nature Switzerland AG 2022
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Although MOOCs have been successful, attracting many online learners, the stag-
geringly low completion and certification rates are still one of the more concerning
aspects to date, a funnel with students “leaking out” at various points along the learning
pathway [7, 8]. While the high dropout rate has been the focus of many studies, the
race towards identifying precise predictors of completion as well as the predictors of
course purchasing continues. Importantly, although MOOCs have started being anal-
ysed more thoroughly in the literature, few studies have investigated the characteristics
and temporal activities for modelling learners’ certification decision behaviours.

Another objective this study attempts to address is examining the extent to which
AutoML can help achieve competitive performance in predicting certification in
MOOCs. With machine learning becoming more mainstream in data science, there
has been an increasing demand for automated tools that can automate the process of
designing and optimising machine learning pipelines with less human intervention [9].
In response to this demand, many AutoML frameworks have been introduced [10–12].

Considering the recent MOOCs’ transition towards paid macro-programmes and
online degrees, with affiliate university partners, along with the advancements in the
automation and explanation of learners’ activities prediction, this paper presents an
automated predictor of MOOC paid certification. Specifically, this paper attempts to
answer the following research question:

• To what extent can AutoML predict MOOC learners’ purchase decisions (certifica-
tion)?

It is worth mentioning that the contribution of this study goes beyond randomly
comparing different classifiers for predicting paid certifications in MOOCs to proposing
a stable, comprehensive automated model for dynamically optimising hyperparameters
during the learning process. Additionally, we are investigating the classification perfor-
mance temporally, using different periods (early and middle) during the course. This is
the first study that employs AutoML to predict paid certification in MOOCs to the best
of our knowledge.

2 Related Works

While several studies have predicted learners’ behaviours in MOOCs, the number of
studies that useAutoML for this purpose remains relatively low. Concerning the previous
studies that used AutoML to predict or classify learners, [13] investigates the potential of
Auto-Weka (one of the standard AutoML systems) in early predicting learning outcomes
(pass/fail) based on learners’ participation in the Moodle e-learning platform. The study
limited the experiment to tree-based and rule-based models for more transparent and
interpretable results, using data from 591 students over 3 courses. For the purpose of
initial comparison, one predictor of each main category of learners (Bayes classifiers,
rule-based, tree-based, function-based, lazy and meta classifiers) has been randomly
chosen to compare against Auto-Weka performance. The results show that the latter
significantly achieved better results on the classification task.
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[14] proposes a generic automatedweak supervision framework (AutoWeakS), using
reinforcement learning, to build a MOOC course recommender for job seekers. The
framework allows trainingmultiple supervised rankingmodels and automatically search-
ing for the best combination of supervised and unsupervised models. With experiments
on 1951 course descriptions of different disciplines obtained from Xuetang X1, a Chi-
nese MOOC platform, the model significantly outperforms the classical unsupervised,
supervised and weak supervision baseline.

Recently, [15] assisted the impact of adopting an AutoML strategy on feature engi-
neering, model selection, and hyperparameters tuning in predicting student success. The
researchers replicated a previous experiment to involve hyperparameter tuning via an
AutoML technique for hyperparameter tuningwith the data cleaning, preprocessing, fea-
ture engineering and time segmentation approach from the previous experiment as-is.
The study showed significant general improvement, with specific classifiers (Decision
Tree, Extra Tree, Random Forest) performing the best. This is another indicator that
AutoML can outperform even carefully planned educational prediction models. How-
ever, none of the previous works has addressed the issue of the low certification rate in
MOOCs using AutoML. Unlike previous studies, our proposed model aims to predict
the financial decisions of learners on whether to purchase the course certificate. Also,
our work is applied to a less frequently studied platform, FutureLearn [16, 17]. Our
study additionally identifies the most representative factors for certification purchase
prediction. It also proposes an AutoML-based collection of tree-based and regression
classifiers to predict MOOC purchasability using relatively few input features.

3 Methodology

3.1 Data Collection and Preprocessing

The current study is analysing data extracted from a total of 23 runs spread over 5
MOOC courses, on four distinct topic areas, all delivered through FutureLearn, by the
University of Warwick. These topic areas are Literature, Psychology, Computer Science
and Business [18].

These courses were delivered repeatedly in consecutive years (2013–2017); thus, we
have data on several ‘runs’ for each course.

The dataset obtained went through several processing steps to be prepared and fed
into the learning model. Since some students were enrolled on more than one run of the
same course, the run number was attached to the student’s ID, to avoid any mismatch
during joining student activities over “several runs” with their current activities. Addi-
tionally, we eliminated irrelevant data generated by organisational administrators (455
administrators across the 23 runs analysed) and applied other standard preprocessing.

1 http://www.xuetangx.com.

http://www.xuetangx.com
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3.2 AutoML Systems

The fundamental purpose of AutoML systems is reducing human intervention via
automating feature preprocessing, hyperparameters finetuning and best-performing
algorithm selection, with the ultimate goal of maximising classification accuracy on
a supervised classification task [9]. Auto-sklearn is a scikit-learn-based framework that
uses 15 classifiers, 14 feature preprocessing methods, and 4 data preprocessing meth-
ods, giving rise to a structured hypothesis space with 110 hyperparameters. It improves
on other existing AutoML methods, by automatically considering the past performance
on similar datasets and constructing ensembles from the models evaluated during the
optimisation.

3.3 Setting the Auto-sklearn Hyper Parameters

Although AutoML systems automatically optimise pipelines with less human inter-
vention, there are some Auto-sklearn-specific hyperparameters that master the over-
all learning process and already have default values for a higher level of automation.
However, these parameters can be manually finetuned to further improve the pipeline’s
performance.

After training and testing themodels, Auto-sklearn automatically nominated the best
performing models beside a set of hyper-parameters for each one of the five courses.
Our best performing classifiers include Bernoulli_nb, Adaboost, Extra_trees, Deci-
sion_tree, Libsvm_svc (C-Support Vector Classification), Random_forest, Linear Dis-
criminant Analysis (LDA), Gradient_boosting, Multinominal_nb, Passive_aggressive
and Sgd (stochastic gradient descent) learning.

4 Results and Discussion

We demonstrate that using the AutoML technique, each dataset has its own features,
and thus, even the most common classifiers adopted among MOOC researchers may
not be the best performing on each dataset. Our previous experiment [4], using the
most common classifiers, has reached satisfactory results. However, the results below
outperform the current MOOC paid certification state-of-art and introduce a promising
approach to adopting AutoML in modelling learner behaviour prediction in MOOCs.

Table 1 shows the results of AutoML-based predicting certification using the first-
week-only logged data, versus the first half of the course. It can be seen that, although
some course results, such as Supply Chain (SC), were relatively high, the differences in
recalls of class 0 and class 1 are high across the five courses. This means that the model
is highly biased towards class 1; hence the first-week data may not accurately predict
certification.

Also, it can be seen that the performance improved between 1% to 9% across the five
courses, when further data were added. The SC course has shown the lowest improve-
ment. Nevertheless, both class recalls participated almost equally in the second experi-
ment. It also can be seen that the gap between the recalls of the two classes has shrunk
when further weekly activities have been included.
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Table 1. Best optimised pipelines of Auto-sklearn, distributed by course, using the first-week-
only activities, versus the first half of the course; class 0 = non-paying learners, class 1 = paid
learners; metrics rounded to 2 decimal places.

C Classifier 1st Week only Classifier 1st Half of the Course

Rec_0 Rec_1 BA Rec_0 Rec_1 BA

BIM Ber_NB 0.63 0.95 0.78 AdaBoost 0.78 0.9 0.84

AdaBoost 0.62 0.95 0.78 RF 0.78 0.9 0.84

EXT 0.6 0.95 0.77 DT 0.8 0.89 0.84

DT 0.6 0.95 0.77 LIBSVM_SVC 0.8 0.89 0.84

BD AdaBoost 0.76 1.00 0.88 RF 0.87 0.98 0.92

LIBSVM_SVC 0.77 0.98 0.88 DT 0.86 0.98 0.92

RF 0.77 0.98 0.87 EXT 0.86 0.98 0.92

DT 0.75 1.00 0.87 GrBoost 0.86 0.98 0.92

SC EXT 0.84 1.00 0.92 LIBSVM_SVC 0.9 0.93 0.92

RF 0.84 1.00 0.92 PA 0.9 0.93 0.92

LDA 0.83 1.00 0.91 GrBoost 0.9 0.93 0.92

GrBoost 0.82 1.00 0.91 RF 0.9 0.93 0.91

SP DT 0.59 0.99 0.79 RF 0.79 0.97 0.88

Mul_NB 0.57 1.00 0.78 Ber_NB 0.79 0.97 0.88

PA 0.56 1.00 0.78 PA 0.79 0.97 0.88

LIBSVM_SVC 0.56 1.00 0.78 LIBSVM_SVC 0.79 0.97 0.88

TMF EXT 0.68 0.98 0.83 EXT 0.83 0.95 0.89

PA 0.68 0.98 0.83 LIBL_SVC 0.82 0.96 0.89

DT 0.68 0.98 0.83 Ber_NB 0.82 0.96 0.89

SGD 0.68 0.98 0.83 LIBSVM_SVC 0.82 0.96 0.89

5 Conclusion and Future Work

There are few studies on usingAutoML techniques to predictMOOC learners’ activities.
Thus, this paper proposes, for the first time, automated machine learning (AutoML) for
predicting paid certification in MOOCs. Our results show that the AutoML technique
achieved better results than the traditional approach of randomly selecting best-in-class
predictive algorithms. In our subsequent work, we will further investigate the reason
behind having different classifiers in each one of the temporal scenarios. It is known that
each classifier initially has its own capability based on the data fed (here, the number
of weekly features), but a deeper investigation of a range of parameters configuration is
needed, in order to understand these varying results.
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Abstract. We present an adaptive learning Intelligent Tutoring System,
which uses model-based reinforcement learning in the form of contextual
bandits to assign learning activities to students. The model is trained on
the trajectories of thousands of students in order to maximize their exer-
cise completion rates and continues to learn online, automatically adjust-
ing itself to new activities. A randomized controlled trial with students
shows that our model leads to superior completion rates and significantly
improved student engagement when compared to other approaches. Our
approach is fully-automated unlocking new opportunities for learning
experience personalization.

Keywords: ITS · Contextual bandits · LinUCB · Personalized
learning

1 Introduction

Intelligent Tutoring Systems (ITS) aim to provide personalized tutoring in a
computer-based environment and are capable of selecting problems on an indi-
vidual basis [14]. Many ITS consider the development of personalized curricula:
a recommended sequence of learning activities adapted in real-time to the needs
of each individual student [1,16]. Investigating novel methods for developing
personalized curricula that can adapt to millions of students and thousands of
courses or domains in real-time is key to further improvements in the learning
experience of students interacting with ITS.

We present Korbit, an adaptive learning ITS leveraging reinforcement learn-
ing (RL) in order to automatically assign learning activities to students. Korbit
is an online learning platform, where students follow a blended-learning frame-
work combining problem-solving activities, lecture videos, Socratic tutoring and
project-based learning [17]. We focus on ordering the text-based problem-solving
activities, which students can answer in free-form text or as multiple-choice
questions (MCQs). If the student answers correctly, they move on to a differ-
ent exercise; otherwise, they are given feedback and may try again or skip the
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activity and move on. The ordering of exercises and all other activities within
the same continuous topic (called learning unit) is determined by a model-based
RL system employing the LinUCB algorithm [10].

The main contributions of this paper are two-fold: (1) we present the design
and implementation of a model-based RL system for ordering learning activities
based on the LinUCB algorithm; (2) we evaluate this model in a randomized
controlled trial and show that it attains superior completion rates and improved
student engagement when compared to alternative approaches.

2 Background

Personalization is key to effective learning [2,4]. In computer-based learning
environments (CBLEs), ITS have been shown to dramatically improve student
learning outcomes and engagement [8,18] due to their ability to address individ-
ual needs and develop personalized feedback [1,5,13]. One of the most powerful
families of algorithms deployed in CBLEs are RL algorithms,which have been
successfully applied to personalize the curriculum and learning activities [7,9,12]
and to assess different educational interventions through the use of multi-armed
bandits [11,19,20].

In multi-armed bandit problems, an agent sequentially selects an action and
observes a reward from it, with the ultimate goal of maximizing cumulative
reward over the long term. Since actions taken by the agent at any particular time
may be suboptimal, a mix between exploration (trying out new strategies) and
exploitation (picking the action deemed optimal at the time) is required in prac-
tice to maximize observed long-term reward. Agents are evaluated using regret,
which is defined as the cumulative expected difference between the rewards of
the optimal action and the selected actions.

The contextual bandit model presents an agent with information about the
current context that it can use to inform its decision. The LinUCB Algorithm [10],
which we use in this work, achieves the theoretical regret bound of O(

√
T ) (where

T is the number of timesteps), while being relatively easy to implement and less
prone to numerical instability issues throughout its runtime than alternatives [3].
At each timestep t = 1, ..., T , the LinUCB agent observes the current user ut, a
set At of actions, and a feature vector xt,a for each a ∈ At. Each feature vector
contains information about both the user ut and its corresponding action a, and
is referred to as a context. The algorithm then computes a score pt,a for each
action, based on its expected reward and uncertainty determined by the context
vectors and its internal parameters. It receives a reward rt and uses it to update
its internal parameters, thus improving its selection strategy.

The approach proposed here combines the LinUCB algorithm with model-
based RL, where an internal model of the environment is learned by the RL
agent. By learning an internal environment model the agent may be able to
reduce the amount of trial-and-error learning and better generalize across states
and actions. In particular, the internal environment model may be learned from
historical data, if such is available. Several researchers have also investigated
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the application of model-based reinforcement learning for ITS, including learn-
ing effective pedagogical policies, selecting effective instructional sequences and
personalizing curricula for students [6,7,15].

3 Methodology

We train a model that can predict a student’s performance on an exercise and
then use it to simulate student trajectories to pre-train the LinUCB exercise
selection model.

Dataset: We first extract all previous solution attempts across all 1, 977 students
that created their accounts between November 2020 and July 2021 and that have
attempted at least one exercise. We retrieve 129, 000 exercise attempts across 971
unique exercises and 61 learning units. The majority of students on the platform
at the time were free users, so we separate the free users and the customers in
further experiments.

Exercise Affinity Model: The five possible outcomes for an interaction
between a student and an exercise on our platform are defined as follows:

• Instant success: The student solved the exercise correctly on the first try.
• Eventual success: It took the student multiple attempts to get to a correct

solution.
• Eventual failure: The exercise was attempted unsuccessfully until a solution

was provided to the student.
• Instant skip: The exercise was skipped without any attempt.
• Eventual skip: The exercise was attempted but eventually skipped.

First, we build a logistic regression model that uses exercise features and stu-
dents’ performance on previous exercises to predict the outcome on future exer-
cises. This model will act as the “world model” in the context of model-based
RL, and will provide the agent with the outcomes when it offers an exercise to
a student. We train this model by first extracting a student’s exercise attempt
history, which contains all of a student’s attempts at solving the exercises they
were presented with (both successful and unsuccessful). We then mask out an
attempt on an exercise, and have the model predict the outcome of the student’s
attempt on this exercise. The model’s input features relate to the student behav-
ior and skills (including the student’s performance on the previous exercise in
the learning unit, the student’s skip rate in the learning unit, and whether or
not the student has watched the video that covers the learning unit), exercise
difficulty (the historic success rate across all students on the exercise), and the
exercise type (a one-hot encoding of the expected solution form and the context
in which the exercise could be applied). We show an example of a free-form
question in Fig. 1.
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Fig. 1. Example of a free-form question on our platform.

We train the model on approximately 129, 000 examples and evaluate it using
5-fold cross-validation, observing an accuracy of 66%. A baseline model that
selects the majority class 100% of the time achieves an accuracy of 60%. Although
the prediction model can be refined and improved, we believe that it is good
enough to be used in the context of pre-training a bandit model. We then use
this model to predict students’ performance on all unattempted exercises on
topics that they have started. This prediction takes the form of a probability
vector across the 5 possible outcomes. A total of 165, 000 exercise attempts
are predicted. These predictions allow us to simulate what would happen if the
student receives an exercise that we have no record of them attempting. To train
the bandit model, we draw samples from the predictions.

Bandit Model: Using the dataset of student trajectories and attempt predic-
tions, we train a bandit model with LinUCB. At each timestep, it selects which
exercise to present to the student and whether it should be a MCQ or a free-form
question. For each action, we compute a feature vector that encodes information
about both the student and the exercise using the same features as the exercise
prediction model. To simulate students’ progressing through various learning
units, for each unit a student has started we let the model sequentially select
exercises to present to them. We define our reward function such that more
desirable outcomes receive higher rewards, with the ultimate goal of maximizing
average success rate for the students in the dataset, while restricting the fre-
quency of MCQs. While doing a grid search, we observed that rewarding instant
success higher than eventual success led to a higher average completion rate
on the dataset. Our final reward function is as follows: 1.5 for instant success,
1 for eventual success, 0.5 for eventual failure, and 0 for instant and eventual
skips. To discourage the model from always presenting an MCQ, we penalize the
observed reward for MCQs by reducing it by 0.4. Since students are more likely
to correctly answer such questions, the model is more likely to observe a positive
outcome when presenting them. However, the free-form questions lead to higher
learning outcomes and engagement in students. For a given (student, exercise)
pair, we use the observed outcome if the student has attempted that exercise in
our dataset. Otherwise, we sample an outcome from the probabilities computed
by our prediction model.
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We compare overall success rates of 3 policies on our dataset:

• Random uniformly selects a new non-MCQ exercise from the current topic.
• Heuristic sorts available exercises from easiest to hardest, offers a “medium”

difficulty one at the start, decreases difficulty upon skip or failure and
increases it upon success. If a student fails multiple times in a row, it begins
to offer MCQs.

• LinUCB: this policy is learned by our LinUCB model.

For each policy, we simulate every student attempting the exercise presented
by the policy, and keep track of the average success rate. Due to randomness,
we do this 20 times. We observe an average success rate of 58% for the Ran-
dom policy, 60% for the Heuristic policy, and 64% for LinUCB. These values
are consistent throughout each run, deviating by no more than 0.5%. Both the
Heuristic and LinUCB policies offered a MCQ 12% of the time. In conclusion,
in our simulated environment, LinUCB noticeably improves student success rate
compared to the other two policies.

4 Experiments

Following the successful experiments in a simulated environment, we perform
a randomized controlled trial on students that have signed up on the platform
between December 2021 and February 2022. On sign-up, each student is assigned
exercises either by the adaptive Heuristic or by the LinUCB model. We study
2 cohorts of students: free users, a diverse set of 44 students (21 under LinUCB
and 23 under the heuristic policy) from around the world who signed up on the
learning platform for free, and users from a customer organization (15 assigned
to the Heuristic and 11 to the LinUCB policy) using the platform to upskill
in data science as part of a broader training program. Students from the second
cohort have mandated modules they must finish and tend to be highly motivated
regardless of selection policy. Within each cohort, we compare completion rates,
skip rates, and study time. Completion and skip rates are local indicators that
the exercises we give students are relevant, interesting, and achievable, while
study time is a global indicator that the policy is effective at engaging students
and motivating them to study on the platform for a longer duration.

Completion and Skip Rates: As Table 1 demonstrates, the students from
both cohorts have a substantially higher success rate under LinUCB than the
adaptive Heuristic model. We also observe that for both cohorts, students
under the LinUCB policy have a substantially lower skip rate than under the
adaptive heuristic baseline. These results demonstrate that the LinUCB model
improves student outcomes and thus does a better job offering more relevant,
interesting and achievable exercises to students than the Heuristic model.
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Table 1. Exercise outcome rates for various groups of users.

Cohort Policy Skip Fail Success

Free LinUCB 7.8± 0.8% 4.8 ± 0.5% 87.4± 1.3%

Heuristic 12.5 ± 1.4% 5.2 ± 0.8% 82.4 ± 1.8%

Customer LinUCB 5.6± 0.4% 5.7 ± 0.4% 88.6± 0.9%

Heuristic 8.3 ± 0.4% 5.8 ± 0.3% 85.9 ± 0.7%

Study Time: Finally, we also observe that students under LinUCB across the
free cohort spend noticeably more time on the learning platform: the average
study time under the adaptive Heuristic model is 109 min, and the average
study time under the LinUCB policy is 174 min. Similarly, for the students in
the customer cohort, the average study time under the adaptive Heuristic is
265 min, and the average study time under the LinUCB policy is 258 min.

5 Conclusions

We have provided a framework for developing a model-based reinforcement learn-
ing agent based on the LinUCB algorithm, which is capable of both learning
from historical student data and online. This approach outperformed compet-
itive models by achieving significantly higher completion rates, while reducing
the rate at which exercises are skipped in two diverse cohorts of students, while
also leading to increased study time across cohorts. These findings demonstrate
that the model leads to substantially higher engagement in students. In addi-
tion, we note that the reinforcement learning model learns autonomously and
is expected to improve automatically as more and more students sign up, thus
ensuring its scalability and continuous improvement.

In the future, we plan to validate our findings with a larger sample size.
In addition, we will address one of the limitations of the this bandit model –
the requirement that all available exercises pertain to the same topic and that
sufficient data is available to reach a point where the bandit can mostly exploit
rather than explore. Finally, we plan to explore application of more sophisticated
bandit algorithms, such as those that incorporate collaborative filtering.
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Abstract. Knowledge tracing refers to the dynamic assessment of a
learner’s mastery of skills. There has been widespread adoption of the
self-attention mechanism in knowledge-tracing models in recent years.
These models consistently report performance gains over baseline knowl-
edge tracing models in public datasets. However, why the self-attention
mechanism works in knowledge tracing is unknown.

This study argues that the ability to encode when a learner attempts
to answer the same item multiple times in a row (henceforth referred to
as repeated attempts) is a significant reason why self-attention models
perform better than other deep knowledge tracing models. We present
two experiments to support our argument. We use context-aware knowl-
edge tracing (AKT) as our example self-attention model and dynamic
key-value memory networks (DKVMN) and deep performance factors
analysis (DPFA) as our baseline models. Firstly, we show that removing
repeated attempts from datasets closes the performance gap between the
AKT and the baseline models. Secondly, we present DPFA+, an exten-
sion of DPFA that is able to consume manually crafted repeated attempts
features. We demonstrate that DPFA+ performs better than AKT across
all datasets with manually crafted repeated attempts features.

Keywords: Deep knowledge tracing · Self-attention · Knowledge
tracing

1 Introduction

Knowledge tracing refers to the dynamic assessment of a learner’s mastery of
skills. It is usually used with a recommendation policy to achieve personalized
learning. For example, in mastery learning, a learner is only permitted to move
on to the next skill when a knowledge-tracing model estimates the learner has
achieved mastery of the prerequisite skills [10].

A knowledge-tracing task is structured as a sequential prediction problem in
which a knowledge-tracing model tries to predict whether a learner will be able to
correctly answer the next item given their past item responses. Throughout this
paper, we use “item” to refer to a question or exercise that a learner completes
and “item response” to refer to the correctness of the learner’s answer to the
item.
c© Springer Nature Switzerland AG 2022
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https://doi.org/10.1007/978-3-031-11644-5_75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_75&domain=pdf
http://orcid.org/0000-0003-4442-8917
https://doi.org/10.1007/978-3-031-11644-5_75


732 S. Pu and L. Becker

While early knowledge-tracing models are relatively straightforward [2,5,6],
modern models are structured as complicated deep neural networks [1,4,9,11,
12]. A family of these deep neural networks has adopted the self-attention mecha-
nism from the natural language processing (NLP) community and shown remark-
able success in specific datasets.

What is self-attention? Deep neural networks represent a learner’s item
response (or an item) as a multidimensional vector. This vector is referred to
as the embedding of an item response. This embedding is a blend of model-
readable (not human-readable) features. Hypothetically, these features include
the skill associated with the item, the difficulty of the item, and the mastery of
skills from the item response, among other aspects. The self-attention mecha-
nism models a learner item response embedding as a weighted sum of previous
learner item response embeddings, followed by a non-linear transformation so
that the item response embedding is a non-linear function of the previous item
response embeddings.

While self-attention offers a remarkable performance boost to knowledge-
tracing models, why the mechanism works is unknown. The self-attention mech-
anism originated from the NLP community, whose scientists seek to dynamically
model a word’s (or part of a word’s) embedding (i.e., a multidimensional vector
representing a word’s semantic and syntactical features) based on its context.
For example, “bank” may refer to a financial institution or a river bank depend-
ing on the context. Self-attention allows a word’s embedding to change based on
the other words in the sentence or paragraph.

Likewise, self-attention in deep knowledge tracing allows the embedding of a
learner’s response to change based on the learner’s previous responses to items
(because it is a non-linear function of previous item responses). However, this
flexibility appears unnecessary for knowledge tracing, given that the skill asso-
ciated with an item, the difficulty of an item, and the mastery of skills from a
correct/incorrect item response all appear to be context-independent.

Therefore, we are interested in uncovering what context-dependent features
self-attention extract from the data. One of the most promising candidates is
the number of repeated attempts made on an item. For example, Ghosh et al.
[4] reported AKT significantly outperformed deep knowledge tracing (DKT)
[7], a recurrent neural network knowledge-tracing model, on ASSISTments 2017
where repeated attempts are widespread. Using the same dataset, Gervet et al.
[3] documented the self-attentive knowledge-tracing (SAKT) model to perform
similarly to DKT after repeated attempts were removed.

There is theoretical grounding to believe the number of repeated attempts is a
valuable feature for knowledge tracing. First, how well a learner masters a skill is
affected by how soon the learner answers an item correctly. In addition, items in
public datasets are often multiple-choice questions, making the second or third
attempt easier than the first attempt. Finally, learning systems often provide
feedback after an unsuccessful trial (e.g., coding practices). Accordingly, later
attempts at an item are significantly more likely to succeed than first attempts.
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In the rest of the paper, we provide evidence that the ability to encode
repeated attempts is a significant reason why self-attention models perform bet-
ter than other deep knowledge tracing models. We demonstrate that AKT out-
performs strong baseline models when there are considerable repeated attempts
in datasets but that AKT performs on par with those same baseline models
when the repetitions are removed. We then manually encode the number of
repeated attempts as a feature into a strong baseline, showing that the baseline
outperforms AKT in all datasets where repeated attempts are present.

Table 1. Data statistics

Datasets Learners Items Responses % of multiple
attempts

% of repeated
attempts

ASISSTments 2017 1709 4117 942K 58.36 52.12

CSEDM 2019 87 35 2.77K 68.20 66.37

Statics 2011 316 987 205K 34.23 31.62

2 Experiment Setup

We choose three public datasets for our experiments. These datasets provide
item identifiers and timestamps for all item responses. More importantly, all the
datasets have multiple attempts1 and repeated attempts. Table 1 reports the
descriptive statistics for each dataset. The details of the datasets are as follows:

ASSISTments 2017.2 This dataset records secondary school students’
answers to math problems using the ASSISTments tutoring system.

STATICS 2011.3 This dataset is from an engineering course on statics in
fall 2011. We follow [8] for data preprocessing. Unlike previous studies that keep
only students’ first responses to items, this study keeps all responses.

CSEDM 2019.4 This dataset is from a study of novice programmers working
with the ITAP intelligent tutoring system. We remove all hints in the data.

For each dataset, we evaluate a model with student-stratified five-fold cross-
validation. For each fold, 60% of students are used as training data, 20% students
are used as validation data, and 20% of students are used as test data. We use
the average test area under the curve (AUC) as the evaluation metric.

We set the maximum length of a response sequence to be 200. Learner
response sequences shorter than 200 are padded with 0 to the left, and sequences
longer than 200 are folded. We used the hyperparameter reported by the original
authors when possible. If the model has not been experimented with a dataset
before, we use the validation data for hyperparameter tuning.
1 Multiple attempts is different from repeated attempts that they may or may not

happen consecutively.
2 https://sites.google.com/view/assistmentsdatamining.
3 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.
4 https://pslcdatashop.web.cmu.edu/Files?datasetId=2865.

https://sites.google.com/view/assistmentsdatamining
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
https://pslcdatashop.web.cmu.edu/Files?datasetId=2865
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Table 2. Test AUC w/o repeated attempts

Datasets ASSISTments 2017 CSEDM 2019 Statics 2011

With repeat No repeat With repeat No repeat With repeat No repeat

AKT 0.7620 0.7862 0.7602 0.7720 0.7958 0.8059

DKVMN 0.7217 0.7917 0.7342 0.7843 0.7867 0.7951

DPFA 0.7167 0.7885 0.7412 0.8031 0.7795 0.7930

3 Experiment 1: Repeated Attempts and Self-attention

If having a representation of “repeated attempts” explains why self-attention
models work better than other KT models, then we should observe self-attention
models outperforming baseline models in a dataset with repeated attempts. More
importantly, we should observe the closure of the performance gap if we remove
repeated attempts from a dataset by keeping only learners’ first item responses.

We choose AKT as our example self-attention model. We choose DKVMN
and DPFA [8] (a modern version of performance factors analysis [5]) as our base-
lines. Neither baseline uses self-attention, and both baselines have outstanding
performances on multiple public datasets.

We experiment with the models on two versions of the dataset, one that
includes repetition and the other that excludes repetition by keeping only a
learner’s first response to an item. Table 2 shows the performance of the models
on both versions of the dataset. Across all datasets, AKT outperforms the base-
line models when we keep the repeated attempts in the data. The performance
gap is most evident in ASSISTments 2017. However, if we remove the repeated
attempts from the data by keeping only learners’ first attempts, AKT’s perfor-
mances is very close to the baselines’ performances. AKT even underperforms
in a small dataset like CSEMD 2019. The result suggests that the presence of
repeated attempts is crucial for AKT to achieve its performance potential.

4 Experiment 2: Repeated Attempts as Features

We present DPFA+, which is an extension of DPFA [8]. When predicting whether
a learner can correctly answer the next question, DPFA considers the difficulty of
the next item and the number of similar items the learner has answered correctly
or incorrectly in the past. DPFA+ extends the model by incorporating model
features for number of attempts made on previous items.

4.1 Model Specification

The original DPFA is a logistic regression:

pt+1 = σ(βt+1 +
∑

i

wivi) ∀i ≤ t (1)
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Table 3. Test AUC for DPFA+

Datasets ASSISTments 2017 CSEDM 2019 Statics 2011

AKT 0.7620 0.7602 0.7958

DKVMN 0.7217 0.7342 0.7867

DPFA 0.7167 0.7412 0.7795

DPFA+ 0.7794 0.7932 0.8117

where βt+1 represents the next item difficulty, vi represents the estimated mas-
tery of skill from past item response i, and wi represents the relevance of item
t + 1 and the item i. In DPFA, βt+1 and vi are functions of items and correct-
ness of item response. DPFA+ argues that the number of proceeding success and
failure on the item should also be part of the function parameters. Specifically,
in DPFA+:

βt+1 = W2(tanh(W1[dt+1 ⊕ st ⊕ ft] + b1)) + b2 (2)

vi = W4(tanh(W3[di ⊕ si ⊕ fi] + b3)) + b4 (3)

where di is the one hot encoding of item i, si is the number of successes in
the repeated attempts, fi is the number of failures in the repeated attempts.
For example, if a student attempt an item k three times in a roll with
[success, failure, success], the values of sk are [1, 1, 2] and values of fk are
[0, 1, 1]. Note that when modeling the next item difficulty βt+1, only proceeding
success st and proceeding failures ft are visible. ⊕ represents the concatenation
operation. W∗ and b∗ are learned parameters. DPFA+ is identical to DPFA in
other aspects. We therefore recommend readers to refer to the original paper [8]
for model details due to page limit.

4.2 Results

Table 3 presents the average AUC of the DPFA+ model on the test data.
DPFA+ performs better than the original DPFA model with the manually
encoded repeated attempts features. More importantly, DPFA+ outperforms
self-attention model AKT. This suggests that while a self-attention model like
AKT can encode repeated attempts as part of its item embedding, the mecha-
nism is not as effective as manually crafted features.

5 Discussion

In this study, we presented evidence that the ability to encode repeated attempts
as features is the reason why self-attention models perform better than other
deep knowledge models in datasets where such repetition is common.
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Repeated attempts are common in systems where a learner can attempt
an item multiple times (e.g., coding practice). The ability to model whether
a learner can succeed on the nth attempt is useful for personalized learning
systems. For example, a system may decide to provide scaffolding only if a learner
has already failed a few times and the knowledge-tracing model believes the
learner is not likely to succeed on the next attempt. In such situations, DPFA+
is a better choice than self-attention models due to its better performance and
higher interpretability.
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Abstract. In this paper, we propose a method for assessing the risk
of low achievement in primary and secondary school. We train three
machine learning models with data collected by the Italian Ministry of
Education through the INVALSI large-scale assessment tests. We com-
pare the results of the trained models and evaluate the effectiveness of
the solutions in terms of performance and interpretability. We test our
methods on data collected in end-of-primary school mathematics tests to
predict the risk of low achievement at the end of compulsory schooling
(5 years later). The promising results of our approach suggest that it is
possible to generalise the methodology for other school systems and for
different teaching subjects.

Keywords: Low achievement · Performance prediction · Assessment
tests

1 Introduction

Low achievement at school is a widespread phenomenon which has long-term
consequences, both for the individual and for society as a whole. In 2016, above
28% of students across OECD1 countries underscored the minimum level of pro-
ficiency in at least one of the three core subjects according to the Programme for
International Student Assessment (PISA), which are English reading and com-
prehension, mathematics, and science [14]. Low achievement is strongly related
to school dropout, i.e., the discontinuation of education [7], and impact on the
cultural and professional growth of the individual and citizen [3,12]. Indeed,
school performance in first grade is already a significant indicator of future high
dropout risk. In 2019, a study conducted by the National Institute for Assess-
ment of the Education System (INVALSI) found that 20% percent of Italian
students had a lower-than-expected achievement and, eventually, dropped out
of school [17].

To counteract dropout as soon as possible and to detect low achievement, we
address the following research questions:

RQ1 Is it possible to quantitatively represent a student’s knowledge level
and build a model of his or her skill attainment?
RQ2 Is it possible to develop a suitable AI-tool to predict, at an early stage,
the risk of low achievement at secondary school for primary school students?

1 OECD stands for Organization for Economic Co-operation and Development.
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In the following, we present a case study, focusing on the Italian context and using
data collected from the INVALSI national large-assessment tests in mathematics.
In particular, from these tests, we aim to extract the relevant features related to
students’ learning in terms of their skill and competence level performance.

In RQ2, we refer to “early stage” meaning to detect risk as soon as possi-
ble, i.e., several years in advance, so that appropriate countermeasures can be
taken, and to design an intervention aimed at reducing risk when it is detected.
Concretely, we develop three models able to predict the risk of low achievement
at K-10, using student data at K-5.

In selecting the predictive model, we strive for a balance between inter-
pretability and performance. Hence, we consider state-of-the-art machine learn-
ing techniques that proved to be effective in preliminary experiments: random
forests and neural networks [5,9]. On the one hand, we exploit random forests
to extract rules that facilitate the process of interpreting the outcomes of the
research and, on the other hand, we test neural networks for flexibility, e.g.,
exploring non-linear correlations, and performance gain.

2 Related Work

The topic of students’ low achievement is a widely studied phenomenon in the
social sciences and education [6,8]. The problem has also been addressed in
terms of predictive models for low achievement or dropout risk for both high
school and college students. These models exploit different machine learning
techniques, including supervised learning, e.g., random forests, support vector
machine and Bayesian network, unsupervised learning, e.g., k-means and hierar-
chical clustering, and reccommender systems, e.g., collaborative filtering [2,16].
Moreover, several kinds of data have been used to tackle the problem. In [13] the
dataset for building the predictive model uses demographic data of the students
and their grades. Other studies are based on students performance, i.e., grades,
collected during first semester courses [1,11]. Some datasets include behavioural
data supplemented with other features related to learning results [18], in a mix
of cognitive and non-cognitive characteristics. In some studies data collected
through large-scale assessment tests were used to design predictive models of
student performance through several machine learning techniques. In [15], for
example, the authors refer to data collected through the PISA international
large-scale assessment tests.

We aim to contribute to the research field of Artificial Intelligence-based edu-
cation solutions by presenting a case study for predicting the risk of low achieve-
ment of high school students using their performance data collected during pri-
mary school. In addition, we extract features directly related to students’ learn-
ing in terms of knowledge and skills, privileged indicators for the study of learn-
ing [4], thus proposing a knowledge-based method for encoding students’ learning.
We believe that this element can improve the interpretability of the results and
make this tool useful for students, teachers and instructional coordinators.
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3 Methodology

The INVALSI dataset is the result of a large-scale assessment administered in
Italy since the school year 2002/03 at the levels K-2, K-5, K-8, K-10, and K-13.
In our case study, we considered data on maths test from two cohorts of students:
K-5 of the 2012/13 school year and K-5 of the 2013/14 school year. For the same
students, we collected data from five years later at grade K-10, to be used for
the definition of the low achievement target, i.e., the students grade in the test
is less than or equal to 2 on a scale from 1 to 5. After merging K-5 datasets with
their correspondent K-10 targets, the K-5 2012/13 cohort is made up of 351746
students, while the K-5 2013/14 cohort of 354987 students.

There are several features in the dataset and we applied a feature selection
process to determine a subset of relevant features. The datasets also contain
a boolean feature for each test item, where the students’ answers correctness
are recorded. To enable the use of our predictive models on different cohorts
of students it is necessary to release the dataset from the individual items that
constitute a certain test. Therefore, we used a knowledge-based approach con-
sidering the items classification in terms of areas, processes and macro-processes
according to the INVALSI framework for the design of math tests. In Table 1,
we give for reference an overview of the areas, processes, and macro-processes
that have been used in the encoding of the questions.

Table 1. Maths INVALSI framework for question encoding.

Areas

(NU) Numbers

(SF) Space and figures

(DF) Data and forecasts

(RF) Relations and functions

Process

(P1) Know and master the specific contents of mathematics

(P2) Know and use algorithms and procedures

(P3) Know different forms of representation and move from one to the other

(P4) Solve problems using strategies in different fields

(P5) Recognize the measurable nature of objects and phenomena in different

contexts and measure quantities

(P6) Progressively acquire typical forms of mathematical thought

(P7) Use tools, models and representations in quantitative treatment

information in the scientific, technological, economic and social fields

(P8) Recognize shapes in space and use them for problem solving

Macro-process

(MP1) Formulating

(MP2) Interpreting

(MP3) Employing
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We define one new variable for each area, process, and macro-process. Each
of these new features takes the value corresponding to the percentage of cor-
rect answers provided by the student for that specific group of items, namely,
correctness rate. Last, we concatenate the computed values to obtain a new flat-
tened representation of learning, where each item is a possible indicator and not
its unique representative. Following our strategy, we represent each student’s
learning in the space of fifteen 15 dimensions, as shown in Table 2.

We use two techniques to develop our AI-tool. The first one is Random forest
(RF) [5], which is widely used in Educational Data Mining for the high degree of
explainability and effortless interpretation of the results. We trained our models
through bootstrap aggregating (bagging) to reduce the overfitting of dataset and
increase precision. To tune the model, we performed a grid search.

The second technique is based on neural networks, which has recently become
widespread also in the field of Educational Data Mining and has also been applied
in predictive models for student performance [10]. We firstly include a preprocess-
ing step, aimed at encoding the values of categorical variables into numerical val-
ues with a “one-hot” encoding algorithm. After preprocessing, we implemented
two neural networks based on different data transformation approaches. Cate-
gorical Embeddings (CE), is a neural network that treats the input depending
on its type: categorical inputs are passed through an embedding layer, numerical
ones are fed to a dense layer. Feature Tokenizer Transformer (FTT) [9] is able to
identify the input or the group of inputs that most influence the output, thanks
to attention maps.

Table 2. Example of the student’s learning final encoding.

Id NU SF DF RF P1 P2 P3 P4 P5 P6 P7 P8 MP1 MP2 MP3

1 0.86 0.75 0.90 0.80 0.71 0.80 1.00 0.89 1.00 0.67 0.91 0.75 0.81 0.73 0.94

2 0.50 0.25 0.50 0.53 0.29 0.60 0.50 0.22 1.00 0.33 0.73 0.25 0.50 0.47 0.44

4 Experimental Results

We carried out all the experiments using the Google Colaboratory Notebook
environment, with the Python programming language and popular machine
learning libraries, such as scikit-learn and pandas.

The dataset for all the experiments was preprocessed cleaning features with
many missing values, highly correlation (computed by R2 measure above 0.5) or
specifically referred to a cohort of students, preventing the model to be trans-
ferred to new cohorts (e.g., identification code for a class). This features selection
process, together with the engineering of the features related to the items in the
tests, results in a set of 34 features, which refers both to socio-economic and
cultural context, demographic data and learning dimension. For the definition
of the training set we used the data from 2012/13 K-5 cohort. For the models
based on neural networks we split this cohort to generate both training and
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validation sets (split in 80% and 20% respectively). Finally, we used the K-
5 2013/14 cohort to test and measure the model performance. The dataset is
unbalanced between underachievement/non-underachievement classes; therefore
balancing techniques were applied. In the development of the RF models, a ran-
dom undersampling technique was used, implemented in the imblearn library.
We trained neural networks using a weighted random sampler, that samples the
data to balance classes ratio in the training batches.

In Table 3, we present the overall results on the test dataset of the above
mentioned models: RF, CE, and FTT. For RF, we considered the best hyper-
parameters setting determined with the grid search technique: 50 estimators in
the forest, trained with 30% of random samples, 60% of random features and
max depth set to 11. The FTT outperforms the other predictive models with
accuracy, precision and recall between 77% and 78%.

Table 3. Performance on test set

Models Accuracy Precision Recall

Random Forest 0.77 0.62 0.67

CE neural network 0.76 0.76 0.76

FTT neural network 0.78 0.77 0.78

5 Conclusion and Future Work

Our results suggest that the challenge of predicting low achievement risk for
primary and secondary school students can be effectively addressed through
the use of well-curated datasets and the choice of reliable predictive models.
Our abstract representation of (INVALSI) tests and the related encoding for
the student achievement allowed us to transfer the trained models on different
cohorts and therefore to obtain a accurate prediction. We believe that the ability
to predict low school achievement with reasonable accuracy five years in advance
offers a practical tool for policy makers, managers and educators.

We are interested in extending our work in several directions. First, we want
to verify the transferability of the proposed methodology to other disciplines,
using a representation for students’ learning similar to the one proposed in this
work. Second, we want to increase the quality of the information provided as
input to the predictive models, e.g., by collecting more data and by integrat-
ing new data sources. We aim to improve the learning encoding—thus the fea-
ture extraction process—in a way that is not knowledge-based to limit the bias.
Finally, we want to deepen the interpretability of the results of our models, by
analysing the feature importance computed on RF model and comparing it with
the interpretation of the weights that define the neural networks we have used.
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Abstract. This work presents two systems, Machine Noun Question
Generation (QG) and Machine Verb QG, developed to generate short
questions and gap-fill questions, which Intelligent Tutoring Systems then
use to guide students’ self-explanations during code comprehension. We
evaluate our system by comparing the quality of questions generated
by the system against human expert-generated questions. Our result
shows that these systems performed similarly to humans in most cri-
teria. Among the machines, we find that Machine Noun QG performed
better.

Keywords: Automatic question generation · Self-explanation ·
Program comprehension · Intelligent Tutoring System · Authoring

1 Introduction

This work is part of our larger effort to develop Intelligent Tutoring Systems
(ITS) to help students learn computer programming. Such ITS uses questions
to be provided as hints meant to scaffold students’ self-explanation [9] during
code comprehension. When done by human experts, which is currently the norm,
authoring such questions is expensive and hard to scale, often taking 100–200
hours to prepare 1-h instructional content [1]. In this work, we develop two
systems called Machine Noun Question Generator (QG) and Machine Verb QG
for automatically generating short questions and gap-fill questions using expert
generated code-block explanations that ITS employs to scaffold student self-
explanation during code comprehension.

Some prior works [5,10,11] automatically create clones of programming exer-
cises that provide opportunities to practice more as opposed to scaffolding stu-
dents’ self-explanation for the particular code, which is the focus of our work.
Other works like [2,8] automatically generated short questions from static anal-
ysis of code, using the template-based QG approach, which requires significant
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time to design the templates. Unlike past work, we do not use a template app-
roach for question generation. Instead, we use the current state-of-art model
ProphetNet [6] which inputs textual explanations of the code, leading to a more
computer language-independent approach for question generation. Also, it can
produce a more profound and broader variety of questions compared to the lim-
ited type of questions that the expert-provided templates can generate.

In sum, this paper answers the following research questions:

1. Is it possible to automatically generate short questions that are linguisti-
cally well-formed, pedagogically sound, and indistinguishable from human-
generated questions?

2. Is it possible to automatically produce gap-fill questions useful for ITS?
3. How do questions generated by machines compare to expert questions?
4. How do Machine Noun QG and Machine Verb QG compare in teperformance?

2 Dataset

The dataset used for this work consists of 10 code examples with explanations
followed by short and gap-fill questions for each code block, as shown in Fig. 1,
prepared and refined by our group of subject experts in several iterations.

Fig. 1. Sample code example in our dataset
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3 System Design

3.1 Machine Noun QG

First, Machine Noun QG segments the expert’s explanation for each code block
into individual sentences using a library called pySBD, a pipeline extension in
spaCy v2.0. Then, we extract noun chunks for each sentence, also using spaCy.
When a sentence has multiple noun chunks, the first step is to discard any noun
chunk with more than four words; Chau and colleagues define “single words or
short phrases of two to four words” as domain concepts [3,4] (i.e., ideally what
we would like to target with our questions). Then, we select the longest noun
chunk from the remaining noun chunks because longer inputs are beneficial for
the question generator. If two noun chunks have the same length, we select the
noun chunk that has appeared first in the sentence, assuming that an important
keyphrase comes first.

Next, We pass a pair of <sentence, selected noun chunk for the sentence> to a
pre-trained sequence-to-sequence model ProphetNet [6] fine-tuned for question
generation tasks using the SQUAD [7] dataset. The model outputs the short
question. The gap-fill question is created by masking the sentence’s noun chunk.

3.2 Machine Verb QG

Machine Verb QG works the same way as Machine Noun QG except it targets
verb phrase in the input sentences. We extract verb phrases in a sentence by
matching the pattern = [‘POS’: ‘VERB’, ‘OP’: ‘?’, ‘POS’: ‘ADV’, ‘OP’: ‘*’,
‘POS’: ‘AUX’, ‘OP’: ‘*’, ‘POS’: ‘VERB’, ‘OP’: ‘+’], using Matcher in the spacy
library.

4 Evaluation

The two independent annotators (Ph.D. students in Computer Science) anno-
tated a total of 450 questions, each 150 (75 short +75 gap-fill) questions gen-
erated by Machine Noun QG, Machine Verb QG, and experts (question in our
dataset), using the evaluation criteria as described below. The inter-annotator
agreement, measured by Cohen’s Kappa, is 0.30, 0.39, 0.71, 0.93, 0.37, 0.37, and
0.91 for grammaticality, semantic correctness, domain relevancy, answerability,
helpfulness, recognizability and gap-fill questions, respectively.

We evaluated short questions using the following criteria.

1. Grammaticality: Is the question grammatically correct?
2. Semantic Correctness: Is the question semantically correct?
3. Domain Relevancy: Is the question relevant to the target domain, i.e., does

it target a programming concept?
4. Answerability: Does the question have a clear answer in the input text?
5. Helpfulness: Is the question likely to help the student think about the target

concept and produce an answer close to the expert-provided explanation?
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6. Recognizability: How likely is it that a human generated the question?

The scale for the first two, second two, and last two are 1 (Very Poor) to 5
(Very Good), Yes/No, and 1 (Not Likely) to 5 (Very Likely), respectively.

Each gap-fill question is labeled into one of the following categories.

1. Good: Asks about key concepts and would be reasonably difficult to answer.
2. OK: Asks about a) key concept but might be difficult to answer or b) likely

key concept (weak concept).
3. Bad: Asks about 1) an unimportant aspect or 2) has an answer that can be

figured out from the context of the sentence.
4. Acceptable: OK or Good questions are automatically labeled as acceptable.

5 Results

The overview of quality of short and gap-fill questions is shown in Table 1
and Table 2, respectively. To check whether the difference is significant, we use
independent-samples t-tests for the mean score and the Chi-square test of inde-
pendence for the proportion. We present below a detailed analysis and interpre-
tation of these results in accordance with our research questions.

5.1 Short Questions

Table 1. Performance of Machine Noun QG, Machine Verb QG, and Human on Short-
questions. SD = Standard Deviation.

Machine Noun QG Machine Verb QG Human

Mean grammaticality 4.51 (SD=0.62) 4.64 (SD=0.48) 4.67 (SD=0.48)

Mean semantic correctness 4.76 (SD=0.46) 4.49 (SD=0.80) 4.84 (SD=0.57)

Mean helpfulness 4.27 (SD=0.96) 3.44 (SD=0.96) 4.31 (SD=0.77)

Mean recognizability 3.49 (SD=1.33) 2.76 (SD=1.17) 4.49 (SD=0.91)

Answerability (Yes)% 89.3 54.7 97.3

Domain relevancy (Yes)% 92 89.3 93.3

Both Machine Noun QG and Machine Verb QG generated linguistically well-
formed, i.e., grammatically and semantically very good questions with mean
scores for grammaticality of 4.51 and 4.64 and semantic correctness of 4.76 and
4.49, respectively.

Likewise, it is possible to automatically generate short questions which are
pedagogically sound as measured by domain relevancy, answerability, and help-
fulness criterion. The systems generated questions relevant to the domain in
program comprehension in an impressive proportion: 92% by the Machine Noun
QG and 89.3% by the Machine Verb QG. While the Machine Noun QG pro-
duced almost all, i.e., 93% answerable questions, the Machine Verb QG gen-
erated slightly more than half, i.e., 54.7% questions that are answerable. The
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average helpfulness score of Machine Noun QG questions is 4.27 and, therefore,
is likely to help students articulate the expected answer. On the other hand, the
Machine Verb QG’s average helpfulness score is only 3.44, indicating it may or
may not help students scaffold explanation for the code.

Also, it is possible for the system to automatically generate short questions
that are indistinguishable from human-generated questions, measured by recog-
nizability. The mean recognizability score for Machine Noun QG is 3.49, indi-
cating that human annotators think humans likely generate these. On the other
hand, the mean recognizability score for the Machine Verb QG system is 2.76,
which signifies that it at least challenges or makes annotators hard to say who
generated the questions, i.e., they think the question has equal chances of being
created by human or machine.

Comparison: Compared to human, Machine Noun QG performed compara-
bly; we did not find significant difference in mean or proportion in any criteria.
However, Machine Verb QG significantly under-performed to human in helpful-
ness [t(141.27) = −6.09, p = 0.00] and answerablity [ χ2(1, n = 150) = 35.12, p =
0.00.] criteria, but, no significant difference in rest of criteria. Between machines,
Machine Noun QG significantly outperformed machine verb in semantic correct-
ness [t(118.62) = 2.51, p = 0.01] and helpfulness [ t(148) = 5.26, p = 0.00], and
they pefromed similalry in rest of criterion.

5.2 Gap-Fill Questions

Table 2. Performance of Machine Noun QG, Machine Verb QG, and Human on Gap-
Fill Questions.

Bad % Okay % Good % Acceptable %

Machine Noun QG 16 73.3 10.7 84

Machine Verb QG 20 38.7 41.3 80

Human 2.7 53.3 44 97.3

These systems can produce a majority of acceptable gap-fill-questions, i.e.,
84% by Machine Noun QG and 80% by Machine Verb QG.

Comparison: Compared to human, both Machine Noun QG [χ2(1, n = 150)
= 6.38, p = 0.012] and Machine Verb QG [χ2(1, n = 150) = 9.55, p = 0.002] sig-
nificantly under-performed in gap-fill QG task. There is no significant difference
in the proportions of acceptable gap-fill questions generated between Machine
Noun QG and Machine Verb QG, χ2(1, n = 150) = 0.19, p = 0.67.

6 Conclusion

In this work, we developed Machine Noun QG and Machine Verb QG systems
to automatically generate short and gap-fill questions that ITS can use to scaf-
fold students by presenting them as a hint. Our evaluation shows that these
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systems can generate short questions which are linguistically well-formed, ped-
agogically sound, and likely indistinguishable from human-generated questions.
We also found that most gap-fill questions generated by machines are of accept-
able quality to be used by ITS. Compared to human experts, Machine Noun QG
performed comparable for short questions but under-performed for gap-fill ques-
tions in almost all criteria. Between the systems, Machine Noun QG performed
better.

In our future work, we plan to automate the generation of code explanations
using code examples and the surrounding text in programming textbooks and
then use the explanations to generate the questions automatically, thus making
the process fully automated.
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Abstract. In recent years, the use of electronic assessment platforms
(EAPs), which allow exams to be administered on- or off-line, has
become increasingly popular. A benefit of EAPs is that they capture
a detailed log of an examinee’s journey through their exams. However,
methods of leveraging exam logs for developing analytical insights are
still under-explored. In this paper, we employ AI and analytical tech-
niques to investigate whether exam-takers exhibit distinct behaviours
while taking e-exams. We evaluate our methods using an e-exam log of 90
multiple-choice questions administrated to 463 university-level medical
students. Our findings indicate that the students exhibited distinctive
test-taking tactics and strategies, and some of the tactics are associ-
ated with their performance. We discuss the implications for analytical
techniques to support instructors’ decisions in AI-supported EAPs and
e-exams.

Keywords: Test-taking strategies · E-exam · Assessment analytics ·
Process mining

1 Introduction

Instructional interventions for test-taking enhancement have been found to
reduce anxiety and help students perform optimally in exams [7]. However,
for instructors to provide reliable interventions, they first need to understand
examinees’ behaviours [2] and monitor them to provide feedback. Traditionally,
to track and understand those behaviours, researchers use self-report measures
(e.g., interviews), which are known for their inclination to provide inaccurate
data. Hence, as we assume in this study that exam-takers exhibit distinctive
behaviours while taking e-exams, such measures cannot accurately validate this
assumption nor the benefits of instructional interventions.

Electronic assessment platforms (EAPs) have taken the examination field to
a new era and have addressed this gap by authentically documenting examinees’
digital footprints as log files during exams. Recent studies show the potential
of using exam log data as a new measurement to support instructors’ over-
sight to better understand test-taking behaviours through data mining, machine
learning and statistical methods. Examples include visualisation techniques for
c© Springer Nature Switzerland AG 2022
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understanding student-item interactions on different levels [5], statistical mod-
elling for understanding examinees’ engagement [13], supervised machine learn-
ing for understanding the power of test-taking behaviours to predict performance
(e.g., [10]) and traditional statistical analysis for understanding the relationship
between the behaviours and learning constructs or learner characteristics (e.g.,
[9]). For example, some of the studies under the categories above could identify
examinees’ disengagement by modelling response time [13], detect examinees’
cheating incidents using text mining and temporal data analysis accompanied
with visualisation techniques [3], predict examinees’ performance using temporal
response patterns [10] and establish the relationship between personality traits
and response time [9]. Few studies contributed to the understanding of exami-
nees’ test-taking strategies. For example, [4] proposed a visualisation technique
to depict examinees’ progress and responses overtime to uncover test-taking
strategies. However, this method involves human judgment to a considerable
extent (i.e., instructors must examine individual data for all examinees). As
most of the existing methods appear to focus on quantitative behaviours (e.g.,
response-time), more sophisticated analytical approaches are needed to look at
examinees’ behaviours from the process perspective [11] and support instructor
oversight and decisions in e-assessment systems.

Here, we incorporate an emerging approach from the learning analytics field,
which aims to understand learners’ behaviours by representing their behaviours
at two inspired theoretical levels of tactics and strategies. The approach has pre-
viously been used in various learning settings such as flipped classrooms to detect
learning strategies and examine their association with performance [8] or in con-
junction with process models to detect and interpret time management tactics
and strategies [1]. Following their methodology, we employ sequence analysis and
clustering techniques on examinees’ trace data to identify distinctive behavioural
patterns taken by students while taking e-exams. We evaluate our approach by
analysing an e-exam log of 90 multiple choice questions administrated to 463
university-level medical students.

2 Proposed Approach

This section describes our approach to investigate whether examinees exhibit
distinct behaviours in e-exams. For the sake of space limit, Algorithm 1 provides
only high-level pseudocode for our approach, as discussed below.

Data Pre-processing and Transformation. [Steps 1 to 3]. The data pre-
processing incorporates three main steps, data cleaning, data interpretation and
labelling, and sequence generating. The data interpretation and labelling step
encompasses two sub-steps: 1) finding a list of meaningful activities from the
literature (e.g., [6,13]) and multiple brainstorming sessions and 2) creating a
set of rules for labelling the log file as follows: (a) answering, if the examinee
responded to a question for the first time; (b) rapid-answering, if the examinee
responded to a question for the first time in less than certain time; (c) long-
answering, if the examinee responded to a question for the first time in more than
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Algorithm 1: Detecting test-taking tactics and strategies
Input : L, R, k, q [L: Log, R: Rules, k: number of tactic clusters, q: number of

strategy clusters];
Output: TAC, STRT [TAC: A set of tactics, STRT : A set of strategies];

1 visitExamineeQuestion ← extractV isits(L) [Extract visits, where a visit is an
examinee-question pair consecutive events];

2 labeledLog ← labelV isits(visitExamineeQuestion) [Label each visit using rules
introduced under pre-processing in this section];

3 sequenceExamineeQuestion ← generateSequences(labeledLog) [Generate sequences,
where a sequence is an examinee-question pair labelled visits (i.e., activities)
ordered in chronological order];

4 dissMatrix ← constructDissMatrix(sequenceExamineeQuestion) [Compute the
distance between each pair of sequences and construct a dissimilarity matrix];

5 tactiClusters ← clusterSequences(dissMatrix, k) [Create k clusters and put similar
tactics in one cluster];

6 examineeV ectors ← createExamineeV ectors(tactiClusters) [Create vector with
length k for each examinee that represents each tactic frequency];

7 strategyClusters ← clusterExamineeV ectors(examineeV ectors, q) [Create k clusters
and put similar examinees regarding their tactics use in one cluster];

8 return TAC, STRT ;

certain time; (d) answer-changing, if the examinee changed their first response;
(e) skipping, if the examinee left a question blank; and (f) revisiting, if the
examinee revisited a question with no changes.

Tactic Detection [Steps 4 and 5]. Winnie described a learning tactic as a
format of the If-THEN rule such that a learner can use the proper technique at
the right time to cope with a typical situation (e.g., if a question is easy then
answer it without reviewing your answer but if a question is hard then answer
it and then review it multiple times) [12]. We replicate the steps taken by [1]
for detecting learning tactics TAC, which incorporates the optimal matching and
agglomerative hierarchical clustering algorithms. The optimal number of clusters
k is chosen based on several runs of the algorithm, where the highest average
silhouette width is chosen.

Strategy Detection [Steps 6 and 7]. A learning strategy can be viewed as a
set of learning tactics. We replicate the steps taken by [1] for detecting strategies
STRT and assigning them to learners, but with the K-means++ algorithm instead
of hierarchical clustering. The number of clusters q is again specified based on sev-
eral runs of the algorithm and examining the average silhouette width.

3 Evaluation

Data Set. We obtained L of 463 undergraduate medical students who took a
90 multiple-choice questions summative exam administrated on an EAP called
Examplify in 2017 at The University of Queensland1. From L, we generated
173,761 events and generated and labelled 94,271 visits (see Sect. 2). We deter-
mined the cut-off value for rapid and long answering behaviour by analysing

1 Approval from our Human Research Ethics Committee was received for conducting
the study presented in this paper (2018000841).
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Fig. 1. An overview of the detected test-taking tactics.

time interaction data. Skipping and revisiting behaviours peak at three seconds
which is an acceptable threshold [13]. Thus, three seconds were chosen for rapid-
answering. Similarly, 51 s threshold for long-answering was chosen, representing
the cut-off value of the intersection between the time of a normal visit for answer-
ing and a visit for answering with multiple answers. The set of visits was inter-
preted as (a) 35,773 answering; (b) 3,222 rapid answering; (c) 2,666 long answer-
ing; (d) 6,257 skipping; (e) 3,247 answer changing; and (f) 43,106 revisiting. The
data was then transformed to 41,670 sequences with min(sequence−length) = 1
and max(sequence − length) = 16.

Results for Test-Taking Tactics. Figure 1 provides an overview of the seven
identified tactics. The major difference between the tactics lies in the activity
types comprising the tactics and the length of the tactics. However, most of the
sequences belonging to each tactic varied in length (1 ≤ μ ≤ 3.7; 0 ≤ σ ≤ 1.5).
In what follows, Table 1 provides a brief description of each tactic and statistics,
including whether or not a tactic was associated with examinees’ grades using
Spearman’s rank correlation at .05 significance level.

Table 1. Tactics summary

ID Name Size % Description Association

(grade)

Tac 1 Answer & review once 28.4 Answering is always followed by a revisit (rs =

−.13, p < .05)

Tac 2 Answer with no

review

26 It consists of just answering (rs =

−.20, p < .05)

Tac 3 Answer & several

reviews

18 It is the longest tactic chara-cterised by

multiple revisiting after answering

(rs =

−.11, p < .05)

Tac 4 Skip & answer &

review later

8 It always starts with skipping (rs =

−.07, p > .05)

Tac 5 Answer quickly &

review later

7.7 The dominant actions were rapid-answering

and revisiting

(rs = .03, p >

.05)

Tac 6 Answer slowly &

review later

6.4 The use of long-answering and revisits was

apparent

(rs = .07, p >

.05)

Tac 7 Change answer 5 Answering,

answer-changing and revisiting were

prominent

(rs = .19, p <

.05)
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Results for Test-Taking Strategies. Following our approach, we chose k = 6
(silhouette score = 30). The generated strategies were significantly different.
Figure 2 shows a general picture of the tactics used by each strategy. Tac 5, tac
1 and tac 3 were the most common tactics in the strategies. In addition, we
investigate the differences between the strategies regarding exam grades where
a Kruskal-Wallis test revealed a statistically significant association between the
strategies and the grades at p = .05(H(5) = 8.17, P = .02). Further post-
hoc comparisons with Bonferroni correction showed no statistically significant
association between each pair of the strategy groups. Table 2 briefly describes
each strategy.

Fig. 2. An overview of the strategies (Pie charts: tactics use; box and whiskers: grades).

Table 2. Strategies’ summary

ID Name Size % Description

Strt 1 No review oriented 32 Tac 2 was dominant

Strt 2 Single review oriented 32 Tac 1 is the dominant tactic

Strt 3 Skipping featured 15 Unlike the other groups, tac 4 was apparent

Strt 4 Multiple review oriented 13 Tac 3 is the dominant tactic. tac 7 was relatively

higher than the other groups

Strt 5 Slow answer featured 5 Unlike the other groups, tac 6 was frequently used

Strt 6 Quick answer featured 1 Unlike the other groups, tac 5 was apparent. Tac 2

was never used

4 Discussion and Conclusion

This paper used an approach that combines AI and LA to gain novel insight
into test-taking behaviours. Our approach consists of analytics that could assist
educators or examiners in gaining actionable insight into test-taking tactics and
strategies. We evaluated our approach on real data of a high-stake exam. We
uncovered seven test-taking tactics and six test-taking strategies that are dis-
tinctive. The tactics and strategies were easy to interpret and overlapped with
previous research findings [4]. However, our approach has the additional ben-
efit of being scalable as it does not require human intervention for visualising
individual data for all examinees.



754 H. F. Lahza et al.

The small negative correlation between the tactics and grades should indicate
that these tactics were common among students with different performance lev-
els. However, we observed that tac 2 and tac 7 had a relatively larger correlation
(rs = −.20, rs = .19, respectively) than other tactics. Hence, students should be
recommended to review their answers and change them when in doubt. These
results can also have implications for adaptive testing systems for permitting
review and revision. Further, the absence of differences between the strategy
groups’ grades might indicate that there is no one way to approach the exam
and score high.

Also, the findings have practical implications for improving instructional
exam preparation and supporting instructors decisions in AI-supported EAPs.
First, the previous studies show that training on test-taking strategies could
improve students scores [2]. However, these benefits cannot be unveiled unless
the students can monitor their performance on their strategies and the instruc-
tors understand them [2]. Second, learning tactics and strategies analytics can
be used to enable educators to report how the student behave during an exam
and assist their judgment on AI-supported EAPs. They can be used along-with
explainable AI to gain more information about unwanted or abnormal behaviours
(e.g., strt 6, where about one-third of the exam questions were answered in less
than 4 s and a large discrepancy in exam scores was observed, see Fig. 2).
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Abstract. Automated scoring of student language is a complex task that requires
systems to emulate complex and multi-faceted human evaluation criteria. Sum-
mary scoring brings an additional layer of complexity to automated scoring
because it involves two texts of differing lengths that must be compared. In
this study, we present our approach to automate summary scoring by evaluat-
ing a corpus of approximately 5,000 summaries based on 103 source texts, each
summary being scored on a 4-point Likert scale for seven different evaluation
criteria. We train and evaluate a series of Machine Learning models that use a
combination of independent textual complexity indices from the ReaderBench
framework and Deep Learning models based on the Transformer architecture in
a multitask setup to predict concurrently all criteria. Our models achieve sig-
nificantly lower errors than previous work using a similar dataset, with MAE
ranging from 0.10–0.16 and corresponding R2 values of up to 0.64. Our find-
ings indicate that Longformer-based [1] models are adequate for contextualizing
longer text sequences and effectively scoring summaries according to a variety of
human-defined evaluation criteria using a single Neural Network.

Keywords: Natural language processing · Text summarization · Automated
summary scoring ·Multitask learning

1 Introduction

Summary scoring is a common task in education that requires a significant amount of
attention and time, but that represents a crucial skill for students since it evaluates their
ability to discern the primary message of texts. Evaluating a summary requires the rater
to read both the source text and the summary and then evaluate the extent to which the
summary captures the essence of the source text in a concise manner. Summarization
has been shown to be an important aspect of reading comprehension and learning to read
[2–4], for both first and second language learners [5, 6].
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Automated summary scoring can help reduce the load on teachers and represents a
method to provide immediate feedback to students on the quality of their summaries.
Semi-automatic methods, such as having humans select portions of texts to be evaluated
[7, 8], have been proposed; however, they do not significantly lower the time impact
for teachers. Automated methods involve the use of various NLP techniques for text
representation, including similarities using Latent Semantic Analysis [9], word embed-
dings and linguistic indices generated by the ReaderBench framework [10], or diver-
gences among probability distributions [11]. However, much work on automated sum-
mary evaluation systems has focused on evaluation methods for automatically generated
summaries, and not for scoring summaries written by humans.

The current study expands on Botarleanu, Dascalu, Allen, Crossley and McNamara
[10] where textual complexity indices were used to train a summary scoring system that
measured howwell a human-written summary covers themain idea of the original source
text. We build on this work by using a larger corpus of summaries and build regressors
to predict seven different summary evaluation criteria. The regressors implemented in
the current study can handle source texts of relatively large lengths, which was the main
limitation of Botarleanu et al. [10]. This study aims to answer the following research
questions:

1. How well do Longformer-based architectures, as compared to the linguistic indices
used in Botarleanu et al. [10], perform in automatically scoring summary elements?

2. What is the performance of a multi-task learning model that predicts all 7 scoring
criteria simultaneously in contrast to 7 individual models?

2 Method

2.1 Corpora

Our corpus is an expanded version of the corpus considered by Botarleanu et al. [10] and
includes 5,037 summaries (instead of the 2,976 previously used) corresponding to 103
source texts (instead of the 87 found in the aforementioned work). Our corpus was rated
on a 1 to 4 Likert scale by expert raters for seven different scoring criteria: the cohe-
siveness of the summary text (“cohesion”), the appropriate use of objective language
(“Objective Language”), the appropriate use of new paraphrasing (“Paraphrasing”), the
use of language beyond that found in the source text (“Language Beyond Source Text”),
how appropriate the length of the summary is in relation to the source text (“Summary
Length”), the degree to which important details are captured from the source text (“De-
tails”) and whether the summary succeeds in capturing the main point of the reference
text (“Main Point”).

The corpus consists of summaries collected from a mix of unrelated studies: a)
summaries collected in a study on Adult Literacy on general topics such as seat belt
laws, disability services, and patients’ rights, b) summaries collected using Amazon’s
Mechanical Turk service (MTurk) on science texts related to biology and climatology,
c) summaries on heart disease and red blood cells collected in a study on Adult Literacy
using MTurk, d) summaries on science texts collected using MTurk from primarily
speakers of English as a second language, e) summaries on cellphone risk and climate
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changewere collected as part of a study onmultiple text comprehension and f) summaries
on science and history written by undergraduate students.

In order to filter out summaries that weremalformed, we searched for summaries that
were either as long as the source text or significantly shorter than it. A plot showing the
ratio between the source and summary text lengths is presented in Fig. 1.a. We elected to
remove all summaries with lengths below 10% or above 80% of the source text length.
These values were chosen to remove the tails of the distribution from Fig. 1.b which
depicts the ratios between summary length and source text length. This pro-cess reduced
the number of summaries from 5,037 to 4,233 without removing any of the 103 source
texts.

Fig. 1. a) Ratio between the number of words between summaries and source texts. b) Source
text lengths in tokens.

Another consideration in corpus development is the length of the sequences that
are used as inputs for transformer-based models. Due to internal constraints, models
such as BERT (Devlin et al. 2018) are only suitable for sequences of up to 512 tokens,
whereas models such as Longformer can work well with longer sequences, typically of
up to 4,096 tokens. We utilized the pre-trained Longformer tokenizer provided by the
“transformers” package [12] with the “allenai/longformer-base-4096” pretrained model
to evaluate the lengths of the texts in our corpus (see Fig. 1.b). Indeed, a significant
proportion of source texts in our corpus exceeded 512 tokens; however, the majority did
not exceed 1000 tokens in length making the texts suitable for the Longformer model,
but not for BERT.

2.2 Regression Models

We elected to construct our regression models around the Longformer model [1] to
handle the source and summary texts that were often too long for BERT. The Longformer
model employs an attention mechanism that combines local windowed attention with
a global attention mechanism, that is designed to encode inductive bias about the task
that the model is being trained to solve. Given the distribution in Fig. 1.b, we opted
to use padded sequences of 2048 tokens formed by tokenizing and trimming both the
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source and summary lengths down to 1024 tokens. The overview of this architecture is
illustrated in Fig. 2. The architecture is evaluated under two setups: one where the model
predicts only one of the seven summary scoring criteria at a time, and a second where
the model is tasked with predicting all seven objectives at once.

Fig. 2. The architecture of the Longformer-based model.

3 Results

We present the normalized Mean Absolute Error (nMAE) and the corresponding R2

coefficients for the Longformer model used in both single-task and multi-task settings
(see Table 1). We compare our results to those measured using the model presented by
Botarleanu et al. [10],where a networkwith a single hidden layerwith 256 units is applied
to an input consisting of the textual complexity indices generated by the ReaderBench
framework for both the summary and the source texts. This was trained using the same
Once-Cycle Policy described in Botarleanu et al. [10], for 50 epochs with a batch size
of 8.

The first observation is that the trained Longformer models outperform the mod-
els relying on the ReaderBench indices, with R2 coefficients having values that are
between .07 and .13 higher. Second, the multi-task model matches the performance of
the individual models on average, and even exceeds the single-task models for the “Co-
hesion”, “Language Beyond Source Text”, and “Details” criteria. The most significant
degradation in performance between the single-task and the multi-task setting is for the
“Paraphrasing” score with the R2 coefficient falling from .55 to .42, which is still higher
than the performance of the model that uses ReaderBench indices.

Finally, the seven scoring criteria appear to have a relatively similar difficulty in terms
of the models’ capability to learn them. The lowest R2 coefficient for the Longformer-
based models is measured on the “Details” objective (.37 for the single task model),
whereas the highest coefficient is observed for the “Summary Length” objective (.67
for the single task model). In contrast, the multi-task model appears to have a narrower
variation in performance, with R2 coefficients ranging from .42 for the “Paraphrasing”
objective up to .64 for the “Summary Length” criterion, which may be explained by the
fact that the multi-task model was trained with all 7 criteria being seen as equal, and no
objective-specific weights were applied to the loss function.
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Table 1. Normalized MAE and the R2 score for the seven evaluation criteria.

Scoring
criterion

Single task
models using
ReaderBench
indices [10]

Multi-task model
using
ReaderBench
indices [10]

Single task
Longformer
models

Multi-task
Longformer
model

nMAE R2 nMAE R2 nMAE R2 nMAE R2

Cohesion .14 .49 .14 .46 .13 .52 .12 .58

Objective
language

.13 .51 .14 .48 .11 .59 .13 .50

Paraphrasing .15 .45 .15 .50 .13 .55 .16 .42

Language
beyond ource
text

.13 .43 .13 .47 .10 .59 .10 .60

Summary
length

.13 .54 .14 .51 .11 .67 .12 .64

Details .15 .46 .16 .39 .15 .37 .13 .53

Main point .15 .53 .14 .52 .11 .64 .12 .59

Average .14 .49 .14 .48 .12 .58 .13 .55

4 Conclusions and Future Work

In this paper, we analyzed the effectiveness of using Longformer-based regression mod-
els to perform automated summary scoring. Our models achieved significantly better
results than the previous models in Botarleanu et al. [10]. Our results also indicate that a
model trained in a multi-task setting achieved a performance that was on par with train-
ing seven different networks. With an average normalized mean absolute error of .13
and a corresponding R2 of .55, our model predicts the human rating of a summary with
an average deviation of 13%. The capability to perform automated summary scoring
in a multi-task setting has several advantages. First, it reduces the computational load
and supports the development of automated summary scoring systems that can analyze
summaries more effectively. Second, it more closely matches the human expert scoring
method because it forces the model to perform a holistic analysis of the text, instead of
relying on patterns captured for each of the scoring criteria individually. One method of
improving the performance of the model might be to combine the ReaderBench indices
with the Longformer inferences into an ensemble model. Moreover, part of the Reader-
Bench indices might also benefit from the use of Longformer models to predict their
values (e.g., intra- and inter- paragraph cohesion scores).

A potential avenue for future research lies in performing an interpretability analy-
sis of the multi-task model. Through this, one might explore the degree to which the
different summary scoring criteria presented in this work may complement each other.
Additionally, studying the way in which the most relevant blocks of the summaries and
source texts are selected by the model, and aligning these segments with human rater
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observations may provide valuable insight into what humans look for in summaries,
which can help in providing targeted feedback to students.

Finally, the principal measure of the usefulness of such a system lies in the impact it
has on the summarization skills of real students. An important future research direction
would be the use of the model described in this work to help students improve their
summary writing skills. Notably, the success of this model in predicting scores on seven
different attributes, for such a wide range of source texts, bodes well for the eventual
utility of this model within an automated tutoring system.
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Abstract. Mindfulness has been shown in prior studies to be an effective device to
help students develop self-regulatory skills, including executive functions. How-
ever, these effects have been rarely tested at scale in technology-assisted learning
systems such as digital learning games. In this work, we investigate the effects of
mindfulness in the context of playing and learning with Decimal Point, a digital
learning game for mathematics. We conducted a study with 5th and 6th grade
students in which three conditions were compared - the game with short mindful-
ness meditations integrated, the game with similar-length, age-appropriate stories
integrated, and the game in its original form. From the study results, we found
no differences in time spent on the game, error rates while playing, or learning
outcomes across the three conditions. Embedding mindfulness prompts within the
game did not enhance learning or change students’ gameplay behaviors, which
suggests that we may not have successfully induced a state of mindfulness or that
mindfulness is not beneficial for learningwithin digital learning games.Wediscuss
the challenges of incorporating individual mindfulness meditations in elementary
and middle school classrooms.

Keywords: Digital learning games ·Mindfulness · Decimal numbers ·Middle
school math

1 Introduction

Mindfulness is the concept of attending to the present moment with focus and without
judgment. Mindfulness meditation has been shown to support self-regulation, attention
skills and executive function, especiallyworkingmemory capacity and inhibitory control
[5, 12], which could in turn contribute to math learning [4]. Additionally, mindfulness
practice might reduce math anxiety, which could further enhance math performance
[10].
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Despite these strong theoretical reasons, the role of mindfulness for children’s aca-
demic outcomes is less clear, especially due to the limited evidence so far. A meta-
analysis by [7] found that five studies assessing the efficacy of mindfulness-based
interventions for academic achievement showed a non-significant, small average effect.
Although since then some promising preliminary results with older students [6] and stu-
dents withADHD [11] emerged, the evidence regarding the effects ofmindfulness-based
interventions on academic achievement and learning is inconclusive.

In the present study we aimed to test whether the addition of mindfulness practice
within a math game Decimal Point would contribute to students’ learning. Rather than
employing longer mindfulness training interventions on academic achievement as in
prior work [7], we applied short mindfulness inductions at the beginning of the learning
sessions to induce a state of mindfulness. Additionally, instead of applying mindfulness
exercises in groups [14], our students conducted those individually as part of the math
game. Given these differences, we aimed to investigate the effectiveness of state mind-
fulness for math learning and test the feasibility of individual mindfulness practice with
middle-school-aged children, built into a digital learning game.

2 A Mindfulness Study with the Decimal Point Learning Game

DecimalPoint [8] is a digital learning gamedesigned to helpmiddle schoolers learn about
decimals and decimal operations. The game is based on an amusement park metaphor
in which students play a series of mini-games targeted at common decimal misconcep-
tions. Each mini-game consists of a problem-solving activity (e.g., sorting a list of dec-
imal numbers from smallest to largest), followed by a multiple-choice self-explanation
question. Students get immediate feedback after each attempt and can continue making
attempts if their current answer is incorrect; they need to finish all exercises in the current
mini-game to move on to the next mini-game.

Extending on the initial study of the game [8], the current study examines whether
mindfulness practices may have similar impacts in a learning game, given their benefits
to executive control [5]. To this end, we compare a version of Decimal Point with
embeddedmindfulness inductions against two comparison conditions: the original game
version and an active comparison condition that incorporates thematically-appropriate
stories and jokes instead of mindfulness. The story version was created to control for
the amount of time spent on mindfulness inductions and additional material that was not
designed to induce mindfulness. Across the three versions of the game, we investigate
the following research questions:

RQ1: Do students who receive short mindfulness inductions during game play of a
digital learning gamedemonstrate different behaviors than other gameplaying students?
We hypothesized that mindfulness would enhance students’ executive control, leading to
students in the mindfulness condition spending more time and exhibiting fewer errors on
the mini-game problems and self-explanation questions than in the other two conditions.

RQ2: Do the students who receive mindfulness inductions learn more than other game
playing students? We hypothesized that students who received the mindfulness treat-
ment would show greater learning gains than the story and control treatments, as a result
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of enhanced executive functioning. Additionally, mindfulness may reduce anxiety and
thus free up working memory to help students to focus more on constructive learn-
ing processes that enhance learning (e.g., repairing misconceptions, connecting new
information to prior knowledge [3]).

3 Method and Materials

Our study was conducted in 5th and 6th grade classrooms across three public schools
in a mid-sized U.S. city during the fall of 2021. A total of 243 students participated
in the study; however, 77 were excluded from our analyses because they did not com-
plete all materials. The final sample included 166 students (76 males, 90 females), with
57 students assigned to the control treatment, 56 to the story treatment and 53 to the
mindfulness treatment. Students reported an average age of 10.84 (SD= 0.65). Students
participated in the study for a total of six days as part of their regular class activities. On
the first day, students completed a pretest. They then progressed through the materials
at their own pace for up to four additional days. In the mindfulness and story conditions,
students received their respective treatments (i.e., mindfulness induction or story) at the
beginning of each class. Students then completed a posttest right after finishing the game
and a delayed posttest one week later. The pretest, posttest, and delayed posttest con-
sisted of three isomorphic versions of a decimal test that were counterbalanced across
students and conditions. All tests included 42 items; as some items contained multiple
components, students could earn a total of 52 points on each test. Test items targeted the
same decimal misconceptions addressed in the mini-games.

Across the three treatment conditions, students played the same basic version ofDec-
imal Point as described above, and the order and content of themini-gameswas identical.
The key differences between conditions are as follows. TheMindfulness and Story con-
ditions both incorporated a brief, five-minute audio session that students listened to at the
start of each day of the study, prior to playing the game. In theMindfulness condition, the
audio content entailed an alien friend sharing mindfulness advice that prompted students
to close their eyes, focus on their breath and sounds in the environment, and let go of
passing thoughts [13]. In the Story condition, the audio content was related to science
fiction stories selected to be age appropriate, emotionally neutral (i.e., not emotionally
arousing or upsetting) and unrelated to the learning content. In addition, both conditions
featured an in-game minute-long reminder that shows up when the student has made
three consecutive incorrect attempts while playing. In the Mindfulness condition, stu-
dents would be reminded about mindfulness and encouraged to slow down, close their
eyes, and focus on their breath for a moment. In the Story condition, students would
instead listen to a series of jokes from the aliens. Each reminder would only show up at
most once every 10 min to avoid overwhelming the students; the reminders and stories
were also omitted when students were taking the tests. Finally, students in the Control
condition did not receive any activity with aliens before beginning to play the game each
day, nor did they receive any reminders based on errors. The content and structure of the
game they completed was identical to the game in the other conditions, but without the
story or mindfulness components.
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4 Results

For RQ1, descriptive statistics of students’ game play behaviors are included in Table
1. A series of one-way ANOVAs showed no significant condition effects on the number
of errors made on problem-solving in the game, F(2, 163) = 0.08, p = .93, ηp2 = .001,
or the amount of time students spent completing the problem-solving portion of the
mini-games, F(2, 163)= 0.047, p= .95, ηp2 = .001. Similarly, there was no significant
condition effect on the number of self-explanation errorsmade,F(2, 163)=0.23, p= .79,
ηp

2 = .003, or the amount of time students spent on the self-explanation questions, F(2,
163)= 0.31, p= .74, ηp2 = .004. Thus, our hypothesis that students in the mindfulness
condition would take more time and make fewer errors was not confirmed.

For RQ2, descriptive statistics of students’ test scores by condition are reported in
Table 1. A repeated-measures ANOVA tested learning condition as a between-subjects
factor and test time (pretest, posttest, and delayed posttest) as a within-subjects factor.
Results indicated a significant effect of test time, with students’ test scores improving
significantly across tests, F(2, 162) = 27.39, p < .001, ηp2 = .253. There was no main
effect of learning condition, F(2, 163) = 0.009, p = .99, ηp

2 < .001, and planned
comparisons revealed no differences between the control and the other two conditions,
p = .93, or between the mindfulness and story conditions, p = .93. There was also no
interaction between test time and learning condition, F(4, 324) = 1.52, p = .20, ηp

2

= .018, indicating that students’ test score improvements did not differ by condition.
Follow-up repeated measures analyses indicated that students’ test scores increased
significantly from pretest to posttest, F(1, 163) = 50.75, p < .001, ηp2 = .24, and from
pretest to delayed posttest, F(1, 163)= 45.39, p< .001, ηp2 = .22, but not from posttest
to delayed posttest, F(1, 163) = 0.44, p = .51, ηp2 = .003. In summary, our prediction
that students in the mindfulness condition would learn more than the other conditions
was not confirmed.

Table 1. Test performance, game play measures, and enjoyment ratings by condition, reported in
M (SD) format. The test scores are on a scale from 0–52 and the duration measures are in minutes.

Category\Condition Control (n = 57) Mindfulness (n = 53) Story (n = 56)

Pretest scores 18.40 (9.40) 19.74 (9.33) 18.80 (8.08)

Posttest scores 22.51 (10.29) 21.68 (10.33) 22.48 (9.42)

Delayed posttest scores 23.02 (11.12) 22.36 (10.49) 21.98 (10.37)

Problem-solving duration 63.88 (21.39) 63.78 (26.05) 62.69 (22.58)

Problem-solving errors 113.32 (51.25) 115.83 (68.18) 117.91 (69.16)

Self-explanation duration 11.73 (3.45) 12.10 (3.29) 11.61 (3.46)

Self-explanation errors 16.40 (7.21) 15.81 (7.90) 15.45 (7.19)
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5 Discussion

In contrast to prior work demonstrating the effectiveness of mindfulness inductions
on middle schoolers [5], our study results show no evidence that the mindfulness or
story treatments had an effect on students’ game behaviors or on learning outcomes. A
key element that could explain this difference is the study context. In previous studies,
mindfulness inductions were conducted as a teacher-led synchronous group activity or
when the student was alone. Our study instead examined mindfulness inductions as a
self-guided and self-paced activity in a classroom context, where the lack of mindfulness
feedback from teachers may undermine their effect. In addition, the presence of other
classmates who may be engaging in different game activities likely introduced more
distractions andmayhavemade studentsmore self-conscious about closing their eyes and
following alongwith themindfulness induction.While randomization of student learning
conditions within each classroom provides greater statistical power byminimizing class-
level effects, future research could test the same mindfulness intervention administered
at a classroom level so that all students would begin each day completing the same
intervention with their peers.

A different explanation is that the effect of mindfulness, if present, was only in
the short term and therefore not reflected in aggregate game play measures or post-
intervention assessments. Future work could validate this conjecture by administering a
short surveywhich probes students to reflect on their current mindfulness state right after
the daily induction [2]. Alternatively, it might be possible that mindfulness inductions
are less powerful in digital learning games, because the mechanisms through which
they enhance learning – i.e., improving executive functions, reducing students’ rush and
carelessness – are similar to those of learning games [1]. Decimal Point, in particular,
was shown to improve learning via reducing students’ cognitive disengagement [9].
In other words, mindfulness interventions might not be as useful in a digital learning
game, where attention is already enhanced, compared to other learning contexts where
student attention and engagement are lower. Future research could compare the same
mindfulness induction within Decimal Point and a non-game digital control that covers
the same content [8], to see whether mindfulness has a more pronounced effect in a
non-game context.

At the same time, there are a number of limitations that may influence our inter-
pretations of the results. First, due to COVID restrictions we could not be present in
the classroom to ensure that students were following the meditation guidelines, rather
than being idle. Likewise, we were not able to deploy sensing technologies (e.g., eye
tracking) to capture more nuanced data about students’ mindfulness practice. Finally,
the effect of mindfulness inductions may require a larger sample size to detect.

In conclusion, the findings from our study provide an important first step toward
identifying boundary conditions for when and how mindfulness meditation can be used
to support learning in classroom contexts and in conjunction with digital learning games.
As described above, future research on the classroom factors and types of digital learning
environments that are best suited to mindfulness inductions will contribute important
additional evidence for researchers and teachers seeking to understand the conditions
under which mindfulness inductions can be a useful learning tool.
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