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Preface

The 23rd International Conference on Artificial Intelligence in Education (AIED 2022)
was hosted by Durham University, UK. It was organized in a hybrid face-to-face and
online format. This allowed participants to meet in person after two years of running
AIED online only, which was a welcome change. However, as the world was only just
emerging from the COVID-19 pandemic and travel for some attendees was still a
challenge, online participation was also supported. AIED 2022 was the next in a
longstanding series of annual international conferences for the presentation of
high-quality research on intelligent systems and the cognitive sciences for the
improvement and advancement of education. It was hosted by the prestigious Inter-
national Artificial Intelligence in Education Society, a global association of researchers
and academics who specialize in the many fields that comprise AIED, including
computer science, learning sciences, educational data mining, game design, psychol-
ogy, sociology, linguistics, and many others.

The theme for the AIED 2022 conference was “Al in Education: Bridging the gap
between academia, business, and non-profit in preparing future-proof generations
towards ubiquitous AL” The conference hoped to stimulate discussion on how Al
shapes and can shape education for all sectors, how to advance the science and
engineering of intelligent interactive learning systems, and how to promote broad
adoption. Engaging with the various stakeholders — researchers, educational practi-
tioners, businesses, policy makers, as well as teachers and students — the conference set
a wider agenda on how novel research ideas can meet practical needs to build effective
intelligent human-technology ecosystems that support learning.

AIED 2022 attracted broad participation. We received 243 submissions for the main
program, of which 197 were submitted as full papers, 37 were submitted as short
papers, and nine were submitted as extended abstracts. Of the full paper submissions,
40 were accepted as full papers and another 40 were accepted as short papers. The
acceptance rate for both full papers and short papers was thus 20%.

Beyond paper presentations and keynotes, the conference also included a Doctoral
Consortium Track, an Industry and Innovation Track, Interactive Events,
Posters/Late-Breaking Results, and a Practitioner Track. The submissions for all these
tracks underwent a rigorous peer-review process. Each submission was reviewed by at
least two members of the AIED community, assigned by the corresponding track
organizers who then took the final decision about acceptance. The conference also
included keynotes, panels, and workshops and tutorials.

For making AIED 2022 possible, we thank the AIED 2022 Organizing Committee,
the hundreds of Program Committee members, the Senior Program Committee
members, the AIED Proceedings Chair Irene-Angelica Chounta, and our Program
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Chair assistant Jonathan DL. Casano. They all gave of their time and expertise gen-
erously and helped with shaping a stimulating AIED 2022 conference. We are extre-
mely grateful to everyone!

July 2022 Maria Mercedes (Didith) T. Rodrigo
Noboru Matsuda

Alexandra I. Cristea

Vania Dimitrova
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Invited Keynotes



The Role of AI and Gamification in the Future
of Healthcare

Lucia Pannese

imaginary, Milano, Italy
lucia.pannese@i-maginary.it

Abstract. In this keynote, Lucia Pannese shows how Al and Gamification
support medical practices and the impact that has on several health and care
interventions. Presenting a series of different examples about digital approaches
to health and care, this talk looks at the future of healthcare and to how learning
and development needs will be affected if AI and machine learning support
decision making and behavioural change.

The talk will start with a focus on the pervasiveness of gamification in
everyday life, something that usually people do not even recognize, given the
narrow understanding currently attributed to this life skill. After sharing defi-
nitions, understanding and some examples of gamification, game-based
approaches and enabling technologies for health and care, Lucia, who is a
mathematician by profession, will point at a series of critical issues that are too
often ignored in practical applications if machine learning and Al are applied in
these contexts. She will provocatively introduce some concepts of usefulness,
quantity of data, bias, measurement, clinical responsibility, clinical observation,
instability of models to show how complex and risky it is to produce an Al
based system.

This talk aims to trigger reflection and critical analysis at a time when
everyone is talking about Al and the danger of this extremely complex concept
just becoming a “buzzword” to attract attention without consideration of whe-
ther these solutions are genuinely innovative and useful.
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Abstract. In a workplace learning scenario in which workers in a sim-
ulated Material Recovery Facility learn to recognize and manipulate
objects on conveyer belts, we studied how imperfect guidance from a
machine learning (ML) assistant may impact learners’ experience and
behaviors. Specifically, in a randomized experiment (n = 181 partici-
pants from Amazon MTurk) we varied the assistant’s False Positive (FP)
and False Negative (FN) rates in detecting non-recyclable objects and
assessed the impact on learners’ performance, learning, and trust. We
also explored a soft highlighting [8] condition, whereby the assistant pro-
vides fine-grained information about how confident it is. We found evi-
dence that the FP/FN trade-off can impact learners’ performance when
working cooperatively with the assistant, and that the soft highlighting
condition may generate less trust from learners compared to the other
conditions. There was tentative evidence that workers’ behaviors were
impacted by the FP/FN trade-off of their assigned experimental con-
dition even after the ML assistant was removed. Finally, in a follow-up
study (n = 27) we found evidence that learners modulate their behaviors
based on the fine-grained confidence values conveyed by the assistant.

Keywords: Perceptual learning * Simulation-based learning -
Al-based feedback - Material recovery facility

1 Introduction

As the field of machine learning (ML) continues to grow and proliferate into
daily life, the number and diversity of subjects in which AI systems for edu-
cation (AIEd) can provide learners with automated help will expand as well.
Whereas classical AI methods such as expert systems were instrumental in cre-
ating intelligent tutoring systems (ITS) in highly structured domains such as
computer programming and high school mathematics in the 1980s-90s [10], ML
has opened new possibilities to provide scaffolding, guidance, and feedback in
more flexible and open-ended domains such as medicine [14], sign language [4],
teacher training [1,15,17], waste management [11], and many more. It also has
the potential to augment standard I'TS with new sensors that can better estimate
students’ emotions and thereby provide a more tailored learning experience [7].

© Springer Nature Switzerland AG 2022
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In AIEd systems based on classical Al techniques, the automated feedback
strategies are either manually programmed or inferred systematically from the
rules of the subject matter (e.g., laws of algebra). In contrast, ML provides more
flexibility because it can infer the correctness of a student’s answer, and suggest
helpful learning strategies, by harnessing swaths of both real and simulated data
from previous learners — all without the need for manually crafted heuristics. ML,
as the backbone of modern AIEd systems, has yielded powerful new feedback
mechanisms in intelligent learning platforms, e.g., automated testing methods
for novice programmers building interactive computer programs [13], and class-
room observation systems that can give teachers feedback about the quality of
their teaching based on audio [15] or video [1] of classroom interactions. The
reach of ATEd can thereby expand from traditional classroom-oriented subject
matter into more diverse fields, including the space of workplace learning where
human workers may acquire not just cognitive but also perceptual and motor
skills [16] to perform their jobs. This can manifest, for example, in an ITS or
perhaps a collaborative “assistant” that provides visual cues about which types
of objects in an airport screener are dangerous [2], or by suggesting a Python
implementation to a function whose specification was entered by the user [3].

ML in AIEd — Useful but Imperfect: Along with the great potential of
ML to expand the impact of ATEd come new challenges. One of the most severe
is that, since the system’s behavior is learned statistically so as to generalize
to new scenarios (e.g., to new students with answers similar, but not identical,
to those in the training set), its feedback is no longer guaranteed to be correct
— sometimes the AIEd system may make mistakes. Concrete instances of these
mistakes include telling a student that their solution to a computer programming
task is incorrect when in fact it is correct; suggesting to them a solution path
to a math problem that is either wrong or unnecessarily complicated; failing to
recognize the hand gesture of a student learning sign language; etc. Mistakes on
the part of the AIEd system may directly inhibit students’ learning by misguiding
and confusing them. Due to bidirectional influence of learning and trust between
a student and their teacher [12], such mistakes can also indirectly and negatively
impact learning if the student loses trust in the AI’s ability to help them. Given
an ML-based AIEd system’s fallibility, it is important to consider how to set the
learners’ expectations of and structure their interactions with the system so as
to optimize their learning.

How to Present Feedback on Binary Decisions: When developing ML-
based AIEd systems, the question arises of (1) whether, on some binary decision,
the machine should tend to err with more false positives (FP) or more false
negatives (FN). Binary decisions are ubiquitous in intelligent learning platforms,
e.g., judging whether a student’s hand-written solution in a mathematics ITS is
correct/correct, showing novice teachers a moment in a classroom observation
video when a teacher seems to speak angrily (or not) to their student, or flagging
an object as dangerous/non-dangerous in an augmented reality display to train
airport security officers. False negatives (misses) can result in missed learning
opportunities and overly optimistic self-assessments of learning, whereas false
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positives can confuse the student and damage trust in the AI. Related to the
optimum FP/FN trade-off is the question of (2) whether and how to provide to
the learner information about how confident the machine is in its own judgment;
might this information help the learner to interpret the feedback more judiciously
and preserve trust?

Case Study on Material Recovery Facilities: In this paper, we investigate
these two questions within a workplace learning case-study on material recovery
facilities (MRFs), i.e., recycling plants. MRF's sort objects by their materials so
that they can be bailed and reprocessed, and they form an important part of
waste management. MRF workers assist in this process by manually picking out
items that were incorrectly sorted by machines, as well as removing objects that
are dangerous. MRF work is arduous, with long shifts (often 10+ hours) and
physically demanding conditions, and can be dangerous (e.g., due to syringes
and other sharp objects on the belts). Because of high employee turnover, new
MRF workers must frequently be trained. Due to continually new kinds of man-
ufactured products that arrive at MRFs, workers must learn to recognize and
physically manipulate objects with different materials and appearance. Helping
new MRF workers to correctly recognize objects could thus boost the efficiency
of the MRF, improve waste management, and improve safety for workers (Fig. 1).

Score: 52

Round 1 of 3: Remaining '3
o A

Fig. 1. Left: A material recovery facility (MRF) in which workers sort through items
on conveyer belts. Center: The simulated MRF [11] used in our experiment on worker
training with automated guidance. Right: Examples of soft highlighting [8] by the
machine learning assistant to express its confidence to the learner about whether each
highlighted object should be removed from the conveyer belts. (Color figure online)

Research Contributions: The central research question that we examine is:
How does the automated guidance provided by a machine learning
assistant for an object detection task (recyclable vs. non-recyclable
objects on a MRF conveyer belt) affect learners’ performance, learn-
ing, trust, and behavior? Aligned with our goal of examining workplace learn-
ing, we recruit our research participants (n = 181) from Amazon Mechanical
Turk, a marketplace for online work. By varying the system’s detection thresh-
old (higher FP/lower FN; lower FP/higher FN; or a threshold-free “soft high-
lighting” [8] approach) while keeping its overall discriminability constant, we can
explore how the learners in this task may respond differently to the information
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they receive in terms of their willingness to complete the task, their ability to
perform the task when guidance is available, and the degree to which they learn
to do the task independently. Further, we explore how much the learners’ trust
the system. In a follow-up study (n = 27), we also explored, for just the soft
highlighting condition, whether participants use the confidence information con-
veyed by the highlight intensity to modulate their decisions about which objects
to move. Our paper is, to our knowledge, one of the first to explore how imperfect
guidance from an AIEd system can affect learners’ experiences.

2 Related Work

Imperfect AI and Trust: The past few years have seen growing interest in
the ML, human-computer interaction, as well as the AIEd communities, in how
humans trust AI and how they can work together cooperatively. Kocielnik et
al. [9] investigated how the FP/FN trade-off affected users’ perceptions of the
machine’s accuracy as well as their acceptance of a ML-based tool that detects
scheduling requests from free-text emails. They found that users had more favor-
able impressions of the system when the detection threshold was adjusted to give
a lower FN rate in exchange for a higher FP rate. Hsu et al. [5] trained an auto-
matic auto-grader of students’ short-answer responses about computer science
topics; they then investigated students’ perceptions of the accuracy and fairness
of the system. Further, they explored how students’ (mis-)understanding of how
the system worked internally could affect the answers that students constructed
and submitted. Finally, in a research study toward increasing learners’ trust in
Al-based feedback systems, Hossain et al. [4] studied how experts perceive the
feedback generated from an automatic explainable hand-gesture feedback system
for learners of American Sign Language.

Soft Highlighting to Convey the Machine’s Confidence: In research
within the intersection of data visualization, ML, and human-computer inter-
action, Kneusel et al. [8] explored whether human workers benefit more from a
ML-based object detector on visual perception tasks, such as examining satel-
lite imagery for specific objects, when they have access to the confidence of the
machine’s predictions. They devised a “soft highlighting” mechanism, whereby
the machine’s detections were colored with an intensity proportional to the con-
fidence of the predictions, and found that human workers performed better on
the task with “soft” highlights than with binary (hard) object predictions.

MRF Training System: Our work builds on a prior workplace learning study
by Kyriacou et al. [11], who created a MRF simulator to compare different train-
ing strategies for human workers who are learning to sort different objects on
the conveyer belts. Similarly to our work, they examined how different accuracy
characteristics of a machine learning assistant can affect learners’ performance.
In contrast to their work, we hold the overall discriminability of the assistant
constant and manipulate the FP/FN trade-off in isolation. Moreover, we intro-
duce a new soft-highlighting condition and explore how the learners may benefit
from and mimic the behaviors exhibited by the assistant.
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3 Experiment I

We conducted a randomized experiment in which participants learned to rec-
ognize and manipulate garbage objects of different types in a simulated MRF.
The simulator we used was based on that of [11] but extended to support a
soft highlighting condition (described above). During the training rounds, the
participants received automated guidance from a ML assistant about whether
each object is recyclable. This can potentially help them to learn to recognize
the object types more quickly and thereby perform better on the task.

3.1 Participants

The participants (n = 181) in our study were adults (>18 years) on Amazon
Mechanical Turk who had earned a “Masters” qualification.

3.2 Experimental Conditions

At the outset of the experiment, each participant was randomly assigned to one
of three different conditions: (1) FP = 0/FN = 0.11, i.e., the machine learn-
ing assistant will correctly highlight 89% of the non-recyclable objects and miss
11%; it will never falsely flag a recyclable object as non-recyclable; (2) FP =
0.11/FN = 0; the assistant never misses a non-recyclable object but occasion-
ally falsely flags recyclable object as non-recyclable; and (3) Soft highlighting:
every single object on the conveyer belt is highlighted, but the intensity of the
highlight corresponds to the confidence of the machine’s prediction. Importantly,
the overall discriminability of the object detector used for automated guidance
was held constant across all three conditions. The particular FP/FN values were
chosen based on previous work [11] with this simulator, which suggested that
the discriminability of the ML assistant needs to very high in order to be useful.

3.3 MRF Simulator

The simulator contains three conveyer belts, each of which has a different speed
and moves a never-ending stream of objects from left to right. In the task, the
goal is to remove only and all the non-recyclable items (syringes, broken glass,
coat-hangers, batteries, etc.) from the conveyer belts into a trash-can (a green
bucket shown at the top of the screen).

Machine Learning Assistant: During the training rounds (see Sect. 3.4), the
learner is aided by a simulated machine learning assistant that detects (with
imperfect accuracy) whether each object is recyclable or not. Across all three
experimental conditions, the discriminability of the assistant is held constant at
0.945. Specifically, we quantified discriminability as the widely used Area Under
the Receiver Operating Characteristics Curve (AUROC) metric. The AUROC
is equivalent to the probability, in a 2-alternative forced-choice task, that the
detector can correctly recognize the non-recyclable object from a random pair
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of objects (one recyclable, one not). In the two experimental conditions corre-
sponding to FP = 0/FN = 0.11 and FP = 0.11/FN = 0, a random number
generator determines whether each object is highlighted, depending on the FP
and FN rates and on whether the object is recyclable. In the third condition
corresponding to soft highlighting, no threshold is used, and instead the inten-
sity of the red color is proportional to a real-valued confidence score C' for that
object in the interval [0, 1]. In particular, if the object is recyclable, then C' is
drawn from a Beta distribution, i.e., C ~ Beta(2,4.675); if it is non-recyclable,
C ~ Beta(4.675,2). Under this generative process, non-recyclable objects tend
to have higher C values and thus are highlighted with a brighter red box. More-
over, the parameters for the probability distributions were chosen so that the
discriminability of the assistant is exactly 0.945 (i.e., P(C, > C%) = 0.945 where
C, and C} are the confidence values of a random non-recyclable and recyclable
object, respectively).

Scoring: In the pre-test, post-test, and each training round, the user’s score
starts at 100 and decreases by 1 whenever (a) the user misses a non-recyclable
object and it moves off the screen to the right; or (b) the user incorrectly moves
a recyclable item from the belt into the trash-can. Hence, the maximum score
in each round is 100, and it can decrease to 0 (or even below) if the participant
makes many mistakes. The training and testing rounds were essentially the same,
except that (a) the pre-test was shorter (1 min) than the other rounds (3 min),
and (b) the ML assistant was available only during the training rounds.

Good performance in the task requires quick and accurate visual recognition
of the objects and manipulation of the objects (using the mouse) from the belt
to the trash-can. There is also some strategy that can be beneficial to task
performance, e.g., prioritizing one belt over another due to the different speeds,
moving objects slightly so as to reduce occlusion, etc. Participants received $1.50
for completing the task; to incentivize good performance, they could also earn a
reward that increased linearly with their scores up to a maximum of $2.50.

3.4 Procedures

The experiment consisted of (1) a study overview; (2) task instructions; (3) pre-
test (1 min), during which no help from the ML assistant was provided; (4) two
rounds of training (3min each), during which the machine learning assistant
provided automated guidance; (4) post-test (3min), during which no help from
the machine learning assistant was provided; and (5) questionnaire about trust
in the system. All in all, the study takes about 12—-15min to complete.

3.5 Task Instructions

The instructions to the learners describe and show examples of the objects that
they should move from the belts into the green trash bucket. In addition, the
instructions explain that the machine learning assistant automatically flags cer-
tain objects as likely non-recyclable using a red rectangle. To set the users’ expec-
tations and promote effective usage of the assistant, the instructions explain:
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“The object detector is imperfect. You may find it useful to you as you play the
game as a way of focusing your attention on the correct objects, but you should
not rely on it completely. In particular, sometimes the detector will miss non-
recyclable objects and therefore not flag it. It may also make ‘false alarms’ and
highlight a recyclable object.”

3.6 Trust Questionnaire

To assess participants’ trust in the Al system after completing the task, we asked
them to complete a validated questionnaire on trust in technology [6], which con-
sists of 12 Likert items (e.g., strongly disagree to strongly agree with: “the system
is deceptive”) about the users’ impressions of the following attributes: deceptive,
underhanded, suspicious, wary, harm, confident, security, integrity, dependable,
reliable, trust, and familiar (some of these items are negatively scored). The
maximum score (most trusting) is 84 and minimum score is 12.

3.7 Measures

The simulator automatically records the participant’s score after every pre-test,
post-test, and training round. The scores on the pre-test tend to be higher than
in the other phases of the experiment since the pre-test is shorter (only 1 min),
and hence the participants have less time to make mistakes. The simulator also
records the responses to the trust questionnaire.

3.8 Results

A total of n = 181 total participants completed the task; in the FP = 0/FN = 0.11,
FP = 0.11/FN = 0, and soft-highlighting conditions, their numbers were 56, 60,
and 65, respectively. These numbers are not stat. sig. different (x?(2) = 0.67403,
p = 0.7139) from a uniform distribution, and hence we do not conclude that any
condition caused participants to drop out more often than another.

Figure 2 (left) shows the mean score (along with its standard error) across the
three rounds separately for each experimental condition. The difference in mean
pre-test scores across condition was not statistically significant (F'(2) = 0.906,
p = 0.406). As a general trend, participants in the FP = 0/FN = 0.11 condi-
tion tended to receive higher scores, followed by those in the soft highlighting
condition, and then the FP = 0.11/FN = 0 condition.

Figure 2 (right) shows the mean trust score (and s.e.) for each condition.

Task Performance with Automated Guidance We used a linear mixed-
effect model (repeated-measures design with subject id as the random effect
and pre-test score as a covariate) to analyze the scores during the training
rounds 1 & 2 when workers had access to the assistant. We found that: (1)
scores were stat. sig. higher when participants received guidance from the
assistant compared to on the post-test, when they did not receive guidance
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t FP=0/FN=0.11
FP=0.11/FN=0
601 } 4 Soft highlight 56|
50 541
401 | | 52
301 \ \ h 504
204 484
Pretest Training 1 Training 2 Posttest Trust
(1 min) (3 min) (3 min) (3 min)

Fig. 2. Left: Mean scores (and error bars for standard errors, shifted slightly for read-
ability) for the different phases of the study, split by condition. Note that, as the
pre-test is only 1 min and participants have less time to make mistakes, the scores tend
to be higher. Right: Mean (and s.e.) trust questionnaire results, split by condition.

(t(360) = 3.325, p < 0.001); and (2) participants in the FP = 0.11/FN = 0
condition received stat. sig. lower scores compared to those in the other con-
ditions (¢(178) = —1.992, p = 0.048). The soft-highlighting condition was also
associated with a lower score, but the effect was not stat. sig. (¢(178) = —1.341,
p = 0.1816).

In terms of participants’ actions, we found a stat. sig. difference in the number
of non-recyclable objects moved into the trash-can (F'(2) = 6.782, p = 0.001),
but not in the number of recyclable objects (F(2) = 1.301, p = 0.275), that
depends on the experimental condition. In particular, participants in the FP =
0.11/FN = 0 condition moved more non-recyclable objects (an average of 67.3
combined over rounds 2 & 3) compared to those in the FP = 0/FN = 0.11
(average of 59.9) or soft highlighting (58.1) conditions.

Learning to Perform the Task Without Guidance. We used ANOVA
(with pre-test score as a covariate) to assess whether participants’ scores on
the post-test differed with their experimental conditions. The difference was not
stat. sig. (F'(2) = 0.62, p = 0.539). In terms of participants’ behaviors, we found a
borderline effect in the number of trashed non-recyclable objects (F(2) = 2.734,
p = 0.0677): the average number of such objects was higher for participants
in the FP = 0.11/FN = 0 condition (32.4 objects) and soft highlighting (31.7)
conditions compared to those in the FP = 0/FN = 0.11 (27.6) condition.

Trust. With an ANOVA, we found that the trust score calculated from the
questionnaire responses was stat. sig. related to the experimental condition
F(2) = 4.173, p = 0.0177). In particular, the soft-highlighting condition was
stat. sig. negatively associated with trust (¢t = —2.778, p = 0.006).
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3.9 Discussion

Workers benefited from the guidance of the ML assistant, as evidenced by their
higher scores during training rounds compared to the post-test. The fact that,
during the training rounds, the mean scores in the FP = 0/FN = 0.11 con-
dition were less than 82 (which, based on how the simulator was constructed,
is the expected value if the participants perfectly followed the assistant’s guid-
ance) could indicate that participants were reluctant to accept all the assistant’s
advice, or that doing so was too difficult (possibly due to the fast pace of the
simulation). Also, the fact that mean scores in the FP = 0.11/FN = 0 condition
during training rounds were greater than 0 (which, due to the higher number
of recyclable compared to non-recyclable objects, was the expected value for
perfectly following the assistant in this condition), but were lower during the
post-test than during training rounds, suggests that participants in this con-
dition did use the MLA, but they did not follow its guidance blindly. In our
experiment, a higher False Positive rate of the assistant was associated with
lower performance. This contrasts with the result of [9], thus suggesting that the
optimal FP/FN trade-off is likely task-dependent based on the cost of each kind
of mistake.

There was no stat. sig. impact of condition on learning. However, there was
a borderline effect of condition on the number of non-recyclable objects that
were trashed during the post-test. This result is encouraging, especially given
the short study duration, and suggests that the training effect of the MLA may
linger in users’ behaviors even after the MLLA has been removed.

The soft highlighting condition was advantageous neither in terms of task
performance during training rounds nor in terms of learning. This contrasts with
[8], who found that participants could perceive more effectively when provided
with soft highlights rather than hard detections. Learners indicated that they
trusted the soft highlighting condition the least among the three assistant types.

4 Experiment II

Soft highlighting gives the learner information about the machine’s confidence
in its guidance. Does the learner’s likelihood of picking an object and moving
it to the trash-can increase when the object is highlighted with higher confi-
dence? To explore this, we conducted a follow-up experiment (n = 27 partici-
pants on Mechanical Turk) consisting of just the soft highlighting condition. We
assessed whether the probability distribution P(pick | ¢,isRecyclable) is equal
to P(pick | isRecyclable), where pick indicates whether or not the participant
picked the object; C' is the confidence score of the object; and isRecyclable is
either recyclable or non-recyclable. If the distributions are equal (for both values
of isRecyclable), then by definition, the participants’ decisions to pick or not pick
the objects is independent of the confidence scores. From Bayes’ rule, we obtain:

P(c | pick, isRecyclable) P(pick | isRecyclable)
P(c | isRecyclable)

P(pick | ¢,isRecyclable) =
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Hence, for either value of isRecyclable, we can evaluate the hypothesis

that the decision to pick/not pick is independent of ¢ by testing whether
P(c | pick,isRecyclable)
P(c | isRecyclable)
mated from the log data of participants’ actions in the MRF simulator about
the confidence scores of the objects they picked and whether they were recy-
clable or not; the denominator is given by the Beta distributions as described in

Sect. 3.3.

equals 1 for all values of C. The numerator can be esti-

4.1 Results

To estimate P(c | pick, isRecyclable) for isRecyclable = false and pick = true, we
computed a histogram over the confidence scores of the picked objects using a
bin width of 0.1 over the interval [0, 1]. We were primarily interested in whether
there was a population-level association between picking behaviors and the con-
fidence scores, and hence we computed a histogram over the events of all n = 27
participants, summed over both training rounds, separately for the recyclable
and non-recyclable objects. We then computed the corresponding histogram
based on the generative process of the confidence scores themselves using the
appropriate Beta distribution (see Sect.3.3). A x2-test showed a stat. sig. dif-
ference between the distributions, both for isRecyclable = true (x?(9) = 28.30,
p < 0.001) and for isRecyclable = false (x2(9) = 38.33, p < 0.001). Also, Fig.3

shows the probability ratio P(;(Icﬂiigi;sg %igle) both for the recyclable (left)

and non-recyclable (right) cases. Despite some outliers that are partly due to
small numbers of observations in the outer-most histogram bins, participants’
likelihood of picking an object tends to increase with larger C'.

1.50 1.50
1.25 1.25
1.00 1.00
0.75 0.75

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
MLA's Confidence C MLA's Confidence C

Fig. 3. Left: Relative probability increase of picking up and disposing of a recyclable
object (left) or a non-recyclable object (right), given the assistant’s confidence C.

4.2 Discussion

We found stat. sig. support for the hypothesis that learners do take into account
the assistant’s fine-grained confidence, as conveyed by the soft highlights, when
deciding whether or not to pick or an object. This effect was observed for both
the recyclable and the non-recyclable objects, indicating that the influence of the
confidence scores goes beyond simple distinctions in the object’s recyclability.
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From the perspective of the designer of an AIEd system to provide better guid-
ance and feedback to the user, this result is encouraging as it shows an example
of when the confidence information is perceived by and acted on by the learner.

5 Conclusions

We conducted two experiments (n = 181, n = 27) on a workplace learning task
in which participants learned to recognize and manipulate objects in a simulated
MRF. We varied the FP/FN trade-off of the ML assistant that automatically,
but imperfectly, highlighted objects that were deemed to be non-recyclable and
thus should be moved to the trash-can. Moreover, we explored whether and how
soft highlighting, rather than binary thresholding, of the guidance may impact
participants’ performance, learning, and trust. Our results indicate that (1) the
FP/FN trade-off can affect learners’ cooperative task performance with the assis-
tant; (2) there was tentative evidence that the assigned experimental condition
affected learners’ behaviors — in terms of how many non-recyclable objects were
trashed — even after the assistant was removed; and (3) soft highlighting impacted
learners’ trust as well as their behaviors in the task.

Limitations: The experiments we conducted were short (about 12-15 min).
Moreover, the learning task we examined was about perception and motor con-
trol in a fast-paced environment. It is possible that different trends would be
found for different learning tasks (e.g., cognitive rather than perceptual).

5.1 Future Research

Better Framing of the AI Guidance/Feedback: Our results suggest that
learners trust the extra confidence information provided by the soft highlighting
condition less than a simpler binary guidance mechanism. In order to be both
more trustworthy and effective, the learners might need more thorough framing,
and possibly even some form of “pre-training”, about how the system works,
what its intentions are, and how they ought to make use of it.

Explaining the Optimal FP/FN Trade-Off: Given the contrasting results
of our study compared to [9], it would be interesting to change the scoring system
so that different mistakes (FP versus FN) resulted in different penalties, and to
investigate whether this affected the optimal FP/FN trade-off.
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Abstract. In this work, we evaluate the risk of early dropout in under-
graduate studies using causal inference methods, and focusing on groups
of students who have a relatively higher dropout risk. We use a large
dataset consisting of undergraduates admitted to multiple study pro-
grams at eight faculties/schools of our university. Using data available at
enrollment time, we develop Machine Learning (ML) methods to predict
university dropout and underperformance, which show an AUC of 0.70
and 0.74 for each risk respectively. Among important drivers of dropout
over which the first-year students have some control, we find that first
year workload (i.e., the number of credits taken) is a key one, and we
mainly focus on it. We determine the effect of taking a relatively lighter
workload in the first year on dropout risk using causal inference methods:
Propensity Score Matching (PSM), Inverse Propensity score Weighting
(IPW), Augmented Inverse Propensity Weighted (AIPW), and Doubly
Robust Orthogonal Random Forest (DROrthoForest). Our results show
that a reduction in workload reduces dropout risk.

Keywords: University dropout - Machine learning - Causal inference -
Average treatment effect

1 Introduction

Research on actionable indicators that can lead to interventions to reduce
dropout has received increased attention in the last decade, especially in the
Learning Analytics (LA) field [18,29,31,32,34]. These indicators can help pro-
vide effective prevention strategies and personalized intervention actions [17,27].
Machine Learning (ML) methods, which identify patterns and associations
between input variables and the predicted target [25], have been shown to be
effective at this predictive task in many LA studies [1,4,10,15,23,26].

Dropout is a serious problem especially in higher education, leading to social
and financial losses impacting students, institutions, and society [7]. In particu-
lar, the early identification of vulnerable students who are prone to fail or drop
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their courses is necessary to improve learning and prevent them from quitting
and failing their studies [20].

We remark that among students who discontinue their studies, some sub-
groups are over-represented, something that needs to be considered when design-
ing dropout-reduction interventions. For example, in the UK, older students at
point of entry (over 21 years) are more likely to drop out after the first year com-
pared to younger students who enter university directly from high school [17],
something that we also observe in our data. In the US, graduation rates among
ethnic minority university students are lower than among White students [30]. Dis-
parities in dropout risk have been studied in previous work [11,13,14,16]. Recent
studies [8,21,22,24] look at the influence on student’s performance and dropout of
factors such as having a scholarship or being employed. In our work, we consider
the increased dropout risk of older students and of students who do not enter uni-
versity immediately after high school, and we study the effects of some features
such as age and workload (i.e., number of credits taken on the first year).

Research Contribution. In this work, we use causal inference methods to study
the effects of several features on the risk of early dropout in undergraduates
students. We consider students enrolled between 2009 and 2018 in eight centers
at our university. The average dropout rate we observe among these students
is 15.3%, which is lower than the European average (36%) [35]. The originality
of our contribution relies on its focus on students who have higher risk, the
combination of features, the use of causal inference methods, and the size and
scope of our dataset.

Specifically, we predict the risks of early dropout (i.e., not enrolling on the
second year) and underperformance (failing to pass two or more subjects in the
first year in the regular exams') using Machine Learning (ML) methods. ML
models are created using features available at the time of enrolment and the
predictive performance of the models is evaluated in terms of AUC-ROC (Area
Under ROC Curve). For the sake of space, we focus our exposition on dropout.

Among features available at the time of enrolment, we obtain the most impor-
tant features for predicting dropout in our setting, which are the workload (num-
ber of credits taken) in the first year, admission grade, age, and study access
type. Focusing on the workload, which is the most important feature and one over
which first-year students have some level of control (only a minimum number of
credits is established), we compute its effect on dropout risk in different age and
study access type groups. We use causal inference methods to test the effects of
combinations of theses features, and calculate the average treatment effect on
dropout; the methods we use are the most used in the literature [2,3] includ-
ing Propensity Score Matching (PSM) [28], Inverse-Propensity score Weighting
(IPW) [6], Augmented Inverse-Propensity Weighted (AIPW) [12], and Doubly
Robust Orthogonal Forest Estimation (DROrthoForest) [5] methods.

! These students have an opportunity of taking a resit exam which may finally result
in passing or failing the subject, but given that passing the regular exam at the end
of the course is expected, we consider failing the regular exam as underperforming.
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The rest of this paper is organized as follows. After outlining related work on
Sect. 2, the dataset used in this study is described and analysed in Sect.3. The
methodology is presented in Sect.4. Results are given in Sect. 5, and finally, the
results are discussed and the paper is concluded in Sect. 6.

2 Related Work

Machine Learning (ML) methods have been used to predict dropout and detect
students at risk in higher education and play essential roles in improving the
students’ performance [1]. In a reference [4], the impact of ML on undergraduate
student retention is investigated by predicting students dropout. Using students’
demographics and academic transcripts, different ML models result in AUCs
between 0.66 and 0.73. Another reference [7] develops a model to predict real-
time dropout risk for each student during an online course using a combination
of variables from the Student Information Systems and Course Management
System. Evaluating the predictive accuracy and performance of various data
mining techniques, the study results show that the boosted C5.0 decision tree
model achieves 90.97% overall predictive accuracy in predicting student dropout
in online courses. In a study [23], early university dropout is predicted based on
available data at the time of enrollment using several ML models with AUCs
from 0.62 to 0.81. Similarly, in a recent study [10], several ML methods are used
to predict the dropout of first-year undergraduate students before the student
starts the course or during the first year.

Some studies look at the features driving dropout. A reference [9] identifies
factors contributing to dropout and estimates the risk of dropout for a group
of students. By presenting the computed risk and explaining the reasons behind
it to academic stakeholders, they help identify more accurately students that
may need further support. In a research [33], the potential relationship between
some features (academic background, students’ performance and students’ effort
dimensions) and dropout is investigated over time by performing a correlation
analysis on a longitudinal data collected spanning over 11 years. The results show
that the importance of features related to the academic background of students
and the effort students make may change over time. On the contrary, perfor-
mance measures are stable predictors of dropout over time. Influential factors
on student success are identified in a reference [19] using subgroup discovery;
this uncovers important combinations of features known before students start
their degree program, such as age, sex, regional origin or previous activities.

Recent work uses sophisticated statistical methods including causal infer-
ence. In a very recent paper [21], using propensity score matching (PSM) it is
investigated whether university dropout in the first year is affected by participa-
tion in Facebook groups created by students. The estimated effect indicates that
participation in social media groups reduces dropout rate. Another recent paper
[24], implements an uplift modeling framework to maximize the effectiveness of
retention efforts in higher education institutions, i.e., improvement of academic
performance by offering tutorials. Uplift modeling is an approach for estimating
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the incremental effect of an action or treatment on an outcome of interest at the
individual level (individual treatment effect). They show promising results in
tailoring retention efforts in higher education over conventional predictive mod-
eling approaches. In a study, the effect of grants on university dropout rates is
studied [22]. The average treatment effect is estimated using blocking on the
propensity score with regression adjustment. According to their results, grants
have a relevant impact on the probability of completing college education.

In our paper, we carefully measure the effect of the most important features
(the number of credits in the first year, age, and study access type) on the early
risk of dropout in undergraduate studies. This effect is obtained for combina-
tions of these features. The Average Treatment Effect (ATE) is measured using
multiple causal inference methods [2,3] as discussed in the introduction. It is
noteworthy that according to a recent survey, the methods we use in this paper
have not been applied in related studies so far [1].

3 Dataset

The anonymized dataset used in this study has been provided by Universi-
tat Pompeu Fabra and consists of 24,253 undergraduate students who enrolled
between 2009 to 2018 to 21 different study programs offered by eight academic
centers. From this population, about 5% of cases were discarded for various rea-
sons: 54 had an external interruption in their education between the first and
second study year, 469 students did not have grade records (dropped out before
starting), 560 students were admitted but did not enroll for the first trimester,
and 74 cases did not have a study access type. Finally, 23,096 cases remained.

Students were admitted to university through four access types: type I stu-
dents took a standard admission test (81%), type II students moved from incom-
plete studies in another university or were older than 25 (10%), type III students
completed vocational training before (7%), and type IV students completed a
different university degree before (2%). First year courses add up to a total of
60 credits across all study programs, this is also the median number of credits
taken by first year students. However, students are also free to take additional
credits out of different educational offers at the university such as languages,
sports, and solidarity action.

The main studied outcome is dropout and consists of students who enroll
in the first year but not in the second year. We also studied underperformance,
which we defined as failing two or more subjects of the first year in the regular
exams. Out of 23,096 cases, 3,531 students drop out (15.3%) and 6,652 students
underperform (28.8%). Per-center dropout, underperformance, and other fea-
tures are shown in Table 1. There are various differences among centers.? The
students in the School of Engineering and Faculty of Humanities have the high-
est dropout and underperformance rates and the Faculty of Communication has

2 ENG: Engineering, HUM: Humanities, TRA: Translation and Language Sciences,
POL: Political and Social Sciences, HEA: Health and Life Sciences, ECO: Economics
and Business, COM: Communication.
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Table 1. Per-center statistics: number of students, drop-out rate, underperformance
rate, percentage of national students, percentage of men, average age, average first year
credits, average grade on the first year, and percentage of students in access type 1.

Center |N Dropout | Underperf. | National | Male % | Avg. |Avg. |Avg. |Access
rate rate % age |credits | grade |typel
ENG 2,444 | 41% 56% 89% 79% 19.4 |63.4 |4.6 65%
HUM 1,749 | 22% 33% 90% 32% 20.3 |63.1 5.9 76%
TRA 2,292 | 16% 28% 88% 18% 19.3 629 6.3 83%
POL 1,683 | 14% 27% 94% 55% 18.8 63.1 6.2 87%
HEA 1,206 | 14% 16% 93% 25% 19.0 60.2 |7.2 82%
LAW 5,479 | 12% 32% 92% 33% 19.3 |62.5 6.0 79%
ECO 5,707 9% 26% 93% 47% 18.5 1629 6.3 88%
COM 2,536 | 7% 7% 96% 27% 18.8 |61.7 |75 84%
All 23,096 |15% 29% 92% 40% 19.1 62.6 |6.2 81%

the lowest dropout rate and the best performance. In the Faculty of Communica-
tion, which has the lowest dropout and underperformance rates, there are more
national students compared to other schools. In the School of Engineering, with
the highest dropout and underperformance rates, males are in the majority. The
average age in the two centers with the highest dropout and underperformance
rates (School of Engineering and Faculty of Humanities) is higher compared
to other faculties. In these two centers, the percentage of students admitted
through a standard test (study access type I) is lower than other centers, and we
can observe higher average number of credits and lower average grades in their
first year compared to others. In the Faculty of Humanities, 22% of the students
drop out (that includes 38% of those who underperform), while in the Faculty
of Law, with almost the same underperformance rate, only 12% of the students
drop out (including 18% of those who underperform). This might be partially
explained because in the Faculty of Law, students are one year younger (19.3
vs 20.3 years old on average) and are also slightly more likely to come directly
from high school (study access type I: 79% vs 76%).

4 Methodology

Our study focuses on modeling dropout and underperformance risks using data
available at the time students enrol. The feature set for our two models consists
of demographics (gender, age, and nationality), study access type, study pro-
gram, number of first year credits, and average admission grade. Different ML
algorithms: logistic regression (LR), multi-layer perceptron (MLP), and decision
trees are used to predict the risks. Both ML models are trained using students
enrolled between 2009 to 2015 (16,273 cases), and tested on students enrolled in
2016, 2017, and 2018 (6,823 cases). Due to space consideration and because of
the severity of dropout, we mainly focus on this risk. Using a feature selection
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Table 2. Dropout rate (%) across groups defined by age, workload (number of credits),
and access type. Differences of ten percentage points or more appear in boldface.

Center ENG |HUM | TRA POL HEA |LAW ECO | COM|All
Age > Avg. age 45 28 24 21 |13 21 16 12 26
Age < Avg. age 39 21 15 12 |15 10 |8 6 13
Access types III/IV 44 28 27 |23 16 18 21 11 24
Access types I/11 40 22 16 14 14 11 9 6 14
Credits > 60 47 29 22 22 |21 19 11 7 18
Credits < 60 39 20 15 13 |13 10 9 6 14
Age > Avg. age & credits > 60 |53 |29 33 (29 |13 33 18 13 32
Others 39 22 16 13 14 11 9 6 14
Acc. types III/IV & credits > 60|51 |36 61 |27 |15 33 |23 |10 30
Others 40 22 16 14 14 11 9 7 15

method based on decision trees (CART), we find that among the features avail-
able at the time of enrolment, the most important features in predicting dropout
risk are the number of credits in the first year (workload), admission grade, age,
and study access type.

In Table 2, we compare the dropout rate of different student groups in terms
of these features and some of their combinations (due to space constraints, we
omit some combinations). This comparison shows the following results. Students
older than the average age have higher rate of dropout than younger students,
across all centers except the Faculty of Health and Life Sciences (HEA). Students
admitted through study access types III and IV have a higher dropout rate
compared to the cases admitted through access types I and II; and students
taking more credits than the median also have higher dropout rate. Considering
combinations of these features, we can see that mostly older students with a
number of credits larger than the average, as well as students admitted through
access types III and IV who take a larger number of credits than the average
have higher dropout rates. Results for underperformance (omitted for brevity)
are similar, except in two senses: they do not hold for Engineering (ENG) and
Humanities (HUM), possibly in part due to the overall lower grades in these
centers compared to all others (Table 1), and they do not hold for credits alone,
but for credits in combination with other features.

We aim to determine the causal effects on dropout of the features we studied
by the following intervention: taking a workload in the first year of less credits
than the median. The number of credits taken is a feature over which students
have some degree of control at the enrolment time. Since higher dropout rates
are observed among older students and students with access types III and IV,
we are interested in the following scenarios:

— Scenario 1: in this scenario, the study group is limited to the first-year stu-
dents who are older than the mean. Among these, those with less workload
(credits < median) are considered as treated and those with more workload
(credits > median) are regarded as a control group.
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— Scenario 2: in this scenario, the study group are all students. Older students
taking less workload (credits < median) plus all younger students are consid-
ered as treated, and older students with more workload (credits > median)
are regarded as a control group.

— Scenario 3: in this scenario, the study group is limited to students from
access types III and IV. Among these, students with less workload (cred-
its < median) are considered as treated and students with more workload
(credits > median) are regarded as a control group.

The propensity of treatment is estimated in each scenario using Machine Learn-
ing (ML) models and input features including demographics (gender and nation-
ality), study programs, and average admission grade. In scenarios 1 and 2, study
access type is also added as a feature, and in scenario 3, age is added as a fea-
ture. We compute the Average Treatment Effect (ATE) of each treatment on
the dropout probability using various causal inference methods:

— The propensity score matching method [28], in which data is sorted by propen-
sity score and then stratified into buckets (five in our case). In our work, we
obtain ATE by subtracting the mean dropout of non-treated (control) cases
from treated ones in each bucket.

— Inverse-Propensity score Weighting (IPW) [6]: The basic idea of this method
is weighting the outcome measures by the inverse of the probability of the
individual with a given set of features being assigned to the treatment so that
similar baseline characteristics are obtained. In this method, the treatment
effect for individual 7 is obtained using the following equation:

_ WY (=W

TE;
Di 1—p;

(1)

W,; shows treatment (1 for treated and O for control cases), p; represents
probability of receiving treatment (propensity score of treatment), and Y;
shows dropout (1 if drop out and 0 if not drop out) for individual i.

— Augmented Inverse-Propensity Weighted (AIPW) [12]: This method com-
bines both the properties of the regression-based estimator and the IPW
estimator. It has an augmentation part (W; — p;)Y; to the IPW method, in
which 172 is the estimated probability of dropout using all features applied to
the propensity score model plus the treatment variable. So, this estimator can
lead to doubly robust estimation which requires only either the propensity or
outcome model to be correctly specified but not both. We can compute the
treatment effect on individual ¢ as:

_ WY = (Wi —p)Yi (1= Wy)Y; — (Wi — pi)Yi
i L—pi

TE, (2)

— Causal forests from EconML package [5]: This method uses Doubly Robust
Orthogonal Forests (DROrthoForest) which are a combination of causal
forests and double machine learning to non-parametrically estimate the treat-
ment effect for each individual.
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Table 3. AUC-ROC of the prediction of dropout and underperformance across centers.
Centers are sorted left-to-right by decreasing dropout rate.

Center All ENG|HUM TRA | POL |HEA | LAW | ECO | COM
Dropout 0.70/0.72 |0.72 |0.68 |0.67 |0.57 |0.64 |0.67 0.68
Underperformance | 0.74 | 0.82 |0.80 |[0.73 |0.69 |0.53 |0.64 |0.69 |0.76

Table 4. AUC-ROC of propensity score prediction.

Scenario 1 | Scenario 2 | Scenario 3
N 3,866 23,096 1,963
Model | MLP MLP LR
AUC |0.75 0.91 0.75

In IPW, AIPW, and DROrthoForest, we obtain the individual treatment
effect T E;, which is the difference between the outcomes if the person is treated
(treatment) and not treated (control). In other words, this effect is the difference
of dropout probability when the student is treated and not treated; a negative
value shows a reduced dropout risk and a positive value indicates an increased
dropout risk. The resulting ATE is the average over individual treatment effects.

5 Results

The ML-based models of dropout and underperformance obtained using an MLP
(Multi-Layer Perceptron) with 100 hidden neurons show the best predictive per-
formance, with AUC-ROC of 0.70 and 0.74 for each risk respectively. Table 3
shows the AUC-ROC per center, and we observe that the AUC-ROC is in gen-
eral higher for centers with higher dropout and underperformance rates. We also
observe that dropout and underperformance predictions are not reliable for some
centers, particularly Health and Life Sciences (HEA), and Law, where the AUC
is less than 0.65.

For the three scenarios introduced in Sect. 4, the best predictive performance
results obtained for the propensity score of the related treatment are shown on
Table 4 in terms of AUC-ROC. Propensity is better predicted for scenarios 1 and
2 with the Multi-Layer Perceptron (MLP) and for scenario 3 with the Logistic
Regression (LR). In each scenario, we removed study programs with relatively
low predictive performance. According to the AUC values, ML models show
accurate results in all of the scenarios, especially in scenario 2. In all scenarios,
there is an overlap in the distribution of the propensity scores of treatment and
control groups to find adequate matches (figure omitted for brevity). This is a
necessary condition to be able to apply some of our methods.

Our goal is to determine whether these “treatments,” which have a common
feature of involving less workload, reduce dropout rate. The Average Treatment
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Table 5. ATE obtained using Propensity Score Matching with five buckets.

Propensity | 1. Low | 2. Med-low | 3. Med | 4. Med-high | 5. High
Scenario 1 | 0.18 0.04 —0.05 |0.02 —0.08
Scenario 2 | —0.04 |0.03 0.00 0.02 —0.42
Scenario 3 | 0.04 —0.08 —0.17 10.30 —-0.22

Table 6. IPW, AIPW, and DROrthoForest results estimating the Average Treatment
Effect (ATE) and its 95% confidence interval [lower-ci, upper-ci] in three scenarios.

Scenario | IPW ATPW DROrthoForest

lower-ci | ATE | upper-ci | lower-ci | ATE | upper-ci | lower-ci | ATE | upper-ci
Scenario 1 | —0.06 |0.02 |0.11 —0.01 |0.07 |0.15 —0.07 | —0.06 | —0.05
Scenario 2 | —0.03 | 0.03 |0.09 —0.06 |0.01 |0.08 —0.04 |—0.04|—0.03
Scenario 3 | —0.12 —0.01/0.10 —0.10 0.01 | 0.12 —0.07 —0.05| —0.03

Effect (ATE) obtained using propensity score matching is shown on Table5.
Across all three scenarios we can see mixed results, as in some propensity buck-
ets the treatment increases the risk of dropout (scenario 1, bucket “1. Low”;
scenario 3, bucket “4. Med-high”) while in other cases the results are neutral
or large reduction. In general, the results suggest that in high propensity to
treatment conditions (bucket “5. High” i.e., students who are already likely to
take less workload) there is a substantial reduction of the probability of dropout,
particularly in scenarios 2 and 3.

The ATE values obtained from IPW, AIPW, and DROrthoForest methods
are shown in Table 6 for all scenarios. In the case of IPW and ATPW, we can see
that the 95% confidence intervals (from “lower-ci” to “upper-ci” in the table)
contain the value zero. This means that the uncertainty in these methods is large
and we cannot establish with them whether there is a change in the dropout risk
due to the treatment. However, the results with the DROrthoForest method,
which is a combination method of causal forests and doubly robust learner, are
all negative with confidence intervals that do not contain the zero; indeed, they
show a reduction of the probability of dropout of about 5% points in all three
scenarios because of the treatment.

6 Discussion, Conclusions, and Future Work

In this study, we first created ML models to predict dropout (students who enroll
in the first year but do not show up in the second year) and underperformance
(failing two or more subjects in the regular exams of the first year), using only
information available at the time of enrollment. The obtained AUC-ROC of our
models were 0.70 and 0.74 for dropout and underperformance risks respectively,
which shows a relatively reliable prediction of students at risk. This is partic-
ularly true for centers having large risk of dropout or underperformance, while
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the performance of the same models for centers having lower risk is lower. This
is to some extent expected and in those cases we are modeling a phenomenon
that is more rare.

Next, we focused in dropout risk prediction and found that workload (first
year credits) was an important feature. We also compared dropout risk across
various groups of students. The comparison showed that to a large extent there is
higher probability of dropout in older students (age > average-age), in students
taking a higher workload (more first year credits than the established minimum
and the median), and in students admitted through access types III and IV.

We considered three scenarios using a combination of these features. In these
scenarios, interventions were designed having the common characteristic of a
reduced workload for students. In each scenario, the propensity score of the
treatment was obtained with AUC-ROC of 0.75-0.91 using ML-based models.
Then, for each scenario, the Average Treatment Effect (ATE) on dropout was
computed using causal inference methods. The results suggest a negative effect,
i.e., a reduction of risk of dropout, following a lower number of credits taken
on the first year. An actionable recommendation that these results suggest is
to ask students at risk (in this study, older students and students admitted
through access types III and IV) to consider taking a reduced workload (e.g., the
minimum established), or to ask educational policy makers to consider revising
the regulations that establish the minimum number of credits (e.g., to reduce
the current minimum).

In addition to creating ML models for early prediction of dropout and under-
performance risks that exhibit high predictive performance, the originality of this
contribution is focusing on the vulnerable groups of students prone to dropout,
studying combinations of different features such as workload, age, and study
access type, and using different causal inference models to calculate the effects
of these features on dropout in terms of ATE. Causal inference methods such
as the ones we used provide a path towards effectively supporting the students.
They also allow to perform observational studies, as education is a domain in
which some types of direct experimentation might be unethical or harmful. We
also used a large dataset and our results hold across substantially diverse study
programs. We stress that the methodology we described is broadly applicable.
Our findings are likely to be specific to this particular dataset, but show the
general effectiveness of the methodology in this setting.

More scenarios can be defined in terms of other combinations of the relevant
features, to determine their effects on dropout or underperformance. Addition-
ally, the causal inference methods used in this study can also be applied to other
risks faced by higher education students.
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Abstract. Block-based programming environments are increasingly used to
introduce computing concepts to beginners. However, novice students often
struggle in these environments, given the conceptual and open-ended nature of
programming tasks. To effectively support a student struggling to solve a given
task, it is important to provide adaptive scaffolding that guides the student towards
a solution. We introduce a scaffolding framework based on pop quizzes presented
as multi-choice programming tasks. To automatically generate these pop quizzes,
we propose a novel algorithm, PQUIZS YN. More formally, given a reference task
with a solution code and the student’s current attempt, PQUIZSYN synthesizes
new tasks for pop quizzes with the following features: (a) Adaptive (i.e., individ-
ualized to the student’s current attempt), (b) Comprehensible (i.e., easy to com-
prehend and solve), and (c) Concealing (i.e., do not reveal the solution code). Our
algorithm synthesizes these tasks using techniques based on symbolic reasoning
and graph-based code representations. We show that our algorithm can generate
hundreds of pop quizzes for different student attempts on reference tasks from
Hour of Code: Maze Challenge [11] and Karel [9]. We assess the quality of these
pop quizzes through expert ratings using an evaluation rubric. Further, we have
built an online platform for practicing block-based programming tasks empow-
ered via pop quiz based feedback, and report results from an initial user study.

Keywords: Block-based visual programming - Scaffolding - Task synthesis

1 Introduction

The emergence of block-based visual programming platforms has made coding more
interactive and appealing for novice students. Block-based programming uses “code
blocks” that reduce the burden of syntax and focuses on key programming con-
cepts. Led by the success of languages like Scratch [33], initiatives like Hour of
Code by Code.org [12], and online courses like Intro to Programming with Karel by
CodeHS.com [9,25], block-based programming has become integral to introductory

CS education.
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Programming tasks on these platforms are conceptual and open-ended, requiring
multi-step deductive reasoning to solve, thereby making them challenging for students.
To effectively support a struggling student to solve a particular task, it is important to
provide feedback on their attempts. However, on platforms that have millions of stu-
dents, it is infeasible for human tutors to provide feedback. Hence, there is a critical
need for automated feedback generation systems to provide personalized support to
students [13,22]. Existing work in the domain has explored various methods of person-
alized feedback generation within a task, such as providing next-step hints in the form
of next code blocks to use in a student attempt [26,31,35,36,44], providing adaptive
worked examples [28,32,43], and providing data-driven analysis of a student’s miscon-
ceptions [5,6,16,24,39-41].
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Fig. 1. Illustration of our pop quiz based framework. The “Task” panel shows an input task 7™
from HOC [11], the student’s current attempt C™", and the solution code C'™* (not revealed
to the student). The student is currently unsuccessful in solving the task: the current attempt
C™" does not solve the visual puzzle within the maximal number of permitted blocks (7 blocks)
and does not use any of the required constructs (REPEATUNTIL and IFELSE constructs). The
“Pop Quiz” panel shows a pop quiz generated by our algorithm in the form of task-code pair
(T C%%) along with a multiple choice question, introducing the REPEATUNTIL construct.
After the student solves the pop quiz, they resume working on the input task. The framework
would be invoked when a student needs help; importantly, the pop quizzes presented to the student
are adaptive w.r.t. the student’s current attempt C™™"“. Moreover, our algorithm generates pop
quizzes that are easy to comprehend and solve, and C" sufficiently conceals C™™*.

In this paper, we investigate an alternate method of personalized feedback gen-
eration that guides a student towards a task’s solution while involving inquiry-driven
and problem-solving aspects [14]. In particular, we introduce a scaffolding framework
based on pop quizzes that contain new programming tasks presented as multi-choice
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questions.! Our framework is inspired by prior studies that showed the efficacy of multi-
choice questions in helping novice students learn to code [17,19,30,38,42]. The frame-
work is designed to be invoked as follows: Given a task and a student’s current unsuc-
cessful attempt, the framework can help the student by presenting a pop quiz intended to
resolve their misconception. For the scaffolding to be effective, we center the design of
the new programming task for a pop quiz around three features: Adaptive, Comprehen-
sible, and Concealing; see details in Fig. 1 and Sect. 2.1. However, hand-crafting these
new quizzes is time-consuming and potentially error-prone when required for a large
number of tasks and different student attempts. To this end, we seek to automatically
generate these pop quizzes by synthesizing new programming tasks.

1.1 Key Challenges and Our Contributions

There are several challenges in synthesizing new visual programming tasks with the
above mentioned features, including the following: (i) current techniques for synthe-
sizing visual programming tasks do not adapt to student attempts [1]; (ii) the mapping
from the space of visual tasks to their solution codes is highly discontinuous as shown
in [1], and hence task mutation based techniques are ineffective [27,37]; (iii) the space
of possible tasks and their solutions is potentially unbounded, and hence techniques that
rely on exhaustive enumeration are intractable [2,4,37].

In this work, we develop a novel algorithm, PQUIZSYN, that synthesizes pop
quizzes with the desirable features of our scaffolding framework. Our algorithm over-
comes the above-mentioned challenges by using techniques of symbolic execution,
search algorithms, and graph-based code representations. Our key contributions are: (I)
We present a modular and extensible algorithm for generating pop quizzes that oper-
ates in three stages (see Sects.2 and 3);> (II) We show that our approach can generate
hundreds of pop quizzes for different types of student attempts on reference tasks from
real-world programming platforms (see Sect. 4); (III) We assess the quality of our algo-
rithm through expert ratings using a multi-dimensional evaluation rubric (see Sect. 5);
(IV) We have built an online platform with our framework and demonstrate the utility
of pop quiz based feedback through an initial user study (see Sect. 6).’

1.2 Additional Related Work

Feedback via Modelling Programming Concepts. Apart from the above-mentioned
methods such as next-step hints, there has been extensive work on feedback generation
via modelling programming concepts. Here, several techniques have been proposed,
including: (a) detecting challenging concepts by analyzing student attempts [6,39,40];
(b) discovering student misconceptions using task-specific rubrics and neural program
embeddings [41]; (c) defining concepts through knowledge components [3,15,34].

! We refer to these multi-choice questions as “pop quizzes” as the framework could present these
quizzes whenever a student needs help [7].

2 Implementation of the algorithm is publicly available at https://github.com/machine-teaching-
group/aied2022_pquizsyn_code.

3 https://www.teaching-blocks-hints.cc/.
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Evaluation of Feedback Methods. An important aspect to consider when develop-
ing feedback generation methods is their evaluation criteria. Most next-step feedback
generation methods are evaluated based on expert annotations or automated proce-
dures [24,26,29]. In contrast, example-driven feedback techniques are typically evalu-
ated using a multi-dimensional rubric [32,43]. In our work, we evaluate the scaffolding
framework through expert ratings using a rubric, as well as an initial user study.

2 Problem Setup and Definitions

In this section, we formalize our objective and introduce important technical definitions.

2.1 Problem Setup

Task Space. We define the space of tasks as T. A task 7' € T consists of a visual puzzle
and a set of available types of code blocks (e.g., move, REPEATUNTIL) allowed in the
solution code. Additionally, the solution code must be within a certain size threshold
in terms of the number of code blocks. We denote the current task that a student is
solving as 7™ € T; see 7™ in Fig. 1. In this work, we use tasks from Hour of Code:
Maze Challenge [11] by Code.org [10] and Intro to Programming with Karel [9] by
CodeHS.com [8]; henceforth, we refer to them as HOC and Karel tasks, respectively.

Code Space. We define the space of all possible codes as C and represent them using
a Domain Specific Language (DSL) [20]. In particular, for codes relevant for HOC and
Karel tasks, we use a DSL based on [1]. A code C' € C has the following attributes:
Chiocks 18 the set of types of code blocks used in C, Cg,, is the number of blocks used,
and Cyepn is the depth of the Abstract Syntax Tree of C'. We denote a distance metric in
this space as Dc¢. For a given C' € C and a positive integer [, we define a neighborhood
function as N¢(C, 1) = {C" | Dc(C’, C) < 1}. The solution code C™* € C for the task
T'™ solves the visual puzzle using the allowed types of code blocks within the specified
size threshold. A student attempt for 7" is denoted as C'™*" ¢ C.

Objective. For an input task 7' with solution code C'™™* and given the current stu-
dent attempt C'™" our objective is to generate a pop quiz in form of a new task-code
pair (T9%? C9i) designed on the basis of the following features: (i) Adaptive, i.e.,
CMz gecounts for C™* and Cinst ensuring that C%z is individualized to the stu-
dent’s current attempt; (ii) Comprehensible, i.e., CMiz golyes Taviz correctly and the
pop quiz is easy to comprehend/solve without confusing the student; (iii) Concealing,
i.e., Dc(C%iz Cin) is high, ensuring that C9 sufficiently conceals the solution code
C™™* and does not directly reveal it in order to encourage problem-solving aspects.

2.2 Technical Definitions

Sketch Space. We capture the key conceptual elements of a code using a higher level
abstraction called a sketch [2,37]. The sketch of a code preserves its important pro-
gramming constructs. Similar to the code DSL, we define the sketch space S using a
sketch DSL based on [1]. Similar to the Abstract Syntax Tree representation of a code,
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we represent a sketch as a tree having the programming constructs as its nodes. The
mapping from the code space to the sketch space is captured by the many-to-one map,
¥: C — S, i.e., the representation of a code C'in S is given by &(C). As S is an abstrac-
tion of C, multiple elements of C can correspond to a single element in S. Similar to
D¢ and N, we denote a distance metric in the sketch space as Dg and a neighborhood
function as Ns(S,1) = {S’ | Ds(S’,S) <1} foragiven S € S and a positive integer .

Sketch Substructures. For a sketch S, we define a substructure as a sub-tree contain-
ing the nodes of S up to a particular depth and sharing the same root node; note that
a substructure of a sketch is also a sketch. We denote the set of all substructures of
S as SUBSTRUCTS(S) C S; the size of the set SUBSTRUCTS(SS) is typically small.
For example, the sketch shown in Fig. 2b has the following 4 substructures: (i) {Run},
(ii) {Run {REPEATUNTIL(goal)}}, (iil) {Run {REPEATUNTIL(goal){IFELSE (B)}}}, and (iv)
{Run {REPEATUNTIL(goal){IFELSE (B){{}; {IFELSE (B)}}}}}.

Code Reductions. For a code C' € C with sketch S := ¥(C'), consider one of the
sketches Sgy € SUBSTRUCTS(S). We define the set of code reductions of C' w.r.t.
sketch Sy as all codes obtained by removing one or more nodes of C' while preserving
the sketch Sgyp,; note that the reduction of a code is also a code. We denote the set of all
reductions as REDCODES(C' | Sqp) C C. For example, for C'™* in Fig. 1 and Sqp» =
{Run{REPEATUNTIL(goal)}}, the set REDCODES(C'™*| Syy) has the following 3 codes:
(i) {Run {REPEATUNTIL(goal){move}}}, (ii) {Run{REPEATUNTIL(goal){turnRight}}},
and (iii) {Run{REPEATUNTIL(goal){turnLeft}}}.

3  Our Algorithm PQUIZSYN

In this section, we present our algorithm that generates pop quizzes via synthesizing
new tasks. One might be tempted to synthesize tasks by first generating a new visual
puzzle and then obtaining its solution code. As discussed in Sect. 1 and shown in [1], the
mapping from the space of visual tasks to their solution codes is highly discontinuous
and reasoning about desirable tasks directly in the task space is ineffective. However, the
task synthesis algorithm from [1] is not applicable to our work as we seek to generate
tasks that also account for the student’s current attempt. To this end, we develop a novel
algorithm PQUIZSYN (Programming Pop Quizzes via Synthesis) that generates tasks
adaptive to the student’s current attempt. Our algorithm operates in three stages: (i)
Stage 1 generates a sketch based on the task’s solution code and the student’s current
attempt; (ii) Stage 2 instantiates this sketch in the form of a new task-code pair; (iii)
Stage 3 generates the pop quiz from the new task-code pair. Figure 2a illustrates these
stages, and details are provided below.

3.1 Stage 1: Generating the Pop Quiz Sketch S

We begin by describing Stage 1 of our algorithm as illustrated in Fig. 2a. In this stage,
GetSketch () routine returns a suitable sketch S that is instantiated in the later
stages. The input to the routine is the student sketch S™U := @(C™") and solu-
tion sketch S™™* := ¥(C™*). By operating on the sketch space first, we can generate
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meaningful and adaptive codes in the later stages. To generate pop quizzes based on
the features mentioned in Sect. 2.1, we require the sketch of the pop quiz S to have
the following attributes: (i) S9% should direct the student towards the solution sketch
Sin* e., Dg(S9 Sin*) should be low; (ii) S9%“ should be adaptive w.r.t. the stu-
dent’s sketch S je., Sz € Ng(S™sU [) for a low value of I. While these condi-
tions ensure that S9* directs the student towards the solution sketch and is adaptive, it
could potentially lead to a sketch that does not belong to the set of substructures of the
solution sketch, i.e., S®? ¢ SUBSTRUCTS(S™™*)—in that case, there is no valid code
reduction of C™* w.r.t. S (see Sect.2.2) and this makes it challenging to instantiate
sketches into desirable codes C9“* (see algorithm variant PQS-ONEHOP in Sect. 5 and
Footnote 4). Hence, GetSketch () generates Sz a5 follows (see Fig. 3):

v S
A

(a) Our algorithm PQUIZSYN

Tin

def Run(){ def RunQ{} def Run(){
REPEATUNTIL (goal) { move
IF(B){} (C) Sin,stu turnLeft
ELSE{ REPEATUNTIL (goal) {
IF(B){} move
ELse{} 3
} def Run(){ )
} REPEATUNTIL (goal) {}
} }
(b) SinA,* (d) Squiz (C) Cquiz

Fig.2. (a) illustrates PQUIZSYN. In particular, we can Fig.3. PQUIZSYN Stage 1 for
instantiate the presented algorithm using input task 7, the scenario shown in Fig. 1. X
its solution code C™*, and the current student attempt shows substructures of S™* in
C™" from Fig. 1. The sketch of C'™* is shown in (b), I-hop neighborhoods of S™
sketch of C™ is shown in (c), sketch of C%* is shown for I € {1,2,3}. Details are
in (d), and the code of the pop quiz C** is shown in (e). provided in Sect. 3.1.

(i) Pick[as minl € {1,2,...} s.t. Ng(S™, ) N SUBSTRUCTS(S™*) is non-empty.
(i) Generate S € argminSENs(Si""‘“, [) N SUBSTRUCTS(Sin*) Ds(S, 5™%).

3.2 Stage 2: Synthesizing (T'%*, C9"%) from S

Next, we describe Stage 2 of our algorithm. We first generate C9 from S9i*, as illus-
trated in Stage 2(i) of Fig.2a. Specifically, for a sketch S generated in Stage 1,
we employ the code mutation methodology proposed in [1] to obtain a code C'9“i*,
However, this methodology requires a meaningful starting code C*%*. Since S9* ¢
SUBSTRUCTS(S™*) by the design of Stage 1, we begin by picking C**® from the set
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REDCODES(C™™*| S%%) * The methodology of [1] provides us multiple code muta-
tions of C***, The extent to which these code mutations differ from C***¢ and C'™* is
controlled by the constraints imposed based on the values of the boolean variables,
conditionals, and action blocks (move, turnLeft, turnRight, pickMarker, putMarker)
of C*¢¢4_ a5 well as constraints on the size of the obtained code. Specifically, these
mutations allow us to control the extent to which D¢ (C%# Ci™*) varies, which is a
desired feature as stated in Sect. 2.1.

Next, we generate a new task 79 from a code C9"” as illustrated in Stage 2(ii) of
Fig. 2a. Specifically, we generate 79 such that its solution code is C9*, We achieve
this using techniques of symbolic execution and best-first search, building on the task
synthesis methodology presented in [1].

Name, source for Ti"‘ C:‘Z'e*, S for 70 ‘Sq"iz € SUBSTRUCTS(S™* )| £ CIZ iz
-1 6 {Run} 22 220
HOC:Maze08 [11] {Run {REPEAT; REPEAT} } {Run {REPEAT}} 34 340
S 179 1790

T 5 {Run} 10 100
HOC:Mazel6 [11] {Run {RUNTIL {IF}}} {Run {;}TIIL}} 18 183
T3 5 {Run} 10 100
HOC:Mazel8 [11] {Run {RUNTIL {IFELSE}} {Run {RUNTIL}} 6 60
S 9 90

{Run} 10 100

T-4 7 {Run {RUNTIL}} 6 60
HOC:Maze20 [11] | {Ruv {RUNTIL {IFELSE {{};{IFELSE}}}}} | {Run {RUNTIL {IFELSE}}} 9 90
S 10 100

.5 6 {Run} 73 730
Karel:Opposite [9] {Run {RepEAT {IFELSE}}} {Run {;;iliffAT}} ii ;)}128
T-6 8 {Run} 447 4470
Karel:Diagonal [9] {Ruw {unILE}} i+ 579 5790

Fig.4. PQUIZSYN applied to six HOC and Karel reference tasks; see Sect.4 for details. For
brevity, sketches have been abbreviated, e.g., REPEATUNTIL(goal) as RUNTIL.

3.3 Stage 3: Generating Multi-choice Question from (79" Ci%)

In this stage, we generate a pop quiz with a fixed set of answer choices; see Figs. 1 and 5.
We pick a task-code pair (79 C9i), and expose only a part of C9" determined by
an exposure parameter k, i.e., C%iz contains k blanks. These blanks must be filled
out by the student from the set of answer choices in a manner that would solve 79",
Specifically, we generate the pop quiz with k& = 1 blanks. To obtain the blank for the
quiz, we do an in-order traversal of CUiz and leave out the last leaf node as blank.

* When S%“ ¢ SUBSTRUCTS(S™*), we set C**** as a random instantiation of S™* — see
algorithm variant PQS-ONEHOP in Sect. 5..
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4 PQUIZSYN on Real-World Tasks

In this section, we present the performance of PQUIZSYN on six reference tasks taken
from real-world block-based programming platforms: HOC [11] and Karel [9]. The set
of these tasks along with their sources are mentioned in Fig. 4. These tasks differ in
complexity, measured in terms of the programming constructs of their solution code as
illustrated by the diversity of their respective solution sketches S™*. For the exhaustive
set of substructures of S™™*, Fig. 4 lists the total number of pop quizzes, in the form of
unique task-code pairs (79 C9i%)  generated by our algorithm. As can be seen in the
figure, our algorithm generates 50 to 1000s of pop quizzes for each substructure. For
any potential student attempt on these tasks, Stage 1 of PQUIZS YN would generate one
of these task-specific substructures by design — hence, for every attempt we can present
several unique yet adaptive pop quizzes to the student. Note that, our algorithm gener-
ates higher number of tasks than codes for each substructure. This is because the task
synthesis methodology used in Stage 2(ii) can generate more than one task for a single
code in Stage 2(ii) of Fig.2a. In particular, for each new code, we obtain 10 diverse
tasks. For instance, Fig. 1 and Fig. 5 illustrate pop quizzes generated by PQUIZSYN for
the specific student attempts on tasks T-4 and T-5, respectively.

1111, % in in,stu
C PREGRID T POSTGRID C
dea s q/;, . def RuNO){
/ ‘IW‘ g o) pickMarker
putMarker / move
} pickMarker
Task ELsE{ .
| pioiesier = > several more
A action blocks
} }
i
uiz : . .
precrio 1 postariD C"* with 1 blank Quiz
<Jé: ::@ def Run(){ Q. Fill in the blank from:
REPEAT (6) { o move
pickMarker o t“r“;ef;
. O turnRight
POp QUIZ L‘ O pickMarker
} O putMarker
putMarker
turnRight
}

Fig.5. Analogous to Fig. 1, here we illustrate our framework on a Karel task, T-5 (see Fig.4).
Karel tasks [25] comprise of a pair of visual grids, (PREGRID, POSTGRID), and the objective is
to write code that, when executed, transforms PREGRID to POSTGRID.
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5 Expert Study via Multi-dimensional Rubric

In this section, we evaluate PQUIZS YN w.r.t. the desired features specified in the objec-
tive, i.e., Adaptive, Comprehensible, and Concealing (see Sect.2.1). In particular, we
seek to compare PQUIZS YN with its variants resulting from different design choices in
Sect. 3. To this end, we conduct an expert study via a multi-dimensional rubric.

Variants of PQUIZSYN Algorithm. We compare the performance of PQUIZSYN
with the following variants: PQS-FULLHoP, PQS-ONEHOP, and PQS-REDCODE.
PQS-FuLLHOP and PQS-ONEHOP differ from PQUIZS YN only in the Get Sketch ()
routine used in Stage 1 of Fig.2a when generating S, In particular, Stage 1 of
PQS-FULLHOP always returns the sketch of the solution code, i.e., Squiz .—  Ginx,
Stage 1 of PQS-ONEHOP returns a sketch directly from the 1-hop neighborhood of
Ginst e, SWZ ¢ Ng(SsU 1), The third baseline, PQS-REDCODE, differs from
PQUIZSYN only in Stage 2(i) of Fig. 2a when generating C% from S9%%, In particu-
lar, Stage 2(i) of PQS-REDCODE generates C9%% as a direct reduction of the solution
code w.r.t. the sketch obtained in Stage 1, i.e., C%* € REDCODES(C™* | Suiz),

Simulated Student Attempts. For this expert evaluation, we simulated unsuccessful
student attempts as seen in block-based programming domains [26]. In particular, for
each reference task, we manually created four student attempts as follows: (a) Stu-
A: CIs ygeg only action blocks, i.e., (move, turnLeft, turnRight, pickMarker,
putMarker); (b) Stu-B: O™ uses a subset of programming constructs in C™*; (c)
Stu-C: C™W ig structurally the same as C'™*, i.e., S™U = §in*; (d) Stu-D: C™™" has
a structure more complex than C™*, These four types of attempts exhaustively cover
all the scenarios that an algorithm might encounter when deployed (see Sect. 6).

Multi-dimensional Evaluation Rubric. Inspired by the evaluation rubric in [32,43],
we assess pop quizzes on a multi-dimensional rubric with three attributes, each rated
on a three-point Likert scale (with higher scores being better). More concretely, we
have: (i) Adaptive attribute measuring the degree of individualization of the pop quiz to
the current student attempt (3: high; 2: medium; 1: low); (ii) Comprehensible attribute
measuring how easy the pop quiz is to comprehend/solve (3: easy; 2: might confuse
the student sometimes; 1: either incorrect or is very difficult to solve.); (iii) Conceal-
ing attribute measuring the extent to which the pop quiz conceals the solution code (3:
sufficiently conceals; 2: reveals the solution to some extent; 1: reveals the solution to a
large extent). Overall denotes the sum of scores across three attributes for a pop quiz.

Expert Study Setup. We picked three tasks spanning different types of constructs and
complexity: T-1, T-4, and T-5 from Fig. 4. Thus, in total we evaluated 48 scenarios: 4
algorithm variants x 4 student types x 3 tasks (see Figs. 1 and 5 as example scenarios).
Two researchers, with experience in block-based programming, evaluated each of the
48 scenarios independently. The evaluation was done through a web survey where a
scenario was introduced at random, and assessed based on the rubric.
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Expert Study Results. First, Algorithm ‘Adaptive Comprehensible Conceallng‘ Overall
we validate the expert ratings “poq b yor [B07)  2.8(0.1)  3.0(0.0) |7.8(0.8)
using the quadratic-weighted g oxerop [2.8(0.1) 1 2:5(0:6)  3.0(0.0)
Cohen’s kappa inter-agreement  pos_Repcope|2.7(0.3)  3.0(0.0) | 1.5(0.4)
reliability value [32] for each PQUIZSYN ‘2'7(0.2) 3.0(0.0) 2.9(0.1)
attribute: 0.62 (Adaptive), 0.69
(Comprehensible), 0.79 (Con-

8.3(0.7)
7.2(0.7)
8.6(0.3)

) Fig. 6. Mean (variance) attribute ratings for different algo-
cealing), and 0.7 (Overall). rithms. Higher scores are better. PQUIZS YN performs well

The values indicate substantial ,crogs all three attributes and has the highest Overall score;
agreement between the raters. see Sect. 5 for details.

The average ratings are pre-

sented in Fig. 6 and PQUIZSYN has the highest Overall score. We analyze these rat-
ings per attribute based on the Kruskal-Wallis significance test [21]; the results dis-
cussed next are statistically significant with p < 0.01. On the Adaptive attribute, PQS-
FULLHOP performs significantly worse because it does not account for the student
attempt (see Sect. 3.1). On the Comprehensible attribute, PQS-ONEHOP performs sig-
nificantly worse because there are instances where no valid code reduction of C'™* w.r.t.
S s found (see Footnote 4, Sect.3.2). Finally, on the Concealing attribute, PQS-
REDCODE performs significantly worse because it obtains C9 via a direct reduction
of C'™* without any mutation (see Sect. 3.2).

6 User Study via Online Platform

We have built an online platform with our PQUIZSYN framework using the Blockly
Games library [18]. The online platform is publicly accessible — see Footnote 3,
Sect. 1.1. The platform provides an interface for a participant to practice block-based
programming tasks, and receive pop quiz based feedback when stuck. In this section,
we report results from an initial user study to assess the efficacy of our scaffolding
framework in comparison to other feedback methods.

Participation Session and Feedback Methods. A single session on our platform com-
prises of three steps. In STEP-A, the participant is presented with a task and has 10
execution tries to solve it. If a participant fails to solve the task at STEP-A, they pro-
ceed to STEP-B with a randomly assigned feedback method (NOHINT, NEXTSTEP, and
PQUIZSYN as discussed below). After STEP-B, the participant resumes their attempt
on the task in STEP-C with 10 additional execution tries. Note that the feedback method
is invoked only once in a single session. Next, we describe different feedback methods
at STEP-B. NOHINT represents a baseline where the participant is directed to STEP-C
without any feedback. NEXTSTEP corresponds to next-step hints as feedback where the
participant’s code is updated to bring it closer to a solution code [26,31,35,36,44]; we
prioritized next-step edits involving programming constructs (e.g., REPEATUNTIL) over
basic actions (e.g., move). PQUIZS YN is our pop quiz based feedback.
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User Study Results. We con-
ducted an initial user study
with participants recruited from
Amazon Mechanical Turk; an NOHINT| 151 63 88|0.046 0.079 0.023
IRB approval was received NEXTSTEP | 146 63 83]0.082 0.127 0.048
before the study. The partic_ PQUIZSYN 148 62 86(0.128 0.177 0.093
ipants were US-based adults,

without expertise in block- Fig.7. Results for tasks T-3 and T-5 (“Both” represents
based visual programming. Due aggregated results). In STEP-A, we had a total of 575 (293
to the costs involved (over forT-3, 282 for T-5) participants; about 0.774 (0.642 for T-
3 USD per participant), we 3,0.911 for T-5) fraction failed to solve the task at STEP-
selected two tasks for the study: A and proceeded to STEP-B/STEP-C with a randomly
T-3 and T-5 from Fig.4. We assigned feedback method.

present the detailed results in

Fig.7. In total, we had 575 unique participants; out of these, 0.774 fraction failed to
solve the task at STEP-A and proceeded to STEP-B. PQUIZSYN was assigned to 148
participants in STEP-B (0.60 fraction successfully solved the presented pop quiz). Sub-
sequently, 0.128 fraction of these participants solved the task in STEP-C. Here, 0.128
measures the success rate of participants assigned to PQUIZSYN; in comparison, it is
0.082 for NEXTSTEP and 0.046 for NOHINT — see Fig. 7. Overall, the performance of
PQUIZS YN is better than NEXTSTEP (the gap is not significant w.r.t. x2-test, p = 0.19)
and NOHINT (the gap is significant w.r.t. x2-test, p = 0.01) [23]. These initial results
demonstrate the utility of providing pop quiz based feedback.

Feedback | Total (STEP-B) | Fraction solved (STEP-C)
Both T-3 T-5| Both T-3 T-5

7 Conclusions and Outlook

We proposed a novel scaffolding framework for block-based programming based on
pop quizzes that involve inquiry-driven and problem-solving aspects. We developed a
modular synthesis algorithm, PQUIZS YN, that generates these pop quizzes. After con-
ducting an expert assessment using a multi-dimensional rubric, we developed an online
platform empowered by our scaffolding framework. While initial user study results with
our platform demonstrate the utility of our pop quiz based framework, there are several
interesting directions to continue this study, including: (i) extending our platform to pro-
vide multiple rounds of feedback within a single participation session and measuring
the efficacy of different methods; (ii) comparing our synthesized pop quizzes with those
generated by experts; (iii) conducting longitudinal studies with novice students to mea-
sure long-term improvements in problem solving skills; (iv) extending our framework
to more complex block-based programming domains.
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Abstract. Distance learning institutions record a high failure and
dropout rate every year. This phenomenon is due to several reasons such
as the total autonomy of learners and the lack of regular monitoring.
Therefore, education stakeholders need a system which enables them the
prediction of at-risk learners. This solution is commonly adopted in the
state of the art. However, its evaluation is not generic and does not take
into account the diversity of learners. In this paper, we propose a com-
plete methodology which objective is a more detailed evaluation of a pro-
posed educational prediction system. This process aims to ensure good
performances of the system, regardless of the learning profiles. The pro-
posed methodology combines both the identification of personas existing
in a learning context and the evaluation of a prediction system accord-
ing to it. To meet this challenge, we used a real dataset of k-12 learners
enrolled in a french distance education institution.

Keywords: Learning analytics - Assessment methodology - Risk
prediction - Learning profiles - K-12 learners

1 Introduction

Nowadays, schools and universities are moving towards online learning due to
the generalization of digital infrastructures and learning platforms which allow
to better meet the needs of learners. However, this learning modality is facing
many challenges, and the most widespread is the high failure rate among learners.
This phenomenon is due to many reasons such as the large diversity of student
profiles expressing different needs and requiring personalized support [23].

Virtual learning environments (VLE) store learner’s online activity. The cor-
responding data, called learning traces, is very diversified and is used by Learning
Analytics (LA) [19]. One aim among others is to provide educational stakeholders
with intelligent technology-based solutions to help them in identifying at-risk of
failure learners as early as possible. These solutions need to take into considera-
tion all learners behaviors. Therefore, a major issue is: does a system perform
equally with all learners profiles?

To answer this research question, we propose a methodology which is based on
the identification of personas, defined as learners profiles representations [8,22]
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and on the evaluation of model’s performances for each persona. We illustrate
the methodology on a case study (evaluation of a prediction model). To resume,
our main contribution relies on a more precise evaluation of educational systems,
taking into account the different learning profiles and based on a broad range of
metrics. We proceeded according to the following steps:

— Given the disparity of available learning traces, we defined several learning
indicators characterizing a learner’s behavior. Then, we identified homoge-
neous groups of learners sharing similar behaviors according to these indica-
tors. These learners groups are finally characterized into personas.

— We reviewed the existing assessment indicators and identified new ones to
complete the evaluation.

— We conducted a precise evaluation on a specific use case relying on a weekly
prediction approach.

We carried out our experimentation using real data of k-12 learners, enrolled in
a French distance learning center (CNED). This institution is characterized by
the multi-modality of learning and the total autonomy of its learners.

This paper is organized as follows. The Sect. 2 presents the general method-
ology and the used dataset. Section3 and 4 present the first and second steps
of the methodology respectively. The results of the evaluation are detailed in
Sect. 5. A general conclusion and several perspectives are given in Sect. 6.

2 Evaluation Methodology

In this section, we start by describing the proposed the methodology and its
different steps. Then, we present our case study for the experimental part.

2.1 Methodology Description

In order to achieve our assessment objective, the methodology is organized
around three main steps (See Fig. 1):

1. Identification of learner profiles from learning. The profiles are charac-
terized by personas, containing key information about learners’ behaviors.

2. Run of the prediction system on the data and measurement of a complete
set of metrics, containing both precision metrics, as accuracy, and new time-
dependent ones (earliness, stability).

3. Deeper evaluation of the system according to the identified learners pro-
files and the various performance metrics.

2.2 Case Study

The case study concerns the k-12 learners enrolled in the physics-chemistry mod-
ule during the 2017-2018 school year within the French center for distance edu-
cation (CNED) [2]. It offers a large variety of fully distance courses to numerous
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physically dispersed learners. The courses contents are both available online and
in printed papers which gives the learner the freedom to choose the learning
mode which suits him/her the best. Given the large number of learners and the
specificity of learning, it is highly time consuming for teachers to provide their
students with an effective and personalized feedback.

2.3 Data Description

The learning traces are collected from two data sources. The first one is the
Moodle platform, which generates the logs and the interaction traces between
the learner and the learning content. The second platform is GAEL, which is a
management system where all performance data, including grades, are stored.
In CNED, learners don’t start the school year at the same time ¢ [2]. We select
learners with ty between Sept. 15% and Oct. 31%¢, as they share similar learning
paths and characteristics. According to this information, our database gathers
learning traces of 639 learners. The learning period of the physics-chemistry
course is 300d, during which 6 exams could be submitted. On average, learners
only submit around 4.51 assignments. The average mark on the submitted exams
is 13.73. However, if we consider setting the grade of 0 to the unsubmitted
assignments, this average is lowered to 10.21. The bi-modality (digital or paper-
based) of the learning makes the study of the dataset difficult. Indeed, learners
who use the course exclusively in paper format may not produce any logs and it
is therefore not relevant to compare them with active learners on the VLE. In
our dataset, we noticed that 37.25% of the population never logged in. To handle
this particularity, the dataset was divided into two subdatasets: one containing
data about learners who made at least one log on the VLE, and the other one
about those who have never logged in. Finally, the learners were classified into
4 classes according to their mean performance:

— Success (C1) : average score superior to 12.
— Medium risk of failure (C5) : average score between 8 and 12.
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Table 1. Number of students in each class for each subdataset.

logs | mo_logs

Ch 178 64
Co 53 29
C3 17 28

Cy 153 | 117
Total |401 |238

— High risk of failure (C3) : average score inferior to 8.
— Drop out (Cy) : at least the two last assignments are not submitted.

The Table 1 summarizes the number of learners from logs and no_logs sub-
datasets belonging to each class. The process of identifying learners profiles
within these classes is described in the following section.

3 Methodology Step 1: Identification of Learner Profiles

3.1 State of the Art

Learners’ behaviors are observed through their online learning traces. In LA,
multiple studies exploit this data to compare learners based on various indica-
tors, such as engagement [11], performance [4] or regularity [7]. In our context,
learning behaviors need to be described according to a set of indicators, allowing
a more detailed characterization of learners [22,24]. For this reason, we define
learners personas corresponding to typical learners identified through Machine
Learning classification processes [8]. In one hand, the identification of such per-
sonas enables a more precise description of the corpus, especially in terms of
learners profiles representation. In another hand, these personas meet the need
for an ethical learning analytics implementation [20], and ensure fair support
between learners and provide useful tools to the field stakeholders who need to
help their learners with equal support [10]. However, the diversity of the avail-
able data makes the task tricky: the variety of recorded data does not allow for
the same indicators to be computed all the time. The indicators we calculated
for the case study are described in the following subsection.

3.2 Study and Selection of Learning Indicators

Learning traces available in the CNED dataset are diverse and contain both logs
and performance data. This data was first used to define five absolute indicators
(e.g. calculated for each learner):

— Engagement reflects the learner’s activity on the VLE (logs) [11].
— Regularity translates the learner’s constancy of connection between the
beginning and the end of the course (frequency of connection) [2].
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— Curiosity expresses the intrinsic motivation of the learner to consult various
educational resources (variety of accessed content) [17].

— Performance corresponds to learner’s scores in the exams.

— Reactivity provides information about learner’s responsiveness during
course-related events (timeliness of the assessments)[7].

To go further, we completed these absolute indicators with a set of relative
indicators. The average of each indicator is computed for all learners, and the
associated relative indicator gives information about the behavior of a specific
learner profile comparing to his/her peers (negative or positive difference in
relation to the rest of the group). Both types of indicators were used as a basis
for the identification of learners profiles, described in the following subsection.

Obviously, engagement, curiosity and regularity (on the VLE) indicators,
based on the logs, were not computed for the no_logs subdataset as associated
learners have never logged in.

3.3 Identification of Learners Profiles

For each subdataset, the study of learning indicators enables the identification of
learners profiles. These profiles correspond to homogeneous subsets of learners,
sharing similar behaviors, and are identified through different steps:

— Data-preprocessing:

e Data normalization: use of the RobustScaler! method (ScikitLearn [15])
to improve the model’s performance.

e Outliers identification: Use of the IsolationForest? algorithm [14] to set
apart the atypical data and increase model’s performance. This step is
crucial because outliers’ atypicity does not allow them to be associated
with other students.

— Identification of homogeneous groups of learners: k-means Algorithm
[13] is used to identify homogeneous groups of learners. Results are evaluated
with Silhouette analysis [18] and Davies-Bouldin Criterion [9]. We run the
algorithm with values from 2 to 15 and selected the one giving the best
performance.

— Description of learners profiles: each of the identified clusters are then
characterized by a size (number of associated students), its proportion in
dataset to which it belongs and a set of learning indicators. Outliers are not
discarded but are studied individually.

Applying this methodology, we identified 12 outliers among the 639 learners.
Each of the remaining learners is associated to one of the 21 identified learners
profiles. Some statistics are given in Table 2.

! https://scikit-learn.org/stable/modules /generated /sklearn.preprocessing.
RobustScaler.html.

2 https://scikit-learn.org/stable/modules/generated /sklearn.ensemble.
IsolationForest.html.
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Table 2. Clustering results by subdatasets and classes.

Logs No_logs

Cl |C2 |C3 |C4 |[C1 [C2 |C3 |C4
Number of inliers 176 |52 |16 151 |63 |28 |27 |115
Number of outliers | 2 1 2 2 1 1 1 2
Optimal value of k 2 2 2 2 3 3 3 4
Silhouette index 0,44 0,30 0,85 | 0,28 0,43 /0,36 | 0,36 | 0,34
Davies-bouldin index | 1,00 | 1,45| 0,07 | 1,32 | 0,85 0,96 | 0,92 | 1,04

3.4 Personas: Examples

Each persona contains a large variety of information: narrative description of the
learning behavior, its proportion in the dataset it belongs to, visual indicators
of the risk of failure, and learning modality (See Fig. 2).

Alex 53,57% / Kim @

Alex does not connect to the VLE at all. Kim is very engaged on the VLE (> 1800 logs).
He/She shows good regularity as he/she This active behavior is accompanied by a
turns in all assignments, with an average great regularity (25 active days) and a
delay of 5 days. The majority of scores are remarkable curiosity. This behavior translates
between 8 and 12, and his/her average is into good results: all the assignments are
below than class one. returned, and Kim obtains an average of 16.41.
Risk of failure Learning modality Risk of failure Learning modality

Paper-based @ Paper-based @
A. Digital (VLE) (OO \ Al Digital (VLE) (ONO)

Fig. 2. Example of two personas.

The utility of such personas is threefold. In addition to providing valuable
information about learners behaviors, they contribute to the improvement of the
results interpretation of a LA system. Finally, they are particularly interesting
for our study because they can be used to refine the evaluation of an educational
system. The results presented in the Sect.5 confirm this last point.

4 Methodology Step 2: Earliness and Stability
Measurements

In addition to the usual performance measures, this section defines new met-
rics for a deeper evaluation of an educational prediction system. These metrics
consider the importance of the temporal evolution of the prediction.
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4.1 State of the Art

The main objective of the majority of educational prediction systems is the
early identification of at-risk of failure or dropout learners. Static and precision
Machine Learning (ML) metrics such as accuracy are mainly used to evaluate
the performance of educational prediction systems. For example, [5] studied the
accuracy of early warning system (EWS) on identifying at-risk students in a real
educational setting. The study of [12] aimed to improve the performance of a
dropout EWS by evaluating the trained classifiers with both receiver operating
characteristic (ROC) curves and precision-recall (PR) curves. [3] compared the
performance of a developped EWS on two different subjects based on the accu-
racy, the true negative rate (TNR) and the true positive rate (TPR) measures. [1]
compares the performance of different ML model in analyzing the problems faced
by at-risk learners enrolled in online university. This performance assessment is
based on accuracy, precision, recall, support and f-score results. The majority
of education prediction systems uses static and precision ML metrics for per-
formance evaluation. However, both learning and prediction are time-evolving.
Consequently, we need to consider the temporal dimension in the performance
measures and illustrate the evolution of the whole process over the learning
period. For this aim, we propose new metrics to evaluate the prediction and
which the definition is based on the regular tracking of the prediction results.

4.2 Metrics Description

Prediction Earliness: Researchers work on providing stakeholders with the
most accurate prediction results. A common theoretical definition of the early
prediction is the right time to identify at risk learners. The earliness of the right
prediction depends always on the studied context. We propose to measure the
earliest time to predict as accurate as possible the classes of learners. We define
the earliness of prediction as the mean time from which we start to correctly
predict the learners classes [6]. While defining this measure, we focus on at-risk
learners to best respond to the objectives of our study.

Prediction Stability: Stability is usually related to small changes in system
output when changing the training set [16]. In our context, we are interested in
temporal stability referring to the capacity of a classifier to give the same output
over time when training the same dataset [21]. We measure temporal stability
as the average of the longest sequences of successive right predictions [6].

5 Methodology Step 3: In-Depth Evaluation
of a Prediction System

This section presents the whole methodology from the prediction system descrip-
tion to the modeling and assessments steps. It ends up by a comparative study
based on the obtained results.
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5.1 Short Description of the Prediction Model

Our system is based on a weekly prediction model of at-risk of failure or dropout
learners. As explained, learners of the cohort are classified into four classes.
First, we went through both processes of features extraction and selection. Going
through these processes is important to select the activity features most corre-
lated to the learner’s final result as well as to minimize noise in the model. Thus,
each week w;, a learner is represented by a vector X composed of features going
from f; to f, and the class y to which he belongs to. Each learner belongs to
one and only class over the year.

X =< fl,f27 ~"7fn7y >

Each feature f; to f, represents one learning activity till the prediction time
w;. For each prediction time w;, the value of one feature is added to that of
prediction time w;_1: we proceed to an accumulation of values. Based on the
accuracy results of [2], we use the Random Forest (RF) as a ML model for our
system.

5.2 Results

In the first evaluation phase, we divided the test dataset population into two
groups (logs, no_logs) as explained in the Sect. 2.3. In this experimental part, we
report on the results of 3 metrics: accuracy, earliness and stability.

Accuracy Analysis. The curves of the Fig. 3 show a difference in the accuracy
between the test dataset of the total population, logs and no_logs subdatasets.
Indeed, we notice that until almost the week 15, classes of learners who belong
to the no_log group are the best predicted. In fact, the dropout class is the most
predictable one and is highly represented in the no_log subdataset (cf. Table1).
However, the further we advance in the school year, the more the prediction
results of logs and no_logs converge towards almost the same values.

i Y f\%/\ﬁA

—— RF - Total population
—— RF-Logs
A RF - No_logs

Test set - Accuracy

—_

075

1234567830 NRBREBIBRDA2BNEB7582D30 2B HEB

Fig. 3. Accuracy evaluation with total population and the two subdatasets (logs,
no_logs).
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The Fig. 4 shows the curves of the evolution of the accuracy of the personas
identified in logs (A) and no_logs (B) subdatasets. To ensure the figure lisibility,
we only present the results of one persona per class and by subdataset: personas
1, 4, 5 and 8 were selected for the logs subdataset, and personas 10, 13, 16 and
20 were selected for the mo_logs subdataset. From the different curves, we can
clearly notice that personas belonging to the same profile group do not have the
same prediction accuracy. Differently from the results shown in Fig. 3, even at
the end of the learning period, the accuracy curves do not converge towards a
same value for all the personas.

—

Accuracy
Accuracy

q V
0 :

1234567890 RBUBOT BODA2BABBABIDA RTINS 1234567890 NRBUBOTBOAAN2BABXADBNTRIHE
Week Week
—— Persona n°1 Persona n°5 —— Persona n°10 Persona n°16
—— Personan°4  —— Personan®8 —— Personan®13  —— Personan®20

Fig. 4. Accuracy evolution of personas of logs (A) and no_logs (B) subdatasets.

Earliness and Stability Analysis The Table 3 shows the results of earliness
and stability metrics of the test dataset, logs and no_logs subdatasets. We can
notice that both logs and no_logs have different values for the earliness. Further-
more, we can see from this table that the stability performances of the system
are different from one profile group to another. In addition, whatever the sub-
dataset is, the algorithm has the same stability and earliness performance for
each class. Thus, the dropout class has always the best metrics values, whereas
the medium risk class has the worst results.

Table 3. Earliness and Stability measurement of each class of a profile group.

Total logs no_logs
Earliness ‘ Stability

Earliness ‘ Stability | Earliness ‘ Stability

Dropout
High Risk
Medium Risk | 8.06 6.62 6.77
Success 1.1 28.38 1.12

Total 2.06 25.35 1.75
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The Table4 shows the results of the earliness and stability metrics of each
persona belonging to logs or no_logs subdatasets. We notice that the measures
are different from one persona to another. In addition, the difference is even
more tangible when it comes to the personas of medium (Cs, in pink in Table
4) and high risk learners (Cs, in yellow in Table 4). Due to the lack of pages,
we cannot report all the results: we only present a selection in order to illustrate
the kind of results that we can provide with the presented methodology.

Table 4. Earliness and stability for each persona.

Subdataset | Persona | Earliness | Stability Subdataset‘Persona Earliness | Stability
1 1.13 28.69 9
3 12.66 1.66 11
logs 4 5.5 5.66 12
5 7.5 13 8.2 10.8
7 25.2 14 12 1
no-logs
8 15 6.5 8.5
16 24 23.2
Ch
Co
Cs
Cy

5.3 Discussion

The previous tables and figures showed that the prediction algorithm out per-
forms globally (up to 93% of accuracy). However, the prediction algorithm
doesn’t exhibit the same performance with each learner profile. For example,
the successful learners and those who dropout are much better predicted than
those who are at-risk of failure. In addition, learners who belong to the log group
are also more accurately predicted. Earliness and stability results show that the
algorithm performance is dependent on the learners profiles. In order to provide
education stakeholders with accurate and reliable results over time, the predic-
tion system has to take into consideration the different learning profiles existing
within a cohort.

6 Conclusion and Perspectives

The identified learners profiles, characterized by personas, within our dataset
were diversified and confirmed that learners adopt different behaviors and must
receive an adapted support. In addition, the prediction model evaluation reveals
that the algorithm’s performances were not the same for all personas and classes.



Learning Profiles to Assess Educational Prediction Systems 51

The obtained results answer our research question and confirm the interest of
personas in LA tools assessment. Furthermore, indicators such as earliness and
stability, which have been introduced, give information about the confidence
that a user can have in the system. Indeed, the usual accuracy metrics are insuf-
ficient to evaluate the weekly results of an educational prediction system. It’s
a reason why, we plan to investigate several research directions relying either
on personas or on new refinements in LA assessment. First, we believe that
the personas identified in year N could also be used as a basis for evaluating
classes in year N+1, assuming that the behaviors observed from one year to the
next are similar. This research context deserves attention because it would help
to provide quick feedbacks for teachers about their learners’ situations. This
early information could help them to promptly develop solutions for students
considered at risk. Secondly, we wonder how much the separation of the initial
dataset according to learning modalities (logs, no_logs) and classes (C1, Ca, Cs,
C,) influences the performance of the learning systems, and particularly of the
prediction system in our case study. Therefore, it seems interesting to compare
the results with different partitions of the dataset. In one hand, it could allow
to highlight the key features which are essential to the good functioning of the
model. In another hand, this would further improve the explainability by allow-
ing teachers and academics to select the appropriate partition according to their
pedagogical objectives. Finally, both indicators presented (earliness and stabil-
ity) provided additional information about systems’ behavior. In that way, a
further work on these indicators and especially on their generalization seems to
be necessary, so that they can be used in a wider range of areas.
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Abstract. The widespread shift in higher education (HE) from in-person instruc-
tion to pre-recorded video lectures means that many instructors have lost access
to real-time student feedback for the duration of any given lecture (a ‘sea of faces’
that express struggle, comprehension, etc.). We hypothesized that this feedback
could be partially restored by analyzing student facial movement data gathered
during recorded lecture viewing and visualizing it on a common lecture time-
line. Our approach builds on computer vision research on engagement and affect
in facial expression, and education research on student struggle. Here, we focus
on individual student struggle (the effortful attempt to grasp new concepts and
ideas) and its group-level visualization as student feedback to support human
instructors. Research suggests that instructor supported student struggle can help
students develop conceptual understanding, while unsupported struggle can lead
to disengagement. Studies of online learning in higher education found that when
students struggle with recorded video lecture content, questions and confusion
often remain unreported and thus unsupported by instructors. In a pilot study,
we sought to identify group-level student struggle by analyzing individual stu-
dent facial movement during asynchronous video lecture viewing and mapping
cohort data to annotated lecture segments (e.g. when a new concept is introduced).
We gathered real-time webcam data of 10 student participants and their self-paced
intermittent click feedback on personal struggle state, along with retrospective self-
reports. We analyzed participant video with computer vision techniques to identify
facial movement and correlated the data with independent human observer infer-
ences about struggle-related states. We plotted all participants’ data (computer
vision analysis, self-report, observer annotation) along the lecture timeline. The
visualization exposed group-level struggle patterns in relation to lecture content,
which could help instructors identify content areas where students need additional
support, e.g. through student-centered interventions or lecture revisions.
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struggle - Reflective teaching - Human-centered computing

© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 53-65, 2022.
https://doi.org/10.1007/978-3-031-11644-5_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_5&domain=pdf
http://orcid.org/0000-0001-9602-6536
http://orcid.org/0000-0001-9023-0974
http://orcid.org/0000-0002-1351-0507
http://orcid.org/0000-0001-6860-9371
https://doi.org/10.1007/978-3-031-11644-5_5

54 A. Linson et al.

1 Introduction

1.1 Project Description

When instructors in higher education (HE) deliver in-person lectures, they can access a
form of real-time student feedback simply by ‘reading the room’. That is, by scanning
their students’ nonverbal cues, instructors can make inferences on the assumption that
the ‘sea of faces’ may express various cognitive and affective states relevant to group
instruction, such as struggle and comprehension. However, the widespread shift in HE
from in-person instruction to pre-recorded video lectures means that many instructors
have lost access to this form of feedback. We sought to test the hypothesis that this
feedback could be partially restored by analyzing student facial movement data gathered
during recorded lecture viewing and visualizing it on a common lecture timeline. To this
end, we developed a software prototype, PUZZLED, inspired by current research in
education, computer vision, and data visualization. The system was designed to identify
when and in what respect students are struggling, and to analyze and visualize results to
provide insights to human instructors.

In this report, we describe the prototype design and piloting in a small-scale
exploratory and feasibility study (N = 10), funded by the University of Edinburgh
Regional Skills program. As a key contribution of this paper, the study showed that
visual evidence can be extracted from video of student facial movement (e.g. eye gaze
aversion) that aligns temporally with aspects of a corresponding viewed lecture video.
That is, moments in the lecture video containing conceptually challenging content, omit-
ted background information, or other difficulties posed to student viewers (e.g. blurry
text) led to measurable student facial movements (e.g. expression changes). These con-
trasted with student facial movement data captured during introductory or otherwise
straightforward segments of the lecture video.

A second key contribution of this paper relates to the visualization of the data.
Current data visualization interfaces for time-based models are primarily anchored in
either absolute time (e.g. audience feedback during an in-person lecture, which uses
global timestamps), or abstract task time (e.g. time solving a problem, which is averaged
across individuals). Here, we integrate both by using global timestamps indexed against
a common reference timeline (feedback from asynchronous viewings of a video lecture).
This timeline is used to visualize group-level feedback from a student cohort at a granular
level. In this application, the visualization can inform instructors about how student
struggle relates to specific segments of the lecture.

1.2 Research Context in Education

Research on student learning, including in HE, suggests that struggle — the effortful
attempt to grasp new concepts and ideas — is important to the learning process [1—
5]. More precisely, there is differentiation between ‘unproductive’ struggle, such as
unresolved confusion that leads to task disengagement, and ‘productive’ struggle, as
when a challenging task is cognitively engaging. Productive struggle is important for
the development of students’ critical thinking and deep understanding [6-9, see also 10].
It can also indicate an appropriate level of challenge that maintains learner engagement,
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a key factor in HE student retention [11, 12]. In addition, research has found that equity-
oriented teaching both successfully challenges all students to engage in struggle, and
also supports all students through struggle [3, 5].

In online HE instruction, however, research indicates that when students struggle with
recorded video lecture content (when a question or confusion arises), it often remains
unreported, and thus unsupported by instructors, leading to lower student engagement
and greater attrition, relative to in-person courses [ 13, 14]. A growing number of students
are negatively impacted by this problem, given that recorded lectures are now a “main-
stream” part of online HE provision [15]. 94% of UK universities make recorded lectures
available to students year-round, in part “as a catalyst for inclusivity” [16]. In addition,
European HE reform has promoted the expansion of e-Learning provision, including
online recorded lectures (75% of universities), as a means of “widening access” to HE,
while acknowledging that quality “teacher support” is needed to maintain learning with
“critical thinking” and “deep understanding” in online contexts [17, 18].

In principle, instructors can only effectively support student struggle in online courses
of students who self-report. This poses a serious problem, as the move to online HE places
more demands on students to make their struggle known to instructors. Yet students
who do not have knowledge of the subject area, and/or are not skilled in self-regulated
learning, are less likely to self-assess and self-report their difficulties [19]. Additional
research suggests that self-reporting may privilege the subset of students who are vocal
about their struggles [20]. Thus, many students’ learning needs remain unsupported
in relation to recorded lecture content online [13]. Overall, this situation highlights
the tension between the benefits and drawbacks of online learning and its constitutive
technologies [21].

1.3 Research Context in Informatics

A range of literature has used estimations of student engagement or affect, primarily
using well-developed standards for assessing facial action units, along with self- and/or
observer-coded higher-level states correlated with quantitative face and postural data
[10, 22-25]. We take inspiration from these methods and bellwethers of feasibility. To
our knowledge, other studies using computer vision related analysis of student faces
involve participants interacting with virtual tutors or games, but not pre-recorded lecture
videos with human instructors, as we have done.!

The choice of educational material ‘delivery mode’ in our study (i.e. lecture videos
with a human instructor) can be understood in relation to our primary aim of supporting
human instructors, as compared to the aims of similar studies that seek to investigate
learning itself or to enhance virtual tutors. For our purposes, rather than seeking to
determine whether a student is ‘really’ struggling, we instead focus on providing infer-
ences about the student cohort that could motivate an instructor to re-evaluate aspects
of their lecture (e.g. content, delivery, pre-requisites, etc.) or provide corresponding
non-lecture-based student support (e.g. forums, further readings, etc.).

1 See our source video lectures (1a) and (1b), which played sequentially without interruption:
(1a) https://media.ed.ac.uk/media/1_yd7krol3 (1b) https://media.ed.ac.uk/media/1_ktjie97s.
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In educational technology research that does not involve face data, there are related
applications of data visualization that aim to provide insights to instructors. We draw from
an example that uses a horizontal time axis and vertical axis of individual students to sur-
face salient patterns within a vast and complex student cohort (e.g. in a MOOC) [13]. We
also build directly on a concept for annotating synchronously viewed content. The latter
implementation uses crowd-sourced structured tagging (live audience feedback) that is
visualized on a horizontal time axis, aligned with a video replay interface [21, 26].

Outside of education, computer vision research has sought to measure affective indi-
cators in participant video under ‘real world’ capture conditions. In an approach related
to ours, independent algorithms for classifying events in multiple low-level data streams
(face, posture, etc.) are followed by fusion and high-level affect classification [27].
Our approach also relates to research on stress using multimodal biosignal information
extracted from videos [28], in that we aspired to improve the accuracy of student struggle
estimation by correlating low-level objective measures (e.g. gaze direction) with real-
time and retrospective self-report. (Similar classification techniques have been used in
education research with sophisticated instruments in controlled environments [10], in
contrast to our use of webcams in everyday locations).

1.4 Research Context on Facial Expressions and Eye Gaze

Overwhelmingly, research on eye gaze centers on visual content fixation, to understand
how people look at text, mathematical formulas, videos, interfaces, etc. In contrast, a
smaller body of research considers eye gaze as an indicator of affective or cognitive state,
primary in terms of whether or not gaze is averted. In computer vision affect detection,
gaze aversion metrics have been used to improve automated classification of emotional
state [29]. In developmental psychology, research has confirmed that young children
judge faces to be engaged in thinking when viewing photos with subjects averting their
gaze [30]. (The study uses a similar approach to ground truth as the present one, in that
cognitive-affective states are inferred from images by independent raters). Educational
psychology research has also identified gaze aversion in young children as indicative of
thinking; this is suggested as a cue to instructors who must gauge how soon to expect a
verbal response following a question [31]. Research on inferring mental states from gaze
aversion supports the idea that disengaging from perceptual demands (such as looking
at an instructor) facilitates thinking [32].

2 Methodology

2.1 Participants and Study Design

Following ethics approval, we recruited university students (N = 10) from a UK postgrad-
uate degree program in informatics. We offered a £10 voucher in exchange for roughly
45 min of participation. 7 female and 3 male volunteers responded with informed con-
sent (demographic data was self-reported in free text). 90% of ages fell in the range of
22-29, plus one 37-year-old participant, and ethnicity was entered as South Korean (1),
Chinese (2), Indian (2), or white/Caucasian (5). 70% of participants had subject matter
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experience ranging from 1-4 years; a further two had 0.25 years, and one had 8 years.
80% selected a multiple-choice answer to report having a “little” experience learning
through video lectures (20% chose a “lot”, and none chose “it’s new to me”, the sole
remaining option).

We invited the participants via an emailed link (with an anonymous unique identi-
fier) to start and complete their session in a single sitting. The web interface provided
instructions for positioning the webcam using a live feed from their own device (“ensure
that your face is in the middle of the image”). No webcam video was displayed during
recorded lecture viewing. A short 3-min practice session was offered with a separate lec-
ture not used for the study, to provide experience viewing and using the click feedback
interface, which offered the following button options and instructions:

e “Feels easy” - click when you think the content is easy for you to understand

e “Feels challenging” - click when you are able to follow the content, but it is not too
easy for you

e “I'mlost” - click when you cannot follow at all what the lecturer is talking about

The click feedback interface could be repositioned from left-to-right, while remain-
ing in a fixed row beneath the lecture video (Fig. 1). A further instruction stated “When
viewing the lecture, as your feeling changes, continue to click these buttons, to show how
you feel”. Following the practice lecture video, the participants were shown two different
lecture videos (ca. 3 min + ca. 6 min = total ca. 10 min) from an existing MSc computer
vision course taught by the last author. The lecture videos played back-to-back automat-
ically, while participant webcam and click feedback was captured in real-time during
viewing. Participants were not informed that the lectures were not originally intended
for consecutive viewing, as the second lecture summarized a previous lecture not shown
to participants. This provided an experimental control indicator of ‘challenged’ reac-
tions not related to challenging subject matter. Upon completion, an ‘exit survey’ was
provided for retrospective self-report on the lecture material and feedback on the study
interface design.

There were some problems with both the interface code (cross-browser compat-
ibility) and comprehensibility of the instructions to participants. The data collection
succeeded as intended for participants 1-5 (50%). Participant 6 successfully provided
webcam data without click feedback, and we did not request a repeat session. For par-
ticipants 7-10, we requested a repeat session; 7-9 succeeded in their second session and
participant 10 succeeded in a third session. Thus, data on 40% of participants did not
relate to their first viewing of the lecture materials. However, for an exploratory pilot
and feasibility study, this was not a serious obstacle to completing its objectives.

Our hypothesis was that granular student cohort feedback on video lecture materials
could be provided to instructors by students who viewed videos asynchronously. We
sought to analyze student facial movement data gathered during recorded lecture viewing,
and to visualize the cohort feedback on a common lecture timeline. Our expectation was
that computer vision techniques could identify positional changes in head orientation
and eye gaze direction, along with facial expression changes indicating struggle, and
that these could be correlated with independent observations inferring struggle-related
states, to provide a pathway to increasingly automated recognition. With all participants’
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data (computer vision analysis, self-report, observer annotation) plotted along the lecture
timeline, evidence for our hypothesis would be found if group-level patterns emerged in
relation to segments of lecture content. A toolchain of data processing and visualization
steps would then provide an overview of the student feedback in relation to the lecture
material. This could help instructors identify content that corresponded to a potential
requirement for further student support.

2.2 Data Analysis Techniques

Facial feature analysis was performed with OpenVINO, using models adapted from
Open Model Zoo.? Pre-existing trained models for facial landmark localization, face
detection, gaze estimation, head pose estimation, and eyes open-or-closed state were
integrated with PUZZLED, to analyze participant video frames for eye gaze direction
and head orientation. While further analysis is needed to uncover potentially relevant
patterns in head orientation, we found a notable correlation between eye gaze direction
(aversion) and possible student struggle (see context in Sect. 1.4 and results in Sect. 3).

We normalized and smoothed out eye gaze direction to indicate a baseline bandwidth,
above which was classified as upward gaze and below as downward. We then filtered
out gaze direction data within the baseline band, treating it as direct video viewing
(including left-right patterns of reading on-screen text). We also filtered out downward
gaze data, since our self-report click feedback interface was below the video (Fig. 1),
and participants appeared to be saccading to the interface when contemplating or per-
forming click feedback. The remaining upward gaze data was plotted against real-time
and retrospective self-report and observer annotations. Notably, we did not treat it as a
universally valid measure of struggle (see below).

click

< range of self-positioned click feedback box feedback

box

Lecture video player & feedback interface Webcam frame & computer annotation

Fig. 1. Frame layout of lecture video and self-report click feedback interface (1); webcam frame
of face with features detected and gaze direction (r). A planned production version would not
remotely transmit facial images, only non-visual data from webcam analyses performed locally.

2 https://docs.openvino.ai/latest/omz_demos.html.
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Individual Classifications

Our approach is inclusive, in that it does not depend on generalizations across ethnicity,
culture, gender, etc., and can even remain robust with respect to individual difference. For
example, for participant ‘052°, upward gaze likely indicates struggle, whereas for ‘409’,
it does not. This classification for ‘052’ is in part established through correlations with
the other within-subject data points (e.g. retrospective self-report that the first lecture was
challenging and the second was not, and real-time self-report of challenge coinciding
with independent observer annotations of challenge).

Cohort Classifications

Similar to related work [33], which uses a percentage of frames with a target classifi-
cation (‘stress’) in a time window to generalize the classification to the window (stress
segment), we use a relative threshold of events with a target classification (‘struggle’)
within and across students to identify a relevant lecture segment in which students strug-
gled. In our case, we allow for sparse target classification events in different data streams
(Fig. 2): individual students (grey horizontal bars) self-reports of being challenged (blue
stars), computer-detected upward gaze aversion events (cyan dots), and independent
annotations of inferred challenge (red circles and dots), aggregated across students for
each bounded lecture segment (within green vertical lines).

o

O% * -
— e O <
.
L | |
180 330 361
(a) (b)

Fig. 2. Example of two plotted segments, a (left), b (right). (Color figure online)

In the above illustration, relatively sparse struggle events do not meet the threshold
within the ca. 40 s window depicted (Fig. 2a, two lecture segments, 155 s—195 s), while
for a similar time window (Fig. 2b, one lecture segment, 320 s—360 s), relatively dense
struggle events generalize to a segment classification of cohort struggle.

Independent observations were done by three members of the research team (AE,
RF, AL), by viewing all the participant videos (without the lecture video), and using the
same click feedback interface as the participants. A further annotation option of “bored”
was added to the interface to allow for distinguishing between comprehension and dis-
engagement, and thereby to increase robustness in correlating data points for the ‘feels
easy’ option. A manual segmentation and annotation of the lecture was performed based
solely on its content, independent of any participant or observer data (e.g. ‘3:00-3:25,
introduction of new term’; ‘3:26—4:10, description of applying a technique’). Finally,
data from annotations, computer vision, real-time and retrospective self-reports, and
independent observations was plotted on the lecture timeline.



60 A. Linson et al.

3 Results

Given the structure of our study, there are two relevant sets of results. The first set of
results relates to the correspondence between computer vision data (eye gaze direction)
and manual annotation data (including student-self report and observer annotations).
These results indicate that the computer vision algorithm shows promise, and could be
developed in future work to increase automated analysis and tagging.

Fig. 3. The horizontal axis represents the lecture timeline from start time to end time. The black
line is a normalized and smoothed plot of all students’ vertical gaze direction, where the lowest
points are nearest to the median gaze bandwidth (i.e. looking towards any point left-to-right on the
horizon), and the highest points indicate peak vertical upward gaze. The red line is a normalized
and smoothed density plot of all struggle annotations (student self-report and three independent
observers). Agreement among annotators and self-reports are seen in the red peaks, and typically
track upward gaze (black peaks) as seen in the confluences that occur throughout, apart from a
notable red/black divergence in a middle segment of the timeline (x-axis). This period of divergence
hypothetically corresponds to the increased level of click feedback during that time window, which
appears to cause a downward gaze towards the click interface below the video (see Fig. 1). In future
work, we will eliminate real-time student self-report and replace it with retrospective self-report
during a second video viewing, to mitigate the divided attention (and gaze patterns) between initial
lecture video viewing and concurrent feedback reporting. (Color figure online).

With respect to eye gaze direction, our results suggest initial evidence for a hypothesis
that intermittent periods of upward gaze aversion could be related to a ‘struggle state’,
perhaps related to increased mental effort (see Sect. 1.4), based on the correspondence
depicted in Fig. 3. Data from each individual is used to establish their own baseline
(median) vertical gaze direction, such that upwards gaze is a relative measure. Our aim
is to use multiple indicators of struggle that may vary across individuals, but that occur
consistently for a single individual. For example, an individual who does not exhibit
upwards gaze when they struggle might exhibit a different indicator. Our approach should
therefore be receptive to individual differences, whether cultural or idiosyncratic. If
heterogenous indicators have a greater density for a given lecture segment, this becomes
noteworthy for the instructor. (At present, head position data was too noisy to identify
any reliable correlations).
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Fig. 4. Prototype of instructor data visualization interface (darker/wider bars = more self-reported
student struggle). Vertical bars are density plots of the cohort. For example, at around 260 s, in
the lecture segment labelled ‘solution 1! step’, a greater proportion of students reported struggle
than elsewhere. This would suggest to the instructor that the lecture video segment could be
re-examined, to understand if the struggle was part of the pedagogical design (e.g. providing
‘food for thought’), or alternatively, if students need further support, and how to support them.
Support could include student-centered interventions (e.g. adding a forum or group study session,
linking to additional resources), or revising the lecture content as needed, by clarifying a term,
adding a visual example, etc. Horizontal bars indicate frequency of report. For example, student
378’ reported ‘feels challenging’ more frequently than all other students. The range of horizontal
bars gives the instructor an overview of the student cohort, which in this figure, suggests a large
proportion of the students are well-matched to the lecture content. Empirical survey data of the
students’ retrospective self-reports bear out this reading.

Our second set of results indicates how a data visualization of student struggle could
benefit instructors (Fig. 4). At present, for clarity, we illustrate a minimalist version of
an instructor interface prototype using only student self-report data. The figure caption
describes the visualization in detail.

A full-featured interface will include embedded lecture video, for the instructor to
‘seek’ to relevant video positions for lecture review. It could also include anonymized
background information for individual students who elect to disclose it (e.g. disabilities,
non-native speakers relative to lecture language, experience level in the subject matter).
These and other features would help instructors understand the overview.
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4 Discussion

The results from our initial experiments show that visual evidence can be extracted from
video of student facial movement that aligns temporally with aspects of a corresponding
viewed lecture video. In our exploration of study design, computer vision apparatus,
collected and analyzed data, and instructor interface design, we discovered strengths
and limitations of our approach. A core strength of our findings is that visual evidence
of struggle in facial movement analysis was often present during relevant segments of
the viewed lecture video. Relevant segments challenged student comprehension due to
either conceptual content or presentation issues such as a missing visual example. A
core limitation of our study design was gathering self-report feedback concurrently with
video lecture viewing, which interfered with facial movement data. Our study design will
change in the future to allow more ‘naturalistic’ student viewing of the lecture. As there
was a strong agreement between students’ retrospective self-report and their real-time
click feedback, we envision building on this to allow students to retrospectively review
and annotate the video lecture.

The computer vision apparatus was largely effective, and we anticipate extending
it with further “struggle” detectors and increasing automation. A follow-on study with
the above-mentioned improvements in study design would provide a basis for training
a machine learning model that integrated video and annotation data. We could then test
how well it generalized to new student video.

We were often surprised by data we collected and analyzed, in terms of what it
contained and the patterns it revealed. For example, we did not expect students to exhibit
such pronounced facial movements when viewing a video alone (e.g. nodding their head).
It was also interesting to see apparent visual manifestations of struggle correspond so
closely to aspects of the video lecture, ranging from the use of unexpected, unusual,
or new terms, to unclear lecture video imagery (e.g. blurry text), to future-oriented
references such as abstract descriptions, concretized with visual examples in a following
slide (a transition also reflected in the student data analysis).

Finally, taking the patterns we found in the data and visualizing them in an instructor
interface was not trivial. At times, when a relevant pattern in the data was strong con-
ceptually, it was opaque when the data was visualized. Other times, patterns in the data
were easy to overlook until they were visualized. While both of these issues are typical
of data visualization in the sciences, we were not able to fully anticipate how they would
arise in an interface for instructors to gain insights about a student cohort.

As the last author was also the instructor who wrote and delivered the video lectures,
it is of interest to report his takeaway from the study, irrespective of bias. His report is
suggestive of the potential benefits to instructors that we plan to explore systematically
in future work. He notes that in reflecting on his past in-person teaching, he indeed made
inferences about ‘face-to-face’ student cohorts by observing behaviors, e.g. different
forms of nodding in seeming comprehension, or less positive indicators such as paper
rustling, mobile phone usage, or staring at the desk.

For both in-person and recorded video instruction, he received positive student feed-
back, collected following his lectures. Having done this study, he now sees how student
feedback evolved from one recorded lecture segment to another, rather than being a
gestalt post-lecture impression. He also sees at a glance how many of the times that
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students indicated challenge corresponded to a lecture segment with presentation issues
as opposed to those with genuine challenging content (see Fig. 4).

5 Conclusion

This implementation of the PUZZLED prototype realized the aims of its design. It pro-
vided an instructor with insights about how segments of their lectures related to the
students’ experience of them. Conceptually challenging lecture segments corresponded
to pronounced student struggle patterns initially, which then transitioned back to a base-
line. In context, for the lecturer who structured the content, this indicated that students
were at least coping with and potentially learning advanced techniques in the subject
matter. A few students who struggled more often than others may have needed further
support to the get the most from the lesson. In still other instances, the content or order
of slides could be modified to provide (e.g.) visual examples at key moments.

We imagine that PUZZLED could also indicate where instructors might increase
the challenge level of under-challenging content, to encourage productive struggle. In
addition, we believe it can help contribute to more inclusive online HE instruction, by
facilitating instructors’ ability to receive non-verbal feedback from all students using
recorded video lectures. A second prototype will be tested with more instructors.
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Abstract. Many STEM problems involve visuals. To benefit from these prob-
lems, students need representational competencies: the ability to understand and
appropriately use visuals. Support for representational competencies enhances
students’ learning outcomes. However, it is infeasible to design representational-
competency supports for entire curricula. This raises the question of whether
these supports enhance future learning from novel problems. We addressed this
question with an experiment with 120 undergraduates in an engineering class.
All students worked with an intelligent tutoring system (ITS) that provided prob-
lems with interactive visual representations. The experiment varied which types
of representational-competency supports the problems provided. We assessed
future learning from a subsequent set of novel problems that involved a novel
visual representation. Results show that representational-competency support can
enhance future learning from the novel problems. We discuss implications for the
integration of these supports in educational technologies.

Keywords: Visualizations - Representational competencies - Future learning

1 Introduction

Instruction in STEM domains heavily relies on visual representations because much
of the content knowledge in such domains is visuospatial [1]. As a result, students
encounter multiple visual representations to learn about foundational concepts [1, 2].
For instance, when learning about sinusoids, engineering students typically encounter
the time-domain visual and phase-domain visual shown in Fig. 1.

Unfortunately, students often do not benefit from these visual representations. Stu-
dents’ difficulties in understanding visual representations are a major obstacle to their
success in STEM domains [1, 3], including engineering [4]. Such difficulties result from
a lack of representational competencies, that is, knowledge about how visuals reveal
information relevant to scientific concepts and practice [35, 6].

Further, challenges that are caused by lack of representational competencies are
particularly severe for students with low spatial skills [7]. For example, when translat-
ing between visuals in Fig. 1, students need to mentally rotate a phasor and project a
sinusoid’s amplitude to the magnitude of a phasor [8, 9].
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Fig. 1. Visual representations: (a) time-domain visual showing a sinusoid as a function of time;
(b) phase-domain visual showing sinusoid as rotating vector.

More crucially, lack of representational competencies could subsequently impede
students’ future learning because the concepts they learn today are the basis for their later
learning from novel problems. For example, students who fail to understand time-domain
and phase-domain visuals (Fig. 1) will likely struggle to learn about more advanced
concepts building on an understanding of these visuals, such as phasor addition.

Educational technologies offer a solution to this problem. They can provide adap-
tive support for representational competencies while students interact with visuals [10].
Prior research has established effective technology-based supports for students’ repre-
sentational competencies [10]. However, experimental evidence shows that designing
adequate supports requires substantial time and effort [10]. Consequently, it is infeasible
to design representational-competency supports for entire curricula. This raises the ques-
tion of whether the effectiveness of representational-competency supports generalizes
by enhancing students’ future learning of novel concepts with novel visuals. Addressing
this question will yield novel insights into the practicality of integrating supports for
representational competencies in technology-based curricula.

Given that issues due to lack of representational competencies are particularly severe
for students with low spatial skills, it is important to explore how spatial skills mod-
erate the effects of representational-competency supports on students’ future learning.
Addressing this question will yield novel insights into how representational-competency
supports relate to equity issues in STEM fields because students with low spatial skills
are disproportionally women [11] or have low socioeconomic status [12].

2 Literature Review

2.1 Supporting Representational Competencies

Previous research identified two broad types of representational competencies that play
an important role in learning with visuals in STEM [6]: sense-making competencies and
perceptual fluency. Since these competencies derive from different learning processes,
they should be supported by different types of instructional activities [13].

First, sense-making competencies describe explicit, analytical knowledge that allows
students to explain how visual features of representations map to domain concepts [14].
Sense-making competencies also involve the ability to connect multiple visuals based
on conceptual features [1, 6]. For example, students with sense-making competencies
understand that the y-maximum in the time-domain visual (Fig. 1a) shows the amplitude
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of a sinusoid and can map it to the length of the vector in the phase-domain visual
(Fig. 1b), which shows the same concept. Hence, sense-making supports prompt students
to explain how the features of visuals represent the same concepts [15, 16].

Second, perceptual fluency describes implicit and automatic knowledge allowing stu-
dents to quickly and effortlessly see connections among multiple visual representations
[17, 18]. For example, perceptually fluent students can quickly and effortlessly translate
between time-domain (Fig. 1a) and phase-domain visuals (Fig. 1b). Such perceptual
fluency frees cognitive resources that students can invest for higher-order thinking, cre-
ative problem solving, or learning advanced concepts [18]. Perceptual-fluency supports
expose students to a large number of simple recognition or classification problems that
involve various types of visual representations. Through repeated practice, students learn
to induce which visual features carry meaningful information [18].

Thus far, research has only examined whether these representational-competency
supports enhance learning from the problems that provide these supports [10]. Hence, it
remains unknown whether representational-competency supports are effective beyond
the duration of the support. This question relates to transfer research that has examined
how to prepare students for future learning experiences.

2.2 Transfer and Preparation for Future Learning

Current transfer research focuses on how instruction can prepare students to optimally
benefit from future learning experiences [19]. This research developed in response to
traditional transfer research, which defined transfer as the direct application of prior
knowledge or skills to novel problems [20]. However, students rarely demonstrated
this type of transfer, which led to criticisms of the traditional transfer definition [21].
The critiques argued that traditional transfer studies accept only specific evidence as
the “right” form of transfer by prioritizing models of expert performance [22]. Instead,
students often adapt their prior knowledge in a way that helps them learn about new
concepts [20]. In line with this, “preparation for future learning” (PFL) research examines
how instruction can support students’ knowledge in a way that enhances their future
learning from novel problems [19].

However, little research has investigated transfer of representational competencies.
The few studies that have investigated this question rely on the traditional transfer frame-
work [23]. For example, Cromley [23] tested whether representational-competency sup-
port enhances students’ understanding of visuals they did not encounter during instruc-
tion, as assessed by a transfer posttest. Results showed advantages of representational-
competency supports on the transfer posttest. However, this research leaves open whether
representational-competency supports enhance students’ learning from novel problems
in subsequent instruction. Research on expert problem solving suggests that represen-
tational competencies contribute to experts’ adaptive thinking about novel problems
[17]. First, sense-making competencies enable experts to analyze the deep structure
of a problem [24], allowing them to use representations to generate creative solutions
[25]. Second, perceptual fluency has been linked to adaptive thinking because the abil-
ity to quickly process information from given representations frees cognitive resources
to flexibly apply prior knowledge when solving new problems [18]. Thus, supporting
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students’ representational competencies may equip them with knowledge that enhances
their subsequent learning.

3 Research Questions

Our review of prior research shows that there is a gap between research on
representational-competency supports and research on transfer, especially from a PFL
perspective on transfer. Consequently, the following research question (RQ) remains
open:

RQ1: Do problems that support sense-making competencies and perceptual fluency
enhance students’ learning from novel problems?

Further, given that issues due to a lack of representational competencies are
particularly severe for students with low spatial skills, we explore:

RQ2: Do spatial skills moderate the effect of representational-competency supports?

4 Methods

4.1 Participants

The experiment was conducted as part of an introductory engineering course on signal
processing at a university in the Midwestern U.S. All 120 undergraduate students enrolled
in the course participated. The course involved two 75-min class meetings per week. The
intervention took place in the first 3 weeks that covered sinusoids.

4.2 Signals Tutor: An ITS for Undergraduate Electrical Engineering

We conducted an experiment in the context of five units of Signals Tutor, an ITS for
undergraduate electrical engineering. Signals Tutor provides problems in which students
learn about sinusoids by manipulating time-domain and phase-domain visuals (Fig. 1).
Both visuals play an important role in learning advanced engineering concepts such as
Fourier analysis, circuit analysis, and single-frequency analysis of system. Signals Tutor
involves three types of problems.

Signals Tutor
Let's explore how phasors correspond to sinusolds! Identify important features of a
sinusoid

Find a corresponding type of
visual representation depicting
a sinusoid

Construct a phase-domain
sinusoid visual with an
interactive tool

Fig. 2. Example individual problem: students construct a phase-domain visual.
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Individual problems provide one visual representation per problem. While these
problems do not specifically support representational competencies, they familiarize
students with one visual at a time while asking students to relate the visuals to cor-
responding equations. As shown in Fig. 2. Above, individual problems ask students
to answer questions about sinusoids and to construct a visual representation based on
an equation by using an interactive visualization tool. Students receive error-specific
feedback and on-demand hints on all problem-solving steps, including the visuals they
construct.

Signals Tutor

A Here's an interactive graph of a B Here's an interactive phasor graph.
sinusoid. Receive error-specific feedback and
| 1) h on-demand hints

Construct a phase-domain sinusoid
+—————— | visual based on a given time-domain

sinusoid visual

Check

© Let's translate between sinusoidal 2 |The gaph onthe lef now shows a iferent susold Identify important features to
P e phaor tat corresponds o the simsld

and phasor representations! shown on the left. represent a sinusoid in both time-
' 3
/ domain and phase-domain visuals.

exponential:
#(O)=Re{ - () el 10}

Fig. 3. Example sense-problem: students reflect on time-domain and phase-domain visuals.

Sense problems support sense-making competencies. As shown in Fig. 3 above,
sense problems have two parts. First, students are given one visual (e.g., a time-domain
visual) and are asked to construct a second visual (e.g., a phase-domain visual) of the
same sinusoid. Second, students are prompted to reflect on how the two visuals represent
corresponding and complementary concepts related to sinusoids. Similar to individual
problems, students receive error-specific feedback and on-demand hints.

Signals Tutor

Here's a sinusoid (a cosine function).  Which phasor represents that PR
sinusokd? k’/_m-——‘ Solve problems fast and intuitively
Sotve this o st and vty g

Find a phase-domain sinusoid visual
i/ 3% 4o . - 1 representing the same sinusoid depicted
in a time-domain sinusoid visual

Receive correctness feedback
(red highlight: wrong, green highlight:

= correct)
Done

Fig. 4. Example perceptual problem: students quickly choose a phase-domain visual.

Perceptual problems support perceptual fluency by offering practice opportunities
to translate between visuals. As shown in Fig. 4 above, students are given one visual (e.g.,
a time-domain visual) and are asked to quickly choose one of four visuals (e.g., a phase-
domain visual) that shows the same sinusoid. The four choices are designed to emphasize
features that may confuse students. Perceptual problems do not provide any detailed
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feedback or hints. Students only receive correctness feedback because explanations could
disrupt perceptual processing [26]. Students receive many of these short problems with
numerous examples.

4.3 Experimental Design and Procedure

To investigate the effect of representational-competency support on students’ future
learning, we used a 2 (sense problems: yes/no) x 2 (perceptual problems: yes/no) design.
This yielded four conditions: (1) The control condition received only individual prob-
lems without representational-competency supports. (2) The sense condition received
individual and sense problems. (3) The perceptual condition received individual and
perceptual problems. (4) The sense-perceptual condition received individual, sense, and
perceptual problems. Across conditions, we adjusted the number of steps in each problem
so that all conditions received the same number of problem-solving steps.

The sequence of problems was organized as follows across the five Signals Tutor
units. As detailed in Table 1, Units 1—4 provided time-domain and phase-domain visuals.
Unit 1 was an introductory unit that familiarized students with basic sinusoids and with
time-domain and phase-domain visuals. Unit 1 was identical across conditions.

Unit 2 provided only time-domain visuals. Because individual problems ask students
to translate between equations and visuals, there were no sense problems for Unit 2.
Yet, Unit 2 offered perceptual problems that asked students to quickly translate between
equations and time-domain visuals. Students in the control and sense conditions received
only individual problems. By contrast, students in the perceptual and sense-perceptual
conditions received individual problems followed by perceptual problems.

Units 3 and 4 provided both types of visuals. For each of these units, students in
the control condition received only individual problems. Students in the sense condition
received individual problems followed by sense problems. Students in the perceptual
condition received individual problems followed by perceptual problems. Students in
the sense-perceptual condition received individual, then sense, then perceptual problems.
Across Units 3—4, we implemented sense problems before perceptual problems following
prior research suggesting that this sequence is more effective [27].

Finally, Unit 5 provided instructional problems on phasor addition, a novel, more
complicated concept that builds on the content covered in Units 2—4. Students used a
vector graph, a novel type of visual. Unit 5 served to assess students’ preparation for
future learning and was identical across conditions.

In the first course meeting, students were greeted by the research team and informed
about the study. Then, they worked on one Signals Tutor unit per meeting for the first five
meetings of the course. For Units 2-5, students received a pretest prior to the Signals
Tutor problems and a posttest immediately after. As Unit 1 was an introductory unit
administered in the first course meeting, it did not include a pretest or posttest. The
spatial skills test was given prior to the Unit 2 pretest.
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Table 1. Overview of Signals Tutor units

Unit | Content Sinusoid visuals Experimental factors

1 Sinusoids, sinusoid visuals Time/phase domain | None

2 Sinusoids as function of time | Time domain Perceptual (y/n)

3 Multiple sinusoid visuals Time/phase domain | Sense (y/n); perceptual (y/n)
4 Complex numbers Time/phase domain | Sense (y/n); perceptual (y/n)
5 Sum of sinusoids Vector graph None

4.4 Measures

We assessed students’ learning gains with pretests and posttests for each unit (except
for the introductory Unit 1). Isomorphic test versions were counterbalanced across test
times (i.e., the versions had structurally identical items but used different examples).
Each test had ten multiple-choice items assessing students’ ability to internally visualize
and manipulate sinusoids. Some items provided a visual of a sinusoid and asked students
to mentally modify it to answer questions about the sinusoid. Other items provided an
equation and asked students to mentally visualize the corresponding sinusoid to answer
questions. Students were not allowed to draw or use calculators. We computed accuracy
scores as the percentage of correctly answered items on each test. We computed efficiency
scores to take response time into account following [28]:

Z(average correct responses) — Z(average response time per test item)

/2

efficiency score =
6]

Finally, we assessed spatial skills with the Vandenberg & Kuse mental rotation test
[29], which is a common measure in engineering education research [30].

5 Results

We excluded students from analysis who were absent from any test, whose test perfor-
mance was a statistical outlier (i.e., 2 standard deviations above or below the median),
or who dropped the course. As a result, a total of N = 117 students were included in the
data set (control: n = 28, sense: n = 28, perceptual: n = 32, sense-perceptual: n = 29).
We report partial 12 (p. n2) for effect sizes, with .01 corresponding to a small, .06 to a
medium, and .14 to a large effect [31]. Table 2 shows efficiency scores by unit.

5.1 Prior Checks

First, we checked for differences between conditions on the pretests for Units 2-5. A
multivariate ANOVA showed no significant effects of condition (ps > .10). However,
each unit’s pretest significantly correlated with the posttest (ranging from » = 274 to r
=.726; ps < .01). Thus, we included pretest as a covariate in the analyses for each unit.
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Second, we checked whether students showed learning gains after working with
Signals Tutor. We used a repeated measure ANOVA with test-time (pretest, posttest) as
the repeated, within-subject factor and average test scores across units as the dependent
measure. Results showed significant gains, F(1,116) = 87.871, p < .001, p. n2 =431.
Separate repeated measure ANOVAs for Units 2—-5 showed significant gains for all units
(ps < .01) with effect sizes ranging from p. n> = .09 to p. n* = .24.

Third, we checked whether representational-competency supports enhanced stu-
dents’ learning from Units 2—4; that is, on the units where these supports were present.
We conducted separate ANCOVAs for Unit 3 and 4, with pretest as covariate, the sense
(y/n) and perceptual (y/n) factors as independent variables, and posttest as dependent
measure. For Unit 2, we conducted similar ANCOVA but used only the perceptual factor
(y/n) as an independent variable. For accuracy, results revealed a significant interaction
between the sense and perceptual factors in Unit 4, F(1,116) = 4.499, p = .036 p.
n% = .039. Predefined contrasts showed that students in the sense condition showed
marginally higher accurate posttest performance than students in the sense-perceptual
condition (p = .09). No other effects were significant (ps > .10). For efficiency, we found
no significant effects (ps > .10).

Table 2. Each unit’s means and standard deviations (in parentheses) of efficiency scores

Unit | Test | Control Sense Perceptual Sense-perceptual

2 Pre —0.199 (0.691) | —0.127 (0.882) | —0.681 (1.046) |0.108 (1.023)
Post | 0.302 (0.927) 0.032 (0.778) 0.097 (.782) 0.528 (1.037)

3 Pre —0.338 (0.891) | —0.495(1.017) | —0.345(1.172) | —0.341(0.923)
Post | 0.216 (0.958) 0.312 (1.135) 0.359 (1.011) 0.621 (0.823)

4 Pre —0.464 (1.190) | —0.380 (1.014) | —0.526 (.987) 0.100 (1.085)
Post | 0.064 (1.057) 0.380 (0.881) 0.273 (1.010) 0.564 (0.886)

5 Pre —0.267 (1.160) | —0.575(1.013) | —0.529 (.927) —0.401 (0.880)
Post | 0.608 (1.036) 0.223 (1.235) 0.210 (1.167) 0.763 (1.118)

5.2 Effects on Future Learning

To test whether representational-competency supports enhance students’ learning from
novel problems (RQ1), we used an ANCOVA with Unit 5 pretest as covariate, sense and
perceptual factors as independent variables, and Unit 5 posttest as dependent measure.
On the accuracy measure, results showed no significant effects (ps > .10). On the effi-
ciency measure, students who had received sense problems in Units 3—4 (i.e., students in
sense and sense-perceptual conditions) had significantly higher posttest efficiency than
students who had not received sense problems (i.e., students in control, perceptual con-
ditions), F(1, 116) = 7.366, p = .008, p. n2 = .063. Further, the sense and perceptual
factors interacted, F'(1, 116) = 5.386, p = .022, p. n2 = .047. As shown in Fig. 5a,
students who had received both sense and perceptual problems in Units 3—4 had the
highest posttest efficiency in Unit 5.
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Next, we tested whether students’ spatial skills moderate the effect of
representational-competency supports (RQ2). To this end, we included spatial skills
as a covariate to the ANCOVA and an aptitude-treatment interaction of spatial skills
with the sense factor and the perceptual factor. This tests whether the continuous spa-
tial skills variable moderates the effect of sense problems and perceptual problems.
For efficiency, there was a significant interaction between spatial skills and the sense
factor, F(1,116) = 8.989, p = .003, p. n2 = .076 (Fig. 5b). To understand this effect,
we computed effect slices that estimate the effect of the sense factor for specific levels
of spatial skills. Students with high spatial skills (>80™ percentile of the sample, p =
.026) showed a significant benefit from receiving sense problems (i.e., sense and sense-
perceptual conditions). By contrast, there was no significant benefit of sense problems
for students with low spatial skills (<20™ percentile of the sample, p = .207).
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Fig. 5. (a) Interaction between sense and perceptual factors on posttest efficiency. Error bars show
standard errors of the Estimated Marginal Means (EMMs); (b) effect of sense factor for levels of
spatial skills. EMMs were computed controlling for covariates.

6 Discussion

The goal of this paper was to investigate whether representational-competency supports
enhance students’ future learning from novel problems with novel visuals (RQ1). We
examined the effects of two types of representational-competency supports that were
provided in the form of sense and perceptual problems. Our results show that students
who received a combination of both problems showed more efficient posttest perfor-
mance after learning from novel visuals, compared to students who received problems
with no or with only one type of support. We interpret these findings in terms of the
preparation for future learning (PFL) transfer framework [19]. Students learned how to
make sense of representations through sense problems and how to quickly see meaning in
the visuals through perceptual problems. Students appeared to be able to adapt these rep-
resentational competencies when learning about sums of sinusoids using an unfamiliar
vector graph. The finding that the combination of sense-making and perceptual-fluency
supports was most effective suggests that both types of representational competencies
are relevant to future learning experiences. Based on expertise research [18, 24, 25], we
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conjecture that sense-making competencies allow students to analyze a novel problem
to generate a solution, whereas perceptual fluency frees cognitive resources for them to
adapt prior knowledge to novel problems.

Further, we investigated whether spatial skills moderate the effect of representational-
competency supports (RQ2). We found that students with high spatial skills benefited
from sense problems, whereas students with low spatial skills did not. This suggests that
the sense problems disadvantaged students with low spatial skills; that is, students who
are already at a disadvantage in STEM domains such as engineering. What might explain
this unfortunate effect? Sense problems support students in constructing mental models
of multiple visuals [32]. Students with high spatial skills might have the necessary cogni-
tive resources to spatially integrate multiple visuals in their mental models. This may have
allowed them to efficiently incorporate a new visual in their mental model when learning
from Unit 5. In contrast, students with low spatial skills may find it more cognitively
demanding to integrate new visuals into their working memory. This finding suggests
that research needs to focus on students with low spatial skills. It is possible that our sense
problems did not offer optimal support for these students. For example, sense problems
could visually highlight correspondences between visuals after students make mistakes
in connecting the visuals. This may help low-spatial-skills students to understand spa-
tially distributed correspondences. Future research should examine whether redesigned
sense problems are effective for low-spatial-skills students. In the absence of redesigned
sense problems, low-spatial-skills students may need continued sense-making support
when they encounter novel visuals.

Finally, the results on the PFL assessment (Unit 5) differ from the results on the
manipulation checks (Units 2—4), where we only found an advantage of sense problems
on posttest accuracy (Unit 4). It is possible that the effectiveness of the sense problems
only appeared after students had sufficient practice in reflecting on how the two visu-
als show sinusoid concepts (i.e., after Unit 4). However, the effectiveness of perceptual
problems was not apparent immediately in Units 2—4, but only when students encoun-
tered novel problems with a novel visual in Unit 5. Thus, it seems that the ability to
process familiar visuals quickly and effortlessly did not pay off when the visuals were
familiar. However, it enabled students to solve novel problems more efficiently.

In sum, our study highlights the importance of assessing future learning. An inter-
vention that seems effective for all may lack long-term benefits for some students (e.g.,
low-spatial-skills students). An intervention that seems ineffective (e.g., perceptual prob-
lems) may have long-term benefits, including for students with low spatial skills. These
findings also have important implications for the design of adaptive educational tech-
nologies. Designing supports in a way that ensures long-term benefits may resolve the
impracticality of providing representational-competency supports for entire curricula,
which is infeasible because of the significant development costs.

Our study has several limitations. First, if focused on individual learning, whereas
STEM instruction often involves collaboration. Future research should test effects of col-
laborative representational-competency supports on future learning. Second, our study
only assessed students’ improvement of content knowledge. Future research should
additionally assess students’ learning sense-making competencies and perceptual flu-
ency. Finally, our study revealed the risk of disadvantaging students with low spatial
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skills. Future research should examine how representational-competency supports can
prepare these students for future learning experiences.

To conclude, our findings suggest that integrating sense-making supports and
perceptual-fluency supports in educational technologies enhances students’ learning
with novel visuals in novel tasks. This study is the first to show that representational-
competency supports have the potential to enhance future learning. However, our
study cautions that sense-making supports need to be designed in a way that better
serves low-spatial-skills students. Without research that examines long-term effects of
representational-competency supports, we may widen rather than close the achievement
gap in STEM domains.

Acknowledgements. This work was supported by NSF DUE 1933078. We also thank Bernie
Lesieutre and his teaching assistants for their help with our study.

References

1. Ainsworth, S.: The educational value of multiple-representations when learning complex
scientific concepts. In: Gilbert, J.K., Reiner, M., Nakhleh, M. (eds.) Visualization: Theory
and Practice in Science Education. MMSE, vol. 3, pp. 191-208. Springer, Dordrecht (2008).
https://doi.org/10.1007/978-1-4020-5267-5_9

2. Kozma, R.: The material features of multiple representations and their cognitive and social
affordances for science understanding. Learn. Instr. 13, 205-226 (2003)

3. Gilbert, J.K.: Visualization: a metacognitive skill in science and science education. In: Gilbert,
J.K. (ed.) Visualization in Science Education. MMSE, vol. 1, pp. 9-27. Springer, Dordrecht
(2005). https://doi.org/10.1007/1-4020-3613-2_2

4. McCracken, WM., Newstetter, W.C.: Text to diagram to symbol: representational trans-
formations in problem-solving. In: 31st Annual Frontiers in Education Conference. Impact
on Engineering and Science Education. Conference Proceedings (Cat. No. 01CH37193), p.
F2G-13 (2001)

5. diSessa, A.A.: Metarepresentation: native competence and targets for instruction. Cogn. Instr.
22,293-331 (2004). https://doi.org/10.1207/s1532690xci2203_2

6. Rau, M.A.: Conditions for the effectiveness of multiple visual representations in enhancing
STEM learning. Educ. Psychol. Rev. 29(4), 717-761 (2017). https://doi.org/10.1007/s10648-
016-9365-3

7. Kozhevnikov, M., Motes, M.A., Hegarty, M.: Spatial visualization in physics problem solving.
Cogn. Sci. 31, 549-579 (2007)

8. Hegarty, M., Waller, D.A.: Individual Differences in Spatial Abilities. Cambridge University
Press, Cambridge (2005)

9. Stieff, M.: Mental rotation and diagrammatic reasoning in science. Learn. Instr. 17, 219-234
(2007)

10. Rau, M.A.: A framework for educational technologies that support representational compe-
tencies. IEEE Trans. Learn. Technol. 10, 290-305 (2017)

11. Steiner, S., Wagaman, M.A., Lal, P.: Thinking spatially: teaching an undervalued practice
skill. J. Teach. Soc. Work 34, 427-442 (2014)

12. Levine, S.C., Vasilyeva, M., Lourenco, S.F., Newcombe, N.S., Huttenlocher, J.: Socioe-
conomic status modifies the sex difference in spatial skill. Psychol. Sci. 16, 841-845
(2005)


https://doi.org/10.1007/978-1-4020-5267-5_9
https://doi.org/10.1007/1-4020-3613-2_2
https://doi.org/10.1207/s1532690xci2203_2
https://doi.org/10.1007/s10648-016-9365-3

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Preparing Future Learning with Novel Visuals 77

. Koedinger, K.R., Corbett, A.T., Charles, P.: The knowledge-learning-instruction framework:

bridging the science-practice chasm to enhance robust student learning. Cogn. Sci. 36, 757—
798 (2012)

Bodemer, D., Faust, U.: External and mental referencing of multiple representations. Comput.
Hum. Behav. 22, 27-42 (2006)

Ainsworth, S.: DeFT: a conceptual framework for considering learning with multiple
representations. Learn. Instr. 16, 183-198 (2006)

Berthold, K., Eysink, T.H.S., Renkl, A.: Assisting self-explanation prompts are more effective
than open prompts when learning with multiple representations. Instr. Sci. 37, 345-363 (2009).
https://doi.org/10.1007/s11251-008-9051-z

Goldstone, R.L., Landy, D.H., Son, J.Y.: The education of perception. Top. Cogn. Sci. 2,
265-284 (2010)

Kellman, P.J., Massey, C.M.: Perceptual learning, cognition, and expertise. In: Ross, B.H.
(ed.) Psychology of Learning and Motivation, pp. 117-165. Academic Press (2013)
Schwartz, D.L., Martin, T.: Inventing to prepare for future learning: the hidden efficiency
of encouraging original student production in statistics instruction. Cogn. Instr. 22, 129-184
(2004)

Hohensee, C.: Transfer of Learning: Progressive Perspectives for Mathematics Education and
Related Fields. Springer, Cham (2013). https://doi.org/10.1007/978-3-030-65632-4
Bransford, J., Schwartz, D.: Rethinking transfer: a simple proposal with multiple implications,
vol. 24. American Educational Research Association, Washington DC (1999)

Lobato, J.: How design experiments can inform a rethinking of transfer andviceversa. Educ.
Res. 32, 17-20 (2003)

Cromley, J.G., Perez, T.C., Fitzhugh, S.L., Newcombe, N.S., Wills, T.W., Tanaka, J.C.:
Improving students’ diagram comprehension with classroom instruction. J. Exp. Educ. 81,
511-537 (2013)

Chi, M.T.H., Feltovich, P.J., Glaser, R.: Categorization and representation of physics problems
by experts and novices. Cogn. Sci. 5, 121-152 (1981)

Arcavi, A.: The role of visual representations in the learning of mathematics. Educ. Stud.
Math. 52, 215-241 (2003). https://doi.org/10.1023/A:1024312321077

Chin, J.M., Schooler, J.W.: Why do words hurt? Content, process, and criterion shift accounts
of verbal overshadowing. Eur. J. Cogn. Psychol. 20, 396413 (2008)

Rau, M.A.: Sequencing support for sense making and perceptual induction of connections
among multiple visual representations. J. Educ. Psychol. 110, 811 (2018)

Van Gog, T., Paas, F.: Instructional efficiency: Revisiting the original construct in educational
research. Educ. Psychol. 43, 16-26 (2008)

Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., Richardson, C.: A redrawn Van-
denberg and Kuse mental rotations test - different versions and factors that affect performance.
Brain Cogn. 28, 39-58 (1995)

Sorby, S.A., Baartmans, B.J.: The development and assessment of a course for enhancing the
3-D spatial visualization skills of first year engineering students. J. Eng. Educ. 89, 301-307
(2000)

Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Academic Press (2013)
Schnotz, W.: An integrated model of text and picture comprehension. In: The Cambridge
Handbook of Multimedia Learning, vol. 49, no. 69 (2005)


https://doi.org/10.1007/s11251-008-9051-z
https://doi.org/10.1007/978-3-030-65632-4
https://doi.org/10.1023/A:1024312321077

)

Check for
updates

Leveraging Student Goal Setting for Real-Time
Plan Recognition in Game-Based Learning

Alex Goslenl(&), Dan Carpenter1 , Jonathan P. Rowel, Nathan Henderson
Roger Azevedo?, and James Lester!

1 North Carolina State University, Raleigh, NC, USA
{amgoslen, dcarpen?2, jprowe, lester}@ncsu.edu
2 University of Central Florida, Orlando, FL, USA
roger.azevedo@ucf.edu

Abstract. Goal setting and planning are integral components of self-regulated
learning. Many students struggle to set meaningful goals and build relevant plans.
Adaptive learning environments show significant potential for scaffolding stu-
dents’ goal setting and planning processes. An important requirement for such
scaffolding is the ability to perform student plan recognition, which involves rec-
ognizing students’ goals and plans based upon the observations of their problem-
solving actions. We introduce a novel plan recognition framework that leverages
trace log data from student interactions within a game-based learning environment
called CRYSTAL ISLAND, in which students use a drag-and-drop planning sup-
port tool that enables them to externalize their science problem-solving goals and
plans prior to enacting them in the learning environment. We formalize student
plan recognition in terms of two complementary tasks: (1) classifying students’
selected problem-solving goals, and (2) classifying the sequences of actions that
students indicate will achieve their goals. Utilizing trace log data from 144 mid-
dle school students’ interactions with CRYSTAL ISLAND, we evaluate a range
of machine learning models for student goal and plan recognition. All machine
learning-based techniques outperform the majority baseline, with LSTMs outper-
forming other models for goal recognition and naive Bayes performing best for
plan recognition. Results show the potential for automatically recognizing stu-
dents’ problem-solving goals and plans in game-based learning environments,
which has implications for providing adaptive support for student self-regulated
learning.

Keywords: Plan recognition - Game-based Learning - Self-regulated learning

1 Introduction

Self-regulated learning (SRL) describes learning that is guided by metacognition, strate-
gic action, and motivated behavior [17, 20]. A key attribute of SRL is its focus on goal-
driven learning. Self-regulated learners formulate goals and develop plans for achieving
them, which are monitored and adapted based upon learners’ self-evaluated progress
[22]. Goal setting and planning is particularly important in scientific inquiry where
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learning is guided by students’ curiosity and motivation for acquiring knowledge, and
where students need well-defined plans to carry out productive investigations [9]. Self-
regulated learners set goals and sub-goals to complete a learning task [23]. To achieve
their goals, students build plans that outline approaches, such as strategies or sequences
of actions they intend to enact [22].

Learning environments that support goal setting and planning foster positive emo-
tions and can create opportunities for student success [4]. Adaptive learning environ-
ments provide a way to scaffold student goal setting and planning in a manner that is
individualized to each student. An important component of adaptive scaffolding is rec-
ognizing student goals and plans while the learner solves problems within the learning
environment [1]. The task of plan recognition is focused upon predicting an individual’s
high-level goal, and the plan for achieving it, based on lower-level observations of the
individual’s strategies and actions. Goal recognition is considered a special case of plan
recognition where the prediction task is focused only on recognizing high-level goals
[3]. While there has been considerable work on modeling student knowledge in adaptive
learning environments, limited research has been done on student plan recognition.

This paper presents a novel student plan recognition framework that uses machine
learning to build goal and plan recognition models to predict students’ problem-solving
goals and the series of actions students intend to achieve them. The framework is eval-
uated with CRYSTAL ISLAND, a game-based learning environment for middle school
microbiology, in which students utilize a novel planning support tool that encourages
them to externalize their goal setting and planning processes during science problem
solving. We utilize trace log data from students’ interactions with the planning sup-
port tool, as well as their other problem-solving actions in the game, to train multi-
label classification models to predict students’ goals and plans. Specifically, we predict
labels derived from student goals and a cluster-based representation of planned actions
for the goal recognition and plan recognition tasks, respectively. We present results
from a comparison of six machine learning-based classification techniques (support
vector machines, random forest, naive Bayes, logistic regression, multilayer perceptron,
long short-term memory networks) for modeling student goals and plans in CRYSTAL
ISLAND. Our findings indicate that long short-term memory (LSTM) networks show
promise in both goal and plan recognition tasks, which have potential to inform real-time
scaffolding to support student goal setting and planning.

2 Related Work

Goals and plans are critical in SRL. Winne and Hadwin’s Information Processing The-
ory of SRL posits that, throughout goal setting, planning, and enactment, students are
continually monitoring and controlling how their learning is unfolding so that they are
in control of their learning processes, and they are monitoring how effective these pro-
cesses are in contributing to learning, information processing, and task completion [21,
22]. This implies that students know to set subgoals, use the appropriate and effective
cognitive and metacognitive SRL strategies, and adapt the use of these strategies. How-
ever, how middle school students set goals and plans during science problem solving is
not well understood, leaving key questions regarding how to effectively support student
goal setting and planning in science learning environments [20].
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Despite the importance of student goal setting and planning in SRL, there has been
relatively little work on devising computational models of student plan recognition in
adaptive learning environments. An important exception is work on Andes, an intelli-
gent tutoring system for physics, which utilized Bayesian networks to model student
plans and make predictions about student actions during problem solving [6]. This work
exemplifies a successful application of plan recognition that informs adaptive support
to provide students with specialized help through hints.

Prior work has also investigated a restricted form of student plan recognition, i.e.,
student goal recognition, using trace log data from student interactions with a game-
based learning environment. A set of eleven goals were inferred from player activity.
Authors explored a variety of event representations, models, and different evaluation
metrics for accuracy and efficiency [10, 13, 15]. The most recent work found using
one-hot encoding vectors to represent in-game events as input for LSTMs achieved the
best performance predicting these game activity-derived goals [14]. Additionally, prior
work has highlighted similarities between natural language processing and plan recog-
nition, demonstrating the effectiveness of applying various natural language processing
techniques (NLP) to plan recognition tasks [2, 7].

In this work, we extend these findings by devising a novel student plan recogni-
tion framework that uses students’ in-game actions and planning support tool usage as
observed input and leverages neural embedding-based representations of student action
sequences from students’ externalized plans to produce target labels. This framework
utilizes two multi-label classifiers to compare six machine learning-based classifica-
tion techniques for modeling student goals and plans in CRYSTAL ISLAND. Our aim
is to demonstrate that a machine learning-based framework for student plan recogni-
tion can accurately model student goals and plans during science problem solving in a
game-based learning environment.

3 Goal Setting and Planning in CRYSTAL ISLAND

3.1 Planning Support Tool in CRYSTAL ISLAND

To investigate predictive models of student goal setting and planning during science
problem-solving, we utilize a game-based learning environment for middle school micro-
biology. CRYSTAL ISLAND features an interactive science mystery that engages stu-
dents in a process of scientific inquiry as they investigate the source of a mysterious
disease outbreak on aremote island research station. Students assume the role of an infec-
tious disease investigator who is tasked with diagnosing the outbreak and recommending
a treatment and prevention plan.

In order to support student goal setting and planning in CRYSTAL ISLAND, we
have developed a planning support tool that incorporates design concepts from visual
programming languages [19] and Al planning [8]. Specifically, students utilize a block-
based visual interface to assemble hierarchical (i.e., two-layer) plans consisting of high-
level goals and low-level sequences of actions that can be enacted in CRYSTAL ISLAND
(Fig. 1). Students choose from a palette of pre-defined goal and action blocks in the tool.
The goal blocks represent possible subgoals that students may wish to achieve on their
way to solving the mystery, which are the overarching goal of the problem-solving
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scenario. Example goals include “Learn about outbreak™ and “Report evidence-based
diagnosis”. Each action block lists specific steps that students can take to achieve a
goal. Example actions include “Read about how diseases spread” and “Use scanner to
test objects”. Goal and action blocks are connected to form plans. For example, if a
student sets a goal to “Explore Island”, they can place movement actions such as “Go
to Infirmary” under the goal block to indicate a necessary step needed to complete the
specified goal.

Agent, Please share your current goals and plans for what you will do next
on the island. Close the tool when you are finished.

Explore Island

Learn Science Content

Gather Information Explore camp

Collect Data Go (o infirmary

Form Diagnosis Go 10 lead scientst's (Bryce's) quarters

Communicate Findings Ty

Movement Actions

Go (o living quarters
Dining Hall Actions
Laboratory Actions
Infirmary Actions Leam about outbreak
Bryce's Quarters Actions Speak with lab technician

Living Quarters Actions Read about smallpox

NZO0——0O>

Worksheet Actions Speak with virus expert

A\

Fig. 1. Planning support tool in the CRYSTAL ISLAND learning environment.

Prior to engaging with CRYSTAL ISLAND, students watch a short, narrated video
that introduces the planning support tool and demonstrates how to use the tool to build
a plan. Once students begin using the game, they are prompted early on to set their own
goal(s) and build plans using the tool. Students use the tool by dragging and dropping
goal and action blocks onto a virtual canvas that serves as the planning area. After they
have formulated a plan, they can close the tool and choose to enact their plan (or not)
within the CRYSTAL ISLAND virtual environment. If students complete a goal or want
to remove a goal that they previously chose, they can drag the block to a trash icon in
the planning support tool. Upon deleting a goal block, students are prompted to indicate
whether they reached the discarded goal or not. Students are presented with mandatory
prompts to use the tool at major milestones in the science mystery, as well as every thirty
minutes during gameplay, and may also voluntarily access the planning support tool at
any time.
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3.2 Goal Setting and Planning Dataset

A study was conducted with 144 middle school students in the United States. Of these
students, 60% were female and the average age was 13.2 years. Students played CRYS-
TAL ISLAND remotely during asynchronous science class time due to a transition to
remote learning during the COVID-19 pandemic. Students were instructed to access
the game over a two-day span and were not given a time limit to complete the game.
Students also completed pre- and post-tests to assess science content knowledge, along
with a brief demographic survey. The pre- and post-tests consisted of 17 multiple choice
questions about microbiology that could be answered based on the curricular content in
CRYSTAL ISLAND. Interaction logs of students’ actions within the game and usage
of the planning support tool were logged automatically. Students on average played the
game for 94.7 min (SD = 47.7).

4 Student Plan Recognition in Game-Based Learning

We present a student plan recognition framework that utilizes trace log data from stu-
dents’ planning support tool usage and gameplay to induce multi-label classification
models to predict student goals and plans during science problem solving in the CRYS-
TAL ISLAND game-based learning environment. The input to the student plan recogni-
tion models is a feature vector representation of student actions distilled from students’
trace log data from the game. Students’ goals and plans from the planning support tool
are used to devise labels for training the plan recognition models using a supervised
learning approach. Specifically, each student action is annotated with a goal label and
plan label that signify the goal students are attempting next and the set of actions they
plan to take to achieve that goal, respectively. Below we describe the event sequence
representation, labeling approach, and evaluation methods utilized in the student plan
recognition framework.

4.1 Event Sequence Representation

Student interactions with CRYSTAL ISLAND generate trace log data that consists of
timestamped sequences of actions taken by students while playing the game. We refer to
these as event sequences. Based on prior work, each student action in an event sequence
is represented by three types of features: action types, action arguments, and locations
[14].

e Action type. Action type refers to categories of in-game activities undertaken by the
student within the learning environment. These actions ranged from viewing posters
and reading articles about viruses and bacteria to scanning items and talking to char-
acters. For example, “Movement” signifies moving to a particular location or “Con-
versation” means a student had a conversation with a non-playable character in the
game. There were 9 total action types.

e Action argument. Action arguments provide more details about the action type. For
example, if the action type is “BooksAndArticles”, the title of the book or article
the student read is included as the action argument. There were 108 unique action
arguments.
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e Location. Location represents the region of the virtual island where the action took
place. If the action type is “Movement”, the location is the place where the student
moved to. There were 24 unique locations in the game.

To prepare the dataset for student plan recognition, event sequences were segmented
according to student usage of the planning support tool. The intuition for this approach is
that students externalize their goals and plans using the planning support tool. Afterward,
they enact their plans by performing actions in the game. An event sequence concludes
when the student next reopens the planning support tool and changes their goals or plans,
thereby initiating a new event sequence. In other words, an event sequence begins with the
first student action after the planning support tool is closed. The event sequence concludes
with the last student action before next opening the planning support tool. In total, there
were 400 event sequences across all students. The length of event sequences ranged from
1 to 454, with a median of 30. The event sequences were constructed cumulatively to
allow for action-level prediction, with the maximum length of a sequence being 30. For
example, events one through 30 between planning support tool uses would translate to
30 rows of data, the first row only containing the first event, the second containing the
first and second event, and so on up to 30. Because LSTMs require fixed-length input
sizes, sequences of less than length 30 were zero-padded. Once the event sequences were
created, we used one-hot encoding to convert student actions into a vector representation.
One-hot encoding vectors have been shown to work effectively in prior work on student
goal recognition in game-based learning environments [14].

Each plan that students constructed in the planning support tool consisted of a goal
and a set of actions. We utilized student goals from the planning support tool to devise
labels for the goal recognition task, and we used sets of actions from the planning support
tool to devise labels for the plan recognition task. Event sequences were assigned labels
based upon students’ plans from their prior use of the planning sup-port tool. To illustrate,
consider the following example. A student opens the planning support tool and creates
a plan consisting of a goal and a set of actions (i.e., Plan 1). The event sequence that
follows this planning support tool interaction is assigned a goal and plan label based
upon the goals and set of actions that are included in Plan 1.

4.2 Goal Recognition Labels

The planning support tool allows students to select from 20 possible goals and was
designed so that each goal falls into one of 5 categories: (1) Collect Data, (2) Communi-
cate Findings, (3) Form Diagnosis, (4) Learn Science Content, and (5) Gather Informa-
tion. For our analysis, these five categories serve as goal labels, rather than using all 20
lower-level goals. Since students can create multiple plans at a time, we formalized goal
recognition as a multi-label classification task, assigning each event sequence a binary
label vector in which each element of the vector corresponds to a possible goal category.
The dataset had the following distribution of goal categories: (1) Collect Data: 22%,
(2) Communicate Findings: 4%, (3) Form Diagnosis: 13%, (4) Learn Science Content:
22%, and (5) Gather Information: 40%.
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4.3 Plan Recognition Labels

The planning support tool allows students to select from 55 possible actions to build
plans for achieving their intended goals. Similar to goals, the palette of actions in the
planning support tool was divided across six action categories. We utilized these higher-
level categories to represent the actions in students’ plans. Students’ plans typically
contained more than one action associated with a goal, with an average of 2.58 (SD =
1.96) actions per goal. To convert the action sets into labels for student plan recognition,
the following procedure was applied. First, all actions in a plan were concatenated using
the same order that students specified in the planning support tool. Next, SpaCy word
embeddings were applied to each categorical action set [18]. The resulting embeddings
were averaged for each set of actions in a plan. Next, k-means clustering was applied
to the word embeddings to separate the plans into clusters. The number of clusters was
determined visually using the Elbow method, resulting in 4 distinct groups of action sets
[5]. The resulting clusters were used to derive 4 possible class labels for plan recognition.

When reviewing patterns of action categories within the clustering, it seemed that
the most used action category in each plan aligned within the clusters. Cluster 0 (9%)
represents plans that mostly contain “Read Science Content”. Cluster 1 (30%) represents
primarily “Explore” action category usage. Cluster 2 (33%) represents plans that contain
mostly “Gather and Scan Items”, and Cluster 3 (28 %) represents plans that contain mostly
“Speak with Characters”.

Goals

Student's Full Plans E E Goal Prediction Label Vector
xtract goal >
= E ) categories [0011]

Plan Prediction Label Vector

K-Means
—
[61180]

Clustering

Neural
Embedding

Extract action
categories

Fig. 2. Procedure for translating student plans into multi-label vectors for student goal recognition
(top) and student plan recognition (bottom).

These labels were assigned to event sequences in a multi-label fashion, similar to
the goal recognition task. Figure 2 illustrates the process for translating students’ plans
into label vectors for goal recognition and plan recognition, respectively.

4.4 Model Selection and Evaluation

We examined six different supervised learning techniques to induce multi-label classi-
fiers for student goal recognition and plan recognition: support vector machines (SVM),
random forest (RF), naive Bayes (NB), logistic regression (LR), multi-layer perceptron
(MLP), and long short-term memory (LSTM) networks. These models were selected to
establish a general baseline of results. Since this task has not been completed previously,
we chose mostly non-sequential models to analyze patterns of overall performance. We
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performed nested 5-fold cross validation using an iterative grid search for hyperparam-
eter tuning of all six models. Due to the limited representation of some of the labels, we
could not choose a k any greater than 5 without having one of the classes no longer repre-
sented in the training or test set. We used a stratified student-level split within the nested
cross validation to maintain a similar class distribution across the training and test sets
and to prevent data leakage between folds. For the non-LSTM models, we took the sum
of the one-hot encoding vector across events to handle different lengths of sequences
and created a single vector representing the number of times each type of action occurs
in a sequence. The LSTM received the entire one-hot encoding vector as input.

We utilized the macro-average F-measure to evaluate the models. F-measure has
been shown to be a good indicator of model performance in multi-label classification
tasks because it highlights incorrectly classified labels by basing the calculations on
false positives and false negatives [11, 12]. Since false positives and false negatives are
instances that can create user frustration, they are important indicators of performance in
an adaptive learning environment. In addition, we have an uneven distribution of classes
for both the goal and plan recognition tasks. Macro-average F-measure works well on
imbalanced datasets because it computes the average for each class label separately and
then aggregates them together [16]. Therefore, this metric is well suited for evaluating
models intended for use in adaptive learning environments.

5 Results

To investigate the effectiveness of the machine learning-based goal recognition and
plan recognition models, we compared all models against a baseline model that always
predicts the majority class.

5.1 Goal Recognition Results

Goal recognition results for all six models are shown in Table 1. All models except
random forest improved on the baseline in four out of five goal categories. Random
forest appeared to overfit to the majority class, and it performed similarly to the baseline
model. In some cases, an imbalance of the class labels causes classifiers to ignore the less-
represented classes, which could cause a model to overfit to the majority class. Because
random forest makes decisions based on information gain, it makes sense that it would
often favor choosing the majority class. The LSTM was among the top two highest-
performing models for four out of five classes, including one of the least represented
goal categories (i.e., Form Diagnosis). SVM, NB, LR and MLP all improved on the
baseline with respect to the macro-average F-measure. The LSTM showed the greatest
improvement on the baseline with a 42% relative improvement in the F-measure.

5.2 Plan Recognition Results

Table 2 shows the plan recognition results for all six machine learning models, as well as
the baseline. For the plan classes 0, 1 and 2, all machine learning-based models improved
on the baseline. Naive Bayes showed the highest macro-average F-measure for plan
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Table 1. Average F-measure for each classification model and goal category in the student goal
recognition task. Distributions in results represent the test set and are averaged across 5 folds of
cross validation.

Collect data | Comm. Form Learn science | Gather info. | Overall
findings | diagnosis | content

Ndist |21% 3% 3% 24% 49%

F F F F F Macro F
Maj. 0.00 0.00 0.00 0.00 0.74 0.15
SVM 0.20 0.07 0.22 0.20 0.71 0.28
RF 0.00 0.00 0.00 0.00 0.74 0.15
NB 0.42 0.12 0.23 0.43 0.58 0.35
LR 0.24 0.16 0.40 0.27 0.67 0.35
MLP 0.29 0.19 0.31 0.16 0.64 0.32
LSTM |0.32 0.35 0.47 0.35 0.62 0.42

classes 0 and 1. This could be due to the model attributing most input actions to all four
plan classes, causing the results to be improved. The multi-layer perceptron outperformed
the baseline model on the majority plan class, which indicates it more precisely predicted
the majority plan class than any other approach. The LSTM performed best again for
the least represented plan class. All models improved on the macro-average F-measure
compared to the majority baseline.

Table 2. Average F-measure for each classification model and plan class in the student plan
recognition task. Distributions in results represent the test set and are averaged across 5 folds of
cross validation.

Plan class 0 1 2 3 Overall
N dist. 8% 27% 28% 36%
F F F F Macro F

Maj. 0.00 0.00 0.00 0.55 0.14
SVM 0.36 0.35 0.20 0.29 0.30

RF 0.31 0.41 0.00 0.18 0.22

NB 0.53 0.54 0.17 0.48 0.43

LR 0.46 0.50 0.21 0.43 0.40
MLP 0.29 0.19 0.31 0.64 0.32
LSTM 0.48 0.47 0.31 0.38 0.40




Leveraging Student Goal Setting for Real-Time Plan Recognition 87

6 Discussion

Overall, the machine learning-based models show clear improvement with respect to
macro-averaged F-measure over a naive baseline on the student goal and plan recogni-
tion tasks. Prior work on student goal recognition found LSTMs to be the best perform-
ing model on a multiclass goal recognition task [14]. Our work extends these findings
by showing that LSTMs also perform effectively for goal recognition in a multi-label
context. Student plan recognition proved to be a more difficult task than student goal
recognition. Unlike goal recognition, there was not a single model that performed best
across all plan classes. For example, naive Bayes showed the highest macro-average
F-measure, but its predictions were consistently every plan class for a given set of input
actions. This type of prediction is not ideal to inform run-time scaffolding because it
does not provide a precise indication of what students are planning.

The imbalanced labels in the dataset presented challenges in training and evaluating
the models for student goal recognition and plan recognition. However, it is representative
of the types of plans generated by students through their use of the planning support
tool in CRYSTAL ISLAND. Notably, we saw planning support tool usage decrease
over time, with students trending toward using the tool frequently in the first half of
the game, but less so as time went on. There were also different levels of granularity
associated with the different goal categories and plan classes. For example, goals related
to gathering information typically occurred early in the game, and they encompassed
a relatively broad set of possible actions. In comparison, goals in the Communicate
Findings category ideally occurred after a student formed a hypothesized diagnosis,
which typically occurs later in the game. The steps involved to communicate findings
are directly outlined in the game, and as a result, one would expect plans related to
this goal to occur less frequently. Encouragingly, the results show the promise of using
machine learning-based multi-label classification techniques for student goal and plan
recognition despite the inherent challenges of imbalanced data.

The wide variety of student plans also presented distinctive challenges for plan
recognition. Some students frequently used the planning support tool and updated plans
without being prompted, while other students opened and closed the planning support
tool only when required. This limits our framework because if students do not update
their plans, our framework interprets all input actions as being towards the same goal
and plan. Similarly, if students use the planning support tool sparingly, then the goal and
action labels might not be fully representative of the event sequences enacted in between
planning support tool uses Further enhancements to the framework could be added by
identifying when a plan has been completed through gameplay or a goal, so it is not
singularly relying on students to update their goals and plans. Additionally, more work
could be done to predict goal abandonment based on how long a goal or plan persists in
the planning support tool interactions. Such improvements could alter the distribution
in goal and plan labels and potentially help with recognition performance. Additionally,
more work could be done to predict goal abandonment based on how long a goal or plan
persists in the planning support tool interactions. Such improvements could alter the
distribution in goal and plan labels and potentially help with recognition performance.
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7 Conclusion

Goal setting and planning are key components of self-regulated learning. Adaptive learn-
ing environments show significant promise for adaptively scaffolding students’ goal
setting and planning processes, but they require computational models of student plan
recognition to do so. This work presents a student plan recognition framework that lever-
ages student goals and plans captured during interactions with a novel planning support
tool in a game-based learning environment for middle school microbiology. Students’
goals and plans were used to derive labels to formalize goal and plan recognition as
multi-label classification tasks. Several machine learning techniques were evaluated to
predict students’ goal and plan labels based upon observations of their problem-solving
actions in the game. In both tasks, we saw significant improvement on the majority base-
line with most machine learning models. LSTMs showed particular promise in both the
goal recognition and plan recognition tasks with respect to their ability to perform well
across all classes.

The results indicate the potential of integrating student plan recognition models into
real-time adaptive learning environments. Plan recognition models could be used to
drive adaptive scaffolding in the form of open learner models of student goal setting and
planning processes, or they could drive adaptive hints and prompts related to student
SRL. Additionally, future work could investigate additional nuances of student goal
setting and planning, which will contribute to more robust models because students can
work towards multiple goals and plans at a time or abandon goals and plans without
updating their planning support tool. Lastly, exploring additional sequential models and
a multi-task learning approach to student goal recognition and plan recognition is a
promising direction for future work.
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Flipped Classrooms (FC) courses are a form of blended learning where students
complete pre-class activities before attending interactive face-to-face sessions.
These courses allow students to conveniently access learning resources and inde-
pendently manage their studying time, which requires a high degree of self-
regulation. While pre-class activities are essential for course success [2,16], stu-
dents often do not engage with such activities due to a lack of motivation, time,
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or necessary skills [22]. Understanding student behavior in pre-class activities
can hence help the teaching staff identify these reasons and timely intervene.

Nevertheless, a large number of prior studies on FC have mainly focused on
the effectiveness and implementation of the approach rather than on students’
learning strategies during the course [22]. Moreover, the studies on learning
strategies have formerly used self-evaluating questionnaires [9,26], which can be
biased and do not acknowledge the dynamic nature of learning. Fewer works have
used log data from pre-class activities to predict student success. For instance,
[3] showed that the video usage frequency is correlated to student success, [1]
predicted homework grades by modeling student strategies as clickstream event
n-grams, and [17,28] identified at-risk students based on clickstream features.

Regarding clustering approaches to profile student learning behavior in FC,
[12] identified student learning strategies by examining the distribution of learn-
ing actions in students’ pre-class online sessions. In subsequent work, the same
authors examined student regularity of pre-class activities and its association
with course grades [13]. Other works used clustering techniques to analyze stu-
dent time management skills [6], study the evolution of video usage indicators
[23], and analyze consistency in student learning [25].

However, most of the aforementioned studies have investigated one specific
FC course only (e.g., [12,23]) and/or focused on one specific aspect of student
learning behavior (e.g., consistency [25], time management [13]). In other digital
learning environments, such as massive open online courses, [18] identified rule-
based clusters and explored the movement of students across clusters over time.
However, no groups of students with similar changing behavior were studied. In
contrast, [5] analyzed how students changed their studying strategies during the
course, but did not incorporate multiple student behavioral aspects like [18].

In this paper, we investigate the integration of multiple dimensions of stu-
dent behavior, including self-regulated learning (SRL), in data-driven student
profiles. To this end, we propose a multi-step clustering pipeline based on pre-
vious findings on SRL in online education. In the first step, we model students’
log data as time series and cluster student behavior individually in terms of
effort, consistency, regularity, proactivity, control, and assessment. Through a
second level of clustering, we integrate the obtained behavioral patterns into
interpretable multi-dimensional profiles. With our approach, we aim to combine
multiple behavioral dimensions to obtain interpretable student profiles in FC
and study how these profiles compare across FC courses (RQ1); as well as ana-
lyze the relationship between the detected profiles and academic performance
(RQ2). Our analysis on three FC courses shows that profiles integrating multi-
ple dimensions can be identified and interpreted using clusters’ prototypes and
that sometimes similar profiles emerge regardless of the course topic and struc-
ture. We also find a significant variance in academic performance across profiles.
The obtained profiles hence contribute to teachers’ understanding of student
behavior, enabling better-informed course decisions and student interventions.
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2 Method

To investigate student behavior in FC, we propose the multi-step clustering
pipeline depicted in Fig. 1. We first extract features from pre-class log data to
explain relevant dimensions of learning behavior (Sect.2.1). Instead of cluster-
ing the multiple features in a single step, we propose a multi-step approach
that allows a better interpretation and understanding of the cluster composition
and characteristics. Thus, we perform a first clustering step separately for each
dimension (Sect.2.2); and a second clustering step, in which we integrate the
obtained behavioral patterns into multi-dimensional profiles (Sect.2.3). Source
code accompanying this paper: https://github.com/epfl-mlded/fc-clustering.

Feature Extraction mmm) Identification of Behavioral Patterns mm) Profile Creation
Effort | [ [ [-[ [ | Similarity Matrix Spectral Clustering Labeling K-Modes Clustering
Consistency L] ] _—

Regularity * * e Profile J
Proactivity Effort  Assessment e [ ]
Control e Profile A

Assessment Z

Fig. 1. Overview of the clustering pipeline.

2.1 Feature Extraction

Different aspects of SRL have been researched extensively (e.g., [9,25]). In a
meta-analysis on online education, [7] found significant associations with aca-
demic achievement for five sub-scales of SRL: effort regulation (persistence in
learning), time management (ability to plan study time), metacognition (aware-
ness and control of thoughts), critical thinking (ability to carefully examine mate-
rial), and help-seeking (obtaining assistance if needed). Based on these findings,
we use the following dimensions to represent student behavior: effort regulation
(Effort), time management (Consistency, Regularity, Proactivity), and metacog-
nition (Control). The nature of our log data does not allow us to represent critical
thinking and help-seeking. Assuming that there will be a significant association
between performance in pre-class activities and course grades (e.g., [16,17,28]),
we add a sixth dimension (Assessment) to our representation of student behav-
ior. We measure these dimensions using features that proved to be relevant
in prior work analyzing learning strategies in online or blended learning (e.g.,
[6,8,15,17,20]). Table 1 shows the dimensions and their respective features.
The first dimension, Effort, aims to monitor the intensity of student engage-
ment in the course, which is fundamental for learning success [9]. In contrast,
Consistency is concerned with the relative shape of student events, measuring
how student effort varies over time. Specifically, it estimates the intra-course
time management skills of the students, an important SRL aspect [7,25]. The
Regularity dimension is also associated with time management; it estimates the
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Table 1. Features are grouped into six different dimensions. Each feature stems from
a relevant prior study and is accompanied by a short description.

Dimension® | Feature Description
Effort Total time online [3] Sum of session durations
Total video clicks [8] Video events (play, pause, stop, seek)
Consistency | Mean session duration [8] | Time measured in minutes
Relative time online Unit vector of total time online
Relative video clicks Unit vector of total video clicks
Regularity | Periodicity of week day [6] | Studying on certain day(s) of the week
Periodicity of week hour [6] | Studying at certain hours of the day
Periodicity of day hour [6] | Studying on certain day(s) & hours of the week
Proactivity | Content anticipation [17] Fraction of videos (from subsequent weeks)
watched before the scheduled due date
Delay in lecture view [6] Time interval between the first views and the
due date of videos of prior weeks
Control Fraction spent [20] Real time spent watching the video divided by
its duration, averaged across videos
Pause action frequency [15] | Mean number of pauses divided by the time
spent watching a video per video
Average change rate [20] Mean playback speed used to watch videos
Assessment | Competency strength [17] | Highest grade achieved by the student on a quiz
divided by the number of attempts
Student shape [17] Student’s tendency of obtaining the maximum
grade in a quiz in the first attempt

“Features names taken from original papers and implementation from [17].

intra-week and intra-day time management patterns (i.e., capturing whether a
student is regularly engaged on specific weekdays or day times), which have been
proved to be predictive of student success in MOOCs [6] and FC [13]. Another
dimension of time management, Proactivity, attempts to measure the extent
to which students are on time or ahead of the schedule [11]. Engagement in pre-
class activities has shown to be associated with exam performance [2,16]. The
Control dimension models the in-video behavior as a proxy of student ability
to control the cognitive load of video lectures (metacognition). The flow of video
information can result in cognitive overload and thus regular pauses can improve
learning outcomes [4]. In the platform, students are provided with functionalities
(e.g., pause button) to control video flows [4]. Finally, the Assessment dimen-
sion assumes that there is a relation between student performance in voluntary
non-graded online quizzes and the final course grade (e.g., [16,17,28]). Given
that learning is dynamic in nature [27], we model features as week-wise time
series (length equal to the number of course weeks). The only exceptions are the
Regularity features, whose computation requires evidence from all course weeks
and thus are computed for the whole course as a scalar.
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2.2 Identification of Behavioral Patterns

The first clustering step is done separately per dimension: we compute a pairwise
similarity matrix, feed it into a spectral clustering, and interpret its labels.

Similarity Matrix. First, we compute a pairwise distance matrix between stu-
dents separately for each feature. To compute distances between student time
series, we use the Dynamic Time Warping (DTW) distance [25]. DTW can iden-
tify similar patterns (e.g., peaks) regardless of small variations (shifts) in time.
In contrast, we use the Euclidean distance for the Regularity features, since they
are scalars and not time series. Second, we apply a Gaussian kernel to transform
the distance matrix into a similarity matrix. The standard deviation (o) of the
kernel controls the blurring degree, which is useful to reduce the impact of stu-
dents with extreme behavior. We then add the similarity matrices of the features
of each dimension to get the dimension similarity matrix. We optimize the DTW
window size (w) and the width of the Gaussian kernel (o) per dimension via a
grid search maximizing the clusters’ Silhouette score (see next paragraph).

Spectral Clustering. We apply Spectral Clustering [21] to cluster the similar-
ity matrix of each dimension separately. This clustering algorithm treats points
as nodes in a graph and then solves the graph partitioning problem. Unlike
K-Means, it is not limited to convex clusters. The algorithm outputs a vector
containing the cluster identifiers for each student. In total, there are as many
vectors as behavioral dimensions, and each vector length is equal to the num-
ber of students. We perform a grid search separately for each dimension using
k =2,...,10 clusters. We use the Silhouette score [24] to determine the optimal
number of clusters as this heuristic is easy to interpret (higher scores indicate
high separability between clusters).

Labeling. We label the obtained clusters for each dimension according to the
intensity, shape (including peaks), and relation to key aspects of the course (e.g.,
exams), by thoroughly inspecting the time series of the students in each cluster.
When the patterns differ in more than one attribute (e.g., intensity and shape),
we choose the attribute that better explains each dimension. Labels are created
relative to other clusters and not in absolute terms. For instance, labeling a
cluster as Higher Effort does not mean effort exceeds a given threshold, but that
students in this cluster work more intensively than those in the other clusters.

2.3 Profile Creation

The second clustering step integrates all dimensions into a single learner pro-
file, enabling us to describe student behavior across dimensions (e.g., a cluster
with Higher Effort, Lower Assessment, Higher Control, etc.). We are hence able
to gain insights into the dependencies across dimensions. We take as input the
five/six annotated labels (one per dimension) from Sect.2.2 and cluster them
using K-Modes (selecting K as in Sect.2.2). K-Modes extends K-Means to use
the mode (most frequent element) instead of the mean to compute cluster cen-
troids from categorical data. These centroids provide insights into the cluster
composition (e.g., [25]) and will be analyzed in the next section.
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3 Experimental Evaluation

We evaluated our approach on three different FC courses. We first analyzed
and compared the obtained profiles across courses (RQ1) and then investigated
their relation to academic performance (RQ2). The study was approved by the
institutional review board (HREC No. 058-2020,/10.09.2020).

Table 2. Characteristics of the FC courses.

Course | Year Semester | Students | Female | Event type No. events | Fail
LA 2018/19 | 1 292 20% | Video + Quiz | 1,033,962  41%
FP 2018 3 216 20% Video 464,115 | 2%
PC 2019 4 147 14% Video 156,375 | 11%

Data Set. Our analysis is based on the log data collected from an EPFL online
institutional platform (custom Open edX installation) that tracked student pre-
class activities (watching video lectures and solving quizzes) in three FC courses.
The log entries are tuples reporting the user, the activity, and the timestamp
(e.g., user: 10, activity: play video 32, timestamp: 05-03-2018 12:06:01). The
three considered FC courses (Table 2) are compulsory courses for the Computer
Science and Communication Systems Bachelor degrees in EPFL. The first data
set was collected from two consecutive FC editions of the Linear Algebra (LA)
course, taught by the same lecturer and with a flipped duration of 10 weeks.
Among the three courses, this is the only one including online quizzes. The
second data set was collected from the FC edition of a Functional Programming
(FP) course with a flipped duration of 11 weeks. The third data set stems from a
FC course in Parallelism and Concurrency (PC) lasted 15 weeks. It is important
to note that this course was taught in a traditional way between weeks 4-7.

3.1 Behavioral Patterns and Multi-dimensional Profiles

We first examined the profiles obtained for LA and then compared the profiles and
behavioral patterns across courses (LA, FP, PC). Table 3 shows the characteristics
of the identified profiles for all courses, i.e., the centroids from the K-Modes
clustering. The centroid is the mode (majority label) of each learning dimension.
For instance, for profile A, the majority of students were labeled Lower Effort.

Profiling for LA. We identified five profiles (A, B, C, D and E) for LA. To
visualize their patterns, we inspected the barycenters (centroid) of each cluster.
To compute the barycenter, we used the DTW Barycenter Averaging method
that averages time series considering the DTW alignment and window constraint.

Figure 2 shows the barycenters as lines and the Euclidean mean of each week
as bars for Effort, Assessment, and Control. Concerning the Effort dimension,
the students with Lower Effort were less active (in terms of online time and num-
ber of video clicks) than the students with Higher Effort. One profile (C') exhibits
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Table 3. Percentage of students per profile for each course and profile description.

Profile % Dimension

LA FP PC Effort Consistency Regularity  Proactivity Control

A 24 Lower  Uniform  Lower Peaks  Delayed Lower
B 18 28 35 Lower  Uniform  Lower Peaks  Delayed Higher
C 19 18 Higher  Uniform  Higher Peaks Anticipated Higher
D 21 Lower  Uniform  Higher Peaks Delayed Higher
E 18 Lower  Uniform  Higher Peaks Anticipated Higher
F 15 27 Higher Midterm  Higher Peaks Delayed  Higher
G 25 Higher Midterm  Lower Peaks Anticipated Higher
H 14 Lower  Midterm  Lower Peaks  Delayed Lower
1 18 Higher ~Midterm  Higher Peaks Anticipated Higher
J 20 Lower Midterm  Lower Peaks Anticipated Lower
S Higher (21%) -‘g\ 0.4 Higher (77%) > 0.3 Higher (76%)
© Lower (79%) e Lower (23%) 2 Lower (24%)
© 400 =1 @
g #03 o2
§ 200 § o2 g 01
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Fig. 2. Patterns for Effort (a), Assessment (b), and Control (c) for LA.

patterns of higher effort compared to the other four profiles. For Assessment,
the difference between the detected patterns again lies mainly in the intensity
(Fig. 2b). We observed two clusters, with one cluster (denoted as Higher Assess-
ment) exhibiting a higher pattern than the other cluster (labeled as Lower
Assessment). Different from Effort, most profiles showed Higher Assessment.
The difference in competency strength between the two clusters is very large,
with the Lower Assessment cluster having very low values. This observation
could suggest that Assessment is reflecting the differences in students’ willing-
ness to solve the quizzes rather than measuring their actual quiz performance.
For the Control dimension (Fig. 2¢), we observed two groups: the Higher cluster
(76%) had a greater ratio indicating that it pauses the video more often than the
Lower cluster (24%). Higher pause frequency and longer pauses can be a result
of students taking time to reflect on unclear or interesting parts of a video [15].
It is worth noting that Control and Assessment are the only dimensions that
are paired. It is not surprising that the students that have Higher Control and
manipulate the video content more are also the students with Higher Assessment
that are engaged with the optional quizzes.
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While the aforementioned dimensions mostly capture the differences in the
intensity of student activity, Consistency captures differences in the relative
intensity (in terms of online session time and video clicks) over the whole course.
We obtained two distinct patterns shown in Fig.3a. The majority of students
(84%) worked consistently over time with little or no peaks (Uniform), while
only a few students (16%) worked considerably more in the last week of the
semester (Final Exam). Interestingly, all the LA profiles are labeled with Uni-
form Consistency (see Table 3). This means the Uniform Consistency students
outnumber the Final Exam Consistency students in all profiles, indicating that
the differences in other dimensions were more significant or separable.

Regarding the Regularity patterns, Fig. 3b shows an example of the relative
frequency of events per day of the week for two example students. The (Higher
Peaks) student worked only on Sundays, Mondays, and Tuesdays. In contrast,
the student with (Lower Peaks) worked some weeks on Saturdays and other
weeks on the other days of the week without a clear pattern (Fig.3b). The in-
person part of the course was taught on Tuesdays; this can explain the relative
peak in activity for (Higher Peaks) on Monday. Students in profiles A, and B
exhibit less regular working patterns than students in profiles C', D, and E.

o Uniform (84%) 04 Higher Peaks Student Anticipated (39%)
£06 Final Exam (16%) E;‘ i Lower Peaks Student Y Delayed (61%)
[ o o
© 0.5 -
£ = 2]
903 g 0.2 5 00
> E o
=}
502 301 825
£0.1 <

0.0 0.0 " -5.0

0 2 4 6 8 Sun Mon Tues Wed Thur Fri  Sat 0 2 4 6 8
Week of the course Day of the week Week of the course

(a) (b) (c)

Fig. 3. Patterns for Consistency (a), Regularity (b) and Proactivity (c) for LA.
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Fig. 4. Consistency patterns for FP (a) and PC (b). In FP, most of the students show
increased activity for exams. In PC, the majority works consistently.
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Unlike other dimensions, Proactivity includes two features with contrasting
behavior: content anticipation and delay in lecture view. Figure 3c shows that
the Anticipated cluster (39%) has negative values in delay in lecture view, while
the Delayed cluster (61%) has positive values with a peak in the beginning.

Comparison Across Courses. In a second analysis, we compared the profiles
from LA with the ones identified for the other two courses (FC and the PC). We
obtained a total of 10 profiles, listed in Table 3. Profile B was found in all three
courses and profile C' and F were found in two out of three courses.

From Table3, it seems that Consistency has peculiar behavioral patterns
between courses. Figure4 presents the relative time online for FP and PC. In
FP, three different patterns were identified (Fig.4a). The students that worked
strongly for the midterm (Midterm), those that had more activity before both the
midterm and final exam (Ezams), and those that had a normal-shaped activity
with a visible peak one week before the midterm ( Uniform). For PC, we observed
two distinct behaviors (Fig.4b). A group of students worked more during the
weeks before the midterm (Midterm), whereas another group worked more con-
sistently over the semester (Uniform). Note that there were no videos from weeks
4 to week 7 in this course, which explains the drop in activity during these weeks
for the Uniform group. In contrast to FP and PC, there is no pattern in LA (see
Fig. 3a) in which students work more intensely for the midterm exam; this could
be a result of the weekly online quizzes that kept the majority of the students
engaged almost uniformly during the semester.
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Fig. 5. Academic performance for LA (a) and FP (b) and PC (c).

In summary, our approach can identify meaningful multi-dimensional profiles
across courses with different topics and structures. We observed profiles with
varying compositions and no completely aligned dimensions. The multiple com-
binations of dimensions reflect the complexity of learning behavior (RQ1).
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3.2 Relation to Academic Performance

We finally explored the relationship between the profiles and academic per-
formance, measured using the students’ final course grade'. For LA, a signif-
icant Shapiro-Wilk normality test (W = 0.96, p = 2.6e—07) indicated that
the grades were not normally distributed. We hence used the non-parametric
Kruskal-Wallis test to identify significant differences between profiles (x2(4) =
12.7, p = 5.3e—03). We then performed pairwise comparisons between profiles
using the Wilcoxon Rank Sum test?. Subsequently, we replicated the analysis
using the grades from PC and FP?. Figure 5 shows the distribution of grades per
profile.

In LA, students in profile E have significantly higher grades than the students
in profiles A, B, C, and D. These differences in performance also emerge in the
failure rate for each profile. Students in profile FE have a lower chance of failing the
course (failure rate: 19%) compared to students in profiles D (57%), A (48%),
C (38%), and B profiles (36%). When we compare the four other profiles to
profile E, we observe that Proactivity is the only difference between profiles F
(the best performing profile) and D (the profile with the highest failure rate).
Therefore, it seems that delaying lecture material and not being proactive results
in worse academic performance. Likewise, profile E and C only differ in the Effort
dimension, but surprisingly, profile £ with Lower Effort outperforms profile C'
with Higher Effort. We hypothesize that in this case, Effort is an indicator of
students struggling rather than a measure of commitment as expected [9].

In PC, profile C' outperforms the other three profiles B, F', and J; while
students in J perform poorly compared to profiles B, C, and F. In FP, students
in profile H perform significantly worse than the students in B, I, F, and G.
As shown in Table 3, these poor performing profiles (profiles H and J) are quite
similar. The results are as expected since both have Lower Effort, Lower Peaks
in Regularity, Lower Control, and increased activity before the midterm exam.
For PC, it is hard to identify the dimension responsible for the worse academic
performance of profile J, as the other profiles differ in several dimensions. For
example, it would be inaccurate to say that profile F' outperforms profile J
despite having Delayed Proactivity because it is not the only dimension that
varies. For PC and FP, the combination of dimensions explains the differences in
performance rather than an isolated dimension.

In summary, we found significant differences in academic performance in all
three courses. Although the level of significance varies across courses, we found
coherent results between the shared profiles (RQ2).

! Grades range from 1 to 6, with 6 being the best and 4 being the passing grade.

2 Correcting for multiple comparisons via a Benjamini-Hochberg (BH) procedure.

3 Shapiro-Wilk test for FP: W = 0.97, p = 5.6e—05; and PC: W = 0.97, p = 3.1e—03.
Kruskal-Wallis Test for FP: x2(4) = 21.8, p = 2.2e—04; PC: x*(3) = 13.4, p = 3.8e—03.
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4 Discussion and Implications

In this work, we combined multiple behavioral dimensions to obtain interpretable
student profiles in FC and analyzed how these profiles and their behavioral pat-
terns compare across courses (RQ1). We then showed the relation between those
profiles and academic performance (RQ2). Unlike prior work mostly focusing
on a single FC course [12,23], we applied our pipeline to three courses (LA, FP
and PC) with different topics, instructors, FC period length, and study level.

Our results showed that our pipeline can identify interpretable student pro-
files in FC, with some of them showing similar behavior across different courses
and others associated with a behavior unique to a specific course (RQ1). In
addition, our results emphasize the importance of taking into account the depen-
dencies between learning dimensions and analyzing them in combination rather
than focusing on an isolated dimension. It is noteworthy that despite Effort,
Consistency, Regularity and Proactivity are SRL skills, they do not always go
hand-to-hand in the profiles description. For example, Effort appears to be con-
stant in several profiles, and the profiles with the same effort magnitude differ
based on other dimensions (e.g., Consistency). This is in line with [19], where
three groups showed the same effort but a different consistency. Interestingly,
a profile with a Lower, Decreasing, and Delayed patterns in all dimensions was
also found among university students with high dropout rates [14] and profiles
A and H resemble the minimalist behavior identified by [23].

Our analyses also confirmed that there were some significant differences in
academic performance between the profiles (RQ2). From a pedagogical per-
spective, these results are mostly coherent with findings from prior work (e.g.,
[4,6,10,25]) showing that achievement is significantly higher for students with
high SRL skills (focusing on a single dimension). In LA, surprisingly, counter to
the work of [9], keeping all the other dimensions equal, the Lower Effort pro-
file (E) outperformed the Higher Effort profile (C). In contrast, in PC, profile C
(with Higher Effort) was the best performing profile. These differences exemplify
how the proposed pipeline expresses the profiles relative to the classmates of each
course. Likewise, the results from LA showed that Proactivity appeared to be the
most indicative behavioral dimension for academic performance: watching the
lecture videos ahead of schedule (like profile F) was associated with good aca-
demic performance, while delaying lecture material (like profile D) was related
to inferior academic performance, in line with [17]. Nevertheless, in PC, profile
F with Delayed Proactivity outperformed profile J with Anticipated Proactivity.
This does not rule out the importance of Proactivity but rather the limitations
of analyzing dimensions separately. Profiles F' and J also differ in Effort, Reg-
ularity and Control, thus, the differences in academic performance in PC and
FP can be better explained with multi-dimensional profiles. Instructors should
acknowledge this to foster learning profiles beneficial to their course (e.g., profile
E), and prevent counterproductive behaviors (e.g., profile H).

In this work, we used three different data sets to provide a diverse evaluation
of our approach. From a research perspective, we proposed a method to help
both researchers and practitioners improve the understanding of student learn-
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ing in FC. From a teacher’s perspective, this study enables data-driven course
modifications (e.g., weekly quizzes) and better-informed student interventions.
In addition, students could receive automatic personalized feedback and rec-
ommendations depending on their profile. Overall, our work contributes to the
ongoing research of reusable analytics and to the generality of theories and pat-
terns of SRL. Nevertheless, further work is needed to assess the generalizability
of our results in other educational contexts.
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Abstract. Blended educational technologies can leverage complementary ben-
efits of physical and virtual manipulatives. However, it is not clear how best to
combine these manipulatives. Prior research has focused on combining physi-
cal and virtual manipulatives by offering them sequentially based on whether
they make a specific concept salient. This research has mostly ignored embod-
ied learning mechanisms that can ground students’ conceptual understanding in
bodily actions. To address this issue, we conducted a lab experiment on chem-
istry learning with 80 undergraduate students. We compared different ways of
sequencing virtual and physical manipulatives in ways that first engaged students
in embodied experiences or made the target concepts salient. Results suggest that
providing embodied experiences early in the learning sequence enhances concep-
tual learning. These findings extend extant theory on blending physical and virtual
manipulatives and provide practical advice for developers of blended interactive
educational technologies.

Keywords: Blended technologies - Physical/virtual manipulatives - Embodiment

1 Introduction

Blended educational technologies that combine physical and virtual experiences are
becoming increasingly popular [1, 2]. This has revived a century-old debate about when
physical manipulatives enhance learning [3]. For example, chemistry students may inter-
act with physical or virtual manipulatives while learning about atoms (Fig. 1). Physical
manipulatives are tangible objects that students construct with their hands (Fig. 1a).
Virtual manipulatives are displayed on a screen and are manipulated by mouse, key-
board, or touchscreen (Fig. 1b). The goal of blended technologies is to combine these
manipulatives in a way that leverage their complementary benefits [1, 2, 4].

A prevalent way of blending physical and virtual manipulatives is to provide them
sequentially [5-7]. However, prior studies yield conflicting results as to how physical
or virtual manipulatives should be sequenced (e.g., [5, 7]). To resolve these conflicts,
a dominant blending framework [1, 4] proposes that students should work with the
manipulative that makes task-relevant concepts salient by drawing students’ attention to
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Fig. 1. Physical (a) and virtual (b) manipulatives showing an atomic orbital energy diagram.

the concepts. When students switch to a different task, they may switch to a different
manipulative that better aligns with the concepts relevant to the new task.

A limitation of this blending framework is that it solely focuses on conceptual learn-
ing processes. Yet, embodied processes also affect students’ learning with physical and
virtual manipulatives [8]. Most prior research on blended educational technologies has
focused on conceptual processes (e.g., [9-11]) while disregarding embodied processes
[8]. The lack of research that integrates both processes is problematic. First, focusing on
only a subset of relevant processes may lead to confounded experiments, which may con-
tribute to conflicting results from prior studies. Second, research needs to compare the
relative strength of these processes to determine which process accounts for the observed
sequence effects. Without such knowledge, we cannot make recommendations for when
students should receive a physical or virtual manipulative. Further, such knowledge will
determine which process adaptive blended technologies should trace to assign physical
or virtual manipulatives based on an individual’s learning progress.

To achieve these goals, we present an experiment that systematically varied design
features of manipulatives that affect conceptual and embodied processes. We tested
sequences of physical and virtual manipulatives within an intelligent tutoring system.

2 Theoretical Background

2.1 Learning Processes Affected by Physical and Virtual Manipulatives

A recent review [8] showed that prior studies mostly focus on how physical and virtual
manipulatives make concepts salient while fewer studies focus on embodied processes.

Conceptual salience describes the capacity of a visual representation to draw stu-
dents’ attention to visual features that depict conceptually relevant information [8].
Concepts may become salient because visual design features of the manipulative draw
students’ attention to them [12] or because students’ interactions with the manipulative
draw attention to a specific feature that depicts conceptual information [13].
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According to this perspective, whether a physical or virtual manipulative is more
effective depends on which makes a concept more salient [1]. For instance, physical
manipulatives are more effective if they allow students to experience spatial concepts
[14, 15] or offer concrete experiences relevant to the target concept [16]. As mentioned,
the dominant blending framework [1] recommends to match physical and virtual manip-
ulatives to learning tasks based on whether they make the target concept conceptually
salient. Indeed, this way of blending physical and virtual manipulatives leads to higher
learning gains than working with only physical or only virtual manipulatives [4].

In sum, the dominant view is that the type of manipulative that makes the target
concept salient should be most effective.

Embodied theory assumes that cognition evolved for humans to mentally simulate
effects of their actions [17, 18]. Hence, abstract thinking builds on mental simulations
of body actions. For example, understanding growth functions builds on experiences of
growth and increase in the real world. We distinguish two tenets of this theory [8, 13].

Explicit embodiment emphasizes the importance of explaining relationships between
kinesthetic experiences and concepts [8]. Physical manipulatives may allow students to
experience a target concept through the sense of touch and motion [19]. Students can
explicitly connect these embodied experiences to the concept. For example, suppose
manipulating a physical manipulative involves lifting an object. Prompting students to
explain how the physical effort associated with this action relates to concepts of kinetic
and potential energy can help students understand these concepts. Explicit embodied
experiences can perceptually ground students’ understanding of abstract concepts [20];
that is, students’ gradual understanding of abstract concepts based on concrete experi-
ences becomes increasingly stylized [21, 22]. Indeed, perceptual grounding enhances
learning outcomes [23]. Thus, explicit embodiment suggests that physical manipula-
tives are advantageous if they allow students to explain connections between the target
concepts and experiences of touch and movement.

Implicit embodiment emphasizes the importance of body movements without requir-
ing that students are aware of the connections between the movement and the concept [8].
Building on the idea that thought is a mental simulation of action [24, 25], even abstract
concepts (e.g., justice) are based on real-world experiences (e.g., balance), often with-
out our awareness of this connection [26]. This implies that instruction should invoke
embodied schemas relevant to the target concept [27]. Embodied schemas can be invoked
by metaphors, body movements, or gesture [28, 29]. Students’ learning of a concept is
enhanced if they receive instruction on the concept while moving their body in ways that
are synergistic to the associated embodied schema, even if they are not aware that their
movement related to the concept [20, 30]. For example, moving one’s hand upwards may
activate an embodied schema related to increase, which can help students learn concepts
related to growth.

Implicit embodiment is not only afforded by physical but also by virtual manip-
ulatives. When virtual manipulatives are manipulated in ways that invoke synergistic
embodied metaphors, students learn the target concept better than when manipulating
the same manipulative with less synergistic movements [31]. Because physical and vir-
tual manipulatives often engage students in different movements, implicit embodiment
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has implications for which type of manipulative is most effective. For example, to manip-
ulate a physical manipulative, a student may move their hand vertically, which implicitly
invokes embodied schemas related to growth and increase. In contrast, a virtual manip-
ulative may require a sideways movement that invokes embodied schemas of balance
and equality. Depending on which embodied schema matches the target concept, one or
the other type of manipulative may be more effective [8].

In sum, implicit embodiment suggests that manipulatives are more effective if they
invoke embodied schemas that match the target concept without requiring awareness of
the match.

2.2 Blending Physical Versus Virtual Manipulatives

There is no empirical basis for the superiority of physical or virtual manipulatives [8].
Many studies showed that physical and virtual manipulatives complement each other by
making different concepts salient [1, 6, 9]. Hence, research investigated how to blend
these manipulatives by sequencing them in a way that best leverages their strengths
[7-13]. This yielded the dominant blending framework [1, 4], which suggests that
manipulatives should be chosen based on their ability to make concepts salient.

Yet, the dominant blending framework is limited because it is based on studies that
focused only on conceptual salience of the target concepts and thus conflated ways that
the manipulatives affected embodied processes [8]. Our prior work [32] started address-
ing this limitation. We systematically varied whether physical and virtual manipula-
tives implicitly induced embodied schemas that were synergistic to the target concepts,
offered explicit embodied experiences of the concepts, and provided visual cues that
made the concepts salient. We found that implicit embodiment yielded higher learn-
ing gains on a reproduction test. However, physical manipulatives that offered explicit
embodied experiences yielded higher gains on a transfer test. If explicit embodiment
was not available for a given concept, manipulatives (physical or virtual) that made the
concept salient yielded higher transfer gains. We interpreted the findings based on the
complexity of the learning outcome [13, 33]: Implicit embodiment enhanced simple
learning outcomes (i.e., reproduction). In contrast, explicit embodiment and concep-
tual salience (both explicit processes) enhanced complex outcomes (i.e., transfer). We
consider explicit embodiment more complex than conceptual salience because it allows
students to make more connections between the manipulative and the concept (embodied
plus visual experience vs visual experience only). This explains the benefit of explicit
embodiment compared to the effects of conceptual salience.

3 Research Questions and Hypotheses

Our prior study suggests that effects of physical and virtual manipulatives affect learning
outcomes not only via conceptual processes but also via embodied processes. Further,
the different processes affect different learning outcomes. This raises the question of how
manipulatives should be sequenced to best leverage implicit and explicit embodiment
as well as conceptual salience. Our prior study suggests two hypotheses:
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On the one hand, instruction often progresses from simple to complex. This yields the
simple-first (SF) hypothesis: Students should first work with manipulatives that engage
simple learning processes by implicitly inducing embodied schemas relevant to the
concept. Then, they should work with manipulatives that engage complex processes
by offering explicit embodied experiences of the concept. If explicit embodiment is
unavailable, the manipulative should make the concept salient. This should enhance
students’ ability to construct correct manipulatives (Hsp.1) and learning gains (Hsp.2).

On the other hand, students may need to acquire deep understanding of a complex
concept before they should practice simple recall. This yields the complex-first (CF)
hypothesis: Students should first work with manipulatives that engage complex processes
by offering explicit embodied experiences of the target concept (or, if not available, make
the concept salient). Then, they should work with manipulatives that engage simple
processes by implicitly inducing embodied schemas. This should enhance students’
ability to construct correct manipulatives (Hcp-1) and learning gains (Hcp-2).

The goal of the present study is to systematically test these hypotheses. To this end,
we conducted an experiment on students’ use of manipulatives in a chemistry lesson.

4 Methods

4.1 Participants

Eighty undergraduate students were recruited from our institution via flyers and emails.
Screening questions ensured they were naive to the content and the manipulatives.

4.2 Experimental Design

In line with our prior study [32], we created four types of energy diagram manipulatives.
For two concepts (A and B), they offered either conceptual or implicit-embodied expe-
riences: two physical manipulatives (physicalconceptual, Pc; and physicalimplicit-embodied
Pip), and two virtual manipulatives (V¢; Vig). As detailed below and shown in Table 1,
Pc and Prg offered explicit-embodied experiences for concept A but not for concept B.

Table 1. Overview of physical (Pc/Pig) vs virtual (Vc/Vig) manipulatives and target concepts.

Process Concept A Concept B
Complexity | Type of experience | Pc | Pig | Ve | Vie | Pc | Pe | Ve | Vi
Complex | Explicit-embodied | v v - - - - - -

) Conceptual v - v - v R v -
Simple Implicit-embodied - v - v - v - v

Concept A: Electrons Randomly Fill Equal-Energy Orbitals.

Atomic properties are determined by the location of their electrons in subatomic regions
called orbitals. Energy diagrams show the location of electrons and the relative energies
of orbitals (Fig. 1). Electrons fill lower energy orbitals before higher energy orbitals.
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Because equal-energy orbitals are equally likely to be filled, many atoms have alter-
native energy diagrams. A common misconception is that electrons fill equal-energy
orbitals from left to right, rather than randomly. Target concept A was for students to
learn that electrons randomly fill equal-energy orbitals.

To construct P, students moved cards that showed electrons from the bottom up
to put them in orbitals (Fig. 1A). Pc makes the concept salient because planning the
motor action involved in the vertical action requires attention to the height of the orbital
when students put a card in an orbital. However, this vertical action implicitly induces
a conflicting embodied schema because it aligns with a metaphor of increase [26] that
conflicts with the concept of equality.

To construct Py, students held the cards next to the orbitals and moved their hands
horizontally to put them in orbitals. The horizontal action makes the concept less salient
because it does not require paying attention to the height of the orbitals. However,
this horizontal action implicitly induces beneficial embodied schemas for the concept
because horizontal actions induce a metaphor of equality [26].

Both P and Py offer explicit embodied experiences of concept A because students
can physically experience the height of the orbital.

To construct V¢, students had to click a button at the bottom of the interface each
time before moving the mouse up to put arrows in orbitals. This vertical action makes
the concept more salient but implicitly induces a conflicting embodied schema.

To construct Vyg, students had to move the mouse horizontally to click in equal-
energy orbitals (Fig. 1B). Vig makes the concept less salient but implicitly induces a
beneficial embodied schema.

V¢ and Vg offer no explicit embodied experience of concept A.

Concept B: Up and Down Spins Have Equal Energy. Electrons in the same orbital
have opposite spins (shown by up and down arrows; Fig. 1). Up and down spins are
equally likely. A common misconception is that the first electron in an orbital always
has an up spin. Hence, target concept B was for students to learn that both spins are
equally likely.

For P, the card stack was sorted so that all cards had an up arrow. This makes the
concept more salient because students had to purposefully flip the arrows to show that
the spins are equally likely, which requires explicit attention. Yet, this implicitly induces
a conflicting embodied schema because it takes two actions to show a down spin (i.e.,
more effort) and only one action to show an up spin (i.e., less effort).

For Pyg, the card stack was not sorted, so that up and down arrows were random.
This makes the concept less salient because the spin is already random and does not
require attention to a related action. Yet, this implicitly induces a beneficial embodied
schema because it takes the same number of actions and hence the same amount of effort
to show up or down spin.

In V¢, students clicked to add arrows. The first click added an up arrow, the second
click flipped it to a down arrow. V¢ makes the concept more salient because students
had to purposefully flip the arrows. Yet, this implicitly induces a suboptimal embodied
schema because it took two clicks to show a down spin (more effort) but only one click
(less effort) to show an up spin. V¢ offers no explicit embodied experience of spin.
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In Vg, the first click created an arrow with random spin and the second click flipped
it. This makes the concept less salient but induces a beneficial embodied schema. Vig
offers no explicit embodied experience of spin.

Pc., Pig. Ve, and Vg offer no explicit embodied experience of spin.

Experimental Design: Sequences of Manipulatives. The experiment involved two
sessions. Session 1 covered concept A and session 2 covered concept B. The experiment
varied the sequence of mode (P-V vs V-P) and of design (IE-C vs C-IE).

Specifically, students were randomly assigned to one of four conditions for session 1:
Pc-Vig, Pie-Ve, Ve-Pig, or Vig-Pc. For session 2, students were assigned to a condition
that offered manipulatives they had not encountered in session 1. For example, if students
received Pc-Vig in session 1, they received either Pig-V¢ or Vc-Prg in session 2. This
ensured that all students received each manipulative. Further, this design allowed us to
test the two competing hypotheses in the following manner. The simple-first hypothesis
predicts an advantage for Vig-Pc and Pig-Vc over Pc-Vig and Vc-Pig because these
sequences engage students in simple learning processes first (i.e., Vig and Pig), and
then engage students in complex learning processes (i.e., Pc and V). For concept A,
this advantage should be particularly pronounced for Vig-Pc because Pc offers explicit
embodied experiences in addition to making the concept salient.

By contrast, the complex-first hypothesis predicts an advantage for Pc-Vg and Vc-
Pig over Vig-Pc and Pig-V ¢ because these sequences engage students in complex learn-
ing processes first (i.e., Pc and V¢), and then in simple learning processes (i.e., Vig
and Pig). For concept A, this advantage should be particularly pronounced for Pc-Vig
because Pc offers explicit embodied experiences in addition to making the concept
salient.

4.3 Materials

Intelligent Tutoring System: Chem Tutor. All students worked with Chem Tutor, an
intelligent tutoring system for undergraduate chemistry [34, 35]. Chem Tutor engages
students in iterative representation-reflection practices by asking them to construct
manipulatives and reflect on how the manipulative shows the target concepts.

Students worked through a sequence of eight problems focused on concept A and
five problems focused on concept B. Each problem asked students to construct an energy
diagram. Physical manipulatives (Pc/Pig) were placed next to the computer (Fig. 1a).
Virtual manipulatives (Vc/Vig) were embedded in Chem Tutor. Chem Tutor provided
feedback and on-demand hints on all problem-solving steps, including the manipulatives.
For physical manipulatives, the experimenter provided scripted feedback and hints that
matched those provided by Chem Tutor.

Measures. We assessed students’ conceptual knowledge with a pretest, immediate
posttest, and delayed posttest for each concept. For each concept, the tests included a
reproduction scale (i.e., assessing recall of information about the concept) and a transfer
scale (i.e., assessing the ability to apply the information to novel problems).

Further, as instruction was self-paced, we measured time on task for each concept.
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Finally, we computed errors as the proportion of mistakes per step in manipulating
V¢ and Vig with log data and in manipulating Pc and Pig based on video recordings.

4.4 Procedure

The experiment involved three sessions in aresearch lab. In session 1, students completed
the concept A pretest, Chem Tutor problems on concept A, and took the concept A
posttest. In session 2 (2-5 days later), students completed the concept A delayed posttest,
the concept B pretest, Chem Tutor problems on concept B, and the concept B posttest.
In session 3 (2-5 days later), students took the concept B delayed posttest.

5 Results

5.1 Prior Checks

One student was excluded for scoring 2 standard deviations above the median. Repeated
measures ANOVAs with pretest, immediate, and delayed posttest as dependent measures
showed learning gains for all concepts and scales (ps < .01) with effect sizes ranging from
p. % =.568 to p. n> = .876. For concept A, we found no significant condition effects on
pretest measures and time on task (ps > .10). For concept B, there were no significant
differences on the pretests (ps > .10), but a significant effect on time on task (p = .01).
Post-hoc comparisons showed that students in the Pc-Vig condition took significantly
longer than students in the Vc-Pig condition (p = .008). Time on task correlated with
posttests (r = —.244 to —.558). Thus, we use it as covariate in our analyses.

5.2 Effects on Error Rates During Interactions with Manipulatives

We used a repeated ANCOVA with mode-sequence (P-V vs V-P) and design-sequence
(IE-C vs C-IE) as independent factors, mode-type (P vs V) as repeated measures, pretest
and time on task as covariates, and errors as dependent measure. For concept A, the effect
of mode-sequence was significant, F (1, 72) = 5.309, p = .024, p. n2 = .069. Students
who received physical manipulatives first made fewer errors, which partially supports
Hcr.1. For concept B, the effect of design-sequence was significant, F(1, 72) = 6.664,
p = .012, p. n> = .085. Students who received implicit-embodied manipulatives first
made fewer errors. This finding supports Hgp.1. Figure 2a-b illustrate these results.

5.3 Effects on Learning Outcomes

We used a repeated ANCOVA with mode-sequence (P-V vs V-P) and design-sequence
(IE-C vs C-IE) as independent factors, test-time (immediate, delayed posttest) and scale
(reproduction, transfer) as repeated factors, pretest and time on task as covariates, and
test scores as dependent measures. For concept A, there were no main effects of mode-
sequence and design-sequence (ps > .10), but mode-sequence interacted with test-scale,
F(1,72) =9.644, p = .003, p. n2 = .045. Pairwise comparisons showed that the P-V
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sequence yielded better transfer, F(1, 72) = 6.568, p = .012, p. n2 = .084, but did
not affect reproduction (F < 1). This effect held for Pc-Vig and Pig-Vc. This finding
partially supports Hcp.2. For concept B, there were no effects of mode-sequence or
design-sequence (F's < 1), thus supporting neither Hsr.» nor Hcp.». Figure 2c illustrates
the results.
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Fig. 2. (a) Effect of mode-sequence on concept A errors; (b) effect of design-sequence on concept
B errors; (c) effects of mode-sequence on reproduction and transfer posttests. All bars show
estimated marginal means. Error bars show standard errors of the mean.

6 Discussion and Conclusion

Prior research recommends blending physical and virtual manipulatives by sequencing
them in a way that makes the target concepts salient. However, a mostly separate line
of research shows that explicit and implicit types of embodied processes also affect
learning with manipulatives. A severe limitation of prior research is that it had not
investigated all three types of processes together. Our prior research had contrasted
effects of conceptual, explicit-embodied, and implicit-embodied processes on learning
with manipulatives. Results had indicated that these processes differently affect learning
outcomes of varying complexity. This gave rise to two competing hypotheses about
sequencing physical and virtual manipulatives either so that they engage students in
simple learning processes first (i.e., via implicit-embodiment) or so that they engage
students in complex learning processes first (i.e., preferably via explicit-embodiment
or else via conceptual salience). While the results of the present experiment seem to
be complex, two relatively simple patterns emerge. First, explicit embodiment has a
strong effect on both errors and learning gains. Second, whether in the form of explicit
or implicit embodiment, some type of embodied experience at the beginning of the
learning sequence is advantageous. In the following, we discuss each pattern in turn.
First, the finding that the P-V sequence yielded fewer manipulative errors and higher
transfer gains for concept A than the V-P sequence partially supports the complex-first
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hypothesis. Recall that this hypothesis had also predicted an advantage of sequences that
start with conceptual salience (i.e., in addition to a main effect of P-V > V-P, an advantage
of Pc-VIg > PE-Ve). Yet, our results suggest that starting with physical manipulatives
that offer explicit embodied experiences of the target concept is sufficient. Engaging
students in additional complex processes with the concept early in the sequence is not
necessary. Further, in line with our prior research, engaging students in complex pro-
cesses first affects transfer rather than reproduction, suggesting that complex processes
align with complex learning goals.

Second, the finding that the IE-C sequence yielded fewer manipulative errors for
concept B partially supports the simple-first hypothesis. Recall that the physical manip-
ulatives offered no explicit embodied experiences for concept B. A sequence that first
engaged students in complex learning processes via conceptual salience did not offer an
advantage compared to implicit embodied experiences related to the concept. Thus, our
result indicates that in the absence of explicit embodied experiences, there is some advan-
tage of offering implicit embodied experiences at the beginning of a learning sequence.
Given that we contrasted this to a sequence that starts by making the concept salient, our
result shows that the benefit of initial implicit embodiment is stronger than a potential
benefit of starting with conceptual salience. However, the effect only bears out with
respect to reducing students’ errors on the manipulative, but not on learning outcomes.
It is possible that potential benefits of conceptual salience counteracted any potential
advantage of offering implicit embodied experiences first.

Our findings expand research on blending physical and virtual manipulatives in at
least two ways. First, our research is the first to consider conceptual salience as well
as explicit and implicit embodied experiences, yielding a systematic comparison of
sequences. Moreover, no prior research has compared explicit and implicit embodied
processes, even though they appear to yield dramatically different outcomes. Second, our
findings suggest that blending should not be done purely based on conceptual salience.
Wherever possible, manipulatives should first offer explicit embodied experiences of
target concepts. Otherwise, implicit embodied experiences can offer some advantages.
Consequently, adaptive blended learning technologies should not only trace students’
conceptual learning but should also trace their embodied engagements by assessing
movement and touch.

Our findings should be interpreted in light of several limitations. First, we focused on
one combination of concepts and manipulatives. Other manipulatives lend themselves
to studying different combinations of conceptual and embodied designs. For example,
we did not include a manipulative that offered implicit embodied experiences while also
making the target concept salient. Future research should examine whether it is possible
to combine benefits of implicit embodiment and conceptual salience, especially when
explicitembodiment is not available. Second, our experiment was conducted in aresearch
lab and should be replicated in a realistic educational context. Third, while long for a lab
experiment, our intervention was relatively short for realistic instruction. Future research
should examine sequence effects over longer periods.

In conclusion, blended educational technologies offer novel opportunities for com-
bining physical and virtual experiences. The dominant framework that guides extant
integrations of physical and virtual manipulatives focuses on conceptual salience while
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disregarding emerging findings about the importance of embodied engagement. Our
research systematically juxtaposed conceptual salience with two types of embodied
engagements. Our findings show that explicit embodied engagements early in a learning
sequence can significantly enhance students’ learning with manipulatives.
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Abstract. Recent years have seen a surge in research conducted on intelligent
online learning platforms, with a particular expansion of research conducting A/B
testing to decide which design to use, and research using secondary platform data
in analyses. This scientometric study aims to investigate how scholarship builds
on these two different types of research. We collected papers for both categories
- A/B testing, and educational data mining (EDM) on log data- in the context of
the same learning platform. We then collected a randomized stratified sample of
papers citing those A/B and EDM papers, and coded the reason for each citation.
On comparing the frequency of citation categories between the two types of papers,
we found that A/B test papers were cited more often to provide background and
context for a study, whereas the EDM papers were cited to use past specific core
ideas, theories, and findings in the field. This paper establishes a method to compare
the contribution of different types of research on AIED systems such as interactive
learning platforms.

Keywords: Scientometrics - A/B testing - Online learning - AIED systems

1 Introduction

1.1 Research on Interactive Learning Platforms

Large-scale platforms for interactive online learning have become a core part of educa-
tional practice, a trend that has accelerated due to the pandemic-related shutdowns of
educational institutions. There are several benefits of interactive learning platforms for
learners. They make learning significantly more accessible [29] for learners unable to
travel, learners whose work constraints make class attendance infeasible, and learners at
home in quarantine. They are often also beneficial even when learners can attend class
in-person, enabling classroom instruction to be enhanced by using data from online
activities given as homework or in-class [34, 37]. Research-based platforms such as
intelligent tutoring systems tend to lead to substantial learning benefits, an average of
0.76 standard deviations better than traditional curricula [33].
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Even beyond these benefits, AIED learning platforms provide opportunities for
enhancing learning through research [32] and can support it by iterative refinement
through A/B tests and secondary data analysis. A large number of automated experi-
ments have been conducted on these online learning platforms. Initially, it was common
for single research groups to use their own platforms for research [2, 25]. In the early
2000s, the Pittsburgh Science of Learning Center (PSLC) built an infrastructure enabling
hundreds of studies to be conducted in classrooms [20], albeit in a relatively resource-
intensive fashion where researchers visited individual classrooms. In recent years, the
ASSISTments learning platform has developed a research platform that allows automatic
deployment of studies across the web. This platform has been used by dozens of external
researchers to carry out their studies in thousands of math classrooms [27]. Increased
support for A/B studies has also been incorporated into MOOC platforms [30], leading
to large-scale studies such as [18], which tested an intervention in over 200 courses with
millions of enrolled learners.

There has been an even larger expansion in the use of AIED learning platform data
in secondary analyses by educational data mining (EDM) researchers. Initial research
within the educational data mining conference was heavily based on data sets from the
PSLC [19], with 14% of total analyses using DataShop data [1]. Over time, a range
of learning platforms have moved towards sharing their data publicly, increasing the
number of research questions that can be investigated by researchers without direct
access to a large-scale platform. Specific data sets have become standards for comparing
algorithms across papers — for instance, many papers have used a specific public data set
from ASSISTments, to study student knowledge modeling [17, 38, 39], and Cognitive
Tutor data has been used to compare ways to automatically refine knowledge structures
[14, 22].

Both A/B testing infrastructure and secondary data analyses have facilitated and
expedited research in the learning sciences, but the full details of how these trends have
impacted the field are not fully known. We know there are more papers, but how do these
papers influence the field? And do these two innovations influence future research in
similar ways or do they have different types of influence? In this paper, we investigate
the question of how the research afforded by these learning platforms impacts scientists
and projects even beyond the specific papers that are produced. In other words, what
is the scientific impact of each type of research, and is there a different impact on the
science of learning from A/B tests versus EDM analyses?

1.2 Scientometrics in Secondary Data Analysis

In answering this question, we draw upon methods and past work in scientometrics, the
field of scientific study which investigates the properties of scientific publications in order
to better understand science more broadly. One of the core and long-standing questions
and contributions of scientometrics has been in terms of comparing papers in terms of
citation counts [15, 31] and comparing the relative contribution of different scientists
[6]. This has been a prominent area of analysis in the learning analytics community. For
example, research studies have looked at what learning analytics and EDM papers are
most cited [1, 8, 36], and have analyzed the quantity of research output and collaboration
in order to rank universities and scholars [11, 36]. This work has been highly useful
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to researchers in understanding the state and scope of the field of learning analytics.
However, it does not answer our current research question around how this field makes
progress scientifically.

A second category of scientometric research in EDM has focused on which topics are
being studied, and how these EDM topics have shifted over time [8, 9], building on similar
long-standing trends in scientometrics more broadly [4]. Furthermore, researchers have
looked at the differences between the topics studied in learning analytics and educational
data mining [5, 10], which sub-community’s papers are cited more often [5, 10], and the
relationships between published topics [36].

A third category of existing scientometric research in learning analytics has inves-
tigated equity in the field’s practices. Concurrently with an increase in interest within
scientometrics more broadly in whether gender, race, and ethnicity influence publication
and citation patterns [16], learning analytics researchers have investigated the diversity
in the field [5, 24, 36]. Recent work has also studied the degree to which diversity in
samples is considered in secondary data analytics research (or even reported) [28]. The
results of [28] indicated that most papers in the field do not even mention the background
of learners, much less check for algorithmic biases, which makes it challenging to gauge
the generalizability and transferability of our findings.

However, despite the considerable interest in scientometrics within communities
closely aligned with the AIED community, there has not yet been research on analyzing
citations to understand how researchers in these communities build on each others’
research or on why papers are cited. In other words, there has been research on who is
conducting research in these communities, and what they are researching, but not how
they are building upon each others’ research. Fortunately, there is considerable work in
the scientometrics community that we can build on in analyzing this question for EDM
and A/B testing research. Starting with [12], scientometricians have attempted to identify
lists of reasons for why a scholar might choose to cite a specific paper. [3] expanded upon
a list by Garfield [12] in an extensive review, which [21] then distilled into a manageable
coding scheme. In this literature, one of the key steps towards understanding why a
citation occurs was developing methods for the qualitative analysis of a citation’s context
[3, 7]. This literature found that researchers choose to cite a paper for a wide variety
of reasons, including both scientific reasons (crediting key past contributions, refuting
previously published ideas) and political reasons (citing an important member of the
field, citing papers from the venue being submitted to). Political citations can be quite
common — for example, a review of citations in computer science education found that
few citations actually involved building on the contributions in previous papers [23].

In this paper, we built on this past work to investigate our research question of why
researchers cite EDM and A/B testing papers, and what the differences are between the
citations to each type of paper. We do so by collecting a corpus of citations of work to each
type (citations all to work occurring in the same learning platform, to reduce confounds),
qualitatively coding the reasons for each citation, and then statistically comparing the
proportion of each reason for citation.
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2 Methods

2.1 Research Context

In this paper, we analyze the citations received by papers presenting research conducted
in the context of the ASSISTments platform [28]. ASSISTments is an online learning
system with 500K students and 20K teachers currently, primarily used for mathematics.
ASSISTments has users in over 20 countries, but the majority of learners are in the
United States of America. Randomized controlled studies have demonstrated positive
learning gains for students using the platform on an ongoing basis [26]. Learners using
ASSISTments complete mathematics problems, and can receive multi-step hints or scaf-
folding on demand or after making errors. ASSISTments provides support for mastery
learning, where learners continue working on a skill until they demonstrate they can
answer correctly three times in a row, and offers spiraling practice/review functionality
as well.

Among AIED learning systems, ASSISTments offers substantial support for exter-
nal researchers. Learning analytics and educational data mining researchers are able to
download (as of this writing) fourteen publicly available data sets named Open Released
Datasets,! which offer extensive interaction log data, combined in some cases with addi-
tional data such as field observations of student affect or longitudinal student outcomes.
Dozens of external researchers have used data from the ASSISTments system in further
analyses.

ASSISTments also offers substantial support for A/B testing research, enabling a
researcher to conduct randomized experiments on learners across the United States,
using E-Trials, the Ed-Tech Research Infrastructure to Advance Learning Science [41]. A
substantial number of external educational psychology and learning sciences researchers
have used the ASSISTments system to conduct A/B tests on a wide range of research
questions. The large scale of ASSISTments’ use in both learning analytics and A/B
testing research makes it an appropriate context to compare the scientific impact of
these two types of research.

2.2 Articles Studied

In this study, we compared the types of scientific impact achieved by two categories of
papers, referred from here onwards as the “target” papers. We selected all the papers
published up until March 2021 (when we pulled our data set for analysis) that leverage
the ASSISTments platform for conducting the two different kinds of research. We filtered
out the papers which did not fall into either category.

The first type of papers (referred to as A/B papers) compare the impact of two
versions of a learning activity within the ASSISTments system. For the A/B papers,
students are experimentally assigned to one condition or the other, to evaluate the impact
of intervention on student learning or other outcomes.

! The open released data sets are publicly available at https://www.etrialstestbed.org/resources/
featured-studies/dataset-papers.
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The second type of papers (henceforth referred to as secondary data analysis or EDM
papers), use interaction log data from the ASSISTments system to investigate a range
of research questions, including the impact of different behaviors on student outcomes,
the accuracy of different knowledge modeling algorithms, and the linguistic attributes
of ASSISTments math problems.

All the target papers for both categories were obtained from the publicly available
ASSISTments website, which provides a list of papers that use their Open Released
Datasets, as well as a repository of all the published randomized controlled experiments
using ASSISTments. This yielded a total of 27 target A/B papers, and 32 target EDM
papers. In March 2021, we used Google Scholar to obtain a list of papers citing each of
these target articles. An article was considered if the full text could be obtained either
openly over the internet, through the University of Pennsylvania library, or through
interlibrary loan. Both peer-reviewed and non-peer-reviewed (i.e. dissertations, X Arxiv,
white papers) documents were included. Only articles in English were considered for the
review process. Duplicates were filtered out if a single paper was citing one target paper
more than once, however, if a single paper was citing different target papers multiple
times, then each citation was considered separately. This gave a total of 2418 citations
across all of the target papers (756 total citations for A/B papers, or 28 per paper; 1662
total citations for EDM papers, or 51.9 per paper).

We conducted statistical power analysis in order to determine how many citing papers
to sample from this large number of articles for qualitative coding. An initial analysis of
the citations of two highly-cited papers was used to choose parameters for the statistical
power analysis. Statistical power was calculated using G*Power 3.1.9.4, assuming an
effect size where papers in one category were cited 50% more often for one reason than
the other paper category, with a baseline of 40% citation for the less common reason (i.e.
40% versus 60%; risk ratio = 1.5), with the allocation ratio set to one (i.e. we will sample
approximately the same number of papers of each type), and o set to 0.05, using the Z
test of the significance of the difference between two independent proportions (this test
is mathematically equivalent to x2 with one degree of freedom — they provide the exact
same p values). For this test, statistical power of 0.8 would be achieved with samples of
97 and 97. Given this goal number of papers, we conducted stratified random sampling
(stratified to equalize the number of citing papers per target paper as much as possible).
This resulted in a data set of 174 papers citing A/B papers and 167 papers citing EDM
papers for coding, moderately larger than the goal sample size.

2.3 Coding Scheme

We identified all the citations of any target papers within each article that cited one or
more of the target papers. In many cases a citing article cited multiple target papers, in
most cases all from the same type of paper (A/B or EDM) and in exactly one case from
both.

Next, we developed a coding scheme to identify the reasons why a citation might cite
an article. Our first step towards developing this coding scheme was to take an extensive
list of reasons why people cite published articles [21], which had been distilled from a
review of 30 studies on citing behavior [3]. We then eliminated reasons not found in our
citing articles or that would not be explicitly stated in the text surrounding a citation. For
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instance, [21] notes that authors may choose which paper to cite based on the availability
of full text for that paper, a reason that would be difficult to identify from how a paper
is cited within the text. We then removed or merged categories that were not clearly
differentiated from each other, and categories that did not seem to occur in our papers.
This yielded our final coding scheme for citations. As will be noted below, not all of the
categories we chose to code were ultimately found in our sample of citing papers. The
final coding scheme was:

Publication-Dependent Reasons
Citation due to some attribute of the publication being cited (in the target article).

P1: The target paper was the original publication in which an idea or concept was
discussed — a “classic” article.

P2: Using/giving credit to ideas, concepts, theories, methodology, and empirical
findings by others.

P3: Earlier work on which current work builds.

P4: Providing background, to give “completeness” to an introduction or discussion.

P5: Empirical findings that justified the author’s own statements or assumptions.

P6: Refuting or criticizing the work or ideas of others.

P7: Mentions of other work (“see also”, “see for example”, “cf”, “e.g.”, “i.e.””) without
further discussion.

P8: Used target paper’s dataset for secondary analysis.

Author-Dependent Reasons
Citation due to some attribute of the author being cited (in the target article).

Al: Paying homage to a pioneer in the research area/giving general credit for related
work.

A2: Ceremonial citation, the author of the cited publication is regarded as “authori-
tative”.

A3: Self-citation: one of the authors was also an author on the target article.

Note that this coding scheme is not exhaustive; some citations may not be coded as
representing any of these categories (for instance, articles cited as a part of the systematic
review of studies) for both types of paper.

Initially, a subset of citations for each target paper was coded? in terms of this coding
scheme by two coders (the first and third authors), to establish inter-rater reliability, and
then the first author coded all the papers. If a coder judged that a paper was cited for
multiple reasons — for instance, if it was cited in different parts of the paper — multiple
codes were given. However, if a citing paper cited the same target paper multiple times
for the same reason, it was counted a single instance — i.e., if the citing paper cited the
target paper for reason P2 in four different places, it was treated as a single citation
because of reason P2.

The proportion of each citation category found across citing papers was compared
using the chi-squared test, between the two types of target papers (i.e. A/B versus EDM).
Both Bonferroni and Benjamini and Hochberg corrections were applied (separately).

2 The data set created is publicly available at https://osf.io/rmswe/?view_only=d496417aefle
4046907d2271b8a86¢bb.
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Inter-rater reliability (Cohen’s Kappa) was calculated for each coding category, treat-
ing each category as independent (i.e. a set of binary codes) since coding was non-
exclusive. The average Kappa across categories was 0.77 for A/B and 0.72 for EDM,
0.75 overall. Kappa was above 0.6 for every category. Categories P1, Al, and A2 were
never coded for any citation by either of the two coders. For Al and A2, this might be
due to difficulty in identifying an author-dependent reason for citation from the text of
the paper; much of the research on author-dependent reasons for citation has involved
self-report rather than content analysis ([36, see review in [3]). The lack of application of
P1 may similarly be due to the difficulty of identifying it from the paper text. Although
the original reason for citing a paper may be its classic status, the practice of academic
writing may result in a paper being discussed in terms of a different reason.

3 Analysis and Results

After inter-rater reliability was established, the first coder coded every citation in every
paper. We next analyzed the prevalence of each citation category for each type of paper,
and whether the prevalence of any citation category was statistically significantly differ-
ent between the two types of papers. As mentioned above, within analysis we considered
each citing paper/reason combination only once for each target paper, even if a target
paper was cited for the same reason more than once in the same citing paper.

Table 1 shows that the most common citation category, for both papers, was P2,
using/giving credit to specific ideas, concepts, theories, methodology, and empirical
findings by others. It was seen in around more than half of the citations (averaged at the
level of citing papers) for target EDM papers, and 35.6% for A/B papers. P4 appeared in
a substantial 32.2% of citations for A/B papers, and about half of that in EDM papers.
Two categories were seen between 15% and 25% of the time for both types of papers:
P3, Earlier work on which current work builds, and A3, Self-citations. The remaining
three categories were seen less than 10% of the time for both papers.

Statistically significant differences between the two paper types are given in boldface.

We then compared the prevalence of each citation category between paper A/B and
paper EDM using a chi-squared test. This test assumes that paper A/B and paper EDM
are cited by different sets of papers. In practice, only 1 paper in our sample cited both of
these two categories of papers (out of a total of 341 papers), so this seemed like a safe
assumption rather than a situation where a significantly more complex method tailored
to partial overlap of data sets would be warranted. The statistically significant categories
are P2 and P4. Category P2 stands for using/giving credit to specific ideas, concepts,
theories, methodology, and empirical findings by others, which was cited 35.6% of the
time by A/B papers, and 58.1% by the EDM papers, x2 (df = 1, N = 341) = 17.26,
p = 0.00003. Category P4 represents providing background, to give “completeness” to
an introduction or discussion, and it was about twice as commonly cited in A/B papers
(32.2%) than in the EDM papers (16.2%), x2 (df = 1, N = 341) = 11.87, p = 0.0005.
The full pattern of statistical evidence is given in Table 1.
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Table 1. The prevalence of different Citation Categories for each of the two paper types

Reason for citation

Average prevalence (paper
AB)

Average prevalence (paper
EDM)

p value

P2: Using/giving credit to
specific ideas, concepts,
theories, methodology, and
empirical findings by
others

35.6%

58.1%

0.00003

P3: Earlier work on which
current work builds

18.4%

15.6%

0.49

P4: Providing background,
to give “completeness” to
an introduction or
discussion

32.2%

16.2%

0.00057

PS: Empirical findings that
justified the author’s own
statements or assumptions

9.8%

6.0%

0.20

P6: Refuting or criticizing
the work or ideas of others

1.2%

3.6%

0.14

P7: Mentions of other
work (“see also”, “see for
example”, “cf”, “e.g.”,
“i.e.”) without further

discussion

8.0%

9.0%

0.76

P8: Used target paper’s
dataset for secondary
analysis

4.0%

1.8%

0.22

A3: Self-citation

19.5%

24.6%

0.35

There is an inflated risk of Type I error since we ran eight statistical tests. To address
this risk, we applied Benjamini and Hochberg and Bonferroni post-hoc controls. No
significant tests became non-significant after the post-hoc test. Categories P2 & P4 were
found to have p < 0.001, so they remain significant after post-hoc control. All other tests
were non-significant, even without a post-hoc correction.

4 Conclusions and Discussions

In this study, we have investigated the reasons behind why scientists cited two types of
papers using AIED systems for research. One category of papers used the platform to
conduct automated A/B tests, the other category of papers used the platform’s data to
do secondary learning analytics (EDM) research.



How do A/B Testing and Secondary Data Analysis 123

We distilled a list of eleven reasons on why a paper is cited from prior literature on
scientometrics, and then applied this list of reasons (as citation categories) to a sample of
papers that cited one of the two types of target papers, within the same learning platform,
with two coders who established inter-rater reliability for each code. Within this learning
platform, the EDM papers were cited almost twice as much as the A/B papers, which
may reflect several factors, including the relative contribution of each type of work, the
ease in building on work of each type, or the size of the large and flourishing learning
analytics research community.

In our findings, both types of papers were cited primarily for publication-based
reasons rather than author-based reasons (except for self-citation). However, this may
simply be due to the difficulty in identifying author-based reasons for citation. For
example, a paper may have been cited because of its author’s political power, but that
citation may then be justified within the paper in terms of some scientific aspect of the
paper, such as category P7 (citations to a paper as an example of some more general
category, without further discussion). As such, determining if a citation is author-based
probably depends on other forms of data collection such as anonymous surveys [32].

In comparing the two types of articles, two statistically significant differences were
found: the EDM type of papers were cited for reason P2 (Using/giving credit to specific
ideas, concepts, theories, methodology, and empirical findings by others) over 50%
of the time, which was 1.6 times more than A/B papers cited for that reason. This
finding suggests that EDM papers are more prevalent in generating ideas, concepts, and
empirical findings that other researchers in the field find useful. This type of research
directly contributes to the field moving forward.

On the other hand, category P4 (Providing background, to give “completeness” to an
introduction or discussion) was cited as a reason twice as many times by the A/B papers
than the EDM papers. These citations were primarily found in the ‘Introduction’ or the
‘Literature Review’ section of the papers. The findings might indicate that A/B papers
are being cited for related work, and to cover the breadth of the research related to that
topic, instead of directly building on previous work.

Overall, these findings seem to highlight the different types of contributions the
two types of papers make — EDM type of papers seem to have a larger impact on
subsequent research than A/B papers. A/B research studies seem to be carried out more
independently from prior work. One possible explanation for this pattern can be because
the range of potential design modifications is large and varies based on the original
design of the system being studied, whereas EDM algorithms tend to either compare
algorithms (directly using previous work) or develop an analysis across papers (like work
on defining wheel-spinning and studying it). It is also possible that as the community
of learning platform A/B researchers develops, they will converge to a smaller set of
designs and begin to use P2 citations more often.

A limitation of this study remains that it investigated the citation reasons for two types
of research on a single learning platform. It is possible that some aspect of the design of
ASSISTments facilitated conducting work that would receive citations for specific ideas
more in EDM research than A/B research (although ASSISTments is one of the learning
platforms currently most committed to supporting external A/B researchers). It is also
possible that the learning domain (of mathematics) influenced the contributions made
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by the work, or that the community of researchers drawing upon mathematics education
research influenced this paper’s results. To draw more substantial conclusions, this work
must be replicated within a wide variety of learning platforms (also varying by subject
matter). However, there are currently only a small number of learning platforms used
at scale both for A/B testing and learning analytics research, though this number is
increasing. In future work, we recommend that researchers focus analysis on single
platforms, as in this paper. Comparing between different platforms raises confounds not
present in single-platform analysis.

Other factors in the field may of course also impact how studies are cited. For
example, differences in the expectations of reviewers in venues that see more A/B studies
versus EDM studies may impact how authors cite papers when submitting to these
venues. The time it takes to conduct A/B studies may also explain the lower total quantity
of citation for A/B studies, although not why the type of citation differed.

Another limitation to the study was a possible lack of statistical power. Although
a power analysis was conducted prior to research, some rare categories had seeming
differences that were not statistically significant (i.e. 1.2% versus 3.6% for category
P6). Unfortunately, this limitation was unavoidable for the overall data set, even if we
had coded every example in the data (an arduous task). Power of 0.8 would only have
been achieved by category P6 if we had been able to code 878 examples of both A/B
and EDM, larger than the total current population for A/B, even if we had skipped the
necessary step of conducting a post-hoc correction. P5, the next closest category to
significance, would have required 1088 examples of each category. Thus, investigating
differences in categories this rare would require a substantially larger data set. It is
possible that this paper’s work can eventually contribute to such a goal, by developing
a categorization scheme and building a corpus of codes that can be used as a training
set for an eventual NLP approach that can automatically detect why one paper cites
another [13]. Ultimately, the work presented here suggests that EDM papers and A/B
testing papers are cited for different reasons. More comprehensively investigating this
topic —and investigating subcategories within these broader categories of research — may
help us to understand how scientific progress occurs, in our field and more broadly.
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Abstract. Video-based Learning (VBL) is a popular form of online learning,
which may lead to passive video watching and low learning outcomes. Besides
potential low engagement, VBL often provides very limited feedback on student’s
progress. As a way to overcome these challenges, we present student-facing visual
learning analytics (VLA) designed for the AVW-Space VBL platform. Using a
quasi-experimental design, we compared data collected in the same first-year uni-
versity course in 2020 (control group, 294 participants using the original version of
AVW-Space) to the 2021 data when 351 participants used the enhanced version of
AVW-Space (experimental group). We analysed various measures of engagement
(number of watched videos, comments, etc.) and learning (pre/post-study knowl-
edge scores). The findings show that VLA encourage constructive behaviour and
increase learning. This research contributes to using student-facing VLA in VBL
platforms to boost engagement and learning.

Keywords: Video-based learning - Visual learning analytics - Student model

1 Introduction

Learning by watching videos is increasingly popular due to its flexibility in time and
place. Many studies show that video-based learning (VBL) increases motivation, engage-
ment and learning [1, 2]. However, the lack of interaction with videos and humans, as
well as the lack of feedback and personalisation can turn VBL into a passive form of
learning, with learners simply watching the videos and not engaging deeply [2, 3]. Sev-
eral approaches have been used in VBL to overcome the engagement challenge, such
as integrating annotation tools [3] and quizzes [4]. Although these approaches address
the lack of human interaction and interactivity with videos, they do not provide person-
alised feedback to learners. One way to address these shortcomings is integrating visual
learning analytics (VLA) into VBL to boost engagement by providing feedback [5].
VLA can provide insights on learning resources [3, 6] and the student’s learning
progress. The former is the same for all learners, while the latter provides more per-
sonalisation [7]. Visualisation of the learner model provides up-to-date information to
the learner, such as progress in learning activities, knowledge and affective states [8, 9].
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Visualising this information helps learners assess their learning to make informed deci-
sions about what to do next to achieve their learning goals [9], and increases engagement
and learning [7, 10]. Although the effectiveness of student-facing VLA has been studied
in various educational platforms [11, 12], only a few studies have investigated the use
of VLA in video-based learning.

AVW-Space [13] is a VBL platform that supports engagement via note-taking, peer-
reviewing and personalised prompts [14, 15]. In AVW-Space, the learner can watch and
comment on videos, and rate peers’ comments. An early AVW-Space study [14] found
that students who commented on videos learnt more than those who watched videos
passively. Thus, a histogram and timeline of the class’s comments were added to AVW-
Space to encourage commenting and help students recognise the highly-attended video
parts [16]. However, these visualisations do not convey information about the learner’s
progress to help them regulate their learning activities.

This paper investigates the effectiveness of new VLA integrated into AVW-Space.
We present the effects of visualisations on students’ engagement and learning as well as
their subjective opinions on visualisations. This research contributes to the utilisation of
VLA to tackle engagement challenges in VBL. We defined three research questions:

RQ1. Do VLA increase engagement and foster constructive behaviour?

RQ2. What is the effect of the visual learning analytics on learning?

RQ3. What is the students’ opinion on different visualisations?

2 Related Work

The visualisation of the learning process offers evocative insight and allows students
to monitor and control learning [17]. Various types of information can be presented in
VLA [17, 18]. Competency tracking and displaying learning difficulties are examples of
cognitive visual analytics [19]. Behavioural visual analytics includes the progression in
learning tasks (e.g. watched videos) [20]. Some VLA go beyond the domain knowledge
and present the learner’s metacognitive state, such as study tactics and planning [21].
Other visualisations indicate students’ emotional status to increase emotional awareness
[22, 23]. Some visualisations provide analytics of social models such as comparisons
to the class [24]. However, the effectiveness of visualisations depends on their explain-
ability. Some studies suggest that learners find it hard to interpret the VLA to inform
their learning strategies [25]. Visualisations may even harm students’ motivation; some
research found that VLA caused social anxiety when students were presented with their
peers’ performance compared to themselves [26, 27].

Visual analytics has been applied to the learners’ interaction with video lectures, atti-
tudes, and learning performance to find the most difficult parts of the video [28]. However,
these VLA were not displayed to the students. CourseMapper [3] uses students’ inter-
action with video to provide a heatmap on the video scrub bar to help students identify
the most viewed parts. CourseMapper also uses annotations timeframe and counts to
display an annotation map, which illustrates portions of videos which received more
annotations and likely contain interesting information. However, these visualisations
are the same for all students and do not provide any personalised information. A VBL
platform used in a flipped classroom [29] provides a simple visualisation of quiz scores
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and video completion rates to support students’ self-assessment. An experiment with
this visualisation showed that the learners who had access to the visualisation showed
higher engagement levels pre-class (e.g. watching videos and answering quizzes) and
in-class sessions (e.g., team discussion) without the instructor’s reminders. However,
these visualisations provided limited information on students’ performance. Thus, we
propose more detailed VLA to support engagement in VBL.

AVW-Space is a VBL platform designed for teaching transferable skills [13]. To
create a learning space in AVW-Space, the teacher first selects videos from YouTube.
AVW-Space supports engagement in two phases: 1) Personal space (Fig. 1), where
students watch videos and make comments, and 2) Social space (Fig. 2), where students
review and rate their peers’ comments. Personal Space is always available for students,
while Social Space becomes available after the teacher selects comments for review.

Watch video: TUTORIAL 1: How to Give an Awesome (PowerPoint) Presentation

Whiteboard Animation Explainer Video. Wienot Films. 3 min. Nudge
[ Your previous comments.
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practice makes a good presentation

o® ome o amompe s ®woo 0@ _® o amwe
ES @ 3 No boring tables graphs, points

Interactive
visualizations

head using low tech tools

2L

Add Comment
I

Comment
creating area
What does it relate to?

| did/saw this in the past

| didn't realize | wasn't doing this

1like this point
1 am rather good at this

Aspects
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Save comment || Cancel

Fig. 1. Personal space in AVW-space

In Personal Space, students tag each comment by an aspect that the teacher defined.
The aspects are micro-scaffolds for directing students to reflect on key points of the video
or their experience. A previous study on AVW-Space showed commenting and using
aspects had a positive effect on engagement and learning [14]. The analysis of comments
from previous studies differentiated low-quality comments, which merely repeat the
video content, from high-quality comments, in which students elaborated critically on
the video and reflected on their experience or planned for future improvement [30, 31].
Students who made high-quality comments learnt more [31]. We added nudges to AVW-
Space, to foster good commenting behaviours (i.e. writing high-quality comments using
various aspects) [15, 16]. For example, if a student is passively watching a video and has
made no comments, the student will receive a nudge stating that commenting is beneficial
for learning. If the student used only one aspect when commenting, a nudge will draw the
student’s attention to other aspects. AVW-Space analyses comment quality as students



130 N. Mohammadhassan and A. Mitrovic

write them, using machine learning classifiers we developed to predict the comment
quality [15, 30]. When students write comments that merely repeat video content, they
will receive a nudge suggesting to think more critically about the video (as in Fig. 1).
A student who is watching the last part of the video and has made no self-reflective
comments, will receive a nudge to reflect on their previous experience. Previous studies
showed nudges significantly increased the number and quality of comments [15, 16].
However, the student might overlook nudges and not benefit from them, since they are
visible for a few seconds. Allowing students to review nudges they received could help
them understand the expectations for commenting.

Review video comments for "TUTORIAL 1: How to Give an Awesome (PowerPoint) Presentation"
Comments

Time stamp
Aspects used

Rating options

very helpful

Your response
brainstorming w

Your response:

good drawings -make a interesting powerpoint or dont
use ucture beginn ¢

"
ep froe thinking
more - 1 slide is 1

Sim?ly S+tated

Your response:

a story having points building to end

Fig. 2. A screenshot of social space

AVW-Space provides interactive visualisations of comments from previous studies
(Fig. 1). The comment timeline represents comments as coloured dots on the video
timeline where the comments were made. The colour of a dot corresponds to the aspect
used. The learner can see the comment text by hovering over a dot (black box in Fig. 1)
[16]. These comments are static and selected manually from previous AVW-Space stud-
ies. The comment histogram illustrates the number of comments made for each video
segment. This way, AVW-Space supports social learning by allowing the student to see
what other students wrote about the same video. However, it is possible for a student to
use the comment timeline only for learning others’ opinions and still make no comment.
Thus, the timeline visualisation needs improvements to clarify its purpose.

In Social Space, students can rate comments by choosing the rating options defined
by the teacher. Students can see their own comments but cannot rate them or see their
received ratings. An early study showed that rating brings an additional benefit to learning
on top of commenting [14]. Hence, visualising the student’s progress in commenting
and rating could encourage more engagement. Moreover, visualising received ratings
could motivate students to write high-quality comments.
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AVW-Space is based on the ICAP framework [32], which categorises learners’ overt
behaviour into Interactive, Constructive, Active and Passive. The more engaged students
are, the more they learn (i.e. Passive < Active < Constructive < Interactive). Passive
learners receive information via merely watching videos. Active students perform addi-
tional actions like note-taking, but their annotations repeat the received information with
no elaboration. Constructive learners add new information that was not explicitly taught,
by reflecting on their knowledge and making connections. The last category, Interac-
tive, is not relevant for our research as AVW-Space does not support direct interaction
between students. Previous AVW-Space studies showed that nudges increased construc-
tive engagement [15, 16], but no research has investigated the effectiveness of VLA on
constructive behaviour. One of our goals is to address this gap.

3 Enhancing Visualisations in AVW-Space

To identify what VLA to integrate into AVW-Space, we analysed the students’ feedback
from previous studies. Most students requested a progress visualisation to monitor videos
they have watched and reviewed. Some students complained that nudges disappear before
they read them thoroughly, so they wanted to revisit them. Moreover, students wanted to
see ratings they received from their peers in the Social Space. We also decided to provide a
personal timeline visualisation to allow students to compare their comment timeline to the
others’ comments timeline. We conducted rapid-prototyping and evaluated prototypes
by brainstorming and interviewing five domain experts. The visualisations went through
three iterations: a paper-based mock-up, a digital mock-up and functional visualisation
developed using D3.js and JavaScript.

Student Actions » Space: Presentation Skills

Space: Presentation Skills

WATCHED COMMENTED ON RATED COMMENTS ON

SURVEY 1 COMPLETED VIDEOS VIDEOS VIDEOS SURVEY 2 NOT ACTIVE

TUTORIAL 1: How to Give an Awesome (PowerPoint) Presentation

Whiteboard Animation Explainer Video. Wienot F

TUTORIAL 2: How to open and close presentations?

Presentation lesson from Mark Powell, Ca

Fig. 3. Video page with progress visualisation

Figure 3 shows the new progress visualisation at the top of the page, the list of
videos (unchanged) and the new green indicators of visited Personal and Social Space.
Each student can only see their own progress report, showing the number of watched
videos, commented videos, and videos on which comments are rated as well as whether
the surveys have been completed. The tasks in the progress report are presented in the
preferred order: watch a video, comment, and rate peers’ comments; since a previous
study showed some students rated peers’ comments before making their own comments
[33].
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Student Actions »
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Fig. 4. The enhanced personal space interface with the new visualisation

We replaced the comment histogram with a visualisation showing the student’s own
comments (Fig. 4). The comment list now shows the quality of each comment and the
nudges received. Students can read the nudge message by clicking on the dialogue icon.
The quality indicators are in three colours: red (off-topic), yellow (reflecting on the
video) and green (self-reflective or self-regulating). We also modified the Social Space
interface (Fig. 5). The student can now see a pie chart for their own comments, showing
ratings received from others. The number of ratings received for a particular option is
shown by hovering over the rating option on the pie chart. Students can also use a toggle
switch to see their own comments first and then others’ comments to rate.

4 Experiment Design

Comments to rate Show my comments first @)
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Fig. 5. Comment rating

We report on a quasi-experimental study, conducted in
afirst-year engineering course at the University of Can-
terbury in 2020 [15] and 2021 (ethical approval HEC
2020/12/LR-PS). The course had the same instructors
and structure in both years. Students worked on an
Engineering Without Borders project in teams, and
needed to give a group presentation in the last week
of the course. In both years, the students were noti-
fied about the online training for presentation Skills.
The students who watched at least one video on AVW-
space received 1% of the final course grade. The control
group consisted of the 2020 participants, who used the
original version of AVW-space presented in Sect. 2.
The experimental group consisted of the 2021 partici-

pants who could see the new VLA. The learning materials and procedure were identical
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in both years. There were four tutorial videos on how to give presentations, and four
example videos of real presentations [13]. Participants provided informed consent and
completed Survey 1, containing questions about the participant’s demographic, knowl-
edge, experience and training in giving presentations. Participants were instructed to
1) watch and comment on the tutorial videos, 2) critique the example videos, and 3)
rate peers’ comments. Finally, participants completed Survey 2, containing the same
questions about giving presentations. In the surveys, the participants had one minute
to list concepts about presentation skills. The students’ answers were marked automat-
ically, using the ontology developed in previous work [34]. The marks for conceptual
knowledge questions are used as the pre-/post-tests scores (CK1 and CK?2).

Regarding the first research question (RQ1), we expected that the VLA will result in
a significant increase in the number of videos watched and commented/rated on in 2021
(Hypothesis H1). Secondly, because the quality of comments written is visualised in the
enhanced version of AVW-Space, we expected to see a significantly higher proportion
of constructive students in 2021 (Hypothesis H2). Our second research question (RQ2)
focuses on the impact of VLA on learning. A previous study [15] found that students
who engaged more deeply with AVW-Space and wrote high-quality comments learnt
more; we expected to see the same effect in 2021 (Hypothesis H3). We also expected
that more interactions with VLA will lead to more videos watched/commented on, and
more high-quality comments (Hypothesis H4). The last research question (RQ3) focuses
on the students’ feedback on VLA collected in Survey 2.

5 Results

351 students from the 2021 course and 294 students from the 2020 course completed
Survey 1 and watched at least one video. However, only 277 students in 2021 and 147
students in 2020 completed both surveys. The increase in survey completion in 2021
could be due to the survey status in the progress visualisation. There were no significant
differences between the groups in students’ demographics, CK1, training and experience
scores.

Effects of VLA on Engagement (RQ1): Table 1 presents the summary of interactions
with AVW-Space. The 2021 students watched more videos and wrote more comments
than the 2020 students, but there was no significant difference on the number of ratings
made. Students in 2021 made significantly more comments and received significantly
more nudges, which could be attributed to the visualisations in the Personal Space. In
addition, 2021 students watched and made ratings on significantly more videos, indicat-
ing that the progress visualisation may have motivated students to complete commenting
and rating. The number of days spent on AVW-Space increased significantly in 2021,
and Hypothesis H1 is confirmed.

We categorised the students post-hoc into three categories, using the ICAP framework
(Table 2). Students who watched videos without making any comments were classified as
Passive. To distinguish Constructive from Active students, we used the median number of
high-quality comments made on tutorial videos, which was 2 in both years. We defined
Constructive students as those who wrote three or more high-quality comments, and
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Active students as those who wrote up to two high-quality comments. A chi-square test
of homogeneity between years and ICAP categories revealed a significant difference
(Chi-square = 45.24, p < .001) with effect size (Phi) of .26 (p < .001). A post hoc
analysis showed a significant increase of Constructive students and a significant decrease
of Passive students in 2021, confirming Hypothesis H2.

Table 1. Activities (mean and standard deviation)

2020 (294) 2021 (351) t-test

Unique videos 5.26 (2.74) 6.98 (2.24) t=28.54,p < .001
Comments 10.29 (14.78) 14.04 (11.43) t=3.34,p < .001
Nudges 19.76 (16.06) 23.26 (12.62) t=3.02,p < .01
Ratings 21.74 (73.39) 23.55 (52.26) t=.36,p=.72
Videos commented 3.78 (3.29) 6.60 (2.74) t=11.67,p < .001
Videos rated 1.16 (2.31) 6.44 (3.06) t=2491,p < .001
Days on AVW-Space 3.08 (1.93) 4.29 (2.93) t=5.73,p < .001

Table 2. The distribution of ICAP categories in 2020/2021
ICAP categories 2020 (294) 2021 (351) Significance
Passive 75 (25.5%) 25 (7.1%) p < .001
Active 114 (38.8%) 141 (40.2%) p=.68
Constructive 105 (35.7%) 185 (52.7%) p < .001

Table 3 reports how each ICAP category interacted with VLA (hovering for longer
than 5 s or clicking). Constructive students interacted with all visualisations signifi-
cantly more than Active students (p < .05), except nudge visualisations. There was
no significant difference on interactions with progress visualisation between the Active
and Passive groups. However, Active students interacted significantly more with the
others’ comments timeline visualisation than Passive students (p < .001). The Passive
group neither used the personal timeline nor the rating visualisations since they made
no comments.

Effects of VLA on Learning (RQ2): We developed a model (Fig. 6) for the 2021 class,
based on the hypotheses H3 and H4. The nodes represent the number of interactions
with visualisations (progress, personal space, rating or nudges), the number of videos
watched, the number of high-quality comments, and the conceptual knowledge score at
the end of the study (CK2). The circles represent latent variables, curved bidirectional
arrows for correlations and straight arrows link a predicting to a predicted variable.
The model was evaluated in IBM SPSS AMOS using the data from 277 students
who completed both surveys. The mean of CK1/CK2 for these students was 14.18
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Table 3. VLA interactions performed by different ICAP categories in 2021

Visualisation Passive (25) | Active (141) | Constructive (185) | ANOVA

Progress 6.00 (7.56) | 7.24 (6.84) 9.73 (8.76) F=5.17,p < .01
Others’ timeline | 4.72 (5.69) | 18.99 (13.67) | 33.06 (22.47) F=39.69, p < .001
Personal timeline | 0 S8 (1.11) 1.73 (2.32) F=20.76, p < .001
Previous nudges | 1.8 (3.09) .93 (1.85) 1.00 (1.64) F=233,p=.01
Received ratings |0 .63 (2.08) 2.25 (4.78) F=9.58,p <.001

+ 6.05/13.53 £ 6.47, respectively. The chi-square test (14.01) for this model (df =
9, 19 estimated parameters) shows that the model’s predictions were not statistically
significantly different from the data (p = .12). The Comparative Fit Index (CFI) was
.99, and the Root Mean Square Error of Approximation (RMSEA) was .04. Hence,
the model is acceptable: CFI is greater than 0.9, and RMSEA is less than .06 [35].
The model indicates that a higher number of high-quality comments is associated with
a higher CK2 score (p < .01). The number of interactions with rating visualisations
positively affects CK2 (p < .001). Other links are all significant at p < .001 except
Progress visualisation — Video (p < .05) and Progress visualisation — Personal time-
line visualisation (p < .05). The covariances with e8 show that a student who interacts
with one visualisation is likely to interact with other ones. The model shows that the
number of videos watched, received nudges, and interactions with visualisations affect
the number of high-quality comments and consequently CK2, confirming hypotheses
H3 and H4.

v S
Rating {

Visualisation

Vginoagli';’ast?on

High-quality
Comments

Personal Space
Visualisation

Fig. 6. The path diagram for investigating how VLA affects learning

Subjective Opinions on VLA (RQ3): We collected the students’ feedback on visual-
isations in Survey 2. The progress visualisation received the most positive feedback
(90.97%) among all visualisations. Students reported that the progress visualisations
increased their motivation and facilitated learning organisation. 75% of feedback on the
timeline visualisations was positive, stating that timelines helped them compare their
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progress with the others and inspired them to comment (e.g. “It initially helped me to
grasp an idea of what kind of comments were being looked for. It also encouraged me to
try pick up on points in areas of the video which had less comments made.”). However,
some students found the timeline visualisations cluttered, and suggested adding filtering
functionality. Some students disliked seeing others’ comments, since they wanted to
form their own ideas. 70% of feedback on nudges visualisations and comment quality
indicators was positive, and students noted using them as feedback to improve comment-
ing and stay on track (e.g. “This tool can help you notice a pattern in the nature of hints
you are getting, to identify whether there is something you consistently fail to recog-
nise, or something you always comment on.”). Students who criticised quality indicators
suggested more explanation on their criteria. Lastly, 69% of feedback on rating visual-
isations were positive since they helped students see if their comments were useful to
their peers (e.g. “To motivate people to write good comments and also so they feel good
about the work they’ve done”). Some students found the rating visualisation unhelpful
since they disliked being judged.

6 Discussion and Conclusions

We proposed visual learning analytics for VBL in order to increase engagement and
learning. The visualisations are intended to assist students in monitoring and managing
their learning. We conducted a study to investigate the effectiveness of the proposed VLA,
which confirmed our hypotheses. The newly introduced VLA enhanced engagement: the
experimental group participants watched more videos, wrote more comments, and spent
more days on AVW-Space than participants who did not receive VLA. Furthermore, the
proportion of students who wrote high-quality comments was higher when students had
access to VLA. The participants who interacted more with the visualisations made more
high-quality comments and learnt more. Our participants also found VLA motivational
and useful for monitoring their learning.

Despite the positive feedback from most participants on VLA, we discovered some
challenges. Firstly, some students could not interpret the quality indicators for com-
ments. Thus, we plan to add explanations in the future version. Furthermore, some
students found visualisations of others’ comments and peer ratings stressful, while oth-
ers found them useful in reflecting on their learning. As a way to deal with this feedback,
the future version should allow students to specify which visualisations they want to
see. Future work could also involve investigation of students’ learning strategies and
adapting visualisations to the students’ behaviours. The visualisations presented in this
research are intended to require minimum teachers’ involvement. However, teachers
must manually select comments shown in others’ comments timeline. Hence, potential
solutions for automating this task should be explored in future research.

The main challenge in studying the effectiveness of visualisations is in measuring
the interactions with them. Since most interaction types are in the form of hovering, it is
difficult to identify which interactions were intentional. Analysing eye gaze is one way
to investigate interactions more precisely, but it is time-consuming and impractical for
large classes. A limitation of our study was a single domain (presentation skills). Future
work will investigate the effectiveness of the visualisations in other domains.
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As discussed earlier, the literature on visualising the student model in VBL is limited.

Our research addresses this gap and contributes to using student-facing VLA in video-
based educational platforms to boost engagement and learning. The source of require-
ment elicitation for designing VLA in this research is mainly from students’ feedback.
The visualisations suggested in this research are applicable to any VBL platform that
supports commenting and peer-reviewing.

References

12.

13.

14.

15.

. Scagnoli, N.I., Choo, J., Tian, J.: Students’ insights on the use of video lectures in online

classes. Br. J. Edu. Technol. 50, 399-414 (2019)

. Yousef, A.M.F,, Chatti, M.A., Schroeder, U.: The state of video-based learning: a review and

future perspectives. Adv. Life Sci. 6, 122—-135 (2014)

. Chatti, M.A_, et al.: Video annotation and analytics in CourseMapper. Smart Learn. Environ.

3,10 (2016)

. Cummins, S., Beresford, A.R., Rice, A.: Investigating engagement with in-video quiz

questions in a programming course. IEEE Trans. Learn. Technol. 9, 57-66 (2016)

. Giannakos, M.N., Sampson, D.G., Kidzinski, L: Introduction to smart learning analytics:

foundations and developments in video-based learning. Smart Learn. Environ. 3(1), 1-9
(2016). https://doi.org/10.1186/s40561-016-0034-2

. Wang, M., Peng, J., Cheng, B., Zhou, H., Liu, J.: Knowledge visualization for self-regulated

learning. J. Educ. Technol. Soc. 14, 28-42 (2011)

. Hooshyar, D., Pedaste, M., Saks, K., Leijen, A., Bardone, E., Wang, M.: Open learner mod-

els in supporting self-regulated learning in higher education: a systematic literature review.
Comput. Educ. 154, 103878 (2020)

. Bodily, R., et al.: Open learner models and learning analytics dashboards: a systematic review.

In: Proceedings of 8th International Conference on Learning Analytics and Knowledge,
pp. 41-50 (2018)

. Bull, S., Kay, J.: Open learner models. In: Advances in Intelligent Tutoring Systems, pp. 301—

322 (2010). https://doi.org/10.1007/978-3-642-14363-2_15

. Aguilar, S., Karabenick, S.A., Teasley, S.D., Baek, C.: Associations between learning analytics

dashboard exposure and motivation and self-regulated learning. Comput. Educ. 162, 104085
(2021). https://doi.org/10.1016/j.compedu.2020.104085

. Aguilar, S., Lonn, S., Teasley, S.D.: Perceptions and use of an early warning system during a

higher education transition program. In: Proceedings of Learning Analytics and Knowledge,
pp- 113-117 (2014)

Ruiz, J.S., Diaz, H.J.P., Ruipérez-Valiente, J.A., Muifioz-Merino, P.J., Kloos, C.D.: Towards
the development of a learning analytics extension in open EdX. In: Proceedings of 2nd Interna-
tional Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 299-306
(2014)

Mitrovic, A., Dimitrova, V., Weerasinghe, A., Lau, L.: Reflective experiential learning: using
active video watching for soft skills training. In: International Conference on Computers in
Education, pp. 192-201 (2016)

Mitrovic, A., Dimitrova, V., Lau, L., Weerasinghe, A., Mathews, M.: Supporting constructive
video-based learning: requirements elicitation from exploratory studies. In: André, E., Baker,
R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331,
pp- 224-237. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_19
Mohammadhassan, N., Mitrovic, A., Neshatian, K.: Investigating the effect of nudges for
improving comment quality in active video watching. Comput. Educ. 176, 104340 (2022)


https://doi.org/10.1186/s40561-016-0034-2
https://doi.org/10.1007/978-3-642-14363-2_15
https://doi.org/10.1016/j.compedu.2020.104085
https://doi.org/10.1007/978-3-319-61425-0_19

138

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

N. Mohammadhassan and A. Mitrovic

Mitrovic, A., Gordon, M., Piotrkowicz, A., Dimitrova, V.: Investigating the effect of adding
nudges to increase engagement in active video watching. In: Isotani, S., Millan, E., Ogan,
A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625,
pp. 320-332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_27
Matcha, W., Uzir, N.A., Gasevié¢, D., Pardo, A.: A systematic review of empirical studies
on learning analytics dashboards: a self-regulated learning perspective. IEEE Trans. Learn.
Technol. 13, 226-245 (2020)

Sedrakyan, G., Malmberg, J., Verbert, K., Jarveld, S., Kirschner, P.A.: Linking learning behav-
ior analytics and learning science concepts: designing a learning analytics dashboard for
feedback to support learning regulation. Comput. Hum. Behav. 107, 105512 (2020)

Chou, C.-Y., et al.: Open student models of core competencies at the curriculum level: using
learning analytics for student reflection. IEEE Trans. Emerg. Top. Comput. 5, 32-44 (2017)
Majumdar, R., Akcapmar, A., Ak¢apinar, G., Flanagan, B., Ogata, H.: LAView: learning
analytics dashboard towards evidence-based education. In: Companion Proceedings of 9th
International Conference on Learning Analytics & Knowledge, pp. 68-73 (2019)

Broos, T., Peeters, L., Verbert, K., Van Soom, C., Langie, G., De Laet, T.: Dashboard for
actionable feedback on learning skills: scalability and usefulness. In: Zaphiris, P., Ioannou,
A. (eds.) LCT 2017. LNCS, vol. 10296, pp. 229-241. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-58515-4_18

Ez-zaouia, M., Tabard, A., Lavoué, E.: EMODASH: a dashboard supporting retrospective
awareness of emotions in online learning. Human-Comput. Stud. 139, 102411 (2020)

Ruiz, S., Charleer, S., Urretavizcaya, M., Klerkx, J., Ferndndez-Castro, 1., Duval, E.: Support-
ing learning by considering emotions: tracking and visualization a case study. In: International
Conference on Learning Analytics & Knowledge, pp. 254-263 (2016)

Guerra, J., Hosseini, R., Somyurek, S., Brusilovsky, P.: An intelligent interface for learning
content: combining an open learner model and social comparison to support self-regulated
learning and engagement. In: Intelligent User Interfaces, pp. 152-163 (2016)

Corrin, L., de Barba, P.: Exploring students’ interpretation of feedback delivered through
learning analytics dashboards. In: Rhetoric and Reality: Critical Perspectives on Educational
Technology. Proceedings ASCILITE, pp. 629-633 (2014)

Lim, L., Dawson, S., Joksimovic, S., GaSevi¢, D.: Exploring students’ sensemaking of learning
analytics dashboards: does frame of reference make a difference? In: International Conference
on Learning Analytics & Knowledge, pp. 250-259 (2019)

Lonn, S., Aguilar, S., Teasley, S.D.: Investigating student motivation in the context of a
learning analytics intervention during a summer bridge program. Comput. Hum. Behav. 47,
90-97 (2015)

Srivastava, N., Velloso, E., Lodge, J.M., Erfani, S., Bailey, J.: Continuous evaluation of video
lectures from real-time difficulty self-report. In: Proceedings of Human Factors in Computing
Systems, pp. 1-12 (2019)

Yoon, M., Hill, J., Kim, D.: Designing supports for promoting self-regulated learning in the
flipped classroom. J. Comput. High. Educ. 33(2), 398418 (2021). https://doi.org/10.1007/
$12528-021-09269-z

Mohammadhassan, N., Mitrovic, A., Neshatian, K., Dunn, J.: Automatic assessment of
comment quality in active video watching. In: International Conference on Computers in
Education, pp. 1-10 (2020)

Taskin, Y., Hecking, T., Hoppe, H.U., Dimitrova, V., Mitrovic, A.: Characterizing comment
types and levels of engagement in video-based learning as a basis for adaptive nudging. In:
Scheffel, M., Broisin, J., Pammer-Schindler, V., Ioannou, A., Schneider, J. (eds.) EC-TEL
2019. LNCS, vol. 11722, pp. 362-376. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-29736-7_27


https://doi.org/10.1007/978-3-030-23204-7_27
https://doi.org/10.1007/978-3-319-58515-4_18
https://doi.org/10.1007/s12528-021-09269-z
https://doi.org/10.1007/978-3-030-29736-7_27

32.

33.

34.

35.

Investigating the Effectiveness of Visual Learning Analytics 139

Chi, M.T.H., Wylie, R.: The ICAP framework: linking cognitive engagement to active learning
outcomes. Educ. Psychol. 49, 219-243 (2014)

Mohammadhassan, N., Mitrovic, A.: Discovering differences in learning behaviours dur-
ing active video watching using epistemic network analysis. In: Wasson, B., Zorg6, S. (eds.)
Advances in Quantitative Ethnography. ICQE 2021. Communications in Computer and Infor-
mation Science, vol. 1522. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93859-
8_24

Dimitrova, V., Mitrovic, A., Piotrkowicz, A., Lau, L., Weerasinghe, A.: Using learning ana-
lytics to devise interactive personalised nudges for active video watching. In: User Modeling,
Adaptation and Personalization, pp. 22-31 (2019)

Hu, L., Bentler, PM.: Cutoff criteria for fit indexes in covariance structure analysis:
conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1-55 (1999)


https://doi.org/10.1007/978-3-030-93859-8_24

l‘)

Check for
updates

Debiasing Politically Motivated
Reasoning with Value-Adaptive
Instruction

1(=) 2

, John Stamper?®, Ken Koedinger?®,
and Jessica Hammer?

Nicholas Diana

! Colgate University, Hamilton, USA
ndiana@colgate.edu
2 Carnegie Mellon University, Pittsburgh, USA
http://nickdiana.com/

Abstract. While there is a substantial appetite in the United States for
improving media consumption skills, little work has focused on the biases
that can make inaccurate or misleading claims feel true. This skill is par-
ticularly difficult to teach, as effective instruction requires the instructor
to adapt course content to the specific beliefs of individual students,
a process that is unscalable in most classrooms. Here we examine the
impact of a novel method of user-centered personalized instruction that
uses value-adaptivity to highlight and address user bias in the context
of a civics education game. This intervention uses estimates of player
and content values to predict when players may be most susceptible to
biased reasoning and then intervene in those instances. We found that the
intervention successfully reduced bias among high bias-regulators with
practice. These results suggest that value-adaptive systems may be able
to support debiasing instruction in an effective, scalable way.

Keywords: Myside bias - Confirmation bias - Personalization -
Educational games - Civic technology - Civics education

1 Introduction

The co-opting of social media platforms in large-scale disinformation campaigns
has spurred the development of novel tools and methods for more responsi-
ble media consumption. Much of this work focuses on the media content itself,
with researchers developing sophisticated machine learning models for classify-
ing patently false information [15,20]. Other work focuses on the opposing side of
the media equation: the user. This work examines methods for improving media
literacy (i.e., their ability to evaluate the credibility of the information they are
consuming) [10].

Less work, however, has focused on the dynamic relationship between the
media consumer and the content they are consuming, and in particular: how
that relationship can be a powerful source of bias and how best to mitigate
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those biases. Recognizing and reducing bias (sometimes called “debiasing”) [14]
is a critical component of any comprehensive 21st century civics education.
Civics teachers (along with those in the English Department) are often tasked
with equipping students with the media literacy skills they need to navigate an
increasingly fraught media landscape. One common approach to debiasing in
civics class is to ask a student to defend a political position that they themselves
do not hold (or actively oppose). This act of perspective taking can be powerful
[11], but efficient perspective taking requires that the teacher: 1) knows the posi-
tions of each student with respect to each topic, and 2) takes the time to match
students to positions individually. In a class of 30 students that might discuss a
topic a week, a systematic adherence to this approach is likely unscalable.

In the current experiment, we used Moral Foundations Theory [9] in conjunc-
tion with natural language processing methods to model student and content val-
ues. We used the relationship between those two sets of values to power a value-
adaptive debiasing intervention. This debiasing intervention was integrated into
an educational game designed to help students practice engaging in productive
civil discourse. We tested the efficacy of this novel approach to debiasing by exam-
ining students’ bias regulation, or their ability to ignore an intuitively correct
option (biased response) in favor of the actual correct option. Specifically, we
hypothesize that the bias regulation of students who saw the debiasing interven-
tion will improve over time relative to their peers who did not see the intervention.

The primary contribution of this work is the demonstration of a scalable
approach to debiasing instruction in civics education that is powered by a novel
method of personalized instruction: value-adaptive instruction.

2 Related Work

The fallibility of human rationality has long been established as an important
and consequential area of study [1,4]. In many cases, human cognition fails in
regular and predictable ways. As such, it is not unreasonable to attempt to iden-
tify the circumstances under which we may be most susceptible to these cognitive
biases and to develop training programs designed to mitigate the impact of the
most common or most critical biases. Despite the large body of work pertaining
to the identification and measurement of cognitive biases, the body of work per-
taining to the development and testing of so-called debiasing training programs
is relatively small [14]. This may be due to the fact that many cognitive biases
are quite robust, persisting even in the face of explicit debiasing instruction [5].

With respect to debiasing instruction, tasks that require participants to con-
sider the opposing viewpoint may mitigate the impact of biased reasoning. This
strategy shares many features with a skill called perspective taking, a common
instructional goal in civics curricula that can be complicated by the personal
nature of political beliefs. For example, a civics instructor might ask a student
who is anti-immigration to defend a pro-immigration stance. The serious con-
sideration of opposing perspectives may reduce the impact of bias. This kind of
individualized debiasing instruction is an example of what we call value-adaptive
instruction (i.e., instruction that is adapted to the specific values of the learner).
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Unfortunately, the traditional approach to value-adaptive instruction
described above is simply unscalable in classrooms of 20-30 students and in
courses that might cover 40 topics over the span of a school year. One potential
solution is to use technology to support the estimation of student and content
values. These estimations will never be as accurate as those from an expert
human instructor, but reasonably accurate estimations may allow us to provide
numerous individualized practice opportunities to students in a scalable way.
Moreover, it would allow us to use educational technologies to:

1. Estimate the impact of bias on informal reasoning tasks,

2. Predict when students may be most susceptible to biased reasoning, and

3. Provide targeted debiasing interventions precisely in those moments of vul-
nerability.

Myside Bias in Civics Education. In this study, we explore a particular type
of bias, termed Myside Bias, that is often found in civil discourse. In brief, Myside
Bias refers to one’s tendency to evaluate claims or evidence more favorably if
the claim or evidence supports one’s own beliefs or worldview [19]. Myside bias
has been characterized as both a more accurate term for Confirmation Bias [16]
and a subclass of Confirmation Bias [19] in various works. In the context of civil
discourse, myside bias can manifest as one’s inability to speak across ideological
lines to the values that motivate the beliefs of those they disagree with. It is
our tendency to reach for the argument that seems strongest to us, rather than
the argument that would appeal most strongly to whomever we are trying to
persuade.

Effectively choosing arguments that will be most persuasive to those with a
differing ideology requires two skills:

1. The ability to identify the values that underpin the beliefs of your interlocutor
2. The ability to choose an argument that best aligns with those values

Inherent in this second skill is the challenge of overcoming myside bias (in
this context, our tendency to choose an argument that aligns with our own
values instead of more persuasive options). In the current study, we examine a
value-adaptive intervention designed to mitigate the impact of myside bias when
choosing effective arguments in civil discourse. This intervention was integrated
into an educational game designed to give students opportunities to practice
these key discourse skills (Fig. 1).

3 Methods

A total of 87 students from high schools located in the Northeastern Region of
the United States participated in the study. Note that all demographics ques-
tions were optional, and a small number of students chose not to answer some
questions. The students where evenly split with respect to sex (41 females, 43
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Fig. 1. An annotated screenshot of a scenario. In each scenario, players must persuade
NPCs like Belle (A) to move into the TOWNSQUARE (B). To do this players must
identify which argument from the opposing side appeals to what Belle values. Per-
suading NPCs costs Energy (C). The bar positioned below each NPC represents their
political tribalism. Players must reduce an NPC’s tribalism before attempting to per-
suade them. They can do this by playing Discourse Cards (D) like Conversation Reset.
Finally, the action menu (E) allows the player to request a hint, end the day/turn, or
reference information in their notebook.

males, 1 other), and reflective of the racial demographics of the area (9 black or
African American students, 72 white or Caucasian students, and 4 students iden-
tifying as other/more than one race). Students from six classes (three English
classes and two Social Studies classes) participated in the study.

3.1 Leveraging NLP Alongside Theories of Moral Judgments

Any given student will, by definition, only exhibit myside bias when presented
with information that aligns with their beliefs. As such, crafting instructional
events that give students the opportunity to wrestle with their biases requires
three critical pieces of information:

1. An estimate of a particular student’s values. That is, if we were to
cover a new topic in class, can we be relatively confident that we could use
our understanding of their values to predict the kind of belief this student
will espouse?

2. An estimate of the political values latent in the content we are pre-
senting to this student. In the case of commonly debated topics, these latent
political values may be obvious. However, in the case of uncommon or novel
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topics, it may be substantially more difficult to predict which aspects of the
content will resonate with a particular student.

3. A means of understanding the relationship between the prior two sets of
values. For example, to what extent do a student’s values align with the values
latent in a news article? Will one aspect of a problem be more important to
this student than another aspect?

Moral Foundations Theory. We estimate the student’s values using the
Moral Foundations Theory Questionnaire [9]. Moral Foundations Theory [8,9]
argues that the moral judgements we make are directly related to the importance
we ascribe to a small set of moral foundations (e.g., care, fairness, authority, loy-
alty, sanctity). For example, if someone values the authority foundation (i.e., they
generally respect laws, traditions, and authority figures), we might expect them
to side with the police and the military on controversial matters. These moral
foundations have been empirically shown to be highly predictive of both general
voting behavior [6] as well as more specific political beliefs (e.g., “Climate change
is real”) [13,18]. The output of the Moral Foundations Questionnaire is a vector
of five scores, representing the degree to which the student values each of the
five foundations when making moral judgments.

It is worth reiterating that these are estimates of user values. The reasons
humans hold beliefs are numerous and personal. As such, we can say with relative
certainty that the model of human beliefs (based on values) employed in this
study is incomplete and flawed. What remains to be seen is whether the model
provides a good enough estimate of user beliefs to be useful in the context of
debiasing instruction.

Distributed Dictionary Analysis. We estimate the values latent in text con-
tent using natural language processing, specifically distributed dictionary repre-
sentations (DDR) [7]. DDR builds off of Word2Vec [17], which involves modeling
a large corpus of text data in a low-dimensional space, where each word can be
represented as a point in that semantic space. DDR was created to model psy-
chological constructs (such as the foundations in Moral Foundations Theory)
using this semantic space. That is, the foundation referred to as Fairness actu-
ally encompasses more than just the concept of fairness; it includes equality,
injustice, rights, and fraud. To find the point in the semantic space that matches
this more nuanced concept that we label Fairness, we first generate a concept
dictionary (i.e., a list of terms that approximate the meaning of the concept).
Because each word in the concept dictionary can be represented as a vector, we
can simply average across all word vectors in the dictionary to find the vector
that corresponds to our operational definition of the concept Fairness.

In this work, we follow the original procedure outlined in [7] to generate a
vector for each of the five moral foundations. Next, to estimate the values latent
in a piece of text, we compute the cosine distance between the representations of
each of the five moral foundations and the average representation of all words in
the text. Like the Moral Foundations Questionnaire, the output of this process is
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a vector of five scores, representing the degree to which the text was semantically
similar to each of the five foundations (see [2] for a more complete discussion
of this process). In our analysis, we used the pre-trained Google News corpus
(approximately 100 billion words) Word2Vec model!, and a Python implemen-
tation of Word2Vec [17] called gensim.

Computing Alignment. Because the outputs of the Moral Foundations Ques-
tionnaire and the DDR analysis are two vectors of equal length, measuring the
relationship between the two vectors can be done simply by computing the cosine
similarity between them. The extent to which the student’s values are similar to
the values latent in the content is termed Alignment. Previous work has shown
that Alignment is predictive of bias in argument evaluation tasks [3]. In the cur-
rent study, we use Alignment to predict where students might be most suscepti-
ble to biased reasoning during gameplay and to adapt the debiasing intervention
accordingly. It is worth clarifying that Alignment is essentially measuring the
presence of foundational concepts and their relationship to the user’s estimated
values. As such, we expect it to fail in the face of sufficiently nuanced language.
What the current experiment aims to test is whether or not the resulting model
of bias is good enough to be useful.

3.2 A Value-Adaptive Debiasing Intervention

The debiasing intervention was incorporated into Persuasion Invasion, an edu-
cational game called designed to help students practice productive civil discourse
skills. The goal of each level in Persuasion Invasion is to persuade ideologically
entrenched townspeople to engage with those they disagree with. Successfully
persuading a townsperson requires that the student 1) identify which of the five
moral foundations the townsperson values most, and 2) identify which of three
arguments from the opposing side appeals most to someone who values that
foundation. We expect that players may be biased to choose the argument that
aligns most to their own values rather than the argument that aligns with the
values of the townsperson they are attempting to persuade.

To mitigate the impact of bias, we integrated a value-adaptive debiasing inter-
vention into this Persuasion interaction. All students were randomly assigned
to one of two conditions: an adaptive condition or a control condition. The two
conditions were identical in every respect with one exception: When players in
the adaptive condition were asked to choose which of the three listed arguments
would be most persuasive to a townsperson, they saw one of the options pre-
sented in orange-colored text with an additional piece of instruction that read:

Caution: options might seem more persuasive
to you (based on your values). Remember to choose the best
response for [NPC NAME].

! The pre-trained Google News model can be found here: https://code.google.com/p/
word2vec/.
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The orange-colored option corresponds to the option with the highest Align-
ment score (i.e., the option that, based on this methodology, aligns most closely
to this specific player’s values). The color orange was chosen because it is
attention-grabbing, but isn’t traditionally associated with correctness (as col-
ors like red and green are in the United States). Importantly, the orange-colored
option was not any more or less likely to be the correct answer; this intervention
is simply designed to elicit a more critical analysis of the options.

3.3 A Composite Measure of Bias Regulation

In previous work, Alignment-based estimates of potential bias have represented
the extent to which the user’s values align with the values of the correct response.
This made a direct comparison between Alignment and other baseline measures
possible. However, this Alignment-based estimate of bias is limited in that it fails
to account for the alignment between the user and the other potential options.
Imagine, for example, a case in which the correct option happens to also be
the option with the highest alignment. We would expect that, in this case, the
choice is easy, as there is no conflict between the intuitive choice and the correct
choice. This case also tells us nothing about the user’s ability to regulate their
own bias. Contrast this with a scenario in which the correct option happens to be
the option with the lowest alignment (i.e., least congruent with the user’s values).
Choosing the correct option in this case, may require the user to overcome their
own bias.

We used the alignment scores of all options presented to the user to generate
a more nuanced estimate of the amount of potential bias a student may be
overcoming at each opportunity. This novel composite metric, which we call the
Bias Regulation Index (BRI), is computed as follows:

BRI = (Ahighest - Achosen) + (Acorrect - Achosen) (1)

Here Apighest represents the alignment score of the option with the highest
alignment score (i.e., the option we would expect a completely biased player to
pick). Similarly, Acposen represents the alignment score of the option the player
chose, and A prrect Tepresents the alignment score of the correct option. The first
set of parentheses in this equation essentially gives the player credit for choosing
an option that isn’t the option with the highest alignment, and gives them more
credit the farther away their choice’s score is from that highest score. This first
set of parentheses cannot penalize players, as they cannot chose an option with
a score higher than the highest score.

The second set of parentheses penalizes the player if they chose an option
with a higher alignment score than the correct option. If Acorrect < Achosens
then the result of this second set of parenthesis is set equal to 0 to keep the
metric from crediting the players for choosing an incorrect option with lower
alignment than the correct option. Importantly, players are neither penalized
nor credited in this metric for choosing the correct option. The resulting sum of
these two sets of parentheses represents a student’s ability to overcome bias to
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Fig. 2. The three-way interaction between condition, opportunities and Bias Regulation
Indez (BRI). We see that, while the relationship between BRI and performance remains
relatively constant with additional practice in the control condition, the relationship
seems to change in the adaptive condition. As the number of practice opportunities
increase, students in the adaptive condition with low bias-regulation appear to do worse
than their peers in the control condition, whereas students in the adaptive condition
with high bias-regulation appear to benefit from the intervention compared to their
peers in the control condition. (Color figure online)

choose the correct answer. Positive scores on this metric capture those instances
in which a student chooses the low-aligned correct score over the high-aligned
incorrect one. Negative scores capture those instances in which the player chooses
a high-aligned incorrect option over a lower-aligned correct one.

This metric is more nuanced than simply including the Alignment score of the
correct option, as it mitigates the impact of the option’s correctness on choice.
That is, did the player choose this because it is the correct option, or because
it aligned with their values. When the correct option is also the option with
the highest alignment score, the choice is easy and uninteresting. In contrast,
this metric focuses on instances in which the choice is difficult. We expect that
bias regulation will improve over time for students in the adaptive intervention
condition.

4 Results

We examined the impact of an intervention (designed to reduce bias) on in-game
performance. Recall that students in the adaptive condition had an in-game
experience identical to those in the control condition with one exception: during
Persuade actions, students in the adaptive condition saw an additional piece of
instruction that highlighted the option that most aligned with their values (i.e.,
had the highest computed Alignment) alongside a message warning the player
that they may be biased to select the highlighted option.
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4.1 Interaction Between Condition, BRI, and Number
of Opportunities

We expected that the relationship between bias regulation and performance will
be impacted by both experimental condition (i.e., the presence or absence of
the intervention) and practice. To test for interactions between experimental
condition, practice, and students’ ability to regulate bias with respect to perfor-
mance, we incorporated this new Bias Regulation Index (BRI) into the following
hierarchical mixed effects model:

Outcome ~ BRI * PO x condition + (1|AP/Student) (2)

where Outcome represents the binary correctness score (0 = incorrect, 1 =
correct) for the multiple choice problem, and PO (Prior Opportunities) rep-
resents the number of times, prior to the current opportunity, that the player
has attempted a Persuade action. The model also includes the nested random
effects of AP status? and the Student identifier. Table 1 shows the model results.

Table 1. Results from the hierarchical mixed effects model. There was a significant
three way interaction between Prior Opportunities, Bias Regulation and Condition.

Estimate | SE P-val | Sig
PO —0.015 | 0.0090.070 | .
BRI 23.339 |4.9540.000 | ***
Condition (control) 0.067 |0.145|0.646
PO:BRI 1.558 |0.611|0.011 | *
PO:Conditioncontrol 0.000 |0.013]0.973
BRI:Condition (control) 3.163 |6.603|0.632
PO:BRI:Condition (control) | —1.583 |0.806 | 0.049 | *

As expected, we found a significant three-way interaction between Bias Regu-
lation Index, the number of prior practice opportunities, and experimental con-
dition (f = —1.583,p < .05). We used the R library interactions to explore
and visualize this interaction. Figure 2 shows the relationship between BRI and
Performance at three different opportunity counts. We see that, while the rela-
tionship between performance and BRI remains relatively stable across practice
opportunities in the control condition, the relationship between these variables
changes with practice in the adaptive condition. Recall that BRI scores below
zero indicate opportunities in which the student chose a high-aligned incorrect
option over a low-aligned correct one, and positive scores indicate opportuni-
ties in which the student chose a low-aligned correct option over a high-aligned
incorrect one. This graph suggests that the intervention may have caused stu-
dents with low bias-regulation to perform worse (potentially choosing the visually

2 AP Status was shown to be predictive of performance in previous work.
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salient orange-colored option more). However, students with high bias-regulation
seemed to benefit from seeing the intervention, outperforming their peers in the
control condition.

5 Discussion

We found that, by comparing estimates of student values to estimates of the val-
ues latent in text content, we could provide an adaptive intervention that appears
to have reduced the impact of bias on task performance (for high bias-regulators).
In the context the educational game, this effect appears to be gradual, increasing
with additional practice opportunities. This suggests that regulating bias in this
context is likely a skill that can be learned, but that it may also require many
practice opportunities to hone.

To measure the intervention’s impact, we developed a novel metric, the Bias
Regulation Index (BRI). BRI more accurately captures the difficulty of bias-
prone tasks, allowing us to measure a student’s capacity to overcome (or reg-
ulate) their own biases. In the future, value-adaptive systems may use BRI to
provide additional practice opportunities or individualized feedback to students
exhibiting low bias-regulation.

Why the adaptive debiasing intervention had a differential impact on low
and high bias-regulators remains an open question. While it may be tempting
write this off as another example of the “rich get richer” effect that can occur in
educational technology work, this would not explain the discrepancy in the per-
formance of low bias-regulators across conditions. That is, the intervention seems
to not only have made the rich richer, but the poor poorer as well. One potential
explanation for this effect is a simple misunderstanding about the nature of the
intervention. Low bias-regulators may have incorrectly interpreted the orange
color as an indicator of an option’s correctness (e.g., assumed it was a hint),
when in fact, there was no such relationship between correctness and color. This
may explain why low bias-regulators in the adaptive condition displayed worse
performance than their peers in the control condition.

Such confusion may have been avoidable with additional instruction about
the nature of the intervention. However, because students in the same class were
randomly assigned to either the control or adaptive condition, drawing attention
to the debiasing intervention (seen by those in the adaptive condition) may have
tainted the independence of the control condition.

5.1 Limitations

Perhaps the largest limitation of this debiasing intervention is the absence of
powerful social influences. It was unfortunately necessary to test the interven-
tion at the individual level, separate from peer-influence simply because half the
students within a classroom were assigned to the control group (no interven-
tion). Thus, the instruction pertaining to bias was given to each student in the
adaptive condition individually (via the interface). Future experiments might



150 N. Diana et al.

instead provide the bias instruction to the class as a whole, which might add
social pressure to make unbiased decisions.

Other limitations pertain to our participant population and experiment struc-
ture. While we believe our sample was representative of late high school-aged
students, there are known interactions between bias and age [12] that leave us
unable to confidently generalize these results to a population that includes older
players. Similarly, an important part of debiasing research is the longevity of
the effects [14]. As part of this work, we had originally planned to return to our
participants’ classrooms both one week and three weeks later to examine poten-
tial effects of the game on real-world classroom discussions. However, the onset
of the COVID-19 pandemic cut our original data collection plan short. Both of
these limitations are important areas of future work.

5.2 Potential Applications

This work has several potential applications. First and foremost, we believe
that educational technologies that implement value-adaptive debiasing interven-
tions allow instructors to provide students with opportunities to recognize and
overcome their biases. These technology-based interventions will never be as
nuanced as an intervention from an expert human instructor, but unlike tradi-
tional instruction, technology-based interventions like the one described in the
current study are scalable to any number of students. Because of these tradeoffs,
we see value-adaptive debiasing systems ultimately as a tool for supporting the
critical, real-world classroom discussions.

Beyond the classroom, value-adaptive debiasing systems might be embedded
into our interactions with media content. Here, such systems could make the
content consumer aware of the degree to which the content they are consuming
aligns with their own values. Alternatively, the system could alert the user to
engage their critical thinking faculties when the alignment between the content’s
values and their own is above a certain threshold. What remains to be seen is
how users will react to these kinds of interventions absent the affordances of
game environments.

6 Conclusion

In this study, we examined the impact of a value-adaptive debiasing intervention
on myside bias in the context of an educational game designed to teach produc-
tive civil discourse skills. We found a significant three-way interaction between
the number of prior practice opportunities, our measure of bias (BRI), and con-
dition (adaptive vs. control). Further investigation revealed that students in the
adaptive condition (i.e., who saw the adaptive intervention) got better at mit-
igating the impact of bias with practice relative to their peers in the control
condition. However, this was only true for high bias-regulators. While further
improvements are necessary to ensure that the impact of debiasing interven-
tions is equitable, this encouraging result demonstrates that value-adaptivity,
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this novel method of personalized learning, may be a useful tool for scalable
debiasing instruction. Value-adaptivity allows us to craft instruction that rec-
ognizes and reacts to the dynamic relationship between the media content and
the media consumer. With it, we can provide the rich, user-centered practice
necessary for any comprehensive media literacy education.
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Abstract. We investigate the utility of large pretrained language mod-
els (PLMs) for automatic educational assessment question generation.
While PLMs have shown increasing promise in a wide range of natural
language applications, including question generation, they can generate
unreliable and undesirable content. For high-stakes applications such as
educational assessments, it is not only critical to ensure that the gen-
erated content is of high quality but also relates to the specific content
being assessed. In this paper, we investigate the impact of various PLM
prompting strategies on the quality of generated questions. We design
a series of generation scenarios to evaluate various generation strate-
gies and evaluate generated questions via automatic metrics and man-
ual examination. With empirical evaluation, we identify the prompting
strategy that is most likely to lead to high-quality generated questions.
Finally, we demonstrate the promising educational utility of generated
questions using our concluded best generation strategy by presenting
generated questions together with human-authored questions to a sub-
ject matter expert, who despite their expertise, could not effectively dis-
tinguish between generated and human-authored questions.

1 Introduction

Practice questions and quizzes have been vital instruments for the assessment of
learning [1,20,27]. Engaging in retrieval practice by answering expert-designed
questions has shown to be more effective at improving learning outcomes [9, 10], by
providing opportunities for recall of knowledge, applying knowledge to novel sce-
narios, and critical thinking and writing skills. The learning benefits are greater
than other means of pedagogy such as passively re-reading course materials or
studying notes [4,8-10,12, 13] or watching instructional videos [21]. However, these
questions are also known to be challenging to create: they usually take subject
matter experts (SMEs) a significant amount of time, which is both costly and
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labor-intensive [20]. Therefore, this question generation process does not easily
generalize and scale to the continually expanding repositories of educational con-
tent that need large banks of assessments to be effective sources of instruction.
To create a scalable question generation process, several recent works lever-
aged artificial intelligence (AI) methods for automatically generating questions.
For example, some prior works [5,25,26] focused on generating factual questions
using recurrent neural network (RNN) architectures. [28] designed a method to
select highly interesting phrases which a generated question is supposed to ask
about. The implications of these works are far-reaching. In addition to reducing
the labor and cost for producing assessment questions, automatic question gener-
ation methods have the potential to create a more engaging learning experience
by generating (i) personalized questions that adapt to each student’s learning
trajectory [7] and (ii) real-time pop-up quizzes while the student is reading a
textbook or watching instructional videos. Once trained, these methods have
been shown to perform well on question generation tasks. However, they require
custom model design and (sometimes significant) computational resources for
training, making them a less appealing option for practitioners who desire a
“plug-and-play” Al-assisted question generation process that allows them to
easily interact with an Al system without the need for model training.
Recently, a new paradigm in text generation using large pretrained language
models (PLMs), such as GPT-3 [3], is now making such “plug-and-play” ques-
tion generation a possibility. These PLMs have been pretrained on web-scale
data which equip the model with abundant knowledge of the language com-
pared to their earlier counterparts. Furthermore, they can be easily and effec-
tively adapted to various generation tasks via the “prompting” technique, where
the user simply specifies the generation task that they would like to perform as
a prompt. A prompt usually contains, in addition to a “query” from which the
PLM will generate the outcome, a series of examples in an input-output structure
that “teach” the model how to generate the output given the input specific to a
particular task. Figurel gives an example of using prompting to adapt a PLM
for machine translation and arithmetic question answering. Prompting provides
an easy interface and high controllability for users to interact with PLMs and
customize it for different generation tasks. Because of its simplicity and prac-
ticality, prompting techniques to adapt PLMs for downstream generation tasks
have attracted increasing attention in the past few years [11,16,18,19]. Figure 1
shows an example of prompting for machine translation, question answering.
Unfortunately, using prompts to adapt PLMs for question generation is chal-
lenging due to the open-ended nature of the process, i.e., it does not have a
clearly defined input-output structure. This poses certain challenges such as,
what content should the questions be generated from, how should we deal with
the fact that multiple different questions can be asked about the same concept,
etc. This open-ended nature makes question generation unique in contrast with
other generation tasks commonly studied in existing literature (e.g., in machine
translation, input and output are simply texts in the source and target lan-
guages, respectively). As a result, unlike other generation tasks where adapting
PLMs via prompting is straightforward (e.g., see Fig. 1 for an illustration), it is
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model input for machine translation model input for question generation

prompt [English: good morning
(examples)|French: Bonjour
...... unknown prompt

English: cheers
French: & votre santé

query [English: how are you unknown query
French:

p D
pre-trained large language model pre-trained large language model
(PLM) (PLM)

translated N % (ideally) a good
sentence omment ca va generated question

Fig. 1. Hlustrations of adapting PLMs for machine translation and the challenges in
designing prompts to adapt PLMs for educational question generation.

unclear how to design effective prompts for PLMs in order for question genera-
tion. To the best of our knowledge, to date no existing literature has investigated
the modification of prompting strategy for question generation. To harness the
power of Al for educational question generation, prompt design for question
generation by PLMs is an exciting open problem.

1.1 Contributions

In this paper, we investigate the problem of effectively prompting a PLM to gen-
erate desirable, high-quality, educational practice questions. An effective prompt
strategy will enable us to leverage the power of PLMs with minimal effort and
without having to conduct model training with large volumes of domain-focused
content. We start with the core question: how do we design prompts such that
a PLM can generate the most desirable and effective practice questions? We
answer this question by proposing 5 different generation settings with a spe-
cific prompting strategy for each. We conduct a series of manual examinations
of the generated questions as well as automatic evaluations, which lead to the
empirical conclusion of the best combinations of our prompting strategy. This
strategy serves as an empirical guideline for practitioners to set up PLMs to
generate the best practice questions for educational purposes. Furthermore, we
evaluated the educational value of PLM-generated questions by presenting them
alongside human-authored questions for SMEs to discern the human-authored
from machine-authored questions. Evaluation by the respective SMEs (biology,
psychology, and history) demonstrated that the generated questions achieved
similar educational value relative to the human-authored ones, setting a strong
case for their practical utility. In essence, we emulate how real practitioners and
educators might be able to use these models to generate questions that meet
their need in a practical setting.
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1.2 Background: Large Pretrained Language Models and Prompting

We focus on large pretrained language models (PLMs) in this paper, specifi-
cally, auto-regressive PLMs, such as GPT that have become the dominant tools
for text generation. These models learn a distribution over text, which can be
decomposed auto-regressively as follows:

T
x ~po(x) = po(x1) [ [ po(elzr, ... zen). (1)
t=2
where pg is the LM where 6 represents all model parameters. In this paper, we
focus on an LM that is already trained on massive data and thus assume pg is
fixed throughout this paper.

In practice, we will give the model some initial texts called a “prompt”
as input which instructs the model to generate specific texts. This is possible
because of the decomposition in Eq.1. To see this, let ¢ := [¢1,...,cr] denotes
the prompt which consists of L ordered tokens ¢;. Then the LM models a con-
ditional distribution as follows:

T
po(x|c) :pg(x1|c)Hpg(xt|x1,...,xt_1,c). (2)
t=2
Equation 2 makes it possible to adapt an LM for a wide range of generation tasks:
depending on the interpretation of ¢, we can adapt a pretrained LM for a wide
range of tasks. [3] shows that, without further fine-tuning py, simply changing ¢
for different tasks perform on par with fine-tuning py. This makes it very easy
to use the LM because we only need to change the input to the model to adapt
it for a variety of tasks. See Fig.1 for an illustration. The question now is how
to design such a prompt for question generation.

2 Exploring Prompting Strategies in Question Generation

Table 1. Summary of the four factors in our prompting strategy and the choices under
consideration for each factor.

Example structure Lengths of context
) Data source Number of L.
for question . and question in each
5 in the examples examples
generation example
CAQ: context (C) and an
answer (A) and the output Content agnostic (SQuAD) | One-Shot Small (avg. 15 words)

contains a question (Q)

CTQA: (C) and a target (T)
and the output contains a Content specific Few-Shot Medium (avg. 25 words)
question (Q) and an answer (A)
Five-Shot Large (40 and above)

Seven-Shot
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In the remainder of the paper, we set out to answer the question: how do we
design effective prompts for educational question generation? Answers to this
question will provide practitioners with clear guidance on how to better control
off-the-shelf PLMs for high-quality question generation. We take an empirical
approach and design a series of experiments to systematically investigate var-
ious factors that impact the effectiveness of prompting strategies for question
generation with PLMs. We propose four factors that are crucial considerations
to prompt design for question generation. Below, we detail these factors and
the possible choices that we study for each factor (see Tablel for a high-level
summary). In contrast to automated prompting methods as in existing litera-
ture, our prompting design is interpretable and flexible, enabling practitioners
to explicitly control and iteratively refine the generation process as needed.

2.1 Example Structure for Question Generation

The first factor we investigate is the question generation formulation, i.e., the
input-output structure in each example that we will use to instruct and adapt the
PLM for question generation. Different formulations will likely impact the gener-
ated questions’ quality. In this work, we focus on contextualized question genera-
tion, in which a question is asked and the answer to it can be found within a given
paragraph. We compare two different generation setups. In the first setup, labeled
as CAQ), the input contains a context (C) and an answer (A) and the output con-
tains a question (Q). The context can be a short excerpt from a textbook and the
answer should correctly answer the generated question. This setup has been con-
sidered in a wide range of question generation tasks [5,26,28]. In the second setup,
referred to as CTQA, the input contains a context (C) and a target (T) and the
output contains a question (Q) and an answer (A). The target does not need to
be the answer to the generated question but guides the model to generate a ques-
tion to ask about the particular part in the context specified by the target. The
model also generated an answer in addition to the question. The intuition behind
this setup is that the model may generate more on-topic and relevant questions
because it is forced to also generate the answer. This setup is reminiscent of prior
work that leverages question answering modeling for question generation [6,17].

2.2 Data Source in the Examples

The second factor we investigate is the data source in each example, i.e., where
do the context, question, answer (target) come from? This question arises when a
user wants to generate questions for different subjects; depending on the subject,
the examples in the prompt may need to change so that PLM is given the
appropriate domain knowledge. We are most interested in whether we can use
the same set of examples that come from a generic source for question generation
across different subjects/content. We thus compare a content-agnostic and a
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content-specific selection of examples. In the content-agnostic setup, we choose
examples from SQuAD [24], a generic, widely used question answering dataset
that can also be used for question generation. In the content-specific setup, we
choose examples in the same subject as the one in which the PLM will generate
questions.

2.3 Number of Examples

The third factor we investigate is the number of examples to include in the
prompt. Usually, PLMs’ performance improves with more examples. Neverthe-
less, because of the open-ended nature of question generation, it is unclear to
what point increasing the number of examples will help. We thus consider four
setups including One-shot, Few-shot, Five-shot, Seven-shot where “shot” refers
to the number of examples.

2.4 Lengths of Context and Question in Each Example

The last factor we investigate is the length of context and question in each
example. A context or question that is too short may limit the diversity and
complexity of the generated questions. A context or question that is too long
may contain irrelevant information which may confuse the PLMs, potentially
leading to generated questions that are irrelevant or off-topic. We thus compare
three different setups including small, medium, large contexts and questions
depending on the length of texts they contain. Small corresponded to questions
about 15 words in length, medium questions were around 25 words long, and
large questions were about 40 words long on average. Small contexts consist of
around 2 sentences, medium contexts around 4-5 sentences of information, and
large contexts usually a full paragraph or multiple paragraphs.

3 Experiments

We recommend the best prompt setting for each generation strategy that yielded
the best-generated questions. Code scripts, additional clarifications, and addi-
tional results such as examples of generated questions are publicly available.!

Experiment Setup. We choose biology as the subject to generate questions
and use the Openstax Biology 2e (Bio 2e) Textbook as the source for most of
our example content. In this paper, we focus on generating open-ended questions
of Bloom’s level below three because higher-order Bloom’s questions typically
involve making connections across larger content [2,14]. Generating diverse types
of potentially more challenging questions is left for future work. We also limit

! https://github.com/openstax/research-question-generation-gpts3.
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our investigation to textual content and remove images, tables, links, and refer-
ences from the textbook. During generation, we first pre-select a fixed number
of examples from the textbook (and SQuAD, for the data source experiment;
see Sect.2.2). During generation for all setups under each factor, we randomly
pick a fixed number of examples to serve as the prompt and another two queries,
i.e., with only the context (possibly also the target; see Sect. 2.1) from which the
PLM is asked to generate questions. Unless otherwise noted, for each query in
each setup under each factor, the PLM generates 75 questions for evaluation.
When generating questions for a factor, all the other factors are set to the same
value to ensure fairness in comparison. Throughout our experiments, we use the
GPT-3 Davinci API from OpenAl with temperature = 0.9 and top_p = 1.

Evaluation Protocol. We primarily evaluate the quality and diversity of
the generated questions. For quality, we report perplexity and grammatical
error. Perplexity is inversely related to the coherence of the generated text; the
lower the perplexity score, the higher the coherence. To make the process com-
putationally efficient, we computed perplexity using a GPT-2 language model
for all generations. We computed grammatical error using the Python Language
Tool [22] which counts the number of grammatical errors averaged over all gen-
erated questions in each setup under each factor. For diversity, we report the
Distinct-3 score [15], which counts the average number of distinct 3-grams in
the generated questions. Furthermore, we believe that ensuring the generated
questions are safe, i.e., without profanity or inappropriate language is critical
for high-stakes educational applications. Therefore, we report the toxicity of
the generated questions, using the Perspective API [23], which is often missing
from the evaluation in existing question generation literature. Last but not least,
we perform a preliminary human evaluation to mark percentage of acceptable
questions for each setup under each factor. A question is considered acceptable
if it is coherent, on-topic, answerable, grammatically correct, and appropriate.
We conduct a more comprehensive human evaluation in Sect. 3.3.

3.1 Empirical Observations

Table 2. Results for the example structure comparisons, which show that the CTQA
structure is distinctly better than the CAQ structure.

Gen. format | Diversity T | Perplexity | | Toxicity | | Gramm. error | | % acceptable |
CAQ 0.895 64.683 0.153 0.053 26.7%
CTQA 0.898 29.900 0.153 0.080 54.7%
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Structure of Examples in the Prompt. Recall that this experiment com-
pared CAQ and CTQA structures of the examples in the prompt (Sect. 2.1). The
results, presented in Table 2, show that, although the CTQA structure produces
questions of comparable diversity, quality, and toxicity, it generates about twice
as many acceptable questions as the CAQ structure. This comparison suggests
that CTQA is a superior example structure and confirms our earlier hypothe-
sis that asking PLMs to generate the answer in addition to only the question
is beneficial for improving the quality of generated questions. Additionally, the
generated answers can be potentially useful for evaluating a student’s perfor-
mance on the generated question. Ensuring that the generated answer correctly
answers the generated question is important ongoing work.

Table 3. Results for the example data source comparisons. Using content specific
examples gives superior generation performance compared to content agnostic example.

Gen. format | Diversity T | Perplexity | | Toxicity | | Gramm. error | | % acceptable |
SQuAD 0.884 102.840 0.201 0.093 18.0%
OpenStax 0.895 64.683 0.153 0.053 26.7%

Data Source in Examples. Recall that this experiment compared whether the
examples come from the same subject (Bio 2e) as the query or a generic dataset
(SQuAD) (Sect. 2.2). The results in Table 3 showed that when a prompt consists
of examples from the same subject, the PLM can generate questions about twice
as effective as when using SQuAD examples across all metrics. These results
suggest that a generic set of examples may not adapt to question generation for
various domains and that appropriately choosing examples from desired subjects
is a better setup for question generation.

Table 4. Results for the number of examples comparisons. Five- and seven-example
settings yield better questions compared to one- and three-example settings.

# Examples | Diversity 1 | Perplexity | | Toxicity | | Gramm. error | | % acceptable |
1 example | 0.897 37.954 0.384 0.182 24.9%
3 examples |0.924 36.586 0.232 0.151 37.8%
5 examples | 0.938 35.990 0.208 0.119 51.6%
7 examples |0.918 30.731 0.176 0.076 44.9%

Number of Examples. Table 4 shows the results comparing one-, three-, five-,
and seven-shots, i.e., the number of examples in the prompt. The results show
that one- and three-shots are ineffective; we observe that they produce a majority
of unacceptable questions. The five-shot condition results were optimal followed
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closely by the seven-shot, with the one-shot being most inefficient. We prefer
using the five-shot condition because here, the PLM generated more varied ques-
tions that are also of high quality. For example, although the model was only
given free-response questions, it could produce a small number of multiple-choice
or true-or-false questions.

Table 5. Results for the context and question length comparisons. We see that, in
general, short context and question lengths in the examples improve generation quality.

Context length | Diversity T | Perplexity | | Toxicity | | Gramm. error | | % acceptable T
Short 0.861 33.452 0.329 0.380 22.0%
Medium 0.878 30.692 0.214 0.410 24.0%
Long 0.877 30.385 0.331 0.420 24.0%
Question length | Diversity 1 | Perplexity | | Toxicity | | Gramm. error | | % acceptable
Short 0.906 34.275 0.246 0.377 30.0%
Medium 0.893 33.704 0.318 0.487 23.7%
Long 0.885 30.38 0.295 0.610 14.7%

Lengths of Context and Question in Each Example. Table5 shows the
results comparing different lengths of the question and context in each example,
respectively. In terms of question lengths, results suggested that a smaller ques-
tion length generally yields the best performance. In terms of context lengths,
results are mixed. This is likely because longer contexts contain information that
is not directly useful for generating questions and because longer texts lead to
longer prompts, which makes it more difficult to instruct the model to adapt to
the question generation task.

3.2 Discussions

From the above quantitative results, we obtain a good understanding of how
the different choices, while constructing the prompt for each generation strat-
egy, will impact the quality of the generated questions. It is clear that when
preparing examples to instruct and adapt PLMs for question generation, the
PLM is likely to generate higher quality questions given the prompt design: if
prompt contains five to seven examples that are in CTQA format, are chosen
from the desired subject, rather than generic content, and contain relatively
short contexts and questions. This recommendation has the potential to serve as
a guideline for practitioners when adapting off-the-shelf PLMs for their unique
question generation needs.
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3.3 Human Expert Evaluation for Multiple Subjects
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Fig. 2. Human evaluation results. Left: the percentage of PLM-generated questions
that are recognized as human-authored by SMEs. Right: the percentage of PLM-
generated questions that SMEs considered as ready-to-use in their classes.

To validate the utility of the generated questions as well as to investigate whether
our best prompt strategy would result in good question generations across
domains (e.g., natural sciences, social sciences, and humanities), we engaged
biology, psychology, and history subject matter experts (SMEs) respectively to
evaluate the quality of questions from these domains generated using the best
prompting strategy.

For each domain, we chose 5 examples as the prompt and another 5 examples
with only the question and target as the query. For each query, we generated and
selected the 10 best questions. We then mixed these 50 questions together with
5 reference human-authored questions (one for each query) and presented them
to SMEs. SMEs were asked to (1) distinguish whether each question is machine
or human authored and (2) evaluate whether they would use the question in the
assessment they create for their class.

The results, shown in Fig.2, suggest that the majority of PLM-generated
questions look “human-like” for SMEs and can be readily used in their respective
classes. This result is encouraging because it suggests that our prompting strat-
egy can effectively adapt a publicly available, general-purpose text generation
model for high-quality educational question generation. Table 6 demonstrates a
few successful generated questions.
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Table 6. Examples of three generated questions using our recommended prompting
strategy along with the context, target, and reference human-authored questions.

Context (Biology): At 0.1 to 5.0 um in diameter, prokaryotic cells are significantly smaller
than eukaryotic cells, which have diameters ranging from 10 to 100 pm (Fig. 4.6). The
prokaryotes’ small size allows ions and organic molecules that enter them to quickly diffuse to
other parts of the cell. Similarly, any wastes produced within a prokaryotic cell can quickly
diffuse. This is not the case in eukaryotic cells, which have developed different structural
adaptations to enhance intracellular transport

Target: size

Reference human-authored question: Some unusually large cells do exist. How might such cells
solve the problem of diffusion?

Machine-generated question: Compare the size of prokaryotic and eukaryotic cells to describe
why diffusion is more rapid through prokaryotic cells

Context (Psychology): Sleep debt and sleep deprivation have significant negative psychological
and physiological consequences. As mentioned earlier, lack of sleep can result in decreased mental
alertness and cognitive function. In addition, sleep deprivation often results in depression-like
symptoms. These effects can occur as a function of accumulated sleep debt or in response to more
acute periods of sleep deprivation. It may surprise you to know that sleep deprivation is associated
with obesity, increased blood pressure, increased levels of stress hormones, and reduced immune
functioning

Target: sleep deprivation

Reference human-authored question: Which animal would be most likely to die from a lack of
sleep?

Machine-generated question: Sleep debt and sleep deprivation are associated with significant
negative psychological and physiological consequences. What are some of the potential consequences
of a person having less than optimal sleep?

Context (U.S. History): Opponents made clear their resistance to Garrison and others of his ilk;
Garrison nearly lost his life in 1835, when a Boston anti-abolitionist mob dragged him through the city
streets. Anti-abolitionists tried to pass federal laws that made the distribution of abolitionist literature
a criminal offense, fearing that such literature, with its engravings and simple language, could spark
rebellious Black people to action. Their sympathizers in Congress passed a “gag rule” that forbade the
consideration of the many hundreds of petitions sent to Washington by abolitionists. A mob in Illinois
killed an abolitionist named Elijah Lovejoy in 1837, and the following year, ten thousand protestors
destroyed the abolitionists’ newly built Pennsylvania Hall in Philadelphia, burning it to the ground
Target: anti-abolitionists

Reference human-authored question: How did anti-abolitionists respond to the abolition
movement?

Machine-generated question: What were some of the responses to the abolitionist movement?

3.4 Limitations and Future Work

Question generation is complex and is an active ongoing area of research. In this
work, we proposed four factors as the prompt design framework and conducted
a controllable scientific study on those factors. However, our investigation was
by no means exhaustive and several other factors have the potential to impact
question generation such as question difficulty, type (i.e., multiple-choice, fill in
the blank, etc.), and modality (i.e., potentially including tables and equations).
Investigations of more factors and complex interactions among them are left for
future work. In addition, our human evaluation was a small-scale experiment
because we were only able to engage the SMEs for a short time. The next step is
to conduct a large-scale evaluation that involves both instructors and students
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Table 7. Examples of failed cases and the failing reasons. Our prompting strategy can
still generate questions that contain grammatical errors and other types of errors.

(Biology): What is the correct statement is about centrosomes? (Multiple-choice question with
no options and bad grammar)

(Psychology): Sleep deprevation can lead to serious changes in the body. Which one of these
changes characterized by sleep deprivation? (grammatical and spelling errors)

(History): During the Gold Rush, the Forty-Niners did not find wealth so easy to come by,
most did not. (not a question)

in a safe environment to obtain a better understanding of the educational utility
of machine-generated questions. Lastly, our prompting strategy generated ques-
tions with grammatical errors and other problems at times; we show some failed
examples in Table 7. A promising future direction is to develop automated filters
capable of removing undesirable generated questions and only select the highest
quality ones, preferably also personalized to each student and instructor.

4 Conclusion

In this work, we investigate the best practices to prompt a PLM for educational
question generation. We develop and empirically study a prompting strategy con-
sisting of four different factors. Based on a series of quantitative experiments,
we recommended the choices for each factor under our prompting strategy that
led to high-quality generated questions. Human evaluations by subject experts
in three different educational domains suggest that most of the questions gener-
ated by a PLM with our recommended prompting strategy are human-like and
ready-to-use in real-world classroom settings. Our results indicate that properly
prompting existing off-the-shelf PLMs is a promising direction for high-quality
educational question generation with many exciting future research directions.
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Abstract. A legal casenote essay is a commonly assigned writing task to
first-year law students aiming to promote their understanding of legal rea-
soning and help them acquire writing skills in a legal domain. To ensure
law students master the legal casenote writing, it is critical that instruc-
tors monitor and evaluate students’ progress, and provide a timely and
specific feedback. This is, however, a challenging task to many instructors
as they often need to dedicate excessive time and effort to evaluate writ-
ing of and provide formative feedback to each individual student. We posit
a computational tool that can afford at-scale evaluation of legal casenote
writing may help remedy this challenge. Although quite some automatic
writing evaluation (AWE) tools have been applied in the domain of educa-
tion, the AWE tool that can analyse rhetoric of a legal casenote essay (i.e.,
specific rhetorical elements required by this task) is yet to be developed.
We made the first step towards developing such a tool. We manually anno-
tated each sentence in a corpus of 1,020 authentic casenote essays written
over 6 offerings of the first-year legal writing course and developed one tra-
ditional machine learning classifier (Random Forest) and two deep learning
classifiers (based on vanilla BERT and Legal BERT pre-trained language
models). We found that the deep learning classifier based on Legal BERT
could correctly identify more than 86% of rhetorical moves in a casenote.
Our findings may be of a particular interest for educational researchers
and practitioners who seek to use the methods of artificial intelligence to
support legal writing education.

Keywords: Legal casenote writing + Automated writing evaluation -
Rhetorical moves - Machine learning - Deep learning

1 Introduction

In contemporary society, lawyers are often required to analyse different legal texts
and clearly articulate this analysis in writing [28]. For this reason, writing legal
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documents of different genres — e.g., casenotes, memos, appeals and judgements
— is deemed to require a critical set of skills for aspiring lawyers. To provide law
students with the opportunity to acquire and hone their legal writing skills, and
to learn how to develop different legal documents, law educators administer many
writing assignments.

A legal casenote essay is usually the first writing assignment assigned to law
students in their freshman year. In this task, students analyse multiple docu-
ments that describe an authentic legal case decided at court, and write a sum-
mary (i.e., casenote) that provides essential information about the case including
the material facts, procedural history, court reasoning, and court decision. The
presence of these elements, commonly referred to as rhetorical moves [44], will
determine the casenote assignment mark. Importantly, this writing task is not
only considered potent to help first-year law students understand and commu-
nicate legal reasoning [8,31], but also to acclimate them to the culture of legal
writing, e.g., use of specialized vocabulary and formal syntax [36].

To ensure law students master the legal casenote writing, it is critical that
instructors monitor and evaluate students’ progress on this task, and provide
a timely and specific feedback [23,31] on how the casenote essay should be
improved. For example, an instructor may notice that the court decision move
was not provided in the casenote draft, and advise a student on how to include
this move in the next draft. This is, however, a challenging task to many instruc-
tors as they often need to dedicate excessive time and effort to evaluate writing
and provide formative feedback to each individual student [18,33]. This chal-
lenge is further amplified in large-enrollment courses, such as the first-year legal
writing course at many law schools, where instructors typically need to evaluate
a few hundred casenote submissions in a limited time frame.

We posit a computational tool that provides at-scale evaluation of legal
casenote writing may help remedy this challenge and benefit law students
and instructors. For instance, as the presence of rhetorical moves determines
the quality of a casenote, such computational tool may be applied to detect
rhetorical moves in a casenote draft, and, on that basis, tailor writing ana-
lytics to help students identify areas for improvement (e.g., missing required
rhetorical moves), and thus lessen marking burden for instructors. Following
recent advances in computational technologies for text analysis, especially those
grounded in machine learning (ML), quite some automatic writing evaluation
(AWE) tools have been developed and applied in the domain of education (e.g.,
[4,15,25,37]). Whereas researchers have documented empirical benefits of these
tools in supporting student writing in different genres and subjects, to our knowl-
edge, the existing tools appear to be limited in supporting casenote writing (for
details, see Sect.2.2.). More research is hence needed to develop an AWE tool
that can analyse the specific rhetoric of a legal casenote genre and provide at-
scale support to law instructors and students working on this task.

In the present study, we took the first step towards developing such a tool.
Specifically, we investigated the affordances of state-of-the-art ML and deep
learning (DL) algorithms to automatically evaluate students’ responses to a legal
casenote assignment. To this end, we collected a corpus of authentic casenote
essays written by first-year law students over 6 offerings of the legal writing
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course. In these essays, we manually labeled each sentence with a corresponding
rhetorical move. Using this data set, we developed and evaluated performance
of several classifiers that can identify the presence of each rhetorical move in a
casenote essay with a high accuracy.

2 Related Work

2.1 Rhetorical Moves

A rhetorical move is theorised as a segment of text that fulfills a particular com-
municative purpose within a genre [16]. In other words, rhetorical moves are
building blocks of a genre and they jointly contribute to a coherent understand-
ing of a text [16,44]. Students are often required to provide a set of genre-specific
rhetorical moves in their essays. For instance, an argumentative essay may con-
tain the claim, evidence and rebuttal moves [1], whereas a literature review essay
may contain the summary of prior research, gaps in prior research and justifi-
cation for a new study moves [46]. The presence of rhetorical moves within the
essay often determines the communicative quality of that essay and a subsequent
grade the essay will receive. For this reason, educational researchers have utilised
rhetorical moves to theoretically guide the analysis of student writing across a
range of genres and disciplines [35]. Following this approach, in the present study,
we analysed the legal casenote writing from the perspective of rhetorical moves.

2.2 Automated Analysis of Rhetorical Moves in Student Writing

The AWE tools developed to date have mainly examined students’ writing on
the micro-level, e.g., lexical and syntactical errors, and only a few have examined
students’ writing on the macro-level, e.g., text structure and rhetorical moves
required by a task [2,43]. For example, the Academic Writing Analytics (AWA)
and AcaWriter [25] tools use a rule-based parser [38] to detect rhetorical moves in
students’ essays of different genres and tailor context-sensitive feedback to learn-
ers to help them improve their writing. The Mover [4] and the Research Writing
Tutor (RWT; [15]), on the other hand, harness supervised ML algorithms to
analyse rhetorical structure of research essays. These tools can identify rhetori-
cal moves that occur in a draft (e.g., “Establishing a Territory”, “Identifying a
Niche” and “Addressing the Niche”) and present these moves to a learner (e.g.,
as a color-coded text). In this way, a learner can gain a deeper insight into the
rhetorical structure of their draft, engage in metacognitive evaluation of the draft
(e.g., by appraising the extent to what the draft aligns to assessment criteria),
and improve their text accordingly (e.g., “It seems like I still have to address the
niche.”). For a more detailed overview of the aforementioned tools, see [24].
Whereas these tools have been found promising to support learners to revise
and improve their drafts of different genres, including argumentative law essays
[26,40], business reports [40], sections of research articles [15] and reflective essays
[29], the tool that can analyse rhetorical characteristics specific to legal casenote
writing and support learners in these assignments is yet to be developed. For
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instance, as legal casenotes are brief summaries of decided court cases, learners
are expected to concisely communicate essential information about the court
judgement in these documents [7,45]. To this end, many learners rarely use in-
text linguistic cues (e.g., “As a consequence...”) to signal rhetorical moves to
readers. For this reason, the existing rule-based systems that rely upon linguis-
tic cues to determine rhetorical moves do not appear to be fully applicable to the
analysis of legal casenote responses. Instead, supervised ML may be considered
a more viable approach towards creating a robust tool for automated evaluation
of rhetorical moves in casenote writing. Even though a small group of researchers
has already utilised supervised ML to classify rhetorical moves in student writ-
ing, and the systems developed (e.g., [4,15]) achieved good performance relative
to standards in discourse analysis (80% overlap with human evaluators recom-
mended in [5]), the classification tasks these systems attempted to address were
not explicitly related to legal writing. Moreover, the sets of texts researchers
used to train these systems did not appear to include legal documents. Adding
to this line of research, we collected and manually annotated a corpus of student
responses to casenote assignments, and used this dataset to create the classi-
fier that classifies rhetorical moves in a casenote. For this purpose, we explored
both traditional ML and DL approaches. Specifically, we attempted to address
the following research question: To what extent can a machine learning/deep
learning classifier accurately identify rhetorical moves in a legal casenote essay?

3 Method

3.1 Learning Task and Code Book

In a casenote assignment, students were required to analyse multiple documents
that describe an authentic legal case with court decision, identify major points of
the case and write up to a 500-word casenote that includes the following rhetori-
cal moves: (1) material facts that gave the rise to the original cause of action (2)
procedural history representing the proceedings that arose as a result of the cause
of action, e.g., arguments made by counsel (3) court reasoning, e.g., the reason-
ing of the Justices of the High Court, and (4) court decision and relief. The
presence of the rhetorical moves (1)—(4) determined the casenote assignment
mark. In addition, the students were required to use footnotes in their essays
to explicitly refer to relevant documents from the case. The use of footnotes
counted towards the assignment mark, too. Informed by these rhetorical and
marking requirements, we developed a codebook to define and categorise rhetor-
ical moves in a legal casenote. We included two additional categories that did
not count towards the mark, Title & Introduction that contained the essay title,
introductory comments and/or signposting in the first paragraph, and Other
Information that contained any information that could not be categorised into
any other category. The code book with examples is provided in Table 1.
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Table 1. Rhetorical moves in legal casenotes

Label Definition Example
Title & introduction | Title, introductory comments | LAW CASE REPORT
to the essay or signposting The case of McHale Watson

involved an unfortunate event that brought to

light the issues of a minor’s capability to be held to
the same standard of care under the tort of
negligence

Material facts The material facts giving rise | During the school holidays on January 21st 1957, the
to the original cause of action | respondent, Barry Watson, aged twelve years old was
playing with the appellant, Susan McHale, and
another girl both of whom aged nine years old

Procedural history |The proceedings and This was an action commenced in the original
arguments that arose as a jurisdiction of the High Court of Australia
result of the cause of action before Windeyer J in McHale v Watson (1964)

Court reasoning Court reasoning that includes | The appeal was argued on two grounds, firstly
obiter and ratio that Windeyer J had errored in finding a variance
between an adult and child standard of care,

and, secondly that His Honour should have

found negligence, regardless of the measured

standard
Court decision The actual decision reached Justice Windeyer’s judgement was held by a
and the relief granted majority-of-three-to-one by McTiernan CJA,
to the parties as a result Kitto J and Owen J, with only Menzies J dissenting
Footnote References to the case Wrongs Act 1958 (Vic) s 26

documents cited

3.2 Dataset

We collected 5,800 responses to casenote assignments written by the first-year
law students at a large Australian university over 6 offerings of a legal writing
course between 2017 and 2020. Of these, we randomly selected 1,020 responses
(i-e., 170 responses from each offering) for manual labeling and ML/DL classifier
modeling. The average length of a casenote essay was 290.93 words (SD = 72.69).
This study was implemented with the approval from the Human Research Ethics
Committee (Project ID: 29451).

Two human raters, experts in this writing task, randomly selected 113
casenotes, i.e., approximately 10% of the dataset, trained together on how to
apply the code book for annotation (Tablel), and then separately annotated
these essays. The raters used sentences as the unit of analysis, because, com-
pared to paragraphs, sentences can afford more fine-grained analysis of a text
[10]. Specifically, the raters labeled each sentence in the essay with a correspond-
ing category from the code book. The inter-rater reliability between the two
raters was nearly 1 in all the categories, measured by Cohen’s kappa. The rea-
son for this almost perfect overlap may be because the casenotes were generally
short (approximately 26 sentences, on average) and some students introduced
optional headings to their essays to explicitly signal rhetorical moves. This, in
turn, could have made the training and annotation process more straightfor-
ward. One of the raters proceeded with the manual annotation and annotated
the remaining casenote essays. As the sentences belonging to the Other Informa-
tion category were not identified in the annotated casenotes, this category has
been removed from the final dataset. The descriptive statistics of the dataset is
provided in Table 2.
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Table 2. The descriptive statistics of the casenote dataset. Total: Total Number; Avg:
Average Number; Title: Title & Introduction; Material: Material Facts; Procedural:
Procedural History; CourtR: Court Reasoning; CourtD: Court Decision. Standard
deviation is provided in parentheses.

Total Title Material Procedural | CourtR CourtD Footnote
Total casenote 1,020 609 848 859 856 722 836
Avg. words per casenote 290.93 (72.69) | 18.27 (21.60) | 47.67 (22.35) | 73.82 (42.65) | 126.20(57.06) | 14.92 (17.92) | 35.94(33.78)

Avg. unique words per casenote | 156.63 (29.47) | 15.02 (15.66) | 38.76 (15.73) | 54.27 (27.05) | 86.53 (33.16) | 13.16 (12.81) | 14.90 (11.56)
Avg. sentences per casenote | 26.23 (10.70) | 1.44 (1.00) |3.86 (2.05) | 5.32 (3.17) |8.98 (4.76) | 1.43 (1.33) |7.06 (7.49)
Total sentences 23,347 966 3,873 5,460 9,167 1,142 2,739

Avg. words per sentence 13.28 (8.09) 13.73 (9.67) |12.51 (6.65) |13.97 (7.81) |14.02 (7.26) |11.36 (5.91) |11.16 (11.75)
Avg. unique words per sentence | 12.21 (6.32) |12.12 (7.21) | 11.89 (5.79) |13.07 (6.61) |13.31 (6.27) |10.68 (5.23) |7.89 (4.65)

3.3 Model Implementation

We utilised the manually annotated casenote dataset to train three classifiers
to identify rhetorical moves. In particular, one classifier was based on the tradi-
tional ML algorithm Random Forest [11] and the other two were based on the
deep learning (DL) algorithm BERT SCL (Bidirectional Encoder Representa-
tions from Transformers with Single Classification Layer; [17]). We describe the
implementation procedure below.

Random Forest. As Random Forest is deemed the one of the most widely used
traditional ML algorithms for classification tasks [42], we elected to implement
Random Forest in this study and compare its classification performance with the
state-of-the-art Deep Learning algorithms. We implemented the Random Forest
model using the sklearn' Python package. We tuned the model hyper param-
eters using GridSearchCV? Python package. To obtain input features for tradi-
tional ML models, researchers typically need to perform an extensive, manual
feature extraction from a raw text. We surveyed prior literature [3,12,20,30,49]
and identified two groups of features commonly used in the development of tra-
ditional ML models: (1) LIWC® and (2) N-GRAM features. LIWC [34] is a predefined
dictionary of 84 features reflecting a frequency of different linguistic choices a
student made, e.g., function words, summary, affect, relativity and time orienta-
tion. N-GRAM features contain the 1000 most frequent unigrams and bigrams
extracted from a case note. We included both groups of features as input to our
Random Forest classifier.

BERT. Although DL classification models have demonstrated a considerable
performance in classifying legal texts (e.g., [32]), these models typically rely upon
a large amount of training data. In recent years, the development of pre-trained
language models, e.g., BERT [17], provided researchers with the opportunity to

! https://scikit-learn.org)/.
2 https://scikit-learn.org/stable/modules/grid_search.html.
3 https://liwc.wpengine.com/.
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develop high-performing DL classifiers without necessarily using large datasets
for training. For this reason, we utilised the pre-trained BERT language models
in the current study. Specifically, we created two DL models based on BERT: (1)
BERT Base that uses a version of the BERT pre-trained on general texts (e.g.,
Wikipedia articles and books) and (2) BERT Legal*, a version of the BERT
pre-trained on the legal documents (e.g., legislation, court cases, contracts). To
fine-tune legal BERT, we followed the broader hyper-parameter search space
procedure proposed in [13]. Given that our dataset was relatively small, we set
batch size to 8 without setting a fixed maximum number of epochs to avoid
under-fitting. Then, an early stopping mechanism was applied based on valida-
tion loss. We applied a low learning rate of 1e—5 and a high drop-out rate of 0.2
which have been shown to improve regularization in [13].

Data Pre-Processing. In data pre-processing stage, we first split each casenote
essay into sentences using the sentence-tokenize® routine of NLTK Python
package [9]. Each sentence was mapped to a corresponding label, i.e., manually
annotated rhetorical move: Title and Introduction, Material Facts, Procedural
History, Court Reasoning, Court Decision and Footnotes. Following recommen-
dations in [22], we randomly split the dataset using the 80%:20% train-test ratio,
i.e., 80% of data were used for model training and the remaining 20% were used
for model testing.

Model Training and Testing. We trained a single multi-label classification
model to classify the six rhetorical moves within a casenote. We detected an
unequal representation of outcome classes in the training sample, e.g., the num-
ber of sentences labeled as procedural history was nearly five times higher than
the number of sentences labelled as title & introduction. To mitigate the class
imbalance issue, we applied the SMOTE algorithm [14], motivated by prior
research that successfully applied this algorithm to balance outcome classes in
educational classification tasks (e.g., [6,27]). Using SMOTE, we over-sampled
minority classes and reached a parity in sample sizes between minority and
majority classes. In this way, we ensured that the model was evenly trained on
both minority and majority classes. We tested and compared the models’ perfor-
mance using the testing sample. To this end, we computed the four classification
performance metrics: Accuracy, Cohen’s k (denoted as Kappa), AUC, and F1
score. To answer our research question, we evaluated the overall model perfor-
mance in classifying multiple labels at once, but also the model performance in
classifying each individual label, e.g., material facts vs. other rhetorical moves.

4 Results

The evaluation results show that BERT Legal outperformed the Base BERT
and Random Forest models, as indicated by the all four metrics (Table3). In

* https://huggingface.co/nlpaueb/legal-bert-base-uncased.
5 https://www.nltk.org/.
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particular, the AUC of 0.956 achieved by BERT Legal indicates an outstanding
classification performance on the test dataset. Moreover, a better performance
of BERT Legal compared to BERT Base may have been expected given that
BERT Legal is pre-trained on legal texts.

We further evaluated how the three models classified each individual label.
The evaluation results are presented in Table4. We thus found that DL models
outperformed Random Forest in correctly identifying all the labels. Base and
Legal BERT performed similarly well in detecting all the rhetorical moves, except
in detecting court decision (CourtD) where Legal BERT outperformed Base
BERT (0.971 vs 0.788, measured by classification accuracy). Overall, our results
indicate that Legal BERT classifier® can correctly classify at least 86% of all the
sentences into one of the rhetorical moves, and, as such, may be a preferable DL
model for automatic detection of rhetorical moves in legal casenotes. We show
the confusion matrix of rhetorical moves predicted by Legal BERT in Fig. 1.

Table 3. The classification performance of Random Forest, BERT Base and BERT
Legal measured by Accuracy, Kappa, AUC and F1 score

Model Label Accuracy | Kappa | AUC |F1
Random forest | MULTI-6 | 0.743 0.691 |0.945 |0.734
BERT base MULTI-6 | 0.816 0.751 |0.951 | 0.820

BERT legal MULTI-6 | 0.835 0.777 | 0.956 | 0.836
Note. MULTI-6: Classifying each sentence into one of the 6
rhetorical moves. The highest classification scores for each met-
ric are in bold.

Table 4. Accuracy and AUC scores the models achieved when classifying each rhetor-
ical move individually

Rhetorical move | Random forest | BERT base BERT legal
Accuracy | AUC | Accuracy | AUC | Accuracy | AUC
Material 0.834 0.840 | 0.958 0.946 | 0.957 0.940
Procedural 0.728 0.758 | 0.874 0.829 | 0.868 0.818
CourtR 0.792 0.793 | 0.889 0.882 1 0.892 0.886
Title 0.834 0.866 | 0.984 0.945 | 0.984 0.938
CourtD 0.770 0.8320.788 0.858 | 0.971 0.869
Footnotes 0.966 0.944 | 0.986 0.986 | 0.996 0.997

6 Source files of the casenote classifier developed in this study are publicly available
at https://bit.ly /3roDWTC.
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5 Discussion

5.1 Interpretation of the Results

Our results indicate it is possible to develop a highly accurate classifier of rhetor-
ical moves in legal casenotes written by first-year law students, a major contri-
bution of our study. More specifically, we found that deep learning classifiers
based on the state-of-the-art pre-trained language models outperformed Ran-
dom Forest, a traditional machine learning classifier. This finding conforms to
prior research suggesting that pre-trained language models can boost text clas-
sification performance compared to more traditional approaches [39], even when
using a relatively small corpus for model training [21], like in our study. We
also demonstrated that the deep learning classifier based on Legal BERT [13], a
language model pre-trained on a few hundred thousand diverse legal texts, can
be very accurate in identifying rhetorical moves in students’ casenotes. We note
that, while Legal BERT has been successfully applied in several analytical tasks
that involve legal texts (e.g., identifying topics in legal documents [41]), resolving
domain name disputes [47] and labeling factual information in legal cases [48],
to our knowledge, our study was the first to successfully apply a Legal BERT
model to detect rhetorical moves specific to legal casenotes.

Our results corroborate prior evidence (e.g., [48]) that Legal BERT generally
performs better on legal classification tasks compared to Base BERT, a language
model pre-trained on generic texts. In particular, we found that Legal BERT out-
performed the Base BERT over nearly 19% in detecting the court decision move.
This may indicate that the Legal BERT was more adept to specific vocabulary
and syntax of court decisions, compared to the base model. We, however, note
that Legal BERT tended to confuse mainly between procedural history and court
reasoning rhetorical moves (Fig. 1). We speculate this might be due to the similar
vocabulary that legal writers may use to describe the court procedure and court
reasoning, e.g., it may be possible that the arguments provided in procedural
history are reiterated in court reasoning to justify the final court decision. This
speculation should be tested in future work.
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Fig.1. The Confusion Matrix of predicted rhetorical moves based on the LEGAL
BERT model on the testing set
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5.2 Implications for Research and Practice

Our findings may be of a particular interest for educational researchers and
practitioners who seek to use the methods of artificial intelligence to develop at-
scale writing support to law students. For instance, the theoretical framing based
on rhetorical moves, and dataset creation and model development approaches
reported in this study can be applied in the context of legal writing tasks other
than the casenote, e.g., legal memos or argumentative essays, as these genres
also involve rhetorical moves. Equally important, the publicly available Legal
BERT classifier developed in this study can be used as a part of a future writing
analytics tool that can analyse a casenote draft. For example, the tool may color-
code the rhetorical moves in a draft, making it easier for instructor or a student
to identify the moves that still need to be included, a potential benefit towards
more efficient marking and formative feedback.

6 Limitations and Future Work

We identified a few major limitations to our study that may be addressed in
future research. First, as per our data labelling approach, we categorised each
individual sentence into only one rhetorical move. However, we acknowledge it
is possible that one sentence sometimes can be categorised into multiple rhetor-
ical moves, e.g., a compound sentence elaborating on court reasoning and court
decision. To address this challenge in future studies, researchers may need to
label discourse units that are more fine-grained than a sentence, e.g., idea unit
[19]. Next, even though we recorded in our analysis whether students provided
citations in their responses or not, the quality of citation use was not measured.
For example, our analysis could not distinguish whether a student merely copied
or more deeply analysed and transformed information from documents cited in
their casenotes. To remedy this issue, researchers may compute semantic simi-
larity between a casenote draft and each document cited in the draft, and use
this value as an additional feature to describe rhetorical moves in a casenote.
Last, we acknowledge that the classifier developed in this study should be val-
idated on casenote essays written at different law schools to ensure it performs
comparably well across different educational contexts.
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Abstract. Studies on automated short-answer scoring (SAS) have been
conducted to apply natural language processing to education. Short-
answer scoring is a task to grade the responses from linguistic infor-
mation. Most answer sheets for short-answer questions are handwritten
in an actual educational setting, which is a barrier to SAS. Therefore, we
have developed a system that uses handwritten character recognition and
natural language processing for fully automated scoring of handwritten
responses to short-answer questions. This is the most extensive scoring
data for responses to short-answer questions, and it may be the largest
in the world. Applying the Cohen’s kappa coefficient to the graded eval-
uations, the results show 0.86 in the worst case, and approximately 0.95
is recorded for the remaining five question answers. We observe that the
fully automated scoring system proposed in our study can also score with
a high degree of accuracy comparable to that of human scoring.

Keywords: Short answer scoring - Natural language processing -
Handwritten character recognition

1 Introduction

Considering the current educational field, descriptive questions are often intro-
duced to properly evaluate the abilities developed in linguistics. Moreover, to
improve the scoring process’s efficiency and stability, the effective use of com-
puters and artificial intelligence has recently been increasing. There are approxi-
mately two types of descriptive questions: “essays without a correct answer” and
“short-answer questions with correct answers.” Many systems have been devel-
oped and have been practicalized for essays, especially in the United States.

H. Oka—Work done while at The University of Tokyo.

© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 180-192, 2022.
https://doi.org/10.1007/978-3-031-11644-5_15


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-11644-5_15

Fully Automated Short Answer Scoring 181

Some of the systems include the e-rater [2], IntelliMetric [19], intelligent essay
assessors (IEA) [7], and CRASE [13]. Although the importance of short-answer
questions has been recognized, various technical issues remain unsolved, such as
semantic incomprehension.

On the other hand, short-answer questions are often used in several cases.
Because short-answer questions are widely regarded as more orthodox, authentic,
and reliable than the traditional multiple-choice tests [6], they have the potential
to be used if the technical challenges for scoring are overcome. Automated short-
answer scoring (SAS) techniques for English language have undergone technical
improvements. Since the proposal of SAS that uses deep learning, its (SAS) per-
formance has improved [1,5,17]. Particularly, SAS was devised using a massive
transformer-based language model [8,12,21,22]. The demand of SAS is immea-
surable and is not limited to new tests. Therefore, recent studies on SAS for
practical purposes in Japan use data from actual mock examinations [8,15].

However, these studies have two unresolved problems. First, SAS requires
additional manual work. It takes time and effort to convert handwritten data
into electronic media because most of the descriptive answers in the educa-
tional domain are handwritten. The conventional SAS method aims to reduce
the effort involved in scoring and requires extra effort. Furthermore, annotations
were added as a guide for scoring to ensure accuracy. Considering its practi-
cal use in education, SAS requires improvements to eliminate these efforts. We
have produced a fully automated scoring system that reliably eliminates data
processing (such as annotations) and converts handwritten responses into text
data. Second, the data handled in actual educational settings were too few to be
verified on a large scale. When considering the privacy viewpoint, the amount
of data was limited, and the verification was limited to a small scale. We con-
ducted an experiment using data from a nationwide test and clarified that we
could guarantee high prediction accuracy, even with large-scale data from actual
educational settings.

The contributions of our research are as follows:

— We have developed a fully automated scoring system for handwritten
responses, making it possible to grade many handwritten responses with high
accuracy cost effectively.

— Large-scale data collected from two trial tests of entrance examinations
nationwide were used to verify the practicality of the method in education.

Section 2 describes the large dataset used for the trial test of Japanese com-
mon entrance examinations. Section 3 explains the handwriting recognition tech-
nology and the scoring model used. The recognition evaluation criteria were also
added. Section4 presents the evaluation results, Sect.5 describes the ablation
studies, and Sect. 6 concludes the paper.
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2 Trial Test Dataset for University Common Entrance
Examinations

2.1 Overview

We used the written answers in Japanese in the trial test for the university
common entrance examination conducted in 2017 and 2018. These exams are
for national and private Japanese universities and are jointly conducted by the
National Center for University Entrance Examinations, an independent admin-
istrative organization in Japan.

Approximately 500,000 examinees nationwide take the exams annually. These
exams are considered essential for admission to national universities. Moreover,
many leading private universities base their admission on these exams. Japanese
exam questions comprise only first-appearing questions and are conducted once
annually. While, SAT and ACT use test items repeatedly, and carry out many
times a year.

We used trial test data for university common entrance exams conducted
in 2017 and 2018. The test questions were prepared in a manner similar to
the production, and the quality of the test questions was rigorously examined.
Regarding the trial test, items on the national language (i.e., Japanese), mathe-
matics, geography, history, civics, science, and foreign languages (only in 2018)
were included. Descriptive questions were used only in Japanese and mathemat-
ics. Approximately 38% of high schools in Japan participated in this trial test;
nonetheless, candidates did not have to take all the subjects. We analyzed the
national language, which was taken by approximately 60,000 people. This is an
unprecedented number of short-answer data for analysis.

2.2 Short-Answer Questions

The national language test in the trial test consisted of five test sets, known as
the item bundles. One of these questions was a short-answer question. The test
set consisted of three test questions. In 2017, these three test questions needed to
be answered within 50, 25, and 120 characters, respectively. In 2018, the answers
were to be of 30, 40, and 120 characters. Two Japanese characters are roughly
equivalent to one English word. Figure 1 demonstrates a short-answer question
administered in 2018.

3 Method

3.1 Task Settings

We input the answers to a short-answer question converted into text data using
the automated handwriting recognition, and we output the corresponding pre-
dicted score. Subsequently, we demonstrate that our scoring model can predict
the scores correctly by comparing the manual scores based on the rubric or
scoring criteria. Regarding all the questions, we applied a single scoring model.
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Sentence

“...Consider a situation where you travel to a country
where you do not speak their language at all, and

you have to ask for something. Regarding this case,
pointing will work like magic....”

What does the underlined phrase,
“pointing will work like magic” indicate?

’ Student answer ‘
It indicates that you can communicate your intentions,
even if you do not speak the language.

Score: 3/3

Fig. 1. Example of a short-answer question conducted in 2018. It is originally written
in Japanese and has been translated into English for reader’s understanding.

Figure 2 shows the task flow. We evaluate the performance using the score,
without modifying the character answer data and without adding any annota-
tion to the answer. The part that should be correctly identified as “«x>»” was
identified as “«)z»”. The quality of the written letters was sometimes insufficient.
This is because of stains that remained in the paper.

3.2 Handwriting Recognition

We employ the extracting, transforming, and loading (ETL) database, which has
offline Japanese handwritten single characters. This database consists of nine
datasets collected under different conditions [18]. Because the collected samples
are written in separate boxes similar to the answer sheet of university entrance
exams, the ETL database is appropriate for building an offline Japanese hand-
writing recognizer. This database covers the most common Japanese characters
belonging to 2965 kanji (Japanese Industrial Standards : JIS Level 1) and 94
kana categories. Although there are more kanji categories, the characters of JIS
Level 1 are mostly used daily and in examinations, whereas other kanji characters
are rarely used.

Based on the success of the ensemble convolutional neural networks (CNNs)
for Japanese historical character recognition [16], we also used an ensemble of
multiple well-known CNN models. Our recognizer consists of a visual geometric
group (VGG), MobileNet, residual network (ResNet), and ResNext networks
with 16, 24, 34, and 50 layers, respectively [9,10,20,23].

To train these CNNs, we applied multiple transformations such as rotating,
shearing, scaling, blurring, contrasting, and noise addition to avoid over-fitting
problems because the database had only approximately one million samples in
total. After training these CNNs using the ETL database, we fine-tuned them
using 100 manually labeled samples from our collected Japanese handwritten
answer database.
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A trained neural network provides a prediction output as a k-dimensional
vector of probabilities, where k is the number of categories for each character
sample. These prediction outputs are averaged together with an equal weight of
1.0 to form an ensemble prediction output. Thus, the top-most prediction is the
category with the highest probability in the ensemble prediction output. Figure 3
shows the procedure in which the CNN using 16, 24, and 50 layers is judged as
“¥& "Here, the CNN using 34 layers is judged as “#&,” and finally it is judged

=}
correctly as “¥§.”

[1]t] S5
7|4 3 3< | =]
T
B ) %
i e . =S Predicted Score: 3/3. :
%;3 s ®$ (E,_ g Correct Score: 3/3 }comparlson input m/ ?E‘ output
K7 EX (59 = e
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[ 2 . B L
:}— ? < Verification of f% = ;E
. || Handwriting | Automated accuracy / }IE
| z Recognition | — = | Scoring
N =
17 "(‘-’ il =
17 | -/ | 18
Fig. 2. Task flow Fig. 3. Ensemble CNN handwriting recogni-
tion

Owing to the ambiguities of some characters, we also use an N-gram language
model to correct misrecognized characters using the linguistic context. Consid-
ering every character of a text line, we computed the combined score based
on the recognition and language scores of each character. First, the recognition
score is the probability product of the previously recognized characters produced
by the ensemble CNN recognizer. Second, the language score is the probability
product of previous characters based on a five-gram Japanese language model
that has been pre-trained by the Japanese Wikipedia corpus. Although N-grams
are simple, they are sufficiently effective. Third, the combined score is a linear
combination of the recognition and language scores with a weight of « € [0, 1].
Based on the combined score, we employ the beam search algorithm along the
text line with a beam width of ten to export the top-ten candidates with the
highest combined scores. However, only the highest combined score candidate
was used for scoring in this experiment.

3.3 Scoring Procedure

The methods by [8] and [15], which perform the same type of SAS in Japanese,
use an attention mechanism added to the bidirectional long-short term memory
(Bi-LSTM). Their method outputs a predicted score based on each scoring crite-
rion or rubric. However, our method does not accumulate scores for each scoring
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criterion. It predicts the overall score. We explicitly utilize a multi-label classifi-
cation model by fine-tuning it with Bidirectional Encoder Representations from
Transformers (BERT) [4], which is pre-trained on Japanese Wikipedia.' If we
consider the operation in large-scale tests, the scoring model should be imple-
mented more efficiently. Nevertheless, we must utilize a better language model
that is as accurate as possible.

The procedure is as follows (Fig.4):

1. ® = {x1,22,...,2,} is input as the written answer converted to text data
using handwriting recognition, and the predicted score s € C = {0,..., N}
for the answer is provided as the output of the label.

2. The sentence x of the written answer is decomposed for each token, and a
special token known as [CLS] is provided at the beginning of the sentence.

3. These token IDs are provided, and they are entered into the pre-trained BERT
using the Japanese Wikipedia. Thereafter, we converted them into series of
768-dimensional vectors.

4. Whereas BERT is composed of all 12 layers, we concatenate the vectors of
the [CLS] tokens of the last four layers of the hidden layer. Considering [4],
combining them improved the document classification accuracy, compared
to using only the [CLS] token vector in the final layer. Adam was used to
optimize the model. The batch size was 16, and the number of epochs was
five.

5. The vector of the combined classification [CLS] tokens is input into the clas-
sifier, and the predicted score s is output.

Predicted
score

Alinear layer
& Softmax

|
BEEE

‘ Text data (made by handwriting recognizers) ‘

concat

Fig. 4. Short-answer scoring model

3.4 Evaluation

The quadratic weighted kappa (QWK) [3] is often used as an evaluation index in
SAS, and we used it in this study. The QWK is used for multilabel classification
when an order relationship exists between labels. This index shows how well

! https://github.com /huggingface/transformers.
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the correct and prediction labels match. The higher the value is, the better the
prediction.
The QWK is calculated as:

i WOy
)
2 WigEi

k=1

(1)

where 7 and j represent the correct and predicted labels, respectively. O rep-
resents the ratio of each cell to the labels in the confusion matrix composed of
the correct and predicted labels. E represents the expected value of the label
belonging to each cell of the confusion matrix, assuming that the predicted and
correct labels are independent.

W represents the penalty when the prediction is incorrect, and it is expressed
as follows:

(i—j)?

N1 @

where IV represents the number of label classifications. W increases because the
difference between the correct and predicted labels increases.

The QWK score is a ratio that can consider a value between —1 and 1. A
negative QWK score indicates that the model is “worse than random.” A random
model should provide a score close to zero. Finally, the perfect predictions yielded
a score of one. According to [14], Cohen suggested a kappa result of 0.81-1.00,
which is interpreted as an approximately perfect agreement.

Wij=

4 Experiments

4.1 Question Data

Six questions, including three questions each in 2017 and 2018, were classified
based on these conditions and classification methods. The number of answers
processed was approximately 60,000 in both 2017 and 2018. Table 1 shows the
statistics of the scoring for each question. The question ID, number of answers,
number of scoring conditions, score range, mean of the scores, standard deviation
of the scores, and number of characters allowed are presented chronologically.
We divided the data used for the BERT into 3:1:1 (= 60%:20%:20%) as the
training, development, and evaluation sets. The scoring accuracy was evaluated
using the QWK.
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Table 1. Descriptive statistics on scoring for each question

Questions | # of # of scoring | Score | Mean # of characters
answers | conditions | range allowed

2017 #Q1 | 62,222 | 4 0-6 | 4.46 £ 1.67 | <50

2017 #Q2 | 61,777 |3 0-2 | 1.51 £ 0.86 <25

2017 #Q3 159,791 |4 0-5 |0.43 +£1.1080-120

2018 #Q1 /67,332 |3 0-3 |2.51 £ 0.88 <30

2018 #Q2 /66,246 |3 0-3 |1.87 £ 1.14 | <40

2018 #Q3 | 58,159 |5 0-3 |0.76 £ 1.07 | 80-120

4.2 Evaluation Results

Considering this experiment, the number of answer characters required at the
university entrance level is relatively large, and the content is not plain. Regard-
ing such cases, it is essential to know how large a sample is needed to guarantee
the accuracy of the estimation.

Therefore, the sample size was changed to 50,000, 10,000, 5,000, 1,000, and
500, and the change in the QWK was observed. Table 2 shows the results, includ-
ing the full-size data of approximately 60,000. The bold text indicates the best

values.

Table 2. QWK for scoring each question

Questions | Sample size
Full size | 50,000 | 10,000 | 5,000 | 1,000 | 500

2017 #Q1|0.978 0.979 | 0.967 |0.946 | 0.883|0.679
2017 #Q2/0.963 0.949 10.934 0.922/0.818 | 0.884
2017 #Q3/0.866 | 0.836 | 0.705 |0.680|0.473|0.276
2018 #Q1/0.976 |0.968 |0.974 |0.914|0.863|0.820
2018 #Q2/0.954 | 0.945 0.923 |0.903 | 0.796 | 0.724
2018 #Q3/0.944 |0.929 | 0.916 |0.894|0.783|0.753

The following can be obtained from the steps above.

1. We observe that the accuracy is kept high by the method for all six questions,
regardless of the type of question. Even in the worst case of Q3 in 2017, the
QWK is 0.86; otherwise, it is 0.94 or higher.

2. Essentially, the larger the sample size is, the better the accuracy. This indi-
cates that the accuracy does not converge, which is an unexpected result.
The sample size of 60,000 seems large enough in a typical test. Nevertheless,
it shows that a more significant number is needed to improve the accuracy of

the prediction.
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This indicates in a sentence of a certain length, the variation in expressions
is highly diverse. Because the number of characters increased, the number of
variations increased exponentially, even if we have sufficient answer patterns
that would not be significant. Therefore, the learning never converges.

3. The easier the question is, the higher the scoring rate, and the better the
estimation accuracy. In both 2017 and 2018, Q1 was the easiest, and Q3
was the most difficult. The accuracy of Q1 was higher than that of Q3. This
tendency did not depend on the number of scores.

5 Ablation Study

We observed the effect on scoring accuracy in our model from two perspectives.
First, we considered the accuracy of handwriting recognition. We examined how
the recognition rate affected the overall scoring accuracy. Second, we considered
the position of the layer in the language-processing model. We changed the
information position extracted from the 12 layers of the BERT model and verified
how the change affected the overall scoring accuracy.

5.1 Effect of the Handwriting Recognition Models Used

To investigate the effect of the handwritten character recognition part on the
scoring accuracy, we compare the original ensemble model of four methods with
other methods. The compared methods are as follows:

1. No language model: This is a character recognition model without correction
of misrecognized characters by the N-gram language models.

2. VGG only: This is a single character recognition model without ensemble
learning.

3. DenseNet only: This is also a single character recognition model without
ensemble learning.

4. Ensemble 5: This is a character recognition model with ensemble learning of
five character recognition models.

Table 3 compared the QWK using each of the output results.

Table 3. Comparison of QWK by five methods

Questions | The handwriting recognition models

Original | No language model | VGG | DenseNet | Ensemble5
2017#Q1 | 0.978 0.975 0.977]0.974 0.980
2017#Q2 | 0.963 0.957 0.957|0.952 0.959
2017#Q3 1 0.866 | 0.847 0.844 1 0.820 0.830
2018#Q1 | 0.976 |0.973 0.9720.970 0.970
2018#Q2 | 0.954 0.950 0.952]0.953 0.953
2018#Q3 1 0.944 |0.937 0.9330.935 0.941
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This shows that the model with ensemble learning with multiple character
recognition models has a higher overall accuracy than the model with a single
character recognition model. In addition, the results show that the accuracy of
the models with the modification in the language model is higher than that of
the models without modification. Moreover, increasing the number of ensemble
learning models did not change significantly, considering the accuracy. Consid-
ering these results, we observed that the overall accuracy was affected by both
the language model changes and character recognition model quality. Moreover,
we found that the overall accuracy was limited by improving the quality of the
character recognition model.

5.2 Effect of the Information Retrieved from the BERT Model

We investigated the effect of the different linguistic information retrieved from
BERT on the scoring accuracy. The BERT used in our study consists of 12 lay-
ers, and each layer is known to contain different information [11]. Specifically,
the layers close to the input, middle, and output parts possess morphological
information, syntactic information, and information that focuses on the seman-
tic information, respectively. We divided the BERT model into three parts: a
layer near the input, a middle part, and a layer near the output. Thereafter, we
examined the differences in the scoring accuracy between the three parts. Layers
1-4, 5-8, and 9-12 were extracted from the input section. The output from each
layer was input into the linear layer, and the score was predicted. Table 4 lists
the results for each accuracy. We observed that the scoring accuracy was the
highest when the information of layers 9-12 was extracted for each problem.

Table 4. Comparison of QWK by the different extraction layers

Questions | The part of layers
1-4 |58 |9-12
2017#Q1 1 0.977/0.977|0.978
20174#Q2 1 0.952|0.955 | 0.963
2017#Q3 1 0.830 | 0.832 | 0.866
2018#Q1 1 0.969 | 0.972 | 0.976
20184#Q2 | 0.951 | 0.950 | 0.954
2018#Q3 1 0.936 | 0.939 | 0.944

This indicates that the system is paying particular attention to the semantic
information when performing automatic scoring tasks. Particularly, QWK in
20174#Q3 was different by 3.0 or more among all the questions, and the difference
was outstanding.
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6 Summary and Conclusions

We have investigated a fully automated scoring method for short-answers using
handwriting recognition data and have evaluated the system’s performance using
a large-scale national test. “Fully” indicates that there is no need to annotate the
scoring data or convert the handwritten text manually. We used very large data
conducted in two trial tests for university common entrance examinations and
used a pre-trained BERT model for scoring. We made the following observations.

1. When the data is sufficiently large, our method increases the scoring accuracy
without annotation and converts the handwritten text manually.

2. When we consider 25 to 120 character answers, learning often does not con-
verge, even with a data size of 50,000.

3. Even if some errors are caused by handwriting recognition, the accuracy of
scoring is guaranteed to some extent using the current technology.

This study reports the actual accuracy at the current technical level in a pro-
cedure without human intervention. Despite the variety in the types of questions
we considered, such as the number of characters in the answer and the difficulty
level, we could predict the scores with high accuracy in all cases. This suggests
that our procedure is effective for all short-answer questions, and SAS is suit-
able for large-scale testing using the current technology. In addition, our study
demonstrates the usefulness of the method for utilizing handwritten character
recognition models in SAS. We can serve as an opportunity to develop a new
learning method for educational application settings, where students often use
handwriting.
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Abstract. The advancement of knowledge in medicine presents an
important challenge when identifying gaps and deciding what content
to include in a medical school curriculum and how to establish learning
outcomes. Monitoring alignment between lesson objectives, the curricu-
lum and achievement of intended outcomes can be difficult. A system
that can automatically evaluate lesson objectives would be highly bene-
ficial. We aim to assess the efficacy of using machine learning techniques
to evaluate individual lesson objectives to a graduate entry allopathic
medical school curriculum. The school’s curriculum objectives consist
of 11 categories and 356 curriculum objectives sentences. We considered
the first year courses with a total of 1888 lesson objectives. Using various
word embeddings (TF-IDF, word2vec, fastText, BioBERT), we then use
cosine similarity to map each lesson objective to the curriculum objec-
tives. Cognitive levels of lesson objectives were compared against the
school’s curriculum using Bloom’s Taxonomy verbs. After implementa-
tion, 319 lesson objectives from each approach were randomly sampled
(sample size, 95% CL, 5% CI) to examine match with curriculum objec-
tives and curriculum categories. BloBERT performed best with 46.71%
and 80.56% match between lesson objectives and curriculum objectives,
and lesson objectives and categories, respectively. Further validation by
a domain expert shows 80% match (without order). Visualisation of the
Bloom’s Taxonomy cognitive levels of lesson objectives and school’s cur-
riculum objectives showed a good match. Machine learning can be used to
evaluate lesson and curriculum and automatically mapping lesson objec-
tives to the medical school curriculum and analysing cognitive levels of
lesson objectives.

Keywords: Natural language processing - Evaluate curriculum
mapping - Evaluate cognitive learning outcome

1 Introduction

A school’s curriculum acts like a blueprint for all the lessons. With the ever-
increasing amount of content and frequency of updates in the medical school,
keeping track of what was taught and checking if it is in-line with the school’s
curriculum has become an immense and immediate challenge. Over the years,
lessons delivered might diverge from the school’s main curriculum. Therefore,

© Springer Nature Switzerland AG 2022
M. M. Rodrigo et al. (Eds.): AIED 2022, LNCS 13355, pp. 193-205, 2022.
https://doi.org/10.1007/978-3-031-11644-5_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11644-5_16&domain=pdf
http://orcid.org/0000-0002-2700-4963
http://orcid.org/0000-0003-0881-5661
http://orcid.org/0000-0003-4136-0355
https://doi.org/10.1007/978-3-031-11644-5_16

194 P. H. Cher et al.

there is a need for the administrators to be aware of outdated or latest updates
in the lessons, to quickly and more frequently process all lesson objectives and
ensure it is in-line with the school’s curriculum. The aim of this paper is to assess
the efficacy of using machine learning techniques to automatically evaluate and
map lesson objectives with the school’s curriculum objectives. This is so that
we can quickly identify gaps, misalignment and bring to the users’ attention for
further action.

According to the constructive alignment framework [1], every lesson starts
with clearly written lesson outcomes that communicates what is expected from
the students by the lesson. Using a feedback loop, the lesson outcomes, teaching
approaches and assessments are constantly evaluated so that they are aligned
to the outcomes. In this paper, we will refer to learning outcomes as learning
objectives as it is the terminology that is used in our institution. We acknowl-
edge that there is a difference and debate within the field and would focus the
discussion on the use of machine learning techniques for curriculum mapping.

Machine learning techniques in natural language processing (NLP) are
automation techniques used to extract, represent and process semantics of natu-
ral texts. They are used in sentiment analysis, question and answering machine,
etc. Although to human it is easy to understand a sentence, it is a very diffi-
cult task for the machine to understand that a word “stop” can have different
meaning in “bus stop” and “please stop”. NLP has improved tremendously into
developing more natural language understanding (NLU) techniques. NLU adopts
transformers that provides general-purpose architectures with pre-train models
to help in representing words in multidimensional sentence or word embeddings.
With a good sentence or word representation we can potentially capture the
semantic context or meaning of each sentence or word then generate a mapping
between the school’s curriculum objectives and lesson objectives.

Another way to evaluate the lesson against the curriculum is to compare
the cognitive levels based on well-established knowledge framework such as the
Bloom’s Taxonomy [8]. Bloom’s Taxonomy is a hierarchical model that classifies
learning into six domains of different complexity and specificity. Each learning
objective begins with an action verb that would classify the different level of
learning expectation by the student. If we can automate the classification of the
objective sentences, we can visualize and compare the differences.

In this paper, we evaluate the lesson objectives against the curriculum objec-
tives by exploring different pre-trained word representation techniques and map-
ping them, as well as comparing their cognitive levels. In the next section, we
will expound on the related work in this area. Section 3 will explain in detail our
methodology applying different word representation techniques and a cognitive
classification model using a knowledge framework. The results will be presented
in Sect. 4. We will then discuss, provide recommendations and state the limita-
tions of this project in Sect.5 and conclude in Sect. 6.
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The main contributions in this paper are:

— automated extraction of information from both the school’s curriculum objec-
tives and the first-year lesson objectives

— mapping between the first-year lesson objectives and the school’s curriculum
objectives

— categorization and comparison of the Bloom’s taxonomy cognitive domain
categories used in the school’s curriculum objectives and the first-year lesson
objectives

— consolidation and gap analysis between what was planned at the school level
and what was taught at the lesson level

2 Related Works

In this section we will provide a background on the related literatures in curricu-
lum mapping, word representation techniques and knowledge framework using
Bloom’s taxonomy. With this background, we will highlight the gaps that we
are attempting to bridge in the literature.

2.1 Curriculum Mapping

To align lesson objectives with school curriculum objectives, we looked at cur-
riculum mapping literature. According to some authors [2,7], there are limited
studies in the mapping of a medical school curriculum. Due to the lack of digiti-
zation and understanding of the bigger picture in the school’s curriculum, Chan
[2] mentioned it is difficult to introduce new content or review current taught
content. This had previously led Komenda [7] to create a framework to enhance
curriculum innovations and mapping using a network graph approach, but it
lacked in reporting the performance of their curriculum mapping algorithm. In
this work, we attempt to create curriculum mapping models that maps the con-
tent, as well as comparing cognitive levels using state-of-the-art natural language
processing techniques, and evaluating the performance of the model.

2.2 Sentence Representation

Before mapping the objective statements, it is necessary to accurately represent
the semantics of the sentence in the computer. For a computer to analyse a
sentence, words in the sentence need to be represented as a number or vector.
Komenda [7] proposed both a framework and a curriculum mapping model using
term-frequency inverse document frequency (TF-IDF) to convert sentences into
features to train their model. By using TF-IDF, the features do not take into
account the context of a word in the sentence, but simply count the occurrence
of each word without considering the order or the meaning of the words in a sen-
tence. We aim to explore and compare other methods to represent sentences like
Word2vec [10,12,13], fastText [5,11] and Bidirectional Encoder Representations
from Transformers (BERT) [4].
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Mikolov [10,12,13] started a major breakthrough in word representation
using Word2vec. This algorithm uses a neural network model to learn the n-
dimensional vector of each word in a large corpus of text using word associa-
tions. The team by Joulin and Mikolov [5,11] continued to improve the word
representation and created fastText.

BERT [4] word embedding is the state-of-the-art pre-trained language repre-
sentation model. The model is trained using a general-purpose “language under-
standing” model on a large text corpus (like Wikipedia). BERT captures the
context of each word in a sentence as it is trained bidirectionally (uses both left
and right of the sentence). Each word embedding depends on all other words
in the sentence. There are several other versions of BERT that are trained on
different domains. BioBERT [9] is trained on biomedical literature in PubMed
and will be more relevant for representing our medical school texts.

2.3 Knowledge Framework - Bloom’s Taxonomy Cognitive Domain
Levels

In addition to the automated extraction and mapping, we also wanted to explore
classifying lesson objectives and school’s curriculum objectives into different cog-
nitive levels. Bloom’s taxonomy is often used to measure cognitive levels in lesson
objectives [8]. Several papers have created classification models to automatically
classify lesson objectives into levels [3,14]. None of these papers have looked at
comparing curriculum objectives with lesson objectives.

Recognising the importance of aligning lesson objectives to curriculum objec-
tives [1], and the challenges due to the vast amount of text to manually read and
analyse, we explored ways to automate this process. Currently, there is a lack of
literature in the area of medical curriculum mapping with empirical approach. In
order to map curricula, we will look at various state-of-the-art pre-trained word
representation models to quantify the curriculum mapping. Lastly, to the best
of our knowledge, no work has automatically classified and compared cognitive
levels of medical lesson objectives against the school’s curriculum objectives.

3 Methods

Figure 1 provides a summary of our approach. In this paper, the constructive
alignment framework’s “Intended Learning Objectives” and “Teaching & Learn-
ing Activities” will be viewed as the school’s curriculum objectives and lesson
objectives respectively. We evaluate the lesson objectives and school’s curricu-
lum objectives in two different ways. Firstly, we use an automation to map
the lesson objectives to the school’s curriculum using an unsupervised transfer
learning model to generate sentence embeddings. We then derive the similarity
between the sentences using cosine similarity of the embeddings. Secondly, we
use Bloom’s taxonomy cognitive domain to categorize all the lesson objectives
and all the school’s curriculum objectives and compare their cognitive levels.
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